prompt
stringlengths 15
655k
| completion
stringlengths 3
32.4k
| api
stringlengths 8
52
|
---|---|---|
from ROS.e_nose_classifier.src.e_nose_classification_publisher import eNoseClassificationPublisher
from ROS.e_nose_classifier.src.e_nose_classification_test import eNoseClassificationTestPublisher
from ROS.e_nose_classifier.src.e_nose_subscriber import eNoseSubscriber
from classification.lstm_model import SmelLSTM
from classification.knn import KNN
from classification.naive_bayes import GNB
from e_nose.measurements import DataType, StandardizationType
from e_nose.online_reader import OnlineReader
import time
import numpy as np
import rospy
class ClassifierOrganizer:
"""
This class is responsible for the organization of receiving the pure data from the data gathering machine (dgm)
via ROS. Then it is modeled to Measurment objects, similiar to the computation of the sampling files generated by
the dgm.
It computes the classification either by knn or by a lstm.
It shares the predicted classification via ROS to OUI or to our demo view
Has to be executed with on a computer connected to a keyboard as it is required to set the start and endpoints
of a measurement manualy via a shortcut
"""
def __init__(self):
print('Initialiting ROS node...')
rospy.init_node('classifier_organizer', anonymous=True)
print('Initialiting Subcomponents...')
self.pub = eNoseClassificationPublisher()
self.pub_test = eNoseClassificationTestPublisher()
self.sub = eNoseSubscriber()
failing_channels = [22, 31]
working_channels = np.ones(64, bool)
working_channels[failing_channels] = False
num_working_channels =
|
np.count_nonzero(working_channels)
|
numpy.count_nonzero
|
# Copyright 2019 Systems & Technology Research, LLC
# Use of this software is governed by the license.txt file.
import numpy as np
import scipy
from scipy.ndimage import gaussian_filter
# from subjectness import rise
import skimage
import skimage.filters # needed by python3
def create_threshold_masks(
saliency_map,
threshold_method,
percentiles=None,
thresholds=None,
seed=None,
max_noise=1e-9,
include_zero_elements=True,
blur_sigma=None,
):
"""
Args:
include_zero_elements: extend mask beyond positive saliency elements.
"""
np.random.seed(seed)
if include_zero_elements:
nonzero_saliency = 1
else:
# to prevent expansion of saliency masks past the
# null elements
nonzero_saliency = saliency_map != 0
saliency_map_noise = (
saliency_map +
nonzero_saliency *
|
np.random.rand(*saliency_map.shape)
|
numpy.random.rand
|
import numpy as np
import hetu as ht
from hetu import gpu_links as gpu_op
def test_array_set():
ctx = ht.gpu(0)
shape = (500, 200)
# oneslike
arr_x = ht.empty(shape, ctx=ctx)
gpu_op.array_set(arr_x, 1.)
x = arr_x.asnumpy()
np.testing.assert_allclose(np.ones(shape), x)
# zeroslike
gpu_op.array_set(arr_x, 0.)
x = arr_x.asnumpy()
np.testing.assert_allclose(np.zeros(shape), x)
def test_broadcast_to():
ctx = ht.gpu(0)
shape = (200, 300)
to_shape = (130, 200, 300)
x = np.random.uniform(-1, 1, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(to_shape, ctx=ctx)
gpu_op.broadcast_to(arr_x, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(np.broadcast_to(x, to_shape), y)
def test_reduce_sum_axis_zero():
ctx = ht.gpu(0)
shape = (20, 1, 1)
temp_shape = list(shape)
temp_shape[0] = (temp_shape[0] + 1) // 2
temp_shape = tuple(temp_shape)
to_shape = (1, 1)
x = np.random.uniform(0, 20, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(to_shape, ctx=ctx)
arr_workspace = ht.empty(shape=temp_shape, ctx=ctx)
gpu_op.reduce_sum_axis_zero(arr_x, arr_y, arr_workspace)
y = arr_y.asnumpy()
y_ = np.sum(x, axis=0)
for index, _ in np.ndenumerate(y):
v = y[index]
v_ = y_[index]
if abs((v - v_) / v_) > 1e-4:
print(index, v, v_)
np.testing.assert_allclose(np.sum(x, axis=0), y, rtol=1e-5)
def test_matrix_elementwise_add():
ctx = ht.gpu(0)
shape = (500, 200)
x = np.random.uniform(0, 10, size=shape).astype(np.float32)
y = np.random.uniform(0, 10, size=shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.array(y, ctx=ctx)
arr_z = ht.empty(shape, ctx=ctx)
gpu_op.matrix_elementwise_add(arr_x, arr_y, arr_z)
z = arr_z.asnumpy()
np.testing.assert_allclose(x + y, z, rtol=1e-5)
def test_matrix_elementwise_add_by_const():
shape = (2000, 3000)
ctx = ht.gpu(0)
x = np.random.uniform(0, 10, size=shape).astype(np.float32)
val = np.random.uniform(-5, 5)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
gpu_op.matrix_elementwise_add_by_const(arr_x, val, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(x + val, y, rtol=1e-5)
def test_matrix_elementwise_multiply():
ctx = ht.gpu(0)
shape = (500, 200)
x = np.random.uniform(0, 10, size=shape).astype(np.float32)
y = np.random.uniform(0, 10, size=shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.array(y, ctx=ctx)
arr_z = ht.empty(shape, ctx=ctx)
gpu_op.matrix_elementwise_multiply(arr_x, arr_y, arr_z)
z = arr_z.asnumpy()
np.testing.assert_allclose(x * y, z, rtol=1e-5)
def test_matrix_elementwise_multiply_by_const():
shape = (2000, 3000)
ctx = ht.gpu(0)
x = np.random.uniform(0, 10, size=shape).astype(np.float32)
val = np.random.uniform(-5, 5)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
gpu_op.matrix_elementwise_multiply_by_const(arr_x, val, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(x * val, y, rtol=1e-5)
def test_matrix_elementwise_divide():
ctx = ht.gpu(0)
shape = (500, 200)
x = np.random.uniform(0, 10, size=shape).astype(np.float32)
y = np.random.uniform(1, 10, size=shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.array(y, ctx=ctx)
arr_z = ht.empty(shape, ctx=ctx)
gpu_op.matrix_elementwise_divide(arr_x, arr_y, arr_z)
z = arr_z.asnumpy()
np.testing.assert_allclose(x / y, z, rtol=1e-5)
def test_matrix_elementwise_divide_const():
shape = (2000, 3000)
ctx = ht.gpu(0)
val = np.random.uniform(-5, 5)
x = np.random.uniform(1, 10, size=shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
gpu_op.matrix_elementwise_divide_const(val, arr_x, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(val / x, y, rtol=1e-5)
def test_matrix_opposite():
shape = (2000, 2500)
ctx = ht.gpu(0)
x = np.random.uniform(-1, 1, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
gpu_op.matrix_opposite(arr_x, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(-x, y)
def test_matrix_multiply():
ctx = ht.gpu(0)
x = np.random.uniform(0, 10, size=(500, 700)).astype(np.float32)
y = np.random.uniform(0, 10, size=(700, 1000)).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.array(y, ctx=ctx)
arr_z = ht.empty((500, 1000), ctx=ctx)
gpu_op.matrix_multiply(arr_x, False, arr_y, False, arr_z)
z = arr_z.asnumpy()
np.testing.assert_allclose(np.dot(x, y), z, rtol=1e-5)
x = np.random.uniform(0, 10, size=(1000, 500)).astype(np.float32)
y = np.random.uniform(0, 10, size=(2000, 500)).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.array(y, ctx=ctx)
arr_z = ht.empty((1000, 2000), ctx=ctx)
gpu_op.matrix_multiply(arr_x, False, arr_y, True, arr_z)
z = arr_z.asnumpy()
np.testing.assert_allclose(np.dot(x, np.transpose(y)), z, rtol=1e-5)
x = np.random.uniform(0, 10, size=(500, 1000)).astype(np.float32)
y = np.random.uniform(0, 10, size=(2000, 500)).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.array(y, ctx=ctx)
arr_z = ht.empty((1000, 2000), ctx=ctx)
gpu_op.matrix_multiply(arr_x, True, arr_y, True, arr_z)
z = arr_z.asnumpy()
np.testing.assert_allclose(np.dot(np.transpose(x), np.transpose(y)), z,
rtol=1e-5)
def test_matrix_sqrt():
shape = (2000, 2500)
ctx = ht.gpu(0)
x = np.random.uniform(0, 10, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
gpu_op.matrix_sqrt(arr_x, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(np.sqrt(x), y, rtol=1e-5)
def test_matrix_rsqrt():
shape = (2000, 2500)
ctx = ht.gpu(0)
x = np.random.uniform(0, 10, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
gpu_op.matrix_rsqrt(arr_x, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(1 / np.sqrt(x), y, rtol=1e-5)
def test_relu():
shape = (2000, 2500)
ctx = ht.gpu(0)
x = np.random.uniform(-1, 1, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
gpu_op.relu(arr_x, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(np.maximum(x, 0).astype(np.float32), y)
def test_leaky_relu():
shape = (2000, 2500)
ctx = ht.gpu(0)
x = np.random.uniform(-1, 1, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
alpha = 10
gpu_op.leaky_relu(arr_x, float(alpha), arr_y)
y = arr_y.asnumpy()
def test_relu_gradient():
shape = (2000, 2500)
ctx = ht.gpu(0)
x = np.random.uniform(-1, 1, shape).astype(np.float32)
grad_x = np.random.uniform(-5, 5, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_grad_x = ht.array(grad_x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
gpu_op.relu_gradient(arr_x, arr_grad_x, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(((x > 0) * grad_x).astype(np.float32), y)
def test_leaky_relu_gradient():
shape = (2000, 2500)
ctx = ht.gpu(0)
x = np.random.uniform(-1, 1, shape).astype(np.float32)
grad_x = np.random.uniform(-5, 5, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_grad_x = ht.array(grad_x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
alpha = 10
gpu_op.leaky_relu_gradient(arr_x, arr_grad_x, alpha, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(
np.where(np.greater(x, 0), grad_x, alpha * grad_x).astype(np.float32), y)
def test_softmax():
def softmax_func(y):
"""Numerically stable softmax."""
b = y - np.max(y, axis=1, keepdims=True)
expb = np.exp(b)
softmax = expb / np.sum(expb, axis=1, keepdims=True)
return softmax
ctx = ht.gpu(0)
shape = (400, 1000)
x = np.random.uniform(-5, 5, shape).astype(np.float32)
arr_x = ht.array(x, ctx=ctx)
arr_y = ht.empty(shape, ctx=ctx)
gpu_op.softmax(arr_x, arr_y)
y = arr_y.asnumpy()
np.testing.assert_allclose(softmax_func(x), y, rtol=1e-5)
def test_softmax_cross_entropy():
def softmax_func(y):
"""Numerically stable softmax."""
b = y - np.max(y, axis=1, keepdims=True)
expb = np.exp(b)
softmax = expb / np.sum(expb, axis=1, keepdims=True)
return softmax
ctx = ht.gpu(0)
shape = (400, 1000)
y = np.random.uniform(-5, 5, shape).astype(np.float32)
y_ = np.random.uniform(-5, 5, shape).astype(np.float32)
arr_y = ht.array(y, ctx=ctx)
arr_y_ = ht.array(y_, ctx=ctx)
arr_out = ht.empty((400,), ctx=ctx)
gpu_op.softmax_cross_entropy(arr_y, arr_y_, arr_out)
out = arr_out.asnumpy()
# numpy calculation
cross_entropy = -np.sum(y_ * np.log(softmax_func(y)), axis=1)
np.testing.assert_allclose(cross_entropy, out, rtol=1e-4)
# test cudnn
gpu_op.CuDNN_softmax_cross_entropy(arr_y, arr_y_, arr_out)
out = arr_out.asnumpy()
np.testing.assert_allclose(cross_entropy, out, rtol=1e-4)
def test_softmax_cross_entropy_gradient():
def softmax_func(y):
"""Numerically stable softmax."""
b = y - np.max(y, axis=1, keepdims=True)
expb = np.exp(b)
softmax = expb / np.sum(expb, axis=1, keepdims=True)
return softmax
ctx = ht.gpu(0)
shape = (400, 1000)
y = np.random.uniform(-5, 5, shape).astype(np.float32)
y_ = np.random.uniform(-5, 5, shape).astype(np.float32)
grad = np.random.uniform(-5, 5, (400,)).astype(np.float32)
arr_y = ht.array(y, ctx=ctx)
arr_y_ = ht.array(y_, ctx=ctx)
arr_grad = ht.array(grad, ctx=ctx)
arr_out = ht.empty(shape, ctx=ctx)
gpu_op.softmax_cross_entropy_gradient(arr_y, arr_y_, arr_grad, arr_out)
out = arr_out.asnumpy()
# numpy calculation
np_grad = (softmax_func(y) + -1 * y_) * np.expand_dims(grad, -1)
np.testing.assert_allclose(np_grad, out, rtol=1e-4, atol=1e-8)
# test cudnn
gpu_op.CuDNN_softmax_cross_entropy_gradient(
arr_grad, arr_y, arr_y_, arr_out)
out = arr_out.asnumpy()
np.testing.assert_allclose(np_grad, out, rtol=1e-4, atol=1e-8)
def test_conv2d():
ctx = ht.gpu(0)
# im2col and np_conv2d are helper functions
def im2col(X, filter_H, filter_W, padding, stride):
N, C, H, W = X.shape
assert (H + 2 * padding - filter_H) % stride == 0
assert (W + 2 * padding - filter_W) % stride == 0
out_H = (H + 2 * padding - filter_H) // stride + 1
out_W = (W + 2 * padding - filter_W) // stride + 1
y_row_size = C * filter_H * filter_W
y_col_size = out_H * out_W
y_shape = (N, y_row_size, y_col_size)
Y = np.empty(y_shape, dtype=X.dtype)
for batch_index in range(N):
for col_index in range(y_col_size):
out_y = col_index // out_W
out_x = col_index % out_W
in_y = out_y * stride - padding
in_x = out_x * stride - padding
row_idx = 0
for c in range(0, C):
for y in range(in_y, in_y + filter_H):
for x in range(in_x, in_x + filter_W):
if (x < 0 or x >= W or y < 0 or y >= H):
Y[batch_index, row_idx, col_index] = 0
else:
Y[batch_index, row_idx,
col_index] = X[batch_index, c, y, x]
row_idx += 1
return Y
def np_conv2d(X, Filter, padding=0, stride=1):
"""Implement a conv2d as a matrix multiply after im2col."""
filter_outChannel, filter_inChannel, filter_H, filter_W = Filter.shape
N, C, H, W = X.shape
assert (H + 2 * padding - filter_H) % stride == 0
assert (W + 2 * padding - filter_W) % stride == 0
out_H = (H + 2 * padding - filter_H) // stride + 1
out_W = (W + 2 * padding - filter_W) // stride + 1
im2col_matrix = im2col(X, filter_H, filter_W, padding, stride)
filter_matrix = Filter.reshape(filter_outChannel, -1)
print("shape", im2col_matrix.shape)
print("shape", filter_matrix.shape)
print("shape",
|
np.matmul(filter_matrix, im2col_matrix)
|
numpy.matmul
|
import time
from abc import ABCMeta
import threading
import numpy as np
from scipy.ndimage.filters import gaussian_filter1d
import anton.lights.config as config
from anton.lights.audio.audioprocess import AudioProcess
import anton.lights.audio.dsp as dsp
from anton.lights.audio.pixels import Pixels
# Helpers
# =======================================================
def memoize(function):
"""Provides a decorator for memoizing functions"""
from functools import wraps
memo = {}
@wraps(function)
def wrapper(*args):
if args in memo:
return memo[args]
else:
rv = function(*args)
memo[args] = rv
return rv
return wrapper
@memoize
def _normalized_linspace(size):
return np.linspace(0, 1, size)
def interpolate(y, new_length):
"""Intelligently resizes the array by linearly interpolating the values
Parameters
----------
y : np.array
Array that should be resized
new_length : int
The length of the new interpolated array
Returns
-------
z : np.array
New array with length of new_length that contains the interpolated
values of y.
"""
if len(y) == new_length:
return y
x_old = _normalized_linspace(len(y))
x_new = _normalized_linspace(new_length)
z = np.interp(x_new, x_old, y)
return z
# Visualizer
# =======================================================
melbank = dsp.MelBank()
class Visualizer(Pixels):
fft_window = np.hamming(int(config.MIC_RATE / config.FPS) * config.N_ROLLING_HISTORY)
# Number of audio samples to read every time frame
samples_per_frame = int(config.MIC_RATE / config.FPS)
def __init__(self, packet_sender, mode_byte):
Pixels.__init__(self,packet_sender, mode_byte)
self._time_prev = time.time() * 1000.0
self._fps = dsp.ExpFilter(val=config.FPS, alpha_decay=0.2, alpha_rise=0.2)
self.audio_process = AudioProcess()
self.pixel_arr = np.tile(1.0, (3, config.N_PIXELS // 2))
self._prev_spectrum = np.tile(0.01, config.N_PIXELS // 2)
self.prev_fps_update = time.time()
# Array containing the rolling audio sample window
self.audio_roll = np.random.rand(config.N_ROLLING_HISTORY, Visualizer.samples_per_frame) / 1e16
# Static Filtering Configurations
self.r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.2, alpha_rise=0.99)
self.g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.05, alpha_rise=0.3)
self.b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.1, alpha_rise=0.5)
self.common_mode = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2),
alpha_decay=0.99, alpha_rise=0.01)
self.p_filt = dsp.ExpFilter(np.tile(1, (3, config.N_PIXELS // 2)),
alpha_decay=0.1, alpha_rise=0.99)
self.gain = dsp.ExpFilter(np.tile(0.01, config.N_FFT_BINS),
alpha_decay=0.001, alpha_rise=0.99)
# Audio Rectification Configurations
self.fft_plot_filter = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.5, alpha_rise=0.99)
self.mel_gain = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.01, alpha_rise=0.99)
self.mel_smoothing = dsp.ExpFilter(np.tile(1e-1, config.N_FFT_BINS),
alpha_decay=0.5, alpha_rise=0.99)
self.volume = dsp.ExpFilter(config.MIN_VOLUME_THRESHOLD,
alpha_decay=0.02, alpha_rise=0.02)
self.mel = None
self.thread = None
def start(self,visualization_type):
self.set_effect(visualization_type)
self.thread = threading.Thread(target=self.run)
self.thread.start()
def run(self):
self.update()
self.audio_process.start_stream(self.__audio_update)
def stop(self):
if self.thread is not None:
if self.thread.is_alive():
self.audio_process.kill_stream()
self.thread.join()
self.audio_process.stop_stream()
def __frames_per_second(self):
"""Return the estimated frames per second
Returns the current estimate for frames-per-second (FPS).
FPS is estimated by measured the amount of time that has elapsed since
this function was previously called. The FPS estimate is low-pass filtered
to reduce noise.
This function is intended to be called one time for every iteration of
the program's main loop.
Returns
-------
fps : float
Estimated frames-per-second. This value is low-pass filtered
to reduce noise.
"""
time_now = time.time() * 1000.0
dt = time_now - self._time_prev
self._time_prev = time_now
if dt == 0.0:
return self._fps.value
return self._fps.update(1000.0 / dt)
def __scroll_effect(self,audio):
"""Effect that originates in the center and scrolls outwards"""
audio = audio**2.0
self.gain.update(audio)
audio /= self.gain.value
audio *= 255.0
r = int(np.max(audio[:len(audio) // 3]))
g = int(np.max(audio[len(audio) // 3: 2 * len(audio) // 3]))
b = int(np.max(audio[2 * len(audio) // 3:]))
# Scrolling effect window
self.pixel_arr[:, 1:] = self.pixel_arr[:, :-1]
self.pixel_arr *= 0.98
self.pixel_arr = gaussian_filter1d(self.pixel_arr, sigma=0.2)
# Create new color originating at the center
self.pixel_arr[0, 0] = r
self.pixel_arr[1, 0] = g
self.pixel_arr[2, 0] = b
# Update the LED strip
return np.concatenate((self.pixel_arr[:, ::-1], self.pixel_arr), axis=1)
def __energy_effect(self,audio):
"""Effect that expands from the center with increasing sound energy"""
audio = np.copy(audio)
self.gain.update(audio)
audio /= self.gain.value
# Scale by the width of the LED strip
audio *= float((config.N_PIXELS // 2) - 1)
# Map color channels according to energy in the different freq bands
scale = 0.9
r = int(np.mean(audio[:len(audio) // 3]**scale))
g = int(np.mean(audio[len(audio) // 3: 2 * len(audio) // 3]**scale))
b = int(np.mean(audio[2 * len(audio) // 3:]**scale))
# Assign color to different frequency regions
self.pixel_arr[0, :r] = 255.0
self.pixel_arr[0, r:] = 0.0
self.pixel_arr[1, :g] = 255.0
self.pixel_arr[1, g:] = 0.0
self.pixel_arr[2, :b] = 255.0
self.pixel_arr[2, b:] = 0.0
self.p_filt.update(self.pixel_arr)
self.pixel_arr = np.round(self.p_filt.value)
# Apply substantial blur to smooth the edges
self.pixel_arr[0, :] = gaussian_filter1d(self.pixel_arr[0, :], sigma=4.0)
self.pixel_arr[1, :] = gaussian_filter1d(self.pixel_arr[1, :], sigma=4.0)
self.pixel_arr[2, :] = gaussian_filter1d(self.pixel_arr[2, :], sigma=4.0)
# Set the new pixel value
return np.concatenate((self.pixel_arr[:, ::-1], self.pixel_arr), axis=1)
def __spectrum_effect(self,audio):
"""Effect that maps the Mel filterbank frequencies onto the LED strip"""
audio = np.copy(interpolate(audio, config.N_PIXELS // 2))
self.common_mode.update(audio)
diff = audio - self._prev_spectrum
self._prev_spectrum = np.copy(audio)
# Color channel mappings
r = self.r_filt.update(audio - self.common_mode.value)
g = np.abs(diff)
b = self.b_filt.update(np.copy(audio))
# Mirror the color channels for symmetric output
r = np.concatenate((r[::-1], r))
g = np.concatenate((g[::-1], g))
b = np.concatenate((b[::-1], b))
return np.array([r, g,b]) * 255
@classmethod
def set_effect(self,effect):
if effect == 'scroll':
self.visualization_effect = self.__scroll_effect
elif effect == 'energy':
self.visualization_effect = self.__energy_effect
elif effect == 'spectrum':
self.visualization_effect = self.__spectrum_effect
else:
raise ValueError
def __audio_update(self,audio_samples):
# Normalize samples between 0 and 1
audio = audio_samples / 2.0**15
# Construct a rolling window of audio samples
self.audio_roll[:-1] = self.audio_roll[1:]
self.audio_roll[-1, :] =
|
np.copy(audio)
|
numpy.copy
|
import tqdm
import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
def entropy_loss(x):
b = F.softmax(x, dim=1) * F.log_softmax(x, dim=1)
b = -1.0 * b.sum()
return b
def train(i_epoch,
filter, optimizer_filter,
filter_discriminator, optimizer_filter_discriminator,
generator, optimizer_generator,
generator_discriminator, optimizer_generator_discriminator,
dataloader, opt):
""" Runs one training epoch. """
# set train mode
filter.train()
filter_discriminator.train()
generator.train()
generator_discriminator.train()
# ---------------------
# Train Discriminator
# ---------------------
# for i_batch, batch in tqdm.tqdm(enumerate(dataloader)):
# x, s = batch
# x = x.float().cuda()
# s = s.long().cuda()
# optimizer_filter_discriminator.zero_grad()
# s_p = filter_discriminator(x.detach())
# d_loss = F.cross_entropy(s_p, s.long())
# d_loss.backward()
# optimizer_filter.step()
#for _ in range(1):
for i_batch, batch in tqdm.tqdm(enumerate(dataloader)):
x, s = batch
x = x.float().cuda()
s = s.long().cuda()
batch_size = x.shape[0]
# -----------------
# Train Filter
# -----------------
optimizer_filter.zero_grad()
# sample noise as filter input
z = torch.randn(batch_size, opt['latent_dim']).float().cuda()
# filter a batch of images
x_ = filter(x, z)
s_p = filter_discriminator(x_)
# loss measures filters's ability to fool the discriminator under constrained distortion
ones = torch.ones(s.shape).float().cuda()
s_c = ones-s.float()
s_c = s_c.flatten().long()
if not opt['use_entropy_loss']:
f_adversary_loss = F.cross_entropy(s_p, s_c) # force it towards complement
else:
f_adversary_loss = -entropy_loss(s_p) # maximise entropy
f_distortion_loss = F.l1_loss(x_, x)
f_loss = f_adversary_loss + opt['lambd'] * torch.pow(torch.relu(f_distortion_loss-opt['eps']), 2)
f_loss.backward()
optimizer_filter.step()
# ------------------------
# Train Generator (Real/Fake)
# ------------------------
optimizer_generator.zero_grad()
# sample noise as filter input
z1 = torch.randn(batch_size, opt['latent_dim']).cuda()
# filter a batch of images
x_ = filter(x, z1)
# sample noise as generator input
z2 = torch.randn(batch_size, opt['latent_dim']).cuda()
# sample secret
s_ = torch.tensor(np.random.choice([0.0, 1.0], batch_size)).long().cuda()
# generate a batch of images
x__ = generator(x_, z2, s_)
# loss measures generator's ability to fool the discriminator
s_p = generator_discriminator(x__)
g_adversary_loss = F.cross_entropy(s_p, s_)
g_distortion_loss = F.l1_loss(x__, x)
g_loss = g_adversary_loss + opt['lambd'] * torch.pow(torch.relu(g_distortion_loss-opt['eps']), 2)
g_loss.backward()
optimizer_generator.step()
# ---------------------
# Train Discriminator
# ---------------------
optimizer_filter_discriminator.zero_grad()
s_p = filter_discriminator(x_.detach())
d_loss = F.cross_entropy(s_p, s.long())
d_loss.backward()
optimizer_filter.step()
# --------------------------------
# Train Discriminator (Real/Fake)
# --------------------------------
#if i_batch % opt['discriminator_update_interval'] == 0:
optimizer_generator_discriminator.zero_grad()
s_p = generator_discriminator(x)
s_p_ = generator_discriminator(x__.detach())
s_fake = (torch.ones(s_p_.size(0))*2).long().cuda() # create class 2
d_rf_loss_real = F.cross_entropy(s_p, s.long())
d_rf_loss_fake = F.cross_entropy(s_p_, s_fake)
d_rf_loss = (d_rf_loss_real + d_rf_loss_fake) / 2
d_rf_loss.backward()
optimizer_generator_discriminator.step()
print('loss/d_loss', d_loss.item(), i_batch + i_epoch*len(dataloader))
print('loss/f_loss', f_loss.item(), i_batch + i_epoch*len(dataloader))
print('loss/d_rf_loss', d_rf_loss.item(), i_batch + i_epoch*len(dataloader))
print('loss/g_loss', g_loss.item(), i_batch + i_epoch*len(dataloader))
class IllustrativeDataset(torch.utils.data.Dataset):
def __init__(self, means, stds, nb_samples_per_class):
self.nb_classes = len(means)
x = []
s = []
for c in range(self.nb_classes):
x.append(np.random.normal(loc=means[c], scale=stds[c], size=(nb_samples_per_class, len(means[c]))))
s.append(np.repeat(c, nb_samples_per_class))
self.x = np.concatenate(x)
self.s = np.concatenate(s)
def __len__(self):
return len(self.x)
def __getitem__(self, idx):
return self.x[idx], self.s[idx]
class Filter(nn.Module):
def __init__(self):
super(Filter, self).__init__()
self.filter = nn.Sequential(
nn.Linear(2*2, 128),
nn.Tanh(),
nn.Linear(128, 256),
nn.Tanh(),
nn.Linear(256, 128),
nn.Tanh(),
nn.Dropout(0.2),
nn.Linear(128, 2),
)
def forward(self, x, z):
return self.filter(torch.cat((x, z), dim=1))
class Generator(nn.Module):
def __init__(self, nb_conditional_classes):
super(Generator, self).__init__()
self.generator = nn.Sequential(
nn.Linear(2*3, 128),
nn.Tanh(),
nn.Linear(128, 256),
nn.Tanh(),
nn.Linear(256, 128),
nn.Tanh(),
nn.Dropout(0.2),
nn.Linear(128, 2)
)
self.embedding = nn.Embedding(nb_conditional_classes, 2)
def forward(self, x, z, s):
c = self.embedding(s)
return self.generator(torch.cat((x, z, c), dim=1))
class Discriminator(nn.Module):
def __init__(self, nb_classes):
super(Discriminator, self).__init__()
self.fc = nn.Sequential(
nn.Linear(2, 128),
nn.Tanh(),
nn.Linear(128, 256),
nn.Tanh(),
nn.Dropout(0.2),
nn.Linear(256, 128),
nn.Tanh(),
nn.Dropout(0.2),
nn.Linear(128, nb_classes)
)
def forward(self, x):
return self.fc(x)
def evaluate_privacy_and_utility(filter, generator, train_loader, valid_loader):
# create adversarys
adversary_f = Discriminator(2).cuda()
adversary_fg = Discriminator(2).cuda()
optimizer_adversary_f = torch.optim.Adam(params=adversary_f.parameters(), lr=1e-3)
optimizer_adversary_fg = torch.optim.Adam(params=adversary_fg.parameters(), lr=1e-3)
adversary_f.train()
adversary_fg.train()
for _ in range(5):
for i_batch, batch in tqdm.tqdm(enumerate(train_loader)):
x, s = batch
x = x.float().cuda()
s = s.long().cuda()
batch_size = x.shape[0]
# ----------------------------------
# Train filter adversary
# ----------------------------------
optimizer_adversary_f.zero_grad()
# sample noise as filter input
z1 = torch.randn(batch_size, 2).float().cuda()
# filter a batch of images
x_ = filter(x, z1)
s_f = adversary_f(x_.detach())
f_adversary_loss = F.cross_entropy(s_f, s)
f_adversary_loss.backward()
optimizer_adversary_f.step()
# ----------------------------------
# Train filter + generator adversary
# ----------------------------------
optimizer_adversary_fg.zero_grad()
# sample noise as filter input
z2 = torch.randn(batch_size, 2).cuda()
# sample secret
s_ = torch.tensor(np.random.choice([0.0, 1.0], batch_size)).long().cuda()
# generate a batch of images
x__ = generator(x_.detach(), z2, s_)
# loss measures generator's ability to fool the discriminator
s_fg = adversary_fg(x__.detach())
g_adversary_loss = F.cross_entropy(s_fg, s)
g_adversary_loss.backward()
optimizer_adversary_fg.step()
adversary_f.eval()
adversary_fg.eval()
total_privacy_f = 0
total_privacy_fg = 0
total_utility_f = 0
total_utility_fg = 0
count = 0
for i_batch, batch in tqdm.tqdm(enumerate(valid_loader)):
x, s = batch
x = x.float().cuda()
s = s.long().cuda()
batch_size = x.shape[0]
z1 = torch.randn(batch_size, 2).float().cuda()
z2 = torch.randn(batch_size, 2).float().cuda()
s_ = torch.tensor(np.random.choice([0.0, 1.0], batch_size)).long().cuda()
x_ = filter(x, z1)
x__ = generator(x_, z2, s_)
s_f = adversary_f(x_)
s_fg = adversary_fg(x__)
total_privacy_f += F.cross_entropy(s_f, s).detach().cpu().item()
total_privacy_fg += F.cross_entropy(s_fg, s).detach().cpu().item()
total_utility_f += F.l1_loss(x, x_).detach().cpu().item()
total_utility_fg += F.l1_loss(x, x__).detach().cpu().item()
count+=1
return total_privacy_f/count, total_privacy_fg/count, total_utility_f/count, total_utility_fg/count
def main(opt):
nb_samples_per_class = 200000
train_dataset = IllustrativeDataset(means=[[-1, 1], [1, -1]], stds=[[0.7, 0.7], [0.7, 0.7]], nb_samples_per_class=nb_samples_per_class)
valid_dataset = IllustrativeDataset(means=[[-1, 1], [1, -1]], stds=[[0.7, 0.7], [0.7, 0.7]], nb_samples_per_class=1000)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=128, shuffle=True)
filter = Filter().cuda()
generator = Generator(nb_conditional_classes=2).cuda()
filter_discriminator = Discriminator(2).cuda()
generator_discriminator = Discriminator(3).cuda()
optimizer_filter = torch.optim.Adam(params=filter.parameters(), lr=1e-3)
optimizer_filter_discriminator = torch.optim.Adam(params=filter_discriminator.parameters(), lr=1e-3)
optimizer_generator = torch.optim.Adam(params=generator.parameters(), lr=1e-3)
optimizer_generator_discriminator = torch.optim.Adam(params=generator_discriminator.parameters(), lr=1e-3)
nb_epochs = opt['nb_epochs']
decision_boundaries = np.zeros((nb_epochs, 10000, 2))
x_samples = np.zeros((nb_epochs, 10000, 2))
for i_epoch in range(nb_epochs):
train(i_epoch,
filter, optimizer_filter,
filter_discriminator, optimizer_filter_discriminator,
generator, optimizer_generator,
generator_discriminator, optimizer_generator_discriminator,
train_loader, opt
)
# TODO: store decision boundary
filter_discriminator.eval()
x_sample = torch.FloatTensor(10000, 2).uniform_(-3.0, 3.0).cuda()
decision_boundary = F.softmax(filter_discriminator(x_sample), dim=1)
print(decision_boundary.shape)
print(decision_boundaries.shape)
decision_boundaries[i_epoch,:,:] = decision_boundary[:,:].detach().cpu().numpy().copy()
x_samples[i_epoch,:,:] = x_sample[:,:].cpu().numpy().copy()
filter.eval()
generator.eval()
filter_discriminator.eval()
generator_discriminator.eval()
return filter, generator, filter_discriminator, generator_discriminator, train_dataset, decision_boundaries, x_samples
def scatterplot(data, error, label, point_labels, ax, color):
ax.errorbar([x[0] for x in data], [x[1] for x in data], error, linestyle='-', label=label,
color=color)
for i, txt in enumerate(point_labels):
xy = (data[i][0]-0.02, data[i][1]+0.08)
ax.annotate(r'$\epsilon = {}$'.format(txt), xy, fontsize=8)
dataset = IllustrativeDataset(means=[[-1, 1], [1, -1]], stds=[[0.7, 0.7], [0.7, 0.7]], nb_samples_per_class=1000)
fig = plt.figure(figsize=(10, 10))
sns.scatterplot(dataset.x[:,0], dataset.x[:,1], style=dataset.s)
plt.show()
opts = []
epss = [0.1, 0.5, 1.0, 1.5, 2.0, 3.0]
for use_entropy_loss in [False, True]:
for eps in epss:
opt = {
'latent_dim' : 2,
'use_entropy_loss' : use_entropy_loss,
'lambd' : 100000,
'eps' : eps,
'nb_epochs' : 5,
'discriminator_update_interval' : 1
}
opts.append(opt)
nb_runs = 5
entropy_runs = []
likelihood_runs = []
for run in range(nb_runs):
print("run: ", run)
results = []
for opt in opts:
filter, generator, filter_discriminator, generator_discriminator, train_dataset, _, _ = main(opt)
valid_dataset = IllustrativeDataset(means=[[-1, 1], [1, -1]], stds=[[0.7, 0.7], [0.7, 0.7]], nb_samples_per_class=128*10)
valid_loader = torch.utils.data.DataLoader(valid_dataset, batch_size=128, shuffle=True)
train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=512, shuffle=True)
res = evaluate_privacy_and_utility(filter, generator, train_loader, valid_loader)
results.append(res)
if opt['use_entropy_loss']:
entropy_runs.append(results)
else:
likelihood_runs.append(results)
sns.set_style("whitegrid")
x_f = np.zeros(len(epss))
y_f = np.zeros(len(epss))
x_fg = np.zeros(len(epss))
y_fg = np.zeros(len(epss))
x_f = np.zeros((nb_runs, len(epss)))
y_f = np.zeros((nb_runs, len(epss)))
x_fg = np.zeros((nb_runs, len(epss)))
y_fg = np.zeros((nb_runs, len(epss)))
for i, results in enumerate(runs):
x_f[i,:] = np.array([r[0] for r in results])
y_f[i,:] = np.array([r[2] for r in results])
x_fg[i,:] = np.array([r[1] for r in results])
y_fg[i,:] = np.array([r[3] for r in results])
y_f_std =
|
np.std(y_f, axis=0)
|
numpy.std
|
"""
atomtools for geometry
"""
import os
import math
import itertools
import numpy as np
from numpy.linalg import norm
import modlog
import chemdata
BASEDIR = os.path.dirname(os.path.abspath(__file__))
EXTREME_SMALL = 1e-5
logger = modlog.getLogger(__name__)
def cos(theta, arc=False):
factor = 1 if arc else math.pi/180.0
return math.cos(theta * factor)
def sin(theta, arc=False):
factor = 1 if arc else math.pi/180.0
return math.sin(theta * factor)
def acos(result, arc=False):
factor = 1 if arc else 180.0/math.pi
return math.acos(result) * factor
def asin(result, arc=False):
factor = 1 if arc else 180.0/math.pi
return math.asin(result) * factor
def get_positions(positions):
if hasattr(positions, 'positions'):
positions = positions.positions
return np.array(positions).reshape((-1, 3))
def get_atoms_size(positions):
if hasattr(positions, 'positions'):
positions = positions.positions
assert isinstance(positions, (np.ndarray, list)
), 'Please give Atoms, list or ndarray'
positions = np.array(positions).reshape((-1, 3))
size = [0.] * 3
for i in range(3):
size[i] = positions[:, i].max() - positions[:, i].min()
return tuple(size)
def normed(v):
v = np.array(v)
if norm(v) < EXTREME_SMALL:
return v
return v/norm(v)
def vector_angle(a, b):
return acos(np.dot(a, b)/(norm(a)*norm(b)))
def get_distance(positions, i, j):
positions = get_positions(positions)
return norm(positions[i]-positions[j])
def get_angle(positions, i, j, k):
positions = get_positions(positions)
v1 = positions[i] - positions[j]
v2 = positions[k] - positions[j]
return acos(normed(v1).dot(normed(v2)))
return vector_angle(v1, v2)
def get_dihedral(positions, i, j, k, l):
positions = get_positions(positions)
v1 = normed(positions[i] - positions[j])
v2 = normed(positions[l] - positions[k])
vl = normed(positions[k] - positions[j])
return acos(v1.dot(v2)) * np.sign(v2.dot(np.cross(v1, vl)))
def cartesian_to_zmatrix(positions, zmatrix_dict=None,
initial_num=0, indices=None):
def get_zmat_data(zmatrix_dict, keywords):
return zmatrix_dict[keywords] if zmatrix_dict is not None \
and keywords in zmatrix_dict else []
shown_length = get_zmat_data(zmatrix_dict, 'shown_length')
shown_angle = get_zmat_data(zmatrix_dict, 'shown_angle')
shown_dihedral = get_zmat_data(zmatrix_dict, 'shown_dihedral')
same_length = get_zmat_data(zmatrix_dict, 'same_length')
same_angle = get_zmat_data(zmatrix_dict, 'same_angle')
same_dihedral = get_zmat_data(zmatrix_dict, 'same_dihedral')
shown_length.sort()
#shown_length = []
#shown_angle = []
#shown_dihedral = []
positions = np.array(positions).reshape((-1, 3))
natoms = len(positions)
if indices is None:
indices = np.arange(natoms)
zmatrix = np.array([[[-1, -1], [-1, -1], [-1, -1]]]*natoms).tolist()
same_bond_variables = [''] * len(same_length)
variables = {}
for ai in range(natoms):
if ai == 0:
continue
elif ai == 1:
zmatrix[ai][0] = [0, get_distance(positions, 0, 1)]
continue
for a0, a1 in shown_length:
a0, a1 = indices[a0], indices[a1]
logger.debug(f"{a0}, {a1}")
if ai == a1:
alpha = 'R_'+str(a0+initial_num)+'_'+str(a1+initial_num)
write_variable = True
for same_length, index in zip(same_length,
range(len(same_length))):
# print((a0, a1), same_length)
if (a0, a1) in same_length:
# print("UES")
if same_bond_variables[index] == '':
same_bond_variables[index] = alpha
logger.debug(f"{index}, {same_bond_variables}")
else:
alpha = same_bond_variables[index]
write_variable = False
break
zmatrix[ai][0] = [a0, alpha]
if write_variable:
variables[alpha] = [(a0, a1), get_distance(positions, a0, a1)]
break
a0 = -1
a1 = -1
a2 = -1
a0 = zmatrix[ai][0][0]
if a0 == -1:
a0 = 0
dist = get_distance(positions, ai, a0)
logger.debug(f'dist:, {ai}, {a0}, {dist}')
zmatrix[ai][0] = [a0, dist]
a1 = zmatrix[ai][1][0]
if a1 == -1:
for a1 in range(0, ai):
if not a1 in [a0]:
break
if a1 == -1:
raise ValueError('a1 is still -1')
angle = get_angle(positions, ai, a0, a1)
logger.debug(f'angle:, {ai}, {a0}, {a1}, {angle}')
zmatrix[ai][1] = [a1, angle]
a2 = zmatrix[ai][2][0]
if ai >= 3 and a2 == -1:
for a2 in range(0, ai):
if not a1 in [a0, a1]:
break
if a2 == -1:
raise ValueError('a2 is still -1')
dihedral = get_dihedral(positions, ai, a0, a1, a2)
logger.debug(f'dihedral:, {dihedral}')
zmatrix[ai][2] = [a2, dihedral]
if initial_num != 0:
for zmat in zmatrix:
for zmat_x in zmat:
if zmat_x[0] != -1:
zmat_x[0] += initial_num
logger.debug(f"{zmatrix}, {variables}, {indices}")
return zmatrix, variables, indices
def cartesian_to_spherical(pos_o, pos_s):
pos_o = np.array(pos_o)
pos_s = np.array(pos_s)
logger.debug(f'cartesian to spherical:, {pos_o}, {pos_s}')
v_os = pos_s - pos_o
if norm(v_os) < 0.01:
return (0, 0, 0)
x, y, z = v_os
length = np.linalg.norm(v_os)
theta = acos(z/length)
xy_length = math.sqrt(x*x+y*y)
logger.debug(f'xy_length, {theta}, {xy_length}')
if xy_length < 0.05:
phi_x = 0.0
phi_y = 0.0
else:
phi_x = acos(x/xy_length)
phi_y = asin(y/xy_length)
if y >= 0:
phi = phi_x
else:
phi = -phi_x
return (length, theta, phi)
def spherical_to_cartesian(pos_o, length, space_angle, space_angle0=(0, 0)):
theta, phi = space_angle
theta0, phi0 = space_angle0
print(f'sperical to cartesian:, {theta}, {phi}')
pos_site = np.array(pos_o) + length * \
np.array([sin(theta+theta0) * cos(phi+phi0),
sin(theta+theta0) * sin(phi+phi0),
cos(theta+theta0)])
return pos_site
def rotate_site_angle(site_angle, theta, phi):
for site_angle_i in site_angle:
theta_i, phi_i = site_angle_i
site_angle_i = [theta_i+theta, phi_i+phi]
return site_angle
def input_standard_pos_transform(inp_pos, std_pos, t_vals,
std_to_inp=True, is_coord=False):
t_vals = np.array(t_vals).copy()
std_O = np.array(std_pos)[-1].copy()
inp_O =
|
np.array(inp_pos)
|
numpy.array
|
import math
import numpy as np
import os
from .utils.mygym import convert_to_gym
import gym
import opensim
import random
import pandas as pd
import plugins.my_manager_factory
import matplotlib.pyplot as plt
## OpenSim interface
# The amin purpose of this class is to provide wrap all
# the necessery elements of OpenSim in one place
# The actual RL environment then only needs to:
# - open a model
# - actuate
# - integrate
# - read the high level description of the state
# The objective, stop condition, and other gym-related
# methods are enclosed in the OsimEnv class
class OsimModel(object):
# Initialize simulation
stepsize = 0.01
start_point = 0
model = None
state = None
state0 = None
starting_speed = None
k_path = None # path to CMC tracking states file
k_paths_dict = {}
states = None
states_trajectories_dict = {}
walk = True
init_traj_ix = None
joints = []
bodies = []
brain = None
verbose = False
istep = 0
state_desc_istep = None
prev_state_desc = None
state_desc = None
integrator_accuracy = None
maxforces = []
curforces = []
# Takes a dict where the keys are the speeds of the corresponding paths pointing to motion clips
def __init__(self, model_path, k_paths_dict, visualize, integrator_accuracy = 1e-3): # Reduced accuracy for greater speed
self.integrator_accuracy = integrator_accuracy
self.model = opensim.Model(model_path)
self.model.initSystem()
self.brain = opensim.PrescribedController()
self.k_path = k_paths_dict[list(k_paths_dict.keys())[0]]
self.states = pd.read_csv(self.k_path, index_col=False).drop('Unnamed: 0', axis=1)
for speed in list(k_paths_dict.keys()):
self.states_trajectories_dict[speed] = pd.read_csv(k_paths_dict[speed], index_col=False).drop('Unnamed: 0', axis=1)
# Enable the visualizer
self.model.setUseVisualizer(visualize)
self.muscleSet = self.model.getMuscles()
self.forceSet = self.model.getForceSet()
self.bodySet = self.model.getBodySet()
self.jointSet = self.model.getJointSet()
self.markerSet = self.model.getMarkerSet()
self.contactGeometrySet = self.model.getContactGeometrySet()
self.actuatorSet = self.model.getActuators()
if self.verbose:
self.list_elements()
for j in range(self.actuatorSet.getSize()):
func = opensim.Constant(1.0)
self.brain.addActuator(self.actuatorSet.get(j))
self.brain.prescribeControlForActuator(j, func)
self.curforces.append(1.0)
try:
self.maxforces.append(self.muscleSet.get(j).getMaxIsometricForce())
except:
self.maxforces.append(np.inf)
self.noutput = self.actuatorSet.getSize()
self.model.addController(self.brain)
self.model.initSystem()
def list_elements(self):
print("JOINTS")
for i in range(self.jointSet.getSize()):
print(i,self.jointSet.get(i).getName())
print("\nBODIES")
for i in range(self.bodySet.getSize()):
print(i,self.bodySet.get(i).getName())
print("\nMUSCLES")
for i in range(self.muscleSet.getSize()):
print(i,self.muscleSet.get(i).getName())
print("\nFORCES")
for i in range(self.forceSet.getSize()):
print(i,self.forceSet.get(i).getName())
print("\nMARKERS")
for i in range(self.markerSet.getSize()):
print(i,self.markerSet.get(i).getName())
print("")
def actuate(self, action):
if np.any(np.isnan(action)):
raise ValueError("NaN passed in the activation vector. Values in [0,1] interval are required.")
# TODO: Check if actions within [0,1]
self.last_action = action
brain = opensim.PrescribedController.safeDownCast(self.model.getControllerSet().get(0))
functionSet = brain.get_ControlFunctions()
for j in range(functionSet.getSize()):
func = opensim.Constant.safeDownCast(functionSet.get(j))
func.setValue( float(action[j]) )
"""
Directly modifies activations in the current state.
"""
def set_activations(self, activations):
if np.any(
|
np.isnan(activations)
|
numpy.isnan
|
import pandas as pd
import altair as alt
import datetime
import numpy as np
import json
import simple_disease_model as disease_model
from scipy import stats
from config import DATABASE_URL
from model import DataSource
from sqlalchemy import create_engine
from sqlalchemy.orm import sessionmaker
data_url = "https://docs.google.com/spreadsheets/d/e/2PACX-1vSrr9DRaC2fXzPdmOxLW-egSYtxmEp_RKoYGggt-zOKYXSx4RjPsM4EO19H7OJVX1esTtIoFvlKFWcn/pub?gid=1564028913&single=true&output=csv"
def get_incidence(cumulative_cases):
onset_dates = []
prev = 0
for date, n_cases in cumulative_cases.iteritems():
new_cases_t = int(n_cases - prev)
onset_dates += [date]*new_cases_t
prev += new_cases_t
onset_dates = pd.Series(onset_dates)
min_date = onset_dates.min()
days = (onset_dates - min_date).dt.days
max_days = np.max(days)
incidence = []
result_dates = []
for i in range(max_days + 1):
result_dates.append(min_date + datetime.timedelta(days=i))
incidence.append(np.sum(days == i))
incidence = np.array(incidence)
return incidence, result_dates
def get_and_predict():
print("Get and predict for ebola")
engine = create_engine(DATABASE_URL)
Session = sessionmaker(bind=engine)
session = Session()
data = pd.read_csv(data_url, skiprows=[1],
parse_dates=["report_date", "publication_date"])
cases_by_time = data.groupby("report_date").sum()
cases_by_time.to_sql("cases_by_time", engine, if_exists="replace")
latest_update_date = data["publication_date"].max()
incidence, result_dates = get_incidence(cases_by_time["total_cases"])
ebola_gamma_params = {
"a": 2.41975308641975,
"scale": 4.74428571428571
}
ebola_gamma = disease_model.discrete_prob(stats.gamma, ebola_gamma_params)
force_of_infection = disease_model.force_of_infection_time(incidence, ebola_gamma)
mean_r, lower_r, upper_r, post_a, post_b = disease_model.estimated_r(
incidence, force_of_infection, ebola_gamma)
n_pred = 21
sims = disease_model.simulate_from_end_N(incidence, ebola_gamma, n_pred,
lambda x: stats.gamma.mean(a=post_a[-1], scale=post_b[-1]),
N=100)
cum_sims = np.cumsum(sims, axis=1)
results = pd.DataFrame()
results["date"] = result_dates
results["incidence"] = incidence
results["cumulative_incidence"] = np.cumsum(incidence)
results["estimated_r"] = [0] * 9 + mean_r
results["estimated_r_lower"] = [0] * 9 + lower_r
results["estimated_r_upper"] = [0] * 9 + upper_r
predictions = pd.DataFrame()
predictions["date"] = [result_dates[0] + datetime.timedelta(days=i) for i in range(len(result_dates) + n_pred)]
predictions["incidence"] = np.mean(sims, axis=0)
predictions["incidence_upper"] =
|
np.quantile(sims,0.95, axis=0)
|
numpy.quantile
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 5 12:13:33 2018
@author: <NAME> (<EMAIL> / <EMAIL>)
"""
# Python dependencies
from __future__ import division
import pandas as pd
import numpy as np
import mpmath as mp
import matplotlib as mpl
import seaborn as sns
from scipy.constants import codata
from pylab import *
from lmfit import minimize, report_fit
# from scipy.optimize import leastsq
pd.options.mode.chained_assignment = None
# Plotting
mpl.rc("mathtext", fontset="stixsans", default="regular")
mpl.rcParams.update({"axes.labelsize": 22})
mpl.rc("xtick", labelsize=16)
mpl.rc("ytick", labelsize=16)
mpl.rc("legend", fontsize=14)
F = codata.physical_constants["Faraday constant"][0]
Rg = codata.physical_constants["molar gas constant"][0]
### Importing PyEIS add-ons
from .PyEIS_Data_extraction import *
from .PyEIS_Lin_KK import *
from .PyEIS_Advanced_tools import *
### Frequency generator
##
#
def freq_gen(f_start, f_stop, pts_decade=7):
"""
Frequency Generator with logspaced freqencies
Inputs
----------
f_start = frequency start [Hz]
f_stop = frequency stop [Hz]
pts_decade = Points/decade, default 7 [-]
Output
----------
[0] = frequency range [Hz]
[1] = Angular frequency range [1/s]
"""
f_decades = np.log10(f_start) - np.log10(f_stop)
f_range = np.logspace(
np.log10(f_start),
np.log10(f_stop),
num=np.around(pts_decade * f_decades).astype(int),
endpoint=True,
)
w_range = 2 * np.pi * f_range
return f_range, w_range
### Simulation Element Functions
##
#
def elem_L(w, L):
"""
Simulation Function: -L-
Returns the impedance of an inductor
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
L = Inductance [ohm * s]
"""
return 1j * w * L
def elem_C(w, C):
"""
Simulation Function: -C-
Inputs
----------
w = Angular frequency [1/s]
C = Capacitance [F]
"""
return 1 / (C * (w * 1j))
def elem_Q(w, Q, n):
"""
Simulation Function: -Q-
Inputs
----------
w = Angular frequency [1/s]
Q = Constant phase element [s^n/ohm]
n = Constant phase elelment exponent [-]
"""
return 1 / (Q * (w * 1j) ** n)
### Simulation Curciuts Functions
##
#
def cir_RsC(w, Rs, C):
"""
Simulation Function: -Rs-C-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series resistance [Ohm]
C = Capacitance [F]
"""
return Rs + 1 / (C * (w * 1j))
def cir_RsQ(w, Rs, Q, n):
"""
Simulation Function: -Rs-Q-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series resistance [Ohm]
Q = Constant phase element [s^n/ohm]
n = Constant phase elelment exponent [-]
"""
return Rs + 1 / (Q * (w * 1j) ** n)
def cir_RQ(w, R="none", Q="none", n="none", fs="none"):
"""
Simulation Function: -RQ-
Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit()
<NAME> (<EMAIL> / <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
R = Resistance [Ohm]
Q = Constant phase element [s^n/ohm]
n = Constant phase elelment exponent [-]
fs = Summit frequency of RQ circuit [Hz]
"""
if R == "none":
R = 1 / (Q * (2 * np.pi * fs) ** n)
elif Q == "none":
Q = 1 / (R * (2 * np.pi * fs) ** n)
elif n == "none":
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
return R / (1 + R * Q * (w * 1j) ** n)
def cir_RsRQ(w, Rs="none", R="none", Q="none", n="none", fs="none"):
"""
Simulation Function: -Rs-RQ-
Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit()
<NAME> (<EMAIL> / <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
Rs = Series resistance [Ohm]
R = Resistance [Ohm]
Q = Constant phase element [s^n/ohm]
n = Constant phase elelment exponent [-]
fs = Summit frequency of RQ circuit [Hz]
"""
if R == "none":
R = 1 / (Q * (2 * np.pi * fs) ** n)
elif Q == "none":
Q = 1 / (R * (2 * np.pi * fs) ** n)
elif n == "none":
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
return Rs + (R / (1 + R * Q * (w * 1j) ** n))
def cir_RC(w, C="none", R="none", fs="none"):
"""
Simulation Function: -RC-
Returns the impedance of an RC circuit, using RQ definations where n=1. see cir_RQ() for details
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
R = Resistance [Ohm]
C = Capacitance [F]
fs = Summit frequency of RC circuit [Hz]
"""
return cir_RQ(w, R=R, Q=C, n=1, fs=fs)
def cir_RsRQRQ(
w,
Rs,
R="none",
Q="none",
n="none",
fs="none",
R2="none",
Q2="none",
n2="none",
fs2="none",
):
"""
Simulation Function: -Rs-RQ-RQ-
Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit()
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [Ohm]
R = Resistance [Ohm]
Q = Constant phase element [s^n/ohm]
n = Constant phase element exponent [-]
fs = Summit frequency of RQ circuit [Hz]
R2 = Resistance [Ohm]
Q2 = Constant phase element [s^n/ohm]
n2 = Constant phase element exponent [-]
fs2 = Summit frequency of RQ circuit [Hz]
"""
if R == "none":
R = 1 / (Q * (2 * np.pi * fs) ** n)
elif Q == "none":
Q = 1 / (R * (2 * np.pi * fs) ** n)
elif n == "none":
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if R2 == "none":
R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2)
elif Q2 == "none":
Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n2)
elif n2 == "none":
n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2))
return (
Rs + (R / (1 + R * Q * (w * 1j) ** n)) + (R2 / (1 + R2 * Q2 * (w * 1j) ** n2))
)
def cir_RsRQQ(w, Rs, Q, n, R1="none", Q1="none", n1="none", fs1="none"):
"""
Simulation Function: -Rs-RQ-Q-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [ohm]
R1 = Resistance in (RQ) circuit [ohm]
Q1 = Constant phase element in (RQ) circuit [s^n/ohm]
n1 = Constant phase elelment exponent in (RQ) circuit [-]
fs1 = Summit frequency of RQ circuit [Hz]
Q = Constant phase element of series Q [s^n/ohm]
n = Constant phase elelment exponent of series Q [-]
"""
return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_Q(w, Q, n)
def cir_RsRQC(w, Rs, C, R1="none", Q1="none", n1="none", fs1="none"):
"""
Simulation Function: -Rs-RQ-C-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [ohm]
R1 = Resistance in (RQ) circuit [ohm]
Q1 = Constant phase element in (RQ) circuit [s^n/ohm]
n1 = Constant phase elelment exponent in (RQ) circuit [-]
fs1 = summit frequency of RQ circuit [Hz]
C = Constant phase element of series Q [s^n/ohm]
"""
return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_C(w, C=C)
def cir_RsRCC(w, Rs, R1, C1, C):
"""
Simulation Function: -Rs-RC-C-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [ohm]
R1 = Resistance in (RQ) circuit [ohm]
C1 = Constant phase element in (RQ) circuit [s^n/ohm]
C = Capacitance of series C [s^n/ohm]
"""
return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_C(w, C=C)
def cir_RsRCQ(w, Rs, R1, C1, Q, n):
"""
Simulation Function: -Rs-RC-Q-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [ohm]
R1 = Resistance in (RQ) circuit [ohm]
C1 = Constant phase element in (RQ) circuit [s^n/ohm]
Q = Constant phase element of series Q [s^n/ohm]
n = Constant phase elelment exponent of series Q [-]
"""
return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_Q(w, Q, n)
def Randles_coeff(
w,
n_electron,
A,
E="none",
E0="none",
D_red="none",
D_ox="none",
C_red="none",
C_ox="none",
Rg=Rg,
F=F,
T=298.15,
):
"""
Returns the Randles coefficient sigma [ohm/s^1/2].
Two cases: a) ox and red are both present in solution here both Cred and Dred are defined, b) In the particular case where initially
only Ox species are present in the solution with bulk concentration C*_ox, the surface concentrations may be calculated as function
of the electrode potential following Nernst equation. Here C_red and D_red == 'none'
Ref.:
- Lasia, A.L., ISBN: 978-1-4614-8932-0, "Electrochemical Impedance Spectroscopy and its Applications"
- <NAME>., ISBN: 0-471-04372-9, <NAME>. (2001) "Electrochemical methods: Fundamentals and applications". New York: Wiley.
<NAME> (<EMAIL> // <EMAIL>)
Inputs
----------
n_electron = number of e- [-]
A = geometrical surface area [cm2]
D_ox = Diffusion coefficent of oxidized specie [cm2/s]
D_red = Diffusion coefficent of reduced specie [cm2/s]
C_ox = Bulk concetration of oxidized specie [mol/cm3]
C_red = Bulk concetration of reduced specie [mol/cm3]
T = Temperature [K]
Rg = Gas constant [J/molK]
F = Faradays consntat [C/mol]
E = Potential [V]
if reduced specie is absent == 'none'
E0 = formal potential [V]
if reduced specie is absent == 'none'
Returns
----------
Randles coefficient [ohm/s^1/2]
"""
if C_red != "none" and D_red != "none":
sigma = ((Rg * T) / ((n_electron ** 2) * A * (F ** 2) * (2 ** (1 / 2)))) * (
(1 / (D_ox ** (1 / 2) * C_ox)) + (1 / (D_red ** (1 / 2) * C_red))
)
elif C_red == "none" and D_red == "none" and E != "none" and E0 != "none":
f = F / (Rg * T)
x = (n_electron * f * (E - E0)) / 2
func_cosh2 = (np.cosh(2 * x) + 1) / 2
sigma = (
(4 * Rg * T)
/ ((n_electron ** 2) * A * (F ** 2) * C_ox * ((2 * D_ox) ** (1 / 2)))
) * func_cosh2
else:
print("define E and E0")
Z_Aw = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5))
return Z_Aw
def cir_Randles(
w,
n_electron,
D_red,
D_ox,
C_red,
C_ox,
Rs,
Rct,
n,
E,
A,
Q="none",
fs="none",
E0=0,
F=F,
Rg=Rg,
T=298.15,
):
"""
Simulation Function: Randles -Rs-(Q-(RW)-)-
Return the impedance of a Randles circuit with full complity of the warbug constant
NOTE: This Randles circuit is only meant for semi-infinate linear diffusion
<NAME> (<EMAIL> / <EMAIL>)
Inputs
----------
n_electron = number of e- [-]
A = geometrical surface area [cm2]
D_ox = Diffusion coefficent of oxidized specie [cm2/s]
D_red = Diffusion coefficent of reduced specie [cm2/s]
C_ox = Concetration of oxidized specie [mol/cm3]
C_red = Concetration of reduced specie [mol/cm3]
T = Temperature [K]
Rg = Gas constant [J/molK]
F = Faradays consntat [C/mol]
E = Potential [V]
if reduced specie is absent == 'none'
E0 = Formal potential [V]
if reduced specie is absent == 'none'
Rs = Series resistance [ohm]
Rct = charge-transfer resistance [ohm]
Q = Constant phase element used to model the double-layer capacitance [F]
n = expononent of the CPE [-]
Returns
----------
The real and imaginary impedance of a Randles circuit [ohm]
"""
Z_Rct = Rct
Z_Q = elem_Q(w, Q, n)
Z_w = Randles_coeff(
w,
n_electron=n_electron,
E=E,
E0=E0,
D_red=D_red,
D_ox=D_ox,
C_red=C_red,
C_ox=C_ox,
A=A,
T=T,
Rg=Rg,
F=F,
)
return Rs + 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w))
def cir_Randles_simplified(w, Rs, R, n, sigma, Q="none", fs="none"):
"""
Simulation Function: Randles -Rs-(Q-(RW)-)-
Return the impedance of a Randles circuit with a simplified
NOTE: This Randles circuit is only meant for semi-infinate linear diffusion
<NAME> (<EMAIL> / <EMAIL>)
"""
if R == "none":
R = 1 / (Q * (2 * np.pi * fs) ** n)
elif Q == "none":
Q = 1 / (R * (2 * np.pi * fs) ** n)
elif n == "none":
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
Z_Q = 1 / (Q * (w * 1j) ** n)
Z_R = R
Z_w = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5))
return Rs + 1 / (1 / Z_Q + 1 / (Z_R + Z_w))
# Polymer electrolytes
def cir_C_RC_C(w, Ce, Cb="none", Rb="none", fsb="none"):
"""
Simulation Function: -C-(RC)-C-
This circuit is often used for modeling blocking electrodes with a polymeric electrolyte, which exhibts a immobile ionic species in bulk that gives a capacitance contribution
to the otherwise resistive electrolyte
Ref:
- <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London, Bruce, P. "Electrical Measurements on Polymer Electrolytes"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
Ce = Interfacial capacitance [F]
Rb = Bulk/series resistance [Ohm]
Cb = Bulk capacitance [F]
fsb = summit frequency of bulk (RC) circuit [Hz]
"""
Z_C = elem_C(w, C=Ce)
Z_RC = cir_RC(w, C=Cb, R=Rb, fs=fsb)
return Z_C + Z_RC
def cir_Q_RQ_Q(w, Qe, ne, Qb="none", Rb="none", fsb="none", nb="none"):
"""
Simulation Function: -Q-(RQ)-Q-
Modified cir_C_RC_C() circuits that can be used if electrodes and bulk are not behaving like ideal capacitors
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
Qe = Interfacial capacitance modeled with a CPE [F]
ne = Interfacial constant phase element exponent [-]
Rb = Bulk/series resistance [Ohm]
Qb = Bulk capacitance modeled with a CPE [s^n/ohm]
nb = Bulk constant phase element exponent [-]
fsb = summit frequency of bulk (RQ) circuit [Hz]
"""
Z_Q = elem_Q(w, Q=Qe, n=ne)
Z_RQ = cir_RQ(w, Q=Qb, R=Rb, fs=fsb, n=nb)
return Z_Q + Z_RQ
def tanh(x):
"""
As numpy gives errors when tanh becomes very large, above 10^250, this functions is used for np.tanh
"""
return (1 - np.exp(-2 * x)) / (1 + np.exp(-2 * x))
def cir_RCRCZD(
w,
L,
D_s,
u1,
u2,
Cb="none",
Rb="none",
fsb="none",
Ce="none",
Re="none",
fse="none",
):
"""
Simulation Function: -RC_b-RC_e-Z_D
This circuit has been used to study non-blocking electrodes with an ioniocally conducting electrolyte with a mobile and immobile ionic specie in bulk, this is mixed with a
ionically conducting salt. This behavior yields in a impedance response, that consists of the interfacial impendaces -(RC_e)-, the ionically conducitng polymer -(RC_e)-,
and the diffusional impedance from the dissolved salt.
Refs.:
- <NAME>. and <NAME>., Electrochimica Acta, 27, 1671-1675, 1982, "Conductivity, Charge Transfer and Transport number - An AC-Investigation
of the Polymer Electrolyte LiSCN-Poly(ethyleneoxide)"
- <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London
Bruce, P. "Electrical Measurements on Polymer Electrolytes"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
L = Thickness of electrode [cm]
D_s = Diffusion coefficient of dissolved salt [cm2/s]
u1 = Mobility of the ion reacting at the electrode interface
u2 = Mobility of other ion
Re = Interfacial resistance [Ohm]
Ce = Interfacial capacitance [F]
fse = Summit frequency of the interfacial (RC) circuit [Hz]
Rb = Bulk/series resistance [Ohm]
Cb = Bulk capacitance [F]
fsb = Summit frequency of the bulk (RC) circuit [Hz]
"""
Z_RCb = cir_RC(w, C=Cb, R=Rb, fs=fsb)
Z_RCe = cir_RC(w, C=Ce, R=Re, fs=fse)
alpha = ((w * 1j * L ** 2) / D_s) ** (1 / 2)
Z_D = Rb * (u2 / u1) * (tanh(x=alpha) / alpha)
return Z_RCb + Z_RCe + Z_D
# Transmission lines
def cir_RsTLsQ(w, Rs, L, Ri, Q="none", n="none"):
"""
Simulation Function: -Rs-TLsQ-
TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q)
The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance).
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> / <EMAIL>)
Inputs
-----------
Rs = Series resistance [ohm]
L = Length/Thickness of porous electrode [cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
Q = Interfacial capacitance of non-faradaic interface [F/cm]
n = exponent for the interfacial capacitance [-]
"""
Phi = 1 / (Q * (w * 1j) ** n)
X1 = Ri # ohm/cm
Lam = (Phi / X1) ** (1 / 2) # np.sqrt(Phi/X1)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLsQ = Lam * X1 * coth_mp
return Rs + Z_TLsQ
def cir_RsRQTLsQ(w, Rs, R1, fs1, n1, L, Ri, Q, n, Q1="none"):
"""
Simulation Function: -Rs-RQ-TLsQ-
TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance(Q)
The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance).
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> / <EMAIL>)
Inputs
-----------
Rs = Series resistance [ohm]
R1 = Charge transfer resistance of RQ circuit [ohm]
fs1 = Summit frequency for RQ circuit [Hz]
n1 = Exponent for RQ circuit [-]
Q1 = Constant phase element of RQ circuit [s^n/ohm]
L = Length/Thickness of porous electrode [cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
Q = Interfacial capacitance of non-faradaic interface [F/cm]
n = Exponent for the interfacial capacitance [-]
Output
-----------
Impdance of Rs-(RQ)1-TLsQ
"""
Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
Phi = 1 / (Q * (w * 1j) ** n)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j)
Z_TLsQ = Lam * X1 * coth_mp
return Rs + Z_RQ + Z_TLsQ
def cir_RsTLs(w, Rs, L, Ri, R="none", Q="none", n="none", fs="none"):
"""
Simulation Function: -Rs-TLs-
TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ)
The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance).
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> / <EMAIL>)
Inputs
-----------
Rs = Series resistance [ohm]
L = Length/Thickness of porous electrode [cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
R = Interfacial Charge transfer resistance [ohm*cm]
fs = Summit frequency of interfacial RQ circuit [Hz]
n = Exponent for interfacial RQ circuit [-]
Q = Constant phase element of interfacial capacitance [s^n/Ohm]
Output
-----------
Impedance of Rs-TLs(RQ)
"""
Phi = cir_RQ(w, R, Q, n, fs)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLs = Lam * X1 * coth_mp
return Rs + Z_TLs
def cir_RsRQTLs(w, Rs, L, Ri, R1, n1, fs1, R2, n2, fs2, Q1="none", Q2="none"):
"""
Simulation Function: -Rs-RQ-TLs-
TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ)
The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance).
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- B<NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> / <EMAIL>)
Inputs
-----------
Rs = Series resistance [ohm]
R1 = Charge transfer resistance of RQ circuit [ohm]
fs1 = Summit frequency for RQ circuit [Hz]
n1 = Exponent for RQ circuit [-]
Q1 = Constant phase element of RQ circuit [s^n/(ohm * cm)]
L = Length/Thickness of porous electrode [cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
R2 = Interfacial Charge transfer resistance [ohm*cm]
fs2 = Summit frequency of interfacial RQ circuit [Hz]
n2 = Exponent for interfacial RQ circuit [-]
Q2 = Constant phase element of interfacial capacitance [s^n/Ohm]
Output
-----------
Impedance of Rs-(RQ)1-TLs(RQ)2
"""
Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
Phi = cir_RQ(w=w, R=R2, Q=Q2, n=n2, fs=fs2)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLs = Lam * X1 * coth_mp
return Rs + Z_RQ + Z_TLs
### Support function
def sinh(x):
"""
As numpy gives errors when sinh becomes very large, above 10^250, this functions is used instead of np/mp.sinh()
"""
return (1 - np.exp(-2 * x)) / (2 * np.exp(-x))
def coth(x):
"""
As numpy gives errors when coth becomes very large, above 10^250, this functions is used instead of np/mp.coth()
"""
return (1 + np.exp(-2 * x)) / (1 - np.exp(-2 * x))
###
def cir_RsTLQ(w, L, Rs, Q, n, Rel, Ri):
"""
Simulation Function: -R-TLQ- (interfacial non-reacting, i.e. blocking electrode)
Transmission line w/ full complexity, which both includes Ri and Rel
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
Q = Constant phase element for the interfacial capacitance [s^n/ohm]
n = exponenet for interfacial RQ element [-]
Rel = electronic resistance of electrode [ohm/cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
L = thickness of porous electrode [cm]
Output
--------------
Impedance of Rs-TL
"""
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = elem_Q(w, Q=Q, n=n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTLQ(w, L, Rs, Q, n, Rel, Ri, R1, n1, fs1, Q1="none"):
"""
Simulation Function: -R-RQ-TLQ- (interfacial non-reacting, i.e. blocking electrode)
Transmission line w/ full complexity, which both includes Ri and Rel
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R1 = Charge transfer resistance of RQ circuit [ohm]
fs1 = Summit frequency for RQ circuit [Hz]
n1 = exponent for RQ circuit [-]
Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)]
Q = Constant phase element for the interfacial capacitance [s^n/ohm]
n = exponenet for interfacial RQ element [-]
Rel = electronic resistance of electrode [ohm/cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
L = thickness of porous electrode [cm]
Output
--------------
Impedance of Rs-TL
"""
# The impedance of the series resistance
Z_Rs = Rs
# The (RQ) circuit in series with the transmission line
Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = elem_Q(w, Q=Q, n=n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
def cir_RsTL(w, L, Rs, R, fs, n, Rel, Ri, Q="none"):
"""
Simulation Function: -R-TL- (interfacial reacting, i.e. non-blocking)
Transmission line w/ full complexity, which both includes Ri and Rel
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R = Interfacial charge transfer resistance [ohm * cm]
fs = Summit frequency for the interfacial RQ element [Hz]
n = Exponenet for interfacial RQ element [-]
Q = Constant phase element for the interfacial capacitance [s^n/ohm]
Rel = Electronic resistance of electrode [ohm/cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
L = Thickness of porous electrode [cm]
Output
--------------
Impedance of Rs-TL
"""
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = cir_RQ(w, R=R, Q=Q, n=n, fs=fs)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTL(w, L, Rs, R1, fs1, n1, R2, fs2, n2, Rel, Ri, Q1="none", Q2="none"):
"""
Simulation Function: -R-RQ-TL- (interfacial reacting, i.e. non-blocking)
Transmission line w/ full complexity, which both includes Ri and Rel
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R1 = Charge transfer resistance of RQ circuit [ohm]
fs1 = Summit frequency for RQ circuit [Hz]
n1 = exponent for RQ circuit [-]
Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)]
R2 = interfacial charge transfer resistance [ohm * cm]
fs2 = Summit frequency for the interfacial RQ element [Hz]
n2 = exponenet for interfacial RQ element [-]
Q2 = Constant phase element for the interfacial capacitance [s^n/ohm]
Rel = electronic resistance of electrode [ohm/cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
L = thickness of porous electrode [cm]
Output
--------------
Impedance of Rs-TL
"""
# The impedance of the series resistance
Z_Rs = Rs
# The (RQ) circuit in series with the transmission line
Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = cir_RQ(w, R=R2, Q=Q2, n=n2, fs=fs2)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
# Transmission lines with solid-state transport
def cir_RsTL_1Dsolid(w, L, D, radius, Rs, R, Q, n, R_w, n_w, Rel, Ri):
"""
Simulation Function: -R-TL(Q(RW))-
Transmission line w/ full complexity, which both includes Ri and Rel
Warburg element is specific for 1D solid-state diffusion
Refs:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014)
- Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015)
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R = particle charge transfer resistance [ohm*cm^2]
Q = Summit frequency peak of RQ element in the modified randles element of a particle [Hz]
n = exponenet for internal RQ element in the modified randles element of a particle [-]
Rel = electronic resistance of electrode [ohm/cm]
Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm]
R_w = polarization resistance of finite diffusion Warburg element [ohm]
n_w = exponent for Warburg element [-]
L = thickness of porous electrode [cm]
D = solid-state diffusion coefficient [cm^2/s]
radius = average particle radius [cm]
Output
--------------
Impedance of Rs-TL(Q(RW))
"""
# The impedance of the series resistance
Z_Rs = Rs
# The impedance of a 1D Warburg Element
time_const = (radius ** 2) / D
x = (time_const * w * 1j) ** n_w
x_mp = mp.matrix(x)
warburg_coth_mp = []
for i in range(len(w)):
warburg_coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
)
Z_w = R_w * np.array(warburg_coth_mp) / x
# The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2
Z_Rct = R
Z_Q = elem_Q(w, Q=Q, n=n)
Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm
# The Impedance of the Transmission Line
lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2)
x = L / lamb
# lamb_mp = mp.matrix(x)
# sinh_mp = []
# coth_mp = []
# for j in range(len(lamb_mp)):
# sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j)
# coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTL_1Dsolid(
w, L, D, radius, Rs, R1, fs1, n1, R2, Q2, n2, R_w, n_w, Rel, Ri, Q1="none"
):
"""
Simulation Function: -R-RQ-TL(Q(RW))-
Transmission line w/ full complexity, which both includes Ri and Rel
Warburg element is specific for 1D solid-state diffusion
Refs:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
- <NAME>., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014)
- Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015)
<NAME> (<EMAIL>)
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R1 = charge transfer resistance of the interfacial RQ element [ohm*cm^2]
fs1 = max frequency peak of the interfacial RQ element[Hz]
n1 = exponenet for interfacial RQ element
R2 = particle charge transfer resistance [ohm*cm^2]
Q2 = Summit frequency peak of RQ element in the modified randles element of a particle [Hz]
n2 = exponenet for internal RQ element in the modified randles element of a particle [-]
Rel = electronic resistance of electrode [ohm/cm]
Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm]
R_w = polarization resistance of finite diffusion Warburg element [ohm]
n_w = exponent for Warburg element [-]
L = thickness of porous electrode [cm]
D = solid-state diffusion coefficient [cm^2/s]
radius = average particle radius [cm]
Output
------------------
Impedance of R-RQ-TL(Q(RW))
"""
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
# The impedance of a 1D Warburg Element
time_const = (radius ** 2) / D
x = (time_const * w * 1j) ** n_w
x_mp = mp.matrix(x)
warburg_coth_mp = []
for i in range(len(w)):
warburg_coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
)
Z_w = R_w * np.array(warburg_coth_mp) / x
# The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2
Z_Rct = R2
Z_Q = elem_Q(w, Q=Q2, n=n2)
Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm
# The Impedance of the Transmission Line
lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2)
x = L / lamb
# lamb_mp = mp.matrix(x)
# sinh_mp = []
# coth_mp = []
# for j in range(len(lamb_mp)):
# sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j)
# coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j)
#
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ + Z_TL
### Fitting Circuit Functions
##
#
def elem_C_fit(params, w):
"""
Fit Function: -C-
"""
C = params["C"]
return 1 / (C * (w * 1j))
def elem_Q_fit(params, w):
"""
Fit Function: -Q-
Constant Phase Element for Fitting
"""
Q = params["Q"]
n = params["n"]
return 1 / (Q * (w * 1j) ** n)
def cir_RsC_fit(params, w):
"""
Fit Function: -Rs-C-
"""
Rs = params["Rs"]
C = params["C"]
return Rs + 1 / (C * (w * 1j))
def cir_RsQ_fit(params, w):
"""
Fit Function: -Rs-Q-
"""
Rs = params["Rs"]
Q = params["Q"]
n = params["n"]
return Rs + 1 / (Q * (w * 1j) ** n)
def cir_RC_fit(params, w):
"""
Fit Function: -RC-
Returns the impedance of an RC circuit, using RQ definations where n=1
"""
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["C"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("C") == -1: # elif Q == 'none':
R = params["R"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["C"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
Q = params["C"]
return cir_RQ(w, R=R, Q=C, n=1, fs=fs)
def cir_RQ_fit(params, w):
"""
Fit Function: -RQ-
Return the impedance of an RQ circuit:
Z(w) = R / (1+ R*Q * (2w)^n)
See Explanation of equations under cir_RQ()
The params.keys()[10:] finds the names of the user defined parameters that should be interated over if X == -1, if the paramter is not given, it becomes equal to 'none'
<NAME> (<EMAIL> / <EMAIL>)
"""
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
n = params["n"]
Q = params["Q"]
return R / (1 + R * Q * (w * 1j) ** n)
def cir_RsRQ_fit(params, w):
"""
Fit Function: -Rs-RQ-
Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RsRQ_fit()
<NAME> (<EMAIL> / <EMAIL>)
"""
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
Q = params["Q"]
n = params["n"]
Rs = params["Rs"]
return Rs + (R / (1 + R * Q * (w * 1j) ** n))
def cir_RsRQRQ_fit(params, w):
"""
Fit Function: -Rs-RQ-RQ-
Return the impedance of an Rs-RQ circuit. See details under cir_RsRQRQ()
<NAME> (<EMAIL> / <EMAIL>)
"""
if str(params.keys())[10:].find("'R'") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("'Q'") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("'n'") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("'fs'") == -1: # elif fs == 'none':
R = params["R"]
Q = params["Q"]
n = params["n"]
if str(params.keys())[10:].find("'R2'") == -1: # if R == 'none':
Q2 = params["Q2"]
n2 = params["n2"]
fs2 = params["fs2"]
R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2)
if str(params.keys())[10:].find("'Q2'") == -1: # elif Q == 'none':
R2 = params["R2"]
n2 = params["n2"]
fs2 = params["fs2"]
Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n2)
if str(params.keys())[10:].find("'n2'") == -1: # elif n == 'none':
R2 = params["R2"]
Q2 = params["Q2"]
fs2 = params["fs2"]
n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2))
if str(params.keys())[10:].find("'fs2'") == -1: # elif fs == 'none':
R2 = params["R2"]
Q2 = params["Q2"]
n2 = params["n2"]
Rs = params["Rs"]
return (
Rs + (R / (1 + R * Q * (w * 1j) ** n)) + (R2 / (1 + R2 * Q2 * (w * 1j) ** n2))
)
def cir_Randles_simplified_Fit(params, w):
"""
Fit Function: Randles simplified -Rs-(Q-(RW)-)-
Return the impedance of a Randles circuit. See more under cir_Randles_simplified()
NOTE: This Randles circuit is only meant for semi-infinate linear diffusion
<NAME> (<EMAIL> || <EMAIL>)
"""
if str(params.keys())[10:].find("'R'") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("'Q'") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("'n'") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("'fs'") == -1: # elif fs == 'none':
R = params["R"]
Q = params["Q"]
n = params["n"]
Rs = params["Rs"]
sigma = params["sigma"]
Z_Q = 1 / (Q * (w * 1j) ** n)
Z_R = R
Z_w = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5))
return Rs + 1 / (1 / Z_Q + 1 / (Z_R + Z_w))
def cir_RsRQQ_fit(params, w):
"""
Fit Function: -Rs-RQ-Q-
See cir_RsRQQ() for details
"""
Rs = params["Rs"]
Q = params["Q"]
n = params["n"]
Z_Q = 1 / (Q * (w * 1j) ** n)
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
return Rs + Z_RQ + Z_Q
def cir_RsRQC_fit(params, w):
"""
Fit Function: -Rs-RQ-C-
See cir_RsRQC() for details
"""
Rs = params["Rs"]
C = params["C"]
Z_C = 1 / (C * (w * 1j))
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
return Rs + Z_RQ + Z_C
def cir_RsRCC_fit(params, w):
"""
Fit Function: -Rs-RC-C-
See cir_RsRCC() for details
"""
Rs = params["Rs"]
R1 = params["R1"]
C1 = params["C1"]
C = params["C"]
return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_C(w, C=C)
def cir_RsRCQ_fit(params, w):
"""
Fit Function: -Rs-RC-Q-
See cir_RsRCQ() for details
"""
Rs = params["Rs"]
R1 = params["R1"]
C1 = params["C1"]
Q = params["Q"]
n = params["n"]
return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_Q(w, Q, n)
# Polymer electrolytes
def cir_C_RC_C_fit(params, w):
"""
Fit Function: -C-(RC)-C-
See cir_C_RC_C() for details
<NAME> (<EMAIL> || <EMAIL>)
"""
# Interfacial impedance
Ce = params["Ce"]
Z_C = 1 / (Ce * (w * 1j))
# Bulk impendance
if str(params.keys())[10:].find("Rb") == -1: # if R == 'none':
Cb = params["Cb"]
fsb = params["fsb"]
Rb = 1 / (Cb * (2 * np.pi * fsb))
if str(params.keys())[10:].find("Cb") == -1: # elif Q == 'none':
Rb = params["Rb"]
fsb = params["fsb"]
Cb = 1 / (Rb * (2 * np.pi * fsb))
if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none':
Rb = params["Rb"]
Cb = params["Cb"]
Z_RC = Rb / (1 + Rb * Cb * (w * 1j))
return Z_C + Z_RC
def cir_Q_RQ_Q_Fit(params, w):
"""
Fit Function: -Q-(RQ)-Q-
See cir_Q_RQ_Q() for details
<NAME> (<EMAIL> || <EMAIL>)
"""
# Interfacial impedance
Qe = params["Qe"]
ne = params["ne"]
Z_Q = 1 / (Qe * (w * 1j) ** ne)
# Bulk impedance
if str(params.keys())[10:].find("Rb") == -1: # if R == 'none':
Qb = params["Qb"]
nb = params["nb"]
fsb = params["fsb"]
Rb = 1 / (Qb * (2 * np.pi * fsb) ** nb)
if str(params.keys())[10:].find("Qb") == -1: # elif Q == 'none':
Rb = params["Rb"]
nb = params["nb"]
fsb = params["fsb"]
Qb = 1 / (Rb * (2 * np.pi * fsb) ** nb)
if str(params.keys())[10:].find("nb") == -1: # elif n == 'none':
Rb = params["Rb"]
Qb = params["Qb"]
fsb = params["fsb"]
nb = np.log(Qb * Rb) / np.log(1 / (2 * np.pi * fsb))
if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none':
Rb = params["Rb"]
nb = params["nb"]
Qb = params["Qb"]
Z_RQ = Rb / (1 + Rb * Qb * (w * 1j) ** nb)
return Z_Q + Z_RQ
def cir_RCRCZD_fit(params, w):
"""
Fit Function: -RC_b-RC_e-Z_D
See cir_RCRCZD() for details
<NAME> (<EMAIL> || <EMAIL>)
"""
# Interfacial impendace
if str(params.keys())[10:].find("Re") == -1: # if R == 'none':
Ce = params["Ce"]
fse = params["fse"]
Re = 1 / (Ce * (2 * np.pi * fse))
if str(params.keys())[10:].find("Ce") == -1: # elif Q == 'none':
Re = params["Rb"]
fse = params["fsb"]
Ce = 1 / (Re * (2 * np.pi * fse))
if str(params.keys())[10:].find("fse") == -1: # elif fs == 'none':
Re = params["Re"]
Ce = params["Ce"]
Z_RCe = Re / (1 + Re * Ce * (w * 1j))
# Bulk impendance
if str(params.keys())[10:].find("Rb") == -1: # if R == 'none':
Cb = params["Cb"]
fsb = params["fsb"]
Rb = 1 / (Cb * (2 * np.pi * fsb))
if str(params.keys())[10:].find("Cb") == -1: # elif Q == 'none':
Rb = params["Rb"]
fsb = params["fsb"]
Cb = 1 / (Rb * (2 * np.pi * fsb))
if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none':
Rb = params["Rb"]
Cb = params["Cb"]
Z_RCb = Rb / (1 + Rb * Cb * (w * 1j))
# Mass transport impendance
L = params["L"]
D_s = params["D_s"]
u1 = params["u1"]
u2 = params["u2"]
alpha = ((w * 1j * L ** 2) / D_s) ** (1 / 2)
Z_D = Rb * (u2 / u1) * (tanh(alpha) / alpha)
return Z_RCb + Z_RCe + Z_D
# Transmission lines
def cir_RsTLsQ_fit(params, w):
"""
Fit Function: -Rs-TLsQ-
TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q)
See more under cir_RsTLsQ()
<NAME> (<EMAIL> / <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Q = params["Q"]
n = params["n"]
Phi = 1 / (Q * (w * 1j) ** n)
X1 = Ri # ohm/cm
Lam = (Phi / X1) ** (1 / 2) # np.sqrt(Phi/X1)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
#
# Z_TLsQ = Lam * X1 * coth_mp
Z_TLsQ = Lam * X1 * coth(x)
return Rs + Z_TLsQ
def cir_RsRQTLsQ_Fit(params, w):
"""
Fit Function: -Rs-RQ-TLsQ-
TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q)
See more under cir_RsRQTLsQ
<NAME> (<EMAIL> / <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Q = params["Q"]
n = params["n"]
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
Phi = 1 / (Q * (w * 1j) ** n)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLsQ = Lam * X1 * coth_mp
return Rs + Z_RQ + Z_TLsQ
def cir_RsTLs_Fit(params, w):
"""
Fit Function: -Rs-RQ-TLs-
TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ)
See mor under cir_RsTLs()
<NAME> (<EMAIL> / <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
n = params["n"]
Q = params["Q"]
Phi = R / (1 + R * Q * (w * 1j) ** n)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLs = Lam * X1 * coth_mp
return Rs + Z_TLs
def cir_RsRQTLs_Fit(params, w):
"""
Fit Function: -Rs-RQ-TLs-
TLs = Simplified Transmission Line with a faradaic interfacial impedance (RQ)
See more under cir_RsRQTLs()
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
if str(params.keys())[10:].find("R2") == -1: # if R == 'none':
Q2 = params["Q2"]
n2 = params["n2"]
fs2 = params["fs2"]
R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2)
if str(params.keys())[10:].find("Q2") == -1: # elif Q == 'none':
R2 = params["R2"]
n2 = params["n2"]
fs2 = params["fs2"]
Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n1)
if str(params.keys())[10:].find("n2") == -1: # elif n == 'none':
R2 = params["R2"]
Q2 = params["Q2"]
fs2 = params["fs2"]
n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2))
if str(params.keys())[10:].find("fs2") == -1: # elif fs == 'none':
R2 = params["R2"]
n2 = params["n2"]
Q2 = params["Q2"]
Phi = R2 / (1 + R2 * Q2 * (w * 1j) ** n2)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLs = Lam * X1 * coth_mp
return Rs + Z_RQ + Z_TLs
def cir_RsTLQ_fit(params, w):
"""
Fit Function: -R-TLQ- (interface non-reacting, i.e. blocking electrode)
Transmission line w/ full complexity, which both includes Ri and Rel
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Rel = params["Rel"]
Q = params["Q"]
n = params["n"]
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = elem_Q(w, Q=Q, n=n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTLQ_fit(params, w):
"""
Fit Function: -R-RQ-TLQ- (interface non-reacting, i.e. blocking electrode)
Transmission line w/ full complexity, which both includes Ri and Rel
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Rel = params["Rel"]
Q = params["Q"]
n = params["n"]
# The impedance of the series resistance
Z_Rs = Rs
# The (RQ) circuit in series with the transmission line
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = elem_Q(w, Q=Q, n=n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
def cir_RsTL_Fit(params, w):
"""
Fit Function: -R-TLQ- (interface reacting, i.e. non-blocking)
Transmission line w/ full complexity, which both includes Ri and Rel
See cir_RsTL() for details
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Rel = params["Rel"]
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
n = params["n"]
Q = params["Q"]
Phi = R / (1 + R * Q * (w * 1j) ** n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTL_fit(params, w):
"""
Fit Function: -R-RQ-TL- (interface reacting, i.e. non-blocking)
Transmission line w/ full complexity including both includes Ri and Rel
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Rel = params["Rel"]
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
elif str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
elif str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
elif str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
#
# # The Interfacial impedance is given by an -(RQ)- circuit
if str(params.keys())[10:].find("R2") == -1: # if R == 'none':
Q2 = params["Q2"]
n2 = params["n2"]
fs2 = params["fs2"]
R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2)
elif str(params.keys())[10:].find("Q2") == -1: # elif Q == 'none':
R2 = params["R2"]
n2 = params["n2"]
fs2 = params["fs2"]
Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n1)
elif str(params.keys())[10:].find("n2") == -1: # elif n == 'none':
R2 = params["R2"]
Q2 = params["Q2"]
fs2 = params["fs2"]
n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2))
elif str(params.keys())[10:].find("fs2") == -1: # elif fs == 'none':
R2 = params["R2"]
n2 = params["n2"]
Q2 = params["Q2"]
Phi = R2 / (1 + R2 * Q2 * (w * 1j) ** n2)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float((mp.coth(x_mp[i]).imag))*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real) + float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real)*1j)
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float((mp.sinh(x_mp[i]).imag))*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
def cir_RsTL_1Dsolid_fit(params, w):
"""
Fit Function: -R-TL(Q(RW))-
Transmission line w/ full complexity
See cir_RsTL_1Dsolid() for details
<NAME> (<EMAIL>)
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
radius = params["radius"]
D = params["D"]
R = params["R"]
Q = params["Q"]
n = params["n"]
R_w = params["R_w"]
n_w = params["n_w"]
Rel = params["Rel"]
Ri = params["Ri"]
# The impedance of the series resistance
Z_Rs = Rs
# The impedance of a 1D Warburg Element
time_const = (radius ** 2) / D
x = (time_const * w * 1j) ** n_w
x_mp = mp.matrix(x)
warburg_coth_mp = []
for i in range(len(w)):
warburg_coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
)
Z_w = R_w * np.array(warburg_coth_mp) / x
# The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2
Z_Rct = R
Z_Q = elem_Q(w=w, Q=Q, n=n)
Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm
# The Impedance of the Transmission Line
lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2)
x = L / lamb
# lamb_mp = mp.matrix(x)
# sinh_mp = []
# coth_mp = []
# for j in range(len(lamb_mp)):
# sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j)
# coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTL_1Dsolid_fit(params, w):
"""
Fit Function: -R-RQ-TL(Q(RW))-
Transmission line w/ full complexity, which both includes Ri and Rel. The Warburg element is specific for 1D solid-state diffusion
See cir_RsRQTL_1Dsolid() for details
<NAME> (<EMAIL>)
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
radius = params["radius"]
D = params["D"]
R2 = params["R2"]
Q2 = params["Q2"]
n2 = params["n2"]
R_w = params["R_w"]
n_w = params["n_w"]
Rel = params["Rel"]
Ri = params["Ri"]
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
elif str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
elif str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
elif str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
# The impedance of a 1D Warburg Element
time_const = (radius ** 2) / D
x = (time_const * w * 1j) ** n_w
x_mp = mp.matrix(x)
warburg_coth_mp = []
for i in range(len(w)):
warburg_coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
)
Z_w = R_w * np.array(warburg_coth_mp) / x
# The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2
Z_Rct = R2
Z_Q = elem_Q(w, Q=Q2, n=n2)
Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm
# The Impedance of the Transmission Line
lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2)
x = L / lamb
# lamb_mp = mp.matrix(x)
# sinh_mp = []
# coth_mp = []
# for j in range(len(lamb_mp)):
# sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j)
# coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j)
#
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
### Least-Squares error function
def leastsq_errorfunc(params, w, re, im, circuit, weight_func):
"""
Sum of squares error function for the complex non-linear least-squares fitting procedure (CNLS). The fitting function (lmfit) will use this function to iterate over
until the total sum of errors is minimized.
During the minimization the fit is weighed, and currently three different weigh options are avaliable:
- modulus
- unity
- proportional
Modulus is generially recommended as random errors and a bias can exist in the experimental data.
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------
- params: parameters needed for CNLS
- re: real impedance
- im: Imaginary impedance
- circuit:
The avaliable circuits are shown below, and this this parameter needs it as a string.
- C
- Q
- R-C
- R-Q
- RC
- RQ
- R-RQ
- R-RQ-RQ
- R-RQ-Q
- R-(Q(RW))
- R-(Q(RM))
- R-RC-C
- R-RC-Q
- R-RQ-Q
- R-RQ-C
- RC-RC-ZD
- R-TLsQ
- R-RQ-TLsQ
- R-TLs
- R-RQ-TLs
- R-TLQ
- R-RQ-TLQ
- R-TL
- R-RQ-TL
- R-TL1Dsolid (reactive interface with 1D solid-state diffusion)
- R-RQ-TL1Dsolid
- weight_func
Weight function
- modulus
- unity
- proportional
"""
if circuit == "C":
re_fit = elem_C_fit(params, w).real
im_fit = -elem_C_fit(params, w).imag
elif circuit == "Q":
re_fit = elem_Q_fit(params, w).real
im_fit = -elem_Q_fit(params, w).imag
elif circuit == "R-C":
re_fit = cir_RsC_fit(params, w).real
im_fit = -cir_RsC_fit(params, w).imag
elif circuit == "R-Q":
re_fit = cir_RsQ_fit(params, w).real
im_fit = -cir_RsQ_fit(params, w).imag
elif circuit == "RC":
re_fit = cir_RC_fit(params, w).real
im_fit = -cir_RC_fit(params, w).imag
elif circuit == "RQ":
re_fit = cir_RQ_fit(params, w).real
im_fit = -cir_RQ_fit(params, w).imag
elif circuit == "R-RQ":
re_fit = cir_RsRQ_fit(params, w).real
im_fit = -cir_RsRQ_fit(params, w).imag
elif circuit == "R-RQ-RQ":
re_fit = cir_RsRQRQ_fit(params, w).real
im_fit = -cir_RsRQRQ_fit(params, w).imag
elif circuit == "R-RC-C":
re_fit = cir_RsRCC_fit(params, w).real
im_fit = -cir_RsRCC_fit(params, w).imag
elif circuit == "R-RC-Q":
re_fit = cir_RsRCQ_fit(params, w).real
im_fit = -cir_RsRCQ_fit(params, w).imag
elif circuit == "R-RQ-Q":
re_fit = cir_RsRQQ_fit(params, w).real
im_fit = -cir_RsRQQ_fit(params, w).imag
elif circuit == "R-RQ-C":
re_fit = cir_RsRQC_fit(params, w).real
im_fit = -cir_RsRQC_fit(params, w).imag
elif circuit == "R-(Q(RW))":
re_fit = cir_Randles_simplified_Fit(params, w).real
im_fit = -cir_Randles_simplified_Fit(params, w).imag
elif circuit == "R-(Q(RM))":
re_fit = cir_Randles_uelectrode_fit(params, w).real
im_fit = -cir_Randles_uelectrode_fit(params, w).imag
elif circuit == "C-RC-C":
re_fit = cir_C_RC_C_fit(params, w).real
im_fit = -cir_C_RC_C_fit(params, w).imag
elif circuit == "Q-RQ-Q":
re_fit = cir_Q_RQ_Q_Fit(params, w).real
im_fit = -cir_Q_RQ_Q_Fit(params, w).imag
elif circuit == "RC-RC-ZD":
re_fit = cir_RCRCZD_fit(params, w).real
im_fit = -cir_RCRCZD_fit(params, w).imag
elif circuit == "R-TLsQ":
re_fit = cir_RsTLsQ_fit(params, w).real
im_fit = -cir_RsTLsQ_fit(params, w).imag
elif circuit == "R-RQ-TLsQ":
re_fit = cir_RsRQTLsQ_Fit(params, w).real
im_fit = -cir_RsRQTLsQ_Fit(params, w).imag
elif circuit == "R-TLs":
re_fit = cir_RsTLs_Fit(params, w).real
im_fit = -cir_RsTLs_Fit(params, w).imag
elif circuit == "R-RQ-TLs":
re_fit = cir_RsRQTLs_Fit(params, w).real
im_fit = -cir_RsRQTLs_Fit(params, w).imag
elif circuit == "R-TLQ":
re_fit = cir_RsTLQ_fit(params, w).real
im_fit = -cir_RsTLQ_fit(params, w).imag
elif circuit == "R-RQ-TLQ":
re_fit = cir_RsRQTLQ_fit(params, w).real
im_fit = -cir_RsRQTLQ_fit(params, w).imag
elif circuit == "R-TL":
re_fit = cir_RsTL_Fit(params, w).real
im_fit = -cir_RsTL_Fit(params, w).imag
elif circuit == "R-RQ-TL":
re_fit = cir_RsRQTL_fit(params, w).real
im_fit = -cir_RsRQTL_fit(params, w).imag
elif circuit == "R-TL1Dsolid":
re_fit = cir_RsTL_1Dsolid_fit(params, w).real
im_fit = -cir_RsTL_1Dsolid_fit(params, w).imag
elif circuit == "R-RQ-TL1Dsolid":
re_fit = cir_RsRQTL_1Dsolid_fit(params, w).real
im_fit = -cir_RsRQTL_1Dsolid_fit(params, w).imag
else:
print("Circuit is not defined in leastsq_errorfunc()")
error = [(re - re_fit) ** 2, (im - im_fit) ** 2] # sum of squares
# Different Weighing options, see Lasia
if weight_func == "modulus":
weight = [
1 / ((re_fit ** 2 + im_fit ** 2) ** (1 / 2)),
1 / ((re_fit ** 2 + im_fit ** 2) ** (1 / 2)),
]
elif weight_func == "proportional":
weight = [1 / (re_fit ** 2), 1 / (im_fit ** 2)]
elif weight_func == "unity":
unity_1s = []
for k in range(len(re)):
unity_1s.append(
1
) # makes an array of [1]'s, so that the weighing is == 1 * sum of squres.
weight = [unity_1s, unity_1s]
else:
print("weight not defined in leastsq_errorfunc()")
S = np.array(weight) * error # weighted sum of squares
return S
### Fitting Class
class EIS_exp:
"""
This class is used to plot and/or analyze experimental impedance data. The class has three major functions:
- EIS_plot()
- Lin_KK()
- EIS_fit()
- EIS_plot() is used to plot experimental data with or without fit
- Lin_KK() performs a linear Kramers-Kronig analysis of the experimental data set.
- EIS_fit() performs complex non-linear least-squares fitting of the experimental data to an equivalent circuit
<NAME> (<EMAIL> || <EMAIL>)
Inputs
-----------
- path: path of datafile(s) as a string
- data: datafile(s) including extension, e.g. ['EIS_data1', 'EIS_data2']
- cycle: Specific cycle numbers can be extracted using the cycle function. Default is 'none', which includes all cycle numbers.
Specific cycles can be extracted using this parameter, insert cycle numbers in brackets, e.g. cycle number 1,4, and 6 are wanted. cycle=[1,4,6]
- mask: ['high frequency' , 'low frequency'], if only a high- or low-frequency is desired use 'none' for the other, e.g. maks=[10**4,'none']
"""
def __init__(self, path, data, cycle="off", mask=["none", "none"]):
self.df_raw0 = []
self.cycleno = []
for j, f in enumerate(data, start=0):
if f.endswith("mpt"): # file is a .mpt file
self.df_raw0.append(
extract_mpt(path=path, EIS_name=f)
) # reads all datafiles
elif f.endswith("DTA"): # file is a .dta file
self.df_raw0.append(
extract_dta(path=path, EIS_name=f)
) # reads all datafiles
elif f.endswith("z"): # file is a .z file
self.df_raw0.append(
extract_solar(path=path, EIS_name=f)
) # reads all datafiles
elif f.endswith("txt"):
self.df_raw0.append(extract_csv(path=path, EIS_name=f))
else:
print("Data file(s) could not be identified")
self.cycleno.append(self.df_raw0[j].cycle_number)
if np.min(self.cycleno[j]) <= np.max(self.cycleno[j - 1]):
if j > 0: # corrects cycle_number except for the first data file
self.df_raw0[j].update(
{"cycle_number": self.cycleno[j] + np.max(self.cycleno[j - 1])}
) # corrects cycle number
# currently need to append a cycle_number coloumn to gamry files
# adds individual dataframes into one
if len(self.df_raw0) == 1:
self.df_raw = self.df_raw0[0]
elif len(self.df_raw0) == 2:
self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1]], axis=0)
elif len(self.df_raw0) == 3:
self.df_raw = pd.concat(
[self.df_raw0[0], self.df_raw0[1], self.df_raw0[2]], axis=0
)
elif len(self.df_raw0) == 4:
self.df_raw = pd.concat(
[self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3]],
axis=0,
)
elif len(self.df_raw0) == 5:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
],
axis=0,
)
elif len(self.df_raw0) == 6:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
],
axis=0,
)
elif len(self.df_raw0) == 7:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
],
axis=0,
)
elif len(self.df_raw0) == 8:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
],
axis=0,
)
elif len(self.df_raw0) == 9:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
],
axis=0,
)
elif len(self.df_raw0) == 10:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
],
axis=0,
)
elif len(self.df_raw0) == 11:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
],
axis=0,
)
elif len(self.df_raw0) == 12:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
self.df_raw0[11],
],
axis=0,
)
elif len(self.df_raw0) == 13:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
self.df_raw0[11],
self.df_raw0[12],
],
axis=0,
)
elif len(self.df_raw0) == 14:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
self.df_raw0[11],
],
self.df_raw0[12],
self.df_raw0[13],
axis=0,
)
elif len(self.df_raw0) == 15:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
self.df_raw0[11],
],
self.df_raw0[12],
self.df_raw0[13],
self.df_raw0[14],
axis=0,
)
else:
print("Too many data files || 15 allowed")
self.df_raw = self.df_raw.assign(
w=2 * np.pi * self.df_raw.f
) # creats a new coloumn with the angular frequency
# Masking data to each cycle
self.df_pre = []
self.df_limited = []
self.df_limited2 = []
self.df = []
if mask == ["none", "none"] and cycle == "off":
for i in range(len(self.df_raw.cycle_number.unique())): # includes all data
self.df.append(
self.df_raw[
self.df_raw.cycle_number == self.df_raw.cycle_number.unique()[i]
]
)
elif mask == ["none", "none"] and cycle != "off":
for i in range(len(cycle)):
self.df.append(
self.df_raw[self.df_raw.cycle_number == cycle[i]]
) # extracting dataframe for each cycle
elif mask[0] != "none" and mask[1] == "none" and cycle == "off":
self.df_pre = self.df_raw.mask(self.df_raw.f > mask[0])
self.df_pre.dropna(how="all", inplace=True)
for i in range(
len(self.df_pre.cycle_number.unique())
): # Appending data based on cycle number
self.df.append(
self.df_pre[
self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]
]
)
elif (
mask[0] != "none" and mask[1] == "none" and cycle != "off"
): # or [i for i, e in enumerate(mask) if e == 'none'] == [0]
self.df_limited = self.df_raw.mask(self.df_raw.f > mask[0])
for i in range(len(cycle)):
self.df.append(
self.df_limited[self.df_limited.cycle_number == cycle[i]]
)
elif mask[0] == "none" and mask[1] != "none" and cycle == "off":
self.df_pre = self.df_raw.mask(self.df_raw.f < mask[1])
self.df_pre.dropna(how="all", inplace=True)
for i in range(len(self.df_raw.cycle_number.unique())): # includes all data
self.df.append(
self.df_pre[
self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]
]
)
elif mask[0] == "none" and mask[1] != "none" and cycle != "off":
self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1])
for i in range(len(cycle)):
self.df.append(
self.df_limited[self.df_limited.cycle_number == cycle[i]]
)
elif mask[0] != "none" and mask[1] != "none" and cycle != "off":
self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1])
self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0])
for i in range(len(cycle)):
self.df.append(
self.df_limited[self.df_limited2.cycle_number == cycle[i]]
)
elif mask[0] != "none" and mask[1] != "none" and cycle == "off":
self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1])
self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0])
for i in range(len(self.df_raw.cycle_number.unique())):
self.df.append(
self.df_limited[
self.df_limited2.cycle_number
== self.df_raw.cycle_number.unique()[i]
]
)
else:
print("__init__ error (#2)")
def Lin_KK(
self,
num_RC="auto",
legend="on",
plot="residuals",
bode="off",
nyq_xlim="none",
nyq_ylim="none",
weight_func="Boukamp",
savefig="none",
):
"""
Plots the Linear Kramers-Kronig (KK) Validity Test
The script is based on Boukamp and Schōnleber et al.'s papers for fitting the resistances of multiple -(RC)- circuits
to the data. A data quality analysis can hereby be made on the basis of the relative residuals
Ref.:
- Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27
- Boukamp, B.A. J. Electrochem. Soc., 142, 6, 1885-1894
The function performs the KK analysis and as default the relative residuals in each subplot
Note, that weigh_func should be equal to 'Boukamp'.
<NAME> (<EMAIL> || <EMAIL>)
Optional Inputs
-----------------
- num_RC:
- 'auto' applies an automatic algorithm developed by Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27
that ensures no under- or over-fitting occurs
- can be hardwired by inserting any number (RC-elements/decade)
- plot:
- 'residuals' = plots the relative residuals in subplots correspoding to the cycle numbers picked
- 'w_data' = plots the relative residuals with the experimental data, in Nyquist and bode plot if desired, see 'bode =' in description
- nyq_xlim/nyq_xlim: Change the x/y-axis limits on nyquist plot, if not equal to 'none' state [min,max] value
- legend:
- 'on' = displays cycle number
- 'potential' = displays average potential which the spectra was measured at
- 'off' = off
bode = Plots Bode Plot - options:
'on' = re, im vs. log(freq)
'log' = log(re, im) vs. log(freq)
're' = re vs. log(freq)
'log_re' = log(re) vs. log(freq)
'im' = im vs. log(freq)
'log_im' = log(im) vs. log(freq)
"""
if num_RC == "auto":
print("cycle || No. RC-elements || u")
self.decade = []
self.Rparam = []
self.t_const = []
self.Lin_KK_Fit = []
self.R_names = []
self.KK_R0 = []
self.KK_R = []
self.number_RC = []
self.number_RC_sort = []
self.KK_u = []
self.KK_Rgreater = []
self.KK_Rminor = []
M = 2
for i in range(len(self.df)):
self.decade.append(
np.log10(np.max(self.df[i].f)) - np.log10(np.min(self.df[i].f))
) # determine the number of RC circuits based on the number of decades measured and num_RC
self.number_RC.append(M)
self.number_RC_sort.append(M) # needed for self.KK_R
self.Rparam.append(
KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC[i]),
)[0]
) # Creates intial guesses for R's
self.t_const.append(
KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i]))
) # Creates time constants values for self.number_RC -(RC)- circuits
self.Lin_KK_Fit.append(
minimize(
KK_errorfunc,
self.Rparam[i],
method="leastsq",
args=(
self.df[i].w.values,
self.df[i].re.values,
self.df[i].im.values,
self.number_RC[i],
weight_func,
self.t_const[i],
),
)
) # maxfev=99
self.R_names.append(
KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC[i]),
)[1]
) # creates R names
for j in range(len(self.R_names[i])):
self.KK_R0.append(
self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value
)
self.number_RC_sort.insert(0, 0) # needed for self.KK_R
for i in range(len(self.df)):
self.KK_R.append(
self.KK_R0[
int(np.cumsum(self.number_RC_sort)[i]) : int(
np.cumsum(self.number_RC_sort)[i + 1]
)
]
) # assigns resistances from each spectra to their respective df
self.KK_Rgreater.append(
np.where(np.array(self.KK_R)[i] >= 0, np.array(self.KK_R)[i], 0)
)
self.KK_Rminor.append(
np.where(np.array(self.KK_R)[i] < 0, np.array(self.KK_R)[i], 0)
)
self.KK_u.append(
1
- (
np.abs(np.sum(self.KK_Rminor[i]))
/ np.abs(np.sum(self.KK_Rgreater[i]))
)
)
for i in range(len(self.df)):
while self.KK_u[i] <= 0.75 or self.KK_u[i] >= 0.88:
self.number_RC_sort0 = []
self.KK_R_lim = []
self.number_RC[i] = self.number_RC[i] + 1
self.number_RC_sort0.append(self.number_RC)
self.number_RC_sort = np.insert(self.number_RC_sort0, 0, 0)
self.Rparam[i] = KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC[i]),
)[
0
] # Creates intial guesses for R's
self.t_const[i] = KK_timeconst(
w=self.df[i].w, num_RC=int(self.number_RC[i])
) # Creates time constants values for self.number_RC -(RC)- circuits
self.Lin_KK_Fit[i] = minimize(
KK_errorfunc,
self.Rparam[i],
method="leastsq",
args=(
self.df[i].w.values,
self.df[i].re.values,
self.df[i].im.values,
self.number_RC[i],
weight_func,
self.t_const[i],
),
) # maxfev=99
self.R_names[i] = KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC[i]),
)[
1
] # creates R names
self.KK_R0 = np.delete(
np.array(self.KK_R0), np.s_[0 : len(self.KK_R0)]
)
self.KK_R0 = []
for q in range(len(self.df)):
for j in range(len(self.R_names[q])):
self.KK_R0.append(
self.Lin_KK_Fit[q].params.get(self.R_names[q][j]).value
)
self.KK_R_lim = np.cumsum(self.number_RC_sort) # used for KK_R[i]
self.KK_R[i] = self.KK_R0[
self.KK_R_lim[i] : self.KK_R_lim[i + 1]
] # assigns resistances from each spectra to their respective df
self.KK_Rgreater[i] = np.where(
np.array(self.KK_R[i]) >= 0, np.array(self.KK_R[i]), 0
)
self.KK_Rminor[i] = np.where(
np.array(self.KK_R[i]) < 0, np.array(self.KK_R[i]), 0
)
self.KK_u[i] = 1 - (
np.abs(np.sum(self.KK_Rminor[i]))
/ np.abs(np.sum(self.KK_Rgreater[i]))
)
else:
print(
"["
+ str(i + 1)
+ "]"
+ " "
+ str(self.number_RC[i]),
" " + str(np.round(self.KK_u[i], 2)),
)
elif num_RC != "auto": # hardwired number of RC-elements/decade
print("cycle || u")
self.decade = []
self.number_RC0 = []
self.number_RC = []
self.Rparam = []
self.t_const = []
self.Lin_KK_Fit = []
self.R_names = []
self.KK_R0 = []
self.KK_R = []
for i in range(len(self.df)):
self.decade.append(
np.log10(np.max(self.df[i].f)) - np.log10(np.min(self.df[i].f))
) # determine the number of RC circuits based on the number of decades measured and num_RC
self.number_RC0.append(np.round(num_RC * self.decade[i]))
self.number_RC.append(
np.round(num_RC * self.decade[i])
) # Creats the the number of -(RC)- circuits
self.Rparam.append(
KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC0[i]),
)[0]
) # Creates intial guesses for R's
self.t_const.append(
KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC0[i]))
) # Creates time constants values for self.number_RC -(RC)- circuits
self.Lin_KK_Fit.append(
minimize(
KK_errorfunc,
self.Rparam[i],
method="leastsq",
args=(
self.df[i].w.values,
self.df[i].re.values,
self.df[i].im.values,
self.number_RC0[i],
weight_func,
self.t_const[i],
),
)
) # maxfev=99
self.R_names.append(
KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC0[i]),
)[1]
) # creates R names
for j in range(len(self.R_names[i])):
self.KK_R0.append(
self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value
)
self.number_RC0.insert(0, 0)
# print(report_fit(self.Lin_KK_Fit[i])) # prints fitting report
self.KK_circuit_fit = []
self.KK_rr_re = []
self.KK_rr_im = []
self.KK_Rgreater = []
self.KK_Rminor = []
self.KK_u = []
for i in range(len(self.df)):
self.KK_R.append(
self.KK_R0[
int(np.cumsum(self.number_RC0)[i]) : int(
np.cumsum(self.number_RC0)[i + 1]
)
]
) # assigns resistances from each spectra to their respective df
self.KK_Rx = np.array(self.KK_R)
self.KK_Rgreater.append(np.where(self.KK_Rx[i] >= 0, self.KK_Rx[i], 0))
self.KK_Rminor.append(np.where(self.KK_Rx[i] < 0, self.KK_Rx[i], 0))
self.KK_u.append(
1
- (
np.abs(np.sum(self.KK_Rminor[i]))
/ np.abs(np.sum(self.KK_Rgreater[i]))
)
) # currently gives incorrect values
print(
"[" + str(i + 1) + "]" + " " + str(np.round(self.KK_u[i], 2))
)
else:
print("num_RC incorrectly defined")
self.KK_circuit_fit = []
self.KK_rr_re = []
self.KK_rr_im = []
for i in range(len(self.df)):
if int(self.number_RC[i]) == 2:
self.KK_circuit_fit.append(
KK_RC2(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 3:
self.KK_circuit_fit.append(
KK_RC3(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 4:
self.KK_circuit_fit.append(
KK_RC4(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 5:
self.KK_circuit_fit.append(
KK_RC5(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 6:
self.KK_circuit_fit.append(
KK_RC6(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 7:
self.KK_circuit_fit.append(
KK_RC7(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 8:
self.KK_circuit_fit.append(
KK_RC8(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 9:
self.KK_circuit_fit.append(
KK_RC9(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 10:
self.KK_circuit_fit.append(
KK_RC10(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 11:
self.KK_circuit_fit.append(
KK_RC11(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 12:
self.KK_circuit_fit.append(
KK_RC12(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 13:
self.KK_circuit_fit.append(
KK_RC13(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 14:
self.KK_circuit_fit.append(
KK_RC14(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 15:
self.KK_circuit_fit.append(
KK_RC15(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 16:
self.KK_circuit_fit.append(
KK_RC16(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 17:
self.KK_circuit_fit.append(
KK_RC17(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 18:
self.KK_circuit_fit.append(
KK_RC18(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 19:
self.KK_circuit_fit.append(
KK_RC19(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 20:
self.KK_circuit_fit.append(
KK_RC20(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 21:
self.KK_circuit_fit.append(
KK_RC21(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 22:
self.KK_circuit_fit.append(
KK_RC22(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 23:
self.KK_circuit_fit.append(
KK_RC23(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 24:
self.KK_circuit_fit.append(
KK_RC24(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 25:
self.KK_circuit_fit.append(
KK_RC25(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 26:
self.KK_circuit_fit.append(
KK_RC26(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 27:
self.KK_circuit_fit.append(
KK_RC27(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 28:
self.KK_circuit_fit.append(
KK_RC28(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 29:
self.KK_circuit_fit.append(
KK_RC29(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 30:
self.KK_circuit_fit.append(
KK_RC30(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 31:
self.KK_circuit_fit.append(
KK_RC31(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 32:
self.KK_circuit_fit.append(
KK_RC32(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 33:
self.KK_circuit_fit.append(
KK_RC33(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 34:
self.KK_circuit_fit.append(
KK_RC34(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 35:
self.KK_circuit_fit.append(
KK_RC35(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 36:
self.KK_circuit_fit.append(
KK_RC36(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 37:
self.KK_circuit_fit.append(
KK_RC37(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 38:
self.KK_circuit_fit.append(
KK_RC38(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 39:
self.KK_circuit_fit.append(
KK_RC39(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 40:
self.KK_circuit_fit.append(
KK_RC40(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 41:
self.KK_circuit_fit.append(
KK_RC41(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 42:
self.KK_circuit_fit.append(
KK_RC42(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 43:
self.KK_circuit_fit.append(
KK_RC43(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 44:
self.KK_circuit_fit.append(
KK_RC44(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 45:
self.KK_circuit_fit.append(
KK_RC45(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 46:
self.KK_circuit_fit.append(
KK_RC46(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 47:
self.KK_circuit_fit.append(
KK_RC47(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 48:
self.KK_circuit_fit.append(
KK_RC48(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 49:
self.KK_circuit_fit.append(
KK_RC49(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 50:
self.KK_circuit_fit.append(
KK_RC50(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 51:
self.KK_circuit_fit.append(
KK_RC51(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 52:
self.KK_circuit_fit.append(
KK_RC52(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 53:
self.KK_circuit_fit.append(
KK_RC53(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 54:
self.KK_circuit_fit.append(
KK_RC54(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 55:
self.KK_circuit_fit.append(
KK_RC55(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 56:
self.KK_circuit_fit.append(
KK_RC56(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 57:
self.KK_circuit_fit.append(
KK_RC57(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 58:
self.KK_circuit_fit.append(
KK_RC58(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 59:
self.KK_circuit_fit.append(
KK_RC59(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 60:
self.KK_circuit_fit.append(
KK_RC60(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 61:
self.KK_circuit_fit.append(
KK_RC61(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 62:
self.KK_circuit_fit.append(
KK_RC62(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 63:
self.KK_circuit_fit.append(
KK_RC63(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 64:
self.KK_circuit_fit.append(
KK_RC64(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 65:
self.KK_circuit_fit.append(
KK_RC65(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 66:
self.KK_circuit_fit.append(
KK_RC66(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 67:
self.KK_circuit_fit.append(
KK_RC67(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 68:
self.KK_circuit_fit.append(
KK_RC68(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 69:
self.KK_circuit_fit.append(
KK_RC69(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 70:
self.KK_circuit_fit.append(
KK_RC70(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 71:
self.KK_circuit_fit.append(
KK_RC71(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 72:
self.KK_circuit_fit.append(
KK_RC72(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 73:
self.KK_circuit_fit.append(
KK_RC73(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 74:
self.KK_circuit_fit.append(
KK_RC74(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 75:
self.KK_circuit_fit.append(
KK_RC75(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 76:
self.KK_circuit_fit.append(
KK_RC76(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 77:
self.KK_circuit_fit.append(
KK_RC77(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 78:
self.KK_circuit_fit.append(
KK_RC78(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 79:
self.KK_circuit_fit.append(
KK_RC79(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 80:
self.KK_circuit_fit.append(
KK_RC80(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
else:
print("RC simulation circuit not defined")
print(" Number of RC = ", self.number_RC)
self.KK_rr_re.append(
residual_real(
re=self.df[i].re,
fit_re=self.KK_circuit_fit[i].real,
fit_im=-self.KK_circuit_fit[i].imag,
)
) # relative residuals for the real part
self.KK_rr_im.append(
residual_imag(
im=self.df[i].im,
fit_re=self.KK_circuit_fit[i].real,
fit_im=-self.KK_circuit_fit[i].imag,
)
) # relative residuals for the imag part
### Plotting Linear_kk results
##
#
### Label functions
self.label_re_1 = []
self.label_im_1 = []
self.label_cycleno = []
if legend == "on":
for i in range(len(self.df)):
self.label_re_1.append("Z' (#" + str(i + 1) + ")")
self.label_im_1.append("Z'' (#" + str(i + 1) + ")")
self.label_cycleno.append("#" + str(i + 1))
elif legend == "potential":
for i in range(len(self.df)):
self.label_re_1.append(
"Z' (" + str(np.round(np.average(self.df[i].E_avg), 2)) + " V)"
)
self.label_im_1.append(
"Z'' (" + str(np.round(np.average(self.df[i].E_avg), 2)) + " V)"
)
self.label_cycleno.append(
str(np.round(np.average(self.df[i].E_avg), 2)) + " V"
)
if plot == "w_data":
fig = figure(figsize=(6, 8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(left=0.1, right=0.95, hspace=0.5, bottom=0.1, top=0.95)
ax = fig.add_subplot(311, aspect="equal")
ax1 = fig.add_subplot(312)
ax2 = fig.add_subplot(313)
colors = sns.color_palette("colorblind", n_colors=len(self.df))
colors_real = sns.color_palette("Blues", n_colors=len(self.df) + 2)
colors_imag = sns.color_palette("Oranges", n_colors=len(self.df) + 2)
### Nyquist Plot
for i in range(len(self.df)):
ax.plot(
self.df[i].re,
self.df[i].im,
marker="o",
ms=4,
lw=2,
color=colors[i],
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
### Bode Plot
if bode == "on":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
self.df[i].re,
color=colors_real[i + 1],
marker="D",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_re_1[i],
)
ax1.plot(
np.log10(self.df[i].f),
self.df[i].im,
color=colors_imag[i + 1],
marker="s",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_im_1[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("Z', -Z'' [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "re":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
self.df[i].re,
color=colors_real[i + 1],
marker="D",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("Z' [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "log_re":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
np.log10(self.df[i].re),
color=colors_real[i + 1],
marker="D",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("log(Z') [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "im":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
self.df[i].im,
color=colors_imag[i + 1],
marker="s",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("-Z'' [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "log_im":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
np.log10(self.df[i].im),
color=colors_imag[i + 1],
marker="s",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("log(-Z'') [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "log":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
np.log10(self.df[i].re),
color=colors_real[i + 1],
marker="D",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_re_1[i],
)
ax1.plot(
np.log10(self.df[i].f),
np.log10(self.df[i].im),
color=colors_imag[i + 1],
marker="s",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_im_1[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("log(Z', -Z'') [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
### Kramers-Kronig Relative Residuals
for i in range(len(self.df)):
ax2.plot(
np.log10(self.df[i].f),
self.KK_rr_re[i] * 100,
color=colors_real[i + 1],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label=self.label_re_1[i],
)
ax2.plot(
np.log10(self.df[i].f),
self.KK_rr_im[i] * 100,
color=colors_imag[i + 1],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label=self.label_im_1[i],
)
ax2.set_xlabel("log(f) [Hz]")
ax2.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]")
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and write 'KK-Test' on RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if np.min(self.KK_rr_im_min) > np.min(self.KK_rr_re_min):
ax2.set_ylim(
np.min(self.KK_rr_re_min) * 100 * 1.5,
np.max(np.abs(self.KK_rr_re_min)) * 100 * 1.5,
)
ax2.annotate(
"Lin-KK",
xy=[
np.min(np.log10(self.df[0].f)),
np.max(self.KK_rr_re_max) * 100 * 0.9,
],
color="k",
fontweight="bold",
)
elif np.min(self.KK_rr_im_min) < np.min(self.KK_rr_re_min):
ax2.set_ylim(
np.min(self.KK_rr_im_min) * 100 * 1.5,
np.max(self.KK_rr_im_max) * 100 * 1.5,
)
ax2.annotate(
"Lin-KK",
xy=[
np.min(np.log10(self.df[0].f)),
np.max(self.KK_rr_im_max) * 100 * 0.9,
],
color="k",
fontweight="bold",
)
### Figure specifics
if legend == "on" or legend == "potential":
ax.legend(loc="best", fontsize=10, frameon=False)
ax.set_xlabel("Z' [$\Omega$]")
ax.set_ylabel("-Z'' [$\Omega$]")
if nyq_xlim != "none":
ax.set_xlim(nyq_xlim[0], nyq_xlim[1])
if nyq_ylim != "none":
ax.set_ylim(nyq_ylim[0], nyq_ylim[1])
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### Illustrating residuals only
elif plot == "residuals":
colors = sns.color_palette("colorblind", n_colors=9)
colors_real = sns.color_palette("Blues", n_colors=9)
colors_imag = sns.color_palette("Oranges", n_colors=9)
### 1 Cycle
if len(self.df) == 1:
fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax = fig.add_subplot(231)
ax.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax.set_xlabel("log(f) [Hz]")
ax.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]")
if legend == "on" or legend == "potential":
ax.legend(loc="best", fontsize=10, frameon=False)
ax.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and write 'KK-Test' on RR subplot
self.KK_rr_im_min = np.min(self.KK_rr_im)
self.KK_rr_im_max = np.max(self.KK_rr_im)
self.KK_rr_re_min = np.min(self.KK_rr_re)
self.KK_rr_re_max = np.max(self.KK_rr_re)
if self.KK_rr_re_max > self.KK_rr_im_max:
self.KK_ymax = self.KK_rr_re_max
else:
self.KK_ymax = self.KK_rr_im_max
if self.KK_rr_re_min < self.KK_rr_im_min:
self.KK_ymin = self.KK_rr_re_min
else:
self.KK_ymin = self.KK_rr_im_min
if np.abs(self.KK_ymin) > self.KK_ymax:
ax.set_ylim(
self.KK_ymin * 100 * 1.5, np.abs(self.KK_ymin) * 100 * 1.5
)
if legend == "on":
ax.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin) < self.KK_ymax:
ax.set_ylim(
np.negative(self.KK_ymax) * 100 * 1.5,
np.abs(self.KK_ymax) * 100 * 1.5,
)
if legend == "on":
ax.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax * 100 * 1.3,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 2 Cycles
elif len(self.df) == 2:
fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax2.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 3 Cycles
elif len(self.df) == 3:
fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
ax3 = fig.add_subplot(233)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax2.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax3.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]:
ax3.set_ylim(
self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]:
ax3.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[2]) * 100 * 1.5,
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymax[2]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
self.KK_ymax[2] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 4 Cycles
elif len(self.df) == 4:
fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax2.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax3.set_xlabel("log(f) [Hz]")
ax3.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 4
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_re[3] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_im[3] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax4.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax4.legend(loc="best", fontsize=10, frameon=False)
ax4.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]:
ax3.set_ylim(
self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]:
ax3.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[2]) * 100 * 1.5,
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymax[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
self.KK_ymax[2] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]:
ax4.set_ylim(
self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]:
ax4.set_ylim(
np.negative(self.KK_ymax[3]) * 100 * 1.5,
np.abs(self.KK_ymax[3]) * 100 * 1.5,
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymax[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
self.KK_ymax[3] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 5 Cycles
elif len(self.df) == 5:
fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
ax3 = fig.add_subplot(233)
ax4 = fig.add_subplot(234)
ax5 = fig.add_subplot(235)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax3.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 4
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_re[3] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_im[3] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
ax4.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax4.legend(loc="best", fontsize=10, frameon=False)
ax4.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 5
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_re[4] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_im[4] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax5.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax5.legend(loc="best", fontsize=10, frameon=False)
ax5.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]:
ax3.set_ylim(
self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]:
ax3.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[2]) * 100 * 1.5,
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymax[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
self.KK_ymax[2] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]:
ax4.set_ylim(
self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]:
ax4.set_ylim(
np.negative(self.KK_ymax[3]) * 100 * 1.5,
np.abs(self.KK_ymax[3]) * 100 * 1.5,
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymax[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
self.KK_ymax[3] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]:
ax5.set_ylim(
self.KK_ymin[4] * 100 * 1.5, np.abs(self.KK_ymin[4]) * 100 * 1.5
)
if legend == "on":
ax5.annotate(
"Lin-KK, #5",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymin[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax5.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[4].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymin[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]:
ax5.set_ylim(
np.negative(self.KK_ymax[4]) * 100 * 1.5,
np.abs(self.KK_ymax[4]) * 100 * 1.5,
)
if legend == "on":
ax5.annotate(
"Lin-KK, #5",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymax[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax5.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[4].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[4].f)),
self.KK_ymax[4] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 6 Cycles
elif len(self.df) == 6:
fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
ax3 = fig.add_subplot(233)
ax4 = fig.add_subplot(234)
ax5 = fig.add_subplot(235)
ax6 = fig.add_subplot(236)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 4
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_re[3] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_im[3] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax4.set_xlabel("log(f) [Hz]")
ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15)
if legend == "on" or legend == "potential":
ax4.legend(loc="best", fontsize=10, frameon=False)
ax4.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 5
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_re[4] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_im[4] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax5.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax5.legend(loc="best", fontsize=10, frameon=False)
ax5.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 6
ax6.plot(
np.log10(self.df[5].f),
self.KK_rr_re[5] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax6.plot(
np.log10(self.df[5].f),
self.KK_rr_im[5] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax6.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax6.legend(loc="best", fontsize=10, frameon=False)
ax6.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]:
ax3.set_ylim(
self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]:
ax3.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[2]) * 100 * 1.5,
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymax[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
self.KK_ymax[2] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]:
ax4.set_ylim(
self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]:
ax4.set_ylim(
np.negative(self.KK_ymax[3]) * 100 * 1.5,
np.abs(self.KK_ymax[3]) * 100 * 1.5,
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymax[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
self.KK_ymax[3] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]:
ax5.set_ylim(
self.KK_ymin[4] * 100 * 1.5, np.abs(self.KK_ymin[4]) * 100 * 1.5
)
if legend == "on":
ax5.annotate(
"Lin-KK, #5",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymin[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax5.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[4].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymin[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]:
ax5.set_ylim(
np.negative(self.KK_ymax[4]) * 100 * 1.5,
np.abs(self.KK_ymax[4]) * 100 * 1.5,
)
if legend == "on":
ax5.annotate(
"Lin-KK, #5",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymax[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax5.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[4].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[4].f)),
self.KK_ymax[4] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[5]) > self.KK_ymax[5]:
ax6.set_ylim(
self.KK_ymin[5] * 100 * 1.5, np.abs(self.KK_ymin[5]) * 100 * 1.5
)
if legend == "on":
ax6.annotate(
"Lin-KK, #6",
xy=[
np.min(np.log10(self.df[5].f)),
np.abs(self.KK_ymin[5]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax6.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[5].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[5].f)),
np.abs(self.KK_ymin[5]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[5]) < self.KK_ymax[5]:
ax6.set_ylim(
np.negative(self.KK_ymax[5]) * 100 * 1.5,
np.abs(self.KK_ymax[5]) * 100 * 1.5,
)
if legend == "on":
ax6.annotate(
"Lin-KK, #6",
xy=[
np.min(np.log10(self.df[5].f)),
np.abs(self.KK_ymax[5]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax6.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[5].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[5].f)),
self.KK_ymax[5] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 7 Cycles
elif len(self.df) == 7:
fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(331)
ax2 = fig.add_subplot(332)
ax3 = fig.add_subplot(333)
ax4 = fig.add_subplot(334)
ax5 = fig.add_subplot(335)
ax6 = fig.add_subplot(336)
ax7 = fig.add_subplot(337)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax3.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 4
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_re[3] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_im[3] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15)
if legend == "on" or legend == "potential":
ax4.legend(loc="best", fontsize=10, frameon=False)
ax4.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 5
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_re[4] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_im[4] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax5.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax5.legend(loc="best", fontsize=10, frameon=False)
ax5.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 6
ax6.plot(
np.log10(self.df[5].f),
self.KK_rr_re[5] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax6.plot(
np.log10(self.df[5].f),
self.KK_rr_im[5] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax6.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax6.legend(loc="best", fontsize=10, frameon=False)
ax6.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 7
ax7.plot(
np.log10(self.df[6].f),
self.KK_rr_re[6] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax7.plot(
np.log10(self.df[6].f),
self.KK_rr_im[6] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax7.set_xlabel("log(f) [Hz]")
ax7.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15)
if legend == "on" or legend == "potential":
ax7.legend(loc="best", fontsize=10, frameon=False)
ax7.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]:
ax3.set_ylim(
self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]:
ax3.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[2]) * 100 * 1.5,
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymax[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
self.KK_ymax[2] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]:
ax4.set_ylim(
self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]:
ax4.set_ylim(
np.negative(self.KK_ymax[3]) * 100 * 1.5,
np.abs(self.KK_ymax[3]) * 100 * 1.5,
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymax[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
self.KK_ymax[3] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]:
ax5.set_ylim(
self.KK_ymin[4] * 100 * 1.5, np.abs(self.KK_ymin[4]) * 100 * 1.5
)
if legend == "on":
ax5.annotate(
"Lin-KK, #5",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymin[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax5.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[4].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymin[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]:
ax5.set_ylim(
np.negative(self.KK_ymax[4]) * 100 * 1.5,
np.abs(self.KK_ymax[4]) * 100 * 1.5,
)
if legend == "on":
ax5.annotate(
"Lin-KK, #5",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymax[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax5.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[4].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[4].f)),
self.KK_ymax[4] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[5]) > self.KK_ymax[5]:
ax6.set_ylim(
self.KK_ymin[5] * 100 * 1.5, np.abs(self.KK_ymin[5]) * 100 * 1.5
)
if legend == "on":
ax6.annotate(
"Lin-KK, #6",
xy=[
np.min(np.log10(self.df[5].f)),
np.abs(self.KK_ymin[5]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax6.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[5].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[5].f)),
np.abs(self.KK_ymin[5]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[5]) < self.KK_ymax[5]:
ax6.set_ylim(
np.negative(self.KK_ymax[5]) * 100 * 1.5,
np.abs(self.KK_ymax[5]) * 100 * 1.5,
)
if legend == "on":
ax6.annotate(
"Lin-KK, #6",
xy=[
np.min(np.log10(self.df[5].f)),
np.abs(self.KK_ymax[5]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax6.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[5].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[5].f)),
self.KK_ymax[5] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[6]) > self.KK_ymax[6]:
ax7.set_ylim(
self.KK_ymin[6] * 100 * 1.5, np.abs(self.KK_ymin[6]) * 100 * 1.5
)
if legend == "on":
ax7.annotate(
"Lin-KK, #7",
xy=[
np.min(np.log10(self.df[6].f)),
np.abs(self.KK_ymin[6]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax7.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[6].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[6].f)),
np.abs(self.KK_ymin[6]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[6]) < self.KK_ymax[6]:
ax7.set_ylim(
np.negative(self.KK_ymax[6]) * 100 * 1.5,
np.abs(self.KK_ymax[6]) * 100 * 1.5,
)
if legend == "on":
ax7.annotate(
"Lin-KK, #7",
xy=[
np.min(np.log10(self.df[6].f)),
np.abs(self.KK_ymax[6]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax7.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[6].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[6].f)),
self.KK_ymax[6] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 8 Cycles
elif len(self.df) == 8:
fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(331)
ax2 = fig.add_subplot(332)
ax3 = fig.add_subplot(333)
ax4 = fig.add_subplot(334)
ax5 = fig.add_subplot(335)
ax6 = fig.add_subplot(336)
ax7 = fig.add_subplot(337)
ax8 = fig.add_subplot(338)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 4
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_re[3] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_im[3] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14)
if legend == "on" or legend == "potential":
ax4.legend(loc="best", fontsize=10, frameon=False)
ax4.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 5
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_re[4] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_im[4] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax5.legend(loc="best", fontsize=10, frameon=False)
ax5.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 6
ax6.plot(
np.log10(self.df[5].f),
self.KK_rr_re[5] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax6.plot(
np.log10(self.df[5].f),
self.KK_rr_im[5] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax6.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax6.legend(loc="best", fontsize=10, frameon=False)
ax6.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 7
ax7.plot(
np.log10(self.df[6].f),
self.KK_rr_re[6] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax7.plot(
np.log10(self.df[6].f),
self.KK_rr_im[6] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax7.set_xlabel("log(f) [Hz]")
ax7.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=14)
if legend == "on" or legend == "potential":
ax7.legend(loc="best", fontsize=10, frameon=False)
ax7.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 8
ax8.plot(
np.log10(self.df[7].f),
self.KK_rr_re[7] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax8.plot(
|
np.log10(self.df[7].f)
|
numpy.log10
|
import rospy
from pointcloud_to_rangeimage.msg import RangeImage as RangeImage_msg
from pointcloud_to_rangeimage.msg import RangeImageEncoded as RangeImageEncoded_msg
import cv2
from cv_bridge import CvBridge
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Add, Subtract, Lambda, Layer
from tensorflow.keras.layers import Conv2D, ZeroPadding2D
import tensorflow_compression as tfc
import numpy as np
class RnnConv(Layer):
"""
Convolutional LSTM cell
See detail in formula (4-6) in paper
"Full Resolution Image Compression with Recurrent Neural Networks"
https://arxiv.org/pdf/1608.05148.pdf
Args:
name: name of current ConvLSTM layer
filters: number of filters for each convolutional operation
strides: strides size
kernel_size: kernel size of convolutional operation
hidden_kernel_size: kernel size of convolutional operation for hidden state
Input:
inputs: input of the layer
hidden: hidden state and cell state of the layer
Output:
newhidden: updated hidden state of the layer
newcell: updated cell state of the layer
"""
def __init__(self, name, filters, strides, kernel_size, hidden_kernel_size):
super(RnnConv, self).__init__()
self.filters = filters
self.strides = strides
self.conv_i = Conv2D(filters=4 * self.filters,
kernel_size=kernel_size,
strides=self.strides,
padding='same',
use_bias=False,
name=name + '_i')
self.conv_h = Conv2D(filters=4 * self.filters,
kernel_size=hidden_kernel_size,
padding='same',
use_bias=False,
name=name + '_h')
def call(self, inputs, hidden):
# with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
conv_inputs = self.conv_i(inputs)
conv_hidden = self.conv_h(hidden[0])
# all gates are determined by input and hidden layer
in_gate, f_gate, out_gate, c_gate = tf.split(
conv_inputs + conv_hidden, 4, axis=-1) # each gate get the same number of filters
in_gate = tf.nn.sigmoid(in_gate) # input/update gate
f_gate = tf.nn.sigmoid(f_gate)
out_gate = tf.nn.sigmoid(out_gate)
c_gate = tf.nn.tanh(c_gate) # candidate cell, calculated from input
# forget_gate*old_cell+input_gate(update)*candidate_cell
newcell = tf.multiply(f_gate, hidden[1]) + tf.multiply(in_gate, c_gate)
newhidden = tf.multiply(out_gate, tf.nn.tanh(newcell))
return newhidden, newcell
class EncoderRNN(Layer):
"""
Encoder layer for one iteration.
Args:
bottleneck: bottleneck size of the layer
name: name of encoder layer
Input:
input: output array from last iteration.
In the first iteration, it is the normalized image patch
hidden2, hidden3, hidden4: hidden and cell states of corresponding ConvLSTM layers
training: boolean, whether the call is in inference mode or training mode
Output:
encoded: encoded binary array in each iteration
hidden2, hidden3, hidden4: hidden and cell states of corresponding ConvLSTM layers
"""
def __init__(self, bottleneck, name=None):
super(EncoderRNN, self).__init__(name=name)
self.bottleneck = bottleneck
self.Conv_e1 = Conv2D(64, kernel_size=(3,3), strides=(2, 2), padding="same", use_bias=False, name='Conv_e1')
self.GDN = tfc.GDN(alpha_parameter=2, epsilon_parameter=0.5, name="gdn")
self.RnnConv_e1 = RnnConv("RnnConv_e1", 256, (2, 2), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_e2 = RnnConv("RnnConv_e2", 512, (2, 2), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_e3 = RnnConv("RnnConv_e3", 512, (2, 2), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.Conv_b = Conv2D(bottleneck, kernel_size=(1, 1), activation=tf.nn.tanh, use_bias=False, name='b_conv')
self.Sign = Lambda(lambda x: tf.sign(x), name="sign")
def call(self, input, hidden2, hidden3, hidden4, training=False):
# with tf.compat.v1.variable_scope("encoder", reuse=True):
# input size (32,32,3)
x = self.Conv_e1(input)
x = self.GDN(x)
# (16,16,64)
hidden2 = self.RnnConv_e1(x, hidden2)
x = hidden2[0]
# (8,8,256)
hidden3 = self.RnnConv_e2(x, hidden3)
x = hidden3[0]
# (4,4,512)
hidden4 = self.RnnConv_e3(x, hidden4)
x = hidden4[0]
# (2,2,512)
# binarizer
x = self.Conv_b(x)
# (2,2,bottleneck)
encoded = self.Sign(x)
return encoded, hidden2, hidden3, hidden4
class DecoderRNN(Layer):
"""
Decoder layer for one iteration.
Args:
name: name of decoder layer
Input:
input: decoded array in each iteration
hidden2, hidden3, hidden4, hidden5: hidden and cell states of corresponding ConvLSTM layers
training: boolean, whether the call is in inference mode or training mode
Output:
decoded: decoded array in each iteration
hidden2, hidden3, hidden4, hidden5: hidden and cell states of corresponding ConvLSTM layers
"""
def __init__(self, name=None):
super(DecoderRNN, self).__init__(name=name)
self.Conv_d1 = Conv2D(512, kernel_size=(1, 1), use_bias=False, name='d_conv1')
self.iGDN = tfc.GDN(alpha_parameter=2, epsilon_parameter=0.5, inverse=True, name="igdn")
self.RnnConv_d2 = RnnConv("RnnConv_d2", 512, (1, 1), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_d3 = RnnConv("RnnConv_d3", 512, (1, 1), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_d4 = RnnConv("RnnConv_d4", 256, (1, 1), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.RnnConv_d5 = RnnConv("RnnConv_d5", 128, (1, 1), kernel_size=(3, 3), hidden_kernel_size=(3, 3))
self.Conv_d6 = Conv2D(1, kernel_size=(1, 1), padding='same', name='d_conv6', use_bias=False, activation=tf.nn.tanh)
self.DTS1 = Lambda(lambda x: tf.nn.depth_to_space(x, 2), name="dts_1")
self.DTS2 = Lambda(lambda x: tf.nn.depth_to_space(x, 2), name="dts_2")
self.DTS3 = Lambda(lambda x: tf.nn.depth_to_space(x, 2), name="dts_3")
self.DTS4 = Lambda(lambda x: tf.nn.depth_to_space(x, 2), name="dts_4")
self.Add = Add(name="add")
self.Out = Lambda(lambda x: x*0.5, name="out")
def call(self, input, hidden2, hidden3, hidden4, hidden5, training=False):
# (2,2,bottleneck)
x = self.Conv_d1(input)
x_igdn = self.iGDN(x)
# (2,2,512)
hidden2 = self.RnnConv_d2(x_igdn, hidden2)
x = hidden2[0]
# (2,2,512)
x = self.Add([x, x_igdn])
x = self.DTS1(x)
# (4,4,128)
hidden3 = self.RnnConv_d3(x, hidden3)
x = hidden3[0]
# (4,4,512)
x = self.DTS2(x)
# (8,8,128)
hidden4 = self.RnnConv_d4(x, hidden4)
x = hidden4[0]
# (8,8,256)
x = self.DTS3(x)
# (16,16,64)
hidden5 = self.RnnConv_d5(x, hidden5)
x = hidden5[0]
# (16,16,128)
x = self.DTS4(x)
# (32,32,32)
# output in range (-0.5,0.5)
x = self.Conv_d6(x)
decoded = self.Out(x)
return decoded, hidden2, hidden3, hidden4, hidden5
class EncoderModel(Model):
"""
Encoder engine consisting of encoder layer and decoder layer.
Args:
bottleneck: bottleneck size of the network
num_iters: number of iterations
Input:
input: decoded array in each iteration
training: boolean, whether the call is in inference mode or training mode
Output:
codes: list of compressed binary codewords generated through iterations
"""
def __init__(self, bottleneck, num_iters):
super(EncoderModel, self).__init__()
self.num_iters = num_iters
self.encoder = EncoderRNN(bottleneck, name="encoder")
self.decoder = DecoderRNN(name="decoder")
self.normalize = Lambda(lambda x: tf.subtract(x, 0.5), name="normalization")
self.subtract = Subtract()
self.inputs = tf.keras.layers.Input(shape=(32, 1824, 1))
self.DIM1 = 1824 // 2
self.DIM2 = self.DIM1 // 2
self.DIM3 = self.DIM2 // 2
self.DIM4 = self.DIM3 // 2
self.beta = 1.0 / self.num_iters
def initial_hidden(self, batch_size, hidden_size, filters):
"""Initialize hidden and cell states, all zeros"""
shape = [batch_size] + hidden_size + [filters]
hidden = tf.zeros(shape)
cell = tf.zeros(shape)
return hidden, cell
def call(self, inputs, training=False):
# Initialize the hidden states when a new batch comes in
batch_size = inputs.shape[0]
hidden_e2 = self.initial_hidden(batch_size, [8, self.DIM2], 256)
hidden_e3 = self.initial_hidden(batch_size, [4, self.DIM3], 512)
hidden_e4 = self.initial_hidden(batch_size, [2, self.DIM4], 512)
hidden_d2 = self.initial_hidden(batch_size, [2, self.DIM4], 512)
hidden_d3 = self.initial_hidden(batch_size, [4, self.DIM3], 512)
hidden_d4 = self.initial_hidden(batch_size, [8, self.DIM2], 256)
hidden_d5 = self.initial_hidden(batch_size, [16, self.DIM1], 128)
codes = []
inputs = self.normalize(inputs)
res = inputs
for i in range(self.num_iters-1):
code, hidden_e2, hidden_e3, hidden_e4 = \
self.encoder(res, hidden_e2, hidden_e3, hidden_e4, training=training)
decoded, hidden_d2, hidden_d3, hidden_d4, hidden_d5 = \
self.decoder(code, hidden_d2, hidden_d3, hidden_d4, hidden_d5, training=training)
# Update res as predicted output in this iteration subtract the original input
res = self.subtract([decoded, inputs])
codes.append(code)
code, hidden_e2, hidden_e3, hidden_e4 = self.encoder(res, hidden_e2, hidden_e3, hidden_e4, training=training)
codes.append(code)
return codes
def predict_step(self, data):
inputs, labels = data
codes = self(inputs, training=False)
return codes
class DecoderModel(Model):
"""
Decoder engine iteratively calling the decoder layer.
Args:
bottleneck: bottleneck size of the network
num_iters: number of iterations
Input:
codes: output of Encoder engine
training: boolean, whether the call is in inference mode or training mode
Output:
output_tensor: decoded image patch
"""
def __init__(self, bottleneck, num_iters):
super(DecoderModel, self).__init__()
self.num_iters = num_iters
self.DIM1 = 1824 // 2
self.DIM2 = self.DIM1 // 2
self.DIM3 = self.DIM2 // 2
self.DIM4 = self.DIM3 // 2
self.decoder = DecoderRNN(name="decoder")
self.subtract = Subtract()
self.inputs = []
# inputs of shape [(bs, 2, 114, bottleneck), (bs, 2, 114, bottleneck), (bs, 2, 114, bottleneck), ...]
for i in range(self.num_iters):
self.inputs.append(tf.keras.layers.Input(shape=(2, self.DIM4, bottleneck)))
def initial_hidden(self, batch_size, hidden_size, filters):
"""Initialize hidden and cell states, all zeros"""
shape = [batch_size] + hidden_size + [filters]
hidden = tf.zeros(shape)
cell = tf.zeros(shape)
return hidden, cell
def call(self, codes, training=False):
batch_size = codes[0].shape[0]
hidden_d2 = self.initial_hidden(batch_size, [2, self.DIM4], 512)
hidden_d3 = self.initial_hidden(batch_size, [4, self.DIM3], 512)
hidden_d4 = self.initial_hidden(batch_size, [8, self.DIM2], 256)
hidden_d5 = self.initial_hidden(batch_size, [16, self.DIM1], 128)
for i in range(self.num_iters):
decoded, hidden_d2, hidden_d3, hidden_d4, hidden_d5 = \
self.decoder(codes[i], hidden_d2, hidden_d3, hidden_d4, hidden_d5, training=training)
output_tensor = tf.clip_by_value(tf.add(decoded, 0.5), 0, 1)
return output_tensor
def predict_step(self, data):
inputs, labels = data
outputs = self(inputs, training=False)
return outputs
class MsgEncoder:
"""
Subscribe to topic /pointcloud_to_rangeimage_node/msg_out,
compress range image using RNN image compression model,
azimuth image using JPEG2000 and intensity image using PNG compression.
Publish message type RangeImageEncoded to topic /msg_encoded.
"""
def __init__(self):
self.pub = rospy.Publisher('msg_encoded', RangeImageEncoded_msg, queue_size=10)
self.sub = rospy.Subscriber("/pointcloud_to_rangeimage_node/msg_out", RangeImage_msg, self.callback)
self.bridge = CvBridge()
bottleneck = rospy.get_param("/rnn_compression/bottleneck")
num_iters = rospy.get_param("/rnn_compression/num_iters")
weights_path = rospy.get_param("/rnn_compression/weights_path")
# load model
self.encoder = EncoderModel(bottleneck, num_iters)
self.encoder(
|
np.zeros((1, 32, 1824, 1))
|
numpy.zeros
|
"""
aspec_doa.py
Angular spectrum-based DOA estimation
Copyright (c) 2017 Idiap Research Institute, http://www.idiap.ch/
Written by <NAME> <<EMAIL>>
"""
import sys
import math
import numpy as np
import scipy.interpolate
from .basic import steering_vector, compute_delay
from .doa import azimuth_distance
def phi_mvdr_snr(ecov, delay, fbins=None):
"""Local angular spectrum function: MVDR (SNR)
Args:
ecov : empirical covariance matrix, indices (cctf)
delay : the set of delays to probe, indices (dc)
fbins : (default None) if fbins is not over all frequencies,
use fins to specify centers of frequency bins as discrete
values.
Returns:
phi : local angular spectrum function, indices (dt),
here 'd' is the index of delay
"""
# compute inverse of empirical covariance matrix
eta = 1e-10
nch, _, nframe, nfbin = ecov.shape
iecov = np.zeros(ecov.shape, dtype=ecov.dtype)
for i in range(nframe):
for j in range(nfbin):
iecov[:,:,i,j] = np.asmatrix(ecov[:,:,i,j] + np.eye(nch) * eta).I
# total power: trace mean
tpow = np.einsum('cctf->tf', ecov).real / nch + eta
phi = np.zeros((len(delay), nframe))
for i in range(len(delay)):
if fbins is None:
stv = steering_vector(delay[i], nfbin)
else:
stv = steering_vector(delay[i], fbins=fbins)
denom = np.einsum('cf,cdtf,df->tf', stv.conj(), iecov, stv, optimize='optimal').real
assert np.all(denom > 0) # iecov positive definite
isnr = np.maximum(tpow * denom - 1.0, eta) # 1 / snr
phi[i] = np.sum(1. / isnr, axis=1) / nfbin # average over frequency
return phi
def phi_mvdr(ecov, delay, fbins=None):
"""Local angular spectrum function: MVDR
Args:
ecov : empirical covariance matrix, indices (cctf)
delay : the set of delays to probe, indices (dc)
fbins : (default None) if fbins is not over all frequencies,
use fins to specify centers of frequency bins as discrete
values.
Returns:
phi : local angular spectrum function, indices (dt),
here 'd' is the index of delay
"""
# compute inverse of empirical covariance matrix
eta = 1e-10
nch, _, nframe, nfbin = ecov.shape
iecov = np.zeros(ecov.shape, dtype=ecov.dtype)
for i in range(nframe):
for j in range(nfbin):
iecov[:,:,i,j] = np.asmatrix(ecov[:,:,i,j] + np.eye(nch) * eta).I
phi = np.zeros((len(delay), nframe))
for i in range(len(delay)):
if fbins is None:
stv = steering_vector(delay[i], nfbin)
else:
stv = steering_vector(delay[i], fbins=fbins)
denom = np.einsum('cf,cdtf,df->tf', stv.conj(), iecov, stv, optimize='optimal').real
assert np.all(denom > 0) # iecov positive definite
phi[i] = np.sum(1. / denom, axis=1) # sum over frequency
return phi
def phi_srp_phat(ecov, delay, fbins=None):
"""Local angular spectrum function: SRP-PHAT
Args:
ecov : empirical covariance matrix, indices (cctf)
delay : the set of delays to probe, indices (dc)
fbins : (default None) if fbins is not over all frequencies,
use fins to specify centers of frequency bins as discrete
values.
Returns:
phi : local angular spectrum function, indices (dt),
here 'd' is the index of delay
"""
# compute inverse of empirical covariance matrix
nch, _, nframe, nfbin = ecov.shape
mask = np.asarray([[c < d for d in range(nch)] for c in range(nch)])
ecov_upper_tri = ecov[mask]
cpsd_phat = np.zeros(ecov_upper_tri.shape, dtype=ecov_upper_tri.dtype)
ampl = np.abs(ecov_upper_tri)
non_zero_mask = ampl > 1e-20
cpsd_phat[non_zero_mask] = ecov_upper_tri[non_zero_mask] / ampl[non_zero_mask]
phi = np.zeros((len(delay), nframe))
for i in range(len(delay)):
if fbins is None:
stv = steering_vector(delay[i], nfbin)
else:
stv = steering_vector(delay[i], fbins=fbins)
x = np.asarray([stv[c] * stv[d].conj() for c in range(nch)
for d in range (nch)
if c < d])
phi[i] = np.einsum('itf,if->t', cpsd_phat, x.conj(),
optimize='optimal').real / nfbin / len(x)
return phi
def phi_srp_phat_nonlin(ecov, delay, fbins=None):
"""Local angular spectrum function: SRP-PHAT non-linear
Args:
ecov : empirical covariance matrix, indices (cctf)
delay : the set of delays to probe, indices (dc)
fbins : (default None) if fbins is not over all frequencies,
use fins to specify centers of frequency bins as discrete
values.
Returns:
phi : local angular spectrum function, indices (dt),
here 'd' is the index of delay
"""
# compute inverse of empirical covariance matrix
nch, _, nframe, nfbin = ecov.shape
mask = np.asarray([[c < d for d in range(nch)] for c in range(nch)])
ecov_upper_tri = ecov[mask]
cpsd_phat = np.zeros(ecov_upper_tri.shape, dtype=ecov_upper_tri.dtype)
ampl = np.abs(ecov_upper_tri)
non_zero_mask = ampl > 1e-20
cpsd_phat[non_zero_mask] = ecov_upper_tri[non_zero_mask] / ampl[non_zero_mask]
phi = np.zeros((len(delay), nframe))
for i in range(len(delay)):
if fbins is None:
stv = steering_vector(delay[i], nfbin)
else:
stv = steering_vector(delay[i], fbins=fbins)
x = np.asarray([stv[c] * stv[d].conj() for c in range(nch)
for d in range (nch)
if c < d])
phi_if = np.einsum('itf,if->itf', cpsd_phat, x.conj(),
optimize='optimal').real
phi_nonlin = 1 - np.tanh(2 * np.sqrt(1 - np.minimum(phi_if, 1.0)))
phi[i] = np.einsum('itf->t', phi_nonlin, optimize='optimal') / nfbin / len(x)
return phi
class MVDR_NCOV:
"""MVDR with known noise covariance matrix"""
def __init__(self, ncov):
"""
Args:
ncov : noise spatial covariance matrix, indexed by (ccf)
"""
self.incov = np.moveaxis(np.linalg.inv(np.moveaxis(ncov, 2, 0)),
0, 2)
def __call__(self, ecov, delay, fbins=None):
"""Local angular spectrum function: MVDR-NCOV
Args:
ecov : empirical covariance matrix, indices (cctf)
delay : the set of delays to probe, indices (dc)
fbins : (default None) if fbins is not over all frequencies,
use fins to specify centers of frequency bins as discrete
values.
Returns:
phi : local angular spectrum function, indices (dt),
here 'd' is the index of delay
"""
nch, _, nframe, nfbin = ecov.shape
phi = np.zeros((len(delay), nframe))
for i in range(len(delay)):
if fbins is None:
stv = steering_vector(delay[i], nfbin)
else:
stv = steering_vector(delay[i], fbins=fbins)
w = np.einsum('cdf,df->cf', self.incov, stv)
n = np.einsum('cf,cf->f', stv.conj(), w)
w = np.einsum('cf,f->cf', w, 1.0 / n)
phi[i] = np.einsum('cf,cdtf,df->t', w.conj(), ecov, w,
optimize='optimal').real
return phi
class MVDR_NCOV_SNR:
"""MVDR with known noise covariance matrix"""
def __init__(self, ncov):
"""
Args:
ncov : noise spatial covariance matrix, indexed by (ccf)
"""
self.incov = np.moveaxis(np.linalg.inv(np.moveaxis(ncov, 2, 0)),
0, 2)
def __call__(self, ecov, delay, fbins=None):
"""Local angular spectrum function: MVDR-NCOV
Args:
ecov : empirical covariance matrix, indices (cctf)
delay : the set of delays to probe, indices (dc)
fbins : (default None) if fbins is not over all frequencies,
use fins to specify centers of frequency bins as discrete
values.
Returns:
phi : local angular spectrum function, indices (dt),
here 'd' is the index of delay
"""
nch, _, nframe, nfbin = ecov.shape
phi = np.zeros((len(delay), nframe))
# total power
pt = np.einsum('cctf->tf', ecov).real
for i in range(len(delay)):
if fbins is None:
stv = steering_vector(delay[i], nfbin)
else:
stv = steering_vector(delay[i], fbins=fbins)
w =
|
np.einsum('cdf,df->cf', self.incov, stv)
|
numpy.einsum
|
"""Functions for rendering the final result in PyVista."""
import time
import numpy as np
import pyvista as pv
from matplotlib.colors import LinearSegmentedColormap
from util import latlon2xyz, find_percent_val, find_val_percent
import cmocean
# zmaps = cmocean.tools.get_dict(cmocean.cm.thermal, N=9)
# zmaps = cmocean.cm.thermal
# zmaps = cmocean.cm.get_cmap("thermal").copy()
def add_points(pl, points):
# Is it strictly necessary that these be np.arrays?
for key, data in points.items():
dots = pv.PolyData(np.array(data))
pl.add_mesh(dots, point_size=10.0, color=key)
def add_lines(pl, radius, tilt):
x_axisline = pv.Line([-1.5*radius,0,0],[1.5*radius,0,0])
y_axisline = pv.Line([0,-1.5*radius,0],[0,1.5*radius,0])
z_axisline = pv.Line([0,0,-1.5*radius],[0,0,1.5*radius])
# Axial tilt line
# ax, ay, az = latlon2xyz(tilt, 45, radius)
ax, ay, az = latlon2xyz(tilt, 0, radius)
t_axisline = pv.Line([0,0,0], [ax * 1.5, ay * 1.5, az * 1.5])
# Sun tilt line (line that is perpendicular to the incoming solar flux)
# ax, ay, az = latlon2xyz(90-tilt, -135, radius)
ax, ay, az = latlon2xyz(90-tilt, 180, radius)
s_axisline = pv.Line([0,0,0], [ax * 1.5, ay * 1.5, az * 1.5])
pl.add_mesh(x_axisline, line_width=5, color = "red")
pl.add_mesh(y_axisline, line_width=5, color = "green")
pl.add_mesh(z_axisline, line_width=5, color = "blue")
pl.add_mesh(t_axisline, line_width=5, color = "magenta")
pl.add_mesh(s_axisline, line_width=5, color = "yellow")
def visualize(verts, tris, heights=None, scalars=None, zero_level=0.0, surf_points=None, radius=1.0, tilt=0.0):
"""Visualize the output."""
pl = pv.Plotter()
if scalars["s-mode"] in ("insolation", "temperature"):
show_ocean_shell = False
else:
show_ocean_shell = True
# pyvista expects that faces have a leading number telling it how many
# vertices a face has, e.g. [3, 0, 11, 5] where 3 means triangle.
# https://docs.pyvista.org/examples/00-load/create-poly.html
# So we fill an array with the number '3' and merge it with the cells
# from meshzoo to get a 'proper' array for pyvista.
time_start = time.perf_counter()
tri_size = np.full((len(tris), 1), 3)
new_tris = np.hstack((tri_size, tris))
time_end = time.perf_counter()
print(f"Time to reshape triangle array: {time_end - time_start :.5f} sec")
tri_size = None
# Create pyvista mesh from our icosphere
time_start = time.perf_counter()
planet_mesh = pv.PolyData(verts, new_tris)
time_end = time.perf_counter()
print(f"Time to create the PyVista planet mesh: {time_end - time_start :.5f} sec")
# Separate mesh for ocean water
if show_ocean_shell:
ocean_shell = pv.ParametricEllipsoid(radius, radius, radius, u_res=300, v_res=300)
pl.add_mesh(ocean_shell, show_edges=False, smooth_shading=True, color="blue", opacity=0.15)
# Add any surface marker points or other floating marker points
if surf_points is not None:
add_points(pl, surf_points)
# Add axis lines
add_lines(pl, radius, tilt)
# minval = np.amin(scalars["scalars"])
# maxval = np.amax(scalars["scalars"])
# heights = np.clip(heights, minval*1.001, maxval)
# Prepare scalar gradient, scalar bar, and annotations
color_map, anno = make_scalars(scalars["s-mode"], scalars["scalars"])
sargs = dict(n_labels=0, label_font_size=12, position_y=0.07)
# ToDo: Add title to the scalar bar sargs and dynamically change it based on what is being visualized (e.g. Elevation, Surface Temperature, etc.)
# title="whatever" (remove the quotes and make 'whatever' into a variable, like the s-mode or whatever. like title=scalars["s-mode"])
# "Current"? ".items()"? https://stackoverflow.com/questions/3545331/how-can-i-get-dictionary-key-as-variable-directly-in-python-not-by-searching-fr
# https://stackoverflow.com/questions/16819222/how-to-return-dictionary-keys-as-a-list-in-python
# pl.add_mesh(planet_mesh, show_edges=False, smooth_shading=True, color="white", below_color="blue", culling="back", scalars=scalars["scalars"], cmap=custom_cmap, scalar_bar_args=sargs, annotations=anno)
pl.add_mesh(planet_mesh, show_edges=False, smooth_shading=True, color="white", culling="back", scalars=scalars["scalars"], cmap=color_map, scalar_bar_args=sargs, annotations=anno)
pl.show_axes()
pl.enable_terrain_style(mouse_wheel_zooms=True) # Use turntable style navigation
print("Sending to PyVista.")
pl.show()
def make_scalars(mode, scalars):
# Define the colors we want to use (NOT BEING USED AT THE MOMENT)
blue = np.array([12/256, 238/256, 246/256, 1])
black = np.array([11/256, 11/256, 11/256, 1])
grey =
|
np.array([189/256, 189/256, 189/256, 1])
|
numpy.array
|
import numpy as np
from numpy.testing import assert_almost_equal, assert_allclose
import pickle
import os
from skcv import data_dir
from skcv.multiview.two_views.fundamental_matrix import *
from skcv.multiview.util.points_functions import *
from skcv.multiview.util.camera import *
def test_fundamental_from_cameras():
center1 = np.array((0, 0, 0))
center2 = np.array((1, 0, 0))
look_at1 = np.array((0, 0, 10))
look_at2 = np.array((1, 0, 10))
camera1 = look_at_matrix(center1, look_at1)
camera2 = look_at_matrix(center2, look_at2)
f_matrix = fundamental_matrix_from_two_cameras(camera1, camera2)
def test_epipoles():
f_matrix = np.array(((0, 0, 0), (0, 0, -1), (0, 1, 0)))
re = right_epipole(f_matrix)
le = left_epipole(f_matrix)
assert_almost_equal(re, [1, 0, 0])
assert_almost_equal(le, [1, 0, 0])
def test_canonical_cameras():
camera1 = np.array([[1., 0., 0., 0.],
[0., 1., 0., 0.],
[0., 0., 1., 0.]])
camera2 = np.array([[0., 0., 0., 1.],
[0., -1., 0., 0.],
[0., 0., -1., 0.]])
f_matrix = np.array([[0, 0, 0],
[0, 0, -1],
[0, 1, 0]])
p1, p2 = canonical_cameras_from_f(f_matrix)
assert_almost_equal(p1, camera1)
assert_almost_equal(p2, camera2)
def test_sampson_error():
f_matrix = np.array([[0, 0, 0],
[0, 0, -1],
[0, 1, 0]])
x = np.linspace(0, 10, 11)
y = np.linspace(0, 10, 11)
ones = np.ones(11)
x1 = np.vstack((x, y, ones))
x2 = np.vstack((x + 1, y + 1, ones))
x3 = np.vstack((x + 1, y, ones))
error = sampson_error(x1, x2, f_matrix)
gt_err = np.array([0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5])
|
assert_almost_equal(gt_err, error)
|
numpy.testing.assert_almost_equal
|
import pandas as pd
import numpy as np
import os
from sklearn.pipeline import Pipeline, FeatureUnion
from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer
from sklearn.metrics import precision_recall_fscore_support
import xgboost as xgb
from tqdm import tqdm
import argparse
from pk_classifier.bootstrap import simple_tokenizer, TextSelector, f1_eval, update, read_in_bow, make_ids_per_test, \
split_train_val_test
from pk_classifier.stats import plot_df
def process_them(input_tuple, rounds, test_prop, out_path_results, out_path_figure, out_path_bootstrap, use_idf):
all_features, all_labs = read_in_bow(input_tuple[0], input_tuple[1])
ids_per_test = make_ids_per_test(inp_df=all_labs)
all_metrics_test = []
optimal_epochs = []
median_optimal_epochs = []
median_f1s = []
a = 0
for round_i in tqdm(np.arange(rounds)):
rd_seed = 10042006 + round_i
per = test_prop
# =====================================================================================================
# Make splits: 60% train, 20% validation, 20% temp test
# ======================================================================================================
x_train, x_val, x_test, y_train, y_val, y_test, pmids_train, pmids_val, pmids_test = \
split_train_val_test(features=all_features, labels=all_labs, test_size=per, seed=rd_seed)
# =====================================================================================================
# Decide max number of iterations using early stopping criteria on the validation set
# ======================================================================================================
balancing_factor = y_train.value_counts()["Not Relevant"] / y_train.value_counts()["Relevant"]
if round_i == 0:
print("Training with--- ", y_train.value_counts()["Relevant"], " ---Relevant instances")
encoder = CountVectorizer(tokenizer=simple_tokenizer, ngram_range=(1, 1), lowercase=False, preprocessor=None,
min_df=2)
normalizer = TfidfTransformer(norm="l1", use_idf=use_idf)
decoder = xgb.XGBClassifier(random_state=rd_seed, n_jobs=-1, n_estimators=2000, objective='binary:logistic',
max_depth=4, learning_rate=0.1, colsample_bytree=1.,
scale_pos_weight=balancing_factor, nthread=-1)
# Define encoding pipeline
enc_pip = Pipeline([
('encoder', FeatureUnion(transformer_list=[
('bow', Pipeline([
('selector', TextSelector('BoW_Ready', emb=False)),
('vect', encoder),
('norm', normalizer)
])
)
]))
])
x_train_features = enc_pip.fit_transform(x_train)
x_val_features = enc_pip.transform(x_val)
if a == 0:
print("Using: ", x_train_features.shape[1], "features")
a = 1
eval_set = [(x_train_features, y_train), (x_val_features, y_val)]
decoder.fit(x_train_features, y_train, eval_set=eval_set, verbose=False,
early_stopping_rounds=200, eval_metric=f1_eval)
optimal_epochs.append(decoder.best_ntree_limit)
median_epochs = np.median(optimal_epochs)
median_optimal_epochs.append(median_epochs)
if round_i in np.arange(0, rounds, 20):
print("Median number of epochs:", median_epochs)
# =====================================================================================================
# Apply predictions to the temp test set
# ======================================================================================================
x_test_encoded = enc_pip.transform(x_test)
pred_test = decoder.predict(x_test_encoded)
test_results = pd.DataFrame(pred_test == y_test.values, columns=['Result'])
test_results['Result'] = test_results['Result'].astype(int)
test_results['pmid'] = pmids_test.values
"""Update for output"""
for index, x in test_results.iterrows():
ids_per_test = update(x, ids_per_test)
precision_test, recall_test, f1_test, support_test = precision_recall_fscore_support(y_test, pred_test,
average='binary',
pos_label="Relevant")
current_metrics_test = [precision_test, recall_test, f1_test]
all_metrics_test.append(current_metrics_test)
all_f1s = [x[2] for x in all_metrics_test]
temp_median_f1 =
|
np.median(all_f1s)
|
numpy.median
|
import numpy as np
from scipy.optimize import minimize
from mushroom_rl.algorithms.policy_search.black_box_optimization import BlackBoxOptimization
from mushroom_rl.utils.parameters import to_parameter
from mushroom_rl.approximators import Regressor
from mushroom_rl.approximators.parametric import LinearApproximator
from mushroom_rl.features import Features
from mushroom_rl.features.basis.polynomial import PolynomialBasis
from mushroom_rl.distributions import GaussianCholeskyDistribution
class MORE(BlackBoxOptimization):
"""
Model-Based Relative Entropy Stochastic Search algorithm.
"Model-Based Relative Entropy Stochastic Search", Abdolmaleki, Abbas and <NAME> and
<NAME> and <NAME> and <NAME> and <NAME>. 2015.
"""
def __init__(self, mdp_info, distribution, policy, eps, h0=-75, kappa=0.99, features=None):
"""
Constructor.
Args:
distribution (GaussianCholeskyDistribution): the distribution of policy parameters.
eps ([float, Parameter]): the maximum admissible value for the Kullback-Leibler
divergence between the new distribution and the
previous one at each update step.
h0 ([float, Parameter]): minimum exploration policy.
kappa ([float, Parameter]): regularization parameter for the entropy decrease.
"""
self.eps = to_parameter(eps)
self.h0 = to_parameter(h0)
self.kappa = to_parameter(kappa)
assert isinstance(distribution, GaussianCholeskyDistribution)
poly_basis_quadratic = PolynomialBasis().generate(2, policy.weights_size)
self.phi_quadratic_ = Features(basis_list=poly_basis_quadratic)
self.regressor_quadratic = Regressor(LinearApproximator,
input_shape=(len(poly_basis_quadratic),),
output_shape=(1,))
poly_basis_linear = PolynomialBasis().generate(1, policy.weights_size)
self.phi_linear_ = Features(basis_list=poly_basis_linear)
self.regressor_linear = Regressor(LinearApproximator,
input_shape=(len(poly_basis_linear),),
output_shape=(1,))
self._add_save_attr(eps='primitive')
self._add_save_attr(h0='primitive')
self._add_save_attr(kappa='primitive')
super().__init__(mdp_info, distribution, policy, features)
def _update(self, Jep, theta):
beta = self.kappa() * (self.distribution.entropy() - self.h0()) + self.h0()
n = len(self.distribution._mu)
dist_params = self.distribution.get_parameters()
mu_t = dist_params[:n][:,np.newaxis]
chol_sig_empty = np.zeros((n,n))
chol_sig_empty[np.tril_indices(n)] = dist_params[n:]
sig_t = chol_sig_empty.dot(chol_sig_empty.T)
R, r, r_0 = self._fit_quadratic_surrogate(theta, Jep, n)
eta_omg_start = np.ones(2)
res = minimize(MORE._dual_function, eta_omg_start,
bounds=((
|
np.finfo(np.float32)
|
numpy.finfo
|
"""
Functions to perform conversions between certain coordinate systems
"""
import math
import warnings
from scipy import linalg
import numpy as np
from scipy.spatial.transform import Rotation
from utilities.Constants import EARTH_RADIUS
# This takes geographic as a numpy vector of coordinates, or single coordinates
# (latitude: degrees, longitude: degrees, altitude: meters)
# It returns
# (radius: meters, polar: radians, azimuthal: radians)
from utilities import Vector
def geographic_to_spherical(geographic: np.ndarray) -> np.ndarray:
"""
Converts coordinates in (latitude, longitude) format with angles in degrees
to spherical coordinates with angles in radians
:param geographic: An array of shape (N, 3) with rows being (latitude, longitude, altitude)
:return: An array of shape (N, 3) with rows the spherical coordinates corresponding to the provided locations
"""
if np.any(geographic[..., 2] < - EARTH_RADIUS):
warnings.warn(RuntimeWarning("Getting at least one geographic vectors with altitudes less than -EARTH_RADIUS"))
spherical = np.empty_like(geographic, dtype=float)
spherical[..., 0] = geographic[..., 2] + EARTH_RADIUS
spherical[..., 1] = (90 + geographic[..., 0]) * math.pi / 180
spherical[..., 2] = geographic[..., 1] * math.pi / 180
return spherical.reshape(geographic.shape)
# This performs the inverse of geographic_to_spherical
def spherical_to_geographic(spherical: np.ndarray) -> np.ndarray:
"""
Converts spherical coordinates to geographic
:param spherical: An array of size (N, 3) with rows corresponding to spherical coordinates
:return: An array of size (N, 2) with rows being (latitude, longitude),
which correspond to the provided coordinates
"""
if np.any(spherical[..., 0] < 0):
warnings.warn(RuntimeWarning("Getting at least one spherical vectors with radius's less than 0"))
geographic = np.empty_like(spherical, dtype=float)
geographic[..., 0] = 180 / math.pi * spherical[..., 1] - 90
geographic[..., 1] = spherical[..., 2] * 180 / math.pi
geographic[..., 2] = spherical[..., 0] - EARTH_RADIUS
return geographic.reshape(spherical.shape)
def spherical_to_cartesian(spherical: np.ndarray) -> np.ndarray:
"""Returns the cartesian form of the spherical vector.
spherical_vector can be a numpy array where rows are spherical vectors
(or a single vector)"""
cartesian = np.empty_like(spherical, dtype=float)
cartesian[..., 0] = spherical[..., 0] * np.sin(spherical[..., 1]) * np.cos(spherical[..., 2])
cartesian[..., 1] = spherical[..., 0] * np.sin(spherical[..., 1]) * np.sin(spherical[..., 2])
cartesian[..., 2] = spherical[..., 0] * np.cos(spherical[..., 1])
return cartesian
def cartesian_to_spherical(cartesian: np.ndarray) -> np.ndarray:
"""Returns the spherical form of the cartesian vector.
cartesian can be a numpy array where rows are cartesian vectors
(or a single vector)"""
spherical = np.empty_like(cartesian, dtype=float)
r = linalg.norm(cartesian, axis=-1)
spherical[..., 0] = r
spherical[..., 1] = np.arccos(cartesian[..., 2] / r)
spherical[..., 2] = np.arctan2(cartesian[..., 1], cartesian[..., 0])
return spherical.reshape(cartesian.shape)
# Converts a spherical coordinate to a coordinate in the form of
# (radius, 'distance in radians along path', 'normal distance in radians to path')
def standard_to_path_component(
standard: np.ndarray,
cartesian_start: np.ndarray,
cartesian_end: np.ndarray) -> np.ndarray:
"""
Converts coordinates to path component form (distance along path (along earths surface),
distance normal to path (along earths surface), height (above earths surface))
:param standard: the coordinate or array of coordinates to rotate (in some standard form)
:param cartesian_start: the coordinate of path start (spherical coordinates)
:param cartesian_end: the coordinate of the path end (spherical coordinates)
:return: coordinate or array of coordinates in path component form
"""
cartesian = standard
path_components = np.empty_like(cartesian, dtype=float)
normal_vec_to_plane = np.cross(cartesian_start, cartesian_end)
unit_normal_vec = normal_vec_to_plane / linalg.norm(normal_vec_to_plane)
vector_normal_component = Vector.row_dot_product(cartesian, unit_normal_vec)
vectors_projected_onto_plane = cartesian - \
np.outer(vector_normal_component, unit_normal_vec)
path_components[..., 1] = Vector.angle_between_vector_collections(
cartesian_start,
vectors_projected_onto_plane
) * np.sign(Vector.row_dot_product(
np.cross(np.atleast_2d(cartesian_start), vectors_projected_onto_plane),
normal_vec_to_plane
))
path_components[..., 2] = Vector.angle_between_vector_collections(
vectors_projected_onto_plane,
cartesian
) * np.sign(vector_normal_component)
path_components[..., 0] = linalg.norm(cartesian, axis=-1)
return path_components
def path_component_to_standard(
path_components: np.ndarray,
path_start_cartesian: np.ndarray,
path_end_cartesian: np.ndarray) -> np.ndarray:
"""
NOTE: path_start and path_end cannot be at opposite poles
(obviously, because then path between them is arbitrary)
:param path_components: the coordinate or array of coordinates to rotate (in path component form)
:param path_start_cartesian: the coordinate of path start (spherical coordinates)
:param path_end_cartesian: the coordinate of the path end (spherical coordinates)
:return: coordinate or array of coordinates in spherical coordinates
"""
normal_vector_to_path = np.cross(path_start_cartesian, path_end_cartesian)
unit_normal_vector_to_path = normal_vector_to_path / linalg.norm(normal_vector_to_path)
# Make sure we have positive rotation vector
rotations = Rotation.from_rotvec(
|
np.outer(path_components[..., 1], unit_normal_vector_to_path)
|
numpy.outer
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
Class of variatonal Gaussian Mixture Image models.
It serves as a baseline for a hidden Potts-MRF for Bayesian unsupervised image
segmentation.
Author: <NAME>
Date: 29-11-2018
"""
import numpy as np
import numpy.random as rnd
from numpy.linalg import inv, cholesky, slogdet
from scipy.misc import logsumexp
from scipy.special import betaln, digamma, gammaln, multigammaln
from scipy.spatial.distance import cdist
from scipy.optimize import minimize
from sklearn.cluster import KMeans
from sklearn.neighbors import KNeighborsClassifier
from sklearn.feature_extraction.image import extract_patches_2d
import matplotlib.pyplot as plt
class VariationalMixture(object):
"""
Superclass of variational mixture models.
Methods are functions common to all submixture models.
"""
def multidigamma(self, n, p):
"""
Multivariate digamma function.
This function is necessary for expectations and partition functions of
Wishart distributions. See also:
https://en.wikipedia.org/wiki/Multivariate_gamma_function
Parameters
----------
nu : float
Degrees of freedom.
p : int
Dimensionality.
Returns
-------
Pp : float
p-th order multivariate digamma function.
"""
# Check for appropriate degree of freedom
if not n > (p-1):
raise ValueError('Degrees of freedom too low for dimensionality.')
# Preallocate
Pp = 0
# Sum from d=1 to D
for d in range(1, p+1):
# Digamma function of degrees of freedom and dimension
Pp += digamma((n + 1 - d)/2)
return Pp
def log_partition_Wishart(self, W, n):
"""
Logarithmic partition function of the Wishart distribution.
To compute variational expectations, the partition of the Wishart
distribution is sometimes needed. The current computation follows
Appendix B, equations B.78 to B.82 from Bishop's "Pattern Recognition &
Machine Learning."
Parameters
----------
W : array
Positive definite, symmetric precision matrix.
nu : int
Degrees of freedom.
Returns
-------
B : float
Partition of Wishart distribution.
"""
# Extract dimensionality
D, D_ = W.shape
# Check for symmetric matrix
if not D == D_:
raise ValueError('Matrix is not symmetric.')
# Check for appropriate degree of freedom
if not n > D-1:
raise ValueError('Degrees of freedom too low for dimensionality.')
# Compute partition function
B = (-n/2)*slogdet(W)[1] - (n*D/2)*np.log(2) - multigammaln(n, D)
return B
def entropy_Wishart(self, W, n):
"""
Entropy of the Wishart distribution.
To compute variational expectations, the entropy of the Wishart
distribution is sometimes needed. The current computation follows
Appendix B, equations B.78 to B.82 from Bishop's "Pattern Recognition &
Machine Learning."
Parameters
----------
W : array
Positive definite, symmetric precision matrix.
nu : int
Degrees of freedom.
Returns
-------
H : float
Entropy of Wishart distribution.
"""
# Extract dimensionality
D, D_ = W.shape
# Check for symmetric matrix
if not D == D_:
raise ValueError('Matrix is not symmetric.')
# Check for appropriate degree of freedom
if not n > D-1:
raise ValueError('Degrees of freedom too low for dimensionality.')
# Expected log-determinant of precision matrix
E = self.multidigamma(n, D) + D*np.log(2) + slogdet(W)[1]
# Entropy
H = -self.log_partition_Wishart(W, n) - (n - D - 1)/2 * E + n*D/2
return H
def distW(self, X, S):
"""
Compute weighted distance.
Parameters
----------
X : array
Vectors (N by D) or (H by W by D).
W : array
Weights (D by D).
Returns
-------
array
Weighted distance for each vector.
"""
if not S.shape[0] == S.shape[1]:
raise ValueError('Weight matrix not symmetric.')
if not X.shape[-1] == S.shape[0]:
raise ValueError('Dimensionality of data and weights mismatch.')
if len(X.shape) == 2:
# Shapes
N, D = X.shape
# Preallocate
A = np.zeros((N,))
# Loop over samples
for n in range(N):
# Compute weighted inner product between vectors
A[n] = X[n, :] @ S @ X[n, :].T
elif len(X.shape) == 3:
# Shape
H, W, D = X.shape
# Preallocate
A = np.zeros((H, W))
# Loop over samples
for h in range(H):
for w in range(W):
# Compute weighted inner product between vectors
A[h, w] = X[h, w, :] @ S @ X[h, w, :].T
return A
def one_hot(self, A):
"""
Map array to pages with binary encodings.
Parameters
----------
A : array
2-dimensional array of integers
Returns
-------
B : array (height by width by number of unique integers in A)
3-dimensional array with each page as an indicator of value in A.
"""
# Unique values
labels = np.unique(A)
# Preallocate new array
B = np.zeros((*A.shape, len(labels)))
# Loop over unique values
for i, label in enumerate(labels):
B[:, :, i] = (A == label)
return B
class VariationalGaussianMixture(VariationalMixture):
"""
Variational Gaussian Mixture Image model.
This implementation multivariate images (height by width by channel).
It is based on the RPubs note by <NAME>:
https://rpubs.com/cakapourani/variational-bayes-gmm
"""
def __init__(self, num_channels=1,
num_components=2,
init_params='nn',
max_iter=10,
tol=1e-5):
"""
Model-specific constructors.
Parameters
----------
num_channels : int
Number of channels of image (def: 1).
num_components : int
Number of components (def: 2).
theta0 : tuple
Prior hyperparameters.
max_iter : int
Maximum number of iterations to run for (def: 10).
tol : float
Tolerance on change in x-value (def: 1e-5).
Returns
-------
None
"""
# Store data dimensionality
if num_channels >= 1:
self.D = num_channels
else:
raise ValueError('Number of channels must be larger than 0.')
# Store model parameters
if num_components >= 2:
self.K = num_components
else:
raise ValueError('Too few components specified')
# Optimization parameters
self.init_params = init_params
self.max_iter = max_iter
self.tol = tol
# Set prior hyperparameters
self.set_prior_hyperparameters(D=num_channels,
K=num_components)
def set_prior_hyperparameters(self, D, K,
a0=np.array([0.1]),
b0=np.array([0.1]),
n0=np.array([2.0]),
m0=np.array([0.0]),
W0=np.array([1.0])):
"""
Set hyperparameters of prior distributions.
Default prior hyperparameters are minimally informative symmetric
parameters.
Parameters
----------
D : int
Dimensionality of data.
K : int
Number of components.
a0 : float / array (components by None)
Hyperparameters of Dirichlet distribution on component weights.
b0 : float / array (components by None)
Scale parameters for hypermean normal distribution.
n0 : array (components by None)
Degrees of freedom for Wishart precision prior.
m0 : array (components by dimensions)
Hypermeans.
W0 : array (dimensions by dimensions by components)
Wishart precision parameters.
Returns
-------
theta : tuple
"""
# Expand alpha's if necessary
if not a0.shape[0] == K:
a0 = np.tile(a0[0], (K,))
# Expand beta's if necessary
if not b0.shape[0] == K:
b0 = np.tile(b0[0], (K,))
# Expand nu's if necessary
if not n0.shape[0] == K:
# Check for sufficient degrees of freedom
if n0[0] < D:
print('Cannot set Wishart degrees of freedom lower than data \
dimensionality.\n Setting it to data dim.')
n0 = np.tile(D, (K,))
else:
n0 = np.tile(n0[0], (K,))
# Expand hypermeans if necessary
if not np.all(m0.shape == (K, D)):
# If mean vector given, replicate to each component
if len(m0.shape) == 2:
if m0.shape[1] == D:
m0 = np.tile(m0, (K, 1))
else:
m0 = np.tile(m0[0], (K, D))
# Expand hypermeans if necessary
if not np.all(W0.shape == (D, D, K)):
# If single covariance matrix given, replicate to each component
if len(W0.shape) == 2:
if np.all(m0.shape[:2] == (D, D)):
W0 = np.tile(W0, (1, 1, K))
else:
W0_ = np.zeros((D, D, K))
for k in range(K):
W0_[:, :, k] = W0[0]*np.eye(D)
# Store tupled parameters as model attribute
self.theta0 = (a0, b0, n0, m0, W0_)
def initialize_posteriors(self, X, Y):
"""
Initialize posterior hyperparameters
Parameters
----------
X : array
Observed image (height by width by channels)
Returns
-------
theta : tuple
Set of parameters.
"""
# Current shape
H, W, D = X.shape
# Reshape arrays
X = X.reshape((H*W, D))
Y = Y.reshape((H*W, self.K))
if self.init_params == 'random':
# Dirichlet concentration hyperparameters
at = np.ones((self.K,))*(H*W)/2
# Normal precision-scale hyperparameters
bt = np.ones((self.K,))*(H*W)/2
# Wishart degrees of freedom
nt = np.ones((self.K,))*(H*W)/2
mt = np.zeros((self.K, D))
Wt = np.zeros((D, D, self.K))
for k in range(self.K):
# Hypermeans
mt[k, :] = np.mean(X, axis=0) + rnd.randn(1, D)*.1
# Hyperprecisions
Wt[:, :, k] = np.cov(X.T) / bt[k] + rnd.randn(D, D)*.1
# Initialize variational posterior responsibilities
rho = np.ones((H, W, self.K)) / self.K
elif self.init_params in ('kmeans', 'k-means'):
# Fit k-means to data and obtain cluster assignment
label = KMeans(n_clusters=self.K, n_init=1).fit(X).labels_
# Set rho based on cluster labels
rho = np.zeros((H*W, self.K))
rho[np.arange(H*W), label] = 1
# Dirichlet concentration hyperparameters
at = np.sum(rho, axis=0)
# Normal precision-scale hyperparameters
bt = np.sum(rho, axis=0)
# Wishart degrees of freedom
nt = np.sum(rho, axis=0)
mt = np.zeros((self.K, D))
Wt = np.zeros((D, D, self.K))
for k in range(self.K):
# Hypermeans
mt[k, :] = np.sum(rho[:, [k]] * X, axis=0) / np.sum(rho[:, k])
# Weighted covariance
C = (rho[:, [k]] * (X - mt[k, :])).T @ (X - mt[k, :])
# Check for zero precision
C = np.maximum(1e-24, C)
# Set hyperprecisions
if D == 1:
Wt[:, :, k] = 1 / (nt[k] * C)
else:
Wt[:, :, k] = inv(nt[k] * C)
# Reshape responsibilities
rho = rho.reshape((H, W, self.K))
elif self.init_params in ('nn', 'knn'):
# Observation indicator vector
O = np.any(Y == 1, axis=1)
if np.sum(O) == 0.0:
raise ValueError('Cannot use \'nn\' without labels.')
# Call instance of k-nearest neighbour classifier
kNN = KNeighborsClassifier(n_neighbors=1, weights='distance')
# Fit classifier to labeled data
kNN.fit(X[O, :], np.argmax(Y[O, :], axis=1))
# Set responsibilities based on kNN prediction
rho = np.zeros((H*W, self.K))
rho[~O, :] = kNN.predict_proba(X[~O, :])
rho[O, :] = Y[O, :].astype('float64')
# Concentration hyperparameters
at = np.sum(rho, axis=0)
# Precision-scale hyperparameters
bt = np.sum(rho, axis=0)
# Wishart degrees of freedom
nt = np.sum(rho, axis=0)
mt = np.zeros((self.K, D))
Wt = np.zeros((D, D, self.K))
for k in range(self.K):
# Hypermeans
mt[k, :] = X[Y[:, k] == 1, :]
# Hyperprecisions
Wt[:, :, k] = np.eye(D)
# Reshape responsibilities
rho = rho.reshape((H, W, self.K))
else:
raise ValueError('Provided method not recognized.')
return (at, bt, nt, mt, Wt), rho
def free_energy(self, X, rho, thetat, report=True):
"""
Compute free energy term to monitor progress.
Parameters
----------
X : array
Observed image (height by width by channels).
rho : array
Array of variational parameters (height by width by channels).
thetat : array
Parameters of variational posteriors.
theta0 : array
Parameters of variational priors.
report : bool
Print value of free energy function.
Returns
-------
rho : array
Updated array of variational parameters.
"""
# Shapes
H, W, D = X.shape
# Reshape arrays
X = X.reshape((H*W, D))
rho = rho.reshape((H*W, self.K))
# Unpack parameter sets
a0, b0, n0, m0, W0 = self.theta0
at, bt, nt, mt, Wt = thetat
# Preallocate terms for energy function
E1 = 0
E2 = 0
E3 = 0
E4 = 0
E5 = 0
E6 = 0
E7 = 0
# Loop over classes
for k in range(self.K):
''' Convenience variables '''
# Proportion assigned to each component
Nk = np.sum(rho[:, k], axis=0)
# Responsibility-weighted mean
xk = np.sum(rho[:, [k]] * X, axis=0) / Nk
# Reponsibility-weighted variance
Sk = ((X - xk) * rho[:, [k]]).T @ (X - xk) / Nk
# Mahalanobis distance from hypermean
mWm = (mt[k, :] - m0[k, :]).T @ Wt[:, :, k] @ (mt[k, :] - m0[k, :])
# Mahalanobis distance from responsibility-weighted mean
xWx = (xk - mt[k, :]) @ Wt[:, :, k] @ (xk - mt[k, :]).T
# Entropy-based terms
Elog_pik = digamma(at[k]) - digamma(np.sum(at))
Elog_Lak = (D*np.log(2) + slogdet(Wt[:, :, k])[1] +
self.multidigamma(nt[k], D))
''' Energy function '''
# First term
E1 += Nk/2*(Elog_Lak - D / bt[k] -
nt[k]*(np.trace(Sk @ Wt[:, :, k]) + xWx) -
D*np.log(2*np.pi))
# Second term
E2 += np.sum(rho[:, k] * Elog_pik, axis=0)
# Third term
E3 += (a0[k] - 1)*Elog_pik + (gammaln(np.sum(a0)) -
np.sum(gammaln(a0))) / self.K
# Fourth term
E4 += 1/2*(D*np.log(b0[k] / (2*np.pi)) +
Elog_Lak -
D*b0[k]/bt[k] -
b0[k]*nt[k]*mWm +
(n0[k] - D - 1)*Elog_Lak -
2*self.log_partition_Wishart(Wt[:, :, k], nt[k]) +
nt[k]*np.trace(inv(W0[:, :, k])*Wt[:, :, k]))
# Ignore underflow error from log rho
with np.errstate(under='ignore') and np.errstate(divide='ignore'):
# Set -inf to most negative number
lrho = np.maximum(np.log(rho[:, k]), np.finfo(rho.dtype).min)
# Fifth term
E5 += np.sum(rho[:, k] * lrho, axis=0)
# Sixth term
E6 += (at[k] - 1)*Elog_pik + (gammaln(np.sum(at)) -
np.sum(gammaln(at))) / self.K
# Seventh term
E7 += (Elog_Lak/2 +
D/2*np.log(bt[k] / (2*np.pi)) -
D/2 - self.entropy_Wishart(Wt[:, :, k], nt[k]))
# Compute free energy term
F = E1 + E2 + E3 + E4 - E5 - E6 - E7
# Print free energy
if report:
print('Free energy = ' + str(F))
return F
def expectation_step(self, X, Y, rho, thetat, savefn=''):
"""
Perform expectation step.
Parameters
----------
X : array
Observed image (height by width by channels).
thetat : array
Current iteration of parameters of variational posteriors.
Returns
-------
rho : array
Updated array of variational parameters / responsibilities.
"""
# Shape of variational parameter array
H, W, D = X.shape
# Reshape arrays
X = X.reshape((H*W, D))
Y = Y.reshape((H*W, self.K))
rho = rho.reshape((H*W, self.K))
# Observation indicator vector
O = np.any(Y != 0, axis=1)
# Unpack tuple of hyperparameters
at, bt, nt, mt, Wt = thetat
# Initialize logarithmic rho
lrho = np.zeros((np.sum(~O), self.K))
for k in range(self.K):
# Compute expected log mixing coefficient
E1 = digamma(at[k]) - digamma(np.sum(at))
# Compute exponentiated expected log precision
E2 = (D*np.log(2) + slog_det(Wt[:, :, k])[1] +
self.multidigamma(nt[k], D))
# Compute expected hypermean and hyperprecision
E3 = D/bt[k] + self.distW(X[~O, :] - mt[k, :], nt[k]*Wt[:, :, k])
# Update variational parameter at current pixels
lrho[:, k] = E1 + E2/2 - E3/2
# Subtract largest number from log_rho
lrho = lrho - np.max(lrho, axis=1)[:, np.newaxis]
# Exponentiate and normalize
rho[~O, :] = np.exp(lrho) / np.sum(np.exp(lrho), axis=1)[:, np.newaxis]
# Check for underflow problems
if np.any(np.sum(rho, axis=1) == 0.0):
raise RuntimeError('Variational parameter underflow.')
return rho.reshape((H, W, self.K))
def maximization_step(self, X, rho, thetat):
"""
Perform maximization step from variational-Bayes-EM.
Parameters
----------
X : array
Observed image (height by width by channels).
rho : array
Array of variational parameters (height by width by classes).
thetat : array
Current iteration of hyperparameters of posteriors.
Returns
-------
thetat : array
Next iteration of hyperparameters of posteriors.
"""
# Shape of image
H, W, D = X.shape
# Reshape arrays
X = X.reshape((H*W, D))
rho = rho.reshape((H*W, self.K))
# Unpack parameter sets
a0, b0, n0, m0, W0 = self.theta0
at, bt, nt, mt, Wt = thetat
# Iterate over classes
for k in range(self.K):
# Total responsibility for class k
Nk = np.sum(rho[:, k], axis=0)
# Responsibility-weighted mean for class k
xk = np.sum(rho[:, [k]] * X, axis=0) / Nk
# Responsibility-weighted covariance for class k
Sk = ((X - xk) * rho[:, [k]]).T @ (X - xk) / Nk
# Update alpha
at[k] = a0[k] + Nk
# Update nu
nt[k] = n0[k] + Nk
# Update beta
bt[k] = b0[k] + Nk
# Update hypermean
mt[k, :] = (b0[k]*m0[k, :] + Nk*xk) / (b0[k] + Nk)
# Update hyperprecision
Wt[:, :, k] = inv(inv(W0[:, :, k]) + Nk*Sk + (b0[k]*Nk) / bt[k] *
(xk - m0[k, :]).T @ (xk - m0[k, :]))
return at, bt, nt, mt, Wt
def expectation_maximization(self, X, Y):
"""
Perform Variational Bayes Expectation-Maximization.
Parameters
----------
X : array (instances by features)
Data array.
Y : array
Observed labels (height by width by classes).
Returns
-------
rho : array (instances by components)
Variational parameters of posterior for label image.
"""
# Get shape of image
H, W, D = X.shape
# Initialize posterior hyperparameters
thetat, rho = self.initialize_posteriors(X, Y)
# Initialize old energy variable
F_ = np.inf
for t in range(self.max_iter):
# Monitor progress every tenth iteration
if t % (self.max_iter/10) == 0:
# Report progress
print('Iteration ' + '{0:03}'.format(t+1) + '/' +
str(self.max_iter) + '\t', end='')
# Compute free energy to monitor progress
F = self.free_energy(X, rho, thetat, report=True)
if np.abs(F - F_) <= self.tol:
print('Step size is below tolerance threshold.')
break
# Update old energy
F_ = F
# Expectation step
rho = self.expectation_step(X, Y, rho, thetat)
# Expectation step
thetat = self.maximization_step(X, rho, thetat)
# Return segmentation along with estimated parameters
return rho, thetat
def segment(self, X, Y=None):
"""
Fit model to data and segment image.
Parameters
----------
X : array.
Observed image (height by width by channels).
Y : array
Observed labels (height by width by classes).
Returns
-------
pred : array
Segmentation produced by the model.
post : array
Posterior indicator distributions.
theta : tuple of arrays
Posterior hyperparameters of parameter distributions.
"""
# Check shape of image
H, W, D = X.shape
# Check if dimensionality of given data matches prior dimensionality.
if not self.D == D:
# Report
print('Re-setting priors.')
# Set dimensionality attribute
self.D = D
# Set prior hyperparameters
self.set_prior_hyperparameters(D=D, K=self.K)
# If no Y is provided
if Y is None:
Y = np.zeros((H, W, self.K))
# Perform VB-EM for segmenting the image
post, params = self.expectation_maximization(X, Y)
# Compute most likely class
pred = np.argmax(post, axis=2)
# Return segmented image, variational posteriors and parameters
return pred, post, params
class VariationalHiddenPotts(VariationalMixture):
"""
Variational Gaussian Mixture model with a hidden Potts-Markov Random Field.
This implementation multivariate images (height by width by channel).
It is based on the RPubs note by <NAME>:
https://rpubs.com/cakapourani/variational-bayes-gmm
and the paper "Variational Bayes for estimating the parameters of a hidden
Potts model" by McGrory, Titterington, Reeves and Pettitt (2008).
"""
def __init__(self, num_channels=1,
num_components=2,
tissue_specific=False,
init_params='kmeans',
max_iter=10,
tol=1e-5):
"""
Model-specific constructors.
Parameters
----------
num_channels : int
Number of channels of image (def: 1).
num_components : int
Number of components (def: 2).
tissue_specific : bool
Whether to model each tissue's smoothness separately (def: False).
init_params : str
How to initialize posterior parameters.
Options: 'random', 'kmeans', 'nn' (def: 'kmeans').
max_iter : int
Maximum number of iterations to run for (def: 10).
tol : float
Tolerance on change in x-value (def: 1e-5).
Returns
-------
None
"""
# Store data dimensionality
if num_channels >= 1:
self.D = num_channels
else:
raise ValueError('Number of channels must be larger than 0.')
# Store model parameters
if num_components >= 2:
self.K = num_components
else:
raise ValueError('Too few components specified')
# Whether to use tissue-specific smoothness parameters
self.Bk = tissue_specific
# Optimization parameters
self.init_params = init_params
self.max_iter = max_iter
self.tol = tol
# Set prior hyperparameters
self.set_prior_hyperparameters(D=num_channels,
K=num_components)
def set_prior_hyperparameters(self, D, K,
a0=np.array([0.1]),
b0=np.array([0.1]),
n0=np.array([2.0]),
m0=np.array([0.0]),
W0=np.array([1.0])):
"""
Set hyperparameters of prior distributions.
Default prior hyperparameters are minimally informative symmetric
parameters.
Parameters
----------
D : int
Dimensionality of data.
K : int
Number of components.
a0 : float / array (components by None)
Hyperparameters of Dirichlet distribution on component weights.
b0 : float / array (components by None)
Scale parameters for hypermean normal distribution.
n0 : array (components by None)
Degrees of freedom for Wishart precision prior.
m0 : array (components by dimensions)
Hypermeans.
W0 : array (dimensions by dimensions by components)
Wishart precision parameters.
Returns
-------
theta : tuple
"""
# Expand alpha's if necessary
if not a0.shape[0] == K:
a0 = np.tile(a0[0], (K,))
# Expand beta's if necessary
if not b0.shape[0] == K:
b0 = np.tile(b0[0], (K,))
# Expand nu's if necessary
if not n0.shape[0] == K:
# Check for sufficient degrees of freedom
if n0[0] < D:
print('Cannot set Wishart degrees of freedom lower than data \
dimensionality.\n Setting it to data dim.')
n0 = np.tile(D, (K,))
else:
n0 = np.tile(n0[0], (K,))
# Expand hypermeans if necessary
if not np.all(m0.shape == (K, D)):
# If mean vector given, replicate to each component
if len(m0.shape) == 2:
if m0.shape[1] == D:
m0 = np.tile(m0, (K, 1))
else:
m0 = np.tile(m0[0], (K, D))
# Expand hypermeans if necessary
if not np.all(W0.shape == (D, D, K)):
# If single covariance matrix given, replicate to each component
if len(W0.shape) == 2:
if np.all(m0.shape[:2] == (D, D)):
W0 = np.tile(W0, (1, 1, K))
else:
W0_ = np.zeros((D, D, K))
for k in range(K):
W0_[:, :, k] = W0[0]*np.eye(D)
# Store tupled parameters as model attribute
self.theta0 = (a0, b0, n0, m0, W0_)
def initialize_posteriors(self, X, Y):
"""
Initialize posterior hyperparameters
Parameters
----------
X : array
Observed image (height by width by channels)
Returns
-------
theta : tuple
Set of parameters.
"""
# Current shape
H, W, D = X.shape
# Reshape arrays
X = X.reshape((H*W, D))
Y = Y.reshape((H*W, self.K))
if self.init_params == 'random':
# Dirichlet concentration hyperparameters
at = np.ones((self.K,))*(H*W)/2
# Normal precision-scale hyperparameters
bt = np.ones((self.K,))*(H*W)/2
# Wishart degrees of freedom
nt = np.ones((self.K,))*(H*W)/2
mt = np.zeros((self.K, D))
Wt = np.zeros((D, D, self.K))
for k in range(self.K):
# Hypermeans
mt[k, :] = np.mean(X, axis=0) + rnd.randn(1, D)*.1
# Hyperprecisions
Wt[:, :, k] = np.cov(X.T) / bt[k] + rnd.randn(D, D)*.1
# Initialize variational posterior responsibilities
rho = np.ones((H, W, self.K)) / self.K
elif self.init_params in ('kmeans', 'k-means'):
# Fit k-means to data and obtain cluster assignment
label = KMeans(n_clusters=self.K, n_init=1).fit(X).labels_
# Set rho based on cluster labels
rho = np.zeros((H*W, self.K))
rho[np.arange(H*W), label] = 1
# Dirichlet concentration hyperparameters
at = np.sum(rho, axis=0)
# Normal precision-scale hyperparameters
bt = np.sum(rho, axis=0)
# Wishart degrees of freedom
nt = np.sum(rho, axis=0)
mt = np.zeros((self.K, D))
Wt = np.zeros((D, D, self.K))
for k in range(self.K):
# Hypermeans
mt[k, :] = np.sum(rho[:, [k]] * X, axis=0) / np.sum(rho[:, k])
# Hyperprecisions
Wt[:, :, k] = np.eye(D)
# Reshape responsibilities
rho = rho.reshape((H, W, self.K))
elif self.init_params in ('nn', 'knn'):
# Observation indicator vector
O = np.any(Y == 1, axis=1)
if np.sum(O) == 0.0:
raise ValueError('Cannot use \'nn\' without labels.')
# Call instance of k-nearest neighbour classifier
kNN = KNeighborsClassifier(n_neighbors=1)
# Fit classifier to labeled data
kNN.fit(X[O, :], np.argmax(Y[O, :], axis=1))
# Set responsibilities based on kNN prediction
rho = np.zeros((H*W, self.K))
rho[~O, :] = kNN.predict_proba(X[~O, :])
rho[O, :] = Y[O, :].astype('float64')
# Concentration hyperparameters
at = np.sum(rho, axis=0)
# Precision-scale hyperparameters
bt = np.sum(rho, axis=0)
# Wishart degrees of freedom
nt = np.sum(rho, axis=0)
mt = np.zeros((self.K, D))
Wt = np.zeros((D, D, self.K))
for k in range(self.K):
# Focuse hypermeans on labeled pixels
mt[k, :] = np.mean(X[Y[:, k] == 1, :], axis=0)
# Hyperprecisions
Wt[:, :, k] = np.eye(D)
# Reshape responsibilities
rho = rho.reshape((H, W, self.K))
else:
raise ValueError('Provided method not recognized.')
return (at, bt, nt, mt, Wt), rho
def neighbourhood(self, A, index, pad=False):
"""
Extract a neighbourhood of pixels around current pixel.
Parameters
----------
A : array
Array from which to extract the pixel's neighbourhood.
index : [int, int]
Row and column index of current pixel.
pad : bool
Whether to pad a border with zeros to the array (def: False)
Returns
-------
delta_i : vector of neighbours of current pixel
"""
if pad:
# Check for list index
if not isinstance(index, list):
raise ValueError('If padding, index must be a list.')
# Pad array with zeros
A = np.pad(A, [1, 1], mode='constant', constant_values=0)
# Correct index due to padding
index[0] += 1
index[1] += 1
# Preallocate neighbourhood list
delta_i = []
# Left
delta_i.append(A[index[0]-1, index[1]])
# Top
delta_i.append(A[index[0], index[1]-1])
# Right
delta_i.append(A[index[0]+1, index[1]])
# Bottom
delta_i.append(A[index[0], index[1]+1])
return np.array(delta_i)
def mean_field_Potts(self, beta, Z):
r"""
Mean-field variational approximation to Potts log-likelihood function.
logp(z_i | z_{d_i}, beta) = \sum_{k=1}^{K} beta_k * z_{ik}
\sum_{j \in \delta_{ik}} z_{jk} - \log \sum_{z_{i'}}
\exp(\sum_{k=1}^{K} beta_k*z_{i'k} \sum_{j \in \delta_{ik}} z_{jk})
Parameters
----------
beta : float
Smoothing parameter / granularity coefficient
Z : array (height x width x number of classes)
Label field to fit
Returns
-------
nlogq : float
Negative log-likelihood of current label field given current beta.
"""
# Shape
H, W, K = Z.shape
# Test for binary label image
for k in range(K):
if not np.all(np.unique(Z[:, :, k]) == [0, 1]):
raise ValueError("Label field is not binary in page " + str(k))
# Pad array to avoid repeated padding during neighbourhood extraction
Z0 = np.pad(Z, [(1, 1), (1, 1), (0, 0)],
mode='constant',
constant_values=0)
if self.Bk:
# Initialize intermediate terms
chi_i = 0
ksi_i = 0
# Select current class
for k in range(K):
# Extract neighbourhoods
d_ik = extract_patches_2d(Z0[:, :, k], patch_size=(3, 3))
# Compute sum over neighbourhood
d_ik = np.sum(d_ik, axis=(1, 2))
# First sum is neighbourhood comparison
chi_i += beta[k] * Z[:, :, k].reshape((-1,)) * d_ik
# Second sum is purely over neighbourhood
ksi_i += np.exp(beta[k] * d_ik)
# Update negative log-likelihood
nll = np.sum(-chi_i + np.log(ksi_i), axis=0)
return nll
else:
# Initialize intermediate terms
chi_i = 0
ksi_i = 0
# Select current class
for k in range(K):
# Extract neighbourhoods
d_ik = extract_patches_2d(Z0[:, :, k], patch_size=(3, 3))
# Compute sum over neighbourhood
d_ik = np.sum(d_ik, axis=(1, 2))
# First sum is neighbourhood comparison
chi_i += beta * Z[:, :, k].reshape((-1,)) * d_ik
# Second sum is purely over neighbourhood
ksi_i +=
|
np.exp(beta * d_ik)
|
numpy.exp
|
import os
import sys
import torch
import numpy as np
import importlib
import matplotlib.pylab as plt
from mpl_toolkits.mplot3d import Axes3D
from scipy.optimize import linear_sum_assignment
import trimesh
from colors import colors
from sklearn.metrics.pairwise import pairwise_distances
def printout(flog, strout):
print(strout)
flog.write(strout+'\n')
def get_model_module(model_def):
importlib.invalidate_caches()
return importlib.import_module(model_def)
def worker_init_fn(worker_id):
""" The function is designed for pytorch multi-process dataloader.
Note that we use the pytorch random generator to generate a base_seed.
Please try to be consistent.
References:
https://pytorch.org/docs/stable/notes/faq.html#dataloader-workers-random-seed
"""
base_seed = torch.IntTensor(1).random_().item()
#print(worker_id, base_seed)
np.random.seed(base_seed + worker_id)
def render_pc(out_fn, pc, figsize=(8, 8)):
fig = plt.figure(figsize=figsize)
ax = fig.add_subplot(1, 1, 1, projection='3d')
ax.view_init(elev=20, azim=60)
x = pc[:, 0]
y = pc[:, 2]
z = pc[:, 1]
ax.scatter(x, y, z, marker='.')
miv = np.min([np.min(x), np.min(y), np.min(z)]) # Multiply with 0.7 to squeeze free-space.
mav = np.max([np.max(x), np.max(y), np.max(z)])
ax.set_xlim(miv, mav)
ax.set_ylim(miv, mav)
ax.set_zlim(miv, mav)
plt.tight_layout()
fig.savefig(out_fn, bbox_inches='tight')
plt.close(fig)
def convert_color_to_hexcode(rgb):
r, g, b = rgb
return '#%02x%02x%02x' % (int(r*255), int(g*255), int(b*255))
def render_part_pcs(pcs_list, title_list=None, out_fn=None, \
subplotsize=(1, 1), figsize=(8, 8), azim=60, elev=20, scale=0.3):
num_pcs = len(pcs_list)
fig = plt.figure(figsize=figsize)
for k in range(num_pcs):
pcs = pcs_list[k]
ax = fig.add_subplot(subplotsize[0], subplotsize[1], k+1, projection='3d')
ax.view_init(elev=elev, azim=azim)
xs = []; ys = []; zs = [];
for i in range(pcs.shape[0]):
x = pcs[i, :, 0]
y = pcs[i, :, 2]
z = pcs[i, :, 1]
xs.append(x)
ys.append(y)
zs.append(z)
if out_fn is None:
ax.scatter(x, y, z, marker='.', s=scale, c=convert_color_to_hexcode(colors[i % len(colors)]))
else:
ax.scatter(x, y, z, marker='.', c=convert_color_to_hexcode(colors[i % len(colors)]))
xs = np.concatenate(xs, axis=0)
ys = np.concatenate(ys, axis=0)
zs = np.concatenate(zs, axis=0)
miv = np.min([np.min(xs), np.min(ys), np.min(zs)])
mav = np.max([np.max(xs), np.max(ys), np.max(zs)])
ax.set_xlim(miv, mav)
ax.set_ylim(miv, mav)
ax.set_zlim(miv, mav)
if title_list is not None:
ax.set_title(title_list[k])
plt.tight_layout()
if out_fn is not None:
fig.savefig(out_fn, bbox_inches='tight')
plt.close(fig)
else:
plt.show()
def export_pc(out_fn, pc):
with open(out_fn, 'w') as fout:
for i in range(pc.shape[0]):
fout.write('v %f %f %f\n' % (pc[i, 0], pc[i, 1], pc[i, 2]))
def export_part_pcs(out_dir, pcs):
os.mkdir(out_dir)
num_part = pcs.shape[0]
num_point = pcs.shape[1]
for i in range(num_part):
with open(os.path.join(out_dir, 'part-%02d.obj' % i), 'w') as fout:
for j in range(num_point):
fout.write('v %f %f %f\n' % (pcs[i, j, 0], pcs[i, j, 1], pcs[i, j, 2]))
# out shape: (label_count, in shape)
def one_hot(inp, label_count):
out = torch.zeros(label_count, inp.numel(), dtype=torch.uint8, device=inp.device)
out[inp.view(-1), torch.arange(out.shape[1])] = 1
out = out.view((label_count,) + inp.shape)
return out
def collate_feats(b):
return list(zip(*b))
# row_counts, col_counts: row and column counts of each distance matrix (assumed to be full if given)
def linear_assignment(distance_mat, row_counts=None, col_counts=None):
batch_ind = []
row_ind = []
col_ind = []
for i in range(distance_mat.shape[0]):
# print(f'{i} / {distance_mat.shape[0]}')
dmat = distance_mat[i, :, :]
if row_counts is not None:
dmat = dmat[:row_counts[i], :]
if col_counts is not None:
dmat = dmat[:, :col_counts[i]]
rind, cind = linear_sum_assignment(dmat.to('cpu').numpy())
rind = list(rind)
cind = list(cind)
if len(rind) > 0:
rind, cind = zip(*sorted(zip(rind, cind)))
rind = list(rind)
cind = list(cind)
# complete the assignemnt for any remaining non-active elements (in case row_count or col_count was given),
# by assigning them randomly
#if len(rind) < distance_mat.shape[1]:
# rind.extend(set(range(distance_mat.shape[1])).difference(rind))
# cind.extend(set(range(distance_mat.shape[1])).difference(cind))
batch_ind += [i]*len(rind)
row_ind += rind
col_ind += cind
return batch_ind, row_ind, col_ind
def load_pts(fn):
with open(fn, 'r') as fin:
lines = [item.rstrip() for item in fin]
pts = np.array([[float(line.split()[0]), float(line.split()[1]), float(line.split()[2])] for line in lines], dtype=np.float32)
return pts
def export_pts(out, v):
with open(out, 'w') as fout:
for i in range(v.shape[0]):
fout.write('%f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2]))
def load_obj(fn):
fin = open(fn, 'r')
lines = [line.rstrip() for line in fin]
fin.close()
vertices = []; faces = [];
for line in lines:
if line.startswith('v '):
vertices.append(np.float32(line.split()[1:4]))
elif line.startswith('f '):
faces.append(np.int32([item.split('/')[0] for item in line.split()[1:4]]))
if len(faces) > 0:
f = np.vstack(faces)
else:
f = None
v = np.vstack(vertices)
return v, f
def export_obj(out, v, f):
with open(out, 'w') as fout:
for i in range(v.shape[0]):
fout.write('v %f %f %f\n' % (v[i, 0], v[i, 1], v[i, 2]))
for i in range(f.shape[0]):
fout.write('f %d %d %d\n' % (f[i, 0], f[i, 1], f[i, 2]))
def qrot(q, v):
"""
Rotate vector(s) v about the rotation described by quaternion(s) q.
Expects a tensor of shape (*, 4) for q and a tensor of shape (*, 3) for v,
where * denotes any number of dimensions.
Returns a tensor of shape (*, 3).
"""
assert q.shape[-1] == 4
assert v.shape[-1] == 3
assert q.shape[:-1] == v.shape[:-1]
original_shape = list(v.shape)
q = q.view(-1, 4)
v = v.view(-1, 3)
qvec = q[:, 1:]
uv = torch.cross(qvec, v, dim=1)
uuv = torch.cross(qvec, uv, dim=1)
return (v + 2 * (q[:, :1] * uv + uuv)).view(original_shape)
# pc is N x 3, feat is 10-dim
def transform_pc(pc, feat):
num_point = pc.size(0)
center = feat[:3]
shape = feat[3:6]
quat = feat[6:]
pc = pc * shape.repeat(num_point, 1)
pc = qrot(quat.repeat(num_point, 1), pc)
pc = pc + center.repeat(num_point, 1)
return pc
# pc is N x 3, feat is B x 10-dim
def transform_pc_batch(pc, feat, anchor=False):
batch_size = feat.size(0)
num_point = pc.size(0)
pc = pc.repeat(batch_size, 1, 1)
center = feat[:, :3].unsqueeze(dim=1).repeat(1, num_point, 1)
shape = feat[:, 3:6].unsqueeze(dim=1).repeat(1, num_point, 1)
quat = feat[:, 6:].unsqueeze(dim=1).repeat(1, num_point, 1)
if not anchor:
pc = pc * shape
pc = qrot(quat.view(-1, 4), pc.view(-1, 3)).view(batch_size, num_point, 3)
if not anchor:
pc = pc + center
return pc
def get_surface_reweighting(xyz, cube_num_point):
x = xyz[0]
y = xyz[1]
z = xyz[2]
assert cube_num_point % 6 == 0, 'ERROR: cube_num_point %d must be dividable by 6!' % cube_num_point
np = cube_num_point // 6
out = torch.cat([(x*y).repeat(np*2), (y*z).repeat(np*2), (x*z).repeat(np*2)])
out = out / (out.sum() + 1e-12)
return out
def get_surface_reweighting_batch(xyz, cube_num_point):
x = xyz[:, 0]
y = xyz[:, 1]
z = xyz[:, 2]
assert cube_num_point % 6 == 0, 'ERROR: cube_num_point %d must be dividable by 6!' % cube_num_point
np = cube_num_point // 6
out = torch.cat([(x*y).unsqueeze(dim=1).repeat(1, np*2), \
(y*z).unsqueeze(dim=1).repeat(1, np*2), \
(x*z).unsqueeze(dim=1).repeat(1, np*2)], dim=1)
out = out / (out.sum(dim=1).unsqueeze(dim=1) + 1e-12)
return out
def gen_obb_mesh(obbs):
# load cube
cube_v, cube_f = load_obj('cube.obj')
all_v = []; all_f = []; vid = 0;
for pid in range(obbs.shape[0]):
p = obbs[pid, :]
center = p[0: 3]
lengths = p[3: 6]
dir_1 = p[6: 9]
dir_2 = p[9: ]
dir_1 = dir_1/
|
np.linalg.norm(dir_1)
|
numpy.linalg.norm
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =============================================================================
import unittest
from builtins import str
from singa import tensor
from singa import singa_wrap as singa
from singa import autograd
from singa import layer
from singa import singa_wrap
from cuda_helper import gpu_dev, cpu_dev
import numpy as np
autograd.training = True
CTensor = singa.Tensor
dy = CTensor([2, 1, 2, 2])
singa.Gaussian(0.0, 1.0, dy)
def _tuple_to_string(t):
lt = [str(x) for x in t]
return '(' + ', '.join(lt) + ')'
def axis_helper(y_shape, x_shape):
"""
check which axes the x has been broadcasted
Args:
y_shape: the shape of result
x_shape: the shape of x
Return:
a tuple refering the axes
"""
res = []
j = len(x_shape) - 1
for i in range(len(y_shape) - 1, -1, -1):
if j < 0 or x_shape[j] != y_shape[i]:
res.append(i)
j -= 1
return tuple(res[::-1])
def prepare_inputs_targets_for_rnn_test(dev):
x_0 = np.random.random((2, 3)).astype(np.float32)
x_1 = np.random.random((2, 3)).astype(np.float32)
x_2 = np.random.random((2, 3)).astype(np.float32)
h_0 = np.zeros((2, 2)).astype(np.float32)
t_0 = np.random.random((2, 2)).astype(np.float32)
t_1 = np.random.random((2, 2)).astype(np.float32)
t_2 = np.random.random((2, 2)).astype(np.float32)
x0 = tensor.Tensor(device=dev, data=x_0)
x1 = tensor.Tensor(device=dev, data=x_1)
x2 = tensor.Tensor(device=dev, data=x_2)
h0 = tensor.Tensor(device=dev, data=h_0)
t0 = tensor.Tensor(device=dev, data=t_0)
t1 = tensor.Tensor(device=dev, data=t_1)
t2 = tensor.Tensor(device=dev, data=t_2)
inputs = [x0, x1, x2]
targets = [t0, t1, t2]
return inputs, targets, h0
class TestPythonOperation(unittest.TestCase):
def check_shape(self, actual, expect):
self.assertEqual(
actual, expect, 'shape mismatch, actual shape is %s'
' exepcted is %s' %
(_tuple_to_string(actual), _tuple_to_string(expect)))
def _greater_helper(self, dev):
x0 = np.array([-0.9, -0.3, -0.1, 0.1, 0.5,
0.9]).reshape(3, 2).astype(np.float32)
x1 = np.array([0, -0.3, 0, 0.1, 0, 0.9]).reshape(3,
2).astype(np.float32)
y = np.greater(x0, x1)
x0 = tensor.from_numpy(x0)
x1 = tensor.from_numpy(x1)
x0.to_device(dev)
x1.to_device(dev)
result = autograd.greater(x0, x1)
np.testing.assert_array_almost_equal(tensor.to_numpy(result),
y,
decimal=5)
def test_Greater_cpu(self):
self._greater_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_Greater_gpu(self):
self._greater_helper(gpu_dev)
def _conv2d_helper(self, dev):
# (out_channels, kernel_size)
conv_0 = layer.Conv2d(1, 2)
conv_without_bias_0 = layer.Conv2d(1, 2, bias=False)
cpu_input_tensor = tensor.Tensor(shape=(2, 3, 3, 3), device=dev)
cpu_input_tensor.gaussian(0.0, 1.0)
dy = tensor.Tensor(shape=(2, 1, 2, 2), device=dev)
dy.gaussian(0.0, 1.0)
y = conv_0(cpu_input_tensor) # PyTensor
dx, dW, db = y.creator.backward(dy.data) # CTensor
self.check_shape(y.shape, (2, 1, 2, 2))
self.check_shape(dx.shape(), (2, 3, 3, 3))
self.check_shape(dW.shape(), (1, 3, 2, 2))
self.check_shape(db.shape(), (1,))
# forward without bias
y_without_bias = conv_without_bias_0(cpu_input_tensor)
self.check_shape(y_without_bias.shape, (2, 1, 2, 2))
def test_conv2d_cpu(self):
self._conv2d_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_conv2d_gpu(self):
self._conv2d_helper(gpu_dev)
def _conv_same_pad(self, dev, pad_mode, is_2d):
if is_2d:
x_h, w_h, k_h, p_h = 32, 4, 4, 1
else:
x_h, w_h, k_h, p_h = 1, 1, 1, 0
x = tensor.Tensor(shape=(3, 3, x_h, 32), device=dev)
x.gaussian(0.0, 1.0)
# with the same padding, the padding should be 3
# for SAME_UPPER, is (1, 1) + (0, 1)
# for SAME_LOWER, is (1, 1) + (1, 0)
kernel = (k_h, 4)
padding = (p_h, 1)
stride = (1, 1)
group = 1
bias = False
out_channels = 3
conv_0 = layer.Conv2d(out_channels,
kernel,
stride=stride,
group=group,
bias=bias,
pad_mode=pad_mode)
y = conv_0(x)
dy = np.ones((3, 3, x_h, 32), dtype=np.float32)
dy = tensor.from_numpy(dy)
dy.to_device(dev)
dx, dW = y.creator.backward(dy.data)
self.check_shape(y.shape, (3, 3, x_h, 32))
self.check_shape(dx.shape(), (3, 3, x_h, 32))
self.check_shape(dW.shape(), (3, 3, w_h, 4))
def test_conv2d_same_pad_cpu(self):
self._conv_same_pad(cpu_dev, "SAME_LOWER", True)
self._conv_same_pad(cpu_dev, "SAME_UPPER", True)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_conv2d_same_pad_gpu(self):
self._conv_same_pad(gpu_dev, "SAME_LOWER", True)
self._conv_same_pad(gpu_dev, "SAME_UPPER", True)
def test_conv1d_same_pad_cpu(self):
self._conv_same_pad(cpu_dev, "SAME_LOWER", False)
self._conv_same_pad(cpu_dev, "SAME_UPPER", False)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_conv1d_same_pad_gpu(self):
self._conv_same_pad(gpu_dev, "SAME_LOWER", False)
self._conv_same_pad(gpu_dev, "SAME_UPPER", False)
def _pooling_same_pad(self, dev, pad_mode, is_2d):
if is_2d:
x_h, k_h, p_h = 32, 4, 1
else:
x_h, k_h, p_h = 1, 1, 0
x = tensor.Tensor(shape=(3, 3, x_h, 32), device=dev)
x.gaussian(0.0, 1.0)
# with the same padding, the padding should be 3
# for SAME_UPPER, is (1, 1) + (0, 1)
# for SAME_LOWER, is (1, 1) + (1, 0)
kernel = (k_h, 4)
# we add 4 padding here and hope the conv and trim one padding then
padding = (p_h, 1)
stride = (1, 1)
pooling = layer.Pooling2d(kernel, stride=stride, pad_mode=pad_mode)
y = pooling(x)
dy = np.ones((3, 3, x_h, 32), dtype=np.float32)
dy = tensor.from_numpy(dy)
dy.to_device(dev)
dx = y.creator.backward(dy.data)
self.check_shape(y.shape, (3, 3, x_h, 32))
self.check_shape(dx.shape(), (3, 3, x_h, 32))
def test_pooling2d_same_pad_cpu(self):
self._pooling_same_pad(cpu_dev, "SAME_LOWER", True)
self._pooling_same_pad(cpu_dev, "SAME_UPPER", True)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_pooling2d_same_pad_gpu(self):
self._pooling_same_pad(gpu_dev, "SAME_LOWER", True)
self._pooling_same_pad(gpu_dev, "SAME_UPPER", True)
def test_pooling1d_same_pad_cpu(self):
self._pooling_same_pad(cpu_dev, "SAME_LOWER", False)
self._pooling_same_pad(cpu_dev, "SAME_UPPER", False)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_pooling1d_same_pad_gpu(self):
self._pooling_same_pad(gpu_dev, "SAME_LOWER", False)
self._pooling_same_pad(gpu_dev, "SAME_UPPER", False)
def _sum_helper(self, dev):
x = np.array([0.1, -1.0, 0.4, 4.0, -0.9,
9.0]).reshape(3, 2).astype(np.float32)
x1 = np.array([0.1, 1.0, 0.4, 4.0, 0.9,
9.0]).reshape(3, 2).astype(np.float32)
y = x + x1
dy = np.ones((3, 2), dtype=np.float32)
grad0 = dy
grad1 = dy
x = tensor.from_numpy(x)
x1 = tensor.from_numpy(x1)
dy = tensor.from_numpy(dy)
x.to_device(dev)
x1.to_device(dev)
dy.to_device(dev)
result = autograd.sum(x, x1)
dx0, dx1 = result.creator.backward(dy.data)
np.testing.assert_array_almost_equal(tensor.to_numpy(result),
y,
decimal=5)
np.testing.assert_array_almost_equal(tensor.to_numpy(
tensor.from_raw_tensor(dx0)),
grad0,
decimal=5)
np.testing.assert_array_almost_equal(tensor.to_numpy(
tensor.from_raw_tensor(dx1)),
grad1,
decimal=5)
def test_sum_cpu(self):
self._sum_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_sum_gpu(self):
self._sum_helper(gpu_dev)
def _SeparableConv2d_helper(self, dev):
# SeparableConv2d(in_channels, out_channels, kernel_size)
if dev == cpu_dev:
in_channels = 1
else:
in_channels = 8
separ_conv = layer.SeparableConv2d(16, 3, padding=1)
x = np.random.random((10, in_channels, 28, 28)).astype(np.float32)
x = tensor.Tensor(device=dev, data=x)
y = separ_conv(x)
self.check_shape(y.shape, (10, 16, 28, 28))
y1 = separ_conv.depthwise_conv(x)
y2 = separ_conv.point_conv(y1)
dy1, dW_depth = y2.creator.backward(y2.data)
dx, dW_spacial = y1.creator.backward(dy1)
self.check_shape(y2.shape, (10, 16, 28, 28))
self.check_shape(dy1.shape(), (10, in_channels, 28, 28))
self.check_shape(dW_depth.shape(), (16, in_channels, 1, 1))
self.check_shape(dx.shape(), (10, in_channels, 28, 28))
self.check_shape(dW_spacial.shape(), (in_channels, 1, 3, 3))
def test_SeparableConv2d_cpu(self):
self._SeparableConv2d_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_SeparableConv2d_gpu(self):
self._SeparableConv2d_helper(gpu_dev)
def _batchnorm2d_helper(self, dev):
batchnorm_0 = layer.BatchNorm2d(3)
cpu_input_tensor = tensor.Tensor(shape=(2, 3, 3, 3), device=dev)
cpu_input_tensor.gaussian(0.0, 1.0)
dy = cpu_input_tensor.clone().data
y = batchnorm_0(cpu_input_tensor)
dx, ds, db = y.creator.backward(dy)
self.check_shape(y.shape, (2, 3, 3, 3))
self.check_shape(dx.shape(), (2, 3, 3, 3))
self.check_shape(ds.shape(), (3,))
self.check_shape(db.shape(), (3,))
def test_batchnorm2d_cpu(self):
self._batchnorm2d_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_batchnorm2d_gpu(self):
self._batchnorm2d_helper(gpu_dev)
def gradients_check(self,
func,
param,
autograds,
h=0.0005,
df=1,
dev=cpu_dev):
# param: PyTensor
# autograds: numpy_tensor
p = tensor.to_numpy(param)
it = np.nditer(p, flags=['multi_index'], op_flags=['readwrite'])
while not it.finished:
idx = it.multi_index
diff = np.zeros_like(p)
diff[idx] += h
diff = tensor.from_numpy(diff)
diff.to_device(dev)
param += diff
pos = func()
pos = tensor.to_numpy(pos)
param -= diff
param -= diff
neg = func()
neg = tensor.to_numpy(neg)
numerical_grad = np.sum((pos - neg) * df) / (2 * h)
#print((autograds[idx] - numerical_grad)/numerical_grad)
# threshold set as -5% to +5%
#self.assertAlmostEqual((autograds[idx] - numerical_grad)/(numerical_grad+0.0000001), 0., places=1)
self.assertAlmostEqual(autograds[idx] - numerical_grad,
0.,
places=2)
it.iternext()
def _vanillaRNN_gpu_tiny_ops_shape_check_helper(self, dev):
# gradients shape check.
inputs, target, h0 = prepare_inputs_targets_for_rnn_test(dev)
rnn = layer.RNN(3, 2)
hs, _ = rnn(inputs, h0)
loss = autograd.softmax_cross_entropy(hs[0], target[0])
for i in range(1, len(hs)):
l = autograd.softmax_cross_entropy(hs[i], target[i])
loss = autograd.add(loss, l)
# d=autograd.infer_dependency(loss.creator)
# print(d)
for t, dt in autograd.backward(loss):
self.check_shape(t.shape, dt.shape)
def test_vanillaRNN_gpu_tiny_ops_shape_check_cpu(self):
self._vanillaRNN_gpu_tiny_ops_shape_check_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_vanillaRNN_gpu_tiny_ops_shape_check_gpu(self):
self._vanillaRNN_gpu_tiny_ops_shape_check_helper(gpu_dev)
def _LSTM_gpu_tiny_ops_shape_check_helper(self, dev):
# gradients shape check.
inputs, target, h0 = prepare_inputs_targets_for_rnn_test(dev)
c_0 = np.random.random((2, 1)).astype(np.float32)
c0 = tensor.Tensor(device=dev, data=c_0)
rnn = layer.LSTM(3, 2)
hs, _, _ = rnn(inputs, (h0, c0))
loss = autograd.softmax_cross_entropy(hs[0], target[0])
for i in range(1, len(hs)):
l = autograd.softmax_cross_entropy(hs[i], target[i])
loss = autograd.add(loss, l)
# d=autograd.infer_dependency(loss.creator)
# print(d)
for t, dt in autograd.backward(loss):
self.check_shape(t.shape, dt.shape)
def test_LSTM_gpu_tiny_ops_shape_check_cpu(self):
self._LSTM_gpu_tiny_ops_shape_check_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_LSTM_gpu_tiny_ops_shape_check_gpu(self):
self._LSTM_gpu_tiny_ops_shape_check_helper(gpu_dev)
def _numerical_gradients_check_for_vallina_rnn_helper(self, dev):
inputs, target, h0 = prepare_inputs_targets_for_rnn_test(dev)
rnn = layer.RNN(3, 2)
def valinna_rnn_forward():
hs, _ = rnn(inputs, h0)
loss = autograd.softmax_cross_entropy(hs[0], target[0])
for i in range(1, len(hs)):
l = autograd.softmax_cross_entropy(hs[i], target[i])
loss = autograd.add(loss, l)
#grads = autograd.gradients(loss)
return loss
loss1 = valinna_rnn_forward()
auto_grads = autograd.gradients(loss1)
params = rnn.get_params()
for key, param in params.items():
auto_grad = tensor.to_numpy(auto_grads[id(param)])
self.gradients_check(valinna_rnn_forward, param, auto_grad, dev=dev)
def _gradient_check_cudnn_rnn(self, mode="vanilla", dev=gpu_dev):
seq = 10
bs = 2
fea = 10
hid = 10
x = np.random.random((seq, bs, fea)).astype(np.float32)
tx = tensor.Tensor(device=dev, data=x)
y = np.random.random((seq, bs, hid)).astype(np.float32)
y = np.reshape(y, (-1, hid))
ty = tensor.Tensor(device=dev, data=y)
rnn = layer.CudnnRNN(hid, rnn_mode=mode, return_sequences=True)
def vanilla_rnn_forward():
out = rnn(tx)
out = autograd.reshape(out, (-1, hid))
loss = autograd.softmax_cross_entropy(out, ty)
return loss
loss = vanilla_rnn_forward()
auto_grads = autograd.gradients(loss)
params = rnn.get_params()
for key, param in params.items():
auto_grad = tensor.to_numpy(auto_grads[id(param)])
self.gradients_check(vanilla_rnn_forward, param, auto_grad, dev=dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_gradient_check_cudnn_rnn_vanilla(self):
self._gradient_check_cudnn_rnn(mode="vanilla", dev=gpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_gradient_check_cudnn_rnn_lstm(self):
self._gradient_check_cudnn_rnn(mode="lstm", dev=gpu_dev)
# Cos Sim Gradient Check
def _gradient_check_cossim(self, dev=gpu_dev):
bs = 2
vec = 3
ta = tensor.random((bs, vec), dev)
tb = tensor.random((bs, vec), dev)
# treat ta, tb as params
ta.stores_grad = True
tb.stores_grad = True
ty = tensor.random((bs,), dev)
def _forward():
out = autograd.cossim(ta, tb)
loss = autograd.mse_loss(out, ty)
return loss
loss = _forward()
auto_grads = autograd.gradients(loss)
params = {id(ta): ta, id(tb): tb}
for key, param in params.items():
auto_grad = tensor.to_numpy(auto_grads[id(param)])
self.gradients_check(_forward, param, auto_grad, dev=dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_gradient_check_cossim_gpu(self):
self._gradient_check_cossim(dev=gpu_dev)
def test_gradient_check_cossim_cpu(self):
self._gradient_check_cossim(dev=cpu_dev)
def test_numerical_gradients_check_for_vallina_rnn_cpu(self):
self._numerical_gradients_check_for_vallina_rnn_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_numerical_gradients_check_for_vallina_rnn_gpu(self):
self._numerical_gradients_check_for_vallina_rnn_helper(gpu_dev)
def _numerical_gradients_check_for_lstm_helper(self, dev):
inputs, target, h0 = prepare_inputs_targets_for_rnn_test(dev)
c_0 = np.zeros((2, 2)).astype(np.float32)
c0 = tensor.Tensor(device=dev, data=c_0)
rnn = layer.LSTM(3, 2)
def lstm_forward():
hs, _, _ = rnn(inputs, (h0, c0))
loss = autograd.softmax_cross_entropy(hs[0], target[0])
for i in range(1, len(hs)):
l = autograd.softmax_cross_entropy(hs[i], target[i])
loss = autograd.add(loss, l)
return loss
loss1 = lstm_forward()
auto_grads = autograd.gradients(loss1)
params = rnn.get_params()
for key, param in params.items():
auto_grad = tensor.to_numpy(auto_grads[id(param)])
self.gradients_check(lstm_forward, param, auto_grad, dev=dev)
def test_numerical_gradients_check_for_lstm_cpu(self):
self._numerical_gradients_check_for_lstm_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_numerical_gradients_check_for_lstm_gpu(self):
self._numerical_gradients_check_for_lstm_helper(gpu_dev)
def _MeanSquareError_helper(self, dev):
X = np.array([4.3, 5.4, 3.3, 3.6, 5.7,
6.0]).reshape(3, 2).astype(np.float32)
T = np.array([4.4, 5.3, 3.2, 3.7, 5.4,
6.3]).reshape(3, 2).astype(np.float32)
x = tensor.from_numpy(X)
t = tensor.from_numpy(T)
x.to_device(dev)
t.to_device(dev)
loss = autograd.mse_loss(x, t)
dx = loss.creator.backward()
loss_np = tensor.to_numpy(loss)[0]
self.assertAlmostEqual(loss_np, 0.0366666, places=4)
self.check_shape(dx.shape(), (3, 2))
def test_MeanSquareError_cpu(self):
self._MeanSquareError_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_MeanSquareError_gpu(self):
self._MeanSquareError_helper(gpu_dev)
def _Abs_helper(self, dev):
X = np.array([0.8, -1.2, 3.3, -3.6, -0.5,
0.5]).reshape(3, 2).astype(np.float32)
XT = np.array([0.8, 1.2, 3.3, 3.6, 0.5,
0.5]).reshape(3, 2).astype(np.float32)
x = tensor.from_numpy(X)
x.to_device(dev)
result = autograd.abs(x)
dx = result.creator.backward(x.data)
np.testing.assert_array_almost_equal(tensor.to_numpy(result), XT)
self.check_shape(dx.shape(), (3, 2))
def test_Abs_cpu(self):
self._Abs_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_Abs_gpu(self):
self._Abs_helper(gpu_dev)
def _Mean_helper(self, dev):
x0 = np.array([-0.9, -0.3, -0.1, 0.1, 0.5,
0.9]).reshape(3, 2).astype(np.float32)
x1 = np.array([0, -0.3, 0, 0.1, 0, 0.9]).reshape(3,
2).astype(np.float32)
y = (x0 + x1) / 2
grad = np.ones(x0.shape) / 2
x0 = tensor.from_numpy(x0)
x1 = tensor.from_numpy(x1)
x0.to_device(dev)
x1.to_device(dev)
result = autograd.mean(x0, x1)
dy = tensor.from_numpy(np.ones((3, 2)).astype(np.float32))
dy.to_device(dev)
dx0, dx1 = result.creator.backward(dy.data)
np.testing.assert_array_almost_equal(tensor.to_numpy(result),
y,
decimal=5)
np.testing.assert_array_almost_equal(tensor.to_numpy(
tensor.from_raw_tensor(dx0)),
grad,
decimal=5)
np.testing.assert_array_almost_equal(tensor.to_numpy(
tensor.from_raw_tensor(dx1)),
grad,
decimal=5)
def test_Mean_cpu(self):
self._Mean_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_Mean_gpu(self):
self._Mean_helper(gpu_dev)
def _Exp_helper(self, dev):
X = np.array([0.8, -1.2, 3.3, -3.6, -0.5,
0.5]).reshape(3, 2).astype(np.float32)
XT = np.exp(X)
x = tensor.from_numpy(X)
x.to_device(dev)
result = autograd.exp(x)
dx = result.creator.backward(x.data)
np.testing.assert_array_almost_equal(tensor.to_numpy(result),
XT,
decimal=5)
self.check_shape(dx.shape(), (3, 2))
def test_Exp_cpu(self):
self._Exp_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_Exp_gpu(self):
self._Exp_helper(gpu_dev)
def _Identity_helper(self, dev):
x = np.array([-0.9, -0.3, -0.1, 0.1, 0.5,
0.9]).reshape(3, 2).astype(np.float32)
y = x.copy()
grad = np.ones(x.shape)
x = tensor.from_numpy(x)
x.to_device(dev)
result = autograd.identity(x)
dy = tensor.from_numpy(np.ones((3, 2)).astype(np.float32))
dy.to_device(dev)
dx = result.creator.backward(dy.data)
np.testing.assert_array_almost_equal(tensor.to_numpy(result),
y,
decimal=5)
np.testing.assert_array_almost_equal(tensor.to_numpy(
tensor.from_raw_tensor(dx)),
grad,
decimal=5)
self.check_shape(dx.shape(), (3, 2))
def test_Identity_cpu(self):
self._Identity_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_Identity_gpu(self):
self._Identity_helper(gpu_dev)
def _LeakyRelu_helper(self, dev):
X = np.array([0.8, -1.2, 3.3, -3.6, -0.5,
0.5]).reshape(3, 2).astype(np.float32)
XT = np.array([0.8, -0.012, 3.3, -0.036, -0.005,
0.5]).reshape(3, 2).astype(np.float32)
x = tensor.from_numpy(X)
x.to_device(dev)
result = autograd.leakyrelu(x)
dx = result.creator.backward(x.data)
np.testing.assert_array_almost_equal(tensor.to_numpy(result), XT)
self.check_shape(dx.shape(), (3, 2))
def test_LeakyRelu_cpu(self):
self._LeakyRelu_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_LeakyRelu_gpu(self):
self._LeakyRelu_helper(gpu_dev)
def _Relu_helper(self, dev):
X = np.array([0.8, -1.2, 3.3, -3.6, -0.5,
0.5]).reshape(3, 2).astype(np.float32)
XT = np.maximum(X, 0)
DY = np.ones((3, 2), dtype=np.float32)
x = tensor.from_numpy(X)
dy = tensor.from_numpy(DY)
x.to_device(dev)
dy.to_device(dev)
result = autograd.relu(x)
dx = result.creator.backward(dy.data)
G = (X > 0).astype(np.float32)
DX = np.multiply(G, DY)
np.testing.assert_array_almost_equal(tensor.to_numpy(result),
XT,
decimal=5)
np.testing.assert_array_almost_equal(tensor.to_numpy(
tensor.from_raw_tensor(dx)),
DX,
decimal=5)
def test_Relu_cpu(self):
self._Relu_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_Relu_gpu(self):
self._Relu_helper(gpu_dev)
def _Cos_helper(self, dev):
X = np.array([0.8, -1.2, 3.3, -3.6, -0.5,
0.5]).reshape(3, 2).astype(np.float32)
XT = np.cos(X)
DY = np.ones((3, 2), dtype=np.float32)
x = tensor.from_numpy(X)
dy = tensor.from_numpy(DY)
x.to_device(dev)
dy.to_device(dev)
result = autograd.cos(x)
dx = result.creator.backward(dy.data)
G = -np.sin(X)
DX = np.multiply(G, DY)
np.testing.assert_array_almost_equal(tensor.to_numpy(result),
XT,
decimal=5)
np.testing.assert_array_almost_equal(tensor.to_numpy(
tensor.from_raw_tensor(dx)),
DX,
decimal=5)
def test_Cos_cpu(self):
self._Cos_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_Cos_gpu(self):
self._Cos_helper(gpu_dev)
def _Cosh_helper(self, dev):
X = np.array([0.8, -1.2, 3.3, -3.6, -0.5,
0.5]).reshape(3, 2).astype(np.float32)
XT = np.cosh(X)
DY = np.ones((3, 2), dtype=np.float32)
x = tensor.from_numpy(X)
dy = tensor.from_numpy(DY)
x.to_device(dev)
dy.to_device(dev)
result = autograd.cosh(x)
dx = result.creator.backward(dy.data)
G = np.sinh(X)
DX = np.multiply(G, DY)
np.testing.assert_array_almost_equal(tensor.to_numpy(result),
XT,
decimal=5)
np.testing.assert_array_almost_equal(tensor.to_numpy(
tensor.from_raw_tensor(dx)),
DX,
decimal=5)
def test_Cosh_cpu(self):
self._Cosh_helper(cpu_dev)
@unittest.skipIf(not singa_wrap.USE_CUDA, 'CUDA is not enabled')
def test_Cosh_gpu(self):
self._Cosh_helper(gpu_dev)
def _Acos_helper(self, dev):
X = np.array([-0.9, -0.3, -0.1, 0.1, 0.5,
0.9]).reshape(3, 2).astype(np.float32)
XT = np.arccos(X)
DY = np.ones((3, 2), dtype=np.float32)
x = tensor.from_numpy(X)
dy = tensor.from_numpy(DY)
x.to_device(dev)
dy.to_device(dev)
result = autograd.acos(x)
dx = result.creator.backward(dy.data)
G = -1.0 / np.sqrt(1.0 - np.square(X))
DX =
|
np.multiply(G, DY)
|
numpy.multiply
|
"""
parse CP2K output to Trajectory
type 1: cp2k_shell log, generated by ASE, with "out" in the filename
type 2: ENERGY_FORCE type, input file and xyz force output still exits
type 3:
"""
import logging
import numpy as np
from glob import glob
from os.path import isfile, getctime
from thyme import Trajectory
from thyme._key import *
from thyme.parsers.monty import read_pattern, read_table_pattern
from thyme.routines.folders import find_folders, find_folders_matching
HARTREE = 27.2114
HARTREE_BOHR = 51.42208619083232
nc_fl_num = r"[+-]?\d+\.*\d*[eE]?[+-]?\d*"
fl_num = r"(" + nc_fl_num + ")"
nc_sfl_num = r"\s+" + nc_fl_num
sfl_num = r"\s+" + fl_num
def get_childfolders(path):
return find_folders_matching(["*.xyz", "*.inp", "*out*"], path)
def pack_folder_trj(folder: str, data_filter):
"""
For one plain folder (without looking into its children folder),
search for all the simulation store in this folder
It can be a single CP2K run, multiple MD runs or multiple ASE call.
We assume all trajectories in this folder has the same number of atoms, species
And the same DFT set up.
Args:
folder (str): folder path for parsing
Return:
Trajectory instance
"""
has_xyz = len(glob(f"{folder}/*.xyz")) > 0
has_out = len(glob(f"{folder}/*out*")) > 0
has_inp = (len(glob(f"{folder}/*.inp")) > 0) or (
len(glob(f"{folder}/*.restart")) > 0
)
has_pair = (len(glob(f"{folder}/*.inp")) > 0) and (has_out or has_xyz)
has_xyzs = (len(glob(f"{folder}/*-frc*.xyz")) > 0) and (
len(glob(f"{folder}/*-pos*.xyz")) > 0
)
conditions = [has_xyzs, has_pair, has_out]
trj = Trajectory()
if np.sum(conditions) == 0:
return trj
# first identify force_eval pair
MD_xyz = {}
if has_out:
# sort files from new to old
outfile_list = []
outfile_mtime = []
for outfile in glob(f"{folder}/*out*"):
outfile_list += [outfile]
outfile_mtime += [-getctime(outfile)]
sort_id = np.argsort(outfile_mtime)
outfile_list = np.array(outfile_list, dtype=str)
outfile_list = outfile_list[sort_id]
for outfile in outfile_list:
if not isfile(outfile):
continue
outfile_dict = parse_std_out(outfile)
if "abort" in outfile_dict:
continue
_trj = Trajectory()
if "send" in outfile_dict:
logging.info(f"parsing {outfile} as shell product")
_trj = parse_ase_shell_out(folder, outfile)
elif "run_type" in outfile_dict:
run_type = outfile_dict["run_type"]
proj_name = outfile_dict["proj_name"]
if run_type == "ENERGY_FORCE":
logging.info(f"parsing {outfile} as force_eval type product")
_trj = parse_force_eval_pairs(folder, outfile, outfile_dict)
elif run_type == "MD":
if "xyzout" in outfile_dict:
MD_xyz[proj_name] = f"{folder}/" + outfile_dict["inputfile"]
else:
raise NotImplementedError(
f"cannot parse MD without xyz {run_type}"
)
else:
raise NotImplementedError(f"cannot parse RUN_TYPE {run_type}")
if _trj.nframes > 0:
logging.info(f"repr {repr(_trj)}")
logging.info(f"add {_trj}")
logging.info(f"to {trj}")
trj.add_trj(_trj)
for k in MD_xyz:
_trj = parse_md(folder, inp=MD_xyz[k], proj_name=k)
logging.info(f"repr {repr(_trj)}")
trj.add_trj(_trj)
if has_xyz and has_inp and len(MD_xyz) == 0:
mtime = 10e9
mfile = ""
proj_name = ""
# choose the earliest input
for inputfile in glob(f"{folder}/*.inp") + glob(f"{folder}/*.restart"):
_mtime = getctime(inputfile)
if _mtime < mtime:
metadata = parse_std_inp_metadata(inputfile)
if metadata["run_type"] == "MD":
mtime = _mtime
mfile = inputfile
proj_name = metadata["proj_name"]
if isfile(f"{folder}/{proj_name}-pos-1.xyz"):
_trj = parse_md(folder, inp=inputfile, proj_name=proj_name)
logging.info(f"repr {repr(_trj)}")
trj.add_trj(_trj)
logging.info(trj)
logging.info(repr(trj))
return trj
# elif np.sum(conditions) == 0:
# logging.info(f"! {folder} skip for no file matching")
# else:
# logging.info(f"! {folder} skip for incomplete files")
# if folder == "./":
# folder = "."
# return Trajectory()
def parse_md(folder: str, inp: str, proj_name: str):
"""
Args:
folder (str): path of the folder
inp (str): the input file for CP2K
proj_name (str): the CP2K project name.
The prefix used for MD dumps
"""
logging.info(f"parse md in folder {folder}")
# if above strings are found
find_input = False
try:
find_input = (
isfile(inp)
and isfile(f"{folder}/{proj_name}-pos-1.xyz")
and isfile(f"{folder}/{proj_name}-frc-1.xyz")
)
except Exception as e:
logging.info(f"It is not a MD {e}")
if not find_input:
return Trajectory()
metadata = parse_std_inp_metadata(inp)
data = parse_std_inp_pos(inp)
return parse_cp2k_xyzs(
f"{folder}/{proj_name}-pos-1.xyz",
f"{folder}/{proj_name}-frc-1.xyz",
data["cells"],
metadata,
)
def parse_std_out(filename):
logging.info(f"parse {filename}")
d = read_pattern(
filename,
{
"inputfile": r"Input file name\s+(\S+)",
"abort": r"(ABORT)",
"run_type": r"Run type\s+(\S+)",
"proj_name": r"Project name\s+(\S+)",
"xyzout": r"Coordinates\s+\d+\s+(\S+)",
"send": r"Sending: (GET_E)",
"receive": r"Received: * (READY)",
"energy": r"Total energy:" + sfl_num,
},
)
del_keys = []
for k in d:
d[k] =
|
np.array(d[k], dtype=str)
|
numpy.array
|
#!/usr/bin/env python
# Copyright 2018 Division of Medical Image Computing, German Cancer Research Center (DKFZ).
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import numpy as np
import os
from collections import OrderedDict
import pandas as pd
import pickle
import time
import subprocess
import utils.dataloader_utils as dutils
# batch generator tools from https://github.com/MIC-DKFZ/batchgenerators
from batchgenerators.dataloading.data_loader import SlimDataLoaderBase
from batchgenerators.transforms.spatial_transforms import MirrorTransform as Mirror
from batchgenerators.transforms.abstract_transforms import Compose
from batchgenerators.dataloading.multi_threaded_augmenter import MultiThreadedAugmenter
from batchgenerators.dataloading import SingleThreadedAugmenter
from batchgenerators.transforms.spatial_transforms import SpatialTransform
from batchgenerators.transforms.crop_and_pad_transforms import CenterCropTransform
from batchgenerators.transforms.utility_transforms import ConvertSegToBoundingBoxCoordinates
GET_ROIS_FROM_SEG = False
DO_MULTITHREADED = False
def get_train_generators(cf, logger):
"""
wrapper function for creating the training batch generator pipeline. returns the train/val generators.
selects patients according to cv folds (generated by first run/fold of experiment):
splits the data into n-folds, where 1 split is used for val, 1 split for testing and the rest for training. (inner loop test set)
If cf.hold_out_test_set is True, adds the test split to the training data.
"""
all_data = load_dataset(cf, logger)
all_pids_list = np.unique([v['pid'] for (k, v) in all_data.items()])
assert cf.n_train_val_data <= len(all_pids_list), \
"requested {} train val samples, but dataset only has {} train val samples.".format(
cf.n_train_val_data, len(all_pids_list))
train_pids = all_pids_list[:int(2*cf.n_train_val_data//3)]
val_pids = all_pids_list[int(np.ceil(2*cf.n_train_val_data//3)):cf.n_train_val_data]
train_data = {k: v for (k, v) in all_data.items() if any(p == v['pid'] for p in train_pids)}
val_data = {k: v for (k, v) in all_data.items() if any(p == v['pid'] for p in val_pids)}
logger.info("data set loaded with: {} train / {} val patients".format(len(train_pids), len(val_pids)))
batch_gen = {}
batch_gen['train'] = create_data_gen_pipeline(train_data, cf=cf, do_aug=False)
batch_gen['val_sampling'] = create_data_gen_pipeline(val_data, cf=cf, do_aug=False)
if cf.val_mode == 'val_patient':
batch_gen['val_patient'] = PatientBatchIterator(val_data, cf=cf)
batch_gen['n_val'] = len(val_pids) if cf.max_val_patients is None else min(len(val_pids), cf.max_val_patients)
else:
batch_gen['n_val'] = cf.num_val_batches
return batch_gen
def get_test_generator(cf, logger):
"""
wrapper function for creating the test batch generator pipeline.
selects patients according to cv folds (generated by first run/fold of experiment)
If cf.hold_out_test_set is True, gets the data from an external folder instead.
"""
if cf.hold_out_test_set:
pp_name = cf.pp_test_name
test_ix = None
else:
pp_name = None
with open(os.path.join(cf.exp_dir, 'fold_ids.pickle'), 'rb') as handle:
fold_list = pickle.load(handle)
_, _, test_ix, _ = fold_list[cf.fold]
# warnings.warn('WARNING: using validation set for testing!!!')
test_data = load_dataset(cf, logger, test_ix, pp_data_path=cf.pp_test_data_path, pp_name=pp_name)
logger.info("data set loaded with: {} test patients from {}".format(len(test_data.keys()), cf.pp_test_data_path))
batch_gen = {}
batch_gen['test'] = PatientBatchIterator(test_data, cf=cf)
batch_gen['n_test'] = len(test_data.keys()) if cf.max_test_patients=="all" else \
min(cf.max_test_patients, len(test_data.keys()))
return batch_gen
def load_dataset(cf, logger, subset_ixs=None, pp_data_path=None, pp_name=None):
"""
loads the dataset. if deployed in cloud also copies and unpacks the data to the working directory.
:param subset_ixs: subset indices to be loaded from the dataset. used e.g. for testing to only load the test folds.
:return: data: dictionary with one entry per patient (in this case per patient-breast, since they are treated as
individual images for training) each entry is a dictionary containing respective meta-info as well as paths to the preprocessed
numpy arrays to be loaded during batch-generation
"""
if pp_data_path is None:
pp_data_path = cf.pp_data_path
if pp_name is None:
pp_name = cf.pp_name
if cf.server_env:
copy_data = True
target_dir = os.path.join(cf.data_dest, pp_name)
if not os.path.exists(target_dir):
cf.data_source_dir = pp_data_path
os.makedirs(target_dir)
subprocess.call('rsync -av {} {}'.format(
os.path.join(cf.data_source_dir, cf.input_df_name), os.path.join(target_dir, cf.input_df_name)), shell=True)
logger.info('created target dir and info df at {}'.format(os.path.join(target_dir, cf.input_df_name)))
elif subset_ixs is None:
copy_data = False
pp_data_path = target_dir
p_df = pd.read_pickle(os.path.join(pp_data_path, cf.input_df_name))
if subset_ixs is not None:
subset_pids = [np.unique(p_df.pid.tolist())[ix] for ix in subset_ixs]
p_df = p_df[p_df.pid.isin(subset_pids)]
logger.info('subset: selected {} instances from df'.format(len(p_df)))
if cf.server_env:
if copy_data:
copy_and_unpack_data(logger, p_df.pid.tolist(), cf.fold_dir, cf.data_source_dir, target_dir)
class_targets = p_df['class_id'].tolist()
pids = p_df.pid.tolist()
imgs = [os.path.join(pp_data_path, '{}.npy'.format(pid)) for pid in pids]
segs = [os.path.join(pp_data_path,'{}.npy'.format(pid)) for pid in pids]
data = OrderedDict()
for ix, pid in enumerate(pids):
data[pid] = {'data': imgs[ix], 'seg': segs[ix], 'pid': pid, 'class_target': [class_targets[ix]]}
return data
def create_data_gen_pipeline(patient_data, cf, do_aug=True):
"""
create mutli-threaded train/val/test batch generation and augmentation pipeline.
:param patient_data: dictionary containing one dictionary per patient in the train/test subset.
:param is_training: (optional) whether to perform data augmentation (training) or not (validation/testing)
:return: multithreaded_generator
"""
# create instance of batch generator as first element in pipeline.
data_gen = BatchGenerator(patient_data, batch_size=cf.batch_size, cf=cf)
# add transformations to pipeline.
my_transforms = []
if do_aug:
mirror_transform = Mirror(axes=np.arange(2, cf.dim+2, 1))
my_transforms.append(mirror_transform)
spatial_transform = SpatialTransform(patch_size=cf.patch_size[:cf.dim],
patch_center_dist_from_border=cf.da_kwargs['rand_crop_dist'],
do_elastic_deform=cf.da_kwargs['do_elastic_deform'],
alpha=cf.da_kwargs['alpha'], sigma=cf.da_kwargs['sigma'],
do_rotation=cf.da_kwargs['do_rotation'], angle_x=cf.da_kwargs['angle_x'],
angle_y=cf.da_kwargs['angle_y'], angle_z=cf.da_kwargs['angle_z'],
do_scale=cf.da_kwargs['do_scale'], scale=cf.da_kwargs['scale'],
random_crop=cf.da_kwargs['random_crop'])
my_transforms.append(spatial_transform)
else:
my_transforms.append(CenterCropTransform(crop_size=cf.patch_size[:cf.dim]))
my_transforms.append(ConvertSegToBoundingBoxCoordinates(cf.dim, get_rois_from_seg_flag=GET_ROIS_FROM_SEG, class_specific_seg_flag=cf.class_specific_seg_flag))
all_transforms = Compose(my_transforms)
if DO_MULTITHREADED:
multithreaded_generator = MultiThreadedAugmenter(data_gen, all_transforms, num_processes=cf.n_workers, seeds=range(cf.n_workers))
else:
multithreaded_generator = SingleThreadedAugmenter(data_gen, all_transforms)
return multithreaded_generator
class BatchGenerator(SlimDataLoaderBase):
"""
creates the training/validation batch generator. Samples n_batch_size patients (draws a slice from each patient if 2D)
from the data set while maintaining foreground-class balance. Returned patches are cropped/padded to pre_crop_size.
Actual patch_size is obtained after data augmentation.
:param data: data dictionary as provided by 'load_dataset'.
:param batch_size: number of patients to sample for the batch
:return dictionary containing the batch data (b, c, y, x, (z)) / seg (b, 1, y, x, (z)) / pids / class_target
"""
def __init__(self, data, batch_size, cf):
super(BatchGenerator, self).__init__(data, batch_size)
self.cf = cf
def generate_train_batch(self):
batch_data, batch_segs, batch_pids, batch_targets = [], [], [], []
class_targets_list = [v['class_target'] for (k, v) in self._data.items()]
#samples patients towards equilibrium of foreground classes on a roi-level (after randomly sampling the ratio "batch_sample_slack).
batch_ixs = dutils.get_class_balanced_patients(
class_targets_list, self.batch_size, self.cf.head_classes - 1, slack_factor=self.cf.batch_sample_slack)
patients = list(self._data.items())
for b in batch_ixs:
patient = patients[b][1]
all_data = np.load(patient['data'], mmap_mode='r')
data = all_data[0]
seg = all_data[1].astype('uint8')
batch_pids.append(patient['pid'])
batch_targets.append(patient['class_target'])
batch_data.append(data[np.newaxis])
batch_segs.append(seg[np.newaxis])
data =
|
np.array(batch_data)
|
numpy.array
|
from __future__ import division, unicode_literals, print_function, absolute_import
import pytest
import traitlets as tl
import numpy as np
import xarray as xr
import podpac
from podpac.core.algorithm.algorithm import BaseAlgorithm, Algorithm, UnaryAlgorithm
class TestBaseAlgorithm(object):
def test_eval_not_implemented(self):
node = BaseAlgorithm()
c = podpac.Coordinates([])
with pytest.raises(NotImplementedError):
node.eval(c)
def test_inputs(self):
class MyAlgorithm(BaseAlgorithm):
x = tl.Instance(podpac.Node).tag(attr=True)
y = tl.Instance(podpac.Node).tag(attr=True)
node = MyAlgorithm(x=podpac.Node(), y=podpac.Node())
assert "x" in node.inputs
assert "y" in node.inputs
def test_find_coordinates(self):
class MyAlgorithm(BaseAlgorithm):
x = tl.Instance(podpac.Node).tag(attr=True)
y = tl.Instance(podpac.Node).tag(attr=True)
node = MyAlgorithm(
x=podpac.data.Array(coordinates=podpac.Coordinates([[0, 1, 2]], dims=["lat"])),
y=podpac.data.Array(coordinates=podpac.Coordinates([[10, 11, 12], [100, 200]], dims=["lat", "lon"])),
)
l = node.find_coordinates()
assert isinstance(l, list)
assert len(l) == 2
assert node.x.coordinates in l
assert node.y.coordinates in l
class TestAlgorithm(object):
def test_algorithm_not_implemented(self):
node = Algorithm()
c = podpac.Coordinates([])
with pytest.raises(NotImplementedError):
node.eval(c)
def test_eval(self):
class MyAlgorithm(Algorithm):
def algorithm(self, inputs, coordinates):
data = np.arange(coordinates.size).reshape(coordinates.shape)
return self.create_output_array(coordinates, data=data)
coords = podpac.Coordinates([[0, 1, 2], [10, 20]], dims=["lat", "lon"])
node = MyAlgorithm()
output = node.eval(coords)
assert isinstance(output, podpac.UnitsDataArray)
assert output.dims == ("lat", "lon")
np.testing.assert_array_equal(output, np.arange(6).reshape(3, 2))
def test_eval_algorithm_returns_xarray(self):
class MyAlgorithm(Algorithm):
def algorithm(self, inputs, coordinates):
data = np.arange(coordinates.size).reshape(coordinates.shape)
return xr.DataArray(
data, coords=coordinates.xcoords, dims=coordinates.dims, attrs={"crs": coordinates.crs}
)
coords = podpac.Coordinates([[0, 1, 2], [10, 20]], dims=["lat", "lon"])
node = MyAlgorithm()
output = node.eval(coords)
assert isinstance(output, podpac.UnitsDataArray)
assert output.dims == ("lat", "lon")
np.testing.assert_array_equal(output, np.arange(6).reshape(3, 2))
def test_eval_algorithm_returns_numpy_array(self):
class MyAlgorithm(Algorithm):
def algorithm(self, inputs, coordinates):
data = np.arange(coordinates.size).reshape(coordinates.shape)
return data
coords = podpac.Coordinates([[0, 1, 2], [10, 20]], dims=["lat", "lon"])
node = MyAlgorithm()
with pytest.raises(podpac.NodeException, match="algorithm returned unsupported type"):
output = node.eval(coords)
def test_eval_algorithm_drops_dimension(self):
class MyAlgorithm(Algorithm):
drop = tl.Unicode()
def algorithm(self, inputs, coordinates):
c = coordinates.drop(self.drop)
data = np.arange(c.size).reshape(c.shape)
return self.create_output_array(c, data=data)
coords = podpac.Coordinates([[0, 1, 2], [10, 20]], dims=["lat", "lon"])
node = MyAlgorithm(drop="lat")
output = node.eval(coords)
assert isinstance(output, podpac.UnitsDataArray)
assert output.dims == ("lon",)
np.testing.assert_array_equal(output, np.arange(2))
coords = podpac.Coordinates([[0, 1, 2], [10, 20]], dims=["lat", "lon"])
node = MyAlgorithm(drop="lon")
output = node.eval(coords)
assert isinstance(output, podpac.UnitsDataArray)
assert output.dims == ("lat",)
np.testing.assert_array_equal(output, np.arange(3))
def test_eval_algorithm_adds_dimension(self):
class MyAlgorithm(Algorithm):
def algorithm(self, inputs, coordinates):
c = podpac.Coordinates(
[["2020-01-01", "2020-01-02"], coordinates["lat"], coordinates["lon"]], dims=["time", "lat", "lon"]
)
data = np.arange(c.size).reshape(c.shape)
return self.create_output_array(c, data=data)
coords = podpac.Coordinates([[0, 1, 2], [10, 20]], dims=["lat", "lon"])
node = MyAlgorithm()
output = node.eval(coords)
assert isinstance(output, podpac.UnitsDataArray)
assert output.dims == ("lat", "lon", "time")
np.testing.assert_array_equal(output, np.arange(12).reshape(2, 3, 2).transpose(1, 2, 0))
def test_eval_algorithm_transposes(self):
class MyAlgorithm(Algorithm):
def algorithm(self, inputs, coordinates):
c = coordinates.transpose("lon", "lat")
data = np.arange(c.size).reshape(c.shape)
return self.create_output_array(c, data=data)
coords = podpac.Coordinates([[0, 1, 2], [10, 20]], dims=["lat", "lon"])
node = MyAlgorithm()
output = node.eval(coords)
assert isinstance(output, podpac.UnitsDataArray)
assert output.dims == ("lat", "lon")
np.testing.assert_array_equal(output,
|
np.arange(6)
|
numpy.arange
|
#!/usr/bin/env python
# -*- coding: UTF-8 -*-
##----------------------------------------------------------------------------
## Title : Workload
##----------------------------------------------------------------------------
## File : Workload.py
## Author : <NAME>
## Company : Institut Pascal - DREAM
## Last update: 30-04-2018
##----------------------------------------------------------------------------
import sys
import os
import io
import numpy as np
import math
import matplotlib.pyplot as plt
import pylab as P
os.environ['GLOG_minloglevel'] = '2' # Supresses Display on console
import caffe;
def listLayers(protoFile, modelFile):
cnn = caffe.Net(protoFile,1,weights=modelFile)
params = cnn.params
blobs = cnn.blobs
#~ print("\n".join(map(str, cnn._layer_names)))
#~ print blobs
for layerName in cnn._layer_names:
layerId = list(cnn._layer_names).index(layerName)
layerType = cnn.layers[layerId].type
print(layerName,"\t",layerType)
def workload(protoFile, modelFile):
convLayerName = np.array([])
convWorkload = np.array([])
convMemory = np.array([])
fcLayerName =
|
np.array([])
|
numpy.array
|
# gaussfit.py - Routines to fit single Gaussian peaks
## ---- Import python routines ----
import sys
import numpy as np
## ---- Caruana's linear least square fitting ----
def caruana(x, y):
"""
Linear least square fitting routine to fit a quadratic polynomial to
Gaussian peak. Parabola is fitted to (x,lny) to determine fitted values
of height, position, and FWHM of Gaussian peak.
Parameters
----------
x : ndarray
x-axis data
y : ndarray
y-axis data
Returns
-------
height, position, width : float
height, position and FWHM of fitted Gaussian peaki
Reference
---------
Routine is based on Caruana algorithm mention in paper by <NAME>.
'A Simple Algorithm for Fitting a Gaussian Function', IEEE Signal
Processing Magazine, September 2011
"""
# Common variables
N = len(x)
Sx = np.sum(x)
Sx2 = np.sum(x**2)
Sx3 = np.sum(x**3)
Sx4 = np.sum(x**4)
# To avoid undefined ln(y)
maxy =np.max(y)
ind = np.arange(len(y))
mody = np.array(map(lambda i: maxy/100.0 if y[i] < maxy/100.0 else y[i], ind))
# Create a 3x3 matrix and a 3 dimensional vector
X = np.array([[N, Sx, Sx2], [Sx, Sx2, Sx3], [Sx2, Sx3, Sx4]])
Y = np.vstack(np.array([np.sum(np.log(mody)), np.sum(x * np.log(mody)), np.sum(x**2 * np.log(mody))]))
# Solve linear equation using least square
a, b, c = np.linalg.lstsq(X,Y)[0]
# Calculate fitted values of height, position and width
height = np.exp(a - ((b**2) / (4 * c)))
position = -b/(2*c)
width = 1.66511 / np.sqrt(-c)
return np.array([height, position, width])
## ---- Weighted linear least square fitting ----
def wlstsq(x, y):
"""
Weighted Linear least square fitting routine to fit a quadratic polynomial
to Gaussian peak. Parabola is fitted to (x,lny) to determine fitted values
of height, position and fwhm of Gaussian peak.
Parameters
----------
x : ndarray
x-axis data
y : ndarray
y-axis data
Returns
-------
height, position, width : float
height, position and FWHM of fitted Gaussian peak
References
----------
Routine is based on weighted algorithm mention in paper by <NAME>.
'A Simple Algorithm for Fitting a Gaussian Function', IEEE Signal
Processing Magazine, September 2011
"""
# To avoid undefined ln(y)
maxy =np.max(y)
ind = np.arange(len(y))
mody = np.array(map(lambda i: maxy/100.0 if y[i] < maxy/100.0 else y[i], ind))
# Common variables
Sy2 = np.sum(mody**2)
Sxy2 =
|
np.sum(x * mody**2)
|
numpy.sum
|
import argparse
import cv2
import csv
import keras
from keras.callbacks import CSVLogger
import numpy as np
import os
from tqdm import tqdm
from keras.layers import Lambda, Cropping2D
import matplotlib.pyplot as plt
class steering_model(object):
def __init__(self):
self.layers = [{'type': "dense", 'units': 1}]
def preprocessing_flatten(self):
self.model.add(keras.layers.Flatten(input_shape=(160, 320, 3)))
def def_model_arbitrary(self):
self.model = keras.models.Sequential()
self.model.add(Cropping2D(cropping=((50, 20), (0, 0)), input_shape=(160, 320, 3)))
self.model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=(160, 320, 3)))
self.preprocessing_flatten()
for layer in self.layers:
if layer['type'] == 'dense':
self.model.add(keras.layers.Dense(layer['units']))
return self.model
def def_model_lenet(self):
self.model = keras.Sequential()
self.model.add(Cropping2D(cropping=((50, 20), (0, 0)), input_shape=(160, 320, 3)))
self.model.add(Lambda(lambda x: (x / 255.0) - 0.5, input_shape=(160, 320, 3)))
self.model.add(keras.layers.Conv2D(filters=6, kernel_size=(3, 3), activation='relu'))
self.model.add(keras.layers.AveragePooling2D())
self.model.add(keras.layers.Conv2D(filters=16, kernel_size=(3, 3), activation='relu'))
self.model.add(keras.layers.AveragePooling2D())
self.model.add(keras.layers.Flatten())
self.model.add(keras.layers.Dense(units=120, activation='relu'))
self.model.add(keras.layers.Dense(units=84, activation='relu'))
self.model.add(keras.layers.Dense(units=1))
return self.model
def main(log_results, model_name, data_path):
callbacks = []
data = []
with open(data_path + '/driving_log.csv') as csv_file:
lines = csv.reader(csv_file)
for line in lines:
data.append(line)
data = np.array(data)
input_images_paths_old = {}
input_images_paths_old["center"] = data[:, 0]
input_images_paths_old["left"] = data[:, 1]
input_images_paths_old["right"] = data[:, 2]
Label_data_str = data[:, 3] #steering
Input_image_data = []
Label_data = []
print("Extracting images from repository ...")
for i in tqdm(range(data.shape[0])):
correction = {"center": 0, "left": 0.2, "right": -0.2}
for position in input_images_paths_old.keys():
path_new = os.path.join(data_path, 'IMG', input_images_paths_old[position][i].split('/')[-1])
Input_image_data.append(cv2.imread(path_new))
Label_data.append(float(Label_data_str[i]) + correction[position])
# flipped recording
Input_image_data.append(np.fliplr(cv2.imread(path_new)))
Label_data.append(-(float(Label_data_str[i]) + correction[position]))
Input_image_data = np.array(Input_image_data, dtype=np.float32)
Label_data =
|
np.array(Label_data)
|
numpy.array
|
# !/usr/bin/env python3
# -*-coding:utf-8-*-
# @file: main_GCNet.py
# @brief:
# @author: <NAME>, <EMAIL>, <EMAIL>
# @version: 0.0.1
# @creation date: 07-01-2020
# @last modified: Thu 09 Apr 2020 02:21:58 PM EDT
from __future__ import print_function
import sys
import shutil
import os
from os.path import join as pjoin
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import cv2
from torch.utils.data import DataLoader
import torch.nn.functional as F
#from .loaddata.data import get_training_set, get_valid_set, load_test_data, test_transform
from src.loaddata.data import get_training_set, load_test_data, test_transform
from src.loaddata.dataset import get_virtual_kitti2_filelist
from torch.utils.tensorboard import SummaryWriter
from src.dispColor import colormap_jet_batch_image,KT15FalseColorDisp,KT15LogColorDispErr
#from src.utils import writeKT15FalseColors # this is numpy fuction, it is SO SLOW !!!
# this is cython fuction, it is SO QUICK !!!
from src.cython import writeKT15FalseColor as KT15FalseClr
from src.cython import writeKT15ErrorLogColor as KT15LogClr
import numpy as np
import src.pfmutil as pfm
import time
from .models.loss import valid_accu3, MyLoss2
from .models.gcnet import GCNet
from datetime import datetime
#added by CCJ:
def get_epe_rate2(disp, prediction, max_disp = 192, threshold = 1.0):
mask =
|
np.logical_and(disp >= 0.001, disp <= max_disp)
|
numpy.logical_and
|
import numpy as np
import numpy.testing as npt
import freud
import unittest
import warnings
import util
class TestPMFTR12(unittest.TestCase):
def test_box(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
dtype=np.float32)
angles = np.array([0.0, 0.0], dtype=np.float32)
maxR = 5.23
nbinsR = 10
nbinsT1 = 20
nbinsT2 = 30
myPMFT = freud.pmft.PMFTR12(maxR, nbinsR, nbinsT1, nbinsT2)
myPMFT.accumulate(box, points, angles, points, angles)
npt.assert_equal(myPMFT.box, freud.box.Box.square(boxSize))
# Ensure expected errors are raised
box = freud.box.Box.cube(boxSize)
with self.assertRaises(ValueError):
myPMFT.accumulate(box, points, angles, points, angles)
def test_r_cut(self):
maxR = 5.23
nbinsR = 10
nbinsT1 = 20
nbinsT2 = 30
myPMFT = freud.pmft.PMFTR12(maxR, nbinsR, nbinsT1, nbinsT2)
npt.assert_allclose(myPMFT.r_cut, maxR, atol=1e-6)
def test_bins(self):
maxR = 5.23
nbinsR = 10
nbinsT1 = 20
nbinsT2 = 30
dr = (maxR / float(nbinsR))
dT1 = (2.0 * np.pi / float(nbinsT1))
dT2 = (2.0 * np.pi / float(nbinsT2))
# make sure the radius for each bin is generated correctly
listR = np.zeros(nbinsR, dtype=np.float32)
listT1 = np.zeros(nbinsT1, dtype=np.float32)
listT2 = np.zeros(nbinsT2, dtype=np.float32)
for i in range(nbinsR):
r = float(i) * dr
nextr = float(i + 1) * dr
listR[i] = 2.0/3.0 * (
nextr*nextr*nextr - r*r*r)/(nextr*nextr - r*r)
for i in range(nbinsT1):
t = float(i) * dT1
nextt = float(i + 1) * dT1
listT1[i] = ((t + nextt) / 2.0)
for i in range(nbinsT2):
t = float(i) * dT2
nextt = float(i + 1) * dT2
listT2[i] = ((t + nextt) / 2.0)
myPMFT = freud.pmft.PMFTR12(maxR, nbinsR, nbinsT1, nbinsT2)
# Compare expected bins to the info from pmft
npt.assert_allclose(myPMFT.R, listR, atol=1e-3)
npt.assert_allclose(myPMFT.T1, listT1, atol=1e-3)
npt.assert_allclose(myPMFT.T2, listT2, atol=1e-3)
npt.assert_equal(nbinsR, myPMFT.n_bins_R)
npt.assert_equal(nbinsT1, myPMFT.n_bins_T1)
npt.assert_equal(nbinsT2, myPMFT.n_bins_T2)
inverse_jacobian = np.array(
[[[1/(R*dr*dT1*dT2)
for T1 in listT1] for T2 in listT2] for R in listR])
npt.assert_allclose(myPMFT.inverse_jacobian, inverse_jacobian,
atol=1e-5)
def test_attribute_access(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.1, 0.0]],
dtype=np.float32)
points.flags['WRITEABLE'] = False
angles = np.array([0.0, np.pi/2], dtype=np.float32)
angles.flags['WRITEABLE'] = False
maxR = 5.23
nbinsR = 10
nbinsT1 = 20
nbinsT2 = 30
myPMFT = freud.pmft.PMFTR12(maxR, nbinsR, nbinsT1, nbinsT2)
with self.assertRaises(AttributeError):
myPMFT.PCF
with self.assertRaises(AttributeError):
myPMFT.bin_counts
with self.assertRaises(AttributeError):
myPMFT.box
with self.assertRaises(AttributeError):
myPMFT.PMFT
myPMFT.accumulate(box, points, angles, points, angles)
myPMFT.PCF
myPMFT.bin_counts
myPMFT.PMFT
myPMFT.box
npt.assert_equal(myPMFT.bin_counts.shape, (nbinsR, nbinsT2, nbinsT1))
npt.assert_equal(myPMFT.PCF.shape, (nbinsR, nbinsT2, nbinsT1))
npt.assert_equal(myPMFT.PMFT.shape, (nbinsR, nbinsT2, nbinsT1))
myPMFT.reset()
with self.assertRaises(AttributeError):
myPMFT.PCF
with self.assertRaises(AttributeError):
myPMFT.bin_counts
with self.assertRaises(AttributeError):
myPMFT.box
with self.assertRaises(AttributeError):
myPMFT.PMFT
myPMFT.compute(box, points, angles, points, angles)
myPMFT.PCF
myPMFT.bin_counts
myPMFT.PMFT
myPMFT.box
def test_two_particles(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.1, 0.0]],
dtype=np.float32)
points.flags['WRITEABLE'] = False
angles = np.array([0.0, np.pi/2], dtype=np.float32)
angles.flags['WRITEABLE'] = False
maxR = 5.23
nbinsR = 10
nbinsT1 = 20
nbinsT2 = 30
dr = (maxR / float(nbinsR))
dT1 = (2.0 * np.pi / float(nbinsT1))
dT2 = (2.0 * np.pi / float(nbinsT2))
# calculation for array idxs
def get_bin(point_i, point_j, angle_i, angle_j):
delta_x = point_j - point_i
r_bin = np.floor(np.linalg.norm(delta_x)/dr)
delta_t1 = np.arctan2(delta_x[1], delta_x[0])
delta_t2 = np.arctan2(-delta_x[1], -delta_x[0])
t1_bin = np.floor(((angle_i - delta_t1) % (2. * np.pi))/dT1)
t2_bin = np.floor(((angle_j - delta_t2) % (2. * np.pi))/dT2)
return np.array([r_bin, t2_bin, t1_bin], dtype=np.int32)
correct_bin_counts = np.zeros(shape=(nbinsR, nbinsT2, nbinsT1),
dtype=np.int32)
bins = get_bin(points[0], points[1], angles[0], angles[1])
correct_bin_counts[bins[0], bins[1], bins[2]] = 1
bins = get_bin(points[1], points[0], angles[1], angles[0])
correct_bin_counts[bins[0], bins[1], bins[2]] = 1
absoluteTolerance = 0.1
myPMFT = freud.pmft.PMFTR12(maxR, nbinsR, nbinsT1, nbinsT2)
myPMFT.accumulate(box, points, angles, points, angles)
npt.assert_allclose(myPMFT.bin_counts, correct_bin_counts,
atol=absoluteTolerance)
myPMFT.reset()
myPMFT.compute(box, points, angles, points, angles)
npt.assert_allclose(myPMFT.bin_counts, correct_bin_counts,
atol=absoluteTolerance)
myPMFT.compute(box, points, angles)
npt.assert_allclose(myPMFT.bin_counts, correct_bin_counts,
atol=absoluteTolerance)
def test_repr(self):
maxR = 5.23
nbinsR = 10
nbinsT1 = 20
nbinsT2 = 30
myPMFT = freud.pmft.PMFTR12(maxR, nbinsR, nbinsT1, nbinsT2)
self.assertEqual(str(myPMFT), str(eval(repr(myPMFT))))
def test_ref_points_ne_points(self):
r_max = 2.3
n_r = 10
n_t1 = 10
n_t2 = 10
pmft = freud.pmft.PMFTR12(r_max, n_r, n_t1, n_t2)
lattice_size = 10
box = freud.box.Box.square(lattice_size*5)
ref_points, points = util.make_alternating_lattice(
lattice_size, 0.01, 2)
ref_orientations = np.array([0]*len(ref_points))
orientations = np.array([0]*len(points))
pmft.compute(box, ref_points, ref_orientations, points, orientations)
self.assertEqual(np.count_nonzero(np.isinf(pmft.PMFT) == 0), 12)
self.assertEqual(len(np.unique(pmft.PMFT)), 3)
class TestPMFTXYT(unittest.TestCase):
def test_box(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
dtype=np.float32)
angles = np.array([0.0, 0.0], dtype=np.float32)
maxX = 3.6
maxY = 4.2
nbinsX = 20
nbinsY = 30
nbinsT = 40
myPMFT = freud.pmft.PMFTXYT(maxX, maxY, nbinsX, nbinsY, nbinsT)
myPMFT.accumulate(box, points, angles, points, angles)
npt.assert_equal(myPMFT.box, freud.box.Box.square(boxSize))
# Ensure expected errors are raised
box = freud.box.Box.cube(boxSize)
with self.assertRaises(ValueError):
myPMFT.accumulate(box, points, angles, points, angles)
def test_r_cut(self):
maxX = 3.6
maxY = 4.2
nbinsX = 20
nbinsY = 30
nbinsT = 40
myPMFT = freud.pmft.PMFTXYT(maxX, maxY, nbinsX, nbinsY, nbinsT)
npt.assert_allclose(myPMFT.r_cut,
np.linalg.norm([maxX, maxY]), atol=1e-6)
def test_bins(self):
maxX = 3.6
maxY = 4.2
nbinsX = 20
nbinsY = 30
nbinsT = 40
dx = (2.0 * maxX / float(nbinsX))
dy = (2.0 * maxY / float(nbinsY))
dT = (2.0 * np.pi / float(nbinsT))
# make sure the center for each bin is generated correctly
listX = np.zeros(nbinsX, dtype=np.float32)
listY = np.zeros(nbinsY, dtype=np.float32)
listT = np.zeros(nbinsT, dtype=np.float32)
for i in range(nbinsX):
x = float(i) * dx
nextX = float(i + 1) * dx
listX[i] = -maxX + ((x + nextX) / 2.0)
for i in range(nbinsY):
y = float(i) * dy
nextY = float(i + 1) * dy
listY[i] = -maxY + ((y + nextY) / 2.0)
for i in range(nbinsT):
t = float(i) * dT
nextt = float(i + 1) * dT
listT[i] = ((t + nextt) / 2.0)
myPMFT = freud.pmft.PMFTXYT(maxX, maxY, nbinsX, nbinsY, nbinsT)
# Compare expected bins to the info from pmft
npt.assert_allclose(myPMFT.X, listX, atol=1e-3)
npt.assert_allclose(myPMFT.Y, listY, atol=1e-3)
npt.assert_allclose(myPMFT.T, listT, atol=1e-3)
npt.assert_equal(nbinsX, myPMFT.n_bins_X)
npt.assert_equal(nbinsY, myPMFT.n_bins_Y)
npt.assert_equal(nbinsT, myPMFT.n_bins_T)
npt.assert_allclose(myPMFT.jacobian, dx*dy*dT)
def test_attribute_access(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.1, 0.0]],
dtype=np.float32)
angles = np.array([0.0, np.pi/2], dtype=np.float32)
maxX = 3.6
maxY = 4.2
nbinsX = 20
nbinsY = 30
nbinsT = 40
myPMFT = freud.pmft.PMFTXYT(maxX, maxY, nbinsX, nbinsY, nbinsT)
with self.assertRaises(AttributeError):
myPMFT.PCF
with self.assertRaises(AttributeError):
myPMFT.bin_counts
with self.assertRaises(AttributeError):
myPMFT.box
with self.assertRaises(AttributeError):
myPMFT.PMFT
myPMFT.accumulate(box, points, angles, points, angles)
myPMFT.PCF
myPMFT.bin_counts
myPMFT.PMFT
myPMFT.box
npt.assert_equal(myPMFT.bin_counts.shape, (nbinsT, nbinsY, nbinsX))
npt.assert_equal(myPMFT.PCF.shape, (nbinsT, nbinsY, nbinsX))
npt.assert_equal(myPMFT.PMFT.shape, (nbinsT, nbinsY, nbinsX))
myPMFT.reset()
with self.assertRaises(AttributeError):
myPMFT.PCF
with self.assertRaises(AttributeError):
myPMFT.bin_counts
with self.assertRaises(AttributeError):
myPMFT.box
with self.assertRaises(AttributeError):
myPMFT.PMFT
myPMFT.compute(box, points, angles, points, angles)
myPMFT.PCF
myPMFT.bin_counts
myPMFT.PMFT
myPMFT.box
def test_two_particles(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.1, 0.0]],
dtype=np.float32)
angles = np.array([0.0, np.pi/2], dtype=np.float32)
maxX = 3.6
maxY = 4.2
nbinsX = 20
nbinsY = 30
nbinsT = 40
dx = (2.0 * maxX / float(nbinsX))
dy = (2.0 * maxY / float(nbinsY))
dT = (2.0 * np.pi / float(nbinsT))
# calculation for array idxs
def get_bin(point_i, point_j, angle_i, angle_j):
delta_x = point_j - point_i
rot_mat = np.array([[np.cos(-angle_i), -np.sin(-angle_i)],
[np.sin(-angle_i), np.cos(-angle_i)]])
rot_delta_x = np.matmul(rot_mat, delta_x[:2])
xy_bins = np.floor((rot_delta_x + [maxX, maxY]) /
[dx, dy]).astype(np.int32)
angle_bin = np.floor(
((angle_j - np.arctan2(-delta_x[1], -delta_x[0])) %
(2. * np.pi)) / dT).astype(np.int32)
return [xy_bins[0], xy_bins[1], angle_bin]
correct_bin_counts = np.zeros(shape=(nbinsT, nbinsY, nbinsX),
dtype=np.int32)
bins = get_bin(points[0], points[1], angles[0], angles[1])
correct_bin_counts[bins[2], bins[1], bins[0]] = 1
bins = get_bin(points[1], points[0], angles[1], angles[0])
correct_bin_counts[bins[2], bins[1], bins[0]] = 1
absoluteTolerance = 0.1
myPMFT = freud.pmft.PMFTXYT(maxX, maxY, nbinsX, nbinsY, nbinsT)
myPMFT.accumulate(box, points, angles, points, angles)
npt.assert_allclose(myPMFT.bin_counts, correct_bin_counts,
atol=absoluteTolerance)
myPMFT.reset()
myPMFT.compute(box, points, angles, points, angles)
npt.assert_allclose(myPMFT.bin_counts, correct_bin_counts,
atol=absoluteTolerance)
myPMFT.compute(box, points, angles)
npt.assert_allclose(myPMFT.bin_counts, correct_bin_counts,
atol=absoluteTolerance)
def test_repr(self):
maxX = 3.0
maxY = 4.0
nbinsX = 20
nbinsY = 30
nbinsT = 40
myPMFT = freud.pmft.PMFTXYT(maxX, maxY, nbinsX, nbinsY, nbinsT)
self.assertEqual(str(myPMFT), str(eval(repr(myPMFT))))
def test_ref_points_ne_points(self):
x_max = 2.5
y_max = 2.5
n_x = 10
n_y = 10
n_t = 4
pmft = freud.pmft.PMFTXYT(x_max, y_max, n_x, n_y, n_t)
lattice_size = 10
box = freud.box.Box.square(lattice_size*5)
ref_points, points = util.make_alternating_lattice(
lattice_size, 0.01, 2)
ref_orientations = np.array([0]*len(ref_points))
orientations = np.array([0]*len(points))
pmft.compute(box, ref_points, ref_orientations, points, orientations)
# when rotated slightly, for each ref point, each quadrant
# (corresponding to two consecutive bins) should contain 3 points.
for i in range(n_t):
self.assertEqual(np.count_nonzero(np.isinf(pmft.PMFT[i]) == 0), 3)
self.assertEqual(len(np.unique(pmft.PMFT)), 2)
class TestPMFTXY2D(unittest.TestCase):
def test_box(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
dtype=np.float32)
angles = np.array([0.0, 0.0], dtype=np.float32)
maxX = 3.6
maxY = 4.2
nbinsX = 100
nbinsY = 110
myPMFT = freud.pmft.PMFTXY2D(maxX, maxY, nbinsX, nbinsY)
myPMFT.accumulate(box, points, angles, points, angles)
npt.assert_equal(myPMFT.box, freud.box.Box.square(boxSize))
# Ensure expected errors are raised
box = freud.box.Box.cube(boxSize)
with self.assertRaises(ValueError):
myPMFT.accumulate(box, points, angles, points, angles)
def test_r_cut(self):
maxX = 3.6
maxY = 4.2
nbinsX = 100
nbinsY = 110
myPMFT = freud.pmft.PMFTXY2D(maxX, maxY, nbinsX, nbinsY)
npt.assert_allclose(myPMFT.r_cut,
np.linalg.norm([maxX, maxY]), atol=1e-6)
def test_bins(self):
maxX = 3.6
maxY = 4.2
nbinsX = 20
nbinsY = 30
dx = (2.0 * maxX / float(nbinsX))
dy = (2.0 * maxY / float(nbinsY))
# make sure the center for each bin is generated correctly
listX = np.zeros(nbinsX, dtype=np.float32)
listY = np.zeros(nbinsY, dtype=np.float32)
for i in range(nbinsX):
x = float(i) * dx
nextX = float(i + 1) * dx
listX[i] = -maxX + ((x + nextX) / 2.0)
for i in range(nbinsY):
y = float(i) * dy
nextY = float(i + 1) * dy
listY[i] = -maxY + ((y + nextY) / 2.0)
myPMFT = freud.pmft.PMFTXY2D(maxX, maxY, nbinsX, nbinsY)
# Compare expected bins to the info from pmft
npt.assert_allclose(myPMFT.X, listX, atol=1e-3)
npt.assert_allclose(myPMFT.Y, listY, atol=1e-3)
npt.assert_equal(nbinsX, myPMFT.n_bins_X)
npt.assert_equal(nbinsY, myPMFT.n_bins_Y)
npt.assert_allclose(myPMFT.jacobian, dx*dy)
def test_attribute_access(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
dtype=np.float32)
angles = np.array([0.0, 0.0], dtype=np.float32)
maxX = 3.6
maxY = 4.2
nbinsX = 100
nbinsY = 110
myPMFT = freud.pmft.PMFTXY2D(maxX, maxY, nbinsX, nbinsY)
with self.assertRaises(AttributeError):
myPMFT.PCF
with self.assertRaises(AttributeError):
myPMFT.bin_counts
with self.assertRaises(AttributeError):
myPMFT.box
with self.assertRaises(AttributeError):
myPMFT.PMFT
myPMFT.accumulate(box, points, angles, points, angles)
myPMFT.PCF
myPMFT.bin_counts
myPMFT.PMFT
myPMFT.box
npt.assert_equal(myPMFT.bin_counts.shape, (nbinsY, nbinsX))
npt.assert_equal(myPMFT.PCF.shape, (nbinsY, nbinsX))
npt.assert_equal(myPMFT.PMFT.shape, (nbinsY, nbinsX))
myPMFT.reset()
with self.assertRaises(AttributeError):
myPMFT.PCF
with self.assertRaises(AttributeError):
myPMFT.bin_counts
with self.assertRaises(AttributeError):
myPMFT.box
with self.assertRaises(AttributeError):
myPMFT.PMFT
myPMFT.compute(box, points, angles, points, angles)
myPMFT.PCF
myPMFT.bin_counts
myPMFT.PMFT
myPMFT.box
def test_two_particles(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
dtype=np.float32)
angles = np.array([0.0, 0.0], dtype=np.float32)
maxX = 3.6
maxY = 4.2
nbinsX = 100
nbinsY = 110
dx = (2.0 * maxX / float(nbinsX))
dy = (2.0 * maxY / float(nbinsY))
correct_bin_counts = np.zeros(shape=(nbinsY, nbinsX), dtype=np.int32)
# calculation for array idxs
def get_bin(point_i, point_j):
return np.floor((point_i - point_j + [maxX, maxY, 0]) /
[dx, dy, 1]).astype(np.int32)[:2]
bins = get_bin(points[0], points[1])
correct_bin_counts[bins[1], bins[0]] = 1
bins = get_bin(points[1], points[0])
correct_bin_counts[bins[1], bins[0]] = 1
absoluteTolerance = 0.1
myPMFT = freud.pmft.PMFTXY2D(maxX, maxY, nbinsX, nbinsY)
myPMFT.accumulate(box, points, angles, points, angles)
npt.assert_allclose(myPMFT.bin_counts, correct_bin_counts,
atol=absoluteTolerance)
myPMFT.reset()
myPMFT.compute(box, points, angles, points, angles)
npt.assert_allclose(myPMFT.bin_counts, correct_bin_counts,
atol=absoluteTolerance)
myPMFT.compute(box, points, angles)
npt.assert_allclose(myPMFT.bin_counts, correct_bin_counts,
atol=absoluteTolerance)
def test_repr(self):
maxX = 3.0
maxY = 4.0
nbinsX = 100
nbinsY = 110
myPMFT = freud.pmft.PMFTXY2D(maxX, maxY, nbinsX, nbinsY)
self.assertEqual(str(myPMFT), str(eval(repr(myPMFT))))
def test_repr_png(self):
boxSize = 16.0
box = freud.box.Box.square(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
dtype=np.float32)
angles = np.array([0.0, 0.0], dtype=np.float32)
maxX = 3.6
maxY = 4.2
nbinsX = 100
nbinsY = 110
myPMFT = freud.pmft.PMFTXY2D(maxX, maxY, nbinsX, nbinsY)
with self.assertRaises(AttributeError):
myPMFT.plot()
self.assertEqual(myPMFT._repr_png_(), None)
myPMFT.accumulate(box, points, angles, points, angles)
myPMFT._repr_png_()
def test_ref_points_ne_points(self):
x_max = 2.5
y_max = 2.5
n_x = 20
n_y = 20
pmft = freud.pmft.PMFTXY2D(x_max, y_max, n_x, n_y)
lattice_size = 10
box = freud.box.Box.square(lattice_size*5)
ref_points, points = util.make_alternating_lattice(
lattice_size, 0.01, 2)
ref_orientations = np.array([0]*len(ref_points))
orientations = np.array([0]*len(points))
pmft.compute(box, ref_points, ref_orientations, points, orientations)
self.assertEqual(np.count_nonzero(np.isinf(pmft.PMFT) == 0), 12)
self.assertEqual(len(np.unique(pmft.PMFT)), 2)
class TestPMFTXYZ(unittest.TestCase):
def test_box(self):
boxSize = 25.0
box = freud.box.Box.cube(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
dtype=np.float32)
orientations = np.array([[1, 0, 0, 0], [1, 0, 0, 0]], dtype=np.float32)
maxX = 5.23
maxY = 6.23
maxZ = 7.23
nbinsX = 100
nbinsY = 110
nbinsZ = 120
myPMFT = freud.pmft.PMFTXYZ(maxX, maxY, maxZ, nbinsX, nbinsY, nbinsZ)
myPMFT.accumulate(box, points, orientations, points, orientations)
npt.assert_equal(myPMFT.box, freud.box.Box.cube(boxSize))
# Ensure expected errors are raised
box = freud.box.Box.square(boxSize)
with self.assertRaises(ValueError):
myPMFT.accumulate(box, points, orientations, points, orientations)
def test_r_cut(self):
maxX = 5.23
maxY = 6.23
maxZ = 7.23
nbinsX = 100
nbinsY = 110
nbinsZ = 120
myPMFT = freud.pmft.PMFTXYZ(maxX, maxY, maxZ, nbinsX, nbinsY, nbinsZ)
r_cut = np.linalg.norm([maxX, maxY, maxZ])
npt.assert_allclose(myPMFT.r_cut, r_cut, atol=1e-6)
def test_bins(self):
maxX = 5.23
maxY = 6.23
maxZ = 7.23
nbinsX = 100
nbinsY = 110
nbinsZ = 120
dx = (2.0 * maxX / float(nbinsX))
dy = (2.0 * maxY / float(nbinsY))
dz = (2.0 * maxZ / float(nbinsZ))
listX = np.zeros(nbinsX, dtype=np.float32)
listY = np.zeros(nbinsY, dtype=np.float32)
listZ = np.zeros(nbinsZ, dtype=np.float32)
for i in range(nbinsX):
x = float(i) * dx
nextX = float(i + 1) * dx
listX[i] = -maxX + ((x + nextX) / 2.0)
for i in range(nbinsY):
y = float(i) * dy
nextY = float(i + 1) * dy
listY[i] = -maxY + ((y + nextY) / 2.0)
for i in range(nbinsZ):
z = float(i) * dz
nextZ = float(i + 1) * dz
listZ[i] = -maxZ + ((z + nextZ) / 2.0)
myPMFT = freud.pmft.PMFTXYZ(maxX, maxY, maxZ, nbinsX, nbinsY, nbinsZ)
# Compare expected bins to the info from pmft
npt.assert_allclose(myPMFT.X, listX, atol=1e-3)
npt.assert_allclose(myPMFT.Y, listY, atol=1e-3)
npt.assert_allclose(myPMFT.Z, listZ, atol=1e-3)
npt.assert_equal(nbinsX, myPMFT.n_bins_X)
npt.assert_equal(nbinsY, myPMFT.n_bins_Y)
npt.assert_equal(nbinsZ, myPMFT.n_bins_Z)
npt.assert_allclose(myPMFT.jacobian, dx*dy*dz)
def test_attribute_access(self):
boxSize = 25.0
box = freud.box.Box.cube(boxSize)
points = np.array([[-1.0, 0.0, 0.0], [1.0, 0.0, 0.0]],
dtype=np.float32)
orientations =
|
np.array([[1, 0, 0, 0], [1, 0, 0, 0]], dtype=np.float32)
|
numpy.array
|
#####################################################################
# #
# /NovaTechDDS9M.py #
# #
# Copyright 2013, Monash University #
# #
# This file is part of the module labscript_devices, in the #
# labscript suite (see http://labscriptsuite.org), and is #
# licensed under the Simplified BSD License. See the license.txt #
# file in the root of the project for the full license. #
# #
#####################################################################
from labscript_devices import runviewer_parser, BLACS_tab
from labscript import IntermediateDevice, DDS, StaticDDS, Device, config, LabscriptError, set_passed_properties
from labscript_utils.unitconversions import NovaTechDDS9mFreqConversion, NovaTechDDS9mAmpConversion
import numpy as np
import labscript_utils.h5_lock, h5py
import labscript_utils.properties
bauds = {9600: b'Kb 78',
19200: b'Kb 3c',
38400: b'Kb 1e',
57600: b'Kb 14',
115200: b'Kb 0a'}
class NovaTechDDS9M(IntermediateDevice):
"""
This class is initilzed with the key word argument
'update_mode' -- synchronous or asynchronous\
'baud_rate', -- operating baud rate
'default_baud_rate' -- assumed baud rate at startup
"""
description = 'NT-DDS9M'
allowed_children = [DDS, StaticDDS]
clock_limit = 9990 # This is a realistic estimate of the max clock rate (100us for TS/pin10 processing to load next value into buffer and 100ns pipeline delay on pin 14 edge to update output values)
@set_passed_properties(
property_names={
'connection_table_properties': [
'com_port',
'baud_rate',
'default_baud_rate',
'update_mode',
'synchronous_first_line_repeat',
'phase_mode',
]
}
)
def __init__(
self,
name,
parent_device,
com_port="",
baud_rate=115200,
default_baud_rate=None,
update_mode='synchronous',
synchronous_first_line_repeat=False,
phase_mode='continuous',
**kwargs
):
IntermediateDevice.__init__(self, name, parent_device, **kwargs)
self.BLACS_connection = '%s,%s'%(com_port, str(baud_rate))
if not update_mode in ['synchronous', 'asynchronous']:
raise LabscriptError('update_mode must be \'synchronous\' or \'asynchronous\'')
if not baud_rate in bauds:
raise LabscriptError('baud_rate must be one of {0}'.format(list(bauds)))
if not default_baud_rate in bauds and default_baud_rate is not None:
raise LabscriptError('default_baud_rate must be one of {0} or None (to indicate no default)'.format(list(bauds)))
if not phase_mode in ['aligned', 'continuous']:
raise LabscriptError('phase_mode must be \'aligned\' or \'continuous\'')
self.update_mode = update_mode
self.phase_mode = phase_mode
self.synchronous_first_line_repeat = synchronous_first_line_repeat
def add_device(self, device):
Device.add_device(self, device)
# The Novatech doesn't support 0Hz output; set the default frequency of the DDS to 0.1 Hz:
device.frequency.default_value = 0.1
def get_default_unit_conversion_classes(self, device):
"""Child devices call this during their __init__ (with themselves
as the argument) to check if there are certain unit calibration
classes that they should apply to their outputs, if the user has
not otherwise specified a calibration class"""
return NovaTechDDS9mFreqConversion, NovaTechDDS9mAmpConversion, None
def quantise_freq(self, data, device):
if not isinstance(data, np.ndarray):
data = np.array(data)
# Ensure that frequencies are within bounds:
if
|
np.any(data > 171e6 )
|
numpy.any
|
# import standard plotting and animation
import numpy as np
import matplotlib.pyplot as plt
from matplotlib import gridspec
from matplotlib.ticker import FormatStrFormatter
import matplotlib.animation as animation
from mpl_toolkits.mplot3d import Axes3D
from IPython.display import clear_output
import matplotlib.ticker as ticker
# import standard libraries
import math
import time
import copy
from inspect import signature
class Visualizer:
'''
animators for time series
'''
#### animate moving average ####
def animate_system(self,x,y,T,savepath,**kwargs):
# produce figure
fig = plt.figure(figsize = (9,4))
gs = gridspec.GridSpec(1, 3, width_ratios=[1,7,1])
ax = plt.subplot(gs[0]); ax.axis('off')
ax1 = plt.subplot(gs[1]);
ax2 = plt.subplot(gs[2]); ax2.axis('off')
artist = fig
# view limits
xmin = -3
xmax = len(x) + 3
ymin = np.min(x)
ymax = np.max(x)
ygap = (ymax - ymin)*0.15
ymin -= ygap
ymax += ygap
# start animation
num_frames = len(y) - T + 1
print ('starting animation rendering...')
def animate(k):
# clear panels
ax1.cla()
# print rendering update
if np.mod(k+1,25) == 0:
print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames))
if k == num_frames - 1:
print ('animation rendering complete!')
time.sleep(1.5)
clear_output()
# plot x
ax1.scatter(np.arange(1,x.size + 1),x,c = 'k',edgecolor = 'w',s = 40,linewidth = 1,zorder = 3);
ax1.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3);
# plot moving average - initial conditions
if k == 1:
# plot x
ax1.scatter(np.arange(1,T + 1), y[:T],c = 'darkorange',edgecolor = 'w',s = 120,linewidth = 1,zorder = 2);
ax1.plot(np.arange(1,T + 1), y[:T],alpha = 0.5,c = 'darkorange',zorder = 2);
# make vertical visual guides
ax1.axvline(x = 1, c='deepskyblue')
ax1.axvline(x = T, c='deepskyblue')
# plot moving average - everything after and including initial conditions
if k > 1:
j = k-1
# plot
ax1.scatter(np.arange(1,T + j + 1),y[:T + j],c = 'darkorange',edgecolor = 'w',s = 120,linewidth = 1,zorder = 2);
ax1.plot(np.arange(1,T + j + 1),y[:T + j],alpha = 0.5,c = 'darkorange',zorder = 2);
# make vertical visual guides
ax1.axvline(x = j, c='deepskyblue')
ax1.axvline(x = j + T - 1, c='deepskyblue')
# label axes
ax1.set_xlim([xmin,xmax])
ax1.set_ylim([ymin,ymax])
return artist,
anim = animation.FuncAnimation(fig, animate ,frames=num_frames, interval=num_frames, blit=True)
# produce animation and save
fps = 50
if 'fps' in kwargs:
fps = kwargs['fps']
anim.save(savepath, fps=fps, extra_args=['-vcodec', 'libx264'])
clear_output()
#### animate range of moving average calculations ####
def animate_system_range(self,x,func,params,savepath,**kwargs):
playback = 1
if 'playback' in kwargs:
playback = kwargs['playback']
# produce figure
fig = plt.figure(figsize = (9,4))
gs = gridspec.GridSpec(1, 3, width_ratios=[1,7,1])
ax = plt.subplot(gs[0]); ax.axis('off')
ax1 = plt.subplot(gs[1]);
ax2 = plt.subplot(gs[2]); ax2.axis('off')
artist = fig
# view limits
xmin = -3
xmax = len(x) + 3
ymin = np.min(x)
ymax = np.max(x)
ygap = (ymax - ymin)*0.15
ymin -= ygap
ymax += ygap
# start animation
num_frames = len(params)+1
print ('starting animation rendering...')
def animate(k):
# clear panels
ax1.cla()
# print rendering update
if np.mod(k+1,25) == 0:
print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames))
if k == num_frames - 1:
print ('animation rendering complete!')
time.sleep(1.5)
clear_output()
# plot x
ax1.scatter(np.arange(1,x.size + 1),x,c = 'k',edgecolor = 'w',s = 40,linewidth = 1,zorder = 3);
ax1.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3);
# create y
if k == 0:
T = params[0]
y = func(x,T)
ax1.set_title(r'Original data')
if k > 0:
T = params[k-1]
y = func(x,T)
ax1.scatter(np.arange(1,y.size + 1),y,c = 'darkorange',edgecolor = 'w',s = 120,linewidth = 1,zorder = 2);
ax1.plot(np.arange(1,y.size + 1),y,alpha = 0.5,c = 'darkorange',zorder = 2);
ax1.set_title(r'$D = $ ' + str(T))
# label axes
ax1.set_xlabel(r'$p$',fontsize = 13)
ax1.set_xlim([xmin,xmax])
ax1.set_ylim([ymin,ymax])
return artist,
anim = animation.FuncAnimation(fig, animate ,frames=num_frames, interval=num_frames, blit=True)
# produce animation and save
if 'fps' in kwargs:
fps = kwargs['fps']
anim.save(savepath, fps=1, extra_args=['-vcodec', 'libx264'])
clear_output()
#### animate vector system with heatmap ####
def animate_vector_system(self,x,D,model,func,savepath,**kwargs):
x = np.array(x)
h,old_bins = func([0])
bins = []
for i in range(len(old_bins)-1):
b1 = old_bins[i]
b2 = old_bins[i+1]
n = (b1 + b2)/2
n = np.round(n,2)
bins.append(n)
y = model(x,D,func)
num_windows = len(y) - 1
# produce figure
fig = plt.figure(figsize = (11,10))
gs = gridspec.GridSpec(2, 3, width_ratios=[1,7,1],height_ratios=[0.75,1])
ax1 = plt.subplot(gs[0]); ax1.axis('off')
ax2 = plt.subplot(gs[1]);
ax3 = plt.subplot(gs[2]); ax3.axis('off')
ax4 = plt.subplot(gs[3]); ax4.axis('off')
ax5 = plt.subplot(gs[4]);
ax6 = plt.subplot(gs[5]); ax6.axis('off')
artist = fig
# view limits
xmin = -3
xmax = len(x) + 3
ymin = np.min(x)
ymax = np.max(x)
ygap = (ymax - ymin)*0.15
ymin -= ygap
ymax += ygap
# make colormap
# a,b = np.meshgrid(np.arange(num_windows+1),np.arange(len(bins)-1))
# s = ax1.pcolormesh(a, b, np.array(y).T,cmap = 'hot',vmin = 0,vmax = 1) #,edgecolor = 'k') # hot, gist_heat, cubehelix
# ax1.cla(); ax1.axis('off');
# fig.colorbar(s, ax=ax5)
# start animation
num_frames = len(x) - D + 2
print ('starting animation rendering...')
def animate(k):
# clear panels
ax2.cla()
ax5.cla()
# print rendering update
if np.mod(k+1,25) == 0:
print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames))
if k == num_frames - 1:
print ('animation rendering complete!')
time.sleep(1.5)
clear_output()
# plot x
ax2.scatter(np.arange(1,x.size + 1),x,c = 'k',edgecolor = 'w',s = 80,linewidth = 1,zorder = 3);
ax2.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3);
# plot moving average - initial conditions
if k == 0:
# plot x
ax2.scatter(np.arange(1,D + 1), x[:D],c = 'darkorange',edgecolor = 'w',s = 200,linewidth = 1,zorder = 2);
ax2.plot(np.arange(1,D + 1), x[:D],alpha = 0.5,c = 'darkorange',zorder = 2);
# make vertical visual guides
ax2.axvline(x = 1, c='deepskyblue')
ax2.axvline(x = D, c='deepskyblue')
# plot histogram
self.plot_heatmap(ax5,y[:2],bins,num_windows)
# plot moving average - everything after and including initial conditions
if k > 0:
j = k
# plot
ax2.scatter(np.arange(j,D + j),x[j-1:D + j - 1],c = 'darkorange',edgecolor = 'w',s = 200,linewidth = 1,zorder = 2);
ax2.plot(np.arange(j,D + j),x[j-1:D + j - 1],alpha = 0.5,c = 'darkorange',zorder = 2);
# make vertical visual guides
ax2.axvline(x = j, c='deepskyblue')
ax2.axvline(x = j + D - 1, c='deepskyblue')
# plot histogram
self.plot_heatmap(ax5,y[:j+1],bins,num_windows)
# label axes
ax2.set_xlim([xmin,xmax])
ax2.set_ylim([ymin,ymax])
return artist,
anim = animation.FuncAnimation(fig, animate ,frames=num_frames, interval=num_frames, blit=True)
# produce animation and save
fps = 50
if 'fps' in kwargs:
fps = kwargs['fps']
anim.save(savepath, fps=fps, extra_args=['-vcodec', 'libx264'])
clear_output()
def plot_heatmap(self,ax,y,bins,num_windows):
y=np.array(y).T
### plot ###
num_chars,num_samples = y.shape
num_chars += 1
a,b = np.meshgrid(np.arange(num_samples),np.arange(num_chars))
### y-axis Customize minor tick labels ###
# make custom labels
num_bins = len(bins)+1
y_ticker_range = np.arange(0.5,num_bins,10).tolist()
new_bins = [bins[v] for v in range(0,len(bins),10)]
y_char_range = [str(s) for s in new_bins]
# assign major or minor ticklabels? - chosen major by default
ax.yaxis.set_major_locator(ticker.FixedLocator(y_ticker_range))
ax.yaxis.set_major_formatter(ticker.FixedFormatter(y_char_range))
ax.xaxis.set_ticks_position('bottom') # the rest is the same
ax.set_xticks([],[])
ax.set_yticks([],[])
ax.set_ylabel('values',rotation = 90,fontsize=15)
ax.set_xlabel('window',fontsize=15)
# ax.set_title(title,fontsize = 15)
cmap = 'hot_r'
#cmap = 'RdPu'
s = ax.pcolormesh(a, b, 4*y,cmap = cmap,vmin = 0,vmax = 1) #,edgecolor = 'k') # hot, gist_heat, cubehelix
ax.set_ylim([-1,len(bins)])
ax.set_xlim([0,num_windows])
# for i in range(len(bins)):
# ax.hlines(y=i, xmin=0, xmax=num_windows, linewidth=1, color='k',alpha = 0.75)
#### animate vector system with heatmap ####
def animate_vector_histogram(self,x,D,model,func,savepath,**kwargs):
x = np.array(x)
h,old_bins = func([0])
bins = []
for i in range(len(old_bins)-1):
b1 = old_bins[i]
b2 = old_bins[i+1]
n = (b1 + b2)/2
n = np.round(n,2)
bins.append(n)
y = model(x,D,func)
num_windows = len(y) - 1
# produce figure
fig = plt.figure(figsize = (11,10))
gs = gridspec.GridSpec(3, 3, width_ratios=[1,7,1],height_ratios=[1,1,1.5])
ax1 = plt.subplot(gs[0]); ax1.axis('off')
ax2 = plt.subplot(gs[1]);
ax3 = plt.subplot(gs[2]); ax3.axis('off')
axa = plt.subplot(gs[3]); axa.axis('off')
axb = plt.subplot(gs[7]);
axc = plt.subplot(gs[5]); axc.axis('off')
ax4 = plt.subplot(gs[6]); ax4.axis('off')
ax5 = plt.subplot(gs[4]);
ax6 = plt.subplot(gs[8]); ax6.axis('off')
artist = fig
# view limits
xmin = -3
xmax = len(x) + 3
ymin = np.min(x)
ymax = np.max(x)
ygap = (ymax - ymin)*0.15
ymin -= ygap
ymax += ygap
# start animation
num_frames = len(x) - D + 2
print ('starting animation rendering...')
def animate(k):
# clear panels
ax2.cla()
ax5.cla()
axb.cla()
# print rendering update
if np.mod(k+1,25) == 0:
print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames))
if k == num_frames - 1:
print ('animation rendering complete!')
time.sleep(1.5)
clear_output()
# plot x
ax2.scatter(np.arange(1,x.size + 1),x,c = 'k',edgecolor = 'w',s = 80,linewidth = 1,zorder = 3);
ax2.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3);
# plot moving average - initial conditions
if k == 0:
# plot x
ax2.scatter(np.arange(1,D + 1), x[:D],c = 'darkorange',edgecolor = 'w',s = 200,linewidth = 1,zorder = 2);
ax2.plot(np.arange(1,D + 1), x[:D],alpha = 0.5,c = 'darkorange',zorder = 2);
# make vertical visual guides
ax2.axvline(x = 1, c='deepskyblue')
ax2.axvline(x = D, c='deepskyblue')
# plot histogram
self.plot_histogram(ax5,y[0],bins)
self.plot_heatmap(axb,y[:2],bins,num_windows)
# plot moving average - everything after and including initial conditions
if k > 0:
j = k
# plot
ax2.scatter(np.arange(j,D + j),x[j-1:D + j - 1],c = 'darkorange',edgecolor = 'w',s = 200,linewidth = 1,zorder = 2);
ax2.plot(np.arange(j,D + j),x[j-1:D + j - 1],alpha = 0.5,c = 'darkorange',zorder = 2);
# make vertical visual guides
ax2.axvline(x = j, c='deepskyblue')
ax2.axvline(x = j + D - 1, c='deepskyblue')
# plot histogram
self.plot_histogram(ax5,y[j],bins)
# plot histogram
self.plot_heatmap(axb,y[:j+1],bins,num_windows)
# label axes
ax2.set_xlim([xmin,xmax])
ax2.set_ylim([ymin,ymax])
ax2.set_xlabel(r'$p$',fontsize=14)
ax2.set_ylabel(r'$x_p$',rotation=0,fontsize=14)
return artist,
anim = animation.FuncAnimation(fig, animate ,frames=num_frames, interval=num_frames, blit=True)
# produce animation and save
fps = 50
if 'fps' in kwargs:
fps = kwargs['fps']
anim.save(savepath, fps=fps, extra_args=['-vcodec', 'libx264'])
clear_output()
def plot_histogram(self,ax,h,bins,**kwargs):
# plot hist
ax.bar(bins,h,align='center',width=0.1,edgecolor='k',color='magenta',linewidth=1.5)
# label axes
ax.set_xlabel(r'$values$',fontsize = 13)
ax.set_ylabel(r'count',fontsize = 13,rotation = 90,labelpad = 15)
ymin = 0
xmin = min(bins) - 0.1
xmax = max(bins) + 0.1
ymax = 0.5
ax.set_xlim([xmin,xmax])
ax.set_ylim([ymin,ymax])
#### animate spectrogram construction ####
def animate_dct_spectrogram(self,x,D,model,func,savepath,**kwargs):
# produce heatmap
y = model(x,D,func)
num_windows = y.shape[1]-1
# produce figure
fig = plt.figure(figsize = (12,8))
gs = gridspec.GridSpec(2, 3, width_ratios=[1,7,1],height_ratios=[1,1])
ax1 = plt.subplot(gs[0]); ax1.axis('off')
ax2 = plt.subplot(gs[1]);
ax3 = plt.subplot(gs[2]); ax3.axis('off')
ax4 = plt.subplot(gs[3]); ax4.axis('off')
ax5 = plt.subplot(gs[4]);
ax5.set_yticks([],[])
ax5.axis('off')
ax6 = plt.subplot(gs[5]); ax6.axis('off')
artist = fig
# view limits for top panel
xmin = -3
xmax = len(x) + 3
ymin = np.min(x)
ymax = np.max(x)
ygap = (ymax - ymin)*0.15
ymin -= ygap
ymax += ygap
vmin = np.min(np.log(1 + y).flatten())
vmax = np.max(np.log(1 + y).flatten())
# start animation
num_frames = len(x) - D + 2
print ('starting animation rendering...')
def animate(k):
# clear panels
ax2.cla()
ax5.cla()
# print rendering update
if np.mod(k+1,25) == 0:
print ('rendering animation frame ' + str(k+1) + ' of ' + str(num_frames))
if k == num_frames - 1:
print ('animation rendering complete!')
time.sleep(1.5)
clear_output()
# plot signal
ax2.plot(np.arange(1,x.size + 1),x,alpha = 0.5,c = 'k',zorder = 3);
# plot moving average - initial conditions
if k == 0:
# plot x
ax2.plot(np.arange(1,D + 1), x[:D],alpha = 0.5,c = 'magenta',zorder = 2,linewidth=8);
# plot spectrogram
ax5.imshow(np.log(1 + y[:,:1]),aspect='auto',cmap='jet',origin='lower',vmin = vmin, vmax = vmax)
# plot moving average - everything after and including initial conditions
if k > 0:
j = k
# plot
ax2.plot(np.arange(j,D + j),x[j-1:D + j - 1],alpha = 0.5,c = 'magenta',zorder = 2,linewidth=8);
# plot histogram
ax5.imshow(np.log(1 + y[:,:j+1]),aspect='auto',cmap='jet',origin='lower', vmin = vmin, vmax = vmax)
# label axes
ax2.set_xlim([xmin,xmax])
ax2.set_ylim([ymin,ymax])
ax2.set_xlabel(r'$p$',fontsize=14)
ax2.set_ylabel(r'$x_p$',rotation=0,fontsize=14)
ax5.set_xlim([0,num_windows])
return artist,
anim = animation.FuncAnimation(fig, animate ,frames=num_frames, interval=num_frames, blit=True)
# produce animation and save
fps = 50
if 'fps' in kwargs:
fps = kwargs['fps']
anim.save(savepath, fps=fps, extra_args=['-vcodec', 'libx264'])
clear_output()
#### animate spectrogram construction ####
def animate_mlp_outputs(self,x,D,model,func,savepath,**kwargs):
# produce heatmap
y = model(x,D,func)
num_windows = y.shape[1]-1
# produce figure
fig = plt.figure(figsize = (12,8))
gs = gridspec.GridSpec(2, 3, width_ratios=[1,7,1],height_ratios=[1,1])
ax1 = plt.subplot(gs[0]); ax1.axis('off')
ax2 = plt.subplot(gs[1]);
ax3 = plt.subplot(gs[2]); ax3.axis('off')
ax4 = plt.subplot(gs[3]); ax4.axis('off')
ax5 = plt.subplot(gs[4]);
ax5.set_yticks([],[])
ax5.axis('off')
ax6 = plt.subplot(gs[5]); ax6.axis('off')
artist = fig
# view limits for top panel
xmin = -3
xmax = len(x) + 3
ymin = np.min(x)
ymax = np.max(x)
ygap = (ymax - ymin)*0.15
ymin -= ygap
ymax += ygap
vmin = np.min(
|
np.log(1 + y)
|
numpy.log
|
import os
import cv2
import tqdm
import torch
import numpy as np
import seaborn as sns
import pandas as pd
import codecs
import json
import matplotlib.pyplot as plt
plt.switch_backend('agg')
from solver import Solver
from models.model import Model
from datasets.steel_dataset import provider
from utils.set_seed import seed_torch
from utils.cal_dice_iou import compute_dice_class
from config import get_seg_config
class ChooseThresholdMinArea():
''' 选择每一类的像素阈值和最小连通域
'''
def __init__(self, model, model_name, valid_loader, fold, save_path, class_num=4):
''' 模型初始化
Args:
model: 使用的模型
model_name: 当前模型的名称
valid_loader: 验证数据的Dataloader
fold: 当前为多少折
save_path: 保存结果的路径
class_num: 有多少个类别
'''
self.model = model
self.model_name = model_name
self.valid_loader = valid_loader
self.fold = fold
self.save_path = save_path
self.class_num = class_num
self.model.eval()
self.solver = Solver(model)
def choose_threshold_minarea(self):
''' 采用网格法搜索各个类别最优像素阈值和最优最小连通域,并画出各个类别搜索过程中的热力图
Return:
best_thresholds_little: 每一个类别的最优阈值
best_minareas_little: 每一个类别的最优最小连通取余
max_dices_little: 每一个类别的最大dice值
'''
init_thresholds_range, init_minarea_range = np.arange(0.50, 0.71, 0.03), np.arange(768, 2305, 256)
# 阈值列表和最小连通域列表,大小为 Nx4
thresholds_table_big = np.array([init_thresholds_range, init_thresholds_range, \
init_thresholds_range, init_thresholds_range]) # 阈值列表
minareas_table_big = np.array([init_minarea_range, init_minarea_range, \
init_minarea_range, init_minarea_range]) # 最小连通域列表
f, axes = plt.subplots(figsize=(28.8, 18.4), nrows=2, ncols=self.class_num)
cmap = sns.cubehelix_palette(start=1.5, rot=3, gamma=0.8, as_cmap=True)
best_thresholds_big, best_minareas_big, max_dices_big = self.grid_search(thresholds_table_big, minareas_table_big, axes[0,:], cmap)
print('best_thresholds_big:{}, best_minareas_big:{}, max_dices_big:{}'.format(best_thresholds_big, best_minareas_big, max_dices_big))
# 开始细分类
thresholds_table_little, minareas_table_little = list(), list()
for best_threshold_big, best_minarea_big in zip(best_thresholds_big, best_minareas_big):
thresholds_table_little.append(np.arange(best_threshold_big-0.03, best_threshold_big+0.03, 0.015)) # 阈值列表
minareas_table_little.append(np.arange(best_minarea_big-256, best_minarea_big+257, 128)) # 像素阈值列表
thresholds_table_little, minareas_table_little = np.array(thresholds_table_little), np.array(minareas_table_little)
best_thresholds_little, best_minareas_little, max_dices_little = self.grid_search(thresholds_table_little, minareas_table_little, axes[1,:], cmap)
print('best_thresholds_little:{}, best_minareas_little:{}, max_dices_little:{}'.format(best_thresholds_little, best_minareas_little, max_dices_little))
f.savefig(os.path.join(self.save_path, self.model_name + '_fold'+str(self.fold)), bbox_inches='tight')
# plt.show()
plt.close()
return best_thresholds_little, [float(x) for x in best_minareas_little], max_dices_little
def grid_search(self, thresholds_table, minareas_table, axes, cmap):
''' 给定包含各个类别搜索区间的thresholds_table和minareas_table,求的各个类别的最优像素阈值,最优最小连通域,最高dice;
并画出各个类别搜索过程中的热力图
Args:
thresholds_table: 待搜索的阈值范围,维度为[4, N],numpy类型
minareas_table: 待搜索的最小连通域范围,维度为[4, N],numpy类型
axes: 画各个类别搜索热力图时所需要的画柄,尺寸为[class_num]
cmap: 画图时所需要的cmap
return:
best_thresholds: 各个类别的最优像素阈值,尺寸为[class_num]
best_minareas: 各个类别的最优最小连通域,尺寸为[class_num]
max_dices: 各个类别的最大dice,尺寸为[class_num]
'''
dices_table = np.zeros((self.class_num, np.shape(thresholds_table)[1], np.shape(minareas_table)[1]))
tbar = tqdm.tqdm(self.valid_loader)
with torch.no_grad():
for i, samples in enumerate(tbar):
if len(samples) == 0:
continue
images, masks = samples[0], samples[1]
# 完成网络的前向传播
masks_predict_allclasses = self.solver.forward(images)
dices_table += self.grid_search_batch(thresholds_table, minareas_table, masks_predict_allclasses, masks)
dices_table = dices_table/len(tbar)
best_thresholds, best_minareas, max_dices = list(), list(), list()
# 处理每一类的预测结果
for each_class, dices_oneclass_table in enumerate(dices_table):
max_dice = np.max(dices_oneclass_table)
max_location = np.unravel_index(np.argmax(dices_oneclass_table, axis=None),
dices_oneclass_table.shape)
best_thresholds.append(thresholds_table[each_class, max_location[0]])
best_minareas.append(minareas_table[each_class, max_location[1]])
max_dices.append(max_dice)
data = pd.DataFrame(data=dices_oneclass_table, index=np.around(thresholds_table[each_class,:], 3), columns=minareas_table[each_class,:])
sns.heatmap(data, linewidths=0.05, ax=axes[each_class], vmax=np.max(dices_oneclass_table), vmin=np.min(dices_oneclass_table), cmap=cmap,
annot=True, fmt='.4f')
axes[each_class].set_title('search result')
return best_thresholds, best_minareas, max_dices
def grid_search_batch(self, thresholds_table, minareas_table, masks_predict_allclasses, masks_allclasses):
'''给定thresholds、minareas矩阵、一个batch的预测结果和真实标签,遍历每个类的每一个组合得到对应的dice值
Args:
thresholds_table: 待搜索的阈值范围,维度为[4, N],numpy类型
minareas_table: 待搜索的最小连通域范围,维度为[4, N],numpy类型
masks_predict_allclasses: 所有类别的某个batch的预测结果且未经过sigmoid,维度为[batch_size, class_num, height, width]
masks_allclasses: 所有类别的某个batch的真实类标,维度为[batch_size, class_num, height, width]
Return:
dices_table: 各个类别在其各自的所有搜索组合中所得到的dice值,维度为[4, M, N]
'''
# 得到每一个类别的搜索阈值区间和最小连通域搜索区间
dices_table = list()
for each_class, (thresholds_range, minareas_range) in enumerate(zip(thresholds_table, minareas_table)):
# 得到每一类的预测结果和真实类标
masks_predict_oneclass = masks_predict_allclasses[:, each_class, ...]
masks_oneclasses = masks_allclasses[:, each_class, ...]
dices_range = self.post_process(thresholds_range, minareas_range, masks_predict_oneclass, masks_oneclasses)
dices_table.append(dices_range)
# 得到的大小为 4 x len(thresholds_range) x len(minareas_range)
return np.array(dices_table)
def post_process(self, thresholds_range, minareas_range, masks_predict_oneclass, masks_oneclasses):
'''给定某个类别的某个batch的数据,遍历所有搜索组合,得到每个组合的dice值
Args:
thresholds_range: 具体某个类别的像素阈值搜索区间,尺寸为[M]
minareas_range: 具体某个类别的最小连通域搜索区间,尺寸为[N]
masks_predict_oneclass: 预测出的某个类别的该batch的tensor向量且未经过sigmoid,维度为[batch_size, height, width]
masks_oneclasses: 某个类别的该batch的真实类标,维度为[batch_size, height, width]
Return:
dices_range: 某个类别的该batch的所有搜索组合得到dice矩阵,维度为[M, N]
'''
# 注意,损失函数中包含sigmoid函数,一般情况下需要手动经过sigmoid函数
masks_predict_oneclass = torch.sigmoid(masks_predict_oneclass).detach().cpu().numpy()
dices_range = np.zeros((len(thresholds_range), len(minareas_range)))
# 遍历每一个像素阈值和最小连通域
for index_threshold, threshold in enumerate(thresholds_range):
for index_minarea, minarea in enumerate(minareas_range):
batch_preds = list()
# 遍历每一张图片
for pred in masks_predict_oneclass:
mask = cv2.threshold(pred, threshold, 1, cv2.THRESH_BINARY)[1]
# 将背景标记为 0,其他的块从 1 开始的正整数标记
num_component, component = cv2.connectedComponents(mask.astype(np.uint8))
predictions =
|
np.zeros((256, 1600), np.float32)
|
numpy.zeros
|
from typing import Dict
from pathlib import Path
import yaml
import numpy as np
from sklearn.experimental import enable_hist_gradient_boosting # noqa
from sklearn.ensemble import HistGradientBoostingClassifier, RandomForestClassifier
from sklearn.linear_model import LogisticRegression, Ridge
from sklearn.metrics import roc_auc_score
from sklearn.base import BaseEstimator
import pytest
from obp.ope import RegressionModel
from obp.types import BanditFeedback
from conftest import generate_action_dist
np.random.seed(1)
binary_model_dict = dict(
logistic_regression=LogisticRegression,
lightgbm=HistGradientBoostingClassifier,
random_forest=RandomForestClassifier,
)
# hyperparameter settings for the base ML model in regression model
cd_path = Path(__file__).parent.resolve()
with open(cd_path / "hyperparams.yaml", "rb") as f:
hyperparams = yaml.safe_load(f)
# action_context, n_actions, len_list, fitting_method, base_model, description
n_rounds = 1000
n_actions = 3
len_list = 3
invalid_input_of_initializing_regression_models = [
(
np.random.uniform(size=(n_actions, 8)),
"a", #
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
"n_actions must be an integer larger than 1",
),
(
np.random.uniform(size=(n_actions, 8)),
1, #
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
"n_actions must be an integer larger than 1",
),
(
np.random.uniform(size=(n_actions, 8)),
n_actions,
"a", #
"normal",
Ridge(**hyperparams["ridge"]),
"len_list must be a positive integer",
),
(
np.random.uniform(size=(n_actions, 8)),
n_actions,
0, #
"normal",
Ridge(**hyperparams["ridge"]),
"len_list must be a positive integer",
),
(
np.random.uniform(size=(n_actions, 8)),
n_actions,
len_list,
1, #
Ridge(**hyperparams["ridge"]),
"fitting_method must be one of",
),
(
np.random.uniform(size=(n_actions, 8)),
n_actions,
len_list,
"awesome", #
Ridge(**hyperparams["ridge"]),
"fitting_method must be one of",
),
(
np.random.uniform(size=(n_actions, 8)),
n_actions,
len_list,
"normal",
"RandomForest", #
"base_model must be BaseEstimator or a child class of BaseEstimator",
),
]
# context, action, reward, pscore, position, action_context, n_actions, len_list, fitting_method, base_model, action_dist, description
invalid_input_of_fitting_regression_models = [
(
None, #
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"context must be ndarray",
),
(
np.random.uniform(size=(n_rounds, 7)),
None, #
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"action must be ndarray",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
None, #
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"reward must be ndarray",
),
(
np.random.uniform(size=(n_rounds, 7, 3)), #
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"context must be 2-dimensional",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=(n_rounds, 3)), #
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"action must be 1-dimensional",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=(n_rounds, 3)), #
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"reward must be 1-dimensional",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(["1", "a"], size=n_rounds), #
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"action elements must be non-negative integers",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice([-1, -3], size=n_rounds), #
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"action elements must be non-negative integers",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
"3", #
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"iw",
Ridge(**hyperparams["ridge"]),
generate_action_dist(n_rounds, n_actions, len_list),
3,
1,
"pscore must be ndarray",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.ones((n_rounds, 2)) * 2, #
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"iw",
Ridge(**hyperparams["ridge"]),
generate_action_dist(n_rounds, n_actions, len_list),
3,
1,
"pscore must be 1-dimensional",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.ones(n_rounds - 1) * 2, #
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"iw",
Ridge(**hyperparams["ridge"]),
generate_action_dist(n_rounds, n_actions, len_list),
3,
1,
"context, action, reward, and pscore must be the same size.",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.arange(n_rounds), #
np.random.choice(len_list, size=n_rounds),
None,
n_actions,
len_list,
"iw",
Ridge(**hyperparams["ridge"]),
generate_action_dist(n_rounds, n_actions, len_list),
3,
1,
"pscore must be positive",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
"3", #
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"position must be ndarray",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=(n_rounds, 3)), #
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"position must be 1-dimensional",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds - 1), #
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"context, action, reward, and position must be the same size.",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(["a", "1"], size=n_rounds), #
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"position elements must be non-negative integers",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds),
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice([-1, -3], size=n_rounds), #
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"position elements must be non-negative integers",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds - 1), #
np.random.uniform(size=n_rounds),
None,
None,
None,
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"context, action, and reward must be the same size",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.random.choice(n_actions, size=n_rounds - 1), #
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
None,
None,
n_actions,
len_list,
"iw",
Ridge(**hyperparams["ridge"]),
generate_action_dist(n_rounds, n_actions, len_list),
3,
1,
"context, action, reward, and pscore must be the same size",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.arange(n_rounds) % n_actions,
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
"3", #
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"action_context must be ndarray",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.arange(n_rounds) % n_actions,
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
np.random.uniform(size=(n_actions, 8, 3)), #
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"action_context must be 2-dimensional",
),
(
np.random.uniform(size=(n_rounds, 7)),
(np.arange(n_rounds) % n_actions) + 1, #
np.random.uniform(size=n_rounds),
np.ones(n_rounds) * 2,
np.random.choice(len_list, size=n_rounds),
np.random.uniform(size=(n_actions, 8)),
n_actions,
len_list,
"normal",
Ridge(**hyperparams["ridge"]),
None,
3,
1,
"action elements must be smaller than the size of the first dimension of action_context",
),
(
np.random.uniform(size=(n_rounds, 7)),
np.arange(n_rounds) % n_actions,
|
np.random.uniform(size=n_rounds)
|
numpy.random.uniform
|
import torch
import torch.nn as nn
from torch.multiprocessing import Pool
from torch.optim.optimizer import required
from torch.optim import Optimizer as Optimizer
import higher
from higher.optim import _add
from higher.optim import DifferentiableOptimizer
from higher.optim import _GroupedGradsType
import uutils
from uutils.torch_uu import functional_diff_norm, ned_torch, r2_score_from_torch, calc_accuracy_from_logits, \
normalize_matrix_for_similarity
from uutils.torch_uu import tensorify
import numpy as np
Spt_x, Spt_y, Qry_x, Qry_y = torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor
Task = tuple[Spt_x, Spt_y, Qry_x, Qry_y]
Batch = list
##
class EmptyOpt(Optimizer): # This is just an example
def __init__(self, params, *args, **kwargs):
defaults = {'args': args, 'kwargs': kwargs}
super().__init__(params, defaults)
class NonDiffMAML(Optimizer): # copy pasted from torch.optim.SGD
def __init__(self, params, lr=required, momentum=0, dampening=0,
weight_decay=0, nesterov=False):
if lr is not required and lr < 0.0:
raise ValueError("Invalid learning rate: {}".format(lr))
if momentum < 0.0:
raise ValueError("Invalid momentum value: {}".format(momentum))
if weight_decay < 0.0:
raise ValueError("Invalid weight_decay value: {}".format(weight_decay))
defaults = dict(lr=lr, momentum=momentum, dampening=dampening,
weight_decay=weight_decay, nesterov=nesterov)
if nesterov and (momentum <= 0 or dampening != 0):
raise ValueError("Nesterov momentum requires a momentum and zero dampening")
super().__init__(params, defaults)
class MAML(DifferentiableOptimizer): # copy pasted from DifferentiableSGD but with the g.detach() line of code
def _update(self, grouped_grads: _GroupedGradsType, **kwargs) -> None:
zipped = zip(self.param_groups, grouped_grads)
for group_idx, (group, grads) in enumerate(zipped):
weight_decay = group['weight_decay']
momentum = group['momentum']
dampening = group['dampening']
nesterov = group['nesterov']
for p_idx, (p, g) in enumerate(zip(group['params'], grads)):
if g is None:
continue
if weight_decay != 0:
g = _add(g, weight_decay, p)
if momentum != 0:
param_state = self.state[group_idx][p_idx]
if 'momentum_buffer' not in param_state:
buf = param_state['momentum_buffer'] = g
else:
buf = param_state['momentum_buffer']
buf = _add(buf.mul(momentum), 1 - dampening, g)
param_state['momentum_buffer'] = buf
if nesterov:
g = _add(g, momentum, buf)
else:
g = buf
if self.fo: # first-order
g = g.detach() # dissallows flow of higher order grad while still letting params track gradients.
group['params'][p_idx] = _add(p, -group['lr'], g)
higher.register_optim(NonDiffMAML, MAML)
class MAMLMetaLearner(nn.Module):
def __init__(
self,
args,
base_model,
lr_inner=1e-1, # careful with setting this to small or doing to few inner adaptation steps
fo=False,
inner_debug=False,
target_type='classification'
):
super().__init__()
self.args = args # args for experiment
self.base_model = base_model
self.lr_inner = lr_inner
self.fo = fo
self.inner_debug = inner_debug
self.target_type = target_type
def forward(self, spt_x, spt_y, qry_x, qry_y, training: bool = True, debug: bool = False):
"""Does L(A(theta,S), Q) = sum^N_{t=1} L(A(theta,S_t),Q_t) where A(theta,S) is the inner-adaptation loop.
It also accumulates the gradient (for memory efficiency) for the outer-optimizer to later use
Decision for BN/eval:
- during training always use .train().
During eval use the meta-train stats so do .eval() (and using .train() is always wrong since it cheats).
Having track_running_stats=False seems overly complicated and nobody seems to use it...so why use it?
ref for BN/eval:
- https://stats.stackexchange.com/questions/544048/what-does-the-batch-norm-layer-for-maml-model-agnostic-meta-learning-do-for-du
- https://github.com/tristandeleu/pytorch-maml/issues/19
Args:
spt_x ([type]): x's for support set. Example shape [N,k_shot,D] D=1 or D=[C,H,W]
spt_y ([type]): y's/target value for support set. Example shape [N,k_eval] or [N,k_eval,D]
qry_x ([type]): x's for query set. Example shape [N,C,D] D=1 or D=[C,H,W]
qry_y ([type]): y's/target value for query set. Example shape [N,k_eval] or [N,k_eval,D]
Returns:
[type]: [description]
"""
print('USING NEW!') if debug else None
# inner_opt = torch_uu.optim.SGD(self.base_model.parameters(), lr=self.lr_inner)
inner_opt = NonDiffMAML(self.base_model.parameters(), lr=self.lr_inner)
# print(f'{inner_opt=}')
# inner_opt = torch_uu.optim.Adam(self.base_model.parameters(), lr=self.lr_inner)
self.args.inner_opt_name = str(inner_opt)
# self.base_model.train() if self.args.split == 'train' else self.base_model.eval()
# - todo: warning, make sure this works if using in the future
self.base_model.train() if training else self.base_model.eval()
meta_batch_size = spt_x.size(0)
meta_losses, meta_accs = [], []
for t in range(meta_batch_size):
spt_x_t, spt_y_t, qry_x_t, qry_y_t = spt_x[t], spt_y[t], qry_x[t], qry_y[t]
# - Inner Loop Adaptation
with higher.innerloop_ctx(self.base_model, inner_opt, copy_initial_weights=self.args.copy_initial_weights,
track_higher_grads=self.args.track_higher_grads) as (fmodel, diffopt):
diffopt.fo = self.fo
# print(f'>maml_old (before inner adapt): {fmodel.model.features.conv1.weight.norm(2)=}')
for i_inner in range(self.args.nb_inner_train_steps):
# fmodel.train() # omniglot doesn't have this here, it has a single one at the top https://github.com/facebookresearch/higher/blob/main/examples/maml-omniglot.py#L116
# base/child model forward pass
spt_logits_t = fmodel(spt_x_t)
inner_loss = self.args.criterion(spt_logits_t, spt_y_t)
# inner_train_err = calc_error(mdl=fmodel, X=S_x, Y=S_y) # for more advanced learners like meta-lstm
# inner-opt update
diffopt.step(inner_loss)
# print(f'>>maml_old (after inner adapt): {fmodel.model.features.conv1.weight.norm(2)=}')
# Evaluate on query set for current task
qry_logits_t = fmodel(qry_x_t)
qry_loss_t = self.args.criterion(qry_logits_t, qry_y_t)
# Accumulate gradients wrt meta-params for each task: https://github.com/facebookresearch/higher/issues/104
(qry_loss_t / meta_batch_size).backward() # note this is more memory efficient (as it removes intermediate data that used to be needed since backward has already been called)
# get accuracy
if self.target_type == 'classification':
qry_acc_t = calc_accuracy_from_logits(y_logits=qry_logits_t, y=qry_y_t)
else:
qry_acc_t = r2_score_from_torch(qry_y_t, qry_logits_t)
# qry_acc_t = compressed_r2_score(y_true=qry_y_t.detach().numpy(), y_pred=qry_logits_t.detach().numpy())
# collect losses & accs for logging/debugging
meta_losses.append(qry_loss_t.item())
meta_accs.append(qry_acc_t)
assert len(meta_losses) == meta_batch_size
meta_loss = np.mean(meta_losses)
meta_acc = np.mean(meta_accs)
meta_loss_std = np.std(meta_losses)
meta_acc_std =
|
np.std(meta_accs)
|
numpy.std
|
# -*- coding: utf-8 -*
"""
pyHRV - Frequency Domain Module
--------------------------------
This module provides function to compute frequency domain HRV parameters using R-peak locations
or NN intervals extracted from an ECG lead I-like signal. The implemented Power Spectral Estimation (PSD)
estimation methods are:
* Welch's Method
* Lomb-Scargle
* Autoregressive
Notes
-----
.. Up to v.0.3 this work has been developed within the master thesis
"Development of an Open-Source Python Toolbox for Heart Rate Variability (HRV)".
.. You find the API reference for this module here:
https://pyhrv.readthedocs.io/en/latest/_pages/api/frequency.html
.. See 'references.txt' for a full detailed list of references
Author
------
.. <NAME>, <EMAIL>
Contributors (and former Thesis Supervisors)
--------------------------------------------
.. <NAME>, PhD, Instituto de Telecomunicacoes & PLUX wireless biosignals S.A.
.. Prof. Dr. <NAME>, University of Applied Sciences Hamburg
Last Update
-----------
12-11-2019
:copyright: (c) 2019 by <NAME>
:license: BSD 3-clause, see LICENSE for more details.
"""
# Compatibility
from __future__ import absolute_import, division, print_function
# Imports
import time
import warnings
import spectrum
import numpy as np
import scipy as sp
import matplotlib as mpl
from mpl_toolkits.mplot3d import Axes3D
from matplotlib.collections import LineCollection
from scipy.signal import welch, lombscargle
from matplotlib import pyplot as plt
# biosppy imports
import biosppy
# Local imports/HRV toolbox imports
import pyhrv
# Suppress Lapack bug 0038 warning from scipy (may occur with older versions of the packages above)
warnings.filterwarnings(action="ignore", module="scipy")
def welch_psd(nni=None,
rpeaks=None,
fbands=None,
nfft=2**12,
detrend=True,
window='hamming',
show=True,
show_param=True,
legend=True,
figsize=None,
mode='normal'):
"""Computes a Power Spectral Density (PSD) estimation from the NNI series using the Welch’s method
and computes all frequency domain parameters from this PSD according to the specified frequency bands.
References: [Electrophysiology1996], [Umberto2017], [Welch2017]
Docs: https://pyhrv.readthedocs.io/en/latest kwa/_pages/api/frequency.html#welch-s-method-welch-psd
Parameters
----------
nni : array
NN-Intervals in [ms] or [s]
rpeaks : array
R-peak locations in [ms] or [s]
fbands : dict, optional
Dictionary with frequency bands (2-element tuples or list)
Value format: (lower_freq_band_boundary, upper_freq_band_boundary)
Keys: 'ulf' Ultra low frequency (default: none) optional
'vlf' Very low frequency (default: (0.000Hz, 0.04Hz))
'lf' Low frequency (default: (0.04Hz - 0.15Hz))
'hf' High frequency (default: (0.15Hz - 0.4Hz))
nfft : int, optional
Number of points computed for the FFT result (default: 2**12)
detrend : bool optional
If True, detrend NNI series by subtracting the mean NNI (default: True)
window : scipy window function, optional
Window function used for PSD estimation (default: 'hamming')
show : bool, optional
If true, show PSD plot (default: True)
show_param : bool, optional
If true, list all computed PSD parameters next to the plot (default: True)
legend : bool, optional
If true, add a legend with frequency bands to the plot (default: True)
figsize : tuple, optional
Matplotlib figure size (width, height) (default: None: (12, 4))
mode : string, optional
Return mode of the function; available modes:
'normal' Returns frequency domain parameters and PSD plot figure in a ReturnTuple object
'dev' Returns frequency domain parameters, frequency and power arrays, no plot figure
'devplot' Returns frequency domain parameters, frequency array, power array, and the plot figure
Returns (biosppy.utils.ReturnTuple Object)
------------------------------------------
results : biosppy.utils.ReturnTuple object
All results of the Welch's method's PSD estimation (see list and keys below)
Returned Parameters & Keys
--------------------------
.. Peak frequencies of all frequency bands in [Hz] (key: 'fft_peak')
.. Absolute powers of all frequency bands in [ms^2][(key: 'fft_abs')
.. Relative powers of all frequency bands [%] (key: 'fft_rel')
.. Logarithmic powers of all frequency bands [-] (key: 'fft_log')
.. Normalized powers of all frequency bands [-] (key: 'fft_norms')
.. LF/HF ratio [-] (key: 'fft_ratio')
.. Total power over all frequency bands in [ms^2] (key: 'fft_total')
.. Interpolation method used for NNI interpolation (key: 'fft_interpolation')
.. Resampling frequency used for NNI interpolation (key: 'fft_resampling_frequency')
.. Spectral window used for PSD estimation of the Welch's method (key: 'fft_spectral_window)'
Notes
-----
.. The returned BioSPPy ReturnTuple object contains all frequency band parameters in parameter specific tuples
of length 4 when using the ULF frequency band or of length 3 when NOT using the ULF frequency band.
The structures of those tuples are shown in this example below (fft_results = ReturnTuple object returned by
this function):
Using ULF, VLF, LF and HF frequency bands:
fft_results['fft_peak'] = (ulf_peak, vlf_peak, lf_peak, hf_peak)
Using VLF, LF and HF frequency bands:
fft_results['fft_peak'] = (vlf_peak, lf_peak, hf_peak)
.. If 'show_param' is true, the parameters (incl. frequency band limits) will be listed next to the graph and no
legend with frequency band limits will be added to the plot graph itself, i.e. the effect of 'show_param'
will be used over the 'legend' effect.
.. Only one type of input data is required.
.. If both 'nni' and 'rpeaks' are provided, 'rpeaks' will be chosen over the 'nni' and the 'nni' data will be computed
from the 'rpeaks'.
.. NN and R-peak series provided in [s] format will be converted to [ms] format.
"""
# Check input values
nn = pyhrv.utils.check_input(nni, rpeaks)
# Verify or set default frequency bands
fbands = _check_freq_bands(fbands)
# Resampling (with 4Hz) and interpolate
# Because RRi are unevenly spaced we must interpolate it for accurate PSD estimation.
fs = 4
t = np.cumsum(nn)
t -= t[0]
f_interpol = sp.interpolate.interp1d(t, nn, 'cubic')
t_interpol = np.arange(t[0], t[-1], 1000./fs)
nn_interpol = f_interpol(t_interpol)
# Subtract mean value from each sample for suppression of DC-offsets
if detrend:
nn_interpol = nn_interpol - np.mean(nn_interpol)
# Adapt 'nperseg' according to the total duration of the NNI series (5min threshold = 300000ms)
if t.max() < 300000:
nperseg = nfft
else:
nperseg = 300
# Compute power spectral density estimation (where the magic happens)
frequencies, powers = welch(
x=nn_interpol,
fs=fs,
window=window,
nperseg=nperseg,
nfft=nfft,
scaling='density'
)
# Metadata
args = (nfft, window, fs, 'cubic')
names = ('fft_nfft', 'fft_window', 'fft_resampling_frequency', 'fft_interpolation',)
meta = biosppy.utils.ReturnTuple(args, names)
if mode not in ['normal', 'dev', 'devplot']:
warnings.warn("Unknown mode '%s'. Will proceed with 'normal' mode." % mode, stacklevel=2)
mode = 'normal'
# Normal Mode:
# Returns frequency parameters, PSD plot figure and no frequency & power series/arrays
if mode == 'normal':
# Compute frequency parameters
params, freq_i = _compute_parameters('fft', frequencies, powers, fbands)
# Plot PSD
figure = _plot_psd('fft', frequencies, powers, freq_i, params, show, show_param, legend, figsize)
figure = biosppy.utils.ReturnTuple((figure, ), ('fft_plot', ))
# Output
return pyhrv.utils.join_tuples(params, figure, meta)
# Dev Mode:
# Returns frequency parameters and frequency & power series/array; does not create a plot figure nor plot the data
elif mode == 'dev':
# Compute frequency parameters
params, _ = _compute_parameters('fft', frequencies, powers, fbands)
# Output
return pyhrv.utils.join_tuples(params, meta), frequencies, np.asarray((powers / 10 ** 6))
# Devplot Mode:
# Returns frequency parameters, PSD plot figure, and frequency & power series/arrays
elif mode == 'devplot':
# Compute frequency parameters
params, freq_i = _compute_parameters('fft', frequencies, powers, fbands)
# Plot PSD
figure = _plot_psd('fft', frequencies, powers, freq_i, params, show, show_param, legend, figsize)
figure = biosppy.utils.ReturnTuple((figure, ), ('fft_plot', ))
# Output
return pyhrv.utils.join_tuples(params, figure, meta), frequencies, np.asarray((powers / 10 ** 6))
def lomb_psd(
nni=None,
rpeaks=None,
fbands=None,
nfft=2**8,
ma_size=None,
show=True,
show_param=True,
legend=True,
figsize=None,
mode='normal'
):
"""Computes a Power Spectral Density (PSD) estimation from the NNI series using the Lomb-Scargle Periodogram
and computes all frequency domain parameters from this PSD according to the specified frequency bands.
References: [Lomb1976], [Scargle1982], [Kuusela2014], [Laguna1995]
Docs: https://pyhrv.readthedocs.io/en/latest/_pages/api/frequency.html#lomb-scargle-periodogram-lomb-psd
Parameters
----------
rpeaks : array
R-peak locations in [ms] or [s]
nni : array
NN-Intervals in [ms] or [s]
fbands : dict, optional
Dictionary with frequency bands (2-element tuples or list)
Value format: (lower_freq_band_boundary, upper_freq_band_boundary)
Keys: 'ulf' Ultra low frequency (default: none) optional
'vlf' Very low frequency (default: (0.003Hz, 0.04Hz))
'lf' Low frequency (default: (0.04Hz - 0.15Hz))
'hf' High frequency (default: (0.15Hz - 0.4Hz))´
nfft : int, optional
Number of points computed for the FFT result (default: 2**8)
ma_size : int, optional
Window size of the optional moving average filter (default: None)
show : bool, optional
If true, show PSD plot (default: True)
show_param : bool, optional
If true, list all computed PSD parameters next to the plot (default: True)
legend : bool, optional
If true, add a legend with frequency bands to the plot (default: True)
figsize : tuple, optional
Matplotlib figure size (width, height) (default: None: (12, 4))
mode : string, optional
Return mode of the function; available modes:
'normal' Returns frequency domain parameters and PSD plot figure in a ReturnTuple object
'dev' Returns frequency domain parameters, frequency and power arrays, no plot figure
'devplot' Returns frequency domain parameters, frequency array, power array, and the plot figure
Returns (biosppy.utils.ReturnTuple Object)
------------------------------------------
results : biosppy.utils.ReturnTuple object
All results of the Lomb-Scargle PSD estimation (see list and keys below)
Returned Parameters & Keys
--------------------------
.. Peak frequencies of all frequency bands in [Hz] (key: 'lomb_peak')
.. Absolute powers of all frequency bands in [ms^2][(key: 'lomb_abs')
.. Relative powers of all frequency bands [%] (key: 'lomb_rel')
.. Logarithmic powers of all frequency bands [-] (key: 'lomb_log')
.. Normalized powers of all frequency bands [-] (key: 'lomb_norms')
.. LF/HF ratio [-] (key: 'lomb_ratio')
.. Total power over all frequency bands in [ms^2] (key: 'lomb_total')
.. Number of PSD samples (key: 'lomb_nfft')
.. Moving average filter order (key: 'lomb_ma')
Notes
-----
.. The returned BioSPPy ReturnTuple object contains all frequency band parameters in parameter specific tuples
of length 4 when using the ULF frequency band or of length 3 when NOT using the ULF frequency band.
The structures of those tuples are shown in this example below (lomb_results = ReturnTuple object returned by
this function):
Using ULF, VLF, LF and HF frequency bands:
lomb['fft_peak'] = (ulf_peak, vlf_peak, lf_peak, hf_peak)
Using VLF, LF and HF frequency bands:
lomb['fft_peak'] = (vlf_peak, lf_peak, hf_peak)
.. If 'show_param' is true, the parameters (incl. frequency band limits) will be listed next to the graph and no
legend with frequency band limits will be added to the plot graph itself, i.e. the effect of 'show_param'
will be used over the 'legend' effect.
.. Only one type of input data is required.
.. If both 'nni' and 'rpeaks' are provided, 'rpeaks' will be chosen over the 'nni' and the 'nni' data will be computed
from the 'rpeaks'.
.. NN and R-peak series provided in [s] format will be converted to [ms] format.
"""
# Check input
nn = pyhrv.utils.check_input(nni, rpeaks)
# Verify or set default frequency bands
fbands = _check_freq_bands(fbands)
t = np.cumsum(nn)
t -= t[0]
# Compute PSD according to the Lomb-Scargle method
# Specify frequency grid
frequencies = np.linspace(0, 0.41, nfft)
# Compute angular frequencies
a_frequencies = np.asarray(2 * np.pi / frequencies)
powers = np.asarray(lombscargle(t, nn, a_frequencies, normalize=True))
# Fix power = inf at f=0
powers[0] = 0
# Apply moving average filter
if ma_size is not None:
powers = biosppy.signals.tools.smoother(powers, size=ma_size)['signal']
# Define metadata
meta = biosppy.utils.ReturnTuple((nfft, ma_size, ), ('lomb_nfft', 'lomb_ma'))
if mode not in ['normal', 'dev', 'devplot']:
warnings.warn("Unknown mode '%s'. Will proceed with 'normal' mode." % mode, stacklevel=2)
mode = 'normal'
# Normal Mode:
# Returns frequency parameters, PSD plot figure and no frequency & power series/arrays
if mode == 'normal':
# ms^2 to s^2
powers = powers * 10 ** 6
# Compute frequency parameters
params, freq_i = _compute_parameters('lomb', frequencies, powers, fbands)
# Plot parameters
figure = _plot_psd('lomb', frequencies, powers, freq_i, params, show, show_param, legend, figsize)
figure = biosppy.utils.ReturnTuple((figure, ), ('lomb_plot', ))
# Complete output
return pyhrv.utils.join_tuples(params, figure, meta)
# Dev Mode:
# Returns frequency parameters and frequency & power series/array; does not create a plot figure nor plot the data
elif mode == 'dev':
# Compute frequency parameters
params, _ = _compute_parameters('lomb', frequencies, powers, fbands)
# Complete output
return pyhrv.utils.join_tuples(params, meta), frequencies, powers
# Devplot Mode:
# Returns frequency parameters, PSD plot figure, and frequency & power series/arrays
elif mode == 'devplot':
# ms^2 to s^2
powers = powers * 10**6
# Compute frequency parameters
params, freq_i = _compute_parameters('lomb', frequencies, powers, fbands)
# Plot parameters
figure = _plot_psd('lomb', frequencies, powers, freq_i, params, show, show_param, legend, figsize)
figure = biosppy.utils.ReturnTuple((figure, ), ('lomb_plot', ))
# Complete output
return pyhrv.utils.join_tuples(params, figure, meta), frequencies, powers
def ar_psd(nni=None,
rpeaks=None,
fbands=None,
nfft=2**12,
order=16,
show=True,
show_param=True,
legend=True,
figsize=None,
mode='normal'):
"""Computes a Power Spectral Density (PSD) estimation from the NNI series using the Autoregressive method
and computes all frequency domain parameters from this PSD according to the specified frequency bands.
References: [Electrophysiology1996], [Kuusela2014], [Kallas2012], [Boardman2002]
(additionally recommended: [Miranda2012])
Docs: https://pyhrv.readthedocs.io/en/latest/_pages/api/frequency.html#autoregressive-method-ar-psd
Parameters
----------
rpeaks : array
R-peak locations in [ms] or [s]
nni : array
NN-Intervals in [ms] or [s]
fbands : dict, optional
Dictionary with frequency bands (2-element tuples or list)
Value format: (lower_freq_band_boundary, upper_freq_band_boundary)
Keys: 'ulf' Ultra low frequency (default: none) optional
'vlf' Very low frequency (default: (0.003Hz, 0.04Hz))
'lf' Low frequency (default: (0.04Hz - 0.15Hz))
'hf' High frequency (default: (0.15Hz - 0.4Hz))´
nfft : int, optional
Number of points computed for the entire AR result (default: 2**12)
order : int, optional
Autoregressive model order (default: 16)
show : bool, optional
If true, show PSD plot (default: True)
show_param : bool, optional
If true, list all computed PSD parameters next to the plot (default: True)
legend : bool, optional
If true, add a legend with frequency bands to the plot (default: True)
figsize : tuple, optional
Matplotlib figure size (width, height) (default: None: (12, 4))
mode : string, optional
Return mode of the function; available modes:
'normal' Returns frequency domain parameters and PSD plot figure in a ReturnTuple object
'dev' Returns frequency domain parameters, frequency and power arrays, no plot figure
'devplot' Returns frequency domain parameters, frequency array, power array, and the plot figure
Returns (biosppy.utils.ReturnTuple Object)
------------------------------------------
results : biosppy.utils.ReturnTuple object
All results of the Autoregressive PSD estimation (see list and keys below)
Returned Parameters & Keys
--------------------------
.. Peak frequencies of all frequency bands in [Hz] (key: 'ar_peak')
.. Absolute powers of all frequency bands in [ms^2][(key: 'ar_abs')
.. Relative powers of all frequency bands [%] (key: 'ar_rel')
.. Logarithmic powers of all frequency bands [-] (key: 'ar_log')
.. Normalized powers of all frequency bands [-] (key: 'ar_norms')
.. LF/HF ratio [-] (key: 'ar_ratio')
.. Total power over all frequency bands in [ms^2] (key: 'ar_total')
.. Interpolation method (key: 'ar_interpolation')
.. Resampling frequency (key: 'ar_resampling_frequency')
.. AR model order (key: 'ar_order')
.. Number of PSD samples (key: 'ar_nfft')
Notes
-----
.. The returned BioSPPy ReturnTuple object contains all frequency band parameters in parameter specific tuples
of length 4 when using the ULF frequency band or of length 3 when NOT using the ULF frequency band.
The structures of those tuples are shown in this example below (lomb_results = ReturnTuple object returned by
this function):
Using ULF, VLF, LF and HF frequency bands:
lomb['ar_peak'] = (ulf_peak, vlf_peak, lf_peak, hf_peak)
Using VLF, LF and HF frequency bands:
lomb['ar_peak'] = (vlf_peak, lf_peak, hf_peak)
.. If 'show_param' is true, the parameters (incl. frequency band limits) will be listed next to the graph and no
legend with frequency band limits will be added to the plot graph itself, i.e. the effect of 'show_param'
will be used over the 'legend' effect.
.. Only one type of input data is required.
.. If both 'nni' and 'rpeaks' are provided, 'rpeaks' will be chosen over the 'nni' and the 'nni' data will be computed
from the 'rpeaks'.
.. NN and R-peak series provided in [s] format will be converted to [ms] format.
"""
# Check input
nn = pyhrv.utils.check_input(nni, rpeaks)
# Verify or set default frequency bands
fbands = _check_freq_bands(fbands)
# Resampling (with 4Hz) and interpolate
# Because RRi are unevenly spaced we must interpolate it for accurate PSD estimation.
fs = 4
t = np.cumsum(nn)
t -= t[0]
f_interpol = sp.interpolate.interp1d(t, nn, 'cubic')
t_interpol = np.arange(t[0], t[-1], 1000./fs)
nn_interpol = f_interpol(t_interpol)
# Compute autoregressive PSD
ar = spectrum.pyule(data=nn_interpol, order=order, NFFT=nfft, sampling=fs, scale_by_freq=False)
ar()
# Get frequencies and powers
frequencies = np.asarray(ar.frequencies())
psd = np.asarray(ar.psd)
powers = np.asarray(10 * np.log10(psd) * 10**3) # * 10**3 to compensate with ms^2 to s^2 conversion
# in the upcoming steps
# Define metadata
meta = biosppy.utils.ReturnTuple((nfft, order, fs, 'cubic'), ('ar_nfft', 'ar_order', 'ar_resampling_frequency',
'ar_interpolation'))
if mode not in ['normal', 'dev', 'devplot']:
warnings.warn("Unknown mode '%s'. Will proceed with 'normal' mode." % mode, stacklevel=2)
mode = 'normal'
# Normal Mode:
# Returns frequency parameters, PSD plot figure and no frequency & power series/arrays
if mode == 'normal':
# Compute frequency parameters
params, freq_i = _compute_parameters('ar', frequencies, powers, fbands)
params = pyhrv.utils.join_tuples(params, meta)
# Plot PSD
figure = _plot_psd('ar', frequencies, powers, freq_i, params, show, show_param, legend, figsize)
figure = biosppy.utils.ReturnTuple((figure, ), ('ar_plot', ))
# Complete output
return pyhrv.utils.join_tuples(params, figure)
# Dev Mode:
# Returns frequency parameters and frequency & power series/array; does not create a plot figure nor plot the data
elif mode == 'dev':
# Compute frequency parameters
params, _ = _compute_parameters('ar', frequencies, powers, fbands)
# Output
return pyhrv.utils.join_tuples(params, meta), frequencies, (powers / 10 ** 6)
# Devplot Mode:
# Returns frequency parameters, PSD plot figure, and frequency & power series/arrays
elif mode == 'devplot':
# Compute frequency parameters
params, freq_i = _compute_parameters('ar', frequencies, powers, fbands)
# Plot PSD
figure = _plot_psd('ar', frequencies, powers, freq_i, params, show, show_param, legend, figsize)
figure = biosppy.utils.ReturnTuple((figure, ), ('ar_plot', ))
# Complete output
return pyhrv.utils.join_tuples(params, figure, meta), frequencies, (powers / 10 ** 6)
def _compute_parameters(method, frequencies, power, freq_bands):
"""Computes PSD HRV parameters from the PSD frequencies and powers.
References: [Electrophysiology1996], [Basak2014]
Docs: https://pyhrv.readthedocs.io/en/latest/_pages/api/frequency.html#frequency-parameters
Parameters
----------
method : str
Method identifier ('fft', 'ar', 'lomb')
frequencies
Series of frequencies of the power spectral density computation.
power : array
Series of power-values of the power spectral density computation.
freq_indices : array
Indices of the frequency samples within each frequency band.
freq_bands : dict, optional
Dictionary with frequency bands (tuples or list).
Value format: (lower_freq_band_boundary, upper_freq_band_boundary)
Keys: 'ulf' Ultra low frequency (default: none) optional
'vlf' Very low frequency (default: (0.003Hz, 0.04Hz))
'lf' Low frequency (default: (0.04Hz - 0.15Hz))
'hf' High frequency (default: (0.15Hz - 0.4Hz))
Returns
-------
results : biosppy.utils.ReturnTuple object
All results of the Lomb-Scargle PSD estimation (see list and keys below)
Returned Parameters & Keys
--------------------------
(below, X = method identifier 'fft', 'ar' or 'lomb'
.. Peak frequencies of all frequency bands in [Hz] (key: 'X_peak')
.. Absolute powers of all frequency bands in [ms^2] (key: 'X_abs')
.. Relative powers of all frequency bands in [%] (key: 'X_rel')
.. Logarithmic powers of all frequency bands [-] (key: 'X_log')
.. Normalized powers of all frequency bands [-](key: 'X_norms')
.. LF/HF ratio [–] (key: 'X_ratio')
.. Total power over all frequency bands in [ms^] (key: 'X_total')
Raises
------
ValueError
If parameter computation could not be made due to the lack of PSD samples ('nfft' too low)
"""
# Compute frequency resolution
df = (frequencies[1] - frequencies[0])
# Get indices of freq values within the specified freq bands
ulf_i, vlf_i, lf_i, hf_i = _get_frequency_indices(frequencies, freq_bands)
ulf_f, vlf_f, lf_f, hf_f = _get_frequency_arrays(frequencies, ulf_i, vlf_i, lf_i, hf_i)
# Absolute powers
if freq_bands['ulf'] is not None:
ulf_power = np.sum(power[ulf_i]) * df
vlf_power = np.sum(power[vlf_i]) * df
lf_power = np.sum(power[lf_i]) * df
hf_power = np.sum(power[hf_i]) * df
abs_powers = (vlf_power, lf_power, hf_power, ) if freq_bands['ulf'] is None else (ulf_power, vlf_power, lf_power,
hf_power,)
total_power = np.sum(abs_powers)
# Peak frequencies
if freq_bands['ulf'] is not None:
ulf_peak = ulf_f[np.argmax(power[ulf_i])]
# Compute Peak values and catch exception caused if the number of PSD samples is too low
try:
vlf_peak = vlf_f[np.argmax(power[vlf_i])]
lf_peak = lf_f[np.argmax(power[lf_i])]
hf_peak = hf_f[
|
np.argmax(power[hf_i])
|
numpy.argmax
|
import numpy as np
import cv2
import math
import copy
from opensfm import context
from opensfm import pygeometry
from opensfm import pymap
from opensfm import types
from scipy.stats import special_ortho_group
from scipy.spatial.transform import Rotation
"""
Trying to imitate the following structure
reconstruction = {
"cameras": {
"theta": {
"projection_type": "equirectangular"
}
},
"shots" : {
'im1': {
"camera": "theta",
"rotation": [0.0, 0.0, 0.0],
"translation": [0.0, 0.0, 0.0],
},
'im2': {
"camera": "theta",
"rotation": [0, 0, 0.0],
"translation": [-1, 0, 0.0],
},
},
"points" : {
},
}
"""
# Define original Pose
class Pose(object):
"""Defines the pose parameters of a camera.
The extrinsic parameters are defined by a 3x1 rotation vector which
maps the camera rotation respect to the origin frame (rotation) and
a 3x1 translation vector which maps the camera translation respect
to the origin frame (translation).
Attributes:
rotation (vector): the rotation vector.
translation (vector): the rotation vector.
"""
def __init__(self, rotation=(0, 0, 0), translation=(0, 0, 0)):
self.rotation = rotation
self.translation = translation
@property
def rotation(self):
"""Rotation in angle-axis format."""
return self._rotation
@rotation.setter
def rotation(self, value):
self._rotation = np.asarray(value, dtype=float)
@property
def translation(self):
"""Translation vector."""
return self._translation
@translation.setter
def translation(self, value):
self._translation = np.asarray(value, dtype=float)
def transform(self, point):
"""Transform a point from world to this pose coordinates."""
return self.get_rotation_matrix().dot(point) + self.translation
def transform_many(self, points):
"""Transform points from world coordinates to this pose."""
return points.dot(self.get_rotation_matrix().T) + self.translation
def transform_inverse(self, point):
"""Transform a point from this pose to world coordinates."""
return self.get_rotation_matrix().T.dot(point - self.translation)
def transform_inverse_many(self, points):
"""Transform points from this pose to world coordinates."""
return (points - self.translation).dot(self.get_rotation_matrix())
def get_rotation_matrix(self):
"""Get rotation as a 3x3 matrix."""
return cv2.Rodrigues(self.rotation)[0]
def set_rotation_matrix(self, rotation_matrix, permissive=False):
"""Set rotation as a 3x3 matrix.
>>> pose = Pose()
>>> pose.rotation = np.array([0., 1., 2.])
>>> R = pose.get_rotation_matrix()
>>> pose.set_rotation_matrix(R)
>>> np.allclose(pose.rotation, [0., 1., 2.])
True
>>> pose.set_rotation_matrix([[3,-4, 1], [ 5, 3,-7], [-9, 2, 6]])
Traceback (most recent call last):
...
ValueError: Not orthogonal
>>> pose.set_rotation_matrix([[0, 0, 1], [-1, 0, 0], [0, 1, 0]])
Traceback (most recent call last):
...
ValueError: Determinant not 1
"""
R = np.array(rotation_matrix, dtype=float)
if not permissive:
if not np.isclose(np.linalg.det(R), 1):
raise ValueError("Determinant not 1")
if not np.allclose(np.linalg.inv(R), R.T):
raise ValueError("Not orthogonal")
self.rotation = cv2.Rodrigues(R)[0].ravel()
def get_origin(self):
"""The origin of the pose in world coordinates."""
return -self.get_rotation_matrix().T.dot(self.translation)
def set_origin(self, origin):
"""Set the origin of the pose in world coordinates.
>>> pose = Pose()
>>> pose.rotation = np.array([0., 1., 2.])
>>> origin = [1., 2., 3.]
>>> pose.set_origin(origin)
>>> np.allclose(origin, pose.get_origin())
True
"""
self.translation = -self.get_rotation_matrix().dot(origin)
def get_Rt(self):
"""Get pose as a 3x4 matrix (R|t)."""
Rt = np.empty((3, 4))
Rt[:, :3] = self.get_rotation_matrix()
Rt[:, 3] = self.translation
return Rt
def compose(self, other):
"""Get the composition of this pose with another.
composed = self * other
"""
selfR = self.get_rotation_matrix()
otherR = other.get_rotation_matrix()
R = np.dot(selfR, otherR)
t = selfR.dot(other.translation) + self.translation
res = Pose()
res.set_rotation_matrix(R)
res.translation = t
return res
def inverse(self):
"""Get the inverse of this pose."""
inverse = Pose()
R = self.get_rotation_matrix()
inverse.set_rotation_matrix(R.T)
inverse.translation = -R.T.dot(self.translation)
return inverse
class Camera(object):
"""Abstract camera class.
A camera is unique defined for its identification description (id),
the projection type (projection_type) and its internal calibration
parameters, which depend on the particular Camera sub-class.
Attributes:
id (str): camera description.
projection_type (str): projection type.
"""
pass
class PerspectiveCamera(Camera):
"""Define a perspective camera.
Attributes:
width (int): image width.
height (int): image height.
focal (real): estimated focal length.
k1 (real): estimated first distortion parameter.
k2 (real): estimated second distortion parameter.
"""
def __init__(self):
"""Defaut constructor."""
self.id = None
self.projection_type = 'perspective'
self.width = None
self.height = None
self.focal = None
self.k1 = None
self.k2 = None
def __repr__(self):
return '{}({!r}, {!r}, {!r}, {!r}, {!r}, {!r}, {!r})'.format(
self.__class__.__name__,
self.id, self.projection_type, self.width, self.height,
self.focal, self.k1, self.k2)
def project(self, point):
"""Project a 3D point in camera coordinates to the image plane."""
# Normalized image coordinates
xn = point[0] / point[2]
yn = point[1] / point[2]
# Radial distortion
r2 = xn * xn + yn * yn
distortion = 1.0 + r2 * (self.k1 + self.k2 * r2)
return np.array([self.focal * distortion * xn,
self.focal * distortion * yn])
def project_many(self, points):
"""Project 3D points in camera coordinates to the image plane."""
distortion = np.array([self.k1, self.k2, 0, 0, 0])
K, R, t = self.get_K(), np.zeros(3), np.zeros(3)
pixels, _ = cv2.projectPoints(points, R, t, K, distortion)
return pixels.reshape((-1, 2))
def pixel_bearing(self, pixel):
"""Unit vector pointing to the pixel viewing direction."""
point = np.asarray(pixel).reshape((1, 1, 2))
distortion = np.array([self.k1, self.k2, 0., 0.])
x, y = cv2.undistortPoints(point, self.get_K(), distortion).flat
l = np.sqrt(x * x + y * y + 1.0)
return np.array([x / l, y / l, 1.0 / l])
def pixel_bearing_many(self, pixels):
"""Unit vectors pointing to the pixel viewing directions."""
points = pixels.reshape((-1, 1, 2)).astype(np.float64)
distortion = np.array([self.k1, self.k2, 0., 0.])
up = cv2.undistortPoints(points, self.get_K(), distortion)
up = up.reshape((-1, 2))
x = up[:, 0]
y = up[:, 1]
l = np.sqrt(x * x + y * y + 1.0)
return np.column_stack((x / l, y / l, 1.0 / l))
def pixel_bearings(self, pixels):
"""Deprecated: use pixel_bearing_many."""
return self.pixel_bearing_many(pixels)
def back_project(self, pixel, depth):
"""Project a pixel to a fronto-parallel plane at a given depth."""
bearing = self.pixel_bearing(pixel)
scale = depth / bearing[2]
return scale * bearing
def back_project_many(self, pixels, depths):
"""Project pixels to fronto-parallel planes at given depths."""
bearings = self.pixel_bearing_many(pixels)
scales = depths / bearings[:, 2]
return scales[:, np.newaxis] * bearings
def get_K(self):
"""The calibration matrix."""
return np.array([[self.focal, 0., 0.],
[0., self.focal, 0.],
[0., 0., 1.]])
def get_K_in_pixel_coordinates(self, width=None, height=None):
"""The calibration matrix that maps to pixel coordinates.
Coordinates (0,0) correspond to the center of the top-left pixel,
and (width - 1, height - 1) to the center of bottom-right pixel.
You can optionally pass the width and height of the image, in case
you are using a resized versior of the original image.
"""
w = width or self.width
h = height or self.height
f = self.focal * max(w, h)
return np.array([[f, 0, 0.5 * (w - 1)],
[0, f, 0.5 * (h - 1)],
[0, 0, 1.0]])
class BrownPerspectiveCamera(Camera):
"""Define a perspective camera.
Attributes:
width (int): image width.
height (int): image height.
focal_x (real): estimated focal length for the X axis.
focal_y (real): estimated focal length for the Y axis.
c_x (real): estimated principal point X.
c_y (real): estimated principal point Y.
k1 (real): estimated first radial distortion parameter.
k2 (real): estimated second radial distortion parameter.
p1 (real): estimated first tangential distortion parameter.
p2 (real): estimated second tangential distortion parameter.
k3 (real): estimated third radial distortion parameter.
"""
def __init__(self):
"""Defaut constructor."""
self.id = None
self.projection_type = 'brown'
self.width = None
self.height = None
self.focal_x = None
self.focal_y = None
self.c_x = None
self.c_y = None
self.k1 = None
self.k2 = None
self.p1 = None
self.p2 = None
self.k3 = None
def __repr__(self):
return '{}({})'.format(self.__class__.__name__, self.__dict__)
def project(self, point):
"""Project a 3D point in camera coordinates to the image plane."""
# Normalized image coordinates
xn = point[0] / point[2]
yn = point[1] / point[2]
# Radial and tangential distortion
r2 = xn * xn + yn * yn
radial_distortion = 1.0 + r2 * (self.k1 + r2 * (self.k2 + r2 * self.k3))
x_tangential_distortion = 2 * self.p1 * xn * yn + self.p2 * (r2 + 2 * xn * xn)
x_distorted = xn * radial_distortion + x_tangential_distortion
y_tangential_distortion = self.p1 * (r2 + 2 * yn * yn) + 2 * self.p2 * xn * yn
y_distorted = yn * radial_distortion + y_tangential_distortion
return np.array([self.focal_x * x_distorted + self.c_x,
self.focal_y * y_distorted + self.c_y])
def project_many(self, points):
"""Project 3D points in camera coordinates to the image plane."""
distortion = np.array([self.k1, self.k2, self.p1, self.p2, self.k3])
K, R, t = self.get_K(), np.zeros(3), np.zeros(3)
pixels, _ = cv2.projectPoints(points, R, t, K, distortion)
return pixels.reshape((-1, 2))
def pixel_bearing(self, pixel):
"""Unit vector pointing to the pixel viewing direction."""
point = np.asarray(pixel).reshape((1, 1, 2))
distortion = np.array([self.k1, self.k2, self.p1, self.p2, self.k3])
x, y = cv2.undistortPoints(point, self.get_K(), distortion).flat
l = np.sqrt(x * x + y * y + 1.0)
return np.array([x / l, y / l, 1.0 / l])
def pixel_bearing_many(self, pixels):
"""Unit vector pointing to the pixel viewing directions."""
points = pixels.reshape((-1, 1, 2)).astype(np.float64)
distortion = np.array([self.k1, self.k2, self.p1, self.p2, self.k3])
up = cv2.undistortPoints(points, self.get_K(), distortion)
up = up.reshape((-1, 2))
x = up[:, 0]
y = up[:, 1]
l = np.sqrt(x * x + y * y + 1.0)
return np.column_stack((x / l, y / l, 1.0 / l))
def pixel_bearings(self, pixels):
"""Deprecated: use pixel_bearing_many."""
return self.pixel_bearing_many(pixels)
def back_project(self, pixel, depth):
"""Project a pixel to a fronto-parallel plane at a given depth."""
bearing = self.pixel_bearing(pixel)
scale = depth / bearing[2]
return scale * bearing
def back_project_many(self, pixels, depths):
"""Project pixels to fronto-parallel planes at given depths."""
bearings = self.pixel_bearing_many(pixels)
scales = depths / bearings[:, 2]
return scales[:, np.newaxis] * bearings
def get_K(self):
"""The calibration matrix."""
return np.array([[self.focal_x, 0., self.c_x],
[0., self.focal_y, self.c_y],
[0., 0., 1.]])
def get_K_in_pixel_coordinates(self, width=None, height=None):
"""The calibration matrix that maps to pixel coordinates.
Coordinates (0,0) correspond to the center of the top-left pixel,
and (width - 1, height - 1) to the center of bottom-right pixel.
You can optionally pass the width and height of the image, in case
you are using a resized versior of the original image.
"""
w = width or self.width
h = height or self.height
s = max(w, h)
normalized_to_pixel = np.array([
[s, 0, (w - 1) / 2.0],
[0, s, (h - 1) / 2.0],
[0, 0, 1],
])
return np.dot(normalized_to_pixel, self.get_K())
class FisheyeCamera(Camera):
"""Define a fisheye camera.
Attributes:
width (int): image width.
height (int): image height.
focal (real): estimated focal length.
k1 (real): estimated first distortion parameter.
k2 (real): estimated second distortion parameter.
"""
def __init__(self):
"""Defaut constructor."""
self.id = None
self.projection_type = 'fisheye'
self.width = None
self.height = None
self.focal = None
self.k1 = None
self.k2 = None
def project(self, point):
"""Project a 3D point in camera coordinates to the image plane."""
x, y, z = point
l = np.sqrt(x**2 + y**2)
theta = np.arctan2(l, z)
theta_d = theta * (1.0 + theta**2 * (self.k1 + theta**2 * self.k2))
s = self.focal * theta_d / l
return np.array([s * x, s * y])
def project_many(self, points):
"""Project 3D points in camera coordinates to the image plane."""
points = points.reshape((-1, 1, 3)).astype(np.float64)
distortion = np.array([self.k1, self.k2, 0., 0.])
K, R, t = self.get_K(), np.zeros(3), np.zeros(3)
pixels, _ = cv2.fisheye.projectPoints(points, R, t, K, distortion)
return pixels.reshape((-1, 2))
def pixel_bearing(self, pixel):
"""Unit vector pointing to the pixel viewing direction."""
point = np.asarray(pixel).reshape((1, 1, 2))
distortion = np.array([self.k1, self.k2, 0., 0.])
x, y = cv2.fisheye.undistortPoints(point, self.get_K(), distortion).flat
l = np.sqrt(x * x + y * y + 1.0)
return np.array([x / l, y / l, 1.0 / l])
def pixel_bearing_many(self, pixels):
"""Unit vector pointing to the pixel viewing directions."""
points = pixels.reshape((-1, 1, 2)).astype(np.float64)
distortion = np.array([self.k1, self.k2, 0., 0.])
up = cv2.fisheye.undistortPoints(points, self.get_K(), distortion)
up = up.reshape((-1, 2))
x = up[:, 0]
y = up[:, 1]
l = np.sqrt(x * x + y * y + 1.0)
return np.column_stack((x / l, y / l, 1.0 / l))
def pixel_bearings(self, pixels):
"""Deprecated: use pixel_bearing_many."""
return self.pixel_bearing_many(pixels)
def back_project(self, pixel, depth):
"""Project a pixel to a fronto-parallel plane at a given depth."""
bearing = self.pixel_bearing(pixel)
scale = depth / bearing[2]
return scale * bearing
def back_project_many(self, pixels, depths):
"""Project pixels to fronto-parallel planes at given depths."""
bearings = self.pixel_bearing_many(pixels)
scales = depths / bearings[:, 2]
return scales[:, np.newaxis] * bearings
def get_K(self):
"""The calibration matrix."""
return np.array([[self.focal, 0., 0.],
[0., self.focal, 0.],
[0., 0., 1.]])
def get_K_in_pixel_coordinates(self, width=None, height=None):
"""The calibration matrix that maps to pixel coordinates.
Coordinates (0,0) correspond to the center of the top-left pixel,
and (width - 1, height - 1) to the center of bottom-right pixel.
You can optionally pass the width and height of the image, in case
you are using a resized version of the original image.
"""
w = width or self.width
h = height or self.height
f = self.focal * max(w, h)
return np.array([[f, 0, 0.5 * (w - 1)],
[0, f, 0.5 * (h - 1)],
[0, 0, 1.0]])
class FisheyeExtendedCamera(Camera):
"""Define a fisheye camera using full OpenCV model.
Attributes:
width (int): image width.
height (int): image height.
focal_x (real): estimated focal length for the X axis.
focal_y (real): estimated focal length for the Y axis.
c_x (real): estimated principal point X.
c_y (real): estimated principal point Y.
k1 (real): estimated first radial distortion parameter.
k2 (real): estimated second radial distortion parameter.
k3 (real): estimated third radial distortion parameter.
k4 (real): estimated fourth radial distortion parameter.
"""
def __init__(self):
"""Defaut constructor."""
self.id = None
self.projection_type = 'fisheye_opencv'
self.width = None
self.height = None
self.focal_x = None
self.focal_y = None
self.c_x = None
self.c_y = None
self.k1 = None
self.k2 = None
self.k3 = None
self.k4 = None
def project(self, point):
"""Project a 3D point in camera coordinates to the image plane."""
x, y, z = point
a = x / z
b = y / z
r = np.sqrt(a**2 + b**2)
theta = np.arctan(r)
theta2 = theta**2
theta_d = theta * (1.0 + theta2 * (self.k1 + theta2 * (self.k2 + theta2 * (self.k3 + theta2 * self.k4))))
inv_r = 1.0 / r if r > 1e-8 else 1.0
cdist = theta_d * inv_r if r > 1e-8 else 1.0
x_p = cdist * a
y_p = cdist * b
return np.array([self.focal_x * x_p + self.c_x,
self.focal_y * y_p + self.c_y])
def project_many(self, points):
"""Project 3D points in camera coordinates to the image plane."""
points = points.reshape((-1, 1, 3)).astype(np.float64)
distortion = np.array([self.k1, self.k2, self.k3, self.k4])
K, R, t = self.get_K(), np.zeros(3), np.zeros(3)
pixels, _ = cv2.fisheye.projectPoints(points, R, t, K, distortion)
return pixels.reshape((-1, 2))
def pixel_bearing(self, pixel):
"""Unit vector pointing to the pixel viewing direction."""
point = np.asarray(pixel).reshape((1, 1, 2))
distortion = np.array([self.k1, self.k2, self.k3, self.k4])
x, y = cv2.fisheye.undistortPoints(point, self.get_K(), distortion).flat
l = np.sqrt(x * x + y * y + 1.0)
return np.array([x / l, y / l, 1.0 / l])
def pixel_bearing_many(self, pixels):
"""Unit vector pointing to the pixel viewing directions."""
points = pixels.reshape((-1, 1, 2)).astype(np.float64)
distortion = np.array([self.k1, self.k2, self.k3, self.k4])
up = cv2.fisheye.undistortPoints(points, self.get_K(), distortion)
up = up.reshape((-1, 2))
x = up[:, 0]
y = up[:, 1]
l = np.sqrt(x * x + y * y + 1.0)
return np.column_stack((x / l, y / l, 1.0 / l))
def pixel_bearings(self, pixels):
"""Deprecated: use pixel_bearing_many."""
return self.pixel_bearing_many(pixels)
def back_project(self, pixel, depth):
"""Project a pixel to a fronto-parallel plane at a given depth."""
bearing = self.pixel_bearing(pixel)
scale = depth / bearing[2]
return scale * bearing
def back_project_many(self, pixels, depths):
"""Project pixels to fronto-parallel planes at given depths."""
bearings = self.pixel_bearing_many(pixels)
scales = depths / bearings[:, 2]
return scales[:, np.newaxis] * bearings
def get_K(self):
"""The calibration matrix."""
return np.array([[self.focal_x, 0., self.c_x],
[0., self.focal_y, self.c_y],
[0., 0., 1.]])
def get_K_in_pixel_coordinates(self, width=None, height=None):
"""The calibration matrix that maps to pixel coordinates.
Coordinates (0,0) correspond to the center of the top-left pixel,
and (width - 1, height - 1) to the center of bottom-right pixel.
You can optionally pass the width and height of the image, in case
you are using a resized version of the original image.
"""
w = width or self.width
h = height or self.height
s = max(w, h)
normalized_to_pixel = np.array([
[s, 0, (w - 1) / 2.0],
[0, s, (h - 1) / 2.0],
[0, 0, 1],
])
return np.dot(normalized_to_pixel, self.get_K())
class DualCamera(Camera):
"""Define a camera that seamlessly transition
between fisheye and perspective camera.
Attributes:
width (int): image width.
height (int): image height.
focal (real): estimated focal length.
k1 (real): estimated first distortion parameter.
k2 (real): estimated second distortion parameter.
transition (real): parametrize between perpective (1.0) and fisheye (0.0)
"""
def __init__(self, projection_type='unknown'):
"""Defaut constructor."""
self.id = None
self.projection_type = 'dual'
self.width = None
self.height = None
self.focal = None
self.k1 = None
self.k2 = None
if projection_type == 'perspective':
self.transition = 1.0
elif projection_type == 'fisheye':
self.transition = 0.0
else:
self.transition = 0.5
def project(self, point):
"""Project a 3D point in camera coordinates to the image plane."""
x, y, z = point
l = np.sqrt(x**2 + y**2)
theta = np.arctan2(l, z)
x_fish = theta / l * x
y_fish = theta / l * y
x_persp = point[0] / point[2]
y_persp = point[1] / point[2]
x_dual = self.transition*x_persp + (1.0 - self.transition)*x_fish
y_dual = self.transition*y_persp + (1.0 - self.transition)*y_fish
r2 = x_dual * x_dual + y_dual * y_dual
distortion = 1.0 + r2 * (self.k1 + self.k2 * r2)
return np.array([self.focal * distortion * x_dual,
self.focal * distortion * y_dual])
def project_many(self, points):
"""Project 3D points in camera coordinates to the image plane."""
projected = []
for point in points:
projected.append(self.project(point))
return np.array(projected)
def pixel_bearing(self, pixel):
"""Unit vector pointing to the pixel viewing direction."""
point = np.asarray(pixel).reshape((1, 1, 2))
distortion = np.array([self.k1, self.k2, 0., 0.])
no_K = np.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
point = point / self.focal
x_u, y_u = cv2.undistortPoints(point, no_K, distortion).flat
r = np.sqrt(x_u**2 + y_u**2)
# inverse iteration for finding theta from r
theta = 0
for i in range(5):
f = self.transition*math.tan(theta) + (1.0 - self.transition)*theta - r
secant = 1.0/math.cos(theta)
d = (self.transition*secant**2 - self.transition + 1)
if i < 1:
theta -= 0.5*f/d
else:
theta -= f/d
s = math.tan(theta)/(self.transition*math.tan(theta) + (1.0 - self.transition)*theta)
x_dual = x_u*s
y_dual = y_u*s
l = math.sqrt(x_dual * x_dual + y_dual * y_dual + 1.0)
return np.array([x_dual / l, y_dual / l, 1.0 / l])
def pixel_bearing_many(self, pixels):
"""Unit vector pointing to the pixel viewing directions."""
points = pixels.reshape((-1, 1, 2)).astype(np.float64)
distortion = np.array([self.k1, self.k2, 0., 0.])
no_K = np.array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 1.]])
points = points / self.focal
undistorted = cv2.undistortPoints(points, no_K, distortion)
undistorted = undistorted.reshape((-1, 2))
r = np.sqrt(undistorted[:, 0]**2 + undistorted[:, 1]**2)
# inverse iteration for finding theta from r
theta = 0
for i in range(5):
f = self.transition*np.tan(theta) + (1.0 - self.transition)*theta - r
secant = 1.0/np.cos(theta)
d = (self.transition*secant**2 - self.transition + 1)
if i < 1:
theta -= 0.5*f/d
else:
theta -= f/d
s = np.tan(theta)/(self.transition*np.tan(theta) + (1.0 - self.transition)*theta)
x_dual = undistorted[:, 0]*s
y_dual = undistorted[:, 1]*s
l = np.sqrt(x_dual * x_dual + y_dual * y_dual + 1.0)
return np.column_stack([x_dual / l, y_dual / l, 1.0 / l])
def pixel_bearings(self, pixels):
"""Deprecated: use pixel_bearing_many."""
return self.pixel_bearing_many(pixels)
def back_project(self, pixel, depth):
"""Project a pixel to a fronto-parallel plane at a given depth."""
bearing = self.pixel_bearing(pixel)
scale = depth / bearing[2]
return scale * bearing
def back_project_many(self, pixels, depths):
"""Project pixels to fronto-parallel planes at given depths."""
bearings = self.pixel_bearing_many(pixels)
scales = depths / bearings[:, 2]
return scales[:, np.newaxis] * bearings
def get_K(self):
"""The calibration matrix."""
return np.array([[self.focal, 0., 0.],
[0., self.focal, 0.],
[0., 0., 1.]])
def get_K_in_pixel_coordinates(self, width=None, height=None):
"""The calibration matrix that maps to pixel coordinates.
Coordinates (0,0) correspond to the center of the top-left pixel,
and (width - 1, height - 1) to the center of bottom-right pixel.
You can optionally pass the width and height of the image, in case
you are using a resized version of the original image.
"""
w = width or self.width
h = height or self.height
f = self.focal * max(w, h)
return np.array([[f, 0, 0.5 * (w - 1)],
[0, f, 0.5 * (h - 1)],
[0, 0, 1.0]])
class SphericalCamera(Camera):
"""A spherical camera generating equirectangular projections.
Attributes:
width (int): image width.
height (int): image height.
"""
def __init__(self):
"""Defaut constructor."""
self.id = None
self.projection_type = 'equirectangular'
self.width = None
self.height = None
def project(self, point):
"""Project a 3D point in camera coordinates to the image plane."""
x, y, z = point
lon = np.arctan2(x, z)
lat = np.arctan2(-y, np.sqrt(x**2 + z**2))
return np.array([lon / (2 * np.pi), -lat / (2 * np.pi)])
def project_many(self, points):
"""Project 3D points in camera coordinates to the image plane."""
x, y, z = points.T
lon = np.arctan2(x, z)
lat = np.arctan2(-y, np.sqrt(x**2 + z**2))
return np.column_stack([lon / (2 * np.pi), -lat / (2 * np.pi)])
def pixel_bearing(self, pixel):
"""Unit vector pointing to the pixel viewing direction."""
lon = pixel[0] * 2 * np.pi
lat = -pixel[1] * 2 * np.pi
x = np.cos(lat) * np.sin(lon)
y = -np.sin(lat)
z = np.cos(lat) *
|
np.cos(lon)
|
numpy.cos
|
'''
3D GRID -> implement cell proliferations (cell cycle), proton transport (irradiation survival probability)
@author : singh
The entire file is based on Moreau's work (2D version): https://github.com/gregoire-moreau/radio_rl
Link to my repo : https://github.com/amanpreetsingh-BE/DeepRL-Protontherapy
'''
import numpy as np
import random
from model.cell import HealthyCell, CancerCell
from model.get_voxel_index import get_voxel_index
from model.cdirect import cdirect
# constants (same naming as Fippel document) for proton transport
m_p = 938.272 # [MeV]
m_e = 0.511 # [MeV]
m_o = 16.0 * m_p # [MeV]
r_e = 2.818E-12 # [mm]
z = 1.0 # [/]
X_w = 360.86 # [mm]
Es = 6 # simulation parameter
Tmin_e = float('inf') # [MeV]
class CellList:
""" Used to hold lists of cells on each voxel while keeping cancer cells and healthy cells sorted """
def __init__(self):
self.size = 0 # total numbers of cells
self.num_c_cells = 0 # number of cancer cell => size - num_c_cells = num_h_cells
self.cancer_cells = []
self.healthy_cells = []
def __iter__(self):
"""Needed to iterate on the list object"""
self._iter_count = -1
return self
def __next__(self):
"""Needed to iterate on the list object"""
self._iter_count += 1
if self._iter_count < self.num_c_cells:
return self.cancer_cells[self._iter_count]
elif self._iter_count < self.size:
return self.healthy_cells[self._iter_count - self.num_c_cells]
else:
raise StopIteration
def append(self, cell):
"""Add a cell to the list, keep the API of a Python list"""
if cell.cell_type() < 0:
self.cancer_cells.append(cell)
self.num_c_cells += 1
else:
self.healthy_cells.append(cell)
self.size += 1
def __len__(self):
"""Return the size of the list, keep the API of a Python list"""
return self.size
def __getitem__(self, key):
if key < self.size:
if key < self.num_c_cells:
return self.cancer_cells[key]
else:
return self.healthy_cells[key - self.num_c_cells]
else:
raise IndexError
def delete_dead(self):
"""Delete dead cells from the list and update size"""
self.cancer_cells = [cell for cell in self.cancer_cells if cell.alive]
self.healthy_cells = [cell for cell in self.healthy_cells if cell.alive]
self.num_c_cells = len(self.cancer_cells)
self.size = self.num_c_cells + len(self.healthy_cells)
def pixel_type(self):
"""Used for observation of types on the grid"""
if self.size == 0: # if there is no cell
return 0
elif self.num_c_cells: # if number of cancers cells > 1
return -1
else:
return 1
def pixel_density(self):
"""Used for observation of densities on the grid"""
if self.num_c_cells:
return - self.num_c_cells
else:
return self.size
class Particle:
"""Proton particle defined by state values """
def __init__(self, position, direction , energy):
self.position = position
self.direction = direction
self.energy = energy
class Grid:
"""
The grid is a 3D phantom of size xSize*ySize*zSize [mm3]. The voxels are cubic and of size defined by voxelSize [mm]
Each voxel contains [CellList, glucose, oxygen, density, scoring]
"""
def __init__(self, width, height, length, voxelSize, density, materialMap, numSources):
""" Constructor of the Grid.
Parameters :
width : in mm
height : in mm
length : in mm
voxelSize : size of a voxel (always cubic !) in mm, i.e resolution
densityMap : matrix of size [width, height, length]/voxelSize representing density of tissues for each voxel
materialMap : materialMap[i,j,k] is a integer representing a tissue, for accessing SPdatabase
numSources : number of nutrient sources on the grid
"""
# Geometry parameters :
self.voxelSize = voxelSize # Size of voxel
self.xSize = int(width/voxelSize) # Frontal axis
self.ySize = int(height/voxelSize) # Longitudinal axis
self.zSize = int(length/voxelSize) # Sagittal axis
self.voxelNumbers = self.xSize*self.ySize*self.zSize # Number of voxels
# Voxel's data :
self.glucose = np.full((self.xSize, self.ySize, self.zSize), 100.0) # oxygen amount of a voxel, with initial scaled value 100
self.oxygen = np.full((self.xSize, self.ySize, self.zSize), 1000.0) # glucose amount of a voxel, with initial scaled value 1000
self.cells = np.empty((self.xSize, self.ySize, self.zSize), dtype=object) # keep track of cells in a voxel, initialize with empty lists
for k in range(self.zSize):
for i in range(self.xSize):
for j in range(self.ySize):
self.cells[i, j, k] = CellList()
self.scoring = np.zeros((self.xSize, self.ySize, self.zSize), dtype=float) # keep track of deposited energy in a voxel by proton [MeV]
self.density = density # density (bone, water, ... ) matrix of voxels [g/cm3]
self.materialMap = materialMap # materialMap[i,j,k] = integer representing a tissue, for accesing SPdatabase
self.doseMap = None # keep track of deposited dose in a voxel by proton [MeV]
# Placement of random sources representing endothelial cells :
self.numSources = numSources
self.sources = random_sources(self.xSize, self.ySize, self.zSize, numSources) # list of (x,y,z) positions of numSources placed random
# Precompute neighboor cells
self.neigh_counts = np.zeros((self.xSize, self.ySize, self.zSize), dtype=int) # neigh_counts contains for each voxel on the grid,
# the number of cells on neigboring pixels
# "Front" face
for i in range(self.xSize): # up and down borders
self.neigh_counts[i,0,0] += 4
self.neigh_counts[i, self.ySize - 1,0] += 4
for j in range(self.ySize): # left and right borders
self.neigh_counts[0, j, 0] += 4
self.neigh_counts[self.xSize - 1, j, 0] += 4
# "Back" face
for i in range(self.xSize): # up and down borders
self.neigh_counts[i,0,self.zSize-1] += 4
self.neigh_counts[i, self.ySize - 1,self.zSize-1] += 4
for j in range(self.ySize): # left and right borders
self.neigh_counts[0, j, self.zSize-1] += 4
self.neigh_counts[self.xSize - 1, j, self.zSize-1] += 4
# "left" face
for k in range(self.zSize): # up and down borders
self.neigh_counts[0, 0, k] += 4
self.neigh_counts[0, self.ySize-1 ,k] += 4
for j in range(self.ySize): # left and right borders
self.neigh_counts[0, j, 0] += 4
self.neigh_counts[0, j, self.zSize-1] += 4
# "right" face
for k in range(self.zSize): # up and down borders
self.neigh_counts[self.xSize-1, 0, k] += 4
self.neigh_counts[self.xSize-1, self.ySize-1 ,k] += 4
for j in range(self.ySize): # left and right borders
self.neigh_counts[self.xSize-1, j, 0] += 4
self.neigh_counts[self.xSize-1, j, self.zSize-1] += 4
self.neigh_counts[0, 0, 0] -= 1
self.neigh_counts[self.xSize-1, 0, 0] -= 1
self.neigh_counts[0, 0, self.zSize-1] -= 1
self.neigh_counts[self.xSize-1, self.ySize-1, 0] -= 1
self.neigh_counts[0, 0, self.zSize-1] -= 1
self.neigh_counts[self.xSize-1, 0, self.zSize-1] -= 1
self.neigh_counts[0, self.ySize-1, self.zSize-1] -= 1
self.neigh_counts[self.xSize-1, self.ySize-1, self.zSize-1] -= 1
# Compute center of the tumor (for tumor placement, cancer cell at the center initially)
self.centerX = self.xSize // 2
self.centerY = self.ySize // 2
self.centerZ = self.zSize // 2
# Generate stopping power database (!! path depends on emplacement of running script)
self.SP_water = np.loadtxt("DeepRL-PT/model/SPdata/SP_water.txt", 'float', '#', None, None, 8)
self.SP_bone = np.loadtxt("DeepRL-PT/model/SPdata/SP_bone.txt", 'float', '#', None, None, 8) # ADDED ONE FOR TESTING
self.SP_database = []
self.SP_database.append([]) # index 0 is empty to be consistant with matlab code
self.SP_database.append(self.SP_water) # index 1 = water print(SP_database[1][x,y])
self.SP_database.append(self.SP_bone) # index 2 = bone print(SP_database[2][x,y])
#### cells proliferation functions related :
def fill_source(self, glucose=0, oxygen=0):
"""Sources of nutrients are refilled."""
for i in range(len(self.sources)):
self.glucose[self.sources[i][0], self.sources[i][1], self.sources[i][2]] += glucose
self.oxygen[self.sources[i][0], self.sources[i][1], self.sources[i][2]] += oxygen
if random.randint(0, 23) == 0:
self.sources[i] = self.source_move(self.sources[i][0], self.sources[i][1], self.sources[i][2])
def source_move(self, x, y, z):
""""Random walk of sources for angiogenesis"""
if random.randint(0, 50000) < CancerCell.cell_count: # Move towards tumour center
if x < self.centerX:
x += 1
elif x > self.centerX:
x -= 1
if y < self.centerY:
y += 1
elif y > self.centerY:
y -= 1
if z < self.centerZ:
z += 1
elif z > self.centerZ:
z -= 1
return x, y, z
else:
return self.rand_neigh(x, y, z)
def rand_neigh(self, x, y, z):
""" take a random voxel neighbor of (x,y,z) """
ind = []
for (i, j, k) in [(x - 1, y - 1,z), (x - 1, y,z), (x - 1, y + 1,z), (x, y - 1,z), (x, y + 1,z), (x + 1, y - 1,z), (x + 1, y,z),
(x + 1, y + 1,z),(x - 1, y - 1,z-1), (x - 1, y,z-1), (x - 1, y + 1,z-1), (x, y - 1,z-1), (x, y + 1,z-1), (x + 1, y - 1,z-1), (x + 1, y,z-1),
(x + 1, y + 1,z-1),(x - 1, y - 1,z+1), (x - 1, y,z+1), (x - 1, y + 1,z+1), (x, y - 1,z+1), (x, y + 1,z+1), (x + 1, y - 1,z+1), (x + 1, y,z+1),
(x + 1, y + 1,z+1)]:
if (i >= 0 and i < self.xSize and j >= 0 and j < self.ySize and k >=0 and k < self.zSize):
ind.append((i, j, k))
return random.choice(ind)
def diffuse_glucose(self, drate):
""" diffusion of glucose """
self.glucose = (1 - drate) * self.glucose + (0.083 * drate) * self.neighbors_glucose()
def diffuse_oxygen(self, drate):
""" diffusion of oxygen """
self.oxygen = (1 - drate) * self.oxygen + (0.083 * drate) * self.neighbors_oxygen()
def neighbors_glucose(self):
""" utility function for diffusion of glucose """
down = np.roll(self.glucose, 1, axis=0)
up = np.roll(self.glucose, -1, axis=0)
right = np.roll(self.glucose, 1, axis=(0, 1))
left =
|
np.roll(self.glucose, -1, axis=(0, 1))
|
numpy.roll
|
import os
import numpy as np
import pytest
from autolens import exc
from autolens.data.array.util import array_util, grid_util
from autolens.data.array import mask as msk
from autolens.data.array import scaled_array
test_data_dir = "{}/../../test_files/array/".format(os.path.dirname(os.path.realpath(__file__)))
@pytest.fixture(name="array_grid")
def make_array_grid():
return scaled_array.ScaledSquarePixelArray(np.zeros((5, 5)), pixel_scale=0.5)
@pytest.fixture(name="array_grid_rectangular")
def make_array_grid_rectangular():
return scaled_array.ScaledRectangularPixelArray(np.zeros((5, 5)), pixel_scales=(1.0, 0.5))
class TestArrayGeometry:
class TestArrayAndTuples:
def test__square_pixel_array__input_data_grid_3x3__centre_is_origin(self):
data_grid = scaled_array.ScaledSquarePixelArray(array=np.ones((3, 3)), pixel_scale=1.0)
assert data_grid.pixel_scale == 1.0
assert data_grid.shape == (3, 3)
assert data_grid.central_pixel_coordinates == (1.0, 1.0)
assert data_grid.shape_arc_seconds == pytest.approx((3.0, 3.0))
assert data_grid.arc_second_maxima == (1.5, 1.5)
assert data_grid.arc_second_minima == (-1.5, -1.5)
assert (data_grid == np.ones((3, 3))).all()
def test__square_pixel_array__input_data_grid_rectangular__change_origin(self):
data_grid = scaled_array.ScaledSquarePixelArray(array=np.ones((4, 3)), pixel_scale=0.1, origin=(1.0, 1.0))
assert (data_grid == np.ones((4, 3))).all()
assert data_grid.pixel_scale == 0.1
assert data_grid.shape == (4, 3)
assert data_grid.central_pixel_coordinates == (1.5, 1.0)
assert data_grid.shape_arc_seconds == pytest.approx((0.4, 0.3))
assert data_grid.arc_second_maxima == pytest.approx((1.2, 1.15), 1e-4)
assert data_grid.arc_second_minima == pytest.approx((0.8, 0.85), 1e-4)
data_grid = scaled_array.ScaledSquarePixelArray(array=np.ones((3, 4)), pixel_scale=0.1)
assert (data_grid == np.ones((3, 4))).all()
assert data_grid.pixel_scale == 0.1
assert data_grid.shape == (3, 4)
assert data_grid.central_pixel_coordinates == (1.0, 1.5)
assert data_grid.shape_arc_seconds == pytest.approx((0.3, 0.4))
assert data_grid.arc_second_maxima == pytest.approx((0.15, 0.2), 1e-4)
assert data_grid.arc_second_minima == pytest.approx((-0.15, -0.2), 1e-4)
def test__rectangular_pixel_grid__input_data_grid_3x3(self):
data_grid = scaled_array.ScaledRectangularPixelArray(array=np.ones((3, 3)), pixel_scales=(2.0, 1.0))
assert data_grid == pytest.approx(np.ones((3, 3)), 1e-4)
assert data_grid.pixel_scales == (2.0, 1.0)
assert data_grid.shape == (3, 3)
assert data_grid.central_pixel_coordinates == (1.0, 1.0)
assert data_grid.shape_arc_seconds == pytest.approx((6.0, 3.0))
assert data_grid.arc_second_maxima == pytest.approx((3.0, 1.5), 1e-4)
assert data_grid.arc_second_minima == pytest.approx((-3.0, -1.5), 1e-4)
def test__rectangular_pixel_grid__input_data_grid_rectangular(self):
data_grid = scaled_array.ScaledRectangularPixelArray(array=np.ones((4, 3)), pixel_scales=(0.2, 0.1))
assert data_grid == pytest.approx(np.ones((4, 3)), 1e-4)
assert data_grid.pixel_scales == (0.2, 0.1)
assert data_grid.shape == (4, 3)
assert data_grid.central_pixel_coordinates == (1.5, 1.0)
assert data_grid.shape_arc_seconds == pytest.approx((0.8, 0.3), 1e-3)
assert data_grid.arc_second_maxima == pytest.approx((0.4, 0.15), 1e-4)
assert data_grid.arc_second_minima == pytest.approx((-0.4, -0.15), 1e-4)
data_grid = scaled_array.ScaledRectangularPixelArray(array=np.ones((3, 4)), pixel_scales=(0.1, 0.2))
assert data_grid == pytest.approx(np.ones((3, 4)), 1e-4)
assert data_grid.pixel_scales == (0.1, 0.2)
assert data_grid.shape == (3, 4)
assert data_grid.central_pixel_coordinates == (1.0, 1.5)
assert data_grid.shape_arc_seconds == pytest.approx((0.3, 0.8), 1e-3)
assert data_grid.arc_second_maxima == pytest.approx((0.15, 0.4), 1e-4)
assert data_grid.arc_second_minima == pytest.approx((-0.15, -0.4), 1e-4)
def test__rectangular_pixel_array__input_data_grid_3x3__centre_is_yminus1_xminuss2(self):
data_grid = scaled_array.ScaledRectangularPixelArray(array=np.ones((3, 3)), pixel_scales=(2.0, 1.0),
origin=(-1.0, -2.0))
assert data_grid == pytest.approx(np.ones((3, 3)), 1e-4)
assert data_grid.pixel_scales == (2.0, 1.0)
assert data_grid.shape == (3, 3)
assert data_grid.central_pixel_coordinates == (1.0, 1.0)
assert data_grid.shape_arc_seconds == pytest.approx((6.0, 3.0))
assert data_grid.origin == (-1.0, -2.0)
assert data_grid.arc_second_maxima == pytest.approx((2.0, -0.5), 1e-4)
assert data_grid.arc_second_minima == pytest.approx((-4.0, -3.5), 1e-4)
class TestCentralPixel:
def test__square_pixel_grid(self):
grid = scaled_array.ScaledSquarePixelArray(np.zeros((3, 3)), pixel_scale=0.1)
assert grid.central_pixel_coordinates == (1, 1)
grid = scaled_array.ScaledSquarePixelArray(np.zeros((4, 4)), pixel_scale=0.1)
assert grid.central_pixel_coordinates == (1.5, 1.5)
grid = scaled_array.ScaledSquarePixelArray(np.zeros((5, 3)), pixel_scale=0.1, origin=(1.0, 2.0))
assert grid.central_pixel_coordinates == (2.0, 1.0)
def test__rectangular_pixel_grid(self):
grid = scaled_array.ScaledRectangularPixelArray(np.zeros((3, 3)), pixel_scales=(2.0, 1.0))
assert grid.central_pixel_coordinates == (1, 1)
grid = scaled_array.ScaledRectangularPixelArray(np.zeros((4, 4)), pixel_scales=(2.0, 1.0))
assert grid.central_pixel_coordinates == (1.5, 1.5)
grid = scaled_array.ScaledRectangularPixelArray(np.zeros((5, 3)), pixel_scales=(2.0, 1.0), origin=(1.0, 2.0))
assert grid.central_pixel_coordinates == (2, 1)
class TestGrids:
def test__square_pixel_grid__grid_2d__compare_to_array_util(self):
grid_2d_util = grid_util.regular_grid_2d_from_shape_pixel_scales_and_origin(shape=(4, 7),
pixel_scales=(0.56, 0.56))
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((4, 7)), pixel_scale=0.56)
assert sca.grid_2d == pytest.approx(grid_2d_util, 1e-4)
def test__square_pixel_grid__array_3x3__sets_up_arc_second_grid(self):
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((3, 3)), pixel_scale=1.0)
assert (sca.grid_2d == np.array([[[1., -1.], [1., 0.], [1., 1.]],
[[0., -1.], [0., 0.], [0., 1.]],
[[-1., -1.], [-1., 0.], [-1., 1.]]])).all()
def test__square_pixel_grid__grid_1d__compare_to_array_util(self):
grid_1d_util = grid_util.regular_grid_1d_from_shape_pixel_scales_and_origin(shape=(4, 7),
pixel_scales=(0.56, 0.56))
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((4, 7)), pixel_scale=0.56)
assert sca.grid_1d == pytest.approx(grid_1d_util, 1e-4)
def test__square_pixel_grid__nonzero_centres__compure_to_array_util(self):
grid_2d_util = grid_util.regular_grid_2d_from_shape_pixel_scales_and_origin(shape=(4, 7),
pixel_scales=(0.56, 0.56),
origin=(1.0, 3.0))
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((4, 7)), pixel_scale=0.56, origin=(1.0, 3.0))
assert sca.grid_2d == pytest.approx(grid_2d_util, 1e-4)
grid_1d_util = grid_util.regular_grid_1d_from_shape_pixel_scales_and_origin(shape=(4, 7),
pixel_scales=(0.56, 0.56),
origin=(-1.0, -4.0))
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((4, 7)), pixel_scale=0.56, origin=(-1.0, -4.0))
assert sca.grid_1d == pytest.approx(grid_1d_util, 1e-4)
def test__rectangular_pixel_grid__grid_2d__compare_to_array_util(self):
grid_2d_util = grid_util.regular_grid_2d_from_shape_pixel_scales_and_origin(shape=(4, 7),
pixel_scales=(0.8, 0.56))
sca = scaled_array.ScaledRectangularPixelArray(array=np.zeros((4, 7)), pixel_scales=(0.8, 0.56))
assert sca.grid_2d == pytest.approx(grid_2d_util, 1e-4)
def test__rectangular_pixel_grid__array_3x3__sets_up_arcsecond_grid(self):
sca = scaled_array.ScaledRectangularPixelArray(array=np.zeros((3, 3)), pixel_scales=(1.0, 2.0))
assert (sca.grid_2d == np.array([[[1., -2.], [1., 0.], [1., 2.]],
[[0., -2.], [0., 0.], [0., 2.]],
[[-1., -2.], [-1., 0.], [-1., 2.]]])).all()
def test__rectangular_pixel_grid__grid_1d__compare_to_array_util(self):
grid_1d_util = grid_util.regular_grid_1d_from_shape_pixel_scales_and_origin(shape=(4, 7),
pixel_scales=(0.8, 0.56))
sca = scaled_array.ScaledRectangularPixelArray(array=np.zeros((4, 7)), pixel_scales=(0.8, 0.56))
assert sca.grid_1d == pytest.approx(grid_1d_util, 1e-4)
def test__rectangular_pixel_grid__nonzero_centres__compure_to_array_util(self):
grid_2d_util = grid_util.regular_grid_2d_from_shape_pixel_scales_and_origin(shape=(4, 7),
pixel_scales=(0.8, 0.56),
origin=(1.0, 2.0))
sca = scaled_array.ScaledRectangularPixelArray(array=np.zeros((4, 7)), pixel_scales=(0.8, 0.56),
origin=(1.0, 2.0))
assert sca.grid_2d == pytest.approx(grid_2d_util, 1e-4)
grid_1d_util = grid_util.regular_grid_1d_from_shape_pixel_scales_and_origin(shape=(4, 7),
pixel_scales=(0.8, 0.56),
origin=(-1.0, -4.0))
sca = scaled_array.ScaledRectangularPixelArray(array=np.zeros((4, 7)), pixel_scales=(0.8, 0.56),
origin=(-1.0, -4.0))
assert sca.grid_1d == pytest.approx(grid_1d_util, 1e-4)
class TestConversion:
def test__arc_second_coordinates_to_pixel_coordinates__arc_seconds_are_pixel_centres(self):
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((2, 2)), pixel_scale=2.0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(1.0, -1.0)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(1.0, 1.0)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-1.0, -1.0)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-1.0, 1.0)) == (1, 1)
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((3, 3)), pixel_scale=3.0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(3.0, -3.0)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(3.0, 0.0)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(3.0, 3.0)) == (0, 2)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.0, -3.0)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.0, 0.0)) == (1, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.0, 3.0)) == (1, 2)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-3.0, -3.0)) == (2, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-3.0, 0.0)) == (2, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-3.0, 3.0)) == (2, 2)
def test__arc_second_coordinates_to_pixel_coordinates__arc_seconds_are_pixel_corners(self):
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((2, 2)), pixel_scale=2.0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(1.99, -1.99)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(1.99, -0.01)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.01, -1.99)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.01, -0.01)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(2.01, 0.01)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(2.01, 1.99)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.01, 0.01)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.01, 1.99)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-0.01, -1.99)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-0.01, -0.01)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-1.99, -1.99)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-1.99, -0.01)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-0.01, 0.01)) == (1, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-0.01, 1.99)) == (1, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-1.99, 0.01)) == (1, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-1.99, 1.99)) == (1, 1)
def test__arc_second_coordinates_to_pixel_coordinates__arc_seconds_are_pixel_centres__nonzero_centre(self):
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((2, 2)), pixel_scale=2.0, origin=(1.0, 1.0))
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(2.0, 0.0)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(2.0, 2.0)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.0, 0.0)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.0, 2.0)) == (1, 1)
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((3, 3)), pixel_scale=3.0, origin=(3.0, 3.0))
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(6.0, 0.0)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(6.0, 3.0)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(6.0, 6.0)) == (0, 2)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(3.0, 0.0)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(3.0, 3.0)) == (1, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(3.0, 6.0)) == (1, 2)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.0, 0.0)) == (2, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.0, 3.0)) == (2, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.0, 6.0)) == (2, 2)
def test__arc_second_coordinates_to_pixel_coordinates__arc_seconds_are_pixel_corners__nonzero_centre(self):
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((2, 2)), pixel_scale=2.0, origin=(1.0, 1.0))
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(2.99, -0.99)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(2.99, 0.99)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(1.01, -0.99)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(1.01, 0.99)) == (0, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(3.01, 1.01)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(3.01, 2.99)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(1.01, 1.01)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(1.01, 2.99)) == (0, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.99, -0.99)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.99, 0.99)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-0.99, -0.99)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-0.99, 0.99)) == (1, 0)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.99, 1.01)) == (1, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(0.99, 2.99)) == (1, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-0.99, 1.01)) == (1, 1)
assert sca.arc_second_coordinates_to_pixel_coordinates(arc_second_coordinates=(-0.99, 2.99)) == (1, 1)
def test__square_pixel_grid__1d_arc_second_grid_to_1d_pixel_centred_grid__same_as_imaging_util(self):
grid_arc_seconds = np.array([[0.5, -0.5], [0.5, 0.5],
[-0.5, -0.5], [-0.5, 0.5]])
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixel_centres_1d(
grid_arc_seconds_1d=grid_arc_seconds,
shape=(2, 2),
pixel_scales=(2.0, 2.0))
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((2, 2)), pixel_scale=2.0)
grid_pixels = sca.grid_arc_seconds_to_grid_pixel_centres(grid_arc_seconds=grid_arc_seconds)
assert (grid_pixels == grid_pixels_util).all()
def test__square_pixel_grid__1d_arc_second_grid_to_1d_pixel_indexes_grid__same_as_imaging_util(self):
grid_arc_seconds = np.array([[1.0, -1.0], [1.0, 1.0],
[-1.0, -1.0], [-1.0, 1.0]])
grid_pixel_indexes_util = grid_util.grid_arc_seconds_1d_to_grid_pixel_indexes_1d(
grid_arc_seconds_1d=grid_arc_seconds,
shape=(2, 2),
pixel_scales=(2.0, 2.0))
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((2, 2)), pixel_scale=2.0)
grid_pixel_indexes = sca.grid_arc_seconds_to_grid_pixel_indexes(grid_arc_seconds=grid_arc_seconds)
assert (grid_pixel_indexes == grid_pixel_indexes_util).all()
def test__rectangular_pixel_grid__1d_arc_second_grid_to_1d_pixel_centred_grid__same_as_imaging_util(self):
grid_arc_seconds = np.array([[1.0, -2.0], [1.0, 2.0],
[-1.0, -2.0], [-1.0, 2.0]])
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixel_centres_1d(
grid_arc_seconds_1d=grid_arc_seconds,
shape=(2, 2),
pixel_scales=(7.0, 2.0))
sca = scaled_array.ScaledRectangularPixelArray(array=np.zeros((2, 2)),
pixel_scales=(7.0, 2.0))
grid_pixels = sca.grid_arc_seconds_to_grid_pixel_centres(grid_arc_seconds=grid_arc_seconds)
assert (grid_pixels == grid_pixels_util).all()
def test__rectangular_pixel_grid__1d_arc_second_grid_to_1d_pixel_indexes_grid__same_as_imaging_util(self):
grid_arc_seconds = np.array([[1.0, -2.0], [1.0, 2.0],
[-1.0, -2.0], [-1.0, 2.0]])
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixel_indexes_1d(
grid_arc_seconds_1d=grid_arc_seconds,
shape=(2, 2),
pixel_scales=(2.0, 4.0))
sca = scaled_array.ScaledRectangularPixelArray(array=np.zeros((2, 2)),
pixel_scales=(2.0, 4.0))
grid_pixels = sca.grid_arc_seconds_to_grid_pixel_indexes(grid_arc_seconds=grid_arc_seconds)
assert (grid_pixels == grid_pixels_util).all()
def test__rectangular_pixel_grid__1d_arc_second_grid_to_1d_pixel_grid__same_as_imaging_util(self):
grid_arc_seconds = np.array([[1.0, -2.0], [1.0, 2.0],
[-1.0, -2.0], [-1.0, 2.0]])
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixels_1d(
grid_arc_seconds_1d=grid_arc_seconds, shape=(2, 2), pixel_scales=(2.0, 4.0))
sca = scaled_array.ScaledRectangularPixelArray(array=np.zeros((2, 2)),
pixel_scales=(2.0, 4.0))
grid_pixels = sca.grid_arc_seconds_to_grid_pixels(grid_arc_seconds=grid_arc_seconds)
assert (grid_pixels == grid_pixels_util).all()
def test__square_pixel_grid__1d_pixel_grid_to_1d_pixel_centred_grid__same_as_imaging_util(self):
grid_pixels = np.array([[0, 0], [0, 1],
[1, 0], [1, 1]])
grid_pixels_util = grid_util.grid_pixels_1d_to_grid_arc_seconds_1d(
grid_pixels_1d=grid_pixels,
shape=(2, 2),
pixel_scales=(2.0, 2.0))
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((2, 2)), pixel_scale=2.0)
grid_pixels = sca.grid_pixels_to_grid_arc_seconds(grid_pixels=grid_pixels)
assert (grid_pixels == grid_pixels_util).all()
def test__square_pixel_grid__1d_pixel_grid_to_1d_pixel_grid__same_as_imaging_util(self):
grid_pixels = np.array([[0, 0], [0, 1],
[1, 0], [1, 1]])
grid_pixels_util = grid_util.grid_pixels_1d_to_grid_arc_seconds_1d(
grid_pixels_1d=grid_pixels, shape=(2, 2), pixel_scales=(2.0, 2.0))
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((2, 2)), pixel_scale=2.0)
grid_pixels = sca.grid_pixels_to_grid_arc_seconds(grid_pixels=grid_pixels)
assert (grid_pixels == grid_pixels_util).all()
def test__square_pixel_grid__grids_with_nonzero_centres__same_as_imaging_util(self):
grid_arc_seconds = np.array([[1.0, -2.0], [1.0, 2.0],
[-1.0, -2.0], [-1.0, 2.0]])
sca = scaled_array.ScaledSquarePixelArray(array=np.zeros((2, 2)), pixel_scale=2.0, origin=(1.0, 2.0))
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixels_1d(
grid_arc_seconds_1d=grid_arc_seconds, shape=(2, 2), pixel_scales=(2.0, 2.0), origin=(1.0, 2.0))
grid_pixels = sca.grid_arc_seconds_to_grid_pixels(grid_arc_seconds=grid_arc_seconds)
assert (grid_pixels == grid_pixels_util).all()
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixel_indexes_1d(
grid_arc_seconds_1d=grid_arc_seconds, shape=(2, 2), pixel_scales=(2.0, 2.0), origin=(1.0, 2.0))
grid_pixels = sca.grid_arc_seconds_to_grid_pixel_indexes(grid_arc_seconds=grid_arc_seconds)
assert grid_pixels == pytest.approx(grid_pixels_util, 1e-4)
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixel_centres_1d(
grid_arc_seconds_1d=grid_arc_seconds, shape=(2, 2), pixel_scales=(2.0, 2.0), origin=(1.0, 2.0))
grid_pixels = sca.grid_arc_seconds_to_grid_pixel_centres(grid_arc_seconds=grid_arc_seconds)
assert grid_pixels == pytest.approx(grid_pixels_util, 1e-4)
grid_pixels = np.array([[0, 0], [0, 1],
[1, 0], [1, 1]])
grid_arc_seconds_util = grid_util.grid_pixels_1d_to_grid_arc_seconds_1d(grid_pixels_1d=grid_pixels,
shape=(2, 2), pixel_scales=(2.0, 2.0), origin=(1.0, 2.0))
grid_arc_seconds = sca.grid_pixels_to_grid_arc_seconds(grid_pixels=grid_pixels)
assert (grid_arc_seconds == grid_arc_seconds_util).all()
def test__rectangular_pixel_grid__grids_with_nonzero_centres__same_as_imaging_util(self):
grid_arc_seconds = np.array([[1.0, -2.0], [1.0, 2.0],
[-1.0, -2.0], [-1.0, 2.0]])
sca = scaled_array.ScaledRectangularPixelArray(array=np.zeros((2, 2)), pixel_scales=(2.0, 1.0), origin=(1.0, 2.0))
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixels_1d(
grid_arc_seconds_1d=grid_arc_seconds, shape=(2, 2), pixel_scales=(2.0, 1.0), origin=(1.0, 2.0))
grid_pixels = sca.grid_arc_seconds_to_grid_pixels(grid_arc_seconds=grid_arc_seconds)
assert (grid_pixels == grid_pixels_util).all()
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixel_indexes_1d(
grid_arc_seconds_1d=grid_arc_seconds, shape=(2, 2), pixel_scales=(2.0, 1.0), origin=(1.0, 2.0))
grid_pixels = sca.grid_arc_seconds_to_grid_pixel_indexes(grid_arc_seconds=grid_arc_seconds)
assert (grid_pixels == grid_pixels_util).all()
grid_pixels_util = grid_util.grid_arc_seconds_1d_to_grid_pixel_centres_1d(
grid_arc_seconds_1d=grid_arc_seconds, shape=(2, 2), pixel_scales=(2.0, 1.0), origin=(1.0, 2.0))
grid_pixels = sca.grid_arc_seconds_to_grid_pixel_centres(grid_arc_seconds=grid_arc_seconds)
assert grid_pixels == pytest.approx(grid_pixels_util, 1e-4)
grid_pixels = np.array([[0, 0], [0, 1],
[1, 0], [1, 1]])
grid_arc_seconds_util = grid_util.grid_pixels_1d_to_grid_arc_seconds_1d(grid_pixels_1d=grid_pixels,
shape=(2, 2), pixel_scales=(2.0, 1.0), origin=(1.0, 2.0))
grid_arc_seconds = sca.grid_pixels_to_grid_arc_seconds(grid_pixels=grid_pixels)
assert (grid_arc_seconds == grid_arc_seconds_util).all()
class TestTicks:
def test__square_pixel_grid__yticks(self):
sca = scaled_array.ScaledSquarePixelArray(array=np.ones((3, 3)), pixel_scale=1.0)
assert sca.yticks == pytest.approx(np.array([-1.5, -0.5, 0.5, 1.5]), 1e-3)
sca = scaled_array.ScaledSquarePixelArray(array=np.ones((3, 3)), pixel_scale=0.5)
assert sca.yticks == pytest.approx(np.array([-0.75, -0.25, 0.25, 0.75]), 1e-3)
sca = scaled_array.ScaledSquarePixelArray(array=np.ones((6, 3)), pixel_scale=1.0)
assert sca.yticks == pytest.approx(np.array([-3.0, -1.0, 1.0, 3.0]), 1e-3)
sca = scaled_array.ScaledSquarePixelArray(array=np.ones((3, 1)), pixel_scale=1.0)
assert sca.yticks == pytest.approx(np.array([-1.5, -0.5, 0.5, 1.5]), 1e-3)
def test__square_pixel_grid__xticks(self):
sca = scaled_array.ScaledSquarePixelArray(array=np.ones((3, 3)), pixel_scale=1.0)
assert sca.xticks == pytest.approx(np.array([-1.5, -0.5, 0.5, 1.5]), 1e-3)
sca = scaled_array.ScaledSquarePixelArray(array=np.ones((3, 3)), pixel_scale=0.5)
assert sca.xticks == pytest.approx(np.array([-0.75, -0.25, 0.25, 0.75]), 1e-3)
sca = scaled_array.ScaledSquarePixelArray(array=np.ones((3, 6)), pixel_scale=1.0)
assert sca.xticks == pytest.approx(
|
np.array([-3.0, -1.0, 1.0, 3.0])
|
numpy.array
|
#!/usr/bin/env python3
# Copyright (c) Facebook, Inc. and its affiliates.
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
from typing import Any, Dict, List, Optional, Type, Union
import json
import math
import torch
import numpy as np
from gym import spaces
from habitat.config import Config
from habitat.core.registry import registry
from habitat.core.simulator import (
AgentState,
Sensor,
SensorTypes,
Simulator,
)
from habitat.core.utils import try_cv2_import
from habitat.tasks.utils import cartesian_to_polar
from habitat_extensions.geometry_utils import (
compute_updated_pose,
quaternion_from_coeff,
quaternion_xyzw_to_wxyz,
quaternion_rotate_vector,
compute_egocentric_delta,
compute_heading_from_quaternion,
)
from habitat.tasks.nav.nav import PointGoalSensor
from habitat_extensions.utils import truncated_normal_noise_distr
from habitat.utils.visualizations import fog_of_war, maps
from occant_utils.map import (
subtract_pose,
grow_projected_map,
spatial_transform_map,
)
cv2 = try_cv2_import()
from einops import rearrange, asnumpy
@registry.register_sensor(name="GTPoseSensor")
class GTPoseSensor(Sensor):
r"""The agents current ground-truth pose in the coordinate frame defined by
the episode, i.e. the axis it faces along and the origin is defined by
its state at t=0.
Args:
sim: reference to the simulator for calculating task observations.
config: not needed
"""
def __init__(self, sim: Simulator, config: Config, *args: Any, **kwargs: Any):
self._sim = sim
super().__init__(config=config)
def _get_uuid(self, *args: Any, **kwargs: Any):
return "pose_gt"
def _get_sensor_type(self, *args: Any, **kwargs: Any):
return SensorTypes.POSITION
def _get_observation_space(self, *args: Any, **kwargs: Any):
sensor_shape = (3,)
return spaces.Box(
low=np.finfo(np.float32).min,
high=np.finfo(np.float32).max,
shape=sensor_shape,
dtype=np.float32,
)
def _quat_to_xy_heading(self, quat):
direction_vector = np.array([0, 0, -1])
heading_vector = quaternion_rotate_vector(quat, direction_vector)
phi = cartesian_to_polar(-heading_vector[2], heading_vector[0])[1]
return np.array(phi)
def get_observation(self, *args: Any, observations, episode, **kwargs: Any):
agent_state = self._sim.get_agent_state()
origin = np.array(episode.start_position, dtype=np.float32)
rotation_world_start = quaternion_from_coeff(episode.start_rotation)
agent_position = agent_state.position
agent_position = quaternion_rotate_vector(
rotation_world_start.inverse(), agent_position - origin
)
rotation_world_agent = agent_state.rotation
rotation_world_start = quaternion_from_coeff(episode.start_rotation)
agent_heading = self._quat_to_xy_heading(
rotation_world_agent.inverse() * rotation_world_start
)
# This is rotation from -Z to -X. We want -Z to X for this particular sensor.
agent_heading = -agent_heading
return np.array(
[-agent_position[2], agent_position[0], agent_heading], dtype=np.float32,
)
@registry.register_sensor(name="NoisyPoseSensor")
class NoisyPoseSensor(Sensor):
r"""The agents current estimated pose in the coordinate frame defined by the
episode, i.e. the axis it faces along and the origin is defined by its state
at t=0 The estimate is obtained by accumulating noisy odometer readings over time.
Args:
sim: reference to the simulator for calculating task observations.
config: Contains the NOISE_SCALING field for the amount of noise added
to the odometer.
Attributes:
_estimated_position: the estimated agent position in real-world [X, Y, Z].
_estimated_rotation: the estimated agent rotation expressed as quaternion.
"""
def __init__(self, sim: Simulator, config: Config, *args: Any, **kwargs: Any):
self._sim = sim
super().__init__(config=config)
self.current_episode_id = None
self._estimated_position = None
self._estimated_rotation = None
cfg = self.config
self._fwd_tn_distr = truncated_normal_noise_distr(
cfg.FORWARD_MEAN, cfg.FORWARD_VARIANCE, 2
)
self._rot_tn_distr = truncated_normal_noise_distr(
cfg.ROTATION_MEAN, cfg.ROTATION_VARIANCE, 2
)
def _get_uuid(self, *args: Any, **kwargs: Any):
return "pose"
def _get_sensor_type(self, *args: Any, **kwargs: Any):
return SensorTypes.POSITION
def _get_observation_space(self, *args: Any, **kwargs: Any):
sensor_shape = (3,)
return spaces.Box(
low=np.finfo(np.float32).min,
high=np.finfo(np.float32).max,
shape=sensor_shape,
dtype=np.float32,
)
def _quat_to_xy_heading(self, quat):
direction_vector = np.array([0, 0, -1])
heading_vector = quaternion_rotate_vector(quat, direction_vector)
phi = cartesian_to_polar(-heading_vector[2], heading_vector[0])[1]
return np.array(phi)
def _get_noisy_delta(self, agent_state):
current_agent_position = agent_state.position
current_agent_rotation = agent_state.rotation
past_agent_position = self._past_gt_position
past_agent_rotation = self._past_gt_rotation
# GT delta
delta_xz_gt = compute_egocentric_delta(
past_agent_position,
past_agent_rotation,
current_agent_position,
current_agent_rotation,
)
delta_y_gt = current_agent_position[1] - past_agent_position[0]
# Add noise to D_rho, D_theta
D_rho, D_phi, D_theta = delta_xz_gt
D_rho_noisy = (D_rho + self._fwd_tn_distr.rvs() * np.sign(D_rho)).item()
D_phi_noisy = D_phi
D_theta_noisy = (D_theta + self._rot_tn_distr.rvs() * np.sign(D_theta)).item()
# Compute noisy delta
delta_xz_noisy = (D_rho_noisy, D_phi_noisy, D_theta_noisy)
delta_y_noisy = delta_y_gt
return delta_xz_noisy, delta_y_noisy
def get_observation(self, *args: Any, observations, episode, **kwargs: Any):
episode_id = (episode.episode_id, episode.scene_id)
agent_state = self._sim.get_agent_state()
# At the start of a new episode, reset pose estimate
if self.current_episode_id != episode_id:
self.current_episode_id = episode_id
# Initialize with the ground-truth position, rotation
self._estimated_position = agent_state.position
self._estimated_rotation = agent_state.rotation
self._past_gt_position = agent_state.position
self._past_gt_rotation = agent_state.rotation
# Compute noisy delta
delta_xz_noisy, delta_y_noisy = self._get_noisy_delta(agent_state)
# Update past gt states
self._past_gt_position = agent_state.position
self._past_gt_rotation = agent_state.rotation
# Update noisy pose estimates
(self._estimated_position, self._estimated_rotation,) = compute_updated_pose(
self._estimated_position,
self._estimated_rotation,
delta_xz_noisy,
delta_y_noisy,
)
# Compute sensor readings with noisy estimates
origin = np.array(episode.start_position, dtype=np.float32)
rotation_world_start = quaternion_from_coeff(episode.start_rotation)
agent_position = self._estimated_position
agent_position = quaternion_rotate_vector(
rotation_world_start.inverse(), agent_position - origin
)
rotation_world_agent = self._estimated_rotation
rotation_world_start = quaternion_from_coeff(episode.start_rotation)
agent_heading = self._quat_to_xy_heading(
rotation_world_agent.inverse() * rotation_world_start
)
# This is rotation from -Z to -X. We want -Z to X for this particular sensor.
agent_heading = -agent_heading
return np.array(
[-agent_position[2], agent_position[0], agent_heading], dtype=np.float32,
)
@registry.register_sensor(name="NoiseFreePoseSensor")
class NoiseFreePoseSensor(Sensor):
r"""The agents current ground-truth pose in the coordinate frame defined by
the episode, i.e. the axis it faces along and the origin is defined by
its state at t=0.
Args:
sim: reference to the simulator for calculating task observations.
config: not needed
"""
def __init__(self, sim: Simulator, config: Config, *args: Any, **kwargs: Any):
self._sim = sim
super().__init__(config=config)
def _get_uuid(self, *args: Any, **kwargs: Any):
return "pose"
def _get_sensor_type(self, *args: Any, **kwargs: Any):
return SensorTypes.POSITION
def _get_observation_space(self, *args: Any, **kwargs: Any):
sensor_shape = (3,)
return spaces.Box(
low=np.finfo(np.float32).min,
high=np.finfo(np.float32).max,
shape=sensor_shape,
dtype=np.float32,
)
def _quat_to_xy_heading(self, quat):
direction_vector = np.array([0, 0, -1])
heading_vector = quaternion_rotate_vector(quat, direction_vector)
phi = cartesian_to_polar(-heading_vector[2], heading_vector[0])[1]
return np.array(phi)
def get_observation(self, *args: Any, observations, episode, **kwargs: Any):
agent_state = self._sim.get_agent_state()
origin = np.array(episode.start_position, dtype=np.float32)
rotation_world_start = quaternion_from_coeff(episode.start_rotation)
agent_position = agent_state.position
agent_position = quaternion_rotate_vector(
rotation_world_start.inverse(), agent_position - origin
)
rotation_world_agent = agent_state.rotation
rotation_world_start = quaternion_from_coeff(episode.start_rotation)
agent_heading = self._quat_to_xy_heading(
rotation_world_agent.inverse() * rotation_world_start
)
# This is rotation from -Z to -X. We want -Z to X for this particular sensor.
agent_heading = -agent_heading
return np.array(
[-agent_position[2], agent_position[0], agent_heading], dtype=np.float32,
)
@registry.register_sensor(name="GTEgoMap")
class GTEgoMap(Sensor):
r"""Estimates the top-down occupancy based on current depth-map.
Args:
sim: reference to the simulator for calculating task observations.
config: contains the MAP_SCALE, MAP_SIZE, HEIGHT_THRESH fields to
decide grid-size, extents of the projection, and the thresholds
for determining obstacles and explored space.
"""
def __init__(self, sim: Simulator, config: Config, *args: Any, **kwargs: Any):
self._sim = sim
super().__init__(config=config)
# Map statistics
self.map_size = self.config.MAP_SIZE
self.map_scale = self.config.MAP_SCALE
if self.config.MAX_SENSOR_RANGE > 0:
self.max_forward_range = self.config.MAX_SENSOR_RANGE
else:
self.max_forward_range = self.map_size * self.map_scale
# Agent height for pointcloud tranforms
self.camera_height = self._sim.habitat_config.DEPTH_SENSOR.POSITION[1]
# Compute intrinsic matrix
depth_H = self._sim.habitat_config.DEPTH_SENSOR.HEIGHT
depth_W = self._sim.habitat_config.DEPTH_SENSOR.WIDTH
hfov = float(self._sim.habitat_config.DEPTH_SENSOR.HFOV) * np.pi / 180
vfov = 2 * np.arctan((depth_H / depth_W) * np.tan(hfov / 2.0))
self.intrinsic_matrix = np.array(
[
[1 / np.tan(hfov / 2.0), 0.0, 0.0, 0.0],
[0.0, 1 / np.tan(vfov / 2.0), 0.0, 0.0],
[0.0, 0.0, 1, 0],
[0.0, 0.0, 0, 1],
]
)
self.inverse_intrinsic_matrix = np.linalg.inv(self.intrinsic_matrix)
# Height thresholds for obstacles
self.height_thresh = self.config.HEIGHT_THRESH
# Depth processing
self.min_depth = float(self._sim.habitat_config.DEPTH_SENSOR.MIN_DEPTH)
self.max_depth = float(self._sim.habitat_config.DEPTH_SENSOR.MAX_DEPTH)
# Pre-compute a grid of locations for depth projection
W = self._sim.habitat_config.DEPTH_SENSOR.WIDTH
H = self._sim.habitat_config.DEPTH_SENSOR.HEIGHT
self.proj_xs, self.proj_ys = np.meshgrid(
np.linspace(-1, 1, W), np.linspace(1, -1, H)
)
def _get_uuid(self, *args: Any, **kwargs: Any):
return "ego_map_gt"
def _get_sensor_type(self, *args: Any, **kwargs: Any):
return SensorTypes.COLOR
def _get_observation_space(self, *args: Any, **kwargs: Any):
sensor_shape = (self.config.MAP_SIZE, self.config.MAP_SIZE, 2)
return spaces.Box(low=0, high=1, shape=sensor_shape, dtype=np.uint8,)
def convert_to_pointcloud(self, depth):
"""
Inputs:
depth = (H, W, 1) numpy array
Returns:
xyz_camera = (N, 3) numpy array for (X, Y, Z) in egocentric world coordinates
"""
depth_float = depth.astype(np.float32)[..., 0]
# =========== Convert to camera coordinates ============
W = depth.shape[1]
xs = np.copy(self.proj_xs).reshape(-1)
ys = np.copy(self.proj_ys).reshape(-1)
depth_float = depth_float.reshape(-1)
# Filter out invalid depths
valid_depths = (depth_float != self.min_depth) & (
depth_float <= self.max_forward_range
)
xs = xs[valid_depths]
ys = ys[valid_depths]
depth_float = depth_float[valid_depths]
# Unproject
# negate depth as the camera looks along -Z
xys = np.vstack(
(
xs * depth_float,
ys * depth_float,
-depth_float,
np.ones(depth_float.shape),
)
)
inv_K = self.inverse_intrinsic_matrix
xyz_camera = np.matmul(inv_K, xys).T # XYZ in the camera coordinate system
xyz_camera = xyz_camera[:, :3] / xyz_camera[:, 3][:, np.newaxis]
return xyz_camera
def safe_assign(self, im_map, x_idx, y_idx, value):
try:
im_map[x_idx, y_idx] = value
except IndexError:
valid_idx1 = np.logical_and(x_idx >= 0, x_idx < im_map.shape[0])
valid_idx2 = np.logical_and(y_idx >= 0, y_idx < im_map.shape[1])
valid_idx = np.logical_and(valid_idx1, valid_idx2)
im_map[x_idx[valid_idx], y_idx[valid_idx]] = value
def _get_depth_projection(self, sim_depth):
"""
Project pixels visible in depth-map to ground-plane
"""
if self._sim.habitat_config.DEPTH_SENSOR.NORMALIZE_DEPTH:
depth = sim_depth * (self.max_depth - self.min_depth) + self.min_depth
else:
depth = sim_depth
XYZ_ego = self.convert_to_pointcloud(depth)
# Adding agent's height to the pointcloud
XYZ_ego[:, 1] += self.camera_height
# Convert to grid coordinate system
V = self.map_size
Vby2 = V // 2
points = XYZ_ego
grid_x = (points[:, 0] / self.map_scale) + Vby2
grid_y = (points[:, 2] / self.map_scale) + V
# Filter out invalid points
valid_idx = (
(grid_x >= 0) & (grid_x <= V - 1) & (grid_y >= 0) & (grid_y <= V - 1)
)
points = points[valid_idx, :]
grid_x = grid_x[valid_idx].astype(int)
grid_y = grid_y[valid_idx].astype(int)
# Create empty maps for the two channels
obstacle_mat = np.zeros((self.map_size, self.map_size), np.uint8)
explore_mat = np.zeros((self.map_size, self.map_size), np.uint8)
# Compute obstacle locations
high_filter_idx = points[:, 1] < self.height_thresh[1]
low_filter_idx = points[:, 1] > self.height_thresh[0]
obstacle_idx = np.logical_and(low_filter_idx, high_filter_idx)
self.safe_assign(obstacle_mat, grid_y[obstacle_idx], grid_x[obstacle_idx], 1)
kernel = np.ones((3, 3), np.uint8)
obstacle_mat = cv2.dilate(obstacle_mat, kernel, iterations=1)
# Compute explored locations
explored_idx = high_filter_idx
self.safe_assign(explore_mat, grid_y[explored_idx], grid_x[explored_idx], 1)
kernel = np.ones((3, 3), np.uint8)
obstacle_mat = cv2.dilate(obstacle_mat, kernel, iterations=1)
# Smoothen the maps
kernel = np.ones((3, 3), np.uint8)
obstacle_mat = cv2.morphologyEx(obstacle_mat, cv2.MORPH_CLOSE, kernel)
explore_mat = cv2.morphologyEx(explore_mat, cv2.MORPH_CLOSE, kernel)
# Ensure all expanded regions in obstacle_mat are accounted for in explored_mat
explore_mat = np.logical_or(explore_mat, obstacle_mat)
return np.stack([obstacle_mat, explore_mat], axis=2)
def get_observation(self, *args: Any, observations, episode, **kwargs: Any):
sim_depth = asnumpy(observations["depth"])
ego_map_gt = self._get_depth_projection(sim_depth)
return ego_map_gt
@registry.register_sensor(name="GTEgoWallMap")
class GTEgoWallMap(Sensor):
r"""Estimates the top-down wall occupancy based on current depth-map.
Args:
sim: reference to the simulator for calculating task observations.
config: contains the MAP_SCALE, MAP_SIZE, HEIGHT_THRESH fields to
decide grid-size, extents of the projection, and the thresholds
for determining obstacles and explored space.
"""
def __init__(self, sim: Simulator, config: Config, *args: Any, **kwargs: Any):
self._sim = sim
super().__init__(config=config)
# Map statistics
self.map_size = self.config.MAP_SIZE
self.map_scale = self.config.MAP_SCALE
if self.config.MAX_SENSOR_RANGE > 0:
self.max_forward_range = self.config.MAX_SENSOR_RANGE
else:
self.max_forward_range = self.map_size * self.map_scale
# Agent height for pointcloud tranforms
self.camera_height = self._sim.habitat_config.DEPTH_SENSOR.POSITION[1]
# Compute intrinsic matrix
depth_H = self._sim.habitat_config.DEPTH_SENSOR.HEIGHT
depth_W = self._sim.habitat_config.DEPTH_SENSOR.WIDTH
hfov = float(self._sim.habitat_config.DEPTH_SENSOR.HFOV) * np.pi / 180
vfov = 2 * np.arctan((depth_H / depth_W) * np.tan(hfov / 2.0))
self.intrinsic_matrix = np.array(
[
[1 / np.tan(hfov / 2.0), 0.0, 0.0, 0.0],
[0.0, 1 / np.tan(vfov / 2.0), 0.0, 0.0],
[0.0, 0.0, 1, 0],
[0.0, 0.0, 0, 1],
]
)
self.inverse_intrinsic_matrix = np.linalg.inv(self.intrinsic_matrix)
# Height thresholds for obstacles
self.height_thresh = self.config.HEIGHT_THRESH
# Depth processing
self.min_depth = float(self._sim.habitat_config.DEPTH_SENSOR.MIN_DEPTH)
self.max_depth = float(self._sim.habitat_config.DEPTH_SENSOR.MAX_DEPTH)
# Pre-compute a grid of locations for depth projection
W = self._sim.habitat_config.DEPTH_SENSOR.WIDTH
H = self._sim.habitat_config.DEPTH_SENSOR.HEIGHT
self.proj_xs, self.proj_ys = np.meshgrid(
np.linspace(-1, 1, W), np.linspace(1, -1, H)
)
def _get_uuid(self, *args: Any, **kwargs: Any):
return "ego_wall_map_gt"
def _get_sensor_type(self, *args: Any, **kwargs: Any):
return SensorTypes.COLOR
def _get_observation_space(self, *args: Any, **kwargs: Any):
sensor_shape = (self.config.MAP_SIZE, self.config.MAP_SIZE, 2)
return spaces.Box(low=0, high=1, shape=sensor_shape, dtype=np.uint8,)
def convert_to_pointcloud(self, depth):
"""
Inputs:
depth = (H, W, 1) numpy array
Returns:
xyz_camera = (N, 3) numpy array for (X, Y, Z) in egocentric world coordinates
"""
depth_float = depth.astype(np.float32)[..., 0]
# =========== Convert to camera coordinates ============
W = depth.shape[1]
xs = np.copy(self.proj_xs).reshape(-1)
ys = np.copy(self.proj_ys).reshape(-1)
depth_float = depth_float.reshape(-1)
# Filter out invalid depths
valid_depths = (depth_float != 0.0) & (depth_float <= self.max_forward_range)
xs = xs[valid_depths]
ys = ys[valid_depths]
depth_float = depth_float[valid_depths]
# Unproject
# negate depth as the camera looks along -Z
xys = np.vstack(
(
xs * depth_float,
ys * depth_float,
-depth_float,
np.ones(depth_float.shape),
)
)
inv_K = self.inverse_intrinsic_matrix
xyz_camera = np.matmul(inv_K, xys).T # XYZ in the camera coordinate system
xyz_camera = xyz_camera[:, :3] / xyz_camera[:, 3][:, np.newaxis]
return xyz_camera
def safe_assign(self, im_map, x_idx, y_idx, value):
try:
im_map[x_idx, y_idx] = value
except IndexError:
valid_idx1 = np.logical_and(x_idx >= 0, x_idx < im_map.shape[0])
valid_idx2 = np.logical_and(y_idx >= 0, y_idx < im_map.shape[1])
valid_idx = np.logical_and(valid_idx1, valid_idx2)
im_map[x_idx[valid_idx], y_idx[valid_idx]] = value
def _get_depth_projection(self, sim_depth):
"""
Project pixels visible in depth-map to ground-plane
"""
if self._sim.habitat_config.DEPTH_SENSOR.NORMALIZE_DEPTH:
depth = sim_depth * (self.max_depth - self.min_depth) + self.min_depth
else:
depth = sim_depth
XYZ_ego = self.convert_to_pointcloud(depth)
# Adding agent's height to the pointcloud
XYZ_ego[:, 1] += self.camera_height
# Convert to grid coordinate system
V = self.map_size
Vby2 = V // 2
points = XYZ_ego
grid_x = (points[:, 0] / self.map_scale) + Vby2
grid_y = (points[:, 2] / self.map_scale) + V
# Filter out invalid points
valid_idx = (
(grid_x >= 0) & (grid_x <= V - 1) & (grid_y >= 0) & (grid_y <= V - 1)
)
points = points[valid_idx, :]
grid_x = grid_x[valid_idx].astype(int)
grid_y = grid_y[valid_idx].astype(int)
# Create empty maps for the wall obstacle channel
obstacle_mat = np.zeros((self.map_size, self.map_size), np.uint8)
# Compute wall obstacle locations
high_filter_idx = points[:, 1] < self.height_thresh[1]
low_filter_idx = points[:, 1] > self.height_thresh[0]
obstacle_idx = np.logical_and(low_filter_idx, high_filter_idx)
self.safe_assign(obstacle_mat, grid_y[obstacle_idx], grid_x[obstacle_idx], 1)
kernel = np.ones((3, 3), np.uint8)
obstacle_mat = cv2.dilate(obstacle_mat, kernel, iterations=1)
# Smoothen the maps
kernel = np.ones((3, 3), np.uint8)
obstacle_mat = cv2.morphologyEx(obstacle_mat, cv2.MORPH_CLOSE, kernel)
return np.stack([obstacle_mat, obstacle_mat], axis=2)
def get_observation(self, *args: Any, observations, episode, **kwargs: Any):
sim_depth = asnumpy(observations["depth"])
ego_wall_map_gt = self._get_depth_projection(sim_depth)
return ego_wall_map_gt
@registry.register_sensor(name="GTEgoMapAnticipated")
class GTEgoMapAnticipated(GTEgoMap):
r"""Anticipates the top-down occupancy based on current depth-map grown using the
ground-truth occupancy map.
Args:
sim: reference to the simulator for calculating task observations.
config: contains the MAP_SCALE, MAP_SIZE, HEIGHT_THRESH fields to
decide grid-size, extents of the projection, and the thresholds
for determining obstacles and explored space.
"""
def __init__(self, sim: Simulator, config: Config, *args: Any, **kwargs: Any):
self._sim = sim
super().__init__(sim, config=config)
self._num_samples = config.NUM_TOPDOWN_MAP_SAMPLE_POINTS
self._coordinate_min = maps.COORDINATE_MIN
self._coordinate_max = maps.COORDINATE_MAX
resolution = (self._coordinate_max - self._coordinate_min) / self.map_scale
self._map_resolution = (int(resolution), int(resolution))
self.current_episode_id = None
if hasattr(config, "REGION_GROWING_ITERATIONS"):
self._region_growing_iterations = config.REGION_GROWING_ITERATIONS
else:
self._region_growing_iterations = 2
if self.config.GT_TYPE == "wall_occupancy":
maps_info_path = self.config.ALL_MAPS_INFO_PATH
self._all_maps_info = json.load(open(maps_info_path, "r"))
self.current_wall_episode_id = None
self._scene_maps_info = None
self._scene_maps = None
def _get_uuid(self, *args: Any, **kwargs: Any):
return "ego_map_gt_anticipated"
def get_original_map(self):
top_down_map = maps.get_topdown_map(
self._sim, self._map_resolution, self._num_samples, False,
)
return top_down_map
def _get_wall_occupancy(self, episode, agent_state):
episode_id = (episode.episode_id, episode.scene_id)
# Load the episode specific maps only if the episode has changed
if self.current_wall_episode_id != episode_id:
self.current_wall_episode_id = episode_id
if self.config.GT_TYPE == "wall_occupancy":
scene_id = episode.scene_id.split("/")[-1]
self._scene_maps_info = self._all_maps_info[scene_id]
# Load the maps per floor
seen_maps, wall_maps = self._load_transformed_wall_maps(
self._scene_maps_info, episode,
)
self._scene_maps = {}
self._scene_maps["seen_maps"] = seen_maps
self._scene_maps["wall_maps"] = wall_maps
agent_state = self._sim.get_agent_state()
current_height = agent_state.position[1]
best_floor_idx = None
best_floor_dist = math.inf
for floor_idx, floor_data in enumerate(self._scene_maps_info):
floor_height = floor_data["floor_height"]
if abs(current_height - floor_height) < best_floor_dist:
best_floor_idx = floor_idx
best_floor_dist = abs(current_height - floor_height)
assert best_floor_idx is not None
current_wall_map = self._scene_maps["wall_maps"][best_floor_idx]
# Take only channel 0 as both channels have save values
current_wall_map = current_wall_map[..., 0]
# ========= Get local egocentric crop of the current wall map =========
# Compute relative pose of agent from start location
start_position = episode.start_position # (X, Y, Z)
start_rotation = quaternion_xyzw_to_wxyz(episode.start_rotation)
start_heading = compute_heading_from_quaternion(start_rotation)
start_pose = torch.Tensor(
[[-start_position[2], start_position[0], start_heading]]
)
agent_position = agent_state.position
agent_heading = compute_heading_from_quaternion(agent_state.rotation)
agent_pose = torch.Tensor(
[[-agent_position[2], agent_position[0], agent_heading]]
)
rel_pose = subtract_pose(start_pose, agent_pose)[0] # (3,)
# Compute agent position on the map image
map_scale = self.config.MAP_SCALE
H, W = current_wall_map.shape[:2]
Hby2, Wby2 = (H + 1) // 2, (W + 1) // 2
agent_map_x = int(rel_pose[1].item() / map_scale + Wby2)
agent_map_y = int(-rel_pose[0].item() / map_scale + Hby2)
# Crop the region around the agent.
mrange = int(1.5 * self.map_size)
# Add extra padding if map range is coordinates go out of bounds
y_start = agent_map_y - mrange
y_end = agent_map_y + mrange
x_start = agent_map_x - mrange
x_end = agent_map_x + mrange
x_l_pad, y_l_pad, x_r_pad, y_r_pad = 0, 0, 0, 0
H, W = current_wall_map.shape
if x_start < 0:
x_l_pad = int(-x_start)
x_start += x_l_pad
x_end += x_l_pad
if x_end >= W:
x_r_pad = int(x_end - W + 1)
if y_start < 0:
y_l_pad = int(-y_start)
y_start += y_l_pad
y_end += y_l_pad
if y_end >= H:
y_r_pad = int(y_end - H + 1)
ego_map = np.pad(current_wall_map, ((y_l_pad, y_r_pad), (x_l_pad, x_r_pad)))
ego_map = ego_map[y_start : (y_end + 1), x_start : (x_end + 1)]
agent_heading = rel_pose[2].item()
agent_heading = math.degrees(agent_heading)
half_size = ego_map.shape[0] // 2
center = (half_size, half_size)
M = cv2.getRotationMatrix2D(center, agent_heading, scale=1.0)
ego_map = cv2.warpAffine(
ego_map,
M,
(ego_map.shape[1], ego_map.shape[0]),
flags=cv2.INTER_NEAREST,
borderMode=cv2.BORDER_CONSTANT,
borderValue=(1,),
)
ego_map = ego_map.astype(np.float32)
mrange = int(self.map_size)
ego_map = ego_map[
(half_size - mrange) : (half_size + mrange),
(half_size - mrange) : (half_size + mrange),
]
# Get forward region infront of the agent
half_size = ego_map.shape[0] // 2
quarter_size = ego_map.shape[0] // 4
center = (half_size, half_size)
ego_map = ego_map[0:half_size, quarter_size : (quarter_size + half_size)]
# Append explored status in the 2nd channel
#ego_map = np.stack([ego_map, ego_map], axis=2)
return ego_map[:,:,np.newaxis]
def _load_transformed_wall_maps(self, scene_map_info, episode):
seen_maps = []
wall_maps = []
start_position = episode.start_position # (X, Y, Z)
start_rotation = quaternion_xyzw_to_wxyz(episode.start_rotation)
start_heading = compute_heading_from_quaternion(start_rotation)
for floor_data in scene_map_info:
seen_map = np.load(floor_data["seen_map_path"])
wall_map = np.load(floor_data["wall_map_path"])
# ===== Transform the maps relative to the episode start pose =====
map_view_position = floor_data["world_position"]
map_view_heading = floor_data["world_heading"]
# Originally, Z is downward and X is rightward.
# Convert it to X upward and Y rightward
x_map, y_map = -map_view_position[2], map_view_position[0]
if(type(map_view_heading) is list):
map_rotation = quaternion_xyzw_to_wxyz(map_view_heading)
theta_map = compute_heading_from_quaternion(map_rotation)
else:
theta_map=map_view_heading
x_start, y_start = -start_position[2], start_position[0]
theta_start = start_heading
# Compute relative coordinates
r_rel = math.sqrt((x_start - x_map) ** 2 + (y_start - y_map) ** 2)
phi_rel = math.atan2(y_start - y_map, x_start - x_map) - theta_map
x_rel = r_rel * math.cos(phi_rel) / self.config.MAP_SCALE
y_rel = r_rel * math.sin(phi_rel) / self.config.MAP_SCALE
theta_rel = theta_start - theta_map
# Convert these to image coordinates with X being rightward and Y
# being downward
x_img_rel = y_rel
y_img_rel = -x_rel
theta_img_rel = theta_rel
x_trans = torch.Tensor([[x_img_rel, y_img_rel, theta_img_rel]])
# Perform the transformations
p_seen_map = rearrange(torch.Tensor(seen_map), "h w c -> () c h w")
p_wall_map = rearrange(torch.Tensor(wall_map), "h w c -> () c h w")
p_seen_map_trans = spatial_transform_map(p_seen_map, x_trans)
p_wall_map_trans = spatial_transform_map(p_wall_map, x_trans)
seen_map_trans = asnumpy(p_seen_map_trans)
seen_map_trans = rearrange(seen_map_trans, "() c h w -> h w c")
wall_map_trans = asnumpy(p_wall_map_trans)
wall_map_trans = rearrange(wall_map_trans, "() c h w -> h w c")
seen_maps.append(seen_map_trans)
wall_maps.append(wall_map_trans)
return seen_maps, wall_maps
def _get_mesh_occupancy(self, episode, agent_state):
episode_id = (episode.episode_id, episode.scene_id)
# Load the episode specific maps only if the episode has changed
if self.current_wall_episode_id != episode_id:
self.current_wall_episode_id = episode_id
if self.config.GT_TYPE == "wall_occupancy":
scene_id = episode.scene_id.split("/")[-1]
self._scene_maps_info = self._all_maps_info[scene_id]
# Load the maps per floor
seen_maps, wall_maps = self._load_transformed_wall_maps(
self._scene_maps_info, episode,
)
self._scene_maps = {}
self._scene_maps["seen_maps"] = seen_maps
self._scene_maps["wall_maps"] = wall_maps
agent_state = self._sim.get_agent_state()
current_height = agent_state.position[1]
best_floor_idx = None
best_floor_dist = math.inf
for floor_idx, floor_data in enumerate(self._scene_maps_info):
floor_height = floor_data["floor_height"]
if abs(current_height - floor_height) < best_floor_dist:
best_floor_idx = floor_idx
best_floor_dist = abs(current_height - floor_height)
assert best_floor_idx is not None
current_wall_map = self._scene_maps["seen_maps"][best_floor_idx]
# Take only channel 0 as both channels have save values
current_wall_map = current_wall_map[..., 0]
# ========= Get local egocentric crop of the current wall map =========
# Compute relative pose of agent from start location
start_position = episode.start_position # (X, Y, Z)
start_rotation = quaternion_xyzw_to_wxyz(episode.start_rotation)
start_heading = compute_heading_from_quaternion(start_rotation)
start_pose = torch.Tensor(
[[-start_position[2], start_position[0], start_heading]]
)
agent_position = agent_state.position
agent_heading = compute_heading_from_quaternion(agent_state.rotation)
agent_pose = torch.Tensor(
[[-agent_position[2], agent_position[0], agent_heading]]
)
rel_pose = subtract_pose(start_pose, agent_pose)[0] # (3,)
# Compute agent position on the map image
map_scale = self.config.MAP_SCALE
H, W = current_wall_map.shape[:2]
Hby2, Wby2 = (H + 1) // 2, (W + 1) // 2
agent_map_x = int(rel_pose[1].item() / map_scale + Wby2)
agent_map_y = int(-rel_pose[0].item() / map_scale + Hby2)
# Crop the region around the agent.
mrange = int(1.5 * self.map_size)
# Add extra padding if map range is coordinates go out of bounds
y_start = agent_map_y - mrange
y_end = agent_map_y + mrange
x_start = agent_map_x - mrange
x_end = agent_map_x + mrange
x_l_pad, y_l_pad, x_r_pad, y_r_pad = 0, 0, 0, 0
H, W = current_wall_map.shape
if x_start < 0:
x_l_pad = int(-x_start)
x_start += x_l_pad
x_end += x_l_pad
if x_end >= W:
x_r_pad = int(x_end - W + 1)
if y_start < 0:
y_l_pad = int(-y_start)
y_start += y_l_pad
y_end += y_l_pad
if y_end >= H:
y_r_pad = int(y_end - H + 1)
ego_map =
|
np.pad(current_wall_map, ((y_l_pad, y_r_pad), (x_l_pad, x_r_pad)))
|
numpy.pad
|
"""
Takes an image cube (as a .fits) and measures the emission surface folling the
approach outlined in Pinte et al. (2018) [1]. This needs to know the disk
inclination and position angle of the source (along with any offsets in the
source center relative to the image center).
If you use the command line verion it will save the results as a Numpy .npz
file as *.emission_height.npy. Alternatively you can import the function which
which has slightly more functionality.
Uses the `detect_peaks` code from <NAME> [2].
References:
[1] - https://ui.adsabs.harvard.edu/abs/2018A%26A...609A..47P/abstract
[2] - https://github.com/demotu/BMC
"""
import argparse
import numpy as np
from gofish import imagecube
__all__ = ['get_emission_surface']
def get_emission_surface(path, inc, PA, dx0=0.0, dy0=0.0, chans=None,
rmax=None, threshold=0.95, smooth=2,
detect_peaks_kwargs=None, verbose=True,
auto_correct=True):
"""
Returns the emission height of the provided image cube following Pinte et
al. (2018).
Args:
path (str): Path to the fits cube.
inc (float): Inclination of the disk in [deg].
PA (float): Position angle of the disk in [deg].
dx0 (Optional[float]): Offset in Right-Ascenion in [arcsec].
dy0 (Optional[float]): Offset in delincation in [arcsec].
chans (Optional[list]): A list of the first and last channel to use.
rmax (Optional[float]) Maximum radius to consider in [arcsec].
threshold (Optional[float]): At a given radius, remove all pixels below
``threshold`` times the azimuthally averaged peak intensity value.
smooth (Optional[int]): Size of top hat kernel to smooth each column
prior to finding the peak.
detect_peaks_kwargs (Optional[dict]): Kwargs for ``detect_peaks``.
verbose (Opional[bool]): Print out messages.
auto_correct (Optional[bool]): Will check to see if the disk is the
correct orientation for the code (rotated such that the far edge of
the disk is to the top). If ``auto_correct=True``, will include an
additional rotation of 180 [deg] to correct this.
Returns:
list: A list of the midplane radius [arcsec], height [arcsec] and flux
density [Jy/beam] at that location.
"""
# Import dependencies.
from scipy.interpolate import interp1d
# Load up the image cube.
cube = imagecube(path, FOV=2.2*rmax)
rmax = rmax if rmax is not None else cube.xaxis.max()
# Determine the channels to fit.
chans = [0, cube.data.shape[0]-1] if chans is None else chans
if len(chans) != 2:
raise ValueError("`chans` must be a length 2 list of channels.")
if chans[1] >= cube.data.shape[0]:
raise ValueError("`chans` extends beyond the number of channels.")
chans[0], chans[1] = int(min(chans)), int(max(chans))
data = cube.data[chans[0]:chans[1]+1]
if verbose:
velo = [cube.velax[chans[0]] / 1e3, cube.velax[chans[1]] / 1e3]
print("Using {:.2f} km/s to {:.2f} km/s,".format(min(velo), max(velo))
+ ' and 0" to {:.2f}".'.format(rmax))
# Shift and rotate the data.
if dx0 != 0.0 or dy0 != 0.0:
if verbose:
print("Centering data cube...")
data = shift_center(data, dx0 / cube.dpix, dy0 / cube.dpix)
if verbose:
print("Rotating data cube...")
data = rotate_image(data, PA)
# Check to see if the disk is tilted correctly.
Tb = np.max(data, axis=0)
median_top = np.nanmedian(Tb[int(Tb.shape[0] / 2):])
median_bottom = np.nanmedian(Tb[:int(Tb.shape[0] / 2)])
if median_bottom > median_top:
if verbose:
print("WARNING: " +
"The far side of the disk looks like it is to the south.")
if auto_correct:
if verbose:
print("\t Rotating the disk by 180 degrees...\n" +
"\t To ignore this step, use `auto_correct=False`.")
data = data[:, ::-1, ::-1]
# Make a (smoothed) radial profile of the peak values and clip values.
if verbose:
print("Removing low SNR pixels...")
rbins, _ = cube.radial_sampling()
rvals = cube.disk_coords(x0=0.0, y0=0.0, inc=inc, PA=0.0)[0]
Tb = Tb.flatten()
ridxs = np.digitize(rvals.flatten(), rbins)
avgTb = []
for r in range(1, rbins.size):
avgTb_tmp = Tb[ridxs == r]
avgTb += [np.mean(avgTb_tmp[avgTb_tmp > 0.0])]
kernel = np.ones(
|
np.ceil(cube.bmaj / cube.dpix)
|
numpy.ceil
|
import cv2,torch
import numpy as np
from PIL import Image
import torchvision.transforms as T
import torch.nn.functional as F
import scipy.signal
mse2psnr = lambda x : -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
def visualize_depth_numpy(depth, minmax=None, cmap=cv2.COLORMAP_JET):
"""
depth: (H, W)
"""
x = np.nan_to_num(depth) # change nan to 0
if minmax is None:
mi = np.min(x[x>0]) # get minimum positive depth (ignore background)
ma = np.max(x)
else:
mi,ma = minmax
x = (x-mi)/(ma-mi+1e-8) # normalize to 0~1
x = (255*x).astype(np.uint8)
x_ = cv2.applyColorMap(x, cmap)
return x_, [mi,ma]
def init_log(log, keys):
for key in keys:
log[key] = torch.tensor([0.0], dtype=float)
return log
def visualize_depth(depth, minmax=None, cmap=cv2.COLORMAP_JET):
"""
depth: (H, W)
"""
if type(depth) is not np.ndarray:
depth = depth.cpu().numpy()
x = np.nan_to_num(depth) # change nan to 0
if minmax is None:
mi = np.min(x[x>0]) # get minimum positive depth (ignore background)
ma = np.max(x)
else:
mi,ma = minmax
x = (x-mi)/(ma-mi+1e-8) # normalize to 0~1
x = (255*x).astype(np.uint8)
x_ = Image.fromarray(cv2.applyColorMap(x, cmap))
x_ = T.ToTensor()(x_) # (3, H, W)
return x_, [mi,ma]
def N_to_reso(n_voxels, bbox):
xyz_min, xyz_max = bbox
voxel_size = ((xyz_max - xyz_min).prod() / n_voxels).pow(1 / 3)
return ((xyz_max - xyz_min) / voxel_size).long().tolist()
def cal_n_samples(reso, step_ratio=0.5):
return int(np.linalg.norm(reso)/step_ratio)
__LPIPS__ = {}
def init_lpips(net_name, device):
assert net_name in ['alex', 'vgg']
import lpips
print(f'init_lpips: lpips_{net_name}')
return lpips.LPIPS(net=net_name, version='0.1').eval().to(device)
def rgb_lpips(np_gt, np_im, net_name, device):
if net_name not in __LPIPS__:
__LPIPS__[net_name] = init_lpips(net_name, device)
gt = torch.from_numpy(np_gt).permute([2, 0, 1]).contiguous().to(device)
im = torch.from_numpy(np_im).permute([2, 0, 1]).contiguous().to(device)
return __LPIPS__[net_name](gt, im, normalize=True).item()
def findItem(items, target):
for one in items:
if one[:len(target)]==target:
return one
return None
''' Evaluation metrics (ssim, lpips)
'''
def rgb_ssim(img0, img1, max_val,
filter_size=11,
filter_sigma=1.5,
k1=0.01,
k2=0.03,
return_map=False):
# Modified from https://github.com/google/mipnerf/blob/16e73dfdb52044dcceb47cda5243a686391a6e0f/internal/math.py#L58
assert len(img0.shape) == 3
assert img0.shape[-1] == 3
assert img0.shape == img1.shape
# Construct a 1D Gaussian blur filter.
hw = filter_size // 2
shift = (2 * hw - filter_size + 1) / 2
f_i = ((np.arange(filter_size) - hw + shift) / filter_sigma)**2
filt = np.exp(-0.5 * f_i)
filt /= np.sum(filt)
# Blur in x and y (faster than the 2D convolution).
def convolve2d(z, f):
return scipy.signal.convolve2d(z, f, mode='valid')
filt_fn = lambda z: np.stack([
convolve2d(convolve2d(z[...,i], filt[:, None]), filt[None, :])
for i in range(z.shape[-1])], -1)
mu0 = filt_fn(img0)
mu1 = filt_fn(img1)
mu00 = mu0 * mu0
mu11 = mu1 * mu1
mu01 = mu0 * mu1
sigma00 = filt_fn(img0**2) - mu00
sigma11 = filt_fn(img1**2) - mu11
sigma01 = filt_fn(img0 * img1) - mu01
# Clip the variances and covariances to valid values.
# Variance must be non-negative:
sigma00 = np.maximum(0., sigma00)
sigma11 = np.maximum(0., sigma11)
sigma01 = np.sign(sigma01) * np.minimum(
np.sqrt(sigma00 * sigma11), np.abs(sigma01))
c1 = (k1 * max_val)**2
c2 = (k2 * max_val)**2
numer = (2 * mu01 + c1) * (2 * sigma01 + c2)
denom = (mu00 + mu11 + c1) * (sigma00 + sigma11 + c2)
ssim_map = numer / denom
ssim =
|
np.mean(ssim_map)
|
numpy.mean
|
import os
import cv2
from skimage import io
import tensorflow as tf
import sys
sys.path.append('../')
import numpy as np
import matplotlib.pyplot as plt
import argparse
import segmentation_models_v1 as sm
from segmentation_models_v1 import Unet, Linknet, PSPNet, FPN, AtUnet
from unet import unet as unet_std
from helper_function import plot_history_flu, plot_set_prediction, generate_folder, plot_prediction_zx, plot_prediction_live
from helper_function import precision, recall, f1_score, calculate_psnr, calculate_pearsonr
from helper_function import plot_flu_prediction, plot_psnr_histogram
sm.set_framework('tf.keras')
import glob
from natsort import natsorted
import time
def read_txt(txt_dir):
lines = []
with open(txt_dir, 'r+') as f:
lines = [line.strip() for line in f.readlines()]
return lines
parser = argparse.ArgumentParser()
parser.add_argument("--model_file", type=str, default = 'live_models.txt')
parser.add_argument("--index", type=int, default = 0)
parser.add_argument("--gpu", type=str, default = '2')
parser.add_argument("--ch_in", type=int, default = 3)
args = parser.parse_args()
print(args)
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
model_names, epoch_list = [], []
with open(args.model_file, 'r+') as f:
lines = f.readlines()
for i, line in enumerate(lines):
model_names.append(line.strip().split(',')[0])
epoch_list.append(int(line.strip().split(',')[1]))
index = args.index
model_name = model_names[index]
epoch = epoch_list[index]
print(model_name)
## parse model name
splits = model_name.split('-')
dataset = 'neuron_wbx1'
val_dim = 608
scale = 100
subset = 'train2'
chi, cho = 3,3
fl_ch = 'fl2'
for v in range(len(splits)):
if splits[v] == 'net':
net_arch = splits[v+1]
elif splits[v] == 'bone':
backbone = splits[v+1]
elif splits[v] == 'scale':
scale = float(splits[v+1])
elif splits[v] == 'act':
act_fun = splits[v+1]
elif splits[v] == 'scale':
scale = int(splits[v+1])
elif splits[v] == 'set':
dataset = splits[v+1]
elif splits[v] == 'subset':
subset = splits[v+1]
elif splits[v] == 'chi':
chi = int(splits[v+1])
elif splits[v] == 'cho':
cho = int(splits[v+1])
elif splits[v] == 'chf':
fl_ch = splits[v+1]
model_folder = '/data/2d_models/{}/{}/'.format(dataset, model_name)
chi = args.ch_in if args.ch_in == 1 else chi
dataset = 'live-neuron_float'
DATA_DIR = '/data/datasets/{}/data/'.format(dataset)
if dataset == 'live-neuron_float':
val_dim = 1760 # 1744
offset = 8
volume_fns = [fn for fn in os.listdir(DATA_DIR) if 'output' in fn]
## volum formulation
def extract_vol(vol):
vol_extr = []
for i in range(vol.shape[0]):
if i == 0:
vol_extr.append(vol[i,:,:,0])
vol_extr.append(vol[i,:,:,1])
elif i>0 and i< vol.shape[0]-1:
vol_extr.append(vol[i,:,:,1])
else:
vol_extr.append(vol[i,:,:,1])
vol_extr.append(vol[i,:,:,2])
return np.stack(vol_extr)
## metrics
SMOOTH= 1e-6; seed = 0
def calculate_pearsonr(vol1, vol2):
from scipy import stats
import numpy as np
SMOOTH_ = np.random.random(vol1.flatten().shape)*SMOOTH
flat1 = vol1.flatten(); flat2 = vol2.flatten().flatten()
flat1 = SMOOTH_ + flat1; flat2 = SMOOTH_ + flat2
score, _= stats.pearsonr(flat1, flat2)
return score
def calculate_psnr(vol1, vol2):
print('value in map: max {}, min {}'.format(vol1.max(),vol2.min()))
mse = np.mean((vol1-vol2)**2)
psnr_score = 20*np.log10(255/np.sqrt(mse))
return psnr_score
# classes for data loading and preprocessing
class Dataset:
"""CamVid Dataset. Read images, apply augmentation and preprocessing transformations.
Args:
images_dir (str): path to images folder
masks_dir (str): path to segmentation masks folder
class_values (list): values of classes to extract from segmentation mask
augmentation (albumentations.Compose): data transfromation pipeline
(e.g. flip, scale, etc.)
preprocessing (albumentations.Compose): data preprocessing
(e.g. noralization, shape manipulation, etc.)
"""
def __init__(
self,
images_dir,
masks_dir1,
masks_dir2,
fl_ch = None,
scale = 1.0,
channels = [3,3],
nb_data=None,
augmentation=None,
preprocessing=None,
):
#self.ids = os.listdir(images_dir)
id_list = natsorted(os.listdir(images_dir))
if nb_data ==None:
self.ids = id_list
else:
self.ids = id_list[:int(min(nb_data,len(id_list)))]
self.images_fps = [os.path.join(images_dir, image_id) for image_id in self.ids]
self.masks1_fps = [os.path.join(masks_dir1, image_id) for image_id in self.ids]
self.masks2_fps = [os.path.join(masks_dir2, image_id) for image_id in self.ids]
print('Load files: image {}, fl1: {}, fl2:{}'.format(len(self.images_fps),len(self.masks1_fps),len(self.masks2_fps)))
self.scale = scale
self.augmentation = augmentation
self.preprocessing = preprocessing
self.channels = channels
self.fl_ch = fl_ch
def __getitem__(self, i):
# load image and fl1 or fl2 or both
# image = io.imread(self.images_fps[i])
# if self.fl_ch == 'fl1':
# mask = io.imread(self.masks1_fps[i])
# mask = mask/255.*self.scale
# elif self.fl_ch == 'fl2':
# mask = io.imread(self.masks2_fps[i])
# mask = mask/255.*self.scale
# elif self.fl_ch == 'fl12':
# mask1 = io.imread(self.masks1_fps[i])
# mask2 = io.imread(self.masks2_fps[i])
# mask = np.stack([mask1[:,:,1], mask2[:,:,1]], axis = -1)
# mask = mask/255.*self.scale
# load image and fl1 or fl2 or both
image = np.load(self.images_fps[i]) * 255.
if self.fl_ch == 'fl1':
mask = np.load(self.masks1_fps[i])
mask = mask *self.scale
elif self.fl_ch == 'fl2':
mask = np.load(self.masks2_fps[i])
mask = mask *self.scale
elif self.fl_ch == 'fl12':
mask1 = np.load(self.masks1_fps[i])
mask2 = np.load(self.masks2_fps[i])
mask = np.stack([mask1[:,:,1], mask2[:,:,1]], axis = -1)
mask = mask *self.scale
# decide the input and output channels
if self.channels[0] == 1:
image[:,:,0], image[:,:,2] = image[:,:,1], image[:,:,1]
elif self.channels[0] == 2:
image[:,:,2] = image[:,:,1]
if self.channels[1] == 1 and not (self.fl_ch=='fl12'):
mask = mask[:,:,1:2]
# apply augmentations
if self.augmentation:
sample = self.augmentation(image=image, mask=mask)
image, mask = sample['image'], sample['mask']
# apply preprocessing
if self.preprocessing:
sample = self.preprocessing(image=image, mask=mask)
image, mask = sample['image'], sample['mask']
return image, mask
def __len__(self):
return len(self.ids)
class Dataloder(tf.keras.utils.Sequence):
"""Load data from dataset and form batches
Args:
dataset: instance of Dataset class for image loading and preprocessing.
batch_size: Integet number of images in batch.
shuffle: Boolean, if `True` shuffle image indexes each epoch.
"""
def __init__(self, dataset, batch_size=1, shuffle=False):
self.dataset = dataset
self.batch_size = batch_size
self.shuffle = shuffle
self.indexes = np.arange(len(dataset))
self.on_epoch_end()
def __getitem__(self, i):
# collect batch data
start = i * self.batch_size
stop = (i + 1) * self.batch_size
data = []
for j in range(start, stop):
data.append(self.dataset[j])
# transpose list of lists
batch = [
|
np.stack(samples, axis=0)
|
numpy.stack
|
# coding: utf-8
# # Task description
# In[ ]:
# from IPython.display import IFrame
# IFrame('project2.pdf', width=600, height=1200)
# # Preparation
# To use this notebook, make sure you have placed the following into a ```./data/``` subdirectory:
# - Place all cloze task files for training and validation as in the polybox directory into ```./data/cloze/```
# - Download and place Stanford's GloVe 6B vector set [glove.6B](http://nlp.stanford.edu/data/glove.6B.zip) as in the polybox directory into ```./data/glove/```
# # Import statements
# In[ ]:
import tensorflow as tf
import numpy as np
import pandas as pd
import time
from collections import OrderedDict
# # Config variables
# In[ ]:
N_SENT_IN_STORY = 5
ENCODER_DIM = 600
MAX_SEQ_LENGTH = 30
MAX_VOCAB_SIZE = 400000
EMBEDDING_DIM = 300
ENCODER_TYPE = 'GRU'
OOV_TOKEN = '<unk>'
CONTEXT_SIZE = 1
LEARNING_RATE = 0.001
CLIP_GRAD_NORM = 5.0
EPOCHS = 5
BATCH_SIZE = 100
DROPOUT_RATE = 0.25
SAVE_DIR = './checkpoints/'
SUMMARIES_DIR = './summaries/'
MAX_TO_KEEP = 1
DISPLAY_STEP = 100
VALIDATE_STEP = 20
SAVE_STEP = 5000
# # Functions
# In[ ]:
def get_word2vec(word2vec_file='./data/glove.6B/glove.6B.{}d.txt'.format(EMBEDDING_DIM)):
word2vec = {}
# with open(os.path.join(word2vec_file), encoding='utf8') as f:
with open(word2vec_file, encoding='utf8') as f:
for row in f:
values = row.split()
word = values[0]
vec = np.asarray(values[1:], dtype='float32')
word2vec[word] = vec
return word2vec
# In[ ]:
def get_training_data(train_file='./data/cloze/train_stories.csv'):
train = pd.read_csv(train_file)
train.drop_duplicates(subset='storyid') # make sure we have no duplicates
titles = np.expand_dims(train['storytitle'].values, axis=1)
sentences_1 = np.expand_dims(train['sentence1'].values, axis=1)
sentences_2 = np.expand_dims(train['sentence2'].values, axis=1)
sentences_3 = np.expand_dims(train['sentence3'].values, axis=1)
sentences_4 = np.expand_dims(train['sentence4'].values, axis=1)
sentences_5 = np.expand_dims(train['sentence5'].values, axis=1)
mains = np.column_stack((sentences_1, sentences_2, sentences_3, sentences_4))
stories = np.hstack((mains, sentences_5))
sentences = [s for story in stories for s in story]
print('{} has {} stories with a total of {} sentences.'.format(train_file,
len(stories),
len(sentences)))
return sentences
# In[ ]:
def get_val_data(val_file='./data/cloze/cloze_test_val__spring2016 - cloze_test_ALL_val.csv'):
validation = pd.read_csv(val_file)
sentences_4 = np.expand_dims(validation['InputSentence4'].values, axis=1)
quiz_1 = np.expand_dims(validation['RandomFifthSentenceQuiz1'].values, axis=1)
quiz_2 = np.expand_dims(validation['RandomFifthSentenceQuiz2'].values, axis=1)
answers = np.expand_dims(validation['AnswerRightEnding'].values, axis=1)
quizzes = np.hstack((sentences_4, quiz_1, quiz_2))
sentences = [s for quiz in quizzes for s in quiz]
print('{} has {} quizzes with a total of {} sentences.'.format(val_file,
len(quizzes),
len(sentences)))
return sentences, answers
# In[ ]:
def get_test_data(test_file='./data/cloze/cloze_test_test__spring2016 - cloze_test_ALL_test.csv'):
test = pd.read_csv(test_file)
sentences_4 = np.expand_dims(test['InputSentence4'].values, axis=1)
quiz_1 = np.expand_dims(test['RandomFifthSentenceQuiz1'].values, axis=1)
quiz_2 = np.expand_dims(test['RandomFifthSentenceQuiz2'].values, axis=1)
answers = np.expand_dims(test['AnswerRightEnding'].values, axis=1)
quizzes = np.hstack((sentences_4, quiz_1, quiz_2))
sentences = [s for quiz in quizzes for s in quiz]
print('{} has {} quizzes with a total of {} sentences.'.format(test_file,
len(quizzes),
len(sentences)))
return sentences, answers
# In[ ]:
# This is an ugly-but-necessary hack thx to the NLU test data being of a different format than all the other data files
def get_NLU_test_data(test_file='./data/cloze/test_nlu18.csv'):
test = pd.read_csv(test_file, header=None, encoding='latin-1')
sentences_4 = np.expand_dims(test[3].values, axis=1)
quiz_1 = np.expand_dims(test[4].values, axis=1)
quiz_2 = np.expand_dims(test[5].values, axis=1)
quizzes = np.hstack((sentences_4, quiz_1, quiz_2))
sentences = [s for quiz in quizzes for s in quiz]
print('{} has {} quizzes with a total of {} sentences.'.format(test_file,
len(quizzes),
len(sentences)))
return sentences
# In[ ]:
def text_to_word_sequence(text):
filters = '!"#$%&()*+,-./:;<=>?@[\\]^_`{|}~\t\n'
split = ' '
text = text.lower().translate({ord(c): split for c in filters})
seq = text.split(split)
return [t for t in seq if t]
# In[ ]:
def generate_vocabs(texts):
word_counts = OrderedDict()
max_seq_len = 0
for text in texts:
if isinstance(text, list):
seq = text
else:
seq = text_to_word_sequence(text)
if len(seq) > max_seq_len:
max_seq_len = len(seq)
for w in seq:
if w in word_counts:
word_counts[w] += 1
else:
word_counts[w] = 1
word_counts = list(word_counts.items())
word_counts.sort(key = lambda x: x[1], reverse=True)
sorted_vocab = [word_count[0] for word_count in word_counts]
word2idx = dict(list(zip(sorted_vocab, list(range(1, len(sorted_vocab) + 1)))))
i = word2idx.get(OOV_TOKEN)
if i is None:
word2idx[OOV_TOKEN] = len(word2idx) + 1
idx2word = {value : key for key, value in word2idx.items()}
return word2idx, idx2word, max_seq_len
# In[ ]:
def tokenize_pad_mask(texts, seq_length):
vectors, masks = [], []
for text in texts:
if isinstance(text, list):
seq = text
else:
seq = text_to_word_sequence(text)
seq = seq[:seq_length]
vector, mask = [], []
for w in seq:
vector.append(word2idx.get(w, word2idx[OOV_TOKEN]))
mask.append(1)
while len(vector) < seq_length:
vector.append(0)
mask.append(0)
vectors.append(vector)
masks.append(mask)
return np.array(vectors, dtype='int64'), np.array(masks, dtype='int8')
# In[ ]:
def get_inputs():
encoder_inputs = tf.placeholder(tf.int64, [None, None], name='encoder_inputs')
encoder_input_masks = tf.placeholder(tf.int8, [None, None], name='input_masks')
encoder_targets = tf.placeholder(tf.float32, [None, None], name='encoder_targets')
label_weights = tf.placeholder(tf.float32, [None,], name='label_weights')
dropout_rate = tf.placeholder(tf.float32, [], name='dropout_rate')
return encoder_inputs, encoder_input_masks, encoder_targets, label_weights, dropout_rate
# In[ ]:
def get_embedding_matrix(num_words):
embedding_matrix = np.zeros((num_words, EMBEDDING_DIM))
for word, idx in word2idx.items():
if idx < num_words:
embedding_vector = word2vec.get(word)
if embedding_vector is not None:
embedding_matrix[idx] = embedding_vector
return embedding_matrix
# In[ ]:
def get_embeddings(encode_ids, trainable=False):
word_embeddings = []
encode_emb = []
for suffix in ['_f', '_g']:
word_emb = tf.get_variable(name='word_embedding'+suffix,
shape=embedding_matrix.shape,
trainable=trainable)
word_emb.assign(embedding_matrix)
word_embeddings.append(word_emb)
encode_ = tf.nn.embedding_lookup(word_emb, encode_ids)
encode_emb.append(encode_)
return word_embeddings, encode_emb
# In[ ]:
def make_rnn_cells(num_units, cell_type):
if cell_type == 'GRU':
return tf.nn.rnn_cell.GRUCell(num_units=num_units)
elif cell_type == 'LSTM':
return tf.nn.rnn_cell.LSTMCell(num_units=num_units)
else:
raise ValueError('Invalid cell type given')
# In[ ]:
def rnn_encoder(embeds, mask, scope, num_units=600, cell_type='GRU'):
sequence_length = tf.to_int32(tf.reduce_sum(mask, 1), name='length')
cell_fw = make_rnn_cells(num_units, cell_type)
cell_bw = make_rnn_cells(num_units, cell_type)
outputs, states = tf.nn.bidirectional_dynamic_rnn(cell_fw=cell_fw,
cell_bw=cell_bw,
inputs=embeds,
sequence_length=sequence_length,
dtype=tf.float32,
scope=scope)
if cell_type == 'LSTM':
states = [states[0][1], states[1][1]]
state = tf.concat(states, 1)
return state
# In[ ]:
def bow_encoder(embeds, mask):
mask_expand = tf.expand_dims(tf.cast(mask, tf.float32), -1)
embeds_masked = embeds * mask_expand
return tf.reduce_sum(embeds_masked, axis=1)
# In[ ]:
def get_thought_vectors(encode_emb, encode_mask):
suffixes = ['_f', '_g']
thought_vectors = []
for i in range(len(suffixes)):
with tf.variable_scope('encoder' + suffixes[i]) as scope:
if ENCODER_TYPE == 'GRU':
encoded = rnn_encoder(encode_emb[i], encode_mask, scope,
ENCODER_DIM, ENCODER_TYPE)
elif ENCODER_TYPE == 'LSTM':
encoded = rnn_encoder(encode_emb[i], encode_mask, scope,
ENCODER_DIM, ENCODER_TYPE)
elif ENCODER_TYPE == 'bow':
encoded = bow_encoder(encode_emb[i], encode_mask)
else:
raise ValueError('Invalid encoder type given')
thought_vector = tf.identity(encoded, name='thought_vector' + suffixes[i])
thought_vectors.append(thought_vector)
return thought_vectors
# In[ ]:
def get_targets_weights(batch_size, is_cloze, n_sent_in_story, is_quiz=False, quiz_answer=None):
if is_quiz:
assert quiz_answer in [1, 2], 'must indicate correct quiz answer'
targets = np.zeros((3, 3), dtype='float32')
targets[0, quiz_answer] = 1
targets[quiz_answer, 0] = 1
weights = np.array([1,0])
else:
context_idx = list(range(-CONTEXT_SIZE, CONTEXT_SIZE + 1))
context_idx.remove(0)
weights = np.ones(batch_size - 1)
if is_cloze:
sub_targets = np.zeros((n_sent_in_story, n_sent_in_story), dtype='float32')
for i in context_idx:
sub_targets += np.eye(n_sent_in_story, k=i)
targets = np.zeros((batch_size, batch_size), dtype='float32')
weights = np.ones(batch_size - 1)
for i in range(n_sent_in_story - 1, len(weights), n_sent_in_story):
weights[i] = 0
for i in range(0, batch_size, n_sent_in_story):
targets[i:i+n_sent_in_story, i:i+n_sent_in_story] += sub_targets
else:
targets = np.zeros((batch_size, batch_size), dtype='float32')
for i in context_idx:
targets += np.eye(batch_size, k=i)
targets /= np.sum(targets, axis=1, keepdims=True)
return targets, weights
# In[ ]:
def get_scores(thought_vectors, dropout_rate):
def use_dropout():
a, b = thought_vectors[0], thought_vectors[1]
dropout_mask_shape = tf.transpose(tf.shape(a))
dropout_mask = tf.random_uniform(dropout_mask_shape) > DROPOUT_RATE
dropout_mask = tf.where(dropout_mask,
tf.ones(dropout_mask_shape),
tf.zeros(dropout_mask_shape))
dropout_mask *= (1/dropout_rate)
a *= dropout_mask
b *= dropout_mask
return a, b
def no_dropout():
return thought_vectors[0], thought_vectors[1]
a, b = tf.cond(dropout_rate > 0, use_dropout, no_dropout)
scores = tf.matmul(a, b, transpose_b=True)
scores = tf.matrix_set_diag(scores, tf.zeros_like(scores[0]))
return scores
# In[ ]:
def get_labels_predictions(scores, n_sent_in_story=N_SENT_IN_STORY, is_cloze=True):
bwd_scores = scores[1: ]
fwd_scores = scores[ :-1]
bwd_predictions = tf.to_int64(tf.argmax(bwd_scores, axis=1))
fwd_predictions = tf.to_int64(tf.argmax(fwd_scores, axis=1))
bwd_labels = tf.range(tf.shape(bwd_scores)[0])
fwd_labels = bwd_labels + 1
return (bwd_labels, fwd_labels), (bwd_predictions, fwd_predictions)#, label_weights
# In[ ]:
def get_batch_acc(labels, predictions, label_weights):
total_weight = tf.reduce_sum(label_weights)
bwd_acc = tf.cast(tf.equal(tf.to_int64(labels[0]) , predictions[0]), tf.float32)
bwd_acc *= label_weights
bwd_acc = tf.reduce_sum(bwd_acc)
bwd_acc /= total_weight
fwd_acc = tf.cast(tf.equal(tf.to_int64(labels[1]), predictions[1]), tf.float32)
fwd_acc *= label_weights
fwd_acc = tf.reduce_sum(fwd_acc)
fwd_acc /= total_weight
return bwd_acc, fwd_acc
# In[ ]:
def get_batches(inputs, masks, batch_size, is_cloze=True, n_sent_in_story=5, is_quiz=False, quiz_answers=None, shuffle=True):
if is_cloze:
assert (batch_size % n_sent_in_story) == 0, 'batch_size must be multiple of n_sent_in_story for cloze task training.'
rows, cols = inputs.shape
if shuffle and is_cloze and not is_quiz:
row_blocks = rows // n_sent_in_story
shuffle_idx = np.random.permutation(row_blocks)
inputs = inputs.reshape((row_blocks, -1, cols))[shuffle_idx].reshape((-1, cols))
masks = masks.reshape((row_blocks, -1, cols))[shuffle_idx].reshape((-1, cols))
n_batches = len(inputs) // batch_size
for batch_i in range(n_batches):
start_i = batch_i * batch_size
batch_inputs = inputs[start_i : start_i + batch_size]
batch_masks = masks[start_i : start_i + batch_size]
if is_quiz:
batch_targets, batch_weights = get_targets_weights(batch_size, is_cloze, n_sent_in_story,
is_quiz, quiz_answers[batch_i])
else:
batch_targets, batch_weights = get_targets_weights(batch_size, is_cloze, n_sent_in_story)
yield batch_inputs, batch_masks, batch_targets, batch_weights
# # Setup actions
# In[ ]:
print('Loading cloze story training data...')
sentences = get_training_data()
print('Loaded training stories.')
# In[ ]:
print('Loading cloze story validation data...')
validation_sentences, validation_answers = get_val_data()
print('Loaded validation stories.')
# In[ ]:
print('Loading cloze story test data...')
test_sentences, test_answers = get_test_data()
print('Loaded test stories.')
# In[ ]:
print('Loading NLU 2018 story test data...')
NLU_test_sentences = get_NLU_test_data()
print('Loaded NLU 2018 test stories.')
# In[ ]:
print('Generating vocabulary from training data ...')
word2idx, idx2word, max_seq_len = generate_vocabs(sentences)
print('Found {} unique word tokens\n Longest sentence has {} tokens.'.format(len(word2idx), max_seq_len))
# In[ ]:
print('Loading pretrained word embedding vectors...')
word2vec = get_word2vec()
print('Loaded {} word vectors.'.format(len(word2vec)))
# In[ ]:
num_words = min(MAX_VOCAB_SIZE, len(word2idx) + 1)
print('Constructing embedding matrix...')
embedding_matrix = get_embedding_matrix(num_words)
print('Finished embedding matrix has shape {}.'.format(embedding_matrix.shape))
# In[ ]:
seq_length = min(max_seq_len, MAX_SEQ_LENGTH)
print('Word2idx, pad and mask training sentences to length {} ...'.format(seq_length))
enc_sentences, enc_masks = tokenize_pad_mask(sentences, seq_length)
print('{} training sentences processed.'.format(len(enc_sentences)))
# In[ ]:
print('Word2idx, pad and mask validation sentences to length {} ...'.format(seq_length))
validation_inputs, validation_masks = tokenize_pad_mask(validation_sentences, seq_length)
print('{} validation sentences sentences processed.'.format(len(validation_inputs)))
# In[ ]:
print('Word2idx, pad and mask test sentences to length {} ...'.format(seq_length))
test_inputs, test_masks = tokenize_pad_mask(test_sentences, seq_length)
print('{} test sentences sentences processed.'.format(len(test_inputs)))
# In[ ]:
print('Word2idx, pad and mask NLU 2018 test sentences to length {} ...'.format(seq_length))
NLU_test_inputs, NLU_test_masks = tokenize_pad_mask(NLU_test_sentences, seq_length)
print('{} NLU 2018 test sentences sentences processed.'.format(len(NLU_test_inputs)))
# # Build graph
# In[ ]:
print('Building graph...')
tf.reset_default_graph()
train_graph = tf.Graph()
with train_graph.as_default():
with tf.name_scope('input_data'):
encoder_inputs, encoder_input_masks, encoder_targets, label_weights, dropout_rate = get_inputs()
with tf.name_scope('embeddings'):
word_embeddings, encode_emb = get_embeddings(encoder_inputs, trainable=True)
with tf.name_scope('encoders'):
thoughts = get_thought_vectors(encode_emb, encoder_input_masks)
with tf.name_scope('losses_accuracies'):
scores = get_scores(thoughts, dropout_rate)
labels, predictions = get_labels_predictions(scores)
loss = tf.reduce_mean(
tf.nn.softmax_cross_entropy_with_logits_v2(labels=encoder_targets,
logits=scores))
tf.summary.scalar('batch_ent_loss', loss)
bwd_acc, fwd_acc = get_batch_acc(labels, predictions, label_weights)
tf.summary.scalar('batch_bwd_accuracy', bwd_acc)
tf.summary.scalar('batch_fwd_accuracy', fwd_acc)
_, stream_bwd_acc = tf.metrics.accuracy(labels[0], predictions[0], weights=label_weights)
_, stream_fwd_acc = tf.metrics.accuracy(labels[1], predictions[1], weights=label_weights)
tf.summary.scalar('stream_bwd_accuracy', stream_bwd_acc)
tf.summary.scalar('stream_fwd_accuracy', stream_fwd_acc)
with tf.name_scope('optimization'):
tvars = tf.trainable_variables()
grads, _ = tf.clip_by_global_norm(tf.gradients(loss, tvars), CLIP_GRAD_NORM)
optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
train_op = optimizer.apply_gradients(zip(grads, tvars))
merged = tf.summary.merge_all()
print('Graph assembled.')
# # Run training
# In[ ]:
### BEGIN TRAINING SECTION - comment out if you want to use the latest trained model in SAVE_DIR
#print('Starting training...')
#print('Run "tensorboard --logdir {}" in the current directory to keep you from doing other work in the meantime.'.format(SUMMARIES_DIR))
#start_time = time.strftime('%y-%m-%d-%H-%M-%S')
#with tf.Session(graph=train_graph) as sess:
# sess.run(tf.global_variables_initializer())
# sess.run(tf.local_variables_initializer())
# saver = tf.train.Saver(max_to_keep=MAX_TO_KEEP)
# train_writer = tf.summary.FileWriter('{}run-{}/{}'.format(SUMMARIES_DIR, start_time, 'train'), sess.graph)
# valid_writer = tf.summary.FileWriter('{}run-{}/{}'.format(SUMMARIES_DIR, start_time, 'valid'), sess.graph)
# step = 0
# for e in range(EPOCHS):
# valid_batch = get_batches(validation_inputs, validation_masks, batch_size=3, n_sent_in_story=3,
# is_quiz=True, quiz_answers=answers, shuffle=False)
# for batch_i, (batch_inputs, batch_masks, batch_targets, batch_weights) in enumerate(get_batches(enc_sentences, enc_masks, batch_size=BATCH_SIZE, n_sent_in_story=5, shuffle=True)):
#
# feed_dict = {encoder_inputs: batch_inputs,
# encoder_input_masks: batch_masks,
# encoder_targets: batch_targets,
# label_weights: batch_weights,
# dropout_rate: DROPOUT_RATE}
#
# _, batch_loss, bwd_accuracy, fwd_accuracy, summary = sess.run([train_op,
# loss,
# bwd_acc,
# fwd_acc,
# merged],
# feed_dict=feed_dict)
# train_writer.add_summary(summary, step)
#
# if batch_i % DISPLAY_STEP == 0 and batch_i > 0:
# print('Epoch {:>3} Batch {:>4}/{} - Batch bwd acc: {:>3.2%}, Batch fwd acc: {:>3.2%}, Batch loss: {:>6.4f}'
# .format(e, batch_i, len(enc_sentences) // BATCH_SIZE, bwd_accuracy, fwd_accuracy, batch_loss))
#
# if batch_i % VALIDATE_STEP == 0 and batch_i > 0:
# valid_input, valid_mask, valid_target, valid_weight = next(valid_batch)
# feed_dict = {encoder_inputs: valid_input,
# encoder_input_masks: valid_mask,
# encoder_targets: valid_target,
# label_weights: valid_weight,
# dropout_rate: 0}
#
# valid_loss, stream_bwd_accuracy, stream_fwd_accuracy, summary = sess.run([loss,
# stream_bwd_acc,
# stream_fwd_acc,
# merged],
# feed_dict=feed_dict)
#
# valid_writer.add_summary(summary, step)
#
# if batch_i % SAVE_STEP == 0 and batch_i > 0:
# saver.save(sess, '{}/run-{}_ep_{}_step_{}_enc_{}_bsize_{}.ckpt'.format(
# SAVE_DIR, start_time, e, step, ENCODER_TYPE, BATCH_SIZE))
#
# step += 1
#
# saver.save(sess, '{}/run-{}_ep_{}_step_{}_enc_{}_bsize_{}.ckpt'.format(
# SAVE_DIR, start_time, e, step, ENCODER_TYPE, BATCH_SIZE))
# train_writer.close()
# valid_writer.close()
#print('Training finished.')
### END OF TRAINING SECTION
# # Get _cloze_ predictions
# In[ ]:
print('Checking for trained model at latest checkpoint...')
checkpoint = tf.train.latest_checkpoint(SAVE_DIR)
assert checkpoint is not None, 'No checkpoints found, check SAVE_DIR & README.txt'
print('Found model {}.'.format(checkpoint))
# In[ ]:
print('Checking validation score...')
cloze_preds = []
with tf.Session(graph=train_graph) as sess:
saver = tf.train.Saver()
saver.restore(sess, checkpoint)
for valid_i, (valid_input, valid_mask, valid_target, valid_weight) in enumerate(get_batches(validation_inputs, validation_masks, batch_size=3, n_sent_in_story=3,
is_quiz=True, quiz_answers=validation_answers, shuffle=False)):
scr = sess.run(scores,
{encoder_inputs: valid_input,
encoder_input_masks: valid_mask,
encoder_targets: valid_target,
label_weights: valid_weight,
dropout_rate: 0})
cloze_pred = np.argmax(scr[0, 1:]) + 1
cloze_preds.append(cloze_pred)
cloze_preds = np.array(cloze_preds).reshape((-1, 1))
cloze_score = np.mean((validation_answers == cloze_preds))
print('For checkpoint {}:'.format(checkpoint))
print('Validation score: {:>3.2%}'.format(cloze_score))
# In[ ]:
# Only run at very end after training & when everything else is done
print('Checking test score...')
cloze_preds = []
with tf.Session(graph=train_graph) as sess:
saver = tf.train.Saver()
saver.restore(sess, checkpoint)
for test_i, (test_input, test_mask, test_target, test_weight) in enumerate(get_batches(test_inputs, test_masks, batch_size=3, n_sent_in_story=3,
is_quiz=True, quiz_answers=test_answers, shuffle=False)):
scr = sess.run(scores,
{encoder_inputs: test_input,
encoder_input_masks: test_mask,
encoder_targets: test_target,
label_weights: test_weight,
dropout_rate: 0})
cloze_pred = np.argmax(scr[0, 1:]) + 1
cloze_preds.append(cloze_pred)
cloze_preds = np.array(cloze_preds).reshape((-1, 1))
cloze_score = np.mean((test_answers == cloze_preds))
print('For checkpoint {}:'.format(checkpoint))
print('Test score: {:>3.2%}'.format(cloze_score))
# In[ ]:
# Only run at very end after training & when everything else is done
print('Generating NLU 2018 test predictions...')
cloze_preds = []
with tf.Session(graph=train_graph) as sess:
saver = tf.train.Saver()
saver.restore(sess, checkpoint)
for test_i, (test_input, test_mask, test_target, test_weight) in enumerate(get_batches(NLU_test_inputs, NLU_test_masks, batch_size=3, n_sent_in_story=3,
is_quiz=True, quiz_answers=np.ones((len(NLU_test_inputs), 1), dtype='int8'), shuffle=False)):
scr = sess.run(scores,
{encoder_inputs: test_input,
encoder_input_masks: test_mask,
encoder_targets: test_target,
label_weights: test_weight,
dropout_rate: 0})
cloze_pred =
|
np.argmax(scr[0, 1:])
|
numpy.argmax
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# BCDI: tools for pre(post)-processing Bragg coherent X-ray diffraction imaging data
# (c) 07/2017-06/2019 : CNRS UMR 7344 IM2NP
# (c) 07/2019-present : DESY PHOTON SCIENCE
# authors:
# <NAME>, <EMAIL>
import collections
import numpy as np
from matplotlib import pyplot as plt
from scipy.ndimage.measurements import center_of_mass
import pathlib
import vtk
from vtk.util import numpy_support
import os
import tkinter as tk
from tkinter import filedialog
from skimage import measure
import logging
import sys
import gc
import bcdi.graph.graph_utils as gu
import bcdi.facet_recognition.facet_utils as fu
import bcdi.simulation.simulation_utils as simu
import bcdi.postprocessing.postprocessing_utils as pu
helptext = """
Script for detecting facets on a 3D crytal reconstructed by a phasing algorithm
(Bragg CDI) and making some statistics about strain by facet. The correct threshold
for support determination should be given as input, as well as voxel sizes for a
correct calculation of facet angle.
Input: a reconstruction .npz file with fields: 'amp' and 'strain'
Output: a log file with strain statistics by plane, a VTK file for 3D visualization of
detected planes.
"""
scan = 1585 # spec scan number
datadir = "C:/Users/carnisj/Documents/data/david/S" + str(scan) + "/"
support_threshold = 0.35 # threshold for support determination
voxel_size = [
11.4,
10.4,
11.3,
] # tuple of 3 numbers, voxel size of the real-space reconstruction in each dimension
upsampling_factor = 2 # integer, factor for upsampling the reconstruction
# in order to have a smoother surface
savedir = datadir
reflection = np.array([1, 1, 1]) # measured crystallographic reflection
projection_axis = 1 # the projection will be performed on the equatorial plane
# perpendicular to that axis (0, 1 or 2)
debug = False # set to True to see all plots for debugging
smoothing_iterations = 5 # number of iterations in Taubin smoothing,
# bugs if smoothing_iterations larger than 10
smooth_lamda = 0.33 # lambda parameter in Taubin smoothing
smooth_mu = 0.34 # mu parameter in Taubin smoothing
radius_normals = (
0.1 # radius of integration for the calculation of the density of normals
)
projection_method = "stereographic" # 'stereographic' or 'equirectangular'
peak_min_distance = 10 # pixel separation between peaks in corner_peaks()
max_distance_plane = (
0.75 # in pixels, maximum allowed distance to the facet plane of a voxel
)
edges_coord = (
360 # coordination threshold for isolating edges, 360 seems to work reasonably well
)
corners_coord = 310 # coordination threshold for isolating corners,
# 310 seems to work reasonably well
########################################################
# parameters only used in the stereographic projection #
########################################################
threshold_south = -2500 # background threshold in the stereographic projection
# from South of the density of normals
threshold_north = (
-500
) # background threshold in the stereographic projection from North
# of the density of normals
max_angle = 95 # maximum angle in degree of the stereographic projection
# (should be larger than 90)
stereo_scale = (
"linear" # 'linear' or 'log', scale of the colorbar in the stereographic plot
)
##########################################################
# parameters only used in the equirectangular projection #
##########################################################
bw_method = 0.03 # bandwidth in the gaussian kernel density estimation
kde_threshold = (
-0.2
) # threshold for defining the background in the density estimation of normals
##################################################
# define crystallographic planes of interest for #
# the stereographic projection (cubic lattice) #
##################################################
planes_south = {} # create dictionnary for the projection from the South pole,
# the reference is +reflection
# planes_south['0 2 0'] =
# simu.angle_vectors(ref_vector=reflection, test_vector=np.array([0, 2, 0]))
planes_south["1 1 1"] = simu.angle_vectors(
ref_vector=reflection, test_vector=np.array([1, 1, 1])
)
planes_south["1 0 0"] = simu.angle_vectors(
ref_vector=reflection, test_vector=np.array([1, 0, 0])
)
planes_south["1 1 0"] = simu.angle_vectors(
ref_vector=reflection, test_vector=np.array([1, 1, 0])
)
planes_south["-1 1 0"] = simu.angle_vectors(
ref_vector=reflection, test_vector=np.array([-1, 1, 0])
)
planes_south["1 -1 1"] = simu.angle_vectors(
ref_vector=reflection, test_vector=np.array([1, -1, 1])
)
# planes_south['-1 -1 1'] =
# simu.angle_vectors(ref_vector=reflection, test_vector=np.array([-1, -1, 1]))
# planes_south['2 1 0'] =
# simu.angle_vectors(ref_vector=reflection, test_vector=np.array([2, 1, 0]))
# planes_south['2 -1 0'] =
# simu.angle_vectors(ref_vector=reflection, test_vector=np.array([2, -1, 0]))
# planes_south['1 2 0'] =
# simu.angle_vectors(ref_vector=reflection, test_vector=np.array([1, 2, 0]))
planes_north = {} # create dictionnary for the projection from the North pole,
# the reference is -reflection
# planes_north['0 -2 0'] =
# simu.angle_vectors(ref_vector=-reflection, test_vector=np.array([0, -2, 0]))
planes_north["-1 -1 -1"] = simu.angle_vectors(
ref_vector=-reflection, test_vector=np.array([-1, -1, -1])
)
planes_north["-1 0 0"] = simu.angle_vectors(
ref_vector=-reflection, test_vector=np.array([-1, 0, 0])
)
planes_north["-1 -1 0"] = simu.angle_vectors(
ref_vector=-reflection, test_vector=np.array([-1, -1, 0])
)
planes_north["-1 1 0"] = simu.angle_vectors(
ref_vector=-reflection, test_vector=np.array([-1, 1, 0])
)
planes_north["-1 -1 1"] = simu.angle_vectors(
ref_vector=-reflection, test_vector=np.array([-1, -1, 1])
)
# planes_north['-1 1 1'] =
# simu.angle_vectors(ref_vector=-reflection, test_vector=np.array([-1, 1, 1]))
planes_north["-2 1 0"] = simu.angle_vectors(
ref_vector=-reflection, test_vector=np.array([-2, 1, 0])
)
planes_north["-2 -1 0"] = simu.angle_vectors(
ref_vector=-reflection, test_vector=np.array([-2, -1, 0])
)
# planes_north['1 -2 0'] =
# simu.angle_vectors(ref_vector=-reflection, test_vector=np.array([1, -2, 0]))
##########################
# end of user parameters #
##########################
###########################################################
# create directory and initialize error logger #
###########################################################
pathlib.Path(savedir).mkdir(parents=True, exist_ok=True)
logger = logging.getLogger()
###################
# define colormap #
###################
colormap = gu.Colormap()
my_cmap = colormap.cmap
#############
# load data #
#############
plt.ion()
root = tk.Tk()
root.withdraw()
file_path = filedialog.askopenfilename(initialdir=datadir, filetypes=[("NPZ", "*.npz")])
npzfile = np.load(file_path)
amp = npzfile["amp"]
amp = amp / amp.max()
nz, ny, nx = amp.shape
print("Initial data size: (", nz, ",", ny, ",", nx, ")")
strain = npzfile["strain"]
#################
# upsample data #
#################
if upsampling_factor > 1:
amp, _ = fu.upsample(
array=amp,
upsampling_factor=upsampling_factor,
voxelsizes=voxel_size,
title="modulus",
debugging=debug,
)
strain, voxel_size = fu.upsample(
array=strain,
upsampling_factor=upsampling_factor,
voxelsizes=voxel_size,
title="strain",
debugging=debug,
)
nz, ny, nx = amp.shape
print("Upsampled data size: (", nz, ",", ny, ",", nx, ")")
print("New voxel sizes: ", voxel_size)
#####################################################################
# Use marching cubes to obtain the surface mesh of these ellipsoids #
#####################################################################
vertices_old, faces, _, _ = measure.marching_cubes_lewiner(
amp, level=support_threshold, allow_degenerate=False, step_size=1
)
# vertices_old is a list of 3d coordinates of all vertices points
# faces is a list of facets defined by the indices of 3 vertices_old
# from scipy.io import savemat
# savemat('//win.desy.de/home/carnisj/My Documents/MATLAB/TAUBIN/vertices.mat',
# {'V': vertices_old})
# savemat('//win.desy.de/home/carnisj/My Documents/MATLAB/TAUBIN/faces.mat',
# {'F': faces})
# Display mesh before smoothing
if debug:
gu.plot_3dmesh(vertices_old, faces, (nz, ny, nx), title="Mesh after marching cubes")
plt.ion()
#######################################
# smooth the mesh using taubin_smooth #
#######################################
vertices_new, normals, _, intensity, faces, _ = fu.taubin_smooth(
faces,
vertices_old,
iterations=smoothing_iterations,
lamda=smooth_lamda,
mu=smooth_mu,
radius=radius_normals,
debugging=debug,
)
del vertices_old
gc.collect()
nb_vertices = vertices_new.shape[0]
# Display smoothed triangular mesh
if debug:
gu.plot_3dmesh(
vertices_new, faces, (nz, ny, nx), title="Mesh after Taubin smoothing"
)
plt.ion()
#####################################################################
# 2D projection of normals, peak finding and watershed segmentation #
#####################################################################
nb_normals = normals.shape[0]
if projection_method == "stereographic":
labels_top, labels_bottom, stereo_proj, remove_row = fu.stereographic_proj(
normals=normals,
intensity=intensity,
background_south=threshold_south,
background_north=threshold_north,
min_distance=peak_min_distance,
savedir=savedir,
save_txt=False,
plot_planes=True,
planes_south=planes_south,
planes_north=planes_north,
max_angle=max_angle,
voxel_size=voxel_size,
projection_axis=projection_axis,
scale=stereo_scale,
debugging=debug,
)
# labels_south and labels_north are 2D arrays for projections from South and North
# stereo_proj is a (Nx4) array containint the projected coordinates of normals
# from South (u column 0, v column 1) and North (u column2 , v column 3). The
# coordinates are in degrees, not indices.
# remove rows containing nan values
normals = np.delete(normals, remove_row, axis=0)
faces = np.delete(faces, remove_row, axis=0)
nb_normals = normals.shape[0]
numy, numx = labels_top.shape # identical to labels_bottom.shape
max_label = max(labels_top.max(), labels_bottom.max())
if stereo_proj.shape[0] != nb_normals:
print(projection_method, "projection output: incompatible number of normals")
sys.exit()
# look for potentially duplicated labels (labels crossing the 90 degree circle)
duplicated_labels = [
0
] # do not consider background points when looking for duplicates
# (label 0 is the background)
# duplicated_labels stores bottom_labels which are duplicate from top_labels
# [0 duplicated_labels unique_label ...]
for label in range(1, labels_top.max() + 1, 1):
label_points = np.argwhere(labels_top == label)
# rescale label_points to angles instead of indices,
# the angular range is [-max_angle max_angle]
label_points[:, 0] = (label_points[:, 0] * 2 * max_angle / numy) - max_angle
label_points[:, 1] = (label_points[:, 1] * 2 * max_angle / numx) - max_angle
label_distances = np.sqrt(
label_points[:, 0] ** 2 + label_points[:, 1] ** 2
) # distance in angle from the origin
if (label_distances <= 90).sum() == label_points.shape[
0
]: # all points inside the 90deg border
continue # do nothing, the facet is valid
if (label_distances > 90).sum() == label_points.shape[
0
]: # all points outside the 90deg border
continue # do nothing, the facet will be filtered out
# in next section by distance check
print("Label ", str(label), "is potentially duplicated")
# look for the corresponding label in the bottom projection
for idx in range(nb_normals):
# calculate the corresponding index coordinates
# by rescaling from [-max_angle max_angle] to [0 numy] or [0 numx]
u_top = int(
np.rint((stereo_proj[idx, 0] + max_angle) * numx / (2 * max_angle))
) # u axis horizontal
v_top = int(
np.rint((stereo_proj[idx, 1] + max_angle) * numy / (2 * max_angle))
) # v axis vertical
u_bottom = int(
np.rint((stereo_proj[idx, 2] + max_angle) * numx / (2 * max_angle))
) # u axis horizontal
v_bottom = int(
np.rint((stereo_proj[idx, 3] + max_angle) * numy / (2 * max_angle))
) # v axis vertical
try:
if (
labels_top[v_top, u_top] == label
and labels_bottom[v_bottom, u_bottom] not in duplicated_labels
):
# only the first duplicated point will be checked,
# then the whole bottom_label is changed
# to label and there is no need to check anymore
duplicated_labels.append(labels_bottom[v_bottom, u_bottom])
duplicated_labels.append(label)
print(
" Corresponding label :",
labels_bottom[v_bottom, u_bottom],
"changed to",
label,
)
labels_bottom[
labels_bottom == labels_bottom[v_bottom, u_bottom]
] = label
except IndexError:
# the IndexError exception arises because we are spanning all normals
# for labels_top, even those whose stereographic projection is
# farther than max_angle.
continue
del label_points, label_distances
gc.collect()
# reorganize stereo_proj to keep only the projected point
# which is in the angular range [-90 90]
# stereo_proj coordinates are in polar degrees, we want coordinates to be in indices
coordinates = np.zeros((nb_normals, 3), dtype=stereo_proj.dtype)
# 1st and 2nd columns are coordinates
# the 3rd column is a flag for using the South (0)
# or North (1) projected coordinates
for idx in range(nb_normals):
if np.sqrt(stereo_proj[idx, 0] ** 2 + stereo_proj[idx, 1] ** 2) > 90:
coordinates[idx, 0] = stereo_proj[
idx, 3
] # use v values for the projection from North pole
coordinates[idx, 1] = stereo_proj[
idx, 2
] # use u values for the projection from North pole
coordinates[
idx, 2
] = 1 # use values from labels_bottom (projection from North pole)
else:
coordinates[idx, 0] = stereo_proj[
idx, 1
] # use v values for the projection from South pole
coordinates[idx, 1] = stereo_proj[
idx, 0
] # use u values for the projection from South pole
coordinates[
idx, 2
] = 0 # use values from labels_top (projection from South pole)
del stereo_proj
gc.collect()
# rescale euclidian v axis from [-max_angle max_angle] to [0 numy]
coordinates[:, 0] = (coordinates[:, 0] + max_angle) * numy / (2 * max_angle)
# rescale euclidian u axis from [-max_angle max_angle] to [0 numx]
coordinates[:, 1] = (coordinates[:, 1] + max_angle) * numx / (2 * max_angle)
# change coordinates to an array of integer indices
coordinates = coordinates.astype(int)
##########################################################
# now that we have the labels and coordinates in indices #
# we can assign back labels to normals and vertices #
##########################################################
normals_label = np.zeros(nb_normals, dtype=int)
vertices_label = np.zeros(
nb_vertices, dtype=int
) # the number of vertices is: vertices_new.shape[0]
for idx in range(nb_normals):
# check to which label belongs this normal
if (
coordinates[idx, 2] == 0
): # use values from labels_top (projection from South pole)
label_idx = labels_top[coordinates[idx, 0], coordinates[idx, 1]]
elif (
coordinates[idx, 2] == 1
): # use values from labels_bottom (projection from North pole)
label_idx = labels_bottom[coordinates[idx, 0], coordinates[idx, 1]]
else:
label_idx = 0 # duplicated facet, set it to the background
normals_label[idx] = label_idx # attribute the label to the normal
vertices_label[
faces[idx, :]
] = label_idx # attribute the label to the corresponding vertices
del labels_top, labels_bottom
elif projection_method == "equirectangular":
labels, longitude_latitude = fu.equirectangular_proj(
normals=normals,
intensity=intensity,
bw_method=bw_method,
background_threshold=kde_threshold,
min_distance=peak_min_distance,
debugging=debug,
)
if longitude_latitude.shape[0] != nb_normals:
print(projection_method, "projection output: incompatible number of normals")
sys.exit()
numy, numx = labels.shape
# rescale the horizontal axis from [-pi pi] to [0 numx]
longitude_latitude[:, 0] = (
(longitude_latitude[:, 0] + np.pi) * numx / (2 * np.pi)
) # longitude
# rescale the vertical axis from [-pi/2 pi/2] to [0 numy]
longitude_latitude[:, 1] = (
(longitude_latitude[:, 1] + np.pi / 2) * numy / np.pi
) # latitude
# change longitude_latitude to an array of integer indices
coordinates = np.rint(np.fliplr(longitude_latitude)).astype(
int
) # put the vertical axis in first position
duplicated_labels = []
max_label = labels.max()
del longitude_latitude
gc.collect()
##############################################
# assign back labels to normals and vertices #
##############################################
normals_label = np.zeros(nb_normals, dtype=int)
vertices_label = np.zeros(
nb_vertices, dtype=int
) # the number of vertices is: vertices_new.shape[0]
for idx in range(nb_normals):
label_idx = labels[coordinates[idx, 0], coordinates[idx, 1]]
normals_label[idx] = label_idx # attribute the label to the normal
vertices_label[
faces[idx, :]
] = label_idx # attribute the label to the corresponding vertices
else:
print("Invalid value for projection_method")
sys.exit()
unique_labels = [
label
for label in np.arange(1, max_label + 1)
if label not in duplicated_labels[1::2]
] # label 0 is the background
if len(duplicated_labels[1::2]) == 0:
print("\nNo duplicated label")
print("\nBackground: ", str((normals_label == 0).sum()), "normals")
for label in unique_labels:
print(
"Facet",
str(label),
": ",
str((normals_label == label).sum()),
"normals detected",
)
del normals, normals_label, coordinates, faces, duplicated_labels, intensity
gc.collect()
###############################################
# assign back labels to voxels using vertices #
###############################################
all_planes = np.zeros((nz, ny, nx), dtype=int)
planes_counter = np.zeros(
(nz, ny, nx), dtype=int
) # check if a voxel is used several times
duplicated_counter = 0
for idx in range(nb_vertices):
temp_indices = np.rint(vertices_new[idx, :]).astype(int)
planes_counter[temp_indices[0], temp_indices[1], temp_indices[2]] = (
planes_counter[temp_indices[0], temp_indices[1], temp_indices[2]] + 1
)
# check duplicated voxels and discard them if they belong to different planes
# it happens when some vertices are close and they give
# the same voxel after rounding their position to integers
# one side effect is that the border of areas obtained by
# watershed segmentation will be set to the background
if (
planes_counter[temp_indices[0], temp_indices[1], temp_indices[2]] > 1
): # a rounded voxel was already added
if (
all_planes[temp_indices[0], temp_indices[1], temp_indices[2]]
!= vertices_label[idx]
):
# belongs to different labels, therefore it is set as background (label 0)
all_planes[temp_indices[0], temp_indices[1], temp_indices[2]] = 0
duplicated_counter = duplicated_counter + 1
else: # non duplicated pixel
all_planes[temp_indices[0], temp_indices[1], temp_indices[2]] = vertices_label[
idx
]
print("\nRounded vertices belonging to multiple labels = ", duplicated_counter, "\n")
del planes_counter, vertices_label, vertices_new
gc.collect()
for label in unique_labels:
print(
"Facet", str(label), ": ", str((all_planes == label).sum()), "voxels detected"
)
############################################
# define the support, surface layer & bulk #
############################################
support = np.zeros(amp.shape)
support[abs(amp) > support_threshold * abs(amp).max()] = 1
zcom_support, ycom_support, xcom_support = center_of_mass(support)
print(
"\nCOM at (z, y, x): (",
str("{:.2f}".format(zcom_support)),
",",
str("{:.2f}".format(ycom_support)),
",",
str("{:.2f}".format(xcom_support)),
")",
)
coordination_matrix = pu.calc_coordination(
support, kernel=np.ones((3, 3, 3)), debugging=False
)
surface = np.copy(support)
surface[coordination_matrix > 22] = 0 # remove the bulk 22
del coordination_matrix
gc.collect()
########################################################
# define edges using the coordination number of voxels #
########################################################
edges = pu.calc_coordination(support, kernel=np.ones((9, 9, 9)), debugging=False)
edges[support == 0] = 0
if debug:
gu.multislices_plot(edges, vmin=0, title="Coordination matrix")
edges[edges > edges_coord] = 0 # remove facets and bulk
edges[np.nonzero(edges)] = 1 # edge support
gu.scatter_plot(
array=np.asarray(np.nonzero(edges)).T,
markersize=2,
markercolor="b",
labels=("axis 0", "axis 1", "axis 2"),
title="edges",
)
########################################################
# define corners using the coordination number of voxels #
########################################################
corners = pu.calc_coordination(support, kernel=np.ones((9, 9, 9)), debugging=False)
corners[support == 0] = 0
if debug:
gu.multislices_plot(corners, vmin=0, title="Coordination matrix")
corners[corners > corners_coord] = 0 # remove edges, facets and bulk
corners[np.nonzero(corners)] = 1 # corner support
gu.scatter_plot(
array=np.asarray(np.nonzero(corners)).T,
markersize=2,
markercolor="b",
labels=("axis 0", "axis 1", "axis 2"),
title="corners",
)
######################################
# Initialize log files and .vti file #
######################################
summary_file = open(
os.path.join(
savedir, "S" + str(scan) + "_planes_iso" + str(support_threshold) + ".dat"
),
"w",
)
summary_file.write(
"{0: <10}".format("Plane #")
+ "\t"
+ "{0: <10}".format("angle")
+ "\t"
+ "{0: <10}".format("points #")
+ "\t"
+ "{0: <10}".format("<strain>")
+ "\t"
+ "{0: <10}".format("std dev")
+ "\t"
+ "{0: <10}".format("A (x)")
+ "\t"
+ "{0: <10}".format("B (y)")
+ "\t"
+ "{0: <10}".format("C (z)")
+ "\t"
+ "D (Ax+By+CZ+D=0)"
+ "\t"
"normal X" + "\t" + "normal Y" + "\t" + "normal Z" + "\n"
)
allpoints_file = open(
os.path.join(
savedir, "S" + str(scan) + "_strain_iso" + str(support_threshold) + ".dat"
),
"w",
)
allpoints_file.write(
"{0: <10}".format("Plane #")
+ "\t"
+ "{0: <10}".format("angle")
+ "\t"
+ "{0: <10}".format("strain")
+ "\t"
+ "{0: <10}".format("Z")
+ "\t"
+ "{0: <10}".format("Y")
+ "\t"
+ "{0: <10}".format("X")
+ "\n"
)
# prepare amp for vti file
amp_array = np.transpose(np.flip(amp, 2)).reshape(amp.size) # VTK axis 2 is flipped
amp_array = numpy_support.numpy_to_vtk(amp_array)
image_data = vtk.vtkImageData()
image_data.SetOrigin(0, 0, 0)
image_data.SetSpacing(voxel_size[0], voxel_size[1], voxel_size[2])
image_data.SetExtent(0, nz - 1, 0, ny - 1, 0, nx - 1)
pd = image_data.GetPointData()
pd.SetScalars(amp_array)
pd.GetArray(0).SetName("amp")
# update vti file with edges
edges_array = np.transpose((np.flip(edges, 2))).reshape(edges.size)
edges_array = numpy_support.numpy_to_vtk(edges_array)
pd.AddArray(edges_array)
pd.GetArray(1).SetName("edges")
pd.Update()
index_vti = 2
del amp, amp_array, edges_array
gc.collect()
#########################################################
# save surface, edges and corners strain to the logfile #
#########################################################
fu.update_logfile(
support=surface,
strain_array=strain,
summary_file=summary_file,
allpoints_file=allpoints_file,
label="surface",
)
fu.update_logfile(
support=edges,
strain_array=strain,
summary_file=summary_file,
allpoints_file=allpoints_file,
label="edges",
)
fu.update_logfile(
support=corners,
strain_array=strain,
summary_file=summary_file,
allpoints_file=allpoints_file,
label="corners",
)
del corners
gc.collect()
#######################################################################################
# Iterate over the planes to find the corresponding surface facet #
# Effect of meshing/smoothing: the meshed support is smaller than the initial support #
#######################################################################################
summary_dict = {}
for label in unique_labels:
print("\nPlane", label)
# raw fit including all points
plane = np.copy(all_planes)
plane[plane != label] = 0
plane[plane == label] = 1
if plane[plane == 1].sum() == 0: # no points on the plane
print("Raw fit: no points for plane", label)
continue
################################################################
# fit a plane to the voxels isolated by watershed segmentation #
################################################################
# Why not using directly the centroid to find plane equation?
# Because it does not distinguish pixels coming from different but parallel facets
coeffs, plane_indices, errors, stop = fu.fit_plane(
plane=plane, label=label, debugging=debug
)
if stop:
print("No points remaining after raw fit for plane", label)
continue
# update plane by filtering out pixels too far from the fit plane
plane, stop = fu.distance_threshold(
fit=coeffs,
indices=plane_indices,
plane_shape=plane.shape,
max_distance=max_distance_plane,
)
grown_points = plane[plane == 1].sum().astype(int)
if stop: # no points on the plane
print("Refined fit: no points for plane", label)
continue
print(
"Plane",
label,
", ",
str(grown_points),
"points after checking distance to plane",
)
plane_indices = np.nonzero(plane) # plane_indices is a tuple of 3 arrays
# check that the plane normal is not flipped using
# the support gradient at the center of mass of the facet
zcom_facet, ycom_facet, xcom_facet = center_of_mass(plane)
mean_gradient = fu.surface_gradient(
(zcom_facet, ycom_facet, xcom_facet), support=support
)[0]
plane_normal = np.array(
[coeffs[0], coeffs[1], coeffs[2]]
) # normal is [a, b, c] if ax+by+cz+d=0
plane_normal = plane_normal / np.linalg.norm(plane_normal)
if np.dot(plane_normal, mean_gradient) < 0: # normal is in the reverse direction
print("Flip normal direction plane", str(label))
plane_normal = -1 * plane_normal
coeffs = (-coeffs[0], -coeffs[1], -coeffs[2], -coeffs[3])
#########################################################
# Look for the surface: correct for the offset between #
# the plane equation and the outer shell of the support #
#########################################################
# crop the support to a small ROI included in the plane box
surf0, surf1, surf2 = fu.surface_indices(
surface=surface, plane_indices=plane_indices, margin=3
)
if debug:
gu.scatter_plot_overlaid(
arrays=(
np.asarray(plane_indices).T,
np.concatenate(
(surf0[:, np.newaxis], surf1[:, np.newaxis], surf2[:, np.newaxis]),
axis=1,
),
),
markersizes=(8, 2),
markercolors=("b", "r"),
labels=("axis 0", "axis 1", "axis 2"),
title="Plane" + str(label) + " before shifting",
)
# find the direction in which the plane should be shifted to cross the surface
dist = np.zeros(len(surf0))
for point in range(len(surf0)):
dist[point] = (
coeffs[0] * surf0[point]
+ coeffs[1] * surf1[point]
+ coeffs[2] * surf2[point]
+ coeffs[3]
) / np.linalg.norm(plane_normal)
mean_dist = dist.mean()
print(
"Mean distance of plane ",
label,
" to outer shell = " + str("{:.2f}".format(mean_dist)) + " pixels",
)
# offset the plane by mean_dist/2 and see if the plane is closer to
# the surface or went in the wrong direction
dist = np.zeros(len(surf0))
offset = mean_dist / 2
for point in range(len(surf0)):
dist[point] = (
coeffs[0] * surf0[point]
+ coeffs[1] * surf1[point]
+ coeffs[2] * surf2[point]
+ coeffs[3]
- offset
) / np.linalg.norm(plane_normal)
new_dist = dist.mean()
print(
"<distance> of plane ",
label,
" to outer shell after offsetting by mean_distance/2 = "
+ str("{:.2f}".format(new_dist))
+ " pixels",
)
# these directions are for a mesh smaller than the support
step_shift = 0.5 # will scan with subpixel step through the crystal
# in order to not miss voxels
if mean_dist * new_dist < 0: # crossed the support surface, correct direction
step_shift = np.sign(mean_dist) * step_shift
elif (
abs(new_dist) - abs(mean_dist) < 0
): # moving towards the surface, correct direction
step_shift = np.sign(mean_dist) * step_shift
else: # moving away from the surface, wrong direction
step_shift = -1 * np.sign(mean_dist) * step_shift
##############################################
# shift the fit plane along its normal until #
# the normal is crossed and go back one step #
##############################################
total_offset = fu.find_facet(
refplane_indices=plane_indices,
surf_indices=(surf0, surf1, surf2),
original_shape=surface.shape,
step_shift=step_shift,
plane_label=label,
plane_coeffs=coeffs,
min_points=grown_points / 5,
debugging=debug,
)
# correct the offset of the fit plane to match the surface
coeffs = list(coeffs)
coeffs[3] = coeffs[3] - total_offset
# shift plane indices
plane_newindices0, plane_newindices1, plane_newindices2 = fu.offset_plane(
indices=plane_indices, offset=total_offset, plane_normal=plane_normal
)
plane = np.zeros(surface.shape)
plane[plane_newindices0, plane_newindices1, plane_newindices2] = 1
# use only pixels belonging to the outer shell of the support
plane = plane * surface
if debug:
# plot plane points overlaid with the support
plane_indices = np.nonzero(plane == 1)
gu.scatter_plot_overlaid(
arrays=(
np.asarray(plane_indices).T,
np.concatenate(
(surf0[:, np.newaxis], surf1[:, np.newaxis], surf2[:, np.newaxis]),
axis=1,
),
),
markersizes=(8, 2),
markercolors=("b", "r"),
labels=("axis 0", "axis 1", "axis 2"),
title="Plane"
+ str(label)
+ " after finding the surface\n"
+ "Points number="
+ str(len(plane_indices[0])),
)
if plane[plane == 1].sum() == 0: # no point belongs to the support
print("Plane ", label, " , no point belongs to support")
continue
#################################
# grow the facet on the surface #
#################################
print("Growing the facet at the surface")
iterate = 0
while stop == 0:
previous_nb = plane[plane == 1].sum()
plane, stop = fu.grow_facet(
fit=coeffs,
plane=plane,
label=label,
support=support,
max_distance=1.5 * max_distance_plane,
debugging=debug,
)
# here the distance threshold is larger in order to reach
# voxels missed by the first plane fit when rounding vertices to integer.
# Anyway we intersect it with the surface therefore it can not go crazy.
plane_indices = np.nonzero(plane)
iterate = iterate + 1
plane = (
plane * surface
) # use only pixels belonging to the outer shell of the support
if plane[plane == 1].sum() == previous_nb:
print("Growth: maximum size reached")
break
if iterate == 50: # it is likely that we are stuck in an infinite loop
# after this number of iterations
print("Growth: maximum iteration number reached")
break
grown_points = plane[plane == 1].sum().astype(int)
print(
"Plane ",
label,
", ",
str(grown_points),
"points after growing facet at the surface",
)
if debug:
plane_indices = np.nonzero(plane == 1)
surf0, surf1, surf2 = fu.surface_indices(
surface=surface, plane_indices=plane_indices, margin=3
)
gu.scatter_plot_overlaid(
arrays=(
np.asarray(plane_indices).T,
np.concatenate(
(surf0[:, np.newaxis], surf1[:, np.newaxis], surf2[:, np.newaxis]),
axis=1,
),
),
markersizes=(8, 2),
markercolors=("b", "r"),
labels=("axis 0", "axis 1", "axis 2"),
title="Plane"
+ str(label)
+ " after 1st growth at the surface\n iteration"
+ str(iterate)
+ "- Points number="
+ str(len(plane_indices[0])),
)
################################################################
# refine plane fit, now we are sure that we are at the surface #
################################################################
coeffs, plane_indices, errors, stop = fu.fit_plane(
plane=plane, label=label, debugging=debug
)
if stop:
print("No points remaining after refined fit for plane", label)
continue
if debug:
surf0, surf1, surf2 = fu.surface_indices(
surface=surface, plane_indices=plane_indices, margin=3
)
gu.scatter_plot_overlaid(
arrays=(
np.asarray(plane_indices).T,
np.concatenate(
(surf0[:, np.newaxis], surf1[:, np.newaxis], surf2[:, np.newaxis]),
axis=1,
),
),
markersizes=(8, 2),
markercolors=("b", "r"),
labels=("axis 0", "axis 1", "axis 2"),
title="Plane"
+ str(label)
+ " after refined fit at surface\n iteration"
+ str(iterate)
+ "- Points number="
+ str(len(plane_indices[0])),
)
# update plane by filtering out pixels too far from the fit plane
plane, stop = fu.distance_threshold(
fit=coeffs,
indices=plane_indices,
plane_shape=plane.shape,
max_distance=max_distance_plane,
)
if stop: # no points on the plane
print("Refined fit: no points for plane", label)
continue
print(
"Plane", label, ", ", str(plane[plane == 1].sum()), "points after refined fit"
)
plane_indices = np.nonzero(plane)
if debug:
surf0, surf1, surf2 = fu.surface_indices(
surface=surface, plane_indices=plane_indices, margin=3
)
gu.scatter_plot_overlaid(
arrays=(
np.asarray(plane_indices).T,
np.concatenate(
(surf0[:, np.newaxis], surf1[:, np.newaxis], surf2[:, np.newaxis]),
axis=1,
),
),
markersizes=(8, 2),
markercolors=("b", "r"),
labels=("axis 0", "axis 1", "axis 2"),
title="Plane"
+ str(label)
+ " after distance threshold at surface\n"
+ "Points number="
+ str(len(plane_indices[0])),
)
# check that the plane normal is not flipped using the support gradient
# at the center of mass of the facet
zcom_facet, ycom_facet, xcom_facet = center_of_mass(plane)
mean_gradient = fu.surface_gradient(
(zcom_facet, ycom_facet, xcom_facet), support=support
)[0]
plane_normal = np.array(
[coeffs[0], coeffs[1], coeffs[2]]
) # normal is [a, b, c] if ax+by+cz+d=0
plane_normal = plane_normal / np.linalg.norm(plane_normal)
if np.dot(plane_normal, mean_gradient) < 0: # normal is in the reverse direction
print("Flip normal direction plane", str(label))
plane_normal = -1 * plane_normal
coeffs = (-coeffs[0], -coeffs[1], -coeffs[2], -coeffs[3])
############################################
# final growth of the facet on the surface #
############################################
print("Final growth of the facet")
iterate = 0
while stop == 0:
previous_nb = plane[plane == 1].sum()
plane, stop = fu.grow_facet(
fit=coeffs,
plane=plane,
label=label,
support=support,
max_distance=1.5 * max_distance_plane,
debugging=debug,
)
plane = (
plane * surface
) # use only pixels belonging to the outer shell of the support
iterate = iterate + 1
if plane[plane == 1].sum() == previous_nb:
print("Growth: maximum size reached")
break
if iterate == 50: # it is likely that we are stuck in an infinite loop
# after this number of iterations
print("Growth: maximum iteration number reached")
break
grown_points = plane[plane == 1].sum().astype(int)
# plot plane points overlaid with the support
print(
"Plane ",
label,
", ",
str(grown_points),
"points after the final growth of the facet",
)
if debug:
plane_indices = np.nonzero(plane)
surf0, surf1, surf2 = fu.surface_indices(
surface=surface, plane_indices=plane_indices, margin=3
)
gu.scatter_plot_overlaid(
arrays=(
np.asarray(plane_indices).T,
np.concatenate(
(surf0[:, np.newaxis], surf1[:, np.newaxis], surf2[:, np.newaxis]),
axis=1,
),
),
markersizes=(8, 2),
markercolors=("b", "r"),
labels=("axis 0", "axis 1", "axis 2"),
title="Plane"
+ str(label)
+ " final growth at the surface\nPoints number="
+ str(len(plane_indices[0])),
)
#####################################
# remove point belonging to an edge #
#####################################
plane[np.nonzero(edges)] = 0
plane_indices = np.nonzero(plane)
if debug:
surf0, surf1, surf2 = fu.surface_indices(
surface=surface, plane_indices=plane_indices, margin=3
)
gu.scatter_plot_overlaid(
arrays=(
np.asarray(plane_indices).T,
np.concatenate(
(surf0[:, np.newaxis], surf1[:, np.newaxis], surf2[:, np.newaxis]),
axis=1,
),
),
markersizes=(8, 2),
markercolors=("b", "r"),
labels=("axis 0", "axis 1", "axis 2"),
title="Plane"
+ str(label)
+ " after edge removal\nPoints number="
+ str(len(plane_indices[0])),
)
print(
"Plane ", label, ", ", str(len(plane_indices[0])), "points after removing edges"
)
##############################################################################
# calculate the angle between the plane normal and the measurement direction #
##############################################################################
# correct plane_normal for the eventual anisotropic voxel size
plane_normal = np.array(
[
plane_normal[0] * 2 * np.pi / voxel_size[0],
plane_normal[1] * 2 * np.pi / voxel_size[1],
plane_normal[2] * 2 * np.pi / voxel_size[2],
]
)
plane_normal = plane_normal / np.linalg.norm(plane_normal)
# check where is the measurement direction
if projection_axis == 0: # q aligned along the 1st axis
ref_axis =
|
np.array([1, 0, 0])
|
numpy.array
|
""" Auxiliary code for section 3. Application of Synthetic Control Method in the main notebook.
Contents include functions for:
- data preparation
- dynamic graphs
- optimization with CVXPY
- SCM( ) application
- dataframes for RMSPE and outputs """
# All notebook dependencies:
import cvxpy as cp
import numpy as np
import pandas as pd
import numpy.linalg as LA
import statsmodels.api as sm
import plotly.graph_objs as go
from qpsolvers import solve_qp
import matplotlib.pyplot as plt
import scipy.optimize as optimize
from joblib import Parallel, delayed
import statsmodels.formula.api as smf
from scipy.optimize import differential_evolution, NonlinearConstraint, Bounds
def data_prep_1(data):
""" Specify conditions for treated unit and control units as per Pinotti's paper (c.f. F216),
where 21 are regions "NEW" with recent mafia presence: Apulia and Basilicata """
treat_unit = data[data.reg == 21]
treat_unit = treat_unit[treat_unit.year <= 1960] # Matching period: 1951 to 1960
treat_unit_all = data[data.reg == 21] # Entire period: 1951 to 2007
control_units = data[(data.reg <= 14) | (data.reg ==20)]
control_units = control_units[control_units.year <= 1960]
control_units_all = data[(data.reg <= 14) | (data.reg ==20)]
y_treat = np.array(treat_unit.gdppercap).reshape(1, 10) # Matching period: 1951 to 1960
y_treat_all = np.array(treat_unit_all.gdppercap).reshape(1, 57) # Entire period: 1951 to 2007
y_control = np.array(control_units.gdppercap).reshape(15, 10)
y_control_all = np.array(control_units_all.gdppercap).reshape(15, 57)
Z1 = y_treat.T
Z0 = y_control.T
# Prepare matrices with only the relevant variables into CVXPY format, predictors k = 8
predictor_variables = ['gdppercap', 'invrate', 'shvain', 'shvaag', 'shvams', 'shvanms', 'shskill', 'density']
X = data.loc[data['year'].isin(list(range(1951, 1961)))]
X.index = X.loc[:,'reg']
# k x J matrix: mean values of k predictors for J untreated units
X0 = X.loc[(X.index <= 14) | (X.index ==20),(predictor_variables)]
X0 = X0.groupby(X0.index).mean().values.T
# k x 1 vector: mean values of k predictors for 1 treated unit
X1 = X.loc[(X.index == 21),(predictor_variables)]
X1 = X1.groupby(X1.index).mean().values.T
w_pinotti = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.6244443, 0.3755557, 0]).reshape(15, 1)
w_becker = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0.4303541, 0.4893414, 0.0803045]).reshape(15,1)
v_pinotti = [0.464413137,0.006141563,0.464413137,0.006141563,0.013106925,0.006141563,0.033500548,0.006141563]
v_becker = [0,0.018382899,0.778844583,0.013064060,0.013064060,0.013064060,0.150516278,0.013064060]
return (treat_unit, treat_unit_all, control_units, control_units_all, y_treat, y_treat_all, y_control, y_control_all, Z1, Z0, X0, X1, w_pinotti, w_becker, v_pinotti, v_becker)
def cvxpy_basic_solution(control_units, X0, X1):
"""
Initial CVXPY setup: defines function to call and output a vector of weights function
"""
def w_optimize(v_diag,solver=cp.ECOS):
V = np.zeros(shape=(8, 8))
np.fill_diagonal(V,v_diag)
W = cp.Variable((15, 1), nonneg=True) ## Creates a 15x1 positive nonnegative variable
objective_function = cp.Minimize(cp.norm(V @ (X1 - X0 @ W)))
objective_constraints = [cp.sum(W) == 1]
objective_problem = cp.Problem(objective_function, objective_constraints)
objective_solution = objective_problem.solve(solver)
return (W.value,objective_problem.constraints[0].violation(),objective_solution)
# CVXPY Solution
v_diag = [1/8]*8
w_basic, constraint_violation, objective_solution = w_optimize(v_diag)
print('\nObjective Value: ', objective_solution)
solution_frame_1 = pd.DataFrame({'Region':control_units.region.unique(),
'Weights': np.round(w_basic.T[0], decimals=3)})
display(solution_frame_1.transpose())
return w_basic
def data_compare_df(w_basic, X0, X1, w_pinotti):
"""
Outputs a dataframe to show predicted versus actual values of variables
"""
['gdppercap', 'invrate', 'shvain', 'shvaag', 'shvams', 'shvanms', 'shskill', 'density']
x_pred_pinotti = (X0 @ w_pinotti)
x_pred_basic = (X0 @ w_basic)
pred_error_pinotti = x_pred_pinotti - X1
pred_error_basic = x_pred_basic - X1
rounded_x1 = np.array([2395.0, 0.32, 0.22, 0.15, 0.4, 0.23, 0.17, 134.78])
data_compare = pd.DataFrame({'Observed': rounded_x1,
'Pinotti Predicted':np.round(x_pred_pinotti.T[0],2),
'Optimizer Predicted':np.round(x_pred_basic.T[0],2),
'Pinotti Differential': np.round(pred_error_pinotti.T[0],2),
'Optimizer Differential': np.round(pred_error_basic.T[0],2)},
index= ['GDP per Capita','Investment Rate','Industry VA','Agriculture VA',
'Market Services VA','Non-market Services VA','Human Capital',
'Population Density'])
display(data_compare)
def fig3_dynamic_graph(w_basic, w_pinotti, w_becker, y_control_all, y_treat_all, data):
"""
Plots Figure 3: Evolution of observed GDP per capita vs. synthetic estimates across different donor weights
"""
y_synth_pinotti = w_pinotti.T @ y_control_all
y_synth_becker = w_becker.T @ y_control_all
y_synth_basic = w_basic.T @ y_control_all
fig = go.Figure()
fig.add_trace(go.Scatter(x=list(data.year.unique()), y=y_synth_basic[0],
mode='lines', name='Optimizer'))
fig.add_trace(go.Scatter(x=list(data.year.unique()), y=y_synth_pinotti[0],
mode='lines', name='Pinotti'))
fig.add_trace(go.Scatter(x=list(data.year.unique()), y=y_synth_becker[0],
mode='lines', name='Becker and Klößner'))
fig.add_trace(go.Scatter(x=list(data.year.unique()), y=y_treat_all[0],
mode='lines', name='Treated unit'))
fig.add_shape(dict(type="line", x0=1960, y0=0, x1=1960, y1=11000,
line=dict(color="Black", width=1)))
fig.add_shape(dict(type="line", x0=1974, y0=0, x1=1974, y1=11000,
line=dict(color="Black", width=1)))
fig.add_shape(dict(type="line", x0=1980, y0=0, x1=1980, y1=11000,
line=dict(color="Black", width=1)))
fig.add_trace(go.Scatter(x=[1960], y=[12000], mode="text",
name="Matching", text=["End of Matching<br>Period"]))
fig.add_trace(go.Scatter(x=[1974], y=[12000], mode="text",
name="Event 1", text=["Drug<br>Smuggling"]))
fig.add_trace(go.Scatter(x=[1981], y=[12000], mode="text",
name="Event 2", text=["Basilicata<br>Earthquake"]))
fig.update_layout(xaxis_title='Time', yaxis_title='GDP per Capita')
fig.show()
def RMSPE_compare_df(Z1, Z0, w_basic, w_pinotti, w_becker):
"""
Defines function for Root Mean Squared Prediction Error (RMSPE)
and generates dataframe for RMSPE values comparison between CVXPY output, Pinotti, Becker
"""
# Function RMSPE
def RMSPE(w):
return np.sqrt(np.mean((Z1 - Z0 @ w)**2))
# Dataframe to compare RMSPE values
RMSPE_values = [RMSPE(w_basic), RMSPE(w_pinotti), RMSPE(w_becker)]
method = ['RMSPE CVXPY','RMSPE Pinotti','RMSPE Becker']
RMSPE_compare = pd.DataFrame({'Outcome':RMSPE_values}, index=method)
display(RMSPE_compare)
##################################
## Iterative implementation ##
##################################
def V_iterative(solution_frame_2,control_units):
"""
Iterative implementation with CXPYS's SCS, ECOS, CPLEX and scipy's SLSQP packages
Generates
- Figure 4: Minimum RMSPEs with increasing iterations and the average violations of the sum constraint
- Predictors' weights
- Regional weights per package
- Optimal values and constraint violation values per package
"""
class Solution:
def solve(self, nums):
if not nums:
return []
j=nums[0]
nums[0]=nums[0]
for i in range(1,len(nums)):
k=nums[i]
nums[i]=j
j=min(j,k)
return nums
ob = Solution()
ECOS_min = ob.solve(list(solution_frame_2['RMSPE ECOS'].values))
SCS_min = ob.solve(list(solution_frame_2['RMSPE SCS'].values))
CPLEX_min = ob.solve(list(solution_frame_2['RMSPE CPLEX'].values))
SLSQP_min = ob.solve(list(solution_frame_2['RMSPE SLSQP'].values))
figure, axes = plt.subplots(1, 2,figsize=(10,5))
ax1 = axes[0]
ax2 = axes[1]
ax1.plot(ECOS_min,label = 'ECOS')
ax1.plot(SCS_min,label = 'SCS')
ax1.plot(CPLEX_min,label = 'CPLEX')
ax1.plot(SLSQP_min,label = 'SLSQP')
ax1.set_xlabel('Iterations')
ax1.set_ylabel('Value of Outer Objective Function')
ax1.set_ylim(129.5,133)
ax1.title.set_text('Fig 4(a) Convergence of RMSPE')
ax1.legend(loc = 'upper center', bbox_to_anchor = (0.5, -0.13), shadow = True, ncol = 4)
methods = ['ECOS', 'SCS', 'CPLEX']
violations = [solution_frame_2['ECOS Violation'].mean(),
solution_frame_2['SCS Violation'].mean(),
solution_frame_2['CPLEX Violation'].mean()]
ax2.set_yscale("log")
ax2.bar(methods,violations,color=['blue', 'orange','green'])
ax2.set_xlabel('Methods')
ax2.set_ylabel('Constraint Violation')
ax2.set_ylim(10**-15,10**-2)
ax2.title.set_text('Fig 4(b) Average Constraint Violation')
plt.show()
sorted_df = solution_frame_2.sort_values(by='RMSPE ECOS', ascending=True)
sorted_df_SCS = solution_frame_2.sort_values(by='RMSPE SCS', ascending=True)
w_ECOS = sorted_df.iloc[0][5]
w_SCS = sorted_df_SCS.iloc[0][6]
w_CPLEX = sorted_df.iloc[0][7]
w_SLSQP = sorted_df.iloc[0][8]
best_weights_region = pd.DataFrame({'ECOS' : np.round(w_ECOS.ravel(), decimals=3),
'SCS' : np.round(w_SCS.ravel(), decimals=3),
'SLSQP' : np.round(w_SLSQP.ravel(), decimals=3),
'CPLEX' : np.round(w_CPLEX.ravel(), decimals=3)},
index = control_units.region.unique())
best_weights_predictor = pd.DataFrame({'v*': np.round(sorted_df.iloc[0][0].ravel(),decimals=3)},
index= ['GDP per Capita','Investment Rate','Industry VA','Agriculture VA',
'Market Services VA','Non-market Services VA','Human Capital',
'Population Density'])
display(best_weights_predictor.T)
display(best_weights_region.T)
# Organize output into dataframe
print("\noptimal value with SCS: ",np.round(sorted_df_SCS.iloc[0][2],3), "| constraint violation: ", sorted_df_SCS.iloc[0][9])
print("optimal value with ECOS: ",np.round(sorted_df.iloc[0][1],3), "| constraint violation: ", sorted_df.iloc[0][10])
print("optimal value with CPLEX:",np.round(sorted_df.iloc[0][3],3), "| constraint violation: ", sorted_df.iloc[0][11])
print("optimal value with SLSQP:",np.round(sorted_df.iloc[0][4],3), "| constraint violation: n.a.")
def data_prep(data,unit_identifier,time_identifier,matching_period,treat_unit,control_units,outcome_variable,
predictor_variables, normalize=False):
"""
Prepares the data by normalizing X for section 3.3. in order to replicate Becker and Klößner (2017)
"""
X = data.loc[data[time_identifier].isin(matching_period)]
X.index = X.loc[:,unit_identifier]
X0 = X.loc[(X.index.isin(control_units)),(predictor_variables)]
X0 = X0.groupby(X0.index).mean().values.T #control predictors
X1 = X.loc[(X.index == treat_unit),(predictor_variables)]
X1 = X1.groupby(X1.index).mean().values.T #treated predictors
# outcome variable realizations in matching period - Z0: control, Z1: treated
Z0 = np.array(X.loc[(X.index.isin(control_units)),(outcome_variable)]).reshape(len(control_units),len(matching_period)).T #control outcome
Z1 = np.array(X.loc[(X.index == treat_unit),(outcome_variable)]).reshape(len(matching_period),1) #treated outcome
if normalize == True:
# Scaling
nvarsV = X0.shape[0]
big_dataframe = pd.concat([pd.DataFrame(X0), pd.DataFrame(X1)], axis=1)
divisor = np.sqrt(big_dataframe.apply(np.var, axis=1))
V = np.zeros(shape=(len(predictor_variables), len(predictor_variables)))
np.fill_diagonal(V, np.diag(np.repeat(big_dataframe.shape[0],1)))
scaled_matrix = ((big_dataframe.T) @ (np.array(1/(divisor)).reshape(len(predictor_variables),1) * V)).T
X0 = np.array(scaled_matrix.iloc[:,0:len(control_units)])
X1 = np.array(scaled_matrix.iloc[:,len(control_units):(len(control_units)+1)])
Z0 = Z0.astype('float64')
Z1 = Z1.astype('float64')
return X0, X1, Z0, Z1
def SCM_print(data,output_object,w_pinotti,Z1,Z0):
"""
Organizes output from SCM into dataframe
"""
def RMSPE(w):
return np.sqrt(np.mean((Z1 - Z0 @ w)**2))
solution_frame_4 = output_object[0]
w_nested = output_object[1]
v_nested = output_object[2]
control_units = data[(data.reg <= 14) | (data.reg == 20)]
best_weights_region3 = pd.DataFrame({'Region':control_units.region.unique(),
'W(V*)': np.round(w_nested.ravel(), decimals=3)})
best_weights_importance3 = pd.DataFrame({'v*': np.round(v_nested, 3)},
index= ['GDP per Capita','Investment Rate','Industry VA','Agriculture VA',
'Market Services VA','Non-market Services VA','Human Capital',
'Population Density'])
print('\nV* Constraint Violation: {} \nW*(V*) Constraint Violation: {}'\
.format(1-sum(v_nested.ravel()), abs(1-sum(w_nested.ravel()))))
print('\nOptimizer Weights: {} \nPinotti Weights: {}'\
.format(np.round(w_nested.T,3), np.round(w_pinotti,3).T))
print('\nRMSPE Nested: {} \nRMSPE Pinotti: {}'\
.format(np.round(RMSPE(w_nested),5), np.round(RMSPE(w_pinotti),5)))
display(best_weights_importance3.T)
display(best_weights_region3.T)
def SCM_v1(data,unit_identifier,time_identifier,matching_period,treat_unit,control_units,outcome_variable,
predictor_variables,reps=1,solver=cp.ECOS,seed=1):
"""
Section 3.2.3. Approach 2: Nested Optimization
"""
X0, X1, Z0, Z1 = data_prep(data,unit_identifier,time_identifier,matching_period,treat_unit,
control_units,outcome_variable,predictor_variables)
#inner optimization
def w_optimize(v):
V = np.zeros(shape=(len(predictor_variables), len(predictor_variables)))
np.fill_diagonal(V,v)
W = cp.Variable((len(control_units), 1), nonneg=True)
objective_function = cp.Minimize(cp.norm(V @ (X1 - X0 @ W)))
objective_constraints = [cp.sum(W) == 1]
objective_problem = cp.Problem(objective_function, objective_constraints)
objective_solution = objective_problem.solve(solver)
return (W.value)
#outer optimization
def vmin(v):
v = v.reshape(len(predictor_variables),1)
W = w_optimize(v)
return ((Z1 - Z0 @ W).T @ (Z1 - Z0 @ W)).ravel()
# constraint on the sum of predictor weights.
def constr_f(v):
return float(
|
np.sum(v)
|
numpy.sum
|
import numpy as np
import torch
import torch.nn as nn
from .base_model import BaseModel
from ...utils import MODEL
from open3d.ml.torch.layers import SparseConv, SparseConvTranspose
from open3d.ml.torch.ops import voxelize, reduce_subarrays_sum
class SparseConvUnet(BaseModel):
def __init__(self,
name="SparseConvUnet",
device="cuda",
m=16,
scale=20,
in_channels=3,
num_classes=20,
**kwargs):
super(SparseConvUnet, self).__init__(name=name,
device=device,
m=m,
scale=scale,
in_channels=in_channels,
num_classes=num_classes,
**kwargs)
cfg = self.cfg
self.device = device
self.m = cfg.m
self.inp = InputLayer()
self.ssc = SubmanifoldSparseConv(in_channels=in_channels,
filters=m,
kernel_size=[3, 3, 3])
self.unet = UNet(1, [m, 2 * m, 3 * m, 4 * m, 5 * m, 6 * m, 7 * m],
False)
self.bn = nn.BatchNorm1d(m, eps=1e-4, momentum=0.01)
self.relu = nn.ReLU()
self.linear = nn.Linear(m, num_classes)
self.out = OutputLayer()
def forward(self, inputs):
output = []
for inp in inputs:
pos = inp['point']
feat = inp['feat']
feat, pos, rev = self.inp(feat, pos)
feat = self.ssc(feat, pos, voxel_size=1.0)
feat = self.unet(pos, feat)
feat = self.bn(feat)
feat = self.relu(feat)
feat = self.linear(feat)
feat = self.out(feat, rev)
output.append(feat)
return output
def preprocess(self, data, attr):
points = np.array(data['point'], dtype=np.float32)
if 'label' not in data.keys() or data['label'] is None:
labels = np.zeros((points.shape[0],), dtype=np.int32)
else:
labels =
|
np.array(data['label'], dtype=np.int32)
|
numpy.array
|
import numpy as np
import os
import pickle
import scipy.sparse as sp
from matrix_factorization import matrix_factorization_als, write_als_prediction
def build_matrix(nnz, methods, ratings, g_mean, user_means, item_means, sgd, als, cf_item, cf_user, predict=False):
"""
Build the matrix for blending (shape = (number of predictions, number of models))
:param nnz: list of tuples item, user where each tuple is a prediction
:param methods: list of the models to put in the matrix (should be in 'global_mean', 'user_mean', 'item_mean'
'sgd', 'als', 'cf_item', 'cf_user').
:param ratings: initial sparse matrix of shape (number of items, number of users)
:param g_mean: global mean of the training set
:param user_means: user means (from training set)
:param item_means: item means (from training set)
:param sgd: predictions coming from the sgd matrix factorization
:param als: predictions coming from the als matrix factorization
:param cf_item: predictions coming from the item-based collaborative filtering
:param cf_user: predictions coming from the user-based collaborative filtering
:param predict: Boolean, to know if currently training/testing or predicting
:return: matrix for blending (shape = (number of predictions, number of models))
"""
m = np.zeros(shape=(len(nnz), len(methods)))
if not predict:
y = []
else:
y = None
for i, (item, user) in enumerate(nnz):
if not predict:
y.append(ratings[item, user])
if 'global_mean' in methods:
k = methods.index('global_mean')
m[i, k] = g_mean
if 'user_mean' in methods:
k = methods.index('user_mean')
m[i, k] = user_means[user]
if 'item_mean' in methods:
k = methods.index('item_mean')
m[i, k] = item_means[item]
if 'sgd' in methods:
k = methods.index('sgd')
m[i, k] = sgd[item, user]
if 'als' in methods:
k = methods.index('als')
m[i, k] = als[item, user]
if 'cf_item' in methods:
k = methods.index('cf_item')
m[i, k] = cf_item[item, user]
if 'cf_user' in methods:
k = methods.index('cf_user')
m[i, k] = cf_user[item, user]
return m, y
def blend(methods, alpha, nnz_train, nnz_test, train, test,
g_mean, user_means, item_means, sgd, als, cf_item, cf_user, predict=False):
"""
:param methods: list of methods to blend
:param alpha: penalization parameter for the ridge regression
:param nnz_train: exhaustive list of (i, j) such that train[i, j] in non zero
:param nnz_test: exhaustive list of (i, j) such that test[i, j] in non zero
:param train: training set (sparse matrix of shape (number of items, number of users))
:param test: test set (sparse matrix of shape (number of items, number of users))
:param g_mean: global mean of the training set
:param user_means: user_means computed on the training set
:param item_means: item_means computed on the training set
:param sgd: sgd prediction on the training set (sparse matrix of shape (number of items, number of users))
:param als: als predictions on the training set (sparse matrix of shape (number of items, number of users))
:param cf_item: predictions on the training set (sparse matrix of shape (number of items, number of users))
:param cf_user: predictions on the training set (sparse matrix of shape (number of items, number of users))
:param predict: Boolean, if True, no ground truth vector y is return
:return: matrix of shape (number of predictions, number of models), vector of length number of predictions
"""
m_train, y_train = build_matrix(nnz_train, methods, train, g_mean,
user_means, item_means, sgd, als, cf_item, cf_user, predict=False)
# Ridge Regression
w = np.linalg.solve(m_train.T.dot(m_train) + alpha * np.eye(m_train.shape[1]), m_train.T.dot(y_train))
y_predict_train = m_train.dot(w)
# Cut predictions that are too high and too low
for i in range(len(y_predict_train)):
y_predict_train[i] = min(5, y_predict_train[i])
y_predict_train[i] = max(1, y_predict_train[i])
m_test, y_test = build_matrix(nnz_test, methods, test, g_mean,
user_means, item_means, sgd, als, cf_item, cf_user, predict)
y_predict_test = m_test.dot(w)
# Cut predictions that are too high and too low
for i in range(len(y_predict_test)):
y_predict_test[i] = min(5, y_predict_test[i])
y_predict_test[i] = max(1, y_predict_test[i])
if y_test is not None:
return w, np.sqrt(
|
np.mean((y_train - y_predict_train) ** 2)
|
numpy.mean
|
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Mon Mar 5 12:13:33 2018
@author: <NAME> (<EMAIL> / <EMAIL>)
"""
# Python dependencies
from __future__ import division
import pandas as pd
import numpy as np
import mpmath as mp
import matplotlib as mpl
import seaborn as sns
from scipy.constants import codata
from pylab import *
from lmfit import minimize, report_fit
# from scipy.optimize import leastsq
pd.options.mode.chained_assignment = None
# Plotting
mpl.rc("mathtext", fontset="stixsans", default="regular")
mpl.rcParams.update({"axes.labelsize": 22})
mpl.rc("xtick", labelsize=16)
mpl.rc("ytick", labelsize=16)
mpl.rc("legend", fontsize=14)
F = codata.physical_constants["Faraday constant"][0]
Rg = codata.physical_constants["molar gas constant"][0]
### Importing PyEIS add-ons
from .PyEIS_Data_extraction import *
from .PyEIS_Lin_KK import *
from .PyEIS_Advanced_tools import *
### Frequency generator
##
#
def freq_gen(f_start, f_stop, pts_decade=7):
"""
Frequency Generator with logspaced freqencies
Inputs
----------
f_start = frequency start [Hz]
f_stop = frequency stop [Hz]
pts_decade = Points/decade, default 7 [-]
Output
----------
[0] = frequency range [Hz]
[1] = Angular frequency range [1/s]
"""
f_decades = np.log10(f_start) - np.log10(f_stop)
f_range = np.logspace(
np.log10(f_start),
np.log10(f_stop),
num=np.around(pts_decade * f_decades).astype(int),
endpoint=True,
)
w_range = 2 * np.pi * f_range
return f_range, w_range
### Simulation Element Functions
##
#
def elem_L(w, L):
"""
Simulation Function: -L-
Returns the impedance of an inductor
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
L = Inductance [ohm * s]
"""
return 1j * w * L
def elem_C(w, C):
"""
Simulation Function: -C-
Inputs
----------
w = Angular frequency [1/s]
C = Capacitance [F]
"""
return 1 / (C * (w * 1j))
def elem_Q(w, Q, n):
"""
Simulation Function: -Q-
Inputs
----------
w = Angular frequency [1/s]
Q = Constant phase element [s^n/ohm]
n = Constant phase elelment exponent [-]
"""
return 1 / (Q * (w * 1j) ** n)
### Simulation Curciuts Functions
##
#
def cir_RsC(w, Rs, C):
"""
Simulation Function: -Rs-C-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series resistance [Ohm]
C = Capacitance [F]
"""
return Rs + 1 / (C * (w * 1j))
def cir_RsQ(w, Rs, Q, n):
"""
Simulation Function: -Rs-Q-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series resistance [Ohm]
Q = Constant phase element [s^n/ohm]
n = Constant phase elelment exponent [-]
"""
return Rs + 1 / (Q * (w * 1j) ** n)
def cir_RQ(w, R="none", Q="none", n="none", fs="none"):
"""
Simulation Function: -RQ-
Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit()
<NAME> (<EMAIL> / <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
R = Resistance [Ohm]
Q = Constant phase element [s^n/ohm]
n = Constant phase elelment exponent [-]
fs = Summit frequency of RQ circuit [Hz]
"""
if R == "none":
R = 1 / (Q * (2 * np.pi * fs) ** n)
elif Q == "none":
Q = 1 / (R * (2 * np.pi * fs) ** n)
elif n == "none":
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
return R / (1 + R * Q * (w * 1j) ** n)
def cir_RsRQ(w, Rs="none", R="none", Q="none", n="none", fs="none"):
"""
Simulation Function: -Rs-RQ-
Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit()
<NAME> (<EMAIL> / <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
Rs = Series resistance [Ohm]
R = Resistance [Ohm]
Q = Constant phase element [s^n/ohm]
n = Constant phase elelment exponent [-]
fs = Summit frequency of RQ circuit [Hz]
"""
if R == "none":
R = 1 / (Q * (2 * np.pi * fs) ** n)
elif Q == "none":
Q = 1 / (R * (2 * np.pi * fs) ** n)
elif n == "none":
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
return Rs + (R / (1 + R * Q * (w * 1j) ** n))
def cir_RC(w, C="none", R="none", fs="none"):
"""
Simulation Function: -RC-
Returns the impedance of an RC circuit, using RQ definations where n=1. see cir_RQ() for details
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
R = Resistance [Ohm]
C = Capacitance [F]
fs = Summit frequency of RC circuit [Hz]
"""
return cir_RQ(w, R=R, Q=C, n=1, fs=fs)
def cir_RsRQRQ(
w,
Rs,
R="none",
Q="none",
n="none",
fs="none",
R2="none",
Q2="none",
n2="none",
fs2="none",
):
"""
Simulation Function: -Rs-RQ-RQ-
Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RQ_fit()
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [Ohm]
R = Resistance [Ohm]
Q = Constant phase element [s^n/ohm]
n = Constant phase element exponent [-]
fs = Summit frequency of RQ circuit [Hz]
R2 = Resistance [Ohm]
Q2 = Constant phase element [s^n/ohm]
n2 = Constant phase element exponent [-]
fs2 = Summit frequency of RQ circuit [Hz]
"""
if R == "none":
R = 1 / (Q * (2 * np.pi * fs) ** n)
elif Q == "none":
Q = 1 / (R * (2 * np.pi * fs) ** n)
elif n == "none":
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if R2 == "none":
R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2)
elif Q2 == "none":
Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n2)
elif n2 == "none":
n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2))
return (
Rs + (R / (1 + R * Q * (w * 1j) ** n)) + (R2 / (1 + R2 * Q2 * (w * 1j) ** n2))
)
def cir_RsRQQ(w, Rs, Q, n, R1="none", Q1="none", n1="none", fs1="none"):
"""
Simulation Function: -Rs-RQ-Q-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [ohm]
R1 = Resistance in (RQ) circuit [ohm]
Q1 = Constant phase element in (RQ) circuit [s^n/ohm]
n1 = Constant phase elelment exponent in (RQ) circuit [-]
fs1 = Summit frequency of RQ circuit [Hz]
Q = Constant phase element of series Q [s^n/ohm]
n = Constant phase elelment exponent of series Q [-]
"""
return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_Q(w, Q, n)
def cir_RsRQC(w, Rs, C, R1="none", Q1="none", n1="none", fs1="none"):
"""
Simulation Function: -Rs-RQ-C-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [ohm]
R1 = Resistance in (RQ) circuit [ohm]
Q1 = Constant phase element in (RQ) circuit [s^n/ohm]
n1 = Constant phase elelment exponent in (RQ) circuit [-]
fs1 = summit frequency of RQ circuit [Hz]
C = Constant phase element of series Q [s^n/ohm]
"""
return Rs + cir_RQ(w, R=R1, Q=Q1, n=n1, fs=fs1) + elem_C(w, C=C)
def cir_RsRCC(w, Rs, R1, C1, C):
"""
Simulation Function: -Rs-RC-C-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [ohm]
R1 = Resistance in (RQ) circuit [ohm]
C1 = Constant phase element in (RQ) circuit [s^n/ohm]
C = Capacitance of series C [s^n/ohm]
"""
return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_C(w, C=C)
def cir_RsRCQ(w, Rs, R1, C1, Q, n):
"""
Simulation Function: -Rs-RC-Q-
Inputs
----------
w = Angular frequency [1/s]
Rs = Series Resistance [ohm]
R1 = Resistance in (RQ) circuit [ohm]
C1 = Constant phase element in (RQ) circuit [s^n/ohm]
Q = Constant phase element of series Q [s^n/ohm]
n = Constant phase elelment exponent of series Q [-]
"""
return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_Q(w, Q, n)
def Randles_coeff(
w,
n_electron,
A,
E="none",
E0="none",
D_red="none",
D_ox="none",
C_red="none",
C_ox="none",
Rg=Rg,
F=F,
T=298.15,
):
"""
Returns the Randles coefficient sigma [ohm/s^1/2].
Two cases: a) ox and red are both present in solution here both Cred and Dred are defined, b) In the particular case where initially
only Ox species are present in the solution with bulk concentration C*_ox, the surface concentrations may be calculated as function
of the electrode potential following Nernst equation. Here C_red and D_red == 'none'
Ref.:
- Lasia, A.L., ISBN: 978-1-4614-8932-0, "Electrochemical Impedance Spectroscopy and its Applications"
- <NAME>., ISBN: 0-471-04372-9, <NAME>. (2001) "Electrochemical methods: Fundamentals and applications". New York: Wiley.
<NAME> (<EMAIL> // <EMAIL>)
Inputs
----------
n_electron = number of e- [-]
A = geometrical surface area [cm2]
D_ox = Diffusion coefficent of oxidized specie [cm2/s]
D_red = Diffusion coefficent of reduced specie [cm2/s]
C_ox = Bulk concetration of oxidized specie [mol/cm3]
C_red = Bulk concetration of reduced specie [mol/cm3]
T = Temperature [K]
Rg = Gas constant [J/molK]
F = Faradays consntat [C/mol]
E = Potential [V]
if reduced specie is absent == 'none'
E0 = formal potential [V]
if reduced specie is absent == 'none'
Returns
----------
Randles coefficient [ohm/s^1/2]
"""
if C_red != "none" and D_red != "none":
sigma = ((Rg * T) / ((n_electron ** 2) * A * (F ** 2) * (2 ** (1 / 2)))) * (
(1 / (D_ox ** (1 / 2) * C_ox)) + (1 / (D_red ** (1 / 2) * C_red))
)
elif C_red == "none" and D_red == "none" and E != "none" and E0 != "none":
f = F / (Rg * T)
x = (n_electron * f * (E - E0)) / 2
func_cosh2 = (np.cosh(2 * x) + 1) / 2
sigma = (
(4 * Rg * T)
/ ((n_electron ** 2) * A * (F ** 2) * C_ox * ((2 * D_ox) ** (1 / 2)))
) * func_cosh2
else:
print("define E and E0")
Z_Aw = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5))
return Z_Aw
def cir_Randles(
w,
n_electron,
D_red,
D_ox,
C_red,
C_ox,
Rs,
Rct,
n,
E,
A,
Q="none",
fs="none",
E0=0,
F=F,
Rg=Rg,
T=298.15,
):
"""
Simulation Function: Randles -Rs-(Q-(RW)-)-
Return the impedance of a Randles circuit with full complity of the warbug constant
NOTE: This Randles circuit is only meant for semi-infinate linear diffusion
<NAME> (<EMAIL> / <EMAIL>)
Inputs
----------
n_electron = number of e- [-]
A = geometrical surface area [cm2]
D_ox = Diffusion coefficent of oxidized specie [cm2/s]
D_red = Diffusion coefficent of reduced specie [cm2/s]
C_ox = Concetration of oxidized specie [mol/cm3]
C_red = Concetration of reduced specie [mol/cm3]
T = Temperature [K]
Rg = Gas constant [J/molK]
F = Faradays consntat [C/mol]
E = Potential [V]
if reduced specie is absent == 'none'
E0 = Formal potential [V]
if reduced specie is absent == 'none'
Rs = Series resistance [ohm]
Rct = charge-transfer resistance [ohm]
Q = Constant phase element used to model the double-layer capacitance [F]
n = expononent of the CPE [-]
Returns
----------
The real and imaginary impedance of a Randles circuit [ohm]
"""
Z_Rct = Rct
Z_Q = elem_Q(w, Q, n)
Z_w = Randles_coeff(
w,
n_electron=n_electron,
E=E,
E0=E0,
D_red=D_red,
D_ox=D_ox,
C_red=C_red,
C_ox=C_ox,
A=A,
T=T,
Rg=Rg,
F=F,
)
return Rs + 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w))
def cir_Randles_simplified(w, Rs, R, n, sigma, Q="none", fs="none"):
"""
Simulation Function: Randles -Rs-(Q-(RW)-)-
Return the impedance of a Randles circuit with a simplified
NOTE: This Randles circuit is only meant for semi-infinate linear diffusion
<NAME> (<EMAIL> / <EMAIL>)
"""
if R == "none":
R = 1 / (Q * (2 * np.pi * fs) ** n)
elif Q == "none":
Q = 1 / (R * (2 * np.pi * fs) ** n)
elif n == "none":
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
Z_Q = 1 / (Q * (w * 1j) ** n)
Z_R = R
Z_w = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5))
return Rs + 1 / (1 / Z_Q + 1 / (Z_R + Z_w))
# Polymer electrolytes
def cir_C_RC_C(w, Ce, Cb="none", Rb="none", fsb="none"):
"""
Simulation Function: -C-(RC)-C-
This circuit is often used for modeling blocking electrodes with a polymeric electrolyte, which exhibts a immobile ionic species in bulk that gives a capacitance contribution
to the otherwise resistive electrolyte
Ref:
- <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London, Bruce, P. "Electrical Measurements on Polymer Electrolytes"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
Ce = Interfacial capacitance [F]
Rb = Bulk/series resistance [Ohm]
Cb = Bulk capacitance [F]
fsb = summit frequency of bulk (RC) circuit [Hz]
"""
Z_C = elem_C(w, C=Ce)
Z_RC = cir_RC(w, C=Cb, R=Rb, fs=fsb)
return Z_C + Z_RC
def cir_Q_RQ_Q(w, Qe, ne, Qb="none", Rb="none", fsb="none", nb="none"):
"""
Simulation Function: -Q-(RQ)-Q-
Modified cir_C_RC_C() circuits that can be used if electrodes and bulk are not behaving like ideal capacitors
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
Qe = Interfacial capacitance modeled with a CPE [F]
ne = Interfacial constant phase element exponent [-]
Rb = Bulk/series resistance [Ohm]
Qb = Bulk capacitance modeled with a CPE [s^n/ohm]
nb = Bulk constant phase element exponent [-]
fsb = summit frequency of bulk (RQ) circuit [Hz]
"""
Z_Q = elem_Q(w, Q=Qe, n=ne)
Z_RQ = cir_RQ(w, Q=Qb, R=Rb, fs=fsb, n=nb)
return Z_Q + Z_RQ
def tanh(x):
"""
As numpy gives errors when tanh becomes very large, above 10^250, this functions is used for np.tanh
"""
return (1 - np.exp(-2 * x)) / (1 + np.exp(-2 * x))
def cir_RCRCZD(
w,
L,
D_s,
u1,
u2,
Cb="none",
Rb="none",
fsb="none",
Ce="none",
Re="none",
fse="none",
):
"""
Simulation Function: -RC_b-RC_e-Z_D
This circuit has been used to study non-blocking electrodes with an ioniocally conducting electrolyte with a mobile and immobile ionic specie in bulk, this is mixed with a
ionically conducting salt. This behavior yields in a impedance response, that consists of the interfacial impendaces -(RC_e)-, the ionically conducitng polymer -(RC_e)-,
and the diffusional impedance from the dissolved salt.
Refs.:
- <NAME>. and <NAME>., Electrochimica Acta, 27, 1671-1675, 1982, "Conductivity, Charge Transfer and Transport number - An AC-Investigation
of the Polymer Electrolyte LiSCN-Poly(ethyleneoxide)"
- <NAME>., and <NAME>. "Polymer Electrolyte Reviews - 1" Elsevier Applied Science Publishers LTD, London
Bruce, P. "Electrical Measurements on Polymer Electrolytes"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
----------
w = Angular frequency [1/s]
L = Thickness of electrode [cm]
D_s = Diffusion coefficient of dissolved salt [cm2/s]
u1 = Mobility of the ion reacting at the electrode interface
u2 = Mobility of other ion
Re = Interfacial resistance [Ohm]
Ce = Interfacial capacitance [F]
fse = Summit frequency of the interfacial (RC) circuit [Hz]
Rb = Bulk/series resistance [Ohm]
Cb = Bulk capacitance [F]
fsb = Summit frequency of the bulk (RC) circuit [Hz]
"""
Z_RCb = cir_RC(w, C=Cb, R=Rb, fs=fsb)
Z_RCe = cir_RC(w, C=Ce, R=Re, fs=fse)
alpha = ((w * 1j * L ** 2) / D_s) ** (1 / 2)
Z_D = Rb * (u2 / u1) * (tanh(x=alpha) / alpha)
return Z_RCb + Z_RCe + Z_D
# Transmission lines
def cir_RsTLsQ(w, Rs, L, Ri, Q="none", n="none"):
"""
Simulation Function: -Rs-TLsQ-
TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q)
The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance).
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> / <EMAIL>)
Inputs
-----------
Rs = Series resistance [ohm]
L = Length/Thickness of porous electrode [cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
Q = Interfacial capacitance of non-faradaic interface [F/cm]
n = exponent for the interfacial capacitance [-]
"""
Phi = 1 / (Q * (w * 1j) ** n)
X1 = Ri # ohm/cm
Lam = (Phi / X1) ** (1 / 2) # np.sqrt(Phi/X1)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLsQ = Lam * X1 * coth_mp
return Rs + Z_TLsQ
def cir_RsRQTLsQ(w, Rs, R1, fs1, n1, L, Ri, Q, n, Q1="none"):
"""
Simulation Function: -Rs-RQ-TLsQ-
TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance(Q)
The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance).
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> / <EMAIL>)
Inputs
-----------
Rs = Series resistance [ohm]
R1 = Charge transfer resistance of RQ circuit [ohm]
fs1 = Summit frequency for RQ circuit [Hz]
n1 = Exponent for RQ circuit [-]
Q1 = Constant phase element of RQ circuit [s^n/ohm]
L = Length/Thickness of porous electrode [cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
Q = Interfacial capacitance of non-faradaic interface [F/cm]
n = Exponent for the interfacial capacitance [-]
Output
-----------
Impdance of Rs-(RQ)1-TLsQ
"""
Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
Phi = 1 / (Q * (w * 1j) ** n)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j)
Z_TLsQ = Lam * X1 * coth_mp
return Rs + Z_RQ + Z_TLsQ
def cir_RsTLs(w, Rs, L, Ri, R="none", Q="none", n="none", fs="none"):
"""
Simulation Function: -Rs-TLs-
TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ)
The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance).
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> / <EMAIL>)
Inputs
-----------
Rs = Series resistance [ohm]
L = Length/Thickness of porous electrode [cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
R = Interfacial Charge transfer resistance [ohm*cm]
fs = Summit frequency of interfacial RQ circuit [Hz]
n = Exponent for interfacial RQ circuit [-]
Q = Constant phase element of interfacial capacitance [s^n/Ohm]
Output
-----------
Impedance of Rs-TLs(RQ)
"""
Phi = cir_RQ(w, R, Q, n, fs)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLs = Lam * X1 * coth_mp
return Rs + Z_TLs
def cir_RsRQTLs(w, Rs, L, Ri, R1, n1, fs1, R2, n2, fs2, Q1="none", Q2="none"):
"""
Simulation Function: -Rs-RQ-TLs-
TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ)
The simplified transmission line assumes that Ri is much greater than Rel (electrode resistance).
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- B<NAME>. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> / <EMAIL>)
Inputs
-----------
Rs = Series resistance [ohm]
R1 = Charge transfer resistance of RQ circuit [ohm]
fs1 = Summit frequency for RQ circuit [Hz]
n1 = Exponent for RQ circuit [-]
Q1 = Constant phase element of RQ circuit [s^n/(ohm * cm)]
L = Length/Thickness of porous electrode [cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
R2 = Interfacial Charge transfer resistance [ohm*cm]
fs2 = Summit frequency of interfacial RQ circuit [Hz]
n2 = Exponent for interfacial RQ circuit [-]
Q2 = Constant phase element of interfacial capacitance [s^n/Ohm]
Output
-----------
Impedance of Rs-(RQ)1-TLs(RQ)2
"""
Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
Phi = cir_RQ(w=w, R=R2, Q=Q2, n=n2, fs=fs2)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLs = Lam * X1 * coth_mp
return Rs + Z_RQ + Z_TLs
### Support function
def sinh(x):
"""
As numpy gives errors when sinh becomes very large, above 10^250, this functions is used instead of np/mp.sinh()
"""
return (1 - np.exp(-2 * x)) / (2 * np.exp(-x))
def coth(x):
"""
As numpy gives errors when coth becomes very large, above 10^250, this functions is used instead of np/mp.coth()
"""
return (1 + np.exp(-2 * x)) / (1 - np.exp(-2 * x))
###
def cir_RsTLQ(w, L, Rs, Q, n, Rel, Ri):
"""
Simulation Function: -R-TLQ- (interfacial non-reacting, i.e. blocking electrode)
Transmission line w/ full complexity, which both includes Ri and Rel
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
Q = Constant phase element for the interfacial capacitance [s^n/ohm]
n = exponenet for interfacial RQ element [-]
Rel = electronic resistance of electrode [ohm/cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
L = thickness of porous electrode [cm]
Output
--------------
Impedance of Rs-TL
"""
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = elem_Q(w, Q=Q, n=n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTLQ(w, L, Rs, Q, n, Rel, Ri, R1, n1, fs1, Q1="none"):
"""
Simulation Function: -R-RQ-TLQ- (interfacial non-reacting, i.e. blocking electrode)
Transmission line w/ full complexity, which both includes Ri and Rel
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- Bisquert J. J. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R1 = Charge transfer resistance of RQ circuit [ohm]
fs1 = Summit frequency for RQ circuit [Hz]
n1 = exponent for RQ circuit [-]
Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)]
Q = Constant phase element for the interfacial capacitance [s^n/ohm]
n = exponenet for interfacial RQ element [-]
Rel = electronic resistance of electrode [ohm/cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
L = thickness of porous electrode [cm]
Output
--------------
Impedance of Rs-TL
"""
# The impedance of the series resistance
Z_Rs = Rs
# The (RQ) circuit in series with the transmission line
Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = elem_Q(w, Q=Q, n=n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
def cir_RsTL(w, L, Rs, R, fs, n, Rel, Ri, Q="none"):
"""
Simulation Function: -R-TL- (interfacial reacting, i.e. non-blocking)
Transmission line w/ full complexity, which both includes Ri and Rel
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R = Interfacial charge transfer resistance [ohm * cm]
fs = Summit frequency for the interfacial RQ element [Hz]
n = Exponenet for interfacial RQ element [-]
Q = Constant phase element for the interfacial capacitance [s^n/ohm]
Rel = Electronic resistance of electrode [ohm/cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
L = Thickness of porous electrode [cm]
Output
--------------
Impedance of Rs-TL
"""
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = cir_RQ(w, R=R, Q=Q, n=n, fs=fs)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTL(w, L, Rs, R1, fs1, n1, R2, fs2, n2, Rel, Ri, Q1="none", Q2="none"):
"""
Simulation Function: -R-RQ-TL- (interfacial reacting, i.e. non-blocking)
Transmission line w/ full complexity, which both includes Ri and Rel
Ref.:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R1 = Charge transfer resistance of RQ circuit [ohm]
fs1 = Summit frequency for RQ circuit [Hz]
n1 = exponent for RQ circuit [-]
Q1 = constant phase element of RQ circuit [s^n/(ohm * cm)]
R2 = interfacial charge transfer resistance [ohm * cm]
fs2 = Summit frequency for the interfacial RQ element [Hz]
n2 = exponenet for interfacial RQ element [-]
Q2 = Constant phase element for the interfacial capacitance [s^n/ohm]
Rel = electronic resistance of electrode [ohm/cm]
Ri = Ionic resistance inside of flodded pores [ohm/cm]
L = thickness of porous electrode [cm]
Output
--------------
Impedance of Rs-TL
"""
# The impedance of the series resistance
Z_Rs = Rs
# The (RQ) circuit in series with the transmission line
Z_RQ1 = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = cir_RQ(w, R=R2, Q=Q2, n=n2, fs=fs2)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
# Transmission lines with solid-state transport
def cir_RsTL_1Dsolid(w, L, D, radius, Rs, R, Q, n, R_w, n_w, Rel, Ri):
"""
Simulation Function: -R-TL(Q(RW))-
Transmission line w/ full complexity, which both includes Ri and Rel
Warburg element is specific for 1D solid-state diffusion
Refs:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- <NAME>. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Illig, J., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014)
- Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015)
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R = particle charge transfer resistance [ohm*cm^2]
Q = Summit frequency peak of RQ element in the modified randles element of a particle [Hz]
n = exponenet for internal RQ element in the modified randles element of a particle [-]
Rel = electronic resistance of electrode [ohm/cm]
Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm]
R_w = polarization resistance of finite diffusion Warburg element [ohm]
n_w = exponent for Warburg element [-]
L = thickness of porous electrode [cm]
D = solid-state diffusion coefficient [cm^2/s]
radius = average particle radius [cm]
Output
--------------
Impedance of Rs-TL(Q(RW))
"""
# The impedance of the series resistance
Z_Rs = Rs
# The impedance of a 1D Warburg Element
time_const = (radius ** 2) / D
x = (time_const * w * 1j) ** n_w
x_mp = mp.matrix(x)
warburg_coth_mp = []
for i in range(len(w)):
warburg_coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
)
Z_w = R_w * np.array(warburg_coth_mp) / x
# The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2
Z_Rct = R
Z_Q = elem_Q(w, Q=Q, n=n)
Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm
# The Impedance of the Transmission Line
lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2)
x = L / lamb
# lamb_mp = mp.matrix(x)
# sinh_mp = []
# coth_mp = []
# for j in range(len(lamb_mp)):
# sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j)
# coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTL_1Dsolid(
w, L, D, radius, Rs, R1, fs1, n1, R2, Q2, n2, R_w, n_w, Rel, Ri, Q1="none"
):
"""
Simulation Function: -R-RQ-TL(Q(RW))-
Transmission line w/ full complexity, which both includes Ri and Rel
Warburg element is specific for 1D solid-state diffusion
Refs:
- <NAME>., and <NAME>., Advances in Electrochemistry and Electrochemical Engineering, p. 329, Wiley-Interscience, New York (1973)
- Bisquert J. Electrochemistry Communications 1, 1999, 429-435, "Anamalous transport effects in the impedance of porous film electrodes"
- <NAME>. Phys. Chem. B., 2000, 104, 2287-2298, "Doubling exponent models for the analysis of porous film electrodes by impedance.
Relaxation of TiO2 nanoporous in aqueous solution"
- <NAME>., Physically based Impedance Modelling of Lithium-ion Cells, KIT Scientific Publishing (2014)
- Scipioni, et al., ECS Transactions, 69 (18) 71-80 (2015)
<NAME> (<EMAIL>)
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------------
Rs = Series resistance [ohm]
R1 = charge transfer resistance of the interfacial RQ element [ohm*cm^2]
fs1 = max frequency peak of the interfacial RQ element[Hz]
n1 = exponenet for interfacial RQ element
R2 = particle charge transfer resistance [ohm*cm^2]
Q2 = Summit frequency peak of RQ element in the modified randles element of a particle [Hz]
n2 = exponenet for internal RQ element in the modified randles element of a particle [-]
Rel = electronic resistance of electrode [ohm/cm]
Ri = ionic resistance of solution in flooded pores of electrode [ohm/cm]
R_w = polarization resistance of finite diffusion Warburg element [ohm]
n_w = exponent for Warburg element [-]
L = thickness of porous electrode [cm]
D = solid-state diffusion coefficient [cm^2/s]
radius = average particle radius [cm]
Output
------------------
Impedance of R-RQ-TL(Q(RW))
"""
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
Z_RQ = cir_RQ(w=w, R=R1, Q=Q1, n=n1, fs=fs1)
# The impedance of a 1D Warburg Element
time_const = (radius ** 2) / D
x = (time_const * w * 1j) ** n_w
x_mp = mp.matrix(x)
warburg_coth_mp = []
for i in range(len(w)):
warburg_coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
)
Z_w = R_w * np.array(warburg_coth_mp) / x
# The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2
Z_Rct = R2
Z_Q = elem_Q(w, Q=Q2, n=n2)
Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm
# The Impedance of the Transmission Line
lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2)
x = L / lamb
# lamb_mp = mp.matrix(x)
# sinh_mp = []
# coth_mp = []
# for j in range(len(lamb_mp)):
# sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j)
# coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j)
#
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ + Z_TL
### Fitting Circuit Functions
##
#
def elem_C_fit(params, w):
"""
Fit Function: -C-
"""
C = params["C"]
return 1 / (C * (w * 1j))
def elem_Q_fit(params, w):
"""
Fit Function: -Q-
Constant Phase Element for Fitting
"""
Q = params["Q"]
n = params["n"]
return 1 / (Q * (w * 1j) ** n)
def cir_RsC_fit(params, w):
"""
Fit Function: -Rs-C-
"""
Rs = params["Rs"]
C = params["C"]
return Rs + 1 / (C * (w * 1j))
def cir_RsQ_fit(params, w):
"""
Fit Function: -Rs-Q-
"""
Rs = params["Rs"]
Q = params["Q"]
n = params["n"]
return Rs + 1 / (Q * (w * 1j) ** n)
def cir_RC_fit(params, w):
"""
Fit Function: -RC-
Returns the impedance of an RC circuit, using RQ definations where n=1
"""
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["C"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("C") == -1: # elif Q == 'none':
R = params["R"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["C"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
Q = params["C"]
return cir_RQ(w, R=R, Q=C, n=1, fs=fs)
def cir_RQ_fit(params, w):
"""
Fit Function: -RQ-
Return the impedance of an RQ circuit:
Z(w) = R / (1+ R*Q * (2w)^n)
See Explanation of equations under cir_RQ()
The params.keys()[10:] finds the names of the user defined parameters that should be interated over if X == -1, if the paramter is not given, it becomes equal to 'none'
<NAME> (<EMAIL> / <EMAIL>)
"""
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
n = params["n"]
Q = params["Q"]
return R / (1 + R * Q * (w * 1j) ** n)
def cir_RsRQ_fit(params, w):
"""
Fit Function: -Rs-RQ-
Return the impedance of an Rs-RQ circuit. See details for RQ under cir_RsRQ_fit()
<NAME> (<EMAIL> / <EMAIL>)
"""
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
Q = params["Q"]
n = params["n"]
Rs = params["Rs"]
return Rs + (R / (1 + R * Q * (w * 1j) ** n))
def cir_RsRQRQ_fit(params, w):
"""
Fit Function: -Rs-RQ-RQ-
Return the impedance of an Rs-RQ circuit. See details under cir_RsRQRQ()
<NAME> (<EMAIL> / <EMAIL>)
"""
if str(params.keys())[10:].find("'R'") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("'Q'") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("'n'") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("'fs'") == -1: # elif fs == 'none':
R = params["R"]
Q = params["Q"]
n = params["n"]
if str(params.keys())[10:].find("'R2'") == -1: # if R == 'none':
Q2 = params["Q2"]
n2 = params["n2"]
fs2 = params["fs2"]
R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2)
if str(params.keys())[10:].find("'Q2'") == -1: # elif Q == 'none':
R2 = params["R2"]
n2 = params["n2"]
fs2 = params["fs2"]
Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n2)
if str(params.keys())[10:].find("'n2'") == -1: # elif n == 'none':
R2 = params["R2"]
Q2 = params["Q2"]
fs2 = params["fs2"]
n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2))
if str(params.keys())[10:].find("'fs2'") == -1: # elif fs == 'none':
R2 = params["R2"]
Q2 = params["Q2"]
n2 = params["n2"]
Rs = params["Rs"]
return (
Rs + (R / (1 + R * Q * (w * 1j) ** n)) + (R2 / (1 + R2 * Q2 * (w * 1j) ** n2))
)
def cir_Randles_simplified_Fit(params, w):
"""
Fit Function: Randles simplified -Rs-(Q-(RW)-)-
Return the impedance of a Randles circuit. See more under cir_Randles_simplified()
NOTE: This Randles circuit is only meant for semi-infinate linear diffusion
<NAME> (<EMAIL> || <EMAIL>)
"""
if str(params.keys())[10:].find("'R'") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("'Q'") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("'n'") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("'fs'") == -1: # elif fs == 'none':
R = params["R"]
Q = params["Q"]
n = params["n"]
Rs = params["Rs"]
sigma = params["sigma"]
Z_Q = 1 / (Q * (w * 1j) ** n)
Z_R = R
Z_w = sigma * (w ** (-0.5)) - 1j * sigma * (w ** (-0.5))
return Rs + 1 / (1 / Z_Q + 1 / (Z_R + Z_w))
def cir_RsRQQ_fit(params, w):
"""
Fit Function: -Rs-RQ-Q-
See cir_RsRQQ() for details
"""
Rs = params["Rs"]
Q = params["Q"]
n = params["n"]
Z_Q = 1 / (Q * (w * 1j) ** n)
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
return Rs + Z_RQ + Z_Q
def cir_RsRQC_fit(params, w):
"""
Fit Function: -Rs-RQ-C-
See cir_RsRQC() for details
"""
Rs = params["Rs"]
C = params["C"]
Z_C = 1 / (C * (w * 1j))
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
return Rs + Z_RQ + Z_C
def cir_RsRCC_fit(params, w):
"""
Fit Function: -Rs-RC-C-
See cir_RsRCC() for details
"""
Rs = params["Rs"]
R1 = params["R1"]
C1 = params["C1"]
C = params["C"]
return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_C(w, C=C)
def cir_RsRCQ_fit(params, w):
"""
Fit Function: -Rs-RC-Q-
See cir_RsRCQ() for details
"""
Rs = params["Rs"]
R1 = params["R1"]
C1 = params["C1"]
Q = params["Q"]
n = params["n"]
return Rs + cir_RC(w, C=C1, R=R1, fs="none") + elem_Q(w, Q, n)
# Polymer electrolytes
def cir_C_RC_C_fit(params, w):
"""
Fit Function: -C-(RC)-C-
See cir_C_RC_C() for details
<NAME> (<EMAIL> || <EMAIL>)
"""
# Interfacial impedance
Ce = params["Ce"]
Z_C = 1 / (Ce * (w * 1j))
# Bulk impendance
if str(params.keys())[10:].find("Rb") == -1: # if R == 'none':
Cb = params["Cb"]
fsb = params["fsb"]
Rb = 1 / (Cb * (2 * np.pi * fsb))
if str(params.keys())[10:].find("Cb") == -1: # elif Q == 'none':
Rb = params["Rb"]
fsb = params["fsb"]
Cb = 1 / (Rb * (2 * np.pi * fsb))
if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none':
Rb = params["Rb"]
Cb = params["Cb"]
Z_RC = Rb / (1 + Rb * Cb * (w * 1j))
return Z_C + Z_RC
def cir_Q_RQ_Q_Fit(params, w):
"""
Fit Function: -Q-(RQ)-Q-
See cir_Q_RQ_Q() for details
<NAME> (<EMAIL> || <EMAIL>)
"""
# Interfacial impedance
Qe = params["Qe"]
ne = params["ne"]
Z_Q = 1 / (Qe * (w * 1j) ** ne)
# Bulk impedance
if str(params.keys())[10:].find("Rb") == -1: # if R == 'none':
Qb = params["Qb"]
nb = params["nb"]
fsb = params["fsb"]
Rb = 1 / (Qb * (2 * np.pi * fsb) ** nb)
if str(params.keys())[10:].find("Qb") == -1: # elif Q == 'none':
Rb = params["Rb"]
nb = params["nb"]
fsb = params["fsb"]
Qb = 1 / (Rb * (2 * np.pi * fsb) ** nb)
if str(params.keys())[10:].find("nb") == -1: # elif n == 'none':
Rb = params["Rb"]
Qb = params["Qb"]
fsb = params["fsb"]
nb = np.log(Qb * Rb) / np.log(1 / (2 * np.pi * fsb))
if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none':
Rb = params["Rb"]
nb = params["nb"]
Qb = params["Qb"]
Z_RQ = Rb / (1 + Rb * Qb * (w * 1j) ** nb)
return Z_Q + Z_RQ
def cir_RCRCZD_fit(params, w):
"""
Fit Function: -RC_b-RC_e-Z_D
See cir_RCRCZD() for details
<NAME> (<EMAIL> || <EMAIL>)
"""
# Interfacial impendace
if str(params.keys())[10:].find("Re") == -1: # if R == 'none':
Ce = params["Ce"]
fse = params["fse"]
Re = 1 / (Ce * (2 * np.pi * fse))
if str(params.keys())[10:].find("Ce") == -1: # elif Q == 'none':
Re = params["Rb"]
fse = params["fsb"]
Ce = 1 / (Re * (2 * np.pi * fse))
if str(params.keys())[10:].find("fse") == -1: # elif fs == 'none':
Re = params["Re"]
Ce = params["Ce"]
Z_RCe = Re / (1 + Re * Ce * (w * 1j))
# Bulk impendance
if str(params.keys())[10:].find("Rb") == -1: # if R == 'none':
Cb = params["Cb"]
fsb = params["fsb"]
Rb = 1 / (Cb * (2 * np.pi * fsb))
if str(params.keys())[10:].find("Cb") == -1: # elif Q == 'none':
Rb = params["Rb"]
fsb = params["fsb"]
Cb = 1 / (Rb * (2 * np.pi * fsb))
if str(params.keys())[10:].find("fsb") == -1: # elif fs == 'none':
Rb = params["Rb"]
Cb = params["Cb"]
Z_RCb = Rb / (1 + Rb * Cb * (w * 1j))
# Mass transport impendance
L = params["L"]
D_s = params["D_s"]
u1 = params["u1"]
u2 = params["u2"]
alpha = ((w * 1j * L ** 2) / D_s) ** (1 / 2)
Z_D = Rb * (u2 / u1) * (tanh(alpha) / alpha)
return Z_RCb + Z_RCe + Z_D
# Transmission lines
def cir_RsTLsQ_fit(params, w):
"""
Fit Function: -Rs-TLsQ-
TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q)
See more under cir_RsTLsQ()
<NAME> (<EMAIL> / <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Q = params["Q"]
n = params["n"]
Phi = 1 / (Q * (w * 1j) ** n)
X1 = Ri # ohm/cm
Lam = (Phi / X1) ** (1 / 2) # np.sqrt(Phi/X1)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
#
# Z_TLsQ = Lam * X1 * coth_mp
Z_TLsQ = Lam * X1 * coth(x)
return Rs + Z_TLsQ
def cir_RsRQTLsQ_Fit(params, w):
"""
Fit Function: -Rs-RQ-TLsQ-
TLs = Simplified Transmission Line, with a non-faradaic interfacial impedance (Q)
See more under cir_RsRQTLsQ
<NAME> (<EMAIL> / <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Q = params["Q"]
n = params["n"]
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
Phi = 1 / (Q * (w * 1j) ** n)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLsQ = Lam * X1 * coth_mp
return Rs + Z_RQ + Z_TLsQ
def cir_RsTLs_Fit(params, w):
"""
Fit Function: -Rs-RQ-TLs-
TLs = Simplified Transmission Line, with a faradaic interfacial impedance (RQ)
See mor under cir_RsTLs()
<NAME> (<EMAIL> / <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
n = params["n"]
Q = params["Q"]
Phi = R / (1 + R * Q * (w * 1j) ** n)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLs = Lam * X1 * coth_mp
return Rs + Z_TLs
def cir_RsRQTLs_Fit(params, w):
"""
Fit Function: -Rs-RQ-TLs-
TLs = Simplified Transmission Line with a faradaic interfacial impedance (RQ)
See more under cir_RsRQTLs()
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
if str(params.keys())[10:].find("R2") == -1: # if R == 'none':
Q2 = params["Q2"]
n2 = params["n2"]
fs2 = params["fs2"]
R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2)
if str(params.keys())[10:].find("Q2") == -1: # elif Q == 'none':
R2 = params["R2"]
n2 = params["n2"]
fs2 = params["fs2"]
Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n1)
if str(params.keys())[10:].find("n2") == -1: # elif n == 'none':
R2 = params["R2"]
Q2 = params["Q2"]
fs2 = params["fs2"]
n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2))
if str(params.keys())[10:].find("fs2") == -1: # elif fs == 'none':
R2 = params["R2"]
n2 = params["n2"]
Q2 = params["Q2"]
Phi = R2 / (1 + R2 * Q2 * (w * 1j) ** n2)
X1 = Ri
Lam = (Phi / X1) ** (1 / 2)
x = L / Lam
x_mp = mp.matrix(x) # x in mp.math format
coth_mp = []
for i in range(len(Lam)):
coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
) # Handles coth with x having very large or very small numbers
Z_TLs = Lam * X1 * coth_mp
return Rs + Z_RQ + Z_TLs
def cir_RsTLQ_fit(params, w):
"""
Fit Function: -R-TLQ- (interface non-reacting, i.e. blocking electrode)
Transmission line w/ full complexity, which both includes Ri and Rel
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Rel = params["Rel"]
Q = params["Q"]
n = params["n"]
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = elem_Q(w, Q=Q, n=n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTLQ_fit(params, w):
"""
Fit Function: -R-RQ-TLQ- (interface non-reacting, i.e. blocking electrode)
Transmission line w/ full complexity, which both includes Ri and Rel
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Rel = params["Rel"]
Q = params["Q"]
n = params["n"]
# The impedance of the series resistance
Z_Rs = Rs
# The (RQ) circuit in series with the transmission line
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
if str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
if str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
# The Interfacial impedance is given by an -(RQ)- circuit
Phi = elem_Q(w, Q=Q, n=n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
def cir_RsTL_Fit(params, w):
"""
Fit Function: -R-TLQ- (interface reacting, i.e. non-blocking)
Transmission line w/ full complexity, which both includes Ri and Rel
See cir_RsTL() for details
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Rel = params["Rel"]
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
if str(params.keys())[10:].find("R") == -1: # if R == 'none':
Q = params["Q"]
n = params["n"]
fs = params["fs"]
R = 1 / (Q * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("Q") == -1: # elif Q == 'none':
R = params["R"]
n = params["n"]
fs = params["fs"]
Q = 1 / (R * (2 * np.pi * fs) ** n)
if str(params.keys())[10:].find("n") == -1: # elif n == 'none':
R = params["R"]
Q = params["Q"]
fs = params["fs"]
n = np.log(Q * R) / np.log(1 / (2 * np.pi * fs))
if str(params.keys())[10:].find("fs") == -1: # elif fs == 'none':
R = params["R"]
n = params["n"]
Q = params["Q"]
Phi = R / (1 + R * Q * (w * 1j) ** n)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float(mp.coth(x_mp[i]).imag)*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float(mp.sinh(x_mp[i]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTL_fit(params, w):
"""
Fit Function: -R-RQ-TL- (interface reacting, i.e. non-blocking)
Transmission line w/ full complexity including both includes Ri and Rel
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
Rel = params["Rel"]
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
elif str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
elif str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
elif str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
#
# # The Interfacial impedance is given by an -(RQ)- circuit
if str(params.keys())[10:].find("R2") == -1: # if R == 'none':
Q2 = params["Q2"]
n2 = params["n2"]
fs2 = params["fs2"]
R2 = 1 / (Q2 * (2 * np.pi * fs2) ** n2)
elif str(params.keys())[10:].find("Q2") == -1: # elif Q == 'none':
R2 = params["R2"]
n2 = params["n2"]
fs2 = params["fs2"]
Q2 = 1 / (R2 * (2 * np.pi * fs2) ** n1)
elif str(params.keys())[10:].find("n2") == -1: # elif n == 'none':
R2 = params["R2"]
Q2 = params["Q2"]
fs2 = params["fs2"]
n2 = np.log(Q2 * R2) / np.log(1 / (2 * np.pi * fs2))
elif str(params.keys())[10:].find("fs2") == -1: # elif fs == 'none':
R2 = params["R2"]
n2 = params["n2"]
Q2 = params["Q2"]
Phi = R2 / (1 + R2 * Q2 * (w * 1j) ** n2)
X1 = Ri
X2 = Rel
Lam = (Phi / (X1 + X2)) ** (1 / 2)
x = L / Lam
# x_mp = mp.matrix(x) #x in mp.math format
# coth_mp = []
# sinh_mp = []
# for i in range(len(Lam)):
# coth_mp.append(float(mp.coth(x_mp[i]).real)+float((mp.coth(x_mp[i]).imag))*1j) #Handles coth with x having very large or very small numbers
# sinh_mp.append(float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real) + float(((1-mp.exp(-2*x_mp[i]))/(2*mp.exp(-x_mp[i]))).real)*1j)
# sinh_mp.append(float(mp.sinh(x_mp[i]).real)+float((mp.sinh(x_mp[i]).imag))*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*Lam)/np.array(sinh_mp))) + Lam * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * Lam) / sinh(x))) + Lam * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
def cir_RsTL_1Dsolid_fit(params, w):
"""
Fit Function: -R-TL(Q(RW))-
Transmission line w/ full complexity
See cir_RsTL_1Dsolid() for details
<NAME> (<EMAIL>)
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
radius = params["radius"]
D = params["D"]
R = params["R"]
Q = params["Q"]
n = params["n"]
R_w = params["R_w"]
n_w = params["n_w"]
Rel = params["Rel"]
Ri = params["Ri"]
# The impedance of the series resistance
Z_Rs = Rs
# The impedance of a 1D Warburg Element
time_const = (radius ** 2) / D
x = (time_const * w * 1j) ** n_w
x_mp = mp.matrix(x)
warburg_coth_mp = []
for i in range(len(w)):
warburg_coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
)
Z_w = R_w * np.array(warburg_coth_mp) / x
# The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2
Z_Rct = R
Z_Q = elem_Q(w=w, Q=Q, n=n)
Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm
# The Impedance of the Transmission Line
lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2)
x = L / lamb
# lamb_mp = mp.matrix(x)
# sinh_mp = []
# coth_mp = []
# for j in range(len(lamb_mp)):
# sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j)
# coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j)
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_TL
def cir_RsRQTL_1Dsolid_fit(params, w):
"""
Fit Function: -R-RQ-TL(Q(RW))-
Transmission line w/ full complexity, which both includes Ri and Rel. The Warburg element is specific for 1D solid-state diffusion
See cir_RsRQTL_1Dsolid() for details
<NAME> (<EMAIL>)
<NAME> (<EMAIL> || <EMAIL>)
"""
Rs = params["Rs"]
L = params["L"]
Ri = params["Ri"]
radius = params["radius"]
D = params["D"]
R2 = params["R2"]
Q2 = params["Q2"]
n2 = params["n2"]
R_w = params["R_w"]
n_w = params["n_w"]
Rel = params["Rel"]
Ri = params["Ri"]
# The impedance of the series resistance
Z_Rs = Rs
# The Interfacial impedance is given by an -(RQ)- circuit
if str(params.keys())[10:].find("R1") == -1: # if R == 'none':
Q1 = params["Q1"]
n1 = params["n1"]
fs1 = params["fs1"]
R1 = 1 / (Q1 * (2 * np.pi * fs1) ** n1)
elif str(params.keys())[10:].find("Q1") == -1: # elif Q == 'none':
R1 = params["R1"]
n1 = params["n1"]
fs1 = params["fs1"]
Q1 = 1 / (R1 * (2 * np.pi * fs1) ** n1)
elif str(params.keys())[10:].find("n1") == -1: # elif n == 'none':
R1 = params["R1"]
Q1 = params["Q1"]
fs1 = params["fs1"]
n1 = np.log(Q1 * R1) / np.log(1 / (2 * np.pi * fs1))
elif str(params.keys())[10:].find("fs1") == -1: # elif fs == 'none':
R1 = params["R1"]
n1 = params["n1"]
Q1 = params["Q1"]
Z_RQ1 = R1 / (1 + R1 * Q1 * (w * 1j) ** n1)
# The impedance of a 1D Warburg Element
time_const = (radius ** 2) / D
x = (time_const * w * 1j) ** n_w
x_mp = mp.matrix(x)
warburg_coth_mp = []
for i in range(len(w)):
warburg_coth_mp.append(
float(mp.coth(x_mp[i]).real) + float(mp.coth(x_mp[i]).imag) * 1j
)
Z_w = R_w * np.array(warburg_coth_mp) / x
# The Interfacial impedance is given by a Randles Equivalent circuit with the finite space warburg element in series with R2
Z_Rct = R2
Z_Q = elem_Q(w, Q=Q2, n=n2)
Z_Randles = 1 / (1 / Z_Q + 1 / (Z_Rct + Z_w)) # Ohm
# The Impedance of the Transmission Line
lamb = (Z_Randles / (Rel + Ri)) ** (1 / 2)
x = L / lamb
# lamb_mp = mp.matrix(x)
# sinh_mp = []
# coth_mp = []
# for j in range(len(lamb_mp)):
# sinh_mp.append(float(mp.sinh(lamb_mp[j]).real)+float((mp.sinh(lamb_mp[j]).imag))*1j)
# coth_mp.append(float(mp.coth(lamb_mp[j]).real)+float(mp.coth(lamb_mp[j]).imag)*1j)
#
# Z_TL = ((Rel*Ri)/(Rel+Ri)) * (L+((2*lamb)/np.array(sinh_mp))) + lamb * ((Rel**2 + Ri**2)/(Rel+Ri)) * np.array(coth_mp)
Z_TL = ((Rel * Ri) / (Rel + Ri)) * (L + ((2 * lamb) / sinh(x))) + lamb * (
(Rel ** 2 + Ri ** 2) / (Rel + Ri)
) * coth(x)
return Z_Rs + Z_RQ1 + Z_TL
### Least-Squares error function
def leastsq_errorfunc(params, w, re, im, circuit, weight_func):
"""
Sum of squares error function for the complex non-linear least-squares fitting procedure (CNLS). The fitting function (lmfit) will use this function to iterate over
until the total sum of errors is minimized.
During the minimization the fit is weighed, and currently three different weigh options are avaliable:
- modulus
- unity
- proportional
Modulus is generially recommended as random errors and a bias can exist in the experimental data.
<NAME> (<EMAIL> || <EMAIL>)
Inputs
------------
- params: parameters needed for CNLS
- re: real impedance
- im: Imaginary impedance
- circuit:
The avaliable circuits are shown below, and this this parameter needs it as a string.
- C
- Q
- R-C
- R-Q
- RC
- RQ
- R-RQ
- R-RQ-RQ
- R-RQ-Q
- R-(Q(RW))
- R-(Q(RM))
- R-RC-C
- R-RC-Q
- R-RQ-Q
- R-RQ-C
- RC-RC-ZD
- R-TLsQ
- R-RQ-TLsQ
- R-TLs
- R-RQ-TLs
- R-TLQ
- R-RQ-TLQ
- R-TL
- R-RQ-TL
- R-TL1Dsolid (reactive interface with 1D solid-state diffusion)
- R-RQ-TL1Dsolid
- weight_func
Weight function
- modulus
- unity
- proportional
"""
if circuit == "C":
re_fit = elem_C_fit(params, w).real
im_fit = -elem_C_fit(params, w).imag
elif circuit == "Q":
re_fit = elem_Q_fit(params, w).real
im_fit = -elem_Q_fit(params, w).imag
elif circuit == "R-C":
re_fit = cir_RsC_fit(params, w).real
im_fit = -cir_RsC_fit(params, w).imag
elif circuit == "R-Q":
re_fit = cir_RsQ_fit(params, w).real
im_fit = -cir_RsQ_fit(params, w).imag
elif circuit == "RC":
re_fit = cir_RC_fit(params, w).real
im_fit = -cir_RC_fit(params, w).imag
elif circuit == "RQ":
re_fit = cir_RQ_fit(params, w).real
im_fit = -cir_RQ_fit(params, w).imag
elif circuit == "R-RQ":
re_fit = cir_RsRQ_fit(params, w).real
im_fit = -cir_RsRQ_fit(params, w).imag
elif circuit == "R-RQ-RQ":
re_fit = cir_RsRQRQ_fit(params, w).real
im_fit = -cir_RsRQRQ_fit(params, w).imag
elif circuit == "R-RC-C":
re_fit = cir_RsRCC_fit(params, w).real
im_fit = -cir_RsRCC_fit(params, w).imag
elif circuit == "R-RC-Q":
re_fit = cir_RsRCQ_fit(params, w).real
im_fit = -cir_RsRCQ_fit(params, w).imag
elif circuit == "R-RQ-Q":
re_fit = cir_RsRQQ_fit(params, w).real
im_fit = -cir_RsRQQ_fit(params, w).imag
elif circuit == "R-RQ-C":
re_fit = cir_RsRQC_fit(params, w).real
im_fit = -cir_RsRQC_fit(params, w).imag
elif circuit == "R-(Q(RW))":
re_fit = cir_Randles_simplified_Fit(params, w).real
im_fit = -cir_Randles_simplified_Fit(params, w).imag
elif circuit == "R-(Q(RM))":
re_fit = cir_Randles_uelectrode_fit(params, w).real
im_fit = -cir_Randles_uelectrode_fit(params, w).imag
elif circuit == "C-RC-C":
re_fit = cir_C_RC_C_fit(params, w).real
im_fit = -cir_C_RC_C_fit(params, w).imag
elif circuit == "Q-RQ-Q":
re_fit = cir_Q_RQ_Q_Fit(params, w).real
im_fit = -cir_Q_RQ_Q_Fit(params, w).imag
elif circuit == "RC-RC-ZD":
re_fit = cir_RCRCZD_fit(params, w).real
im_fit = -cir_RCRCZD_fit(params, w).imag
elif circuit == "R-TLsQ":
re_fit = cir_RsTLsQ_fit(params, w).real
im_fit = -cir_RsTLsQ_fit(params, w).imag
elif circuit == "R-RQ-TLsQ":
re_fit = cir_RsRQTLsQ_Fit(params, w).real
im_fit = -cir_RsRQTLsQ_Fit(params, w).imag
elif circuit == "R-TLs":
re_fit = cir_RsTLs_Fit(params, w).real
im_fit = -cir_RsTLs_Fit(params, w).imag
elif circuit == "R-RQ-TLs":
re_fit = cir_RsRQTLs_Fit(params, w).real
im_fit = -cir_RsRQTLs_Fit(params, w).imag
elif circuit == "R-TLQ":
re_fit = cir_RsTLQ_fit(params, w).real
im_fit = -cir_RsTLQ_fit(params, w).imag
elif circuit == "R-RQ-TLQ":
re_fit = cir_RsRQTLQ_fit(params, w).real
im_fit = -cir_RsRQTLQ_fit(params, w).imag
elif circuit == "R-TL":
re_fit = cir_RsTL_Fit(params, w).real
im_fit = -cir_RsTL_Fit(params, w).imag
elif circuit == "R-RQ-TL":
re_fit = cir_RsRQTL_fit(params, w).real
im_fit = -cir_RsRQTL_fit(params, w).imag
elif circuit == "R-TL1Dsolid":
re_fit = cir_RsTL_1Dsolid_fit(params, w).real
im_fit = -cir_RsTL_1Dsolid_fit(params, w).imag
elif circuit == "R-RQ-TL1Dsolid":
re_fit = cir_RsRQTL_1Dsolid_fit(params, w).real
im_fit = -cir_RsRQTL_1Dsolid_fit(params, w).imag
else:
print("Circuit is not defined in leastsq_errorfunc()")
error = [(re - re_fit) ** 2, (im - im_fit) ** 2] # sum of squares
# Different Weighing options, see Lasia
if weight_func == "modulus":
weight = [
1 / ((re_fit ** 2 + im_fit ** 2) ** (1 / 2)),
1 / ((re_fit ** 2 + im_fit ** 2) ** (1 / 2)),
]
elif weight_func == "proportional":
weight = [1 / (re_fit ** 2), 1 / (im_fit ** 2)]
elif weight_func == "unity":
unity_1s = []
for k in range(len(re)):
unity_1s.append(
1
) # makes an array of [1]'s, so that the weighing is == 1 * sum of squres.
weight = [unity_1s, unity_1s]
else:
print("weight not defined in leastsq_errorfunc()")
S = np.array(weight) * error # weighted sum of squares
return S
### Fitting Class
class EIS_exp:
"""
This class is used to plot and/or analyze experimental impedance data. The class has three major functions:
- EIS_plot()
- Lin_KK()
- EIS_fit()
- EIS_plot() is used to plot experimental data with or without fit
- Lin_KK() performs a linear Kramers-Kronig analysis of the experimental data set.
- EIS_fit() performs complex non-linear least-squares fitting of the experimental data to an equivalent circuit
<NAME> (<EMAIL> || <EMAIL>)
Inputs
-----------
- path: path of datafile(s) as a string
- data: datafile(s) including extension, e.g. ['EIS_data1', 'EIS_data2']
- cycle: Specific cycle numbers can be extracted using the cycle function. Default is 'none', which includes all cycle numbers.
Specific cycles can be extracted using this parameter, insert cycle numbers in brackets, e.g. cycle number 1,4, and 6 are wanted. cycle=[1,4,6]
- mask: ['high frequency' , 'low frequency'], if only a high- or low-frequency is desired use 'none' for the other, e.g. maks=[10**4,'none']
"""
def __init__(self, path, data, cycle="off", mask=["none", "none"]):
self.df_raw0 = []
self.cycleno = []
for j, f in enumerate(data, start=0):
if f.endswith("mpt"): # file is a .mpt file
self.df_raw0.append(
extract_mpt(path=path, EIS_name=f)
) # reads all datafiles
elif f.endswith("DTA"): # file is a .dta file
self.df_raw0.append(
extract_dta(path=path, EIS_name=f)
) # reads all datafiles
elif f.endswith("z"): # file is a .z file
self.df_raw0.append(
extract_solar(path=path, EIS_name=f)
) # reads all datafiles
elif f.endswith("txt"):
self.df_raw0.append(extract_csv(path=path, EIS_name=f))
else:
print("Data file(s) could not be identified")
self.cycleno.append(self.df_raw0[j].cycle_number)
if np.min(self.cycleno[j]) <= np.max(self.cycleno[j - 1]):
if j > 0: # corrects cycle_number except for the first data file
self.df_raw0[j].update(
{"cycle_number": self.cycleno[j] + np.max(self.cycleno[j - 1])}
) # corrects cycle number
# currently need to append a cycle_number coloumn to gamry files
# adds individual dataframes into one
if len(self.df_raw0) == 1:
self.df_raw = self.df_raw0[0]
elif len(self.df_raw0) == 2:
self.df_raw = pd.concat([self.df_raw0[0], self.df_raw0[1]], axis=0)
elif len(self.df_raw0) == 3:
self.df_raw = pd.concat(
[self.df_raw0[0], self.df_raw0[1], self.df_raw0[2]], axis=0
)
elif len(self.df_raw0) == 4:
self.df_raw = pd.concat(
[self.df_raw0[0], self.df_raw0[1], self.df_raw0[2], self.df_raw0[3]],
axis=0,
)
elif len(self.df_raw0) == 5:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
],
axis=0,
)
elif len(self.df_raw0) == 6:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
],
axis=0,
)
elif len(self.df_raw0) == 7:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
],
axis=0,
)
elif len(self.df_raw0) == 8:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
],
axis=0,
)
elif len(self.df_raw0) == 9:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
],
axis=0,
)
elif len(self.df_raw0) == 10:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
],
axis=0,
)
elif len(self.df_raw0) == 11:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
],
axis=0,
)
elif len(self.df_raw0) == 12:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
self.df_raw0[11],
],
axis=0,
)
elif len(self.df_raw0) == 13:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
self.df_raw0[11],
self.df_raw0[12],
],
axis=0,
)
elif len(self.df_raw0) == 14:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
self.df_raw0[11],
],
self.df_raw0[12],
self.df_raw0[13],
axis=0,
)
elif len(self.df_raw0) == 15:
self.df_raw = pd.concat(
[
self.df_raw0[0],
self.df_raw0[1],
self.df_raw0[2],
self.df_raw0[3],
self.df_raw0[4],
self.df_raw0[5],
self.df_raw0[6],
self.df_raw0[7],
self.df_raw0[8],
self.df_raw0[9],
self.df_raw0[10],
self.df_raw0[11],
],
self.df_raw0[12],
self.df_raw0[13],
self.df_raw0[14],
axis=0,
)
else:
print("Too many data files || 15 allowed")
self.df_raw = self.df_raw.assign(
w=2 * np.pi * self.df_raw.f
) # creats a new coloumn with the angular frequency
# Masking data to each cycle
self.df_pre = []
self.df_limited = []
self.df_limited2 = []
self.df = []
if mask == ["none", "none"] and cycle == "off":
for i in range(len(self.df_raw.cycle_number.unique())): # includes all data
self.df.append(
self.df_raw[
self.df_raw.cycle_number == self.df_raw.cycle_number.unique()[i]
]
)
elif mask == ["none", "none"] and cycle != "off":
for i in range(len(cycle)):
self.df.append(
self.df_raw[self.df_raw.cycle_number == cycle[i]]
) # extracting dataframe for each cycle
elif mask[0] != "none" and mask[1] == "none" and cycle == "off":
self.df_pre = self.df_raw.mask(self.df_raw.f > mask[0])
self.df_pre.dropna(how="all", inplace=True)
for i in range(
len(self.df_pre.cycle_number.unique())
): # Appending data based on cycle number
self.df.append(
self.df_pre[
self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]
]
)
elif (
mask[0] != "none" and mask[1] == "none" and cycle != "off"
): # or [i for i, e in enumerate(mask) if e == 'none'] == [0]
self.df_limited = self.df_raw.mask(self.df_raw.f > mask[0])
for i in range(len(cycle)):
self.df.append(
self.df_limited[self.df_limited.cycle_number == cycle[i]]
)
elif mask[0] == "none" and mask[1] != "none" and cycle == "off":
self.df_pre = self.df_raw.mask(self.df_raw.f < mask[1])
self.df_pre.dropna(how="all", inplace=True)
for i in range(len(self.df_raw.cycle_number.unique())): # includes all data
self.df.append(
self.df_pre[
self.df_pre.cycle_number == self.df_pre.cycle_number.unique()[i]
]
)
elif mask[0] == "none" and mask[1] != "none" and cycle != "off":
self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1])
for i in range(len(cycle)):
self.df.append(
self.df_limited[self.df_limited.cycle_number == cycle[i]]
)
elif mask[0] != "none" and mask[1] != "none" and cycle != "off":
self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1])
self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0])
for i in range(len(cycle)):
self.df.append(
self.df_limited[self.df_limited2.cycle_number == cycle[i]]
)
elif mask[0] != "none" and mask[1] != "none" and cycle == "off":
self.df_limited = self.df_raw.mask(self.df_raw.f < mask[1])
self.df_limited2 = self.df_limited.mask(self.df_raw.f > mask[0])
for i in range(len(self.df_raw.cycle_number.unique())):
self.df.append(
self.df_limited[
self.df_limited2.cycle_number
== self.df_raw.cycle_number.unique()[i]
]
)
else:
print("__init__ error (#2)")
def Lin_KK(
self,
num_RC="auto",
legend="on",
plot="residuals",
bode="off",
nyq_xlim="none",
nyq_ylim="none",
weight_func="Boukamp",
savefig="none",
):
"""
Plots the Linear Kramers-Kronig (KK) Validity Test
The script is based on Boukamp and Schōnleber et al.'s papers for fitting the resistances of multiple -(RC)- circuits
to the data. A data quality analysis can hereby be made on the basis of the relative residuals
Ref.:
- Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27
- Boukamp, B.A. J. Electrochem. Soc., 142, 6, 1885-1894
The function performs the KK analysis and as default the relative residuals in each subplot
Note, that weigh_func should be equal to 'Boukamp'.
<NAME> (<EMAIL> || <EMAIL>)
Optional Inputs
-----------------
- num_RC:
- 'auto' applies an automatic algorithm developed by Schōnleber, M. et al. Electrochimica Acta 131 (2014) 20-27
that ensures no under- or over-fitting occurs
- can be hardwired by inserting any number (RC-elements/decade)
- plot:
- 'residuals' = plots the relative residuals in subplots correspoding to the cycle numbers picked
- 'w_data' = plots the relative residuals with the experimental data, in Nyquist and bode plot if desired, see 'bode =' in description
- nyq_xlim/nyq_xlim: Change the x/y-axis limits on nyquist plot, if not equal to 'none' state [min,max] value
- legend:
- 'on' = displays cycle number
- 'potential' = displays average potential which the spectra was measured at
- 'off' = off
bode = Plots Bode Plot - options:
'on' = re, im vs. log(freq)
'log' = log(re, im) vs. log(freq)
're' = re vs. log(freq)
'log_re' = log(re) vs. log(freq)
'im' = im vs. log(freq)
'log_im' = log(im) vs. log(freq)
"""
if num_RC == "auto":
print("cycle || No. RC-elements || u")
self.decade = []
self.Rparam = []
self.t_const = []
self.Lin_KK_Fit = []
self.R_names = []
self.KK_R0 = []
self.KK_R = []
self.number_RC = []
self.number_RC_sort = []
self.KK_u = []
self.KK_Rgreater = []
self.KK_Rminor = []
M = 2
for i in range(len(self.df)):
self.decade.append(
np.log10(np.max(self.df[i].f)) - np.log10(np.min(self.df[i].f))
) # determine the number of RC circuits based on the number of decades measured and num_RC
self.number_RC.append(M)
self.number_RC_sort.append(M) # needed for self.KK_R
self.Rparam.append(
KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC[i]),
)[0]
) # Creates intial guesses for R's
self.t_const.append(
KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC[i]))
) # Creates time constants values for self.number_RC -(RC)- circuits
self.Lin_KK_Fit.append(
minimize(
KK_errorfunc,
self.Rparam[i],
method="leastsq",
args=(
self.df[i].w.values,
self.df[i].re.values,
self.df[i].im.values,
self.number_RC[i],
weight_func,
self.t_const[i],
),
)
) # maxfev=99
self.R_names.append(
KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC[i]),
)[1]
) # creates R names
for j in range(len(self.R_names[i])):
self.KK_R0.append(
self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value
)
self.number_RC_sort.insert(0, 0) # needed for self.KK_R
for i in range(len(self.df)):
self.KK_R.append(
self.KK_R0[
int(np.cumsum(self.number_RC_sort)[i]) : int(
np.cumsum(self.number_RC_sort)[i + 1]
)
]
) # assigns resistances from each spectra to their respective df
self.KK_Rgreater.append(
np.where(np.array(self.KK_R)[i] >= 0, np.array(self.KK_R)[i], 0)
)
self.KK_Rminor.append(
np.where(np.array(self.KK_R)[i] < 0, np.array(self.KK_R)[i], 0)
)
self.KK_u.append(
1
- (
np.abs(np.sum(self.KK_Rminor[i]))
/ np.abs(np.sum(self.KK_Rgreater[i]))
)
)
for i in range(len(self.df)):
while self.KK_u[i] <= 0.75 or self.KK_u[i] >= 0.88:
self.number_RC_sort0 = []
self.KK_R_lim = []
self.number_RC[i] = self.number_RC[i] + 1
self.number_RC_sort0.append(self.number_RC)
self.number_RC_sort = np.insert(self.number_RC_sort0, 0, 0)
self.Rparam[i] = KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC[i]),
)[
0
] # Creates intial guesses for R's
self.t_const[i] = KK_timeconst(
w=self.df[i].w, num_RC=int(self.number_RC[i])
) # Creates time constants values for self.number_RC -(RC)- circuits
self.Lin_KK_Fit[i] = minimize(
KK_errorfunc,
self.Rparam[i],
method="leastsq",
args=(
self.df[i].w.values,
self.df[i].re.values,
self.df[i].im.values,
self.number_RC[i],
weight_func,
self.t_const[i],
),
) # maxfev=99
self.R_names[i] = KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC[i]),
)[
1
] # creates R names
self.KK_R0 = np.delete(
np.array(self.KK_R0), np.s_[0 : len(self.KK_R0)]
)
self.KK_R0 = []
for q in range(len(self.df)):
for j in range(len(self.R_names[q])):
self.KK_R0.append(
self.Lin_KK_Fit[q].params.get(self.R_names[q][j]).value
)
self.KK_R_lim = np.cumsum(self.number_RC_sort) # used for KK_R[i]
self.KK_R[i] = self.KK_R0[
self.KK_R_lim[i] : self.KK_R_lim[i + 1]
] # assigns resistances from each spectra to their respective df
self.KK_Rgreater[i] = np.where(
np.array(self.KK_R[i]) >= 0, np.array(self.KK_R[i]), 0
)
self.KK_Rminor[i] = np.where(
np.array(self.KK_R[i]) < 0, np.array(self.KK_R[i]), 0
)
self.KK_u[i] = 1 - (
np.abs(np.sum(self.KK_Rminor[i]))
/ np.abs(np.sum(self.KK_Rgreater[i]))
)
else:
print(
"["
+ str(i + 1)
+ "]"
+ " "
+ str(self.number_RC[i]),
" " + str(np.round(self.KK_u[i], 2)),
)
elif num_RC != "auto": # hardwired number of RC-elements/decade
print("cycle || u")
self.decade = []
self.number_RC0 = []
self.number_RC = []
self.Rparam = []
self.t_const = []
self.Lin_KK_Fit = []
self.R_names = []
self.KK_R0 = []
self.KK_R = []
for i in range(len(self.df)):
self.decade.append(
np.log10(np.max(self.df[i].f)) - np.log10(np.min(self.df[i].f))
) # determine the number of RC circuits based on the number of decades measured and num_RC
self.number_RC0.append(np.round(num_RC * self.decade[i]))
self.number_RC.append(
np.round(num_RC * self.decade[i])
) # Creats the the number of -(RC)- circuits
self.Rparam.append(
KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC0[i]),
)[0]
) # Creates intial guesses for R's
self.t_const.append(
KK_timeconst(w=self.df[i].w, num_RC=int(self.number_RC0[i]))
) # Creates time constants values for self.number_RC -(RC)- circuits
self.Lin_KK_Fit.append(
minimize(
KK_errorfunc,
self.Rparam[i],
method="leastsq",
args=(
self.df[i].w.values,
self.df[i].re.values,
self.df[i].im.values,
self.number_RC0[i],
weight_func,
self.t_const[i],
),
)
) # maxfev=99
self.R_names.append(
KK_Rnam_val(
re=self.df[i].re,
re_start=self.df[i].re.idxmin(),
num_RC=int(self.number_RC0[i]),
)[1]
) # creates R names
for j in range(len(self.R_names[i])):
self.KK_R0.append(
self.Lin_KK_Fit[i].params.get(self.R_names[i][j]).value
)
self.number_RC0.insert(0, 0)
# print(report_fit(self.Lin_KK_Fit[i])) # prints fitting report
self.KK_circuit_fit = []
self.KK_rr_re = []
self.KK_rr_im = []
self.KK_Rgreater = []
self.KK_Rminor = []
self.KK_u = []
for i in range(len(self.df)):
self.KK_R.append(
self.KK_R0[
int(np.cumsum(self.number_RC0)[i]) : int(
np.cumsum(self.number_RC0)[i + 1]
)
]
) # assigns resistances from each spectra to their respective df
self.KK_Rx = np.array(self.KK_R)
self.KK_Rgreater.append(np.where(self.KK_Rx[i] >= 0, self.KK_Rx[i], 0))
self.KK_Rminor.append(np.where(self.KK_Rx[i] < 0, self.KK_Rx[i], 0))
self.KK_u.append(
1
- (
np.abs(np.sum(self.KK_Rminor[i]))
/ np.abs(np.sum(self.KK_Rgreater[i]))
)
) # currently gives incorrect values
print(
"[" + str(i + 1) + "]" + " " + str(np.round(self.KK_u[i], 2))
)
else:
print("num_RC incorrectly defined")
self.KK_circuit_fit = []
self.KK_rr_re = []
self.KK_rr_im = []
for i in range(len(self.df)):
if int(self.number_RC[i]) == 2:
self.KK_circuit_fit.append(
KK_RC2(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 3:
self.KK_circuit_fit.append(
KK_RC3(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 4:
self.KK_circuit_fit.append(
KK_RC4(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 5:
self.KK_circuit_fit.append(
KK_RC5(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 6:
self.KK_circuit_fit.append(
KK_RC6(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 7:
self.KK_circuit_fit.append(
KK_RC7(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 8:
self.KK_circuit_fit.append(
KK_RC8(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 9:
self.KK_circuit_fit.append(
KK_RC9(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 10:
self.KK_circuit_fit.append(
KK_RC10(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 11:
self.KK_circuit_fit.append(
KK_RC11(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 12:
self.KK_circuit_fit.append(
KK_RC12(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 13:
self.KK_circuit_fit.append(
KK_RC13(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 14:
self.KK_circuit_fit.append(
KK_RC14(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 15:
self.KK_circuit_fit.append(
KK_RC15(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 16:
self.KK_circuit_fit.append(
KK_RC16(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 17:
self.KK_circuit_fit.append(
KK_RC17(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 18:
self.KK_circuit_fit.append(
KK_RC18(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 19:
self.KK_circuit_fit.append(
KK_RC19(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 20:
self.KK_circuit_fit.append(
KK_RC20(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 21:
self.KK_circuit_fit.append(
KK_RC21(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 22:
self.KK_circuit_fit.append(
KK_RC22(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 23:
self.KK_circuit_fit.append(
KK_RC23(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 24:
self.KK_circuit_fit.append(
KK_RC24(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 25:
self.KK_circuit_fit.append(
KK_RC25(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 26:
self.KK_circuit_fit.append(
KK_RC26(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 27:
self.KK_circuit_fit.append(
KK_RC27(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 28:
self.KK_circuit_fit.append(
KK_RC28(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 29:
self.KK_circuit_fit.append(
KK_RC29(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 30:
self.KK_circuit_fit.append(
KK_RC30(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 31:
self.KK_circuit_fit.append(
KK_RC31(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 32:
self.KK_circuit_fit.append(
KK_RC32(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 33:
self.KK_circuit_fit.append(
KK_RC33(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 34:
self.KK_circuit_fit.append(
KK_RC34(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 35:
self.KK_circuit_fit.append(
KK_RC35(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 36:
self.KK_circuit_fit.append(
KK_RC36(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 37:
self.KK_circuit_fit.append(
KK_RC37(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 38:
self.KK_circuit_fit.append(
KK_RC38(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 39:
self.KK_circuit_fit.append(
KK_RC39(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 40:
self.KK_circuit_fit.append(
KK_RC40(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 41:
self.KK_circuit_fit.append(
KK_RC41(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 42:
self.KK_circuit_fit.append(
KK_RC42(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 43:
self.KK_circuit_fit.append(
KK_RC43(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 44:
self.KK_circuit_fit.append(
KK_RC44(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 45:
self.KK_circuit_fit.append(
KK_RC45(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 46:
self.KK_circuit_fit.append(
KK_RC46(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 47:
self.KK_circuit_fit.append(
KK_RC47(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 48:
self.KK_circuit_fit.append(
KK_RC48(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 49:
self.KK_circuit_fit.append(
KK_RC49(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 50:
self.KK_circuit_fit.append(
KK_RC50(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 51:
self.KK_circuit_fit.append(
KK_RC51(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 52:
self.KK_circuit_fit.append(
KK_RC52(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 53:
self.KK_circuit_fit.append(
KK_RC53(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 54:
self.KK_circuit_fit.append(
KK_RC54(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 55:
self.KK_circuit_fit.append(
KK_RC55(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 56:
self.KK_circuit_fit.append(
KK_RC56(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 57:
self.KK_circuit_fit.append(
KK_RC57(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 58:
self.KK_circuit_fit.append(
KK_RC58(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 59:
self.KK_circuit_fit.append(
KK_RC59(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 60:
self.KK_circuit_fit.append(
KK_RC60(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 61:
self.KK_circuit_fit.append(
KK_RC61(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 62:
self.KK_circuit_fit.append(
KK_RC62(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 63:
self.KK_circuit_fit.append(
KK_RC63(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 64:
self.KK_circuit_fit.append(
KK_RC64(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 65:
self.KK_circuit_fit.append(
KK_RC65(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 66:
self.KK_circuit_fit.append(
KK_RC66(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 67:
self.KK_circuit_fit.append(
KK_RC67(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 68:
self.KK_circuit_fit.append(
KK_RC68(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 69:
self.KK_circuit_fit.append(
KK_RC69(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 70:
self.KK_circuit_fit.append(
KK_RC70(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 71:
self.KK_circuit_fit.append(
KK_RC71(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 72:
self.KK_circuit_fit.append(
KK_RC72(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 73:
self.KK_circuit_fit.append(
KK_RC73(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 74:
self.KK_circuit_fit.append(
KK_RC74(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 75:
self.KK_circuit_fit.append(
KK_RC75(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 76:
self.KK_circuit_fit.append(
KK_RC76(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 77:
self.KK_circuit_fit.append(
KK_RC77(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 78:
self.KK_circuit_fit.append(
KK_RC78(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 79:
self.KK_circuit_fit.append(
KK_RC79(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
elif int(self.number_RC[i]) == 80:
self.KK_circuit_fit.append(
KK_RC80(
w=self.df[i].w,
Rs=self.Lin_KK_Fit[i].params.get("Rs").value,
R_values=self.KK_R[i],
t_values=self.t_const[i],
)
)
else:
print("RC simulation circuit not defined")
print(" Number of RC = ", self.number_RC)
self.KK_rr_re.append(
residual_real(
re=self.df[i].re,
fit_re=self.KK_circuit_fit[i].real,
fit_im=-self.KK_circuit_fit[i].imag,
)
) # relative residuals for the real part
self.KK_rr_im.append(
residual_imag(
im=self.df[i].im,
fit_re=self.KK_circuit_fit[i].real,
fit_im=-self.KK_circuit_fit[i].imag,
)
) # relative residuals for the imag part
### Plotting Linear_kk results
##
#
### Label functions
self.label_re_1 = []
self.label_im_1 = []
self.label_cycleno = []
if legend == "on":
for i in range(len(self.df)):
self.label_re_1.append("Z' (#" + str(i + 1) + ")")
self.label_im_1.append("Z'' (#" + str(i + 1) + ")")
self.label_cycleno.append("#" + str(i + 1))
elif legend == "potential":
for i in range(len(self.df)):
self.label_re_1.append(
"Z' (" + str(np.round(np.average(self.df[i].E_avg), 2)) + " V)"
)
self.label_im_1.append(
"Z'' (" + str(np.round(np.average(self.df[i].E_avg), 2)) + " V)"
)
self.label_cycleno.append(
str(np.round(np.average(self.df[i].E_avg), 2)) + " V"
)
if plot == "w_data":
fig = figure(figsize=(6, 8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(left=0.1, right=0.95, hspace=0.5, bottom=0.1, top=0.95)
ax = fig.add_subplot(311, aspect="equal")
ax1 = fig.add_subplot(312)
ax2 = fig.add_subplot(313)
colors = sns.color_palette("colorblind", n_colors=len(self.df))
colors_real = sns.color_palette("Blues", n_colors=len(self.df) + 2)
colors_imag = sns.color_palette("Oranges", n_colors=len(self.df) + 2)
### Nyquist Plot
for i in range(len(self.df)):
ax.plot(
self.df[i].re,
self.df[i].im,
marker="o",
ms=4,
lw=2,
color=colors[i],
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
### Bode Plot
if bode == "on":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
self.df[i].re,
color=colors_real[i + 1],
marker="D",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_re_1[i],
)
ax1.plot(
np.log10(self.df[i].f),
self.df[i].im,
color=colors_imag[i + 1],
marker="s",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_im_1[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("Z', -Z'' [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "re":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
self.df[i].re,
color=colors_real[i + 1],
marker="D",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("Z' [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "log_re":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
np.log10(self.df[i].re),
color=colors_real[i + 1],
marker="D",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("log(Z') [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "im":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
self.df[i].im,
color=colors_imag[i + 1],
marker="s",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("-Z'' [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "log_im":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
np.log10(self.df[i].im),
color=colors_imag[i + 1],
marker="s",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_cycleno[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("log(-Z'') [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
elif bode == "log":
for i in range(len(self.df)):
ax1.plot(
np.log10(self.df[i].f),
np.log10(self.df[i].re),
color=colors_real[i + 1],
marker="D",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_re_1[i],
)
ax1.plot(
np.log10(self.df[i].f),
np.log10(self.df[i].im),
color=colors_imag[i + 1],
marker="s",
ms=3,
lw=2.25,
ls="-",
alpha=0.7,
label=self.label_im_1[i],
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("log(Z', -Z'') [$\Omega$]")
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
### Kramers-Kronig Relative Residuals
for i in range(len(self.df)):
ax2.plot(
np.log10(self.df[i].f),
self.KK_rr_re[i] * 100,
color=colors_real[i + 1],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label=self.label_re_1[i],
)
ax2.plot(
np.log10(self.df[i].f),
self.KK_rr_im[i] * 100,
color=colors_imag[i + 1],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label=self.label_im_1[i],
)
ax2.set_xlabel("log(f) [Hz]")
ax2.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]")
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and write 'KK-Test' on RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if np.min(self.KK_rr_im_min) > np.min(self.KK_rr_re_min):
ax2.set_ylim(
np.min(self.KK_rr_re_min) * 100 * 1.5,
np.max(np.abs(self.KK_rr_re_min)) * 100 * 1.5,
)
ax2.annotate(
"Lin-KK",
xy=[
np.min(np.log10(self.df[0].f)),
np.max(self.KK_rr_re_max) * 100 * 0.9,
],
color="k",
fontweight="bold",
)
elif np.min(self.KK_rr_im_min) < np.min(self.KK_rr_re_min):
ax2.set_ylim(
np.min(self.KK_rr_im_min) * 100 * 1.5,
np.max(self.KK_rr_im_max) * 100 * 1.5,
)
ax2.annotate(
"Lin-KK",
xy=[
np.min(np.log10(self.df[0].f)),
np.max(self.KK_rr_im_max) * 100 * 0.9,
],
color="k",
fontweight="bold",
)
### Figure specifics
if legend == "on" or legend == "potential":
ax.legend(loc="best", fontsize=10, frameon=False)
ax.set_xlabel("Z' [$\Omega$]")
ax.set_ylabel("-Z'' [$\Omega$]")
if nyq_xlim != "none":
ax.set_xlim(nyq_xlim[0], nyq_xlim[1])
if nyq_ylim != "none":
ax.set_ylim(nyq_ylim[0], nyq_ylim[1])
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### Illustrating residuals only
elif plot == "residuals":
colors = sns.color_palette("colorblind", n_colors=9)
colors_real = sns.color_palette("Blues", n_colors=9)
colors_imag = sns.color_palette("Oranges", n_colors=9)
### 1 Cycle
if len(self.df) == 1:
fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax = fig.add_subplot(231)
ax.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax.set_xlabel("log(f) [Hz]")
ax.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]")
if legend == "on" or legend == "potential":
ax.legend(loc="best", fontsize=10, frameon=False)
ax.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and write 'KK-Test' on RR subplot
self.KK_rr_im_min = np.min(self.KK_rr_im)
self.KK_rr_im_max = np.max(self.KK_rr_im)
self.KK_rr_re_min = np.min(self.KK_rr_re)
self.KK_rr_re_max = np.max(self.KK_rr_re)
if self.KK_rr_re_max > self.KK_rr_im_max:
self.KK_ymax = self.KK_rr_re_max
else:
self.KK_ymax = self.KK_rr_im_max
if self.KK_rr_re_min < self.KK_rr_im_min:
self.KK_ymin = self.KK_rr_re_min
else:
self.KK_ymin = self.KK_rr_im_min
if np.abs(self.KK_ymin) > self.KK_ymax:
ax.set_ylim(
self.KK_ymin * 100 * 1.5, np.abs(self.KK_ymin) * 100 * 1.5
)
if legend == "on":
ax.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin) < self.KK_ymax:
ax.set_ylim(
np.negative(self.KK_ymax) * 100 * 1.5,
np.abs(self.KK_ymax) * 100 * 1.5,
)
if legend == "on":
ax.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax * 100 * 1.3,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 2 Cycles
elif len(self.df) == 2:
fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax2.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 3 Cycles
elif len(self.df) == 3:
fig = figure(figsize=(12, 5), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
ax3 = fig.add_subplot(233)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_xlabel("log(f) [Hz]")
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax2.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax3.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]:
ax3.set_ylim(
self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]:
ax3.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[2]) * 100 * 1.5,
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymax[2]) * 100 * 1.3,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
self.KK_ymax[2] * 100 * 1.3,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 4 Cycles
elif len(self.df) == 4:
fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(221)
ax2 = fig.add_subplot(222)
ax3 = fig.add_subplot(223)
ax4 = fig.add_subplot(224)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax2.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax3.set_xlabel("log(f) [Hz]")
ax3.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 4
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_re[3] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_im[3] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax4.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax4.legend(loc="best", fontsize=10, frameon=False)
ax4.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]:
ax3.set_ylim(
self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]:
ax3.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[2]) * 100 * 1.5,
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymax[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
self.KK_ymax[2] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]:
ax4.set_ylim(
self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]:
ax4.set_ylim(
np.negative(self.KK_ymax[3]) * 100 * 1.5,
np.abs(self.KK_ymax[3]) * 100 * 1.5,
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymax[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
self.KK_ymax[3] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 5 Cycles
elif len(self.df) == 5:
fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
ax3 = fig.add_subplot(233)
ax4 = fig.add_subplot(234)
ax5 = fig.add_subplot(235)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax3.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 4
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_re[3] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_im[3] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=18)
ax4.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax4.legend(loc="best", fontsize=10, frameon=False)
ax4.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 5
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_re[4] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_im[4] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax5.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax5.legend(loc="best", fontsize=10, frameon=False)
ax5.axhline(0, ls="--", c="k", alpha=0.5)
### Setting ylims and labeling plot with 'KK-Test' in RR subplot
self.KK_rr_im_min = []
self.KK_rr_im_max = []
self.KK_rr_re_min = []
self.KK_rr_re_max = []
self.KK_ymin = []
self.KK_ymax = []
for i in range(len(self.df)):
self.KK_rr_im_min.append(np.min(self.KK_rr_im[i]))
self.KK_rr_im_max.append(np.max(self.KK_rr_im[i]))
self.KK_rr_re_min.append(np.min(self.KK_rr_re[i]))
self.KK_rr_re_max.append(np.max(self.KK_rr_re[i]))
if self.KK_rr_re_max[i] > self.KK_rr_im_max[i]:
self.KK_ymax.append(self.KK_rr_re_max[i])
else:
self.KK_ymax.append(self.KK_rr_im_max[i])
if self.KK_rr_re_min[i] < self.KK_rr_im_min[i]:
self.KK_ymin.append(self.KK_rr_re_min[i])
else:
self.KK_ymin.append(self.KK_rr_im_min[i])
if np.abs(self.KK_ymin[0]) > self.KK_ymax[0]:
ax1.set_ylim(
self.KK_ymin[0] * 100 * 1.5, np.abs(self.KK_ymin[0]) * 100 * 1.5
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymin[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax1.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[0]) * 100 * 1.5,
)
if legend == "on":
ax1.annotate(
"Lin-KK, #1",
xy=[
np.min(np.log10(self.df[0].f)),
np.abs(self.KK_ymax[0]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax1.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[0].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[0].f)),
self.KK_ymax[0] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[1]) > self.KK_ymax[1]:
ax2.set_ylim(
self.KK_ymin[1] * 100 * 1.5, np.abs(self.KK_ymin[1]) * 100 * 1.5
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
np.max(np.abs(self.KK_ymin[1])) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[0]) < self.KK_ymax[0]:
ax2.set_ylim(
np.negative(self.KK_ymax[1]) * 100 * 1.5,
np.abs(self.KK_ymax[1]) * 100 * 1.5,
)
if legend == "on":
ax2.annotate(
"Lin-KK, #2",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax2.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[1].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[1].f)),
self.KK_ymax[1] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[2]) > self.KK_ymax[2]:
ax3.set_ylim(
self.KK_ymin[2] * 100 * 1.5, np.abs(self.KK_ymin[2]) * 100 * 1.5
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymin[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[2]) < self.KK_ymax[2]:
ax3.set_ylim(
np.negative(self.KK_ymax[0]) * 100 * 1.5,
np.abs(self.KK_ymax[2]) * 100 * 1.5,
)
if legend == "on":
ax3.annotate(
"Lin-KK, #3",
xy=[
np.min(np.log10(self.df[2].f)),
np.abs(self.KK_ymax[2]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax3.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[2].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[2].f)),
self.KK_ymax[2] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[3]) > self.KK_ymax[3]:
ax4.set_ylim(
self.KK_ymin[3] * 100 * 1.5, np.abs(self.KK_ymin[3]) * 100 * 1.5
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymin[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[3]) < self.KK_ymax[3]:
ax4.set_ylim(
np.negative(self.KK_ymax[3]) * 100 * 1.5,
np.abs(self.KK_ymax[3]) * 100 * 1.5,
)
if legend == "on":
ax4.annotate(
"Lin-KK, #4",
xy=[
np.min(np.log10(self.df[3].f)),
np.abs(self.KK_ymax[3]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax4.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[3].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[3].f)),
self.KK_ymax[3] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
if np.abs(self.KK_ymin[4]) > self.KK_ymax[4]:
ax5.set_ylim(
self.KK_ymin[4] * 100 * 1.5, np.abs(self.KK_ymin[4]) * 100 * 1.5
)
if legend == "on":
ax5.annotate(
"Lin-KK, #5",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymin[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax5.annotate(
"Lin-KK ("
+ str(np.round(np.average(self.df[4].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymin[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif np.abs(self.KK_ymin[4]) < self.KK_ymax[4]:
ax5.set_ylim(
np.negative(self.KK_ymax[4]) * 100 * 1.5,
np.abs(self.KK_ymax[4]) * 100 * 1.5,
)
if legend == "on":
ax5.annotate(
"Lin-KK, #5",
xy=[
np.min(np.log10(self.df[4].f)),
np.abs(self.KK_ymax[4]) * 100 * 1.2,
],
color="k",
fontweight="bold",
)
elif legend == "potential":
ax5.annotate(
"Lin-KK, ("
+ str(np.round(np.average(self.df[4].E_avg), 2))
+ " V)",
xy=[
np.min(np.log10(self.df[4].f)),
self.KK_ymax[4] * 100 * 1.2,
],
color="k",
fontweight="bold",
)
# Save Figure
if savefig != "none":
fig.savefig(savefig)
### 6 Cycles
elif len(self.df) == 6:
fig = figure(figsize=(12, 3.8), dpi=120, facecolor="w", edgecolor="k")
fig.subplots_adjust(
left=0.1, right=0.95, hspace=0.25, wspace=0.25, bottom=0.1, top=0.95
)
ax1 = fig.add_subplot(231)
ax2 = fig.add_subplot(232)
ax3 = fig.add_subplot(233)
ax4 = fig.add_subplot(234)
ax5 = fig.add_subplot(235)
ax6 = fig.add_subplot(236)
# cycle 1
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_re[0] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax1.plot(
np.log10(self.df[0].f),
self.KK_rr_im[0] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax1.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15)
if legend == "on" or legend == "potential":
ax1.legend(loc="best", fontsize=10, frameon=False)
ax1.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 2
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_re[1] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax2.plot(
np.log10(self.df[1].f),
self.KK_rr_im[1] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax2.legend(loc="best", fontsize=10, frameon=False)
ax2.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 3
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_re[2] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax3.plot(
np.log10(self.df[2].f),
self.KK_rr_im[2] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
if legend == "on" or legend == "potential":
ax3.legend(loc="best", fontsize=10, frameon=False)
ax3.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 4
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_re[3] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax4.plot(
np.log10(self.df[3].f),
self.KK_rr_im[3] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax4.set_xlabel("log(f) [Hz]")
ax4.set_ylabel("$\Delta$Z', $\Delta$-Z'' [%]", fontsize=15)
if legend == "on" or legend == "potential":
ax4.legend(loc="best", fontsize=10, frameon=False)
ax4.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 5
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_re[4] * 100,
color=colors_real[3],
marker="D",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$Z'",
)
ax5.plot(
np.log10(self.df[4].f),
self.KK_rr_im[4] * 100,
color=colors_imag[3],
marker="s",
ls="--",
ms=6,
alpha=0.7,
label="$\Delta$-Z''",
)
ax5.set_xlabel("log(f) [Hz]")
if legend == "on" or legend == "potential":
ax5.legend(loc="best", fontsize=10, frameon=False)
ax5.axhline(0, ls="--", c="k", alpha=0.5)
# Cycle 6
ax6.plot(
|
np.log10(self.df[5].f)
|
numpy.log10
|
import copy
import numpy as np
import os
import collections
import time
import random
import tfg.alphaZeroConfig as config
from tfg.strategies import Strategy, MonteCarloTree
from tfg.alphaZeroNN import NeuralNetworkAZ
from tfg.util import play, get_games_per_worker
from tfg.games import BLACK, WHITE
from functools import reduce
from joblib import delayed, Parallel
from threading import Barrier, Thread
class AlphaZero(Strategy):
"""Game strategy implementing AlphaZero algorithm."""
def __init__(self, env, adapter,
c_puct=config.C_PUCT,
exploration_noise=config.EXPLORATION_NOISE,
mcts_iter=config.MCTS_ITER,
mcts_max_time=config.MCTS_MAX_TIME,
nn_config=None,
gpu=True):
"""All default values are taken from tfg.alphaZeroConfig
Args:
env (tfg.games.GameEnv): Game this strategy is for.
adapter (tfg.alphaZeroAdapters.NeuralNetworkAdapter): Adapter for
the game given as env.
c_puct (float): C constant used in the selection policy PUCT
algorithm.
exploration_noise ((float, float)): Values used to add Dirichlet
noise to the first node of MCTS. First number is the noise
fraction (between 0 and 1), which means how much noise will
be added. The second number is the alpha of the Dirichlet
distribution.
mcts_iter (int): Max iterations of the MCTS algorithm.
mcts_max_time (float): Max time for the MCTS algorithm.
nn_config (tfg.alphaZeroConfig.AlphaZeroConfig or dict):
Wrapper with arguments that will be directly passed to
tfg.alphaZeroNN.AlphaZeroNN. If output_dim is None,
env.action_space.n will be used instead.
gpu (bool): Whether to allow gpu usage for the internal neural
network or not. Note that Tensorflow should not have been
imported before creating the actor. Defaults to True.
"""
if nn_config is None:
nn_config = config.AlphaZeroConfig()
elif isinstance(nn_config, dict):
nn_config = config.AlphaZeroConfig(**nn_config)
if not gpu:
os.environ['CUDA_VISIBLE_DEVICES'] = '-1'
self._env = env
self.c_puct = c_puct
self.noise_fraction = exploration_noise[0]
self.noise_alpha = exploration_noise[1]
self.temperature = 0
self._nn_input = None
self._nn_barrier = None
self._nn_predictions = None
self._nn_predict = None
self._thr_num_active = None
self._thr_actions = None
self._thr_sync = None
self._mcts = MonteCarloTree(
self._env,
max_iter=mcts_iter,
max_time=mcts_max_time,
selection_policy=self._selection_policy,
value_function=self._value_function,
best_node_policy=self._best_node_policy,
reset_tree=True
)
self.neural_network = NeuralNetworkAZ(
input_dim=adapter.input_shape,
output_dim=adapter.output_features,
**nn_config.__dict__
)
self._adapter = adapter
self.training = True
@property
def env(self):
"""tfg.games.GameEnv: Game this strategy is for."""
return self._env
def train(self, self_play_times=config.SELF_PLAY_TIMES,
max_train_time=config.MAX_TRAIN_TIME,
min_train_error=config.MIN_TRAIN_ERROR,
max_games_counter=config.MAX_GAMES_COUNTER,
epochs=config.EPOCHS,
buffer_size=config.BUFFER_SIZE,
batch_size=config.BATCH_SIZE,
temperature=config.TEMPERATURE,
callbacks=None):
"""Trains the internal neural network via self-play to learn how to
play the game.
All parameters default to the values given in tfg.alphaZeroConfig.
Args:
self_play_times (int): Number of games played before retraining
the net.
max_train_time (float): Maximum time the training can last.
min_train_error (float): Minimum error below which the training
will stop.
max_games_counter (int): Maximum total number of games that can
be played before stopping training.
epochs (int): Number of epochs each batch will be trained with.
buffer_size (int): Max number of states that can be stored before
training. If this maximum is reached, oldest states will be
removed when adding new ones.
batch_size (int): Size of the batch to be sampled of all moves to
train the network after self_play_times games have been played.
temperature (int): During first moves of each game actions are
taken randomly. This parameters sets how many times this will
be done.
callbacks (list[tfg.alphaZeroCallbacks.Callback]): Functions that
will be called after every game and after every set of games to
join the results.
"""
def is_done():
"""Training ends if any of the following conditions is met:
- Training time is over (current_time > max_train_time).
- Error is lower than threshold
(current_error < min_train_error).
- Max number of played games reached
(games_counter > max_games_counter).
"""
done = False
if max_train_time is not None:
done |= (current_time - start_time) > max_train_time
if min_train_error is not None:
done |= current_error < min_train_error
if max_games_counter is not None:
done |= games_counter >= max_games_counter
return done
self.training = True
self._mcts.reset_tree = True
# Initialize finishing parameters
start_time = time.time()
current_time = start_time
current_error = float('inf')
games_counter = 0
buffer = collections.deque(maxlen=buffer_size)
while not is_done():
# Add to buffer the latest played games
moves, callback_results = self._self_play(
self_play_times, temperature, callbacks
)
buffer.extend(moves)
# Join callbacks
if callbacks is not None:
for callback, results in zip(callbacks, callback_results):
callback.join(results)
# Extract a mini-batch from buffer
size = min(len(buffer), batch_size)
mini_batch = random.sample(buffer, size)
# Separate data from batch
boards, turns, pies, rewards = zip(*mini_batch)
train_boards = np.array([
self._adapter.to_input(board, turn)
for board, turn in zip(boards, turns)
])
train_pi = np.array(list(pies))
train_reward = np.array(list(rewards))
# Train neural network with the data from the mini-batch
history = self.neural_network.fit(x=train_boards,
y=[train_reward, train_pi],
batch_size=32,
epochs=epochs,
verbose=2,
validation_split=0)
# Update finishing parameters
current_error = history.history['loss'][-1]
current_time = time.time()
games_counter += self_play_times
print(f"Games played: {games_counter}")
info = {
'error': current_error,
'time': current_time - start_time,
'games': games_counter
}
if callbacks is not None:
for callback in callbacks:
callback.on_update_end(self, info)
def _self_play(self, num, temperature, callbacks):
def make_policy(nodes):
"""Returns the pi vector according to temperature parameter."""
# Obtain visit vector from children
visit_vector = np.zeros(self._adapter.output_features)
for action, node in nodes.items():
indices = self._adapter.to_indices(action)
visit_vector[indices] = node.visit_count
if self.temperature > 0:
# t = 1 | Exploration
return visit_vector / visit_vector.sum()
else:
# t -> 0 | Exploitation
# Vector with all 0s and a 1 in the most visited child
index = np.unravel_index(np.argmax(visit_vector),
visit_vector.shape)
pi = np.zeros_like(visit_vector)
pi[index] = 1
return pi
def vale_function(i):
return lambda node: self._value_function(node, i)
def thread_run(index, mcts, obs, done):
def f():
if not done:
action = mcts.move(obs)
self._thr_actions[index] = action
while not self._thr_sync:
self._nn_barrier.wait()
return f
def multi_predict():
if self._nn_predict:
self._nn_predictions = self.neural_network.predict(
self._nn_input
)
self._nn_predict = False
else:
self._thr_sync = True
callback_results = ([list() for _ in callbacks]
if callbacks is not None else [])
self._nn_input = np.zeros((num, *self._adapter.input_shape))
self._thr_actions = [None] * num
self._thr_num_active = num
self._nn_barrier = Barrier(num, action=multi_predict)
envs = [copy.deepcopy(self._env) for _ in range(num)]
mctss = [MonteCarloTree(
env,
max_iter=self._mcts.max_iter,
max_time=self._mcts.max_time,
selection_policy=self._selection_policy,
value_function=vale_function(i),
best_node_policy=self._best_node_policy,
reset_tree=False
) for i, env in enumerate(envs)]
# Initialize game
observations = [env.reset() for env in envs]
dones = [False] * num
game_data = [list() for _ in range(num)]
self.temperature = temperature
s = time.time()
# Loop until all games end
while self._thr_num_active > 0:
self._nn_predict = False
self._thr_sync = False
# Launch threads to choose moves from MCTS
threads = [Thread(target=thread_run(i, mcts, o, d))
for i, (mcts, o, d)
in enumerate(zip(mctss, observations, dones))]
for thread in threads:
thread.start()
for thread in threads:
thread.join()
# Threads have been synchronized
actions = self._thr_actions
# Update temperature parameter
self.temperature = max(0, self.temperature - 1)
# Make all moves
for i in range(num):
if dones[i]:
continue
# Calculate Pi vector
pi = make_policy(mctss[i].stats['actions'])
# Store move data: (board, turn, pi)
game_data[i].append((observations[i], envs[i].to_play, pi))
# Perform move
observation, _, done, _ = envs[i].step(actions[i])
observations[i] = observation
dones[i] = done
# Update MCTS (used to recycle tree for next move)
mctss[i].update(actions[i])
if done:
self._thr_num_active -= 1
n = self._adapter.output_features
pi =
|
np.full(n, 1 / n)
|
numpy.full
|
import os
import numpy as np
import torch
import shutil
def dice(vol1, vol2, labels=None, nargout=1):
'''
Dice [1] volume overlap metric
The default is to *not* return a measure for the background layer (label = 0)
[1] Dice, <NAME>. "Measures of the amount of ecologic association between species."
Ecology 26.3 (1945): 297-302.
Parameters
----------
vol1 : nd array. The first volume (e.g. predicted volume)
vol2 : nd array. The second volume (e.g. "true" volume)
labels : optional vector of labels on which to compute Dice.
If this is not provided, Dice is computed on all non-background (non-0) labels
nargout : optional control of output arguments. if 1, output Dice measure(s).
if 2, output tuple of (Dice, labels)
Output
------
if nargout == 1 : dice : vector of dice measures for each labels
if nargout == 2 : (dice, labels) : where labels is a vector of the labels on which
dice was computed
'''
if labels is None:
labels = np.unique(
|
np.concatenate((vol1, vol2))
|
numpy.concatenate
|
#!/usr/bin/env python
#
# See top-level LICENSE file for Copyright information
#
# -*- coding: utf-8 -*-
"""
This script enables the viewing of a processed FITS file
with extras. Run above the Science/ folder.
"""
import argparse
import os
import numpy as np
from IPython import embed
from astropy.io import fits
from astropy.stats import sigma_clipped_stats
from pypeit import msgs
from pypeit import ginga
from pypeit import slittrace
from pypeit import specobjs
from pypeit.core.parse import get_dnum
from pypeit.images.imagebitmask import ImageBitMask
from pypeit import masterframe
from pypeit import spec2dobj
def parser(options=None):
parser = argparse.ArgumentParser(description='Display sky subtracted, spec2d image in a '
'Ginga viewer. Run above the Science/ folder',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('file', type = str, default = None, help = 'PYPIT spec2d file')
parser.add_argument('--list', default=False, help='List the extensions only?',
action='store_true')
parser.add_argument('--det', default=1, type=int, help='Detector number')
parser.add_argument('--showmask', default=False, help='Overplot masked pixels',
action='store_true')
parser.add_argument('--removetrace', default=False, help="Do not overplot traces in the skysub, "
"sky_resid and resid channels",
action = "store_true")
parser.add_argument('--embed', default=False, help='Upon completion embed in ipython shell',
action='store_true')
parser.add_argument('--ignore_extract_mask', default=False, help='Ignore the extraction mask',
action='store_true')
return parser.parse_args() if options is None else parser.parse_args(options)
def show_trace(specobjs, det, viewer, ch):
if specobjs is None:
return
in_det = np.where(specobjs.DET == det)[0]
for kk in in_det:
trace = specobjs[kk]['TRACE_SPAT']
obj_id = specobjs[kk].NAME
ginga.show_trace(viewer, ch, trace, obj_id, color='orange') #hdu.name)
def main(args):
# List only?
if args.list:
hdu = fits.open(args.file)
hdu.info()
return
# Load it up
spec2DObj = spec2dobj.Spec2DObj.from_file(args.file, args.det)
# Setup for PYPIT imports
msgs.reset(verbosity=2)
# Init
# TODO: get_dnum needs to be deprecated...
sdet = get_dnum(args.det, prefix=False)
# if not os.path.exists(mdir):
# mdir_base = os.path.join(os.getcwd(), os.path.basename(mdir))
# msgs.warn('Master file dir: {0} does not exist. Using {1}'.format(mdir, mdir_base))
# mdir=mdir_base
# Slits
# slits_key = '{0}_{1:02d}'.format(spec2DObj.head0['TRACMKEY'], args.det)
# slit_file = os.path.join(mdir, masterframe.construct_file_name(slittrace.SlitTraceSet, slits_key))
# slits = slittrace.SlitTraceSet.from_file(slit_file)
# Grab the slit edges
slits = spec2DObj.slits
if spec2DObj.sci_spat_flexure is not None:
msgs.info("Offseting slits by {}".format(spec2DObj.sci_spat_flexure))
all_left, all_right, mask = slits.select_edges(flexure=spec2DObj.sci_spat_flexure)
# TODO -- This may be too restrictive, i.e. ignore BADFLTCALIB??
gpm = mask == 0
left = all_left[:, gpm]
right = all_right[:, gpm]
slid_IDs = spec2DObj.slits.slitord_id[gpm]
bitMask = ImageBitMask()
# Object traces from spec1d file
spec1d_file = args.file.replace('spec2d', 'spec1d')
if os.path.isfile(spec1d_file):
sobjs = specobjs.SpecObjs.from_fitsfile(spec1d_file)
else:
sobjs = None
msgs.warn('Could not find spec1d file: {:s}'.format(spec1d_file) + msgs.newline() +
' No objects were extracted.')
ginga.connect_to_ginga(raise_err=True, allow_new=True)
# Now show each image to a separate channel
# Show the bitmask?
mask_in = None
if args.showmask:
viewer, ch = ginga.show_image(spec2DObj.bpmmask, chname="BPM", waveimg=spec2DObj.waveimg, clear=True)
#bpm, crmask, satmask, minmask, offslitmask, nanmask, ivar0mask, ivarnanmask, extractmask \
# SCIIMG
image = spec2DObj.sciimg # Processed science image
mean, med, sigma = sigma_clipped_stats(image[spec2DObj.bpmmask == 0], sigma_lower=5.0,
sigma_upper=5.0)
cut_min = mean - 1.0 * sigma
cut_max = mean + 4.0 * sigma
chname_skysub='sciimg-det{:s}'.format(sdet)
# Clear all channels at the beginning
viewer, ch = ginga.show_image(image, chname=chname_skysub, waveimg=spec2DObj.waveimg, clear=True)
if sobjs is not None:
show_trace(sobjs, args.det, viewer, ch)
ginga.show_slits(viewer, ch, left, right, slit_ids=slid_IDs)
# SKYSUB
if args.ignore_extract_mask:
# TODO -- Is there a cleaner way to do this?
gpm = (spec2DObj.bpmmask == 0) | (spec2DObj.bpmmask == 2**bitMask.bits['EXTRACT'])
else:
gpm = spec2DObj.bpmmask == 0
image = (spec2DObj.sciimg - spec2DObj.skymodel) * gpm #(spec2DObj.mask == 0) # sky subtracted image
mean, med, sigma = sigma_clipped_stats(image[spec2DObj.bpmmask == 0], sigma_lower=5.0,
sigma_upper=5.0)
cut_min = mean - 1.0 * sigma
cut_max = mean + 4.0 * sigma
chname_skysub='skysub-det{:s}'.format(sdet)
# Clear all channels at the beginning
# TODO: JFH For some reason Ginga crashes when I try to put cuts in here.
viewer, ch = ginga.show_image(image, chname=chname_skysub, waveimg=spec2DObj.waveimg,
bitmask=bitMask, mask=mask_in) #, cuts=(cut_min, cut_max),wcs_match=True)
if not args.removetrace and sobjs is not None:
show_trace(sobjs, args.det, viewer, ch)
ginga.show_slits(viewer, ch, left, right, slit_ids=slid_IDs)
# SKRESIDS
chname_skyresids = 'sky_resid-det{:s}'.format(sdet)
image = (spec2DObj.sciimg - spec2DObj.skymodel) * np.sqrt(spec2DObj.ivarmodel) * (spec2DObj.bpmmask == 0) # sky residual map
viewer, ch = ginga.show_image(image, chname_skyresids, waveimg=spec2DObj.waveimg,
cuts=(-5.0, 5.0), bitmask=bitMask, mask=mask_in)
if not args.removetrace and sobjs is not None:
show_trace(sobjs, args.det, viewer, ch)
ginga.show_slits(viewer, ch, left, right, slit_ids=slid_IDs)
# RESIDS
chname_resids = 'resid-det{:s}'.format(sdet)
# full model residual map
image = (spec2DObj.sciimg - spec2DObj.skymodel - spec2DObj.objmodel) *
|
np.sqrt(spec2DObj.ivarmodel)
|
numpy.sqrt
|
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import flags
from absl import app
import os
import numpy as np
import tensorflow as tf
import cPickle as pkl
from sklearn.model_selection import train_test_split
from gensim.matutils import unitvec
from gensim.models import Word2Vec, FastText
from gensim.parsing.preprocessing import STOPWORDS
from joblib import Parallel, delayed
from scipy.special import expit
from data.common import MODEL_DIR
from data.wiki9 import split_wiki9_articles, WIKI9Articles
from utils.word_utils import load_tf_embedding, load_glove_model
from utils.sent_utils import iterate_minibatches_indices
from membership.utils import compute_adversarial_advantage
from membership.models import LinearMetricModel
from collections import Counter, defaultdict
from multiprocessing import Process, Pipe
flags.DEFINE_float('noise_multiplier', 0.,
'Ratio of the standard deviation to the clipping norm')
flags.DEFINE_float('l2_norm_clip', 0., 'Clipping norm')
flags.DEFINE_float('train_size', 0.2, 'Ratio of data for training the '
'membership inference attack model')
flags.DEFINE_integer('epoch', 4, 'Load model trained this epoch')
flags.DEFINE_integer('microbatches', 128, 'microbatches')
flags.DEFINE_integer('exp_id', 0, 'Experiment trial number')
flags.DEFINE_integer('n_jobs', 16, 'number of CPU cores for parallel '
'collecting metrics')
flags.DEFINE_integer('window', 3, 'window size for a context of words')
flags.DEFINE_integer('freq_min', 80,
'use word frequency rank above this percentile, '
'e.g. 80=the most infrequent 20 percent words')
flags.DEFINE_integer('freq_max', 100, 'maximum frequency rank')
flags.DEFINE_string('metric', 'cosine', 'Metric to use for cosine similarity')
flags.DEFINE_string('model', 'w2v', 'Word embedding model')
flags.DEFINE_string('save_dir', os.path.join(MODEL_DIR, 'w2v'),
'Model directory for embedding model')
flags.DEFINE_boolean('idf', False,
'Weight score by inverse document frequency')
flags.DEFINE_boolean('ctx_level', False,
'Context level or article level inference')
flags.DEFINE_boolean('learning', False,
'Whether to learning a metric model')
FLAGS = flags.FLAGS
tf.logging.set_verbosity(tf.logging.FATAL)
def threshold_check(rank, thresh):
if isinstance(thresh, tuple):
return thresh[0] <= rank < thresh[1]
else:
assert isinstance(thresh, int)
return thresh <= rank
def get_all_contexts(docs, model, thresh, window=3):
vocab = model.wv.vocab
all_words = sorted(vocab.keys())
all_counts = 0.
for word in all_words:
all_counts += vocab[word].count
all_docs_ctx = []
for text in WIKI9Articles(docs, verbose=1):
doc_ctx = []
for i, word in enumerate(text):
if word in vocab and threshold_check(vocab[word].index, thresh):
s = max(0, i - window)
e = min(len(text), i + window + 1)
context = [neighbor for neighbor in text[s: i] + text[i + 1: e]
if neighbor not in STOPWORDS
and neighbor in vocab
and neighbor != word]
if len(context) == 0:
continue
context_pair = [(vocab[word].index, vocab[neighbor].index)
for neighbor in context]
doc_ctx.append(np.asarray(context_pair, dtype=np.int64))
# all_docs_ctx.append(np.asarray(context_pair, dtype=np.int64))
if len(doc_ctx) > 0:
all_docs_ctx.append(doc_ctx)
return all_docs_ctx
def split_docs(docs, n_jobs):
n_docs = len(docs)
n_docs_per_job = n_docs // n_jobs + 1
splits = []
for i in range(n_jobs):
splits.append(docs[i * n_docs_per_job: (i + 1) * n_docs_per_job])
return splits
def trained_metric(exp_id=0, n_jobs=1, freqs=(80, 100), window=3,
emb_model='ft'):
train_docs, test_docs = split_wiki9_articles(exp_id)
save_dir = FLAGS.save_dir
model_name = 'wiki9_{}_{}.model'.format(emb_model, FLAGS.exp_id)
model_path = os.path.join(save_dir, model_name)
if emb_model == 'ft':
model = FastText.load(model_path)
elif emb_model == 'w2v':
model = Word2Vec.load(model_path)
elif emb_model == 'glove':
model = load_glove_model(model_path)
elif emb_model == 'tfw2v':
model = load_tf_embedding(FLAGS.exp_id, save_dir=save_dir,
epoch=FLAGS.epoch,
noise_multiplier=FLAGS.noise_multiplier,
l2_norm_clip=FLAGS.l2_norm_clip,
microbatches=FLAGS.microbatches)
else:
raise ValueError('No such embedding model: {}'.format(emb_model))
word_vectors = model.wv.vectors
word_emb = tf.convert_to_tensor(word_vectors)
metric_model = LinearMetricModel(word_vectors.shape[1])
optimizer = tf.train.AdamOptimizer(5e-4)
inputs_a = tf.placeholder(tf.int64, (None,), name="inputs_a")
inputs_b = tf.placeholder(tf.int64, (None,), name="inputs_b")
labels = tf.placeholder(tf.float32, (None,), name="labels")
embs_a = tf.nn.embedding_lookup(word_emb, inputs_a)
embs_b = tf.nn.embedding_lookup(word_emb, inputs_b)
logits = metric_model.forward(embs_a, embs_b)
if FLAGS.metric == 'cosine':
embs_a = tf.nn.l2_normalize(embs_a, axis=1)
embs_b = tf.nn.l2_normalize(embs_b, axis=1)
dot = tf.reduce_sum(tf.multiply(embs_a, embs_b), axis=1)
# loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=labels, logits=logits)
loss = tf.keras.losses.hinge(labels, logits)
loss = tf.reduce_mean(loss)
t_vars = tf.trainable_variables()
grads_and_vars = optimizer.compute_gradients(loss, t_vars)
train_ops = optimizer.apply_gradients(
grads_and_vars, global_step=tf.train.get_or_create_global_step())
vocab_size = len(model.wv.vocab)
thresh = (int(vocab_size * freqs[0] / 100), int(vocab_size * freqs[1] / 100))
print("Loading contexts for membership inference")
if n_jobs > 1:
member_job_ctxs = Parallel(n_jobs)(delayed(get_all_contexts)(
ds, model, thresh, window) for ds in split_docs(train_docs, n_jobs))
nonmember_job_ctxs = Parallel(n_jobs)(delayed(get_all_contexts)(
ds, model, thresh, window) for ds in split_docs(test_docs, n_jobs))
member_ctxs = [ctxs for job_ctxs in member_job_ctxs
for ctxs in job_ctxs]
nonmember_ctxs = [ctxs for job_ctxs in nonmember_job_ctxs
for ctxs in job_ctxs]
else:
member_ctxs = get_all_contexts(train_docs, model, thresh, window)
nonmember_ctxs = get_all_contexts(test_docs, model, thresh, window)
print("Loaded {} member and {} nonmember".format(
len(member_ctxs), len(nonmember_ctxs)))
membership_labels = np.concatenate(
[np.ones(len(member_ctxs)), np.zeros(len(nonmember_ctxs))])
train_ctxs, test_ctxs, train_labels, test_labels = train_test_split(
member_ctxs + nonmember_ctxs, membership_labels, random_state=12345,
train_size=FLAGS.train_size, stratify=membership_labels)
def flatten_ctxs(ctxs, labels):
flat_ctxs, flat_labels = [], []
for doc_ctx, doc_label in zip(ctxs, labels):
flat_ctxs += doc_ctx
flat_labels.append(np.ones(len(doc_ctx)) * doc_label)
return flat_ctxs, np.concatenate(flat_labels)
train_ctxs, train_labels = flatten_ctxs(train_ctxs, train_labels)
test_ctxs, test_labels = flatten_ctxs(test_ctxs, test_labels)
train_y = []
for ctxs, label in zip(train_ctxs, train_labels):
train_y.append(np.ones(len(ctxs)) * label)
train_y = np.concatenate(train_y).astype(np.float32)
train_x = np.vstack(train_ctxs)
def collect_scores(ctxs, labels, sess, baseline=False):
stacked_ctxs = np.vstack(ctxs)
stacked_scores = []
for batch_idx in iterate_minibatches_indices(
len(stacked_ctxs), batch_size=1024, shuffle=False):
feed = {inputs_a: stacked_ctxs[batch_idx][:, 0],
inputs_b: stacked_ctxs[batch_idx][:, 1]}
scores = sess.run(dot if baseline else logits, feed_dict=feed)
stacked_scores.append(scores)
stacked_scores = np.concatenate(stacked_scores)
member_metrics, nonmember_metrics = [], []
start_idx = 0
for ctx, label in zip(ctxs, labels):
scores = stacked_scores[start_idx: start_idx + len(ctx)]
start_idx += len(ctx)
if label == 1:
member_metrics.append(scores)
else:
nonmember_metrics.append(scores)
return member_metrics, nonmember_metrics
with tf.Session(config=tf.ConfigProto(allow_soft_placement=True)) as sess:
sess.run(tf.global_variables_initializer())
test_member_metrics, test_nonmember_metrics = collect_scores(
test_ctxs, test_labels, sess, True)
compute_adversarial_advantage(
[
|
np.mean(m)
|
numpy.mean
|
import os
import sys
import shutil
import traceback
import logging
import numpy as np
import pandas as pd
import contextlib
import base64
# import matplotlib
# matplotlib.use("Agg")
from yattag import Doc
from yattag import indent
import cv2
import matplotlib.pyplot as plt
from matplotlib import cm
from sklearn.metrics import roc_curve, roc_auc_score
logger = logging.getLogger(__name__)
##################################################
class Plotter(object):
'''
class Plotter
将训练过程中的数值化输出保存成html以及csv文件进行记录
用法:
1. 初始化:
plotter = Plotter()
2. 记录:
plotter.scalar('loss1', step=10, value=0.1)
3. 输出到html文件:
plotter.to_html_report('./experiment/plt')
4. 输出所有数据分别到单独的csv文件中:
plotter.to_csv('./experiment/plt')
'''
def __init__(self, args=None):
self._scalar_data_frame_dict = {}
self._dist_data_frame_dict = {}
self._out_svg_list = []
self._upper_bound = {}
self._lower_bound = {}
self.args = args
def _check_dir(self, path):
p = os.path.dirname(path)
if not os.path.exists(p):
os.mkdir(p)
return p
def set_min_max(self, name, min_val=None, max_val=None):
if min_val is not None:
self._lower_bound[name] = min_val
if max_val is not None:
self._upper_bound[name] = max_val
@property
def scalar_names(self):
return list(self._scalar_data_frame_dict.keys())
def get(self, name):
if name in self._scalar_data_frame_dict:
return self._scalar_data_frame_dict[name]
elif name in self._dist_data_frame_dict:
return self._dist_data_frame_dict[name]
else:
return None
def has(self, name):
return name in self._scalar_data_frame_dict or name in self._dist_data_frame_dict
def keys(self):
return list(self._scalar_data_frame_dict.keys()) + list(self._dist_data_frame_dict.keys())
def roc_auc(self, name, step, y_score, y_true):
auc_score = roc_auc_score(y_true, y_score)
self.scalar(name, step, auc_score)
def add_roc_curve(self, name, y_score, y_true, output_dir):
try:
output_svg_filepath = os.path.join(output_dir, name + '.svg')
plt.figure()
plt.clf()
fpr, tpr, thres = roc_curve(y_true, y_score)
plt.plot(fpr, tpr)
plt.grid(axis='y')
plt.grid(axis='x', which='major')
plt.grid(axis='x', which='minor', color=[0.9, 0.9, 0.9])
plt.tight_layout()
plt.savefig(output_svg_filepath)
plt.close()
self._out_svg_list.append([name, output_svg_filepath])
except Exception as e:
logger.info('draw %s failed : '%name)
traceback.print_exc()
def add_prob_distribution_hist(self, name, y_probs, y_labels, output_dir):
label_list = np.unique(y_labels)
sorted(label_list)
alpha_list = np.linspace(0.0, 0.9, len(label_list)+2)[2:]
color_list = ["#0000FF", "#00FF00", "#FF0000", "#FFFF00", "#FF00FF"]
assert np.max(y_probs) <= 1.0
assert np.min(y_probs) >= 0.0
try:
output_svg_filepath = os.path.join(output_dir, name + '.svg')
bins = np.linspace(0.0, 1.0, 100)
plt.figure()
plt.clf()
for ind, l in enumerate(label_list):
plt.hist(y_probs[np.where(y_labels == l)[0]], bins, density=True, color=color_list[ind%len(color_list)], alpha=alpha_list[ind])
plt.tight_layout()
plt.savefig(output_svg_filepath)
plt.close()
self._out_svg_list.append([name, output_svg_filepath])
except Exception as e:
logger.info('draw %s failed : '%name)
traceback.print_exc()
def scalar(self, name, step, value, epoch=None):
if isinstance(value, dict):
data = value.copy()
data.update({
'step' : step
})
else:
data = {
'step' : step,
name : value,
}
if epoch is not None:
data['epoch'] = epoch
df = pd.DataFrame(data, index=[0])
if name not in self._scalar_data_frame_dict:
self._scalar_data_frame_dict[name] = df
else:
self._scalar_data_frame_dict[name] = self._scalar_data_frame_dict[name].append(df, ignore_index=True)
def scalar_probs(self, name, step, value_array, epoch=None):
data_dict = {}
for i in range(1, 10):
thres = float(i) / 10.0
data_dict[str(thres)] = float((value_array < thres).sum()) / float(len(value_array))
self.scalar(name, step, data_dict, epoch=epoch)
self.set_min_max(name, 0.0, 1.0)
# def dist(self, name, step, mean, var, epoch=None):
# if epoch is not None:
# df = pd.DataFrame({'epoch' : epoch, 'step' : step, name+'_mean' : mean, name+'_var' : var }, index=[0])
# else:
# df = pd.DataFrame({'step' : step, name+'_mean' : mean, name+'_var' : var, }, index=[0])
# if name not in self._dist_data_frame_dict:
# self._dist_data_frame_dict[name] = df
# else:
# self._dist_data_frame_dict[name] = self._dist_data_frame_dict[name].append(df, ignore_index=True)
# def dist2(self, name, step, value_list, epoch=None):
# mean = np.mean(value_list)
# var = np.var(value_list)
# self.dist(name, step, mean, var, epoch=epoch)
def to_csv(self, output_dir):
" 将记录保存到多个csv文件里面,csv文件放在output_dir下面。"
if not os.path.exists(output_dir):
os.mkdir(output_dir)
for name, data_frame in self._scalar_data_frame_dict.items():
csv_filepath = os.path.join(output_dir, 'scalar_'+name+'.csv')
data_frame.to_csv(csv_filepath, index=False)
for name, data_frame in self._dist_data_frame_dict.items():
csv_filepath = os.path.join(output_dir, 'dist_'+name+'.csv')
data_frame.to_csv(csv_filepath, index=False)
def from_csv(self, output_dir):
" 从output_dir下面的csv文件里面读取并恢复记录 "
csv_name_list = [fn.split('.')[0] for fn in os.listdir(output_dir) if fn.endswith('csv')]
for name in csv_name_list:
if name.startswith('scalar_'):
in_csv = pd.read_csv(os.path.join(output_dir, name+'.csv'))
self._scalar_data_frame_dict[name[len('scalar_'):]] = in_csv
elif name.startswith('dist_'):
self._dist_data_frame_dict[name[len('dist_'):]] = pd.read_csv(os.path.join(output_dir, name+'.csv'))
def write_svg_all(self, output_dir):
" 将所有记录绘制成svg图片 "
for ind, (name, data_frame) in enumerate(self._scalar_data_frame_dict.items()):
try:
min_val = self._lower_bound.get(name, None)
max_val = self._upper_bound.get(name, None)
output_svg_filepath = os.path.join(output_dir, name+'.svg')
plt.figure()
plt.clf()
headers = [hd for hd in data_frame.columns if hd not in ['step', 'epoch']]
if len(headers) == 1:
plt.plot(data_frame['step'], data_frame[name])
else:
for hd in headers:
plt.plot(data_frame['step'], data_frame[hd])
plt.legend(headers)
if min_val is not None:
plt.ylim(bottom=min_val)
if max_val is not None:
plt.ylim(top=max_val)
plt.grid(axis='y')
plt.grid(axis='x', which='major')
plt.grid(axis='x', which='minor', color=[0.9, 0.9, 0.9])
plt.tight_layout()
plt.savefig(output_svg_filepath)
plt.close()
except Exception as e:
logger.info('draw %s failed : '%name)
logger.info(data_frame)
traceback.print_exc()
for ind, (name, data_frame) in enumerate(self._dist_data_frame_dict.items()):
output_svg_filepath = os.path.join(output_dir, name+'.svg')
plt.figure()
plt.clf()
plt.errorbar(data_frame['step'], data_frame[name+'_mean'], yerr=data_frame[name+'_var'])
plt.tight_layout()
plt.savefig(output_svg_filepath)
plt.close()
def to_html_report(self, output_filepath):
" 将所有记录整理成一个html报告 "
self.write_svg_all(self._check_dir(output_filepath))
doc, tag, text = Doc().tagtext()
with open(output_filepath, 'w') as outfile:
with tag('html'):
with tag('body'):
title_idx = 1
if self.args is not None:
with tag('h3'):
text('{}. args'.format(title_idx))
title_idx += 1
key_list = list(self.args.keys())
sorted(key_list)
with tag('div', style='display:inline-block;width:850px;padding:5px;margin-left:20px'):
for key in key_list:
with tag('div', style='display:inline-block;width:400px;'):
text('{} : {}\n'.format(key, self.args[key]))
with tag('h3'):
text('{}. scalars'.format(title_idx))
title_idx += 1
data_frame_name_list = [n for n, d in self._scalar_data_frame_dict.items()]
sorted(data_frame_name_list)
for ind, name in enumerate(data_frame_name_list):
with tag('div', style='display:inline-block'):
with tag('h4', style='margin-left:20px'):
text('(%d). '%(ind+1)+name)
doc.stag("embed", style="width:800px;padding:5px;margin-left:20px", src=name+'.svg', type="image/svg+xml")
with tag('h3'):
text('{}. others'.format(title_idx))
title_idx += 1
for ind, (name, svg_path) in enumerate(self._out_svg_list):
with tag('div', style='display:inline-block'):
with tag('h4', style='margin-left:20px'):
text('(%d). '%(ind+1)+name)
doc.stag("embed", style="width:800px;padding:5px;margin-left:20px", src=name+'.svg', type="image/svg+xml")
# with tag('h3'):
# text('2. distributions')
# for ind, (name, data_frame) in enumerate(self._dist_data_frame_dict.items()):
# with tag('div', style='display:inline-block'):
# with tag('h4', style='margin-left:20px'):
# text('(%d). '%(ind+1)+name)
# doc.stag("embed", style="width:800px;padding:5px;margin-left:20px", src=name+'.svg', type="image/svg+xml")
result = indent(doc.getvalue())
outfile.write(result)
class RecordInterface(object):
def start_draw(self):
raise NotImplementedError()
def draw_image(self, image, title=''):
raise NotImplementedError()
# def draw_svg(self, image, title=''):
# raise NotImplementedError();
def _check_dir(self, path):
if not os.path.exists(path):
os.mkdir(path)
return path
class RecordData(object):
def draw(self, draw_interface):
raise NotImplementedError()
def cv2_imread(filepath):
filein = np.fromfile(filepath, dtype=np.uint8)
cv_img = cv2.imdecode(filein, cv2.IMREAD_COLOR)
return cv_img
def img_vertical_concat(images, pad=0, pad_value=255, pad_right=False):
nb_images = len(images)
h_list = [i.shape[0] for i in images]
w_list = [w.shape[1] for w in images]
if pad_right:
max_w = np.max(w_list)
images = [i if i.shape[1] == max_w else np.hstack([i, np.ones([i.shape[0], max_w-i.shape[1]]+list(i.shape[2:]), dtype=i.dtype)*pad_value])
for i in images]
else:
assert np.all(np.equal(w_list, w_list[0]))
if pad != 0:
images = [np.vstack([i, np.ones([pad,]+list(i.shape[1:]), dtype=i.dtype)*pad_value]) for i in images[:-1]] + [images[-1],]
if not isinstance(images, list):
images = [i for i in images]
return np.vstack(images)
def img_horizontal_concat(images, pad=0, pad_value=255, pad_bottom=False):
nb_images = len(images)
h_list = [i.shape[0] for i in images]
w_list = [w.shape[1] for w in images]
if pad_bottom:
max_h =
|
np.max(h_list)
|
numpy.max
|
"""Implementations of QMIX for Checkers.
Same as alg_qmix.py, except that Checkers global state has more components.
"""
import numpy as np
import tensorflow as tf
import sys
import networks
class Alg(object):
def __init__(self, experiment, dimensions, stage=1, n_agents=1,
tau=0.01, lr_Q=0.001, gamma=0.99, nn={}):
"""
Same as alg_qmix. Checkers state has more components
Inputs:
experiment - string
dimensions - dictionary containing tensor dimensions
(h,w,c) for tensor
l for 1D vector
stage - curriculum stage (always 2 for IAC and COMA)
tau - target variable update rate
lr_Q - learning rates for optimizer
gamma - discount factor
"""
self.experiment = experiment
if self.experiment == "checkers":
# Global state
self.rows_state = dimensions['rows_state']
self.columns_state = dimensions['columns_state']
self.channels_state = dimensions['channels_state']
self.l_state = n_agents * dimensions['l_state_one']
self.l_state_one_agent = dimensions['l_state_one']
self.l_state_other_agents = (n_agents-1) * dimensions['l_state_one']
# Agent observations
self.l_obs_others = dimensions['l_obs_others']
self.l_obs_self = dimensions['l_obs_self']
# Dimensions for image input
self.rows_obs = dimensions['rows_obs']
self.columns_obs = dimensions['columns_obs']
self.channels_obs = dimensions['channels_obs']
self.l_action = dimensions['l_action']
self.l_goal = dimensions['l_goal']
self.n_agents = n_agents
self.tau = tau
self.lr_Q = lr_Q
self.gamma = gamma
self.nn = nn
self.agent_labels = np.eye(self.n_agents)
self.actions = np.eye(self.l_action)
# Initialize computational graph
self.create_networks(stage)
self.list_initialize_target_ops, self.list_update_target_ops = self.get_assign_target_ops(tf.trainable_variables())
self.create_train_op()
def create_networks(self, stage):
# Placeholders
self.state_env = tf.placeholder(tf.float32, [None, self.rows_state, self.columns_state, self.channels_state], 'state_env')
self.v_state = tf.placeholder(tf.float32, [None, self.l_state], 'v_state')
self.v_goal_all = tf.placeholder(tf.float32, [None, self.n_agents*self.l_goal], 'v_goal_all')
self.v_state_one_agent = tf.placeholder(tf.float32, [None, self.l_state_one_agent], 'v_state_one_agent')
self.v_state_other_agents = tf.placeholder(tf.float32, [None, self.l_state_other_agents], 'v_state_other_agents')
self.v_goal = tf.placeholder(tf.float32, [None, self.l_goal], 'v_goal')
self.v_goal_others = tf.placeholder(tf.float32, [None, (self.n_agents-1)*self.l_goal], 'v_goal_others')
self.v_labels = tf.placeholder(tf.float32, [None, self.n_agents])
self.action_others = tf.placeholder(tf.float32, [None, self.n_agents-1, self.l_action], 'action_others')
if self.experiment == "checkers":
self.obs_self_t = tf.placeholder(tf.float32, [None, self.rows_obs, self.columns_obs, self.channels_obs], 'obs_self_t')
self.obs_self_v = tf.placeholder(tf.float32, [None, self.l_obs_self], 'obs_self_v')
self.obs_others = tf.placeholder(tf.float32, [None, self.l_obs_others], 'obs_others')
self.actions_prev = tf.placeholder(tf.float32, [None, self.l_action], 'action_prev')
# Individual agent networks
# output dimension is [time * n_agents, q-values]
with tf.variable_scope("Agent_main"):
if self.experiment == 'checkers':
self.agent_qs = networks.Qmix_single_checkers(self.actions_prev, self.obs_self_t, self.obs_self_v, self.obs_others, self.v_goal, f1=self.nn['A_conv_f'], k1=self.nn['A_conv_k'], n_h1=self.nn['A_n_h1'], n_h2=self.nn['A_n_h2'], n_actions=self.l_action)
with tf.variable_scope("Agent_target"):
if self.experiment == 'checkers':
self.agent_qs_target = networks.Qmix_single_checkers(self.actions_prev, self.obs_self_t, self.obs_self_v, self.obs_others, self.v_goal, f1=self.nn['A_conv_f'], k1=self.nn['A_conv_k'], n_h1=self.nn['A_n_h1'], n_h2=self.nn['A_n_h2'], n_actions=self.l_action)
self.argmax_Q = tf.argmax(self.agent_qs, axis=1)
self.argmax_Q_target = tf.argmax(self.agent_qs_target, axis=1)
# To extract Q-value from agent_qs and agent_qs_target; [batch*n_agents, l_action]
self.actions_1hot = tf.placeholder(tf.float32, [None, self.l_action], 'actions_1hot')
self.q_selected = tf.reduce_sum(tf.multiply(self.agent_qs, self.actions_1hot), axis=1)
self.mixer_q_input = tf.reshape( self.q_selected, [-1, self.n_agents] ) # [batch, n_agents]
self.q_target_selected = tf.reduce_sum(tf.multiply(self.agent_qs_target, self.actions_1hot), axis=1)
self.mixer_target_q_input = tf.reshape( self.q_target_selected, [-1, self.n_agents] )
# Mixing network
with tf.variable_scope("Mixer_main"):
self.mixer = networks.Qmix_mixer_checkers(self.mixer_q_input, self.state_env, self.v_state, self.v_goal_all, self.l_state, self.l_goal, self.n_agents, f1=self.nn['Q_conv_f'], k1=self.nn['Q_conv_k'])
with tf.variable_scope("Mixer_target"):
self.mixer_target = networks.Qmix_mixer_checkers(self.mixer_q_input, self.state_env, self.v_state, self.v_goal_all, self.l_state, self.l_goal, self.n_agents, f1=self.nn['Q_conv_f'], k1=self.nn['Q_conv_k'])
def get_assign_target_ops(self, list_vars):
# ops for equating main and target
list_initial_ops = []
# ops for slow update of target toward main
list_update_ops = []
list_Agent_main = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Agent_main')
map_name_Agent_main = {v.name.split('main')[1] : v for v in list_Agent_main}
list_Agent_target = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Agent_target')
map_name_Agent_target = {v.name.split('target')[1] : v for v in list_Agent_target}
if len(list_Agent_main) != len(list_Agent_target):
raise ValueError("get_initialize_target_ops : lengths of Agent_main and Agent_target do not match")
for name, var in map_name_Agent_main.items():
# create op that assigns value of main variable to
# target variable of the same name
list_initial_ops.append( map_name_Agent_target[name].assign(var) )
for name, var in map_name_Agent_main.items():
# incremental update of target towards main
list_update_ops.append( map_name_Agent_target[name].assign( self.tau*var + (1-self.tau)*map_name_Agent_target[name] ) )
list_Mixer_main = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Mixer_main')
map_name_Mixer_main = {v.name.split('main')[1] : v for v in list_Mixer_main}
list_Mixer_target = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Mixer_target')
map_name_Mixer_target = {v.name.split('target')[1] : v for v in list_Mixer_target}
if len(list_Mixer_main) != len(list_Mixer_target):
raise ValueError("get_initialize_target_ops : lengths of Mixer_main and Mixer_target do not match")
# ops for equating main and target
for name, var in map_name_Mixer_main.items():
# create op that assigns value of main variable to
# target variable of the same name
list_initial_ops.append( map_name_Mixer_target[name].assign(var) )
# ops for slow update of target toward main
for name, var in map_name_Mixer_main.items():
# incremental update of target towards main
list_update_ops.append( map_name_Mixer_target[name].assign( self.tau*var + (1-self.tau)*map_name_Mixer_target[name] ) )
return list_initial_ops, list_update_ops
def run_actor(self, actions_prev, obs_others, obs_self_t, obs_self_v, goals, epsilon, sess):
"""
Get actions for all agents as a batch
actions_prev - list of integers
obs_others - list of vector or tensor describing other agents
obs_self - list of observation grid centered on self
goals - [n_agents, n_lanes]
"""
# convert to batch
obs_others = np.array(obs_others)
obs_self_t = np.array(obs_self_t)
obs_self_v = np.array(obs_self_v)
actions_prev_1hot = np.zeros([self.n_agents, self.l_action])
actions_prev_1hot[np.arange(self.n_agents), actions_prev] = 1
feed = {self.obs_others:obs_others, self.obs_self_t:obs_self_t,
self.obs_self_v:obs_self_v, self.v_goal:goals,
self.actions_prev: actions_prev_1hot}
actions_argmax = sess.run(self.argmax_Q, feed_dict=feed)
actions = np.zeros(self.n_agents, dtype=int)
for idx in range(self.n_agents):
if np.random.rand(1) < epsilon:
actions[idx] = np.random.randint(0, self.l_action)
else:
actions[idx] = actions_argmax[idx]
return actions
def create_train_op(self):
# TD target calculated in train_step() using Mixer_target
self.td_target = tf.placeholder(tf.float32, [None], 'td_target')
self.loss_mixer = tf.reduce_mean(tf.square(self.td_target - tf.squeeze(self.mixer)))
self.mixer_opt = tf.train.AdamOptimizer(self.lr_Q)
self.mixer_op = self.mixer_opt.minimize(self.loss_mixer)
def create_summary(self):
summaries_mixer = [tf.summary.scalar('loss_mixer', self.loss_mixer)]
mixer_main_variables = [v for v in tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, 'Mixer_main')]
for v in mixer_main_variables:
summaries_Q.append(tf.summary.histogram(v.op.name, v))
grads = self.Q_opt.compute_gradients(self.loss_mixer, mixer_main_variables)
for grad, var in grads:
if grad is not None:
summaries_Q.append( tf.summary.histogram(var.op.name+'/gradient', grad) )
self.summary_op_Q = tf.summary.merge(summaries_mixer)
def process_actions(self, n_steps, actions):
"""
actions must have shape [time, agents],
and values are action indices
"""
# Each row of actions is one time step,
# row contains action indices for all agents
# Convert to [time, agents, l_action]
# so each agent gets its own 1-hot row vector
actions_1hot = np.zeros([n_steps, self.n_agents, self.l_action], dtype=int)
grid = np.indices((n_steps, self.n_agents))
actions_1hot[grid[0], grid[1], actions] = 1
# Convert to format [time*agents, agents-1, l_action]
# so that the set of <n_agent> actions at each time step
# is duplicated <n_agent> times, and each duplicate
# now contains all <n_agent>-1 actions representing
# the OTHER agents actions
list_to_interleave = []
for n in range(self.n_agents):
# extract all actions except agent n's action
list_to_interleave.append( actions_1hot[:, np.arange(self.n_agents)!=n, :] )
# interleave
actions_others_1hot = np.zeros([self.n_agents*n_steps, self.n_agents-1, self.l_action])
for n in range(self.n_agents):
actions_others_1hot[n::self.n_agents, :, :] = list_to_interleave[n]
# In-place reshape of actions to [time*n_agents, l_action]
actions_1hot.shape = (n_steps*self.n_agents, self.l_action)
return actions_1hot, actions_others_1hot
def process_batch(self, batch):
"""
Extract quantities of the same type from batch.
Format batch so that each agent at each time step is one
batch entry.
Duplicate global quantities <n_agents> times to be
compatible with this scheme.
"""
# shapes are [time, ...original dims...]
state_env = np.stack(batch[:,0]) # [time, grid]
state_agents = np.stack(batch[:,1]) # [time, agents, l_state_one_agent]
# note that *_local objects have shape
# [time, agents, ...original dim...]
obs_others = np.stack(batch[:,2]) # [time,agents,h,w,c] or [time, agents, obs_others]
obs_self_t = np.stack(batch[:,3]) # [time,agents,row,column,channel]
obs_self_v = np.stack(batch[:,4]) # [time,agents,l_obs_self]
actions_prev = np.stack(batch[:,5])
actions = np.stack(batch[:,6]) # [time,agents]
reward = np.stack(batch[:,7]) # [time]
reward_local = np.stack(batch[:,8]) # [time,agents]
state_env_next = np.stack(batch[:,9]) # [time, grid]
state_agents_next = np.stack(batch[:,10]) # [time, agents, l_state_one_agent]
obs_others_next = np.stack(batch[:,11]) # [time,agents,h,w,c]
obs_self_t_next = np.stack(batch[:,12]) # [time,agents,row,column,channel]
obs_self_v_next = np.stack(batch[:,13]) # [time,agents,l_obs_self]
done = np.stack(batch[:,14]) # [time]
goals = np.stack(batch[:,15]) # [time, agents, l_goal]
batch = None
n_steps = state_agents.shape[0]
# For all global quantities, for each time step,
# duplicate values <n_agents> times for
# batch processing of all agents
reward = np.repeat(reward, self.n_agents, axis=0)
# In-place reshape for *_local quantities,
# so that one time step for one agent is considered
# one batch entry
if self.experiment == 'checkers':
obs_others.shape = (n_steps*self.n_agents, self.l_obs_others)
obs_others_next.shape = (n_steps*self.n_agents, self.l_obs_others)
obs_self_t.shape = (n_steps*self.n_agents, self.rows_obs, self.columns_obs, self.channels_obs)
obs_self_t_next.shape = (n_steps*self.n_agents, self.rows_obs, self.columns_obs, self.channels_obs)
obs_self_v.shape = (n_steps*self.n_agents, self.l_obs_self)
obs_self_v_next.shape = (n_steps*self.n_agents, self.l_obs_self)
reward_local.shape = (n_steps*self.n_agents)
actions_1hot, actions_others_1hot = self.process_actions(n_steps, actions)
actions_prev_1hot = np.zeros([n_steps, self.n_agents, self.l_action], dtype=int)
grid = np.indices((n_steps, self.n_agents))
actions_prev_1hot[grid[0], grid[1], actions_prev] = 1
actions_prev_1hot.shape = (n_steps*self.n_agents, self.l_action)
return n_steps, state_env, state_agents, obs_others, obs_self_t, obs_self_v, actions_prev_1hot, actions_1hot, actions_others_1hot, reward, reward_local, state_env_next, state_agents_next, obs_others_next, obs_self_t_next, obs_self_v_next, done, goals
def process_goals(self, goals, n_steps):
"""
goals has shape [batch, n_agents, l_goal]
convert to two streams:
1. [n_agents * n_steps, l_goal] : each row is goal for one
agent, block of <n_agents> rows belong to one sampled transition from batch
2. [n_agents * n_steps, (n_agents-1)*l_goal] : each row is
the goals of all OTHER agents, as a single row vector. Block of
<n_agents> rows belong to one sampled transition from batch
"""
# Reshape so that one time step for one agent is one batch entry
goals_self = np.reshape(goals, (n_steps*self.n_agents, self.l_goal))
goals_others = np.zeros((n_steps*self.n_agents, self.n_agents-1, self.l_goal))
for n in range(self.n_agents):
goals_others[n::self.n_agents, :, :] = goals[:, np.arange(self.n_agents)!=n, :]
# Reshape to be [n_agents * n_steps, (n_agents-1)*l_goal]
goals_others.shape = (n_steps*self.n_agents, (self.n_agents-1)*self.l_goal)
return goals_self, goals_others
def process_global_state(self, v_global, n_steps):
"""
v_global has shape [n_steps, n_agents, l_state]
Convert to three streams:
1. [n_agents * n_steps, l_state_one_agent] : each row is state of one agent,
and a block of <n_agents> rows belong to one sampled transition from batch
2. [n_agents * n_steps, l_state_other_agents] : each row is the state of all
OTHER agents, as a single row vector. A block of <n_agents> rows belong to one
sampled transition from batch
3. [n_steps*n_agents, n_agents*l_state] : each row is concatenation of state of all agents
For each time step, the row is duplicated <n_agents> times, since the same state s is used
in <n_agents> different evaluations of Q(s,a^{-n},a^n)
"""
# Reshape into 2D, each block of <n_agents> rows correspond to one time step
v_global_one_agent = np.reshape(v_global, (n_steps*self.n_agents, self.l_state_one_agent))
v_global_others = np.zeros((n_steps*self.n_agents, self.n_agents-1, self.l_state_one_agent))
for n in range(self.n_agents):
v_global_others[n::self.n_agents, :, :] = v_global[:, np.arange(self.n_agents)!=n, :]
# Reshape into 2D, each row is state of all other agents, each block of
# <n_agents> rows correspond to one time step
v_global_others.shape = (n_steps*self.n_agents, (self.n_agents-1)*self.l_state_one_agent)
v_global_concated = np.reshape(v_global, (n_steps, self.l_state))
state = np.repeat(v_global_concated, self.n_agents, axis=0)
return v_global_one_agent, v_global_others, state
def train_step(self, sess, batch, epsilon, idx_train,
summarize=False, writer=None):
# Each agent for each time step is now a batch entry
n_steps, state_env, state_agents, obs_others, obs_self_t, obs_self_v, actions_prev_1hot, actions_1hot, actions_others_1hot, reward, reward_local, state_env_next, state_agents_next, obs_others_next, obs_self_t_next, obs_self_v_next, done, goals = self.process_batch(batch)
goals_all = np.reshape(goals, (n_steps, self.n_agents*self.l_goal))
goals_self, goals_others = self.process_goals(goals, n_steps)
state_agents_next =
|
np.reshape(state_agents_next, (n_steps, self.l_state))
|
numpy.reshape
|
#!/usr/bin/env python3
import numpy as np
import scipy.signal
import sys
def rand_matrix(N, M, seed):
return np.arange(seed, seed+N*M, dtype=np.float64).reshape(N, M) * 3.141
def emit(name, array, alignment='3'):
print(".global %s" % name)
print(".align " + alignment)
print("%s:" % name)
bs = array.tobytes()
for i in range(0, len(bs), 4):
s = ""
for n in range(4):
s += "%02x" % bs[i+3-n]
print(" .word 0x%s" % s)
# Define the filter size
if len(sys.argv) > 1:
filter_size = int(sys.argv[1])
# Filter size must be odd
assert(filter_size % 2 == 1), "The filter size must be an odd integer number"
else:
filter_size = 3
# Input image
M = 64
N = 64
padding = int(filter_size/2)
M_pad = M + 2*padding
N_pad = N + 2*padding
assert(M % 4 == 0), "Output image dimension must be divisible by 4, pad the input image accordingly"
assert(N % 4 == 0), "Output image dimension must be divisible by 4, pad the input image accordingly"
# Generate a random int64 input padded image
image = np.around(rand_matrix(M_pad, N_pad, 1)).astype(np.int64)
np.random.shuffle(image.flat)
# Generate a random int64 filter
gen_filter = np.around(rand_matrix(filter_size, filter_size, 0)).astype(np.int64)
np.random.shuffle(gen_filter.flat)
# Create the empty o matrix
empty_o = np.zeros((M, N)).astype(np.int64)
# Calculate the output matrix
result = np.around(scipy.signal.convolve2d(np.flip(gen_filter), image, 'valid')).astype(np.int64) # https://stackoverflow.com/questions/41613155/what-does-scipy-signal-convolve2d-calculate
# Calculate a checksum
checksum = np.sum(result, dtype=np.int64)
# Print information on display
#print("Image:\n")
#print(image)
#print("Filter:\n")
#print(gen_filter)
#print("Results:\n")
#print(result)
#print("\n")
#print(checksum)
# Print information on file
print(".section .data,\"aw\",@progbits")
emit("M", np.array(M, dtype=np.uint64))
emit("N",
|
np.array(N, dtype=np.uint64)
|
numpy.array
|
# -*- coding: utf-8 -*-
"""
Copyright ©2017. The Regents of the University of California (Regents). All Rights Reserved.
Permission to use, copy, modify, and distribute this software and its documentation for educational,
research, and not-for-profit purposes, without fee and without a signed licensing agreement, is
hereby granted, provided that the above copyright notice, this paragraph and the following two
paragraphs appear in all copies, modifications, and distributions. Contact The Office of Technology
Licensing, UC Berkeley, 2150 Shattuck Avenue, Suite 510, Berkeley, CA 94720-1620, (510) 643-
7201, <EMAIL>, http://ipira.berkeley.edu/industry-info for commercial licensing opportunities.
IN NO EVENT SHALL REGENTS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF
THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF REGENTS HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
REGENTS SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE SOFTWARE AND ACCOMPANYING DOCUMENTATION, IF ANY, PROVIDED
HEREUNDER IS PROVIDED "AS IS". REGENTS HAS NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
"""
"""
Classes to encapsulate parallel-jaw grasps in image space
Author: <NAME>
"""
import numpy as np
from autolab_core import Point
from autolab_core import RigidTransform
from perception import CameraIntrinsics
class Grasp2D(object):
"""
Parallel-jaw grasp in image space.
Attributes
----------
center : :obj:`autolab_core.Point`
point in image space
angle : float
grasp axis angle with the camera x-axis
depth : float
depth of the grasp center in 3D space
width : float
distance between the jaws in meters
camera_intr : :obj:`perception.CameraIntrinsics`
frame of reference for camera that the grasp corresponds to
contact_points : list of :obj:`numpy.ndarray`
pair of contact points in image space
contact_normals : list of :obj:`numpy.ndarray`
pair of contact normals in image space
"""
def __init__(self, center, angle=0.0, depth=1.0, width=0.0, camera_intr=None,
contact_points=None, contact_normals=None):
self.center = center
self.angle = angle
self.depth = depth
self.width = width
# if camera_intr is none use default primesense camera intrinsics
if not camera_intr:
self.camera_intr = CameraIntrinsics('primesense_overhead', fx=525, fy=525, cx=319.5, cy=239.5, width=640, height=480)
else:
self.camera_intr = camera_intr
self.contact_points = contact_points
self.contact_normals = contact_normals
frame = 'image'
if camera_intr is not None:
frame = camera_intr.frame
if isinstance(center, np.ndarray):
self.center = Point(center, frame=frame)
@property
def axis(self):
""" Returns the grasp axis. """
return np.array([np.cos(self.angle), np.sin(self.angle)])
@property
def approach_axis(self):
return np.array([0,0,1])
@property
def approach_angle(self):
""" The angle between the grasp approach axis and camera optical axis. """
return 0.0
@property
def frame(self):
""" The name of the frame of reference for the grasp. """
if self.camera_intr is None:
raise ValueError('Must specify camera intrinsics')
return self.camera_intr.frame
@property
def width_px(self):
""" Returns the width in pixels. """
if self.camera_intr is None:
raise ValueError('Must specify camera intrinsics to compute gripper width in 3D space')
# form the jaw locations in 3D space at the given depth
p1 = Point(np.array([0, 0, self.depth]), frame=self.frame)
p2 = Point(np.array([self.width, 0, self.depth]), frame=self.frame)
# project into pixel space
u1 = self.camera_intr.project(p1)
u2 = self.camera_intr.project(p2)
return np.linalg.norm(u1.data - u2.data)
@property
def endpoints(self):
""" Returns the grasp endpoints """
p1 = self.center.data - (float(self.width_px) / 2) * self.axis
p2 = self.center.data + (float(self.width_px) / 2) * self.axis
return p1, p2
@property
def feature_vec(self):
""" Returns the feature vector for the grasp.
v = [p1, p2, depth]
where p1 and p2 are the jaw locations in image space
"""
p1, p2 = self.endpoints
return np.r_[p1, p2, self.depth]
@staticmethod
def from_feature_vec(v, width=0.0, camera_intr=None):
""" Creates a Grasp2D obj from a feature vector and additional parameters.
Parameters
----------
v : :obj:`numpy.ndarray`
feature vector, see Grasp2D.feature_vec
width : float
grasp opening width, in meters
camera_intr : :obj:`perception.CameraIntrinsics`
frame of reference for camera that the grasp corresponds to
"""
# read feature vec
p1 = v[:2]
p2 = v[2:4]
depth = v[4]
# compute center and angle
center_px = (p1 + p2) / 2
center = Point(center_px, camera_intr.frame)
axis = p2 - p1
if np.linalg.norm(axis) > 0:
axis = axis / np.linalg.norm(axis)
if axis[1] > 0:
angle = np.arccos(axis[0])
else:
angle = -np.arccos(axis[0])
return Grasp2D(center, angle, depth, width=width, camera_intr=camera_intr)
def pose(self, grasp_approach_dir=None):
""" Computes the 3D pose of the grasp relative to the camera.
If an approach direction is not specified then the camera
optical axis is used.
Parameters
----------
grasp_approach_dir : :obj:`numpy.ndarray`
approach direction for the grasp in camera basis (e.g. opposite to table normal)
Returns
-------
:obj:`autolab_core.RigidTransform`
the transformation from the grasp to the camera frame of reference
"""
# check intrinsics
if self.camera_intr is None:
raise ValueError('Must specify camera intrinsics to compute 3D grasp pose')
# compute 3D grasp center in camera basis
grasp_center_im = self.center.data
center_px_im = Point(grasp_center_im, frame=self.camera_intr.frame)
grasp_center_camera = self.camera_intr.deproject_pixel(self.depth, center_px_im)
grasp_center_camera = grasp_center_camera.data
# compute 3D grasp axis in camera basis
grasp_axis_im = self.axis
grasp_axis_im = grasp_axis_im / np.linalg.norm(grasp_axis_im)
grasp_axis_camera = np.array([grasp_axis_im[0], grasp_axis_im[1], 0])
grasp_axis_camera = grasp_axis_camera / np.linalg.norm(grasp_axis_camera)
# convert to 3D pose
grasp_rot_camera, _, _ = np.linalg.svd(grasp_axis_camera.reshape(3,1))
grasp_x_camera = grasp_approach_dir
if grasp_approach_dir is None:
grasp_x_camera = np.array([0,0,1]) # aligned with camera Z axis
grasp_y_camera = grasp_axis_camera
grasp_z_camera = np.cross(grasp_x_camera, grasp_y_camera)
grasp_z_camera = grasp_z_camera / np.linalg.norm(grasp_z_camera)
grasp_y_camera = np.cross(grasp_z_camera, grasp_x_camera)
grasp_rot_camera = np.array([grasp_x_camera, grasp_y_camera, grasp_z_camera]).T
if np.linalg.det(grasp_rot_camera) < 0: # fix possible reflections due to SVD
grasp_rot_camera[:,0] = -grasp_rot_camera[:,0]
T_grasp_camera = RigidTransform(rotation=grasp_rot_camera,
translation=grasp_center_camera,
from_frame='grasp',
to_frame=self.camera_intr.frame)
return T_grasp_camera
@staticmethod
def image_dist(g1, g2, alpha=1.0):
""" Computes the distance between grasps in image space.
Euclidean distance with alpha weighting of angles
Parameters
----------
g1 : :obj:`Grasp2D`
first grasp
g2 : :obj:`Grasp2D`
second grasp
alpha : float
weight of angle distance (rad to meters)
Returns
-------
float
distance between grasps
"""
# point to point distances
point_dist = np.linalg.norm(g1.center.data - g2.center.data)
# axis distances
dot = max(min(np.abs(g1.axis.dot(g2.axis)), 1.0), -1.0)
axis_dist = np.arccos(dot)
return point_dist + alpha * axis_dist
class SuctionPoint2D(object):
"""
Suction grasp in image space.
Attributes
----------
center : :obj:`autolab_core.Point`
point in image space
axis : :obj:`numpy.ndarray`
normalized 3-vector representing the direction of the suction tip
depth : float
depth of the suction point in 3D space
camera_intr : :obj:`perception.CameraIntrinsics`
frame of reference for camera that the suction point corresponds to
"""
def __init__(self, center, axis=None, depth=1.0, camera_intr=None):
if axis is None:
axis = np.array([0,0,1])
self.center = center
self.axis = axis
frame = 'image'
if camera_intr is not None:
frame = camera_intr.frame
if isinstance(center, np.ndarray):
self.center = Point(center, frame=frame)
if isinstance(axis, list):
self.axis = np.array(axis)
if np.abs(np.linalg.norm(self.axis) - 1.0) > 1e-3:
raise ValueError('Illegal axis. Must be norm 1.')
self.depth = depth
# if camera_intr is none use default primesense camera intrinsics
if not camera_intr:
self.camera_intr = CameraIntrinsics('primesense_overhead', fx=525, fy=525, cx=319.5, cy=239.5, width=640, height=480)
else:
self.camera_intr = camera_intr
@property
def frame(self):
""" The name of the frame of reference for the grasp. """
if self.camera_intr is None:
raise ValueError('Must specify camera intrinsics')
return self.camera_intr.frame
@property
def angle(self):
""" The angle that the grasp pivot axis makes in image space. """
rotation_axis = np.cross(self.axis, np.array([0,0,1]))
rotation_axis_image = np.array([rotation_axis[0], rotation_axis[1]])
angle = 0
if np.linalg.norm(rotation_axis) > 0:
rotation_axis_image = rotation_axis_image / np.linalg.norm(rotation_axis_image)
angle = np.arccos(rotation_axis_image[0])
if rotation_axis[1] < 0:
angle = -angle
return angle
@property
def approach_angle(self):
""" The angle between the grasp approach axis and camera optical axis. """
dot = max(min(self.axis.dot(np.array([0,0,1])), 1.0), -1.0)
return np.arccos(dot)
@property
def approach_axis(self):
return self.axis
@property
def feature_vec(self):
""" Returns the feature vector for the suction point.
v = [center, axis, depth]
"""
return self.center.data
@staticmethod
def from_feature_vec(v, camera_intr=None, depth=None, axis=None):
""" Creates a SuctionPoint2D obj from a feature vector and additional parameters.
Parameters
----------
v : :obj:`numpy.ndarray`
feature vector, see Grasp2D.feature_vec
camera_intr : :obj:`perception.CameraIntrinsics`
frame of reference for camera that the grasp corresponds to
depth : float
hard-set the depth for the suction grasp
axis : :obj:`numpy.ndarray`
normalized 3-vector specifying the approach direction
"""
# read feature vec
center_px = v[:2]
grasp_axis = np.array([0,0,-1])
if len(v.shape) > 2 and axis is None:
grasp_axis = v[2:5]
grasp_axis = grasp_axis / np.linalg.norm(grasp_axis)
elif axis is not None:
grasp_axis = axis
grasp_depth = 0.5
if v.shape[0] > 5 and depth is None:
grasp_depth = v[5]
elif depth is not None:
grasp_depth = depth
# compute center and angle
center = Point(center_px, camera_intr.frame)
return SuctionPoint2D(center,
grasp_axis,
grasp_depth,
camera_intr=camera_intr)
def pose(self):
""" Computes the 3D pose of the grasp relative to the camera.
Returns
-------
:obj:`autolab_core.RigidTransform`
the transformation from the grasp to the camera frame of reference
"""
# check intrinsics
if self.camera_intr is None:
raise ValueError('Must specify camera intrinsics to compute 3D grasp pose')
# compute 3D grasp center in camera basis
suction_center_im = self.center.data
center_px_im = Point(suction_center_im, frame=self.camera_intr.frame)
suction_center_camera = self.camera_intr.deproject_pixel(self.depth, center_px_im)
suction_center_camera = suction_center_camera.data
# compute 3D grasp axis in camera basis
suction_axis_camera = self.axis
# convert to 3D pose
suction_x_camera = suction_axis_camera
suction_z_camera =
|
np.array([-suction_x_camera[1], suction_x_camera[0], 0])
|
numpy.array
|
import random
import math
import numpy as np;
import matplotlib.pyplot as plt;
# Flame Shaped Dataset
def generator1():
rad = 2
num = 300
t = np.random.uniform(0.0, 2.0*np.pi, num)
r = rad * np.sqrt(np.random.uniform(0.0, 1.0, num))
x1 = r * np.cos(t)+ np.random.uniform(0.0,0.6,300)
y1 = r * np.sin(t)+ np.random.uniform(0.0,0.6,300)
size = 4;
dom = 0.125*3.14 + np.random.uniform(0.0,0.6,300)*1.25*3.14;
x2= size*np.sin(dom) + np.random.uniform(0,2,300)*0.4;
y2= size*np.cos(dom.T) + np.random.uniform(0,2,300)*0.4;
cluster1 =[[0.0 for i in range(0,300)]for j in range(0,2)];
cluster1[0] = x1;
cluster1[1] = y1;
cluster2 =[[0.0 for i in range(0,300)]for j in range(0,2)];
cluster2[0] = x2;
cluster2[1] = y2;
cluster1 = np.array(cluster1);
cluster2 = np.array(cluster2);
cluster1 = cluster1.T;
cluster2 = cluster2.T;
input_array = np.concatenate((cluster1,cluster2),axis=0);
return input_array;
def gen_res_1(input_array,result1,result2):
cluster1 = [[0 for i in range(0,2)]for j in range(0,300)];
cluster2 = [[0 for i in range(0,2)]for j in range(0,300)];
result1 = np.array(result1);
result2 = np.array(result2);
result1 = result1.T;
result2 = result2.T;
f1= plt.figure(1);
for i in range(0,300):
cluster1[i] = input_array[i];
j=0;
for i in range(300,600):
cluster2[j] = input_array[i];
j=j+1;
print (input_array.shape);
plt.title("Result 1");
plt.scatter(result1[0],result1[1],marker='^');
plt.scatter(result2[0],result2[1],marker='+');
cluster1 = np.array(cluster1);
cluster2=
|
np.array(cluster2)
|
numpy.array
|
import pydart2 as pydart
from SkateUtils.NonHolonomicWorld import NHWorldV3
import numpy as np
import gym
import gym.spaces
import copy
from skate_cma.BSpline import BSpline
from skate_cma.PenaltyType import PenaltyType
from PyCommon.modules.Math import mmMath as mm
class SkateDartEnv(gym.Env):
def __init__(self, env_name='speed_skating'):
self.world = NHWorldV3(1./1200., '../data/skel/skater_3dof_with_ground.skel')
self.world.control_skel = self.world.skeletons[1]
self.skel = self.world.skeletons[1]
# self.Kp, self.Kd = 400., 40.
# self.Kp, self.Kd = 1000., 60.
self.Kp, self.Kd = 600., 49.
self.torque_max = 1000.
self.total_time = 1.
self.env_name = env_name
self.ref_motion = None # type: ym.Motion
self.ref_world = NHWorldV3(1./1200., '../data/skel/skater_3dof_with_ground.skel')
self.ref_skel = self.ref_world.skeletons[1]
# revise_pose(self.world.skeletons[1], self.ref_root_state)
self.bs = BSpline()
self.bs_ori = BSpline()
self.step_per_frame = 40
self.w_cv = 1.
self.exp_cv = 2.
self.body_num = self.skel.num_bodynodes()
self.phase_frame = 0
self.penalty_type_on = [None] * len(PenaltyType)
self.penalty_type_weight = [1.] * len(PenaltyType)
self.com_init = np.zeros(3)
self.state_duration = 0
self.recent_torque_sum = 0.
self.recent_ori_q = np.zeros_like(self.skel.q)
def set_penalty(self, penalty_option, penalty_weight):
self.penalty_type_on = copy.deepcopy(penalty_option)
self.penalty_type_weight = copy.deepcopy(penalty_weight)
def save_com_init(self):
self.com_init = self.skel.com()
def calc_angular_momentum(self, pos):
am = np.zeros(3)
for body in self.skel.bodynodes:
am += body.mass() * mm.cross(body.com() - pos, body.com_linear_velocity())
am += np.dot(body.inertia(), body.world_angular_velocity())
return am
def penalty_instant(self):
E = 0.
E += self.penalty_type_weight[PenaltyType.TORQUE] * self.recent_torque_sum
# E += 1e-4 * np.sum(np.square(self.skel.position_differences(self.skel.q, self.recent_ori_q)[6:]))
if self.penalty_type_on[PenaltyType.COM_HEIGHT] is not None:
E += self.penalty_type_weight[PenaltyType.COM_HEIGHT] \
* np.square(self.penalty_type_on[PenaltyType.COM_HEIGHT] - self.skel.com()[1])
if self.penalty_type_on[PenaltyType.LEFT_FOOT_CONTACT] is not None:
E += self.penalty_type_weight[PenaltyType.LEFT_FOOT_CONTACT] \
* np.square(self.skel.body('h_blade_left').to_world([0., -0.0486, 0.])[1])
if self.penalty_type_on[PenaltyType.RIGHT_FOOT_CONTACT] is not None:
E += self.penalty_type_weight[PenaltyType.RIGHT_FOOT_CONTACT] \
* np.square(self.skel.body('h_blade_right').to_world([0., -0.0486, 0.])[1])
if self.penalty_type_on[PenaltyType.LEFT_FOOT_TOE_CONTACT] is not None:
E += self.penalty_type_weight[PenaltyType.LEFT_FOOT_TOE_CONTACT] \
* np.square(self.skel.body('h_blade_left').to_world([0.1256, -0.0486, 0.])[1])
if self.penalty_type_on[PenaltyType.RIGHT_FOOT_TOE_CONTACT] is not None:
E += self.penalty_type_weight[PenaltyType.RIGHT_FOOT_TOE_CONTACT] \
* np.square(self.skel.body('h_blade_right').to_world([0.1256, -0.0486, 0.])[1])
if self.penalty_type_on[PenaltyType.COM_IN_LEFT_RIGHT_CENTER] is not None:
com_projected = self.skel.com()
com_projected[1] = 0.
centroid = .5 * (self.skel.body('h_blade_left').to_world([0.0216, -0.0486, 0.]) + self.skel.body('h_blade_right').to_world([0.0216, -0.0486, 0.]))
centroid[1] = 0.
E += self.penalty_type_weight[PenaltyType.COM_IN_LEFT_RIGHT_CENTER] \
* np.sum(np.square(com_projected - centroid))
if self.penalty_type_on[PenaltyType.COM_IN_LEFT_FOOT] is not None:
com_projected = self.skel.com()
com_projected[1] = 0.
centroid = self.skel.body('h_blade_left').to_world([0.0216, -0.0486, 0.])
centroid[1] = 0.
E += self.penalty_type_weight[PenaltyType.COM_IN_LEFT_FOOT] \
* np.sum(np.square(com_projected - centroid))
if self.penalty_type_on[PenaltyType.COM_IN_RIGHT_FOOT] is not None:
com_projected = self.skel.com()
com_projected[1] = 0.
centroid = self.skel.body('h_blade_right').to_world([0.0216, -0.0486, 0.])
centroid[1] = 0.
E += self.penalty_type_weight[PenaltyType.COM_IN_RIGHT_FOOT] \
* np.sum(np.square(com_projected - centroid))
if self.penalty_type_on[PenaltyType.COM_IN_RIGHT_FOOT_TOE] is not None:
com_projected = self.skel.com()
com_projected[1] = 0.
centroid = self.skel.body('h_blade_right').to_world([0.1256, -0.0486, 0.])
centroid[1] = 0.
E += self.penalty_type_weight[PenaltyType.COM_IN_RIGHT_FOOT_TOE] \
* np.sum(np.square(com_projected - centroid))
if self.penalty_type_on[PenaltyType.COM_IN_LEFT_FOOT_TOE] is not None:
com_projected = self.skel.com()
com_projected[1] = 0.
centroid = self.skel.body('h_blade_left').to_world([0.1256, -0.0486, 0.])
centroid[1] = 0.
E += self.penalty_type_weight[PenaltyType.COM_IN_LEFT_FOOT_TOE] \
* np.sum(np.square(com_projected - centroid))
if self.penalty_type_on[PenaltyType.COM_IN_HEAD] is not None:
com_projected = self.skel.com()
com_projected[1] = 0.
centroid = self.skel.body('h_head').to_world([0., 0.07825, 0.])
centroid[1] = 0.
E += self.penalty_type_weight[PenaltyType.COM_IN_HEAD] \
* np.sum(np.square(com_projected - centroid))
if self.penalty_type_on[PenaltyType.MAX_Y_ANGULAR_MOMENTUM] is not None:
E -= self.penalty_type_weight[PenaltyType.MAX_Y_ANGULAR_MOMENTUM] \
* np.square(self.calc_angular_momentum(self.skel.com())[1]) / (self.skel.mass() * self.skel.mass())
if self.penalty_type_on[PenaltyType.COM_VEL] is not None:
E += self.penalty_type_weight[PenaltyType.COM_VEL] \
* np.sum(np.square(self.skel.com_velocity() - self.penalty_type_on[PenaltyType.COM_VEL]))
if self.penalty_type_on[PenaltyType.PELVIS_HEADING] is not None:
heading_des = mm.normalize2(self.penalty_type_on[PenaltyType.PELVIS_HEADING])
heading_cur = np.dot(self.skel.body('h_pelvis').world_transform()[:3, :3], mm.unitX())
E += self.penalty_type_weight[PenaltyType.PELVIS_HEADING] \
* np.sum(np.square(heading_cur - heading_des))
if self.penalty_type_on[PenaltyType.COM_VEL_DIR_WITH_PELVIS_LOCAL] is not None:
R_pelvis = self.skel.body('h_pelvis').world_transform()[:3, :3]
com_vel_dir_des =
|
np.asarray(self.penalty_type_on[PenaltyType.COM_VEL_DIR_WITH_PELVIS_LOCAL])
|
numpy.asarray
|
# coding=utf-8
import PIL.Image
import matplotlib.image as mpimg
import scipy.ndimage
import cv2 # For Sobel etc
import glob
import numpy as np
import matplotlib.pyplot as plt
import os
import tensorflow as tf
import time
import sys
import skvideo.io
np.set_printoptions(suppress=True, linewidth=200) # Better printing of arrays
# Set up model
featureA = tf.feature_column.numeric_column("x", shape=[11,11], dtype=tf.uint8)
estimator = tf.estimator.DNNClassifier(
feature_columns=[featureA],
hidden_units=[256, 32],
n_classes=2,
dropout=0.1,
model_dir='./xcorner_model_6k',
)
# Saddle
def getSaddle(gray_img):
img = gray_img.astype(np.float64)
gx = cv2.Sobel(img,cv2.CV_64F,1,0)
gy = cv2.Sobel(img,cv2.CV_64F,0,1)
gxx = cv2.Sobel(gx,cv2.CV_64F,1,0)
gyy = cv2.Sobel(gy,cv2.CV_64F,0,1)
gxy = cv2.Sobel(gx,cv2.CV_64F,0,1)
S = gxx*gyy - gxy**2
return S
# void nonmaxSupress(Mat &img) {
# int dilation_size = 5;
# Mat img_dilate;
# Mat peaks;
# Mat notPeaks;
# Mat nonzeroImg;
# Mat element = getStructuringElement(MORPH_RECT,
# Size( 2*dilation_size + 1, 2*dilation_size+1 ),
# Point( dilation_size, dilation_size ) );
# // Dilate max value by window size
# dilate(img, img_dilate, element);
# // Compare and find where values of dilated vs original image are NOT the same.
# compare(img, img_dilate, peaks, CMP_EQ);
# // compare(img, img_dilate, notPeaks, CMP_NE);
# compare(img, 0, nonzeroImg, CMP_NE);
# bitwise_and(nonzeroImg, peaks, peaks); // Only keep peaks that are non-zero
# // Remove peaks that are zero
# // Also set max to 255
# // compare(img, 0.8, nonzeroImg, CMP_GT);
# // bitwise_and(nonzeroImg, peaks, peaks); // Only keep peaks that are non-zero
# // bitwise_not(peaks, notPeaks);
# // Set all values where not the same to zero. Non-max suppress.
# bitwise_not(peaks, notPeaks);
# img.setTo(0, notPeaks);
# // img.setTo(255, peaks);
# }
def fast_nonmax_sup(img, win=21):
element = np.ones([win, win], np.uint8)
img_dilate = cv2.dilate(img, element)
peaks = cv2.compare(img, img_dilate, cv2.CMP_EQ)
# nonzeroImg = cv2.compare(img, 0, cv2.CMP_NE)
# peaks = cv2.bitwise_and(peaks, nonzeroImg)
peaks[img == 0] = 0
# notPeaks = cv2.bitwise_not(peaks)
img[peaks == 0] = 0
return img
def nonmax_sup(img, win=10):
w, h = img.shape
# img = cv2.blur(img, ksize=(5,5))
img_sup = np.zeros_like(img, dtype=np.float64)
for i,j in np.argwhere(img):
# Get neigborhood
ta=max(0,i-win)
tb=min(w,i+win+1)
tc=max(0,j-win)
td=min(h,j+win+1)
cell = img[ta:tb,tc:td]
val = img[i,j]
# if np.sum(cell.max() == cell) > 1:
# print(cell.argmax())
if cell.max() == val:
img_sup[i,j] = val
return img_sup
def pruneSaddle(s):
thresh = 128
score = (s>0).sum()
while (score > 10000):
thresh = thresh*2
s[s<thresh] = 0
score = (s>0).sum()
def loadImage(filepath):
img_orig = PIL.Image.open(filepath)
img_width, img_height = img_orig.size
# Resize
aspect_ratio = min(500.0/img_width, 500.0/img_height)
new_width, new_height = ((np.array(img_orig.size) * aspect_ratio)).astype(int)
img = img_orig.resize((new_width,new_height), resample=PIL.Image.BILINEAR)
gray_img = img.convert('L') # grayscale
img = np.array(img)
gray_img =
|
np.array(gray_img)
|
numpy.array
|
import numpy as np
import math
def disorient_symm_props(mis_quat_fz, lat_pt_grp, x_tol=1e-04):
"""
Returns the point group and the principle axes for fundamental zone of underlying bicrystal symmetry.
This method takes only one value for lat_pt_grp == 'O_h', i.e. the function is written for bcc and fcc
crystals only.
Based on the location of the mis_quat_fz in the quaternion hypersphere (4-D), the point group symmetry
of the bicrystal is determined.
Parameters
-----------
mis_quat_fz: numpy.array
A quaternion array with size (5 x 1)
The quaternion is created from the misorientation of the sigma value for the grain boundary.
The misorientation is defined in the orthogonal reference frame of lower crystal 1 (po1).
lat_pt_grp: The point group symmetry of the crystal.
string with allowed value 'Oh'
x_tol: float
Tolerance value to check various conditions in the function, default value==1e-04
Returns
--------
bp_symm_grp: str
The point group symmetry of bicrystal. python string with allowed
values 'Cs', 'C2h', 'D3d', 'D2h', 'D4h', 'D6h', 'D8h' and 'Oh'
x_g: int
First principle axes for the fundamental zone of the bicrystal.
y_g: int
Second principle axes for the fundamental zone of the bicrystal.
z_g: int
Third principle axes for the fundamental zone of the bicrystal.
"""
q0 = mis_quat_fz[0][0]
q1 = mis_quat_fz[1][0]
q2 = mis_quat_fz[2][0]
q3 = mis_quat_fz[3][0]
if lat_pt_grp == 'Oh':
k = math.sqrt(2) - 1
k1 = 1.0 / math.sqrt(1 + 2*k*k)
cond_0 = abs(q0 - 1) <= x_tol
pt_o = cond_0
if pt_o:
z_g = np.array([0, 0, 1])
x_g = np.array([1, 0, 0])
z_g = z_g/np.linalg.norm(z_g)
x_g = x_g/np.linalg.norm(x_g)
y_g = np.cross(z_g, x_g)
bp_symm_grp = 'Oh'
return x_g, y_g, z_g, bp_symm_grp
cond_0 = abs(q0 - math.cos(np.pi/8)) <= x_tol
cond_1 = abs(q1) <= x_tol
cond_2 = abs(q2) <= x_tol
cond_3 = abs(q3 - math.sin(np.pi/8)) <= x_tol
pt_a = cond_0 and cond_1 and cond_2 and cond_3
if pt_a:
z_g = np.array([1, 0, 0])
x_g = np.array([0, -q3, q0])
z_g = z_g/np.linalg.norm(z_g)
x_g = x_g/np.linalg.norm(x_g)
y_g = np.cross(z_g, x_g)
bp_symm_grp = 'D8h'
return x_g, y_g, z_g, bp_symm_grp
cond_0 = abs(q0 - math.sqrt(3)/2) <= x_tol
cond_1 = abs(q1 - 1/(2*math.sqrt(3))) <= x_tol
cond_2 = abs(q2 - 1/(2*math.sqrt(3))) <= x_tol
cond_3 = abs(q3 - 1/(2*math.sqrt(3))) <= x_tol
pt_e = cond_0 and cond_1 and cond_2 and cond_3
if pt_e:
z_g = np.array([1/math.sqrt(3), 1/math.sqrt(3), 1/math.sqrt(3)])
x_g = np.array([2/math.sqrt(3), -1/math.sqrt(3), -1/math.sqrt(3)])/math.sqrt(2)
z_g = z_g/np.linalg.norm(z_g)
x_g = x_g/np.linalg.norm(x_g)
y_g = np.cross(z_g, x_g)
bp_symm_grp = 'D6h'
return x_g, y_g, z_g, bp_symm_grp
cond_0 = abs(q0 - 1/(k*2*math.sqrt(2))) <= x_tol
cond_1 = abs(q1 - 1/(2*math.sqrt(2))) <= x_tol
cond_2 = abs(q2 - 1/(2*math.sqrt(2))) <= x_tol
cond_3 = abs(q3 - k/(2*math.sqrt(2))) <= x_tol
pt_c = cond_0 and cond_1 and cond_2 and cond_3
if pt_c:
z_g = np.array([0, -1/math.sqrt(2), 1/math.sqrt(2)])
x_g = np.array([1, 0, 0])
z_g = z_g/np.linalg.norm(z_g)
x_g = x_g/np.linalg.norm(x_g)
y_g =
|
np.cross(z_g, x_g)
|
numpy.cross
|
import mimetypes
import uuid
import _init_paths
import sys
from fast_rcnn.config import cfg
from fast_rcnn.test import im_detect
from utils.cython_nms import nms
from utils.timer import Timer
import numpy as np
import caffe, os, cv2
import argparse
import dlib
import falcon
from time import time
import estimate_cost
CLASSES = ('__background__',
'aeroplane', 'bicycle', 'bird', 'boat',
'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'pottedplant',
'sheep', 'sofa', 'train', 'tvmonitor')
def _generate_id():
return str(uuid.uuid4())
def read_synset(storage_path):
synset = ()
synset_path = os.path.join(storage_path, 'fastrcnn_synset')
with open(synset_path, "r") as f:
for line in f.readlines():
synset = synset + (line.rstrip(),)
return synset
def vis_detections(im, class_name, dets, thresh=0.8):
"""Draw detected bounding boxes."""
inds = np.where(dets[:, -1] >= thresh)[0]
if len(inds) == 0 or str(class_name).startswith('__background__'):
return
for i in inds:
bbox = dets[i, :4]
score = dets[i, -1]
cv2.rectangle(im, (bbox[0], bbox[1]), (bbox[2], bbox[3]),
(255, 0, 0), 2)
cv2.putText(im, '{:s} {:.3f}'.format(class_name, score),
(bbox[0], int(bbox[1] - 5)), cv2.FONT_HERSHEY_SIMPLEX,
1.0, (255, 0, 0), 2, cv2.LINE_AA)
return im
class Detect(object):
def __init__(self, storage_path):
self.storage_path = storage_path
def on_get(self, req, resp, name):
t1 = time()
names = name.split("&")
prototxt = os.path.join(cfg.ROOT_DIR, 'models/CaffeNet/test.prototxt')
caffemodel = os.path.join(cfg.ROOT_DIR,
'data/fast_rcnn_models/'
'caffenet_fast_rcnn_iter_40000.caffemodel')
if not os.path.isfile(caffemodel):
raise falcon.HTTPPreconditionFailed("Error", "Caffe model not found")
caffe.set_mode_cpu()
net = caffe.Net(prototxt, caffemodel, caffe.TEST)
classes = read_synset(self.storage_path)
ext = os.path.splitext(names[0])[1][1:]
image_path = os.path.join(self.storage_path, names[0])
im = cv2.imread(image_path)
rects = []
dlib.find_candidate_object_locations(im, rects, min_size=np.size(im, 1))
obj_proposals = np.empty((len(rects), 4), dtype=int)
for k, d in enumerate(rects):
obj_proposals[k] = [d.left(), d.top(), d.right(), d.bottom()]
scores, boxes = im_detect(net, im, obj_proposals)
CONF_THRESH = 0.9
NMS_THRESH = 0.3
for cls in classes:
if str(cls).startswith('__background__'):
continue
cls_ind = CLASSES.index(cls)
cls_boxes = boxes[:, 4 * cls_ind:4 * (cls_ind + 1)]
cls_scores = scores[:, cls_ind]
keep =
|
np.where(cls_scores >= CONF_THRESH)
|
numpy.where
|
import sys # only needed for command line argument to validate MATLAB port to Python
import numpy as np
import math
f1 = open('C:\\Users\\gtg498u\\Documents\\MATLAB\\trover\\thelat.txt', 'r')
thelat = f1.read()
f1.close()
f2 = open('C:\\Users\\gtg498u\\Documents\\MATLAB\\trover\\thelon.txt', 'r')
thelon = f2.read()
f2.close()
thelat = thelat.split(",");
thelon = thelon.split(",");
#print(len(thelat))
#print(len(thelon))
thelatt = [float(i) for i in thelat];
thelonn = [float(i) for i in thelon];
#print(thelatt[0]+100)
#print(thelonn[0]+100)
n1=len(thelatt);
n2=len(thelonn);
if (n1!=n2):
print('Lat and Lon vectors should have the same length');
def deg2utm(Lat,Lon):
# Memory pre-allocation
x=[]
y=[]
utmzone = [];
# Main Loop
#
la=Lat;
lo=Lon;
sa = 6378137.000000
sb = 6356752.314245
#e = ( ( ( sa ** 2 ) - ( sb ** 2 ) ) ** 0.5 ) / sa;
e2 = ( ( ( sa ** 2 ) - ( sb ** 2 ) ) ** 0.5 ) / sb;
e2cuadrada = e2 ** 2;
c = ( sa ** 2 ) / sb;
#alpha = ( sa - sb ) / sa; #f
#ablandamiento = 1 / alpha; # 1/f
lat = la * ( math.pi / 180 );
lon = lo * ( math.pi / 180 );
Huso = np.fix( ( lo / 6 ) + 31);
S = ( ( Huso * 6 ) - 183 );
deltaS = lon - ( S * ( math.pi / 180 ) );
Letra = ''
if (la<-72):
Letra='C';
elif (la<-64):
Letra='D';
elif (la<-56):
Letra='E';
elif (la<-48):
Letra='F';
elif (la<-40):
Letra='G';
elif (la<-32):
Letra='H';
elif (la<-24):
Letra='J';
elif (la<-16):
Letra='K';
elif (la<-8):
Letra='L';
elif (la<0):
Letra='M';
elif (la<8):
Letra='N';
elif (la<16):
Letra='P';
elif (la<24):
Letra='Q';
elif (la<32):
Letra='R';
elif (la<40):
Letra='S';
elif (la<48):
Letra='T';
elif (la<56):
Letra='U';
elif (la<64):
Letra='V';
elif (la<72):
Letra='W';
else:
Letra='X';
a = math.cos(lat) * math.sin(deltaS);
epsilon = 0.5 * math.log( ( 1 + a) / ( 1 - a ) );
nu = math.atan( math.tan(lat) / math.cos(deltaS) ) - lat;
v = ( c / ( ( 1 + ( e2cuadrada * ( math.cos(lat) ) ** 2 ) ) ) ** 0.5 ) * 0.9996;
ta = ( e2cuadrada / 2 ) * epsilon ** 2 * ( math.cos(lat) ) ** 2;
a1 = math.sin( 2 * lat );
a2 = a1 * ( math.cos(lat) ) ** 2;
j2 = lat + ( a1 / 2 );
j4 = ( ( 3 * j2 ) + a2 ) / 4;
j6 = ( ( 5 * j4 ) + ( a2 * ( math.cos(lat) ) ** 2) ) / 3;
alfa = ( 3 / 4 ) * e2cuadrada;
beta = ( 5 / 3 ) * alfa ** 2;
gama = ( 35 / 27 ) * alfa ** 3;
Bm = 0.9996 * c * ( lat - alfa * j2 + beta * j4 - gama * j6 );
xx = epsilon * v * ( 1 + ( ta / 3 ) ) + 500000;
yy = nu * v * ( 1 + ta ) + Bm;
if yy<0:
yy=9999999+yy;
x=xx;
y=yy;
utmzone = "%02d %c" % (Huso,Letra)
return x,y,utmzone
def mySmoothPoints(la,lo,spacing,utmz):
wla = []; wlo = []; u=[];
for i in range(len(la)-1):
w1 = np.array([[la[i+1]],[lo[i+1]]])
wi =
|
np.array([[la[i]],[lo[i]]])
|
numpy.array
|
#!/usr/bin/env python
"""Implementation of the Generalized Mallow Model. It's used for modeling
temporal relations within video collection of one complex activity. """
__author__ = '<NAME>'
__date__ = 'August 2018'
import numpy as np
class Mallow(object):
"""The Generalized Mallows Model"""
def __init__(self, K, rho_0=1.0, nu_0=0.1):
"""
Args:
K: number of subactions in current complex activity
"""
self._canon_ordering = None
# number of subactions
self._K = K
self.k = 0
self.rho = [1e-8] * (K - 1)
self.rho_0 = rho_0
self._nu_0 = nu_0
self._dispersion =
|
np.zeros((self._K, 1))
|
numpy.zeros
|
# -*- coding: utf-8 -*-
import numpy as np
import pytest
from numpy.random import RandomState
from numpy import nan
from datetime import datetime
from itertools import permutations
from pandas import (Series, Categorical, CategoricalIndex,
Timestamp, DatetimeIndex, Index, IntervalIndex)
import pandas as pd
from pandas import compat
from pandas._libs import (groupby as libgroupby, algos as libalgos,
hashtable as ht)
from pandas._libs.hashtable import unique_label_indices
from pandas.compat import lrange, range
import pandas.core.algorithms as algos
import pandas.core.common as com
import pandas.util.testing as tm
import pandas.util._test_decorators as td
from pandas.core.dtypes.dtypes import CategoricalDtype as CDT
from pandas.compat.numpy import np_array_datetime64_compat
from pandas.util.testing import assert_almost_equal
class TestMatch(object):
def test_ints(self):
values = np.array([0, 2, 1])
to_match = np.array([0, 1, 2, 2, 0, 1, 3, 0])
result = algos.match(to_match, values)
expected = np.array([0, 2, 1, 1, 0, 2, -1, 0], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
result = Series(algos.match(to_match, values, np.nan))
expected = Series(np.array([0, 2, 1, 1, 0, 2, np.nan, 0]))
tm.assert_series_equal(result, expected)
s = Series(np.arange(5), dtype=np.float32)
result = algos.match(s, [2, 4])
expected = np.array([-1, -1, 0, -1, 1], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
result = Series(algos.match(s, [2, 4], np.nan))
expected = Series(np.array([np.nan, np.nan, 0, np.nan, 1]))
tm.assert_series_equal(result, expected)
def test_strings(self):
values = ['foo', 'bar', 'baz']
to_match = ['bar', 'foo', 'qux', 'foo', 'bar', 'baz', 'qux']
result = algos.match(to_match, values)
expected = np.array([1, 0, -1, 0, 1, 2, -1], dtype=np.int64)
tm.assert_numpy_array_equal(result, expected)
result = Series(algos.match(to_match, values, np.nan))
expected = Series(np.array([1, 0, np.nan, 0, 1, 2, np.nan]))
tm.assert_series_equal(result, expected)
class TestFactorize(object):
def test_basic(self):
labels, uniques = algos.factorize(['a', 'b', 'b', 'a', 'a', 'c', 'c',
'c'])
tm.assert_numpy_array_equal(
uniques, np.array(['a', 'b', 'c'], dtype=object))
labels, uniques = algos.factorize(['a', 'b', 'b', 'a',
'a', 'c', 'c', 'c'], sort=True)
exp = np.array([0, 1, 1, 0, 0, 2, 2, 2], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array(['a', 'b', 'c'], dtype=object)
tm.assert_numpy_array_equal(uniques, exp)
labels, uniques = algos.factorize(list(reversed(range(5))))
exp = np.array([0, 1, 2, 3, 4], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array([4, 3, 2, 1, 0], dtype=np.int64)
tm.assert_numpy_array_equal(uniques, exp)
labels, uniques = algos.factorize(list(reversed(range(5))), sort=True)
exp = np.array([4, 3, 2, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array([0, 1, 2, 3, 4], dtype=np.int64)
tm.assert_numpy_array_equal(uniques, exp)
labels, uniques = algos.factorize(list(reversed(np.arange(5.))))
exp = np.array([0, 1, 2, 3, 4], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array([4., 3., 2., 1., 0.], dtype=np.float64)
tm.assert_numpy_array_equal(uniques, exp)
labels, uniques = algos.factorize(list(reversed(np.arange(5.))),
sort=True)
exp = np.array([4, 3, 2, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = np.array([0., 1., 2., 3., 4.], dtype=np.float64)
tm.assert_numpy_array_equal(uniques, exp)
def test_mixed(self):
# doc example reshaping.rst
x = Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
labels, uniques = algos.factorize(x)
exp = np.array([0, 0, -1, 1, 2, 3], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = Index(['A', 'B', 3.14, np.inf])
tm.assert_index_equal(uniques, exp)
labels, uniques = algos.factorize(x, sort=True)
exp = np.array([2, 2, -1, 3, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = Index([3.14, np.inf, 'A', 'B'])
tm.assert_index_equal(uniques, exp)
def test_datelike(self):
# M8
v1 = Timestamp('20130101 09:00:00.00004')
v2 = Timestamp('20130101')
x = Series([v1, v1, v1, v2, v2, v1])
labels, uniques = algos.factorize(x)
exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = DatetimeIndex([v1, v2])
tm.assert_index_equal(uniques, exp)
labels, uniques = algos.factorize(x, sort=True)
exp = np.array([1, 1, 1, 0, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
exp = DatetimeIndex([v2, v1])
tm.assert_index_equal(uniques, exp)
# period
v1 = pd.Period('201302', freq='M')
v2 = pd.Period('201303', freq='M')
x = Series([v1, v1, v1, v2, v2, v1])
# periods are not 'sorted' as they are converted back into an index
labels, uniques = algos.factorize(x)
exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2]))
labels, uniques = algos.factorize(x, sort=True)
exp = np.array([0, 0, 0, 1, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
tm.assert_index_equal(uniques, pd.PeriodIndex([v1, v2]))
# GH 5986
v1 = pd.to_timedelta('1 day 1 min')
v2 = pd.to_timedelta('1 day')
x = Series([v1, v2, v1, v1, v2, v2, v1])
labels, uniques = algos.factorize(x)
exp = np.array([0, 1, 0, 0, 1, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
tm.assert_index_equal(uniques, pd.to_timedelta([v1, v2]))
labels, uniques = algos.factorize(x, sort=True)
exp = np.array([1, 0, 1, 1, 0, 0, 1], dtype=np.intp)
tm.assert_numpy_array_equal(labels, exp)
tm.assert_index_equal(uniques, pd.to_timedelta([v2, v1]))
def test_factorize_nan(self):
# nan should map to na_sentinel, not reverse_indexer[na_sentinel]
# rizer.factorize should not raise an exception if na_sentinel indexes
# outside of reverse_indexer
key = np.array([1, 2, 1, np.nan], dtype='O')
rizer = ht.Factorizer(len(key))
for na_sentinel in (-1, 20):
ids = rizer.factorize(key, sort=True, na_sentinel=na_sentinel)
expected = np.array([0, 1, 0, na_sentinel], dtype='int32')
assert len(set(key)) == len(set(expected))
tm.assert_numpy_array_equal(pd.isna(key),
expected == na_sentinel)
# nan still maps to na_sentinel when sort=False
key = np.array([0, np.nan, 1], dtype='O')
na_sentinel = -1
# TODO(wesm): unused?
ids = rizer.factorize(key, sort=False, na_sentinel=na_sentinel) # noqa
expected = np.array([2, -1, 0], dtype='int32')
assert len(set(key)) == len(set(expected))
tm.assert_numpy_array_equal(pd.isna(key), expected == na_sentinel)
@pytest.mark.parametrize("data,expected_label,expected_level", [
(
[(1, 1), (1, 2), (0, 0), (1, 2), 'nonsense'],
[0, 1, 2, 1, 3],
[(1, 1), (1, 2), (0, 0), 'nonsense']
),
(
[(1, 1), (1, 2), (0, 0), (1, 2), (1, 2, 3)],
[0, 1, 2, 1, 3],
[(1, 1), (1, 2), (0, 0), (1, 2, 3)]
),
(
[(1, 1), (1, 2), (0, 0), (1, 2)],
[0, 1, 2, 1],
[(1, 1), (1, 2), (0, 0)]
)
])
def test_factorize_tuple_list(self, data, expected_label, expected_level):
# GH9454
result = pd.factorize(data)
tm.assert_numpy_array_equal(result[0],
np.array(expected_label, dtype=np.intp))
expected_level_array = com._asarray_tuplesafe(expected_level,
dtype=object)
tm.assert_numpy_array_equal(result[1], expected_level_array)
def test_complex_sorting(self):
# gh 12666 - check no segfault
# Test not valid numpy versions older than 1.11
if pd._np_version_under1p11:
pytest.skip("Test valid only for numpy 1.11+")
x17 = np.array([complex(i) for i in range(17)], dtype=object)
pytest.raises(TypeError, algos.factorize, x17[::-1], sort=True)
def test_uint64_factorize(self):
data = np.array([2**63, 1, 2**63], dtype=np.uint64)
exp_labels = np.array([0, 1, 0], dtype=np.intp)
exp_uniques = np.array([2**63, 1], dtype=np.uint64)
labels, uniques = algos.factorize(data)
tm.assert_numpy_array_equal(labels, exp_labels)
tm.assert_numpy_array_equal(uniques, exp_uniques)
data = np.array([2**63, -1, 2**63], dtype=object)
exp_labels = np.array([0, 1, 0], dtype=np.intp)
exp_uniques = np.array([2**63, -1], dtype=object)
labels, uniques = algos.factorize(data)
tm.assert_numpy_array_equal(labels, exp_labels)
tm.assert_numpy_array_equal(uniques, exp_uniques)
def test_deprecate_order(self):
# gh 19727 - check warning is raised for deprecated keyword, order.
# Test not valid once order keyword is removed.
data = np.array([2**63, 1, 2**63], dtype=np.uint64)
with tm.assert_produces_warning(expected_warning=FutureWarning):
algos.factorize(data, order=True)
with tm.assert_produces_warning(False):
algos.factorize(data)
@pytest.mark.parametrize('data', [
np.array([0, 1, 0], dtype='u8'),
np.array([-2**63, 1, -2**63], dtype='i8'),
np.array(['__nan__', 'foo', '__nan__'], dtype='object'),
])
def test_parametrized_factorize_na_value_default(self, data):
# arrays that include the NA default for that type, but isn't used.
l, u = algos.factorize(data)
expected_uniques = data[[0, 1]]
expected_labels = np.array([0, 1, 0], dtype=np.intp)
tm.assert_numpy_array_equal(l, expected_labels)
tm.assert_numpy_array_equal(u, expected_uniques)
@pytest.mark.parametrize('data, na_value', [
(np.array([0, 1, 0, 2], dtype='u8'), 0),
(np.array([1, 0, 1, 2], dtype='u8'), 1),
(np.array([-2**63, 1, -2**63, 0], dtype='i8'), -2**63),
(np.array([1, -2**63, 1, 0], dtype='i8'), 1),
(np.array(['a', '', 'a', 'b'], dtype=object), 'a'),
(np.array([(), ('a', 1), (), ('a', 2)], dtype=object), ()),
(np.array([('a', 1), (), ('a', 1), ('a', 2)], dtype=object),
('a', 1)),
])
def test_parametrized_factorize_na_value(self, data, na_value):
l, u = algos._factorize_array(data, na_value=na_value)
expected_uniques = data[[1, 3]]
expected_labels = np.array([-1, 0, -1, 1], dtype=np.intp)
tm.assert_numpy_array_equal(l, expected_labels)
tm.assert_numpy_array_equal(u, expected_uniques)
class TestUnique(object):
def test_ints(self):
arr = np.random.randint(0, 100, size=50)
result = algos.unique(arr)
assert isinstance(result, np.ndarray)
def test_objects(self):
arr = np.random.randint(0, 100, size=50).astype('O')
result = algos.unique(arr)
assert isinstance(result, np.ndarray)
def test_object_refcount_bug(self):
lst = ['A', 'B', 'C', 'D', 'E']
for i in range(1000):
len(algos.unique(lst))
def test_on_index_object(self):
mindex = pd.MultiIndex.from_arrays([np.arange(5).repeat(5), np.tile(
np.arange(5), 5)])
expected = mindex.values
expected.sort()
mindex = mindex.repeat(2)
result = pd.unique(mindex)
result.sort()
tm.assert_almost_equal(result, expected)
def test_datetime64_dtype_array_returned(self):
# GH 9431
expected = np_array_datetime64_compat(
['2015-01-03T00:00:00.000000000+0000',
'2015-01-01T00:00:00.000000000+0000'],
dtype='M8[ns]')
dt_index = pd.to_datetime(['2015-01-03T00:00:00.000000000+0000',
'2015-01-01T00:00:00.000000000+0000',
'2015-01-01T00:00:00.000000000+0000'])
result = algos.unique(dt_index)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
s = Series(dt_index)
result = algos.unique(s)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
arr = s.values
result = algos.unique(arr)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
def test_timedelta64_dtype_array_returned(self):
# GH 9431
expected = np.array([31200, 45678, 10000], dtype='m8[ns]')
td_index = pd.to_timedelta([31200, 45678, 31200, 10000, 45678])
result = algos.unique(td_index)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
s = Series(td_index)
result = algos.unique(s)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
arr = s.values
result = algos.unique(arr)
tm.assert_numpy_array_equal(result, expected)
assert result.dtype == expected.dtype
def test_uint64_overflow(self):
s = Series([1, 2, 2**63, 2**63], dtype=np.uint64)
exp = np.array([1, 2, 2**63], dtype=np.uint64)
tm.assert_numpy_array_equal(algos.unique(s), exp)
def test_nan_in_object_array(self):
l = ['a', np.nan, 'c', 'c']
result = pd.unique(l)
expected = np.array(['a', np.nan, 'c'], dtype=object)
tm.assert_numpy_array_equal(result, expected)
def test_categorical(self):
# we are expecting to return in the order
# of appearance
expected = Categorical(list('bac'), categories=list('bac'))
# we are expecting to return in the order
# of the categories
expected_o = Categorical(
list('bac'), categories=list('abc'), ordered=True)
# GH 15939
c = Categorical(list('baabc'))
result = c.unique()
tm.assert_categorical_equal(result, expected)
result = algos.unique(c)
tm.assert_categorical_equal(result, expected)
c = Categorical(list('baabc'), ordered=True)
result = c.unique()
tm.assert_categorical_equal(result, expected_o)
result = algos.unique(c)
tm.assert_categorical_equal(result, expected_o)
# Series of categorical dtype
s = Series(Categorical(list('baabc')), name='foo')
result = s.unique()
tm.assert_categorical_equal(result, expected)
result = pd.unique(s)
tm.assert_categorical_equal(result, expected)
# CI -> return CI
ci = CategoricalIndex(Categorical(list('baabc'),
categories=list('bac')))
expected = CategoricalIndex(expected)
result = ci.unique()
tm.assert_index_equal(result, expected)
result = pd.unique(ci)
tm.assert_index_equal(result, expected)
def test_datetime64tz_aware(self):
# GH 15939
result = Series(
Index([Timestamp('20160101', tz='US/Eastern'),
Timestamp('20160101', tz='US/Eastern')])).unique()
expected = np.array([Timestamp('2016-01-01 00:00:00-0500',
tz='US/Eastern')], dtype=object)
tm.assert_numpy_array_equal(result, expected)
result = Index([Timestamp('20160101', tz='US/Eastern'),
Timestamp('20160101', tz='US/Eastern')]).unique()
expected = DatetimeIndex(['2016-01-01 00:00:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
tm.assert_index_equal(result, expected)
result = pd.unique(
Series(Index([Timestamp('20160101', tz='US/Eastern'),
Timestamp('20160101', tz='US/Eastern')])))
expected = np.array([Timestamp('2016-01-01 00:00:00-0500',
tz='US/Eastern')], dtype=object)
tm.assert_numpy_array_equal(result, expected)
result = pd.unique(Index([Timestamp('20160101', tz='US/Eastern'),
Timestamp('20160101', tz='US/Eastern')]))
expected = DatetimeIndex(['2016-01-01 00:00:00'],
dtype='datetime64[ns, US/Eastern]', freq=None)
tm.assert_index_equal(result, expected)
def test_order_of_appearance(self):
# 9346
# light testing of guarantee of order of appearance
# these also are the doc-examples
result = pd.unique(Series([2, 1, 3, 3]))
tm.assert_numpy_array_equal(result,
np.array([2, 1, 3], dtype='int64'))
result = pd.unique(Series([2] + [1] * 5))
tm.assert_numpy_array_equal(result,
np.array([2, 1], dtype='int64'))
result = pd.unique(Series([Timestamp('20160101'),
Timestamp('20160101')]))
expected = np.array(['2016-01-01T00:00:00.000000000'],
dtype='datetime64[ns]')
tm.assert_numpy_array_equal(result, expected)
result = pd.unique(Index(
[Timestamp('20160101', tz='US/Eastern'),
Timestamp('20160101', tz='US/Eastern')]))
expected = DatetimeIndex(['2016-01-01 00:00:00'],
dtype='datetime64[ns, US/Eastern]',
freq=None)
tm.assert_index_equal(result, expected)
result = pd.unique(list('aabc'))
expected = np.array(['a', 'b', 'c'], dtype=object)
tm.assert_numpy_array_equal(result, expected)
result = pd.unique(Series(Categorical(list('aabc'))))
expected = Categorical(list('abc'))
tm.assert_categorical_equal(result, expected)
@pytest.mark.parametrize("arg ,expected", [
(('1', '1', '2'), np.array(['1', '2'], dtype=object)),
(('foo',), np.array(['foo'], dtype=object))
])
def test_tuple_with_strings(self, arg, expected):
# see GH 17108
result = pd.unique(arg)
tm.assert_numpy_array_equal(result, expected)
class TestIsin(object):
def test_invalid(self):
pytest.raises(TypeError, lambda: algos.isin(1, 1))
pytest.raises(TypeError, lambda: algos.isin(1, [1]))
pytest.raises(TypeError, lambda: algos.isin([1], 1))
def test_basic(self):
result = algos.isin([1, 2], [1])
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(np.array([1, 2]), [1])
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series([1, 2]), [1])
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series([1, 2]), Series([1]))
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series([1, 2]), set([1]))
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(['a', 'b'], ['a'])
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series(['a', 'b']), Series(['a']))
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(Series(['a', 'b']), set(['a']))
expected = np.array([True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(['a', 'b'], [1])
expected = np.array([False, False])
tm.assert_numpy_array_equal(result, expected)
def test_i8(self):
arr = pd.date_range('20130101', periods=3).values
result = algos.isin(arr, [arr[0]])
expected = np.array([True, False, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(arr, arr[0:2])
expected = np.array([True, True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(arr, set(arr[0:2]))
expected = np.array([True, True, False])
tm.assert_numpy_array_equal(result, expected)
arr = pd.timedelta_range('1 day', periods=3).values
result = algos.isin(arr, [arr[0]])
expected = np.array([True, False, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(arr, arr[0:2])
expected = np.array([True, True, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.isin(arr, set(arr[0:2]))
expected = np.array([True, True, False])
tm.assert_numpy_array_equal(result, expected)
def test_large(self):
s = pd.date_range('20000101', periods=2000000, freq='s').values
result = algos.isin(s, s[0:2])
expected = np.zeros(len(s), dtype=bool)
expected[0] = True
expected[1] = True
tm.assert_numpy_array_equal(result, expected)
def test_categorical_from_codes(self):
# GH 16639
vals = np.array([0, 1, 2, 0])
cats = ['a', 'b', 'c']
Sd = Series(Categorical(1).from_codes(vals, cats))
St = Series(Categorical(1).from_codes(np.array([0, 1]), cats))
expected = np.array([True, True, False, True])
result = algos.isin(Sd, St)
tm.assert_numpy_array_equal(expected, result)
@pytest.mark.parametrize("empty", [[], Series(), np.array([])])
def test_empty(self, empty):
# see gh-16991
vals = Index(["a", "b"])
expected = np.array([False, False])
result = algos.isin(vals, empty)
tm.assert_numpy_array_equal(expected, result)
class TestValueCounts(object):
def test_value_counts(self):
np.random.seed(1234)
from pandas.core.reshape.tile import cut
arr = np.random.randn(4)
factor = cut(arr, 4)
# assert isinstance(factor, n)
result = algos.value_counts(factor)
breaks = [-1.194, -0.535, 0.121, 0.777, 1.433]
index = IntervalIndex.from_breaks(breaks).astype(CDT(ordered=True))
expected = Series([1, 1, 1, 1], index=index)
tm.assert_series_equal(result.sort_index(), expected.sort_index())
def test_value_counts_bins(self):
s = [1, 2, 3, 4]
result = algos.value_counts(s, bins=1)
expected = Series([4],
index=IntervalIndex.from_tuples([(0.996, 4.0)]))
tm.assert_series_equal(result, expected)
result = algos.value_counts(s, bins=2, sort=False)
expected = Series([2, 2],
index=IntervalIndex.from_tuples([(0.996, 2.5),
(2.5, 4.0)]))
tm.assert_series_equal(result, expected)
def test_value_counts_dtypes(self):
result = algos.value_counts([1, 1.])
assert len(result) == 1
result = algos.value_counts([1, 1.], bins=1)
assert len(result) == 1
result = algos.value_counts(Series([1, 1., '1'])) # object
assert len(result) == 2
pytest.raises(TypeError, lambda s: algos.value_counts(s, bins=1),
['1', 1])
def test_value_counts_nat(self):
td = Series([np.timedelta64(10000), pd.NaT], dtype='timedelta64[ns]')
dt = pd.to_datetime(['NaT', '2014-01-01'])
for s in [td, dt]:
vc = algos.value_counts(s)
vc_with_na = algos.value_counts(s, dropna=False)
assert len(vc) == 1
assert len(vc_with_na) == 2
exp_dt = Series({Timestamp('2014-01-01 00:00:00'): 1})
tm.assert_series_equal(algos.value_counts(dt), exp_dt)
# TODO same for (timedelta)
def test_value_counts_datetime_outofbounds(self):
# GH 13663
s = Series([datetime(3000, 1, 1), datetime(5000, 1, 1),
datetime(5000, 1, 1), datetime(6000, 1, 1),
datetime(3000, 1, 1), datetime(3000, 1, 1)])
res = s.value_counts()
exp_index = Index([datetime(3000, 1, 1), datetime(5000, 1, 1),
datetime(6000, 1, 1)], dtype=object)
exp = Series([3, 2, 1], index=exp_index)
tm.assert_series_equal(res, exp)
# GH 12424
res = pd.to_datetime(Series(['2362-01-01', np.nan]),
errors='ignore')
exp = Series(['2362-01-01', np.nan], dtype=object)
tm.assert_series_equal(res, exp)
def test_categorical(self):
s = Series(Categorical(list('aaabbc')))
result = s.value_counts()
expected = Series([3, 2, 1], index=CategoricalIndex(['a', 'b', 'c']))
tm.assert_series_equal(result, expected, check_index_type=True)
# preserve order?
s = s.cat.as_ordered()
result = s.value_counts()
expected.index = expected.index.as_ordered()
tm.assert_series_equal(result, expected, check_index_type=True)
def test_categorical_nans(self):
s = Series(Categorical(list('aaaaabbbcc'))) # 4,3,2,1 (nan)
s.iloc[1] = np.nan
result = s.value_counts()
expected = Series([4, 3, 2], index=CategoricalIndex(
['a', 'b', 'c'], categories=['a', 'b', 'c']))
tm.assert_series_equal(result, expected, check_index_type=True)
result = s.value_counts(dropna=False)
expected = Series([
4, 3, 2, 1
], index=CategoricalIndex(['a', 'b', 'c', np.nan]))
tm.assert_series_equal(result, expected, check_index_type=True)
# out of order
s = Series(Categorical(
list('aaaaabbbcc'), ordered=True, categories=['b', 'a', 'c']))
s.iloc[1] = np.nan
result = s.value_counts()
expected = Series([4, 3, 2], index=CategoricalIndex(
['a', 'b', 'c'], categories=['b', 'a', 'c'], ordered=True))
tm.assert_series_equal(result, expected, check_index_type=True)
result = s.value_counts(dropna=False)
expected = Series([4, 3, 2, 1], index=CategoricalIndex(
['a', 'b', 'c', np.nan], categories=['b', 'a', 'c'], ordered=True))
tm.assert_series_equal(result, expected, check_index_type=True)
def test_categorical_zeroes(self):
# keep the `d` category with 0
s = Series(Categorical(
list('bbbaac'), categories=list('abcd'), ordered=True))
result = s.value_counts()
expected = Series([3, 2, 1, 0], index=Categorical(
['b', 'a', 'c', 'd'], categories=list('abcd'), ordered=True))
tm.assert_series_equal(result, expected, check_index_type=True)
def test_dropna(self):
# https://github.com/pandas-dev/pandas/issues/9443#issuecomment-73719328
tm.assert_series_equal(
Series([True, True, False]).value_counts(dropna=True),
Series([2, 1], index=[True, False]))
tm.assert_series_equal(
Series([True, True, False]).value_counts(dropna=False),
Series([2, 1], index=[True, False]))
tm.assert_series_equal(
Series([True, True, False, None]).value_counts(dropna=True),
Series([2, 1], index=[True, False]))
tm.assert_series_equal(
Series([True, True, False, None]).value_counts(dropna=False),
Series([2, 1, 1], index=[True, False, np.nan]))
tm.assert_series_equal(
Series([10.3, 5., 5.]).value_counts(dropna=True),
Series([2, 1], index=[5., 10.3]))
tm.assert_series_equal(
Series([10.3, 5., 5.]).value_counts(dropna=False),
Series([2, 1], index=[5., 10.3]))
tm.assert_series_equal(
Series([10.3, 5., 5., None]).value_counts(dropna=True),
Series([2, 1], index=[5., 10.3]))
# 32-bit linux has a different ordering
if not compat.is_platform_32bit():
result = Series([10.3, 5., 5., None]).value_counts(dropna=False)
expected = Series([2, 1, 1], index=[5., 10.3, np.nan])
tm.assert_series_equal(result, expected)
def test_value_counts_normalized(self):
# GH12558
s = Series([1, 2, np.nan, np.nan, np.nan])
dtypes = (np.float64, np.object, 'M8[ns]')
for t in dtypes:
s_typed = s.astype(t)
result = s_typed.value_counts(normalize=True, dropna=False)
expected = Series([0.6, 0.2, 0.2],
index=Series([np.nan, 2.0, 1.0], dtype=t))
tm.assert_series_equal(result, expected)
result = s_typed.value_counts(normalize=True, dropna=True)
expected = Series([0.5, 0.5],
index=Series([2.0, 1.0], dtype=t))
tm.assert_series_equal(result, expected)
def test_value_counts_uint64(self):
arr = np.array([2**63], dtype=np.uint64)
expected = Series([1], index=[2**63])
result = algos.value_counts(arr)
tm.assert_series_equal(result, expected)
arr = np.array([-1, 2**63], dtype=object)
expected = Series([1, 1], index=[-1, 2**63])
result = algos.value_counts(arr)
# 32-bit linux has a different ordering
if not compat.is_platform_32bit():
tm.assert_series_equal(result, expected)
class TestDuplicated(object):
def test_duplicated_with_nas(self):
keys = np.array([0, 1, np.nan, 0, 2, np.nan], dtype=object)
result = algos.duplicated(keys)
expected = np.array([False, False, False, True, False, True])
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep='first')
expected = np.array([False, False, False, True, False, True])
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep='last')
expected = np.array([True, False, True, False, False, False])
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep=False)
expected = np.array([True, False, True, True, False, True])
tm.assert_numpy_array_equal(result, expected)
keys = np.empty(8, dtype=object)
for i, t in enumerate(zip([0, 0, np.nan, np.nan] * 2,
[0, np.nan, 0, np.nan] * 2)):
keys[i] = t
result = algos.duplicated(keys)
falses = [False] * 4
trues = [True] * 4
expected = np.array(falses + trues)
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep='last')
expected = np.array(trues + falses)
tm.assert_numpy_array_equal(result, expected)
result = algos.duplicated(keys, keep=False)
expected = np.array(trues + trues)
tm.assert_numpy_array_equal(result, expected)
@pytest.mark.parametrize('case', [
np.array([1, 2, 1, 5, 3,
2, 4, 1, 5, 6]),
np.array([1.1, 2.2, 1.1, np.nan, 3.3,
2.2, 4.4, 1.1, np.nan, 6.6]),
pytest.param(np.array([1 + 1j, 2 + 2j, 1 + 1j, 5 + 5j, 3 + 3j,
2 + 2j, 4 + 4j, 1 + 1j, 5 + 5j, 6 + 6j]),
marks=pytest.mark.xfail(reason="Complex bug. GH 16399")
),
np.array(['a', 'b', 'a', 'e', 'c',
'b', 'd', 'a', 'e', 'f'], dtype=object),
np.array([1, 2**63, 1, 3**5, 10, 2**63, 39, 1, 3**5, 7],
dtype=np.uint64),
])
def test_numeric_object_likes(self, case):
exp_first = np.array([False, False, True, False, False,
True, False, True, True, False])
exp_last = np.array([True, True, True, True, False,
False, False, False, False, False])
exp_false = exp_first | exp_last
res_first = algos.duplicated(case, keep='first')
tm.assert_numpy_array_equal(res_first, exp_first)
res_last = algos.duplicated(case, keep='last')
tm.assert_numpy_array_equal(res_last, exp_last)
res_false = algos.duplicated(case, keep=False)
tm.assert_numpy_array_equal(res_false, exp_false)
# index
for idx in [Index(case), Index(case, dtype='category')]:
res_first = idx.duplicated(keep='first')
tm.assert_numpy_array_equal(res_first, exp_first)
res_last = idx.duplicated(keep='last')
tm.assert_numpy_array_equal(res_last, exp_last)
res_false = idx.duplicated(keep=False)
tm.assert_numpy_array_equal(res_false, exp_false)
# series
for s in [Series(case), Series(case, dtype='category')]:
res_first = s.duplicated(keep='first')
tm.assert_series_equal(res_first, Series(exp_first))
res_last = s.duplicated(keep='last')
tm.assert_series_equal(res_last, Series(exp_last))
res_false = s.duplicated(keep=False)
tm.assert_series_equal(res_false, Series(exp_false))
def test_datetime_likes(self):
dt = ['2011-01-01', '2011-01-02', '2011-01-01', 'NaT', '2011-01-03',
'2011-01-02', '2011-01-04', '2011-01-01', 'NaT', '2011-01-06']
td = ['1 days', '2 days', '1 days', 'NaT', '3 days',
'2 days', '4 days', '1 days', 'NaT', '6 days']
cases = [np.array([Timestamp(d) for d in dt]),
np.array([Timestamp(d, tz='US/Eastern') for d in dt]),
np.array([pd.Period(d, freq='D') for d in dt]),
np.array([np.datetime64(d) for d in dt]),
np.array([pd.Timedelta(d) for d in td])]
exp_first = np.array([False, False, True, False, False,
True, False, True, True, False])
exp_last = np.array([True, True, True, True, False,
False, False, False, False, False])
exp_false = exp_first | exp_last
for case in cases:
res_first = algos.duplicated(case, keep='first')
tm.assert_numpy_array_equal(res_first, exp_first)
res_last = algos.duplicated(case, keep='last')
tm.assert_numpy_array_equal(res_last, exp_last)
res_false = algos.duplicated(case, keep=False)
tm.assert_numpy_array_equal(res_false, exp_false)
# index
for idx in [Index(case), Index(case, dtype='category'),
Index(case, dtype=object)]:
res_first = idx.duplicated(keep='first')
tm.assert_numpy_array_equal(res_first, exp_first)
res_last = idx.duplicated(keep='last')
tm.assert_numpy_array_equal(res_last, exp_last)
res_false = idx.duplicated(keep=False)
tm.assert_numpy_array_equal(res_false, exp_false)
# series
for s in [Series(case), Series(case, dtype='category'),
Series(case, dtype=object)]:
res_first = s.duplicated(keep='first')
tm.assert_series_equal(res_first, Series(exp_first))
res_last = s.duplicated(keep='last')
tm.assert_series_equal(res_last, Series(exp_last))
res_false = s.duplicated(keep=False)
tm.assert_series_equal(res_false, Series(exp_false))
def test_unique_index(self):
cases = [Index([1, 2, 3]), pd.RangeIndex(0, 3)]
for case in cases:
assert case.is_unique
tm.assert_numpy_array_equal(case.duplicated(),
np.array([False, False, False]))
@pytest.mark.parametrize('arr, unique', [
([(0, 0), (0, 1), (1, 0), (1, 1), (0, 0), (0, 1), (1, 0), (1, 1)],
[(0, 0), (0, 1), (1, 0), (1, 1)]),
([('b', 'c'), ('a', 'b'), ('a', 'b'), ('b', 'c')],
[('b', 'c'), ('a', 'b')]),
([('a', 1), ('b', 2), ('a', 3), ('a', 1)],
[('a', 1), ('b', 2), ('a', 3)]),
])
def test_unique_tuples(self, arr, unique):
# https://github.com/pandas-dev/pandas/issues/16519
expected = np.empty(len(unique), dtype=object)
expected[:] = unique
result = pd.unique(arr)
tm.assert_numpy_array_equal(result, expected)
class GroupVarTestMixin(object):
def test_group_var_generic_1d(self):
prng = RandomState(1234)
out = (np.nan * np.ones((5, 1))).astype(self.dtype)
counts = np.zeros(5, dtype='int64')
values = 10 * prng.rand(15, 1).astype(self.dtype)
labels = np.tile(np.arange(5), (3, )).astype('int64')
expected_out = (np.squeeze(values)
.reshape((5, 3), order='F')
.std(axis=1, ddof=1) ** 2)[:, np.newaxis]
expected_counts = counts + 3
self.algo(out, counts, values, labels)
assert np.allclose(out, expected_out, self.rtol)
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_generic_1d_flat_labels(self):
prng = RandomState(1234)
out = (np.nan * np.ones((1, 1))).astype(self.dtype)
counts = np.zeros(1, dtype='int64')
values = 10 * prng.rand(5, 1).astype(self.dtype)
labels = np.zeros(5, dtype='int64')
expected_out = np.array([[values.std(ddof=1) ** 2]])
expected_counts = counts + 5
self.algo(out, counts, values, labels)
assert np.allclose(out, expected_out, self.rtol)
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_generic_2d_all_finite(self):
prng = RandomState(1234)
out = (np.nan * np.ones((5, 2))).astype(self.dtype)
counts = np.zeros(5, dtype='int64')
values = 10 * prng.rand(10, 2).astype(self.dtype)
labels = np.tile(np.arange(5), (2, )).astype('int64')
expected_out = np.std(values.reshape(2, 5, 2), ddof=1, axis=0) ** 2
expected_counts = counts + 2
self.algo(out, counts, values, labels)
assert np.allclose(out, expected_out, self.rtol)
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_generic_2d_some_nan(self):
prng = RandomState(1234)
out = (np.nan * np.ones((5, 2))).astype(self.dtype)
counts = np.zeros(5, dtype='int64')
values = 10 * prng.rand(10, 2).astype(self.dtype)
values[:, 1] = np.nan
labels = np.tile(np.arange(5), (2, )).astype('int64')
expected_out = np.vstack([values[:, 0]
.reshape(5, 2, order='F')
.std(ddof=1, axis=1) ** 2,
np.nan * np.ones(5)]).T.astype(self.dtype)
expected_counts = counts + 2
self.algo(out, counts, values, labels)
tm.assert_almost_equal(out, expected_out, check_less_precise=6)
tm.assert_numpy_array_equal(counts, expected_counts)
def test_group_var_constant(self):
# Regression test from GH 10448.
out = np.array([[np.nan]], dtype=self.dtype)
counts = np.array([0], dtype='int64')
values = 0.832845131556193 * np.ones((3, 1), dtype=self.dtype)
labels = np.zeros(3, dtype='int64')
self.algo(out, counts, values, labels)
assert counts[0] == 3
assert out[0, 0] >= 0
tm.assert_almost_equal(out[0, 0], 0.0)
class TestGroupVarFloat64(GroupVarTestMixin):
__test__ = True
algo = libgroupby.group_var_float64
dtype = np.float64
rtol = 1e-5
def test_group_var_large_inputs(self):
prng = RandomState(1234)
out = np.array([[np.nan]], dtype=self.dtype)
counts = np.array([0], dtype='int64')
values = (prng.rand(10 ** 6) + 10 ** 12).astype(self.dtype)
values.shape = (10 ** 6, 1)
labels = np.zeros(10 ** 6, dtype='int64')
self.algo(out, counts, values, labels)
assert counts[0] == 10 ** 6
tm.assert_almost_equal(out[0, 0], 1.0 / 12, check_less_precise=True)
class TestGroupVarFloat32(GroupVarTestMixin):
__test__ = True
algo = libgroupby.group_var_float32
dtype = np.float32
rtol = 1e-2
class TestHashTable(object):
def test_lookup_nan(self):
xs = np.array([2.718, 3.14, np.nan, -7, 5, 2, 3])
m = ht.Float64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs),
dtype=np.int64))
def test_lookup_overflow(self):
xs = np.array([1, 2, 2**63], dtype=np.uint64)
m = ht.UInt64HashTable()
m.map_locations(xs)
tm.assert_numpy_array_equal(m.lookup(xs), np.arange(len(xs),
dtype=np.int64))
def test_get_unique(self):
s = Series([1, 2, 2**63, 2**63], dtype=np.uint64)
exp =
|
np.array([1, 2, 2**63], dtype=np.uint64)
|
numpy.array
|
import os.path as osp
import random
import pickle
import logging
import numpy as np
import cv2
import lmdb
import torch
import torch.utils.data as data
import data.util as util
logger = logging.getLogger('base')
class RealVSRDataset(data.Dataset):
"""
Reading the training REDS dataset
key example: 000_00000
GT: Ground-Truth;
LQ: Low-Quality, e.g., low-resolution/blurry/noisy/compressed frames
support reading N LQ frames, N = 1, 3, 5, 7
"""
def __init__(self, opt):
super(RealVSRDataset, self).__init__()
self.opt = opt
# temporal augmentation
self.interval_list = opt['interval_list']
self.random_reverse = opt['random_reverse']
logger.info(
'Temporal augmentation interval list: [{}], with random reverse is {}.'.
format(','.join(str(x) for x in opt['interval_list']), self.random_reverse)
)
self.half_N_frames = opt['N_frames'] // 2
self.GT_root, self.LQ_root = opt['dataroot_GT'], opt['dataroot_LQ']
self.data_type = self.opt['data_type']
self.LR_input = False if opt['GT_size'] == opt['LQ_size'] else True # low resolution inputs
#### directly load image keys
if self.data_type == 'lmdb':
self.paths_GT, _ = util.get_image_paths(self.data_type, opt['dataroot_GT'])
logger.info('Using lmdb meta info for cache keys.')
elif opt['cache_keys']:
logger.info('Using cache keys: {}'.format(opt['cache_keys']))
self.paths_GT = pickle.load(open(opt['cache_keys'], 'rb'))['keys']
else:
raise ValueError('Need to create cache keys (meta_info.pkl) by running [create_lmdb.py]')
# remove some sequences for testing
self.paths_GT = [
v for v in self.paths_GT if v.split('_')[0] not in
['008', '026', '029', '031', '042', '055', '058', '077', '105', '113',
'132', '135', '146', '155', '161', '167', '173', '175', '180', '181',
'189', '194', '195', '226', '232', '237', '241', '242', '247', '256',
'268', '275', '293', '309', '358', '371', '372', '379', '383', '401',
'409', '413', '426', '438', '448', '471', '478', '484', '490', '498']
]
assert self.paths_GT, 'Error: GT path is empty.'
if self.data_type == 'lmdb':
self.GT_env, self.LQ_env = None, None
elif self.data_type == 'img':
pass
else:
raise ValueError('Wrong data type: {}'.format(self.data_type))
def _init_lmdb(self):
self.GT_env = lmdb.open(self.opt['dataroot_GT'], readonly=True, lock=False, readahead=False, meminit=False)
self.LQ_env = lmdb.open(self.opt['dataroot_LQ'], readonly=True, lock=False, readahead=False, meminit=False)
def __getitem__(self, index):
if self.data_type == 'lmdb' and (self.GT_env is None or self.LQ_env is None):
self._init_lmdb()
scale = self.opt['scale']
GT_size = self.opt['GT_size']
key = self.paths_GT[index]
name_a, name_b = key.split('_')
center_frame_idx = int(name_b)
#### determine the neighbor frames
interval = random.choice(self.interval_list)
if self.opt['border_mode']:
direction = 1 # 1: forward; 0: backward
N_frames = self.opt['N_frames']
if self.random_reverse and random.random() < 0.5:
direction = random.choice([0, 1])
if center_frame_idx + interval * (N_frames - 1) > 49:
direction = 0
elif center_frame_idx - interval * (N_frames - 1) < 0:
direction = 1
# get the neighbor list
if direction == 1:
neighbor_list = list(
range(center_frame_idx, center_frame_idx + interval * N_frames, interval)
)
else:
neighbor_list = list(
range(center_frame_idx, center_frame_idx - interval * N_frames, -interval)
)
name_b = '{:05d}'.format(neighbor_list[0])
else:
# ensure not exceeding the borders
while (center_frame_idx + self.half_N_frames * interval > 49) or \
(center_frame_idx - self.half_N_frames * interval < 0):
center_frame_idx = random.randint(0, 49)
# get the neighbor list
neighbor_list = list(
range(center_frame_idx - self.half_N_frames * interval,
center_frame_idx + self.half_N_frames * interval + 1, interval)
)
if self.random_reverse and random.random() < 0.5:
neighbor_list.reverse()
name_b = '{:05d}'.format(neighbor_list[self.half_N_frames])
assert len(neighbor_list) == self.opt['N_frames'], \
'Wrong length of neighbor list: {}'.format(len(neighbor_list))
#### get the GT image (as the center frame)
GT_size_tuple = (3, 1024, 512)
if self.data_type == 'lmdb':
img_GT = util.read_img(self.GT_env, key, GT_size_tuple)
else:
img_GT = util.read_img(None, osp.join(self.GT_root, name_a, name_b + '.png'))
if self.opt['color']: # change color space if necessary
img_GT = util.channel_convert(img_GT.shape[2], self.opt['color'], [img_GT])[0]
#### get LQ images
LQ_size_tuple = (3, 1024, 512)
img_LQ_l = []
for v in neighbor_list:
img_LQ_path = osp.join(self.LQ_root, name_a, '{:05d}.png'.format(v))
if self.data_type == 'lmdb':
img_LQ = util.read_img(self.LQ_env, '{}_{:05d}'.format(name_a, v), LQ_size_tuple)
else:
img_LQ = util.read_img(None, img_LQ_path)
if self.opt['color']: # change color space if necessary
img_LQ = util.channel_convert(img_LQ.shape[2], self.opt['color'], [img_LQ])[0]
img_LQ_l.append(img_LQ)
if self.opt['phase'] == 'train':
C, H, W = LQ_size_tuple # LQ size
# randomly crop
if self.LR_input:
LQ_size = GT_size // scale
rnd_h = random.randint(0, max(0, H - LQ_size))
rnd_w = random.randint(0, max(0, W - LQ_size))
img_LQ_l = [v[rnd_h:rnd_h + LQ_size, rnd_w:rnd_w + LQ_size, :] for v in img_LQ_l]
rnd_h_HR = int(rnd_h * scale)
rnd_w_HR = int(rnd_w * scale)
img_GT = img_GT[rnd_h_HR:rnd_h_HR + GT_size, rnd_w_HR:rnd_w_HR + GT_size, :]
else:
rnd_h = random.randint(0, max(0, H - GT_size))
rnd_w = random.randint(0, max(0, W - GT_size))
img_LQ_l = [v[rnd_h:rnd_h + GT_size, rnd_w:rnd_w + GT_size, :] for v in img_LQ_l]
img_GT = img_GT[rnd_h:rnd_h + GT_size, rnd_w:rnd_w + GT_size, :]
# augmentation - flip, rotate
img_LQ_l.append(img_GT)
rlt = util.augment(img_LQ_l, self.opt['use_flip'], self.opt['use_rot'])
img_LQ_l = rlt[0:-1]
img_GT = rlt[-1]
# stack LQ images to NHWC, N is the frame number
img_LQs =
|
np.stack(img_LQ_l, axis=0)
|
numpy.stack
|
# emacs: -*- mode: python; py-indent-offset: 4; indent-tabs-mode: nil -*-
# vi: set ft=python sts=4 ts=4 sw=4 et:
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
#
# See COPYING file distributed along with the PyMVPA package for the
# copyright and license terms.
#
### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ### ##
"""Unit tests for Stelzer et al. cluster thresholding algorithm"""
from mvpa2.base import externals
from mvpa2.testing.tools import skip_if_no_external
# TODO a tiny bit also needs statsmodels
skip_if_no_external('statsmodels')
skip_if_no_external('scipy')
from collections import Counter
import numpy as np
import random
from mvpa2.testing import assert_array_equal, assert_raises, assert_equal, \
assert_array_almost_equal, assert_almost_equal, assert_true, assert_false
import mvpa2.algorithms.group_clusterthr as gct
from mvpa2.datasets import Dataset, dataset_wizard
from nose.tools import assert_greater_equal, assert_greater
from mvpa2.testing.sweep import sweepargs
from scipy.ndimage import measurements
from scipy.stats import norm
def test_pval():
def not_inplace_shuffle(x):
x = list(x)
random.shuffle(x)
return x
x = range(100000) * 20
x = np.array(x)
x = x.reshape(20, 100000)
x = x.T
x = np.apply_along_axis(not_inplace_shuffle, axis=0, arr=x)
expected_result = [100000 - 100000 * 0.001] * 20
thresholds = gct.get_thresholding_map(x, p=0.001)
assert_array_equal(thresholds, expected_result)
# works with datasets too
dsthresholds = gct.get_thresholding_map(Dataset(x), p=0.001)
assert_almost_equal(thresholds, dsthresholds)
assert_raises(ValueError,
gct.get_thresholding_map, x, p=0.00000001)
x = range(0, 100, 5)
null_dist = np.repeat(1, 100).astype(float)[None]
pvals = gct._transform_to_pvals(x, null_dist)
desired_output = np.array([1, 0.95, 0.9, 0.85, 0.8, 0.75, 0.7, 0.65, 0.6,
0.55, 0.5, 0.45, 0.4, 0.35, 0.3, 0.25, 0.2, 0.15,
0.1, 0.05])
assert_array_almost_equal(desired_output, pvals)
def test_cluster_count():
skip_if_no_external('scipy', min_version='0.10')
# we get a ZERO cluster count of one if there are no clusters at all
# this is needed to keept track of the number of bootstrap samples that yield
# no cluster at all (high treshold) in order to compute p-values when there is no
# actual cluster size histogram
assert_equal(gct._get_map_cluster_sizes([0, 0, 0, 0]), [0])
# if there is at least one cluster: no ZERO count
assert_equal(gct._get_map_cluster_sizes([0, 0, 1, 0]), [1])
for i in range(2): # rerun tests for bool type of test_M
test_M = np.array([[1, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1],
[1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1],
[0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1],
[1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0],
[0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0],
[1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0],
[0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0],
[1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0]])
expected_result = [5, 4, 3, 3, 2, 0, 2] # 5 clusters of size 1,
# 4 clusters of size 2 ...
test_ds = Dataset([test_M])
if i == 1:
test_M = test_M.astype(bool)
test_M_3d = np.hstack((test_M.flatten(),
test_M.flatten())).reshape(2, 9, 16)
test_ds_3d = Dataset([test_M_3d])
# expected_result^2
expected_result_3d = np.array([0, 5, 0, 4, 0, 3, 0,
3, 0, 2, 0, 0, 0, 2])
size = 10000 # how many times bigger than test_M_3d
test_M_3d_big = np.hstack((test_M_3d.flatten(), np.zeros(144)))
test_M_3d_big = np.hstack((test_M_3d_big for i in range(size))
).reshape(3 * size, 9, 16)
test_ds_3d_big = Dataset([test_M_3d_big])
expected_result_3d_big = expected_result_3d * size
# check basic cluster size determination for plain arrays and datasets
# with a single sample
for t, e in ((test_M, expected_result),
(test_ds, expected_result),
(test_M_3d, expected_result_3d),
(test_ds_3d, expected_result_3d),
(test_M_3d_big, expected_result_3d_big),
(test_ds_3d_big, expected_result_3d_big)):
assert_array_equal(np.bincount(gct._get_map_cluster_sizes(t))[1:],
e)
# old
M = np.vstack([test_M_3d.flatten()] * 10)
# new
ds = dataset_wizard([test_M_3d] * 10)
assert_array_equal(M, ds)
expected_result = Counter(np.hstack([gct._get_map_cluster_sizes(test_M_3d)] * 10))
assert_array_equal(expected_result,
gct.get_cluster_sizes(ds))
# test the same with some arbitrary per-feature threshold
thr = 4
labels, num = measurements.label(test_M_3d)
area = measurements.sum(test_M_3d, labels,
index=np.arange(labels.max() + 1))
cluster_sizes_map = area[labels] # .astype(int)
thresholded_cluster_sizes_map = cluster_sizes_map > thr
# old
M = np.vstack([cluster_sizes_map.flatten()] * 10)
# new
ds = dataset_wizard([cluster_sizes_map] * 10)
assert_array_equal(M, ds)
expected_result = Counter(np.hstack(
[gct._get_map_cluster_sizes(thresholded_cluster_sizes_map)] * 10))
th_map = np.ones(cluster_sizes_map.flatten().shape) * thr
# threshold dataset by hand
ds.samples = ds.samples > th_map
assert_array_equal(expected_result,
gct.get_cluster_sizes(ds))
# run same test with parallel and serial execution
@sweepargs(n_proc=[1, 2])
def test_group_clusterthreshold_simple(n_proc):
if n_proc > 1:
skip_if_no_external('joblib')
feature_thresh_prob = 0.005
nsubj = 10
# make a nice 1D blob and a speck
blob = np.array([0, 0, .5, 3, 5, 3, 3, 0, 2, 0])
blob = Dataset([blob])
# and some nice random permutations
nperms = 100 * nsubj
perm_samples =
|
np.random.randn(nperms, blob.nfeatures)
|
numpy.random.randn
|
import numpy as np
import cv2
import torch
import time
from smplx.lbs import batch_rigid_transform_diff, batch_rodrigues_np, \
lbs_diff, prepare_J, lbs_diff_fast, rel_to_direct, lbs_diff_nopd
from smplx.body_models import SMPLX, SMPL, SMPLH
import trimesh
def fun1(batch_size, n_j, pose_body, J, parents):
#batch rodrigues
rot_mats, rot_mat_jacs = batch_rodrigues_np(pose_body)
# 4. Get the global joint location
transform_jac_chain = np.zeros((batch_size, n_j, n_j, 3, 4, 4))
return batch_rigid_transform_diff(rot_mats, rot_mat_jacs, transform_jac_chain, J, parents)
def test_batch_rigid_transform_diff(data_path):
batch_size = 1
bm_path = data_path + '/body_models/smplx/SMPLX_MALE.npz'
smpl_dict = np.load(bm_path, encoding='latin1', allow_pickle=True)
p2n = smpl_dict['part2num']
w = smpl_dict['weights']
num_betas = 10 # number of body parameters
num_dmpls = 8 # number of DMPL parameters
njoints = smpl_dict['posedirs'].shape[2] // 3
model_type = {69: 'smpl', 153: 'smplh', 162: 'smplx', 45: 'mano'}[njoints]
v_template = np.repeat(smpl_dict['v_template'][np.newaxis], batch_size, axis=0)
num_total_betas = smpl_dict['shapedirs'].shape[-1]
if num_betas < 1:
num_betas = num_total_betas
shapedirs = smpl_dict['shapedirs'][:, :, :]
# Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*30 x 207
posedirs = smpl_dict['posedirs']
posedirs = posedirs.reshape([posedirs.shape[0] * 3, -1]).T
# indices of parents for each joints
kintree_table = smpl_dict['kintree_table'].astype(np.int32)
parents = kintree_table[0]
# LBS weights
# weights = np.repeat(smpl_dict['weights'][np.newaxis], batch_size, axis=0)
weights = smpl_dict['weights']
J_regressor = smpl_dict['J_regressor']
trans = np.zeros((batch_size, 3))
# root_orient
# if self.model_type in ['smpl', 'smplh']:
root_orient = np.zeros((batch_size, 3))
# pose_body
pose_body = np.zeros((batch_size, 63))
n_j_b = 21
# pose_hand
pose_hand = np.zeros((batch_size, 1 * 3 * 2))
betas = np.zeros((batch_size, num_betas))
expression = np.zeros((batch_size, num_betas))
shape_components = np.concatenate([betas, expression], axis=1)
# Add shape contribution
v_shaped = v_template
# Get the joints
# NxJx3 array
n_j = SMPLX.NUM_JOINTS + 1
J = np.zeros((batch_size, n_j, 3))
# J = vertices2joints(J_regressor, v_shaped)
J[0] = J_regressor @ v_shaped
# 3. Add pose blend shapes
# N x J x 3 x 3
pose = np.zeros((batch_size, n_j * 3))
pose[0, 0:3] = np.asarray([-2.98, 0.07, -0.08])
# test tensor vs ndarray
betas_t = torch.tensor(betas, dtype=torch.float)
global_orient = torch.tensor(pose[:, :3], dtype=torch.float)
body_pose = torch.tensor(pose[:, 3:3 * (SMPLX.NUM_BODY_JOINTS + 1)], dtype=torch.float)
lh_pose = torch.tensor(
pose[:, 3 * (SMPLX.NUM_BODY_JOINTS + 1): 3 * (SMPLX.NUM_BODY_JOINTS + SMPLX.NUM_HAND_JOINTS + 1)],
dtype=torch.float)
rh_pose = torch.tensor(
pose[:, 3 * (SMPLX.NUM_BODY_JOINTS + SMPLX.NUM_HAND_JOINTS + 1): 3 * (
SMPLX.NUM_BODY_JOINTS + 2 * SMPLX.NUM_HAND_JOINTS + 1)],
dtype=torch.float)
smpl = SMPLX(model_path=bm_path, ext='npz', betas=betas_t, use_pca=False, flat_hand_mean=True,
use_face_contour=True)
bm = smpl(global_orient=global_orient, body_pose=body_pose, left_hand_pose=lh_pose, right_hand_pose=rh_pose)
verts = bm.vertices[0].detach().cpu().numpy()
faces = smpl.faces
v_t = bm.vertices.detach().cpu().numpy()
j_t = bm.joints.detach().cpu().numpy()
v_inds = np.arange(0, 100)
n_v = len(v_inds)
J, v_shaped, homogen_coord, transform_jac_chain = prepare_J(shape_components, v_template, shapedirs, J_regressor,
n_v)
# 3. Add pose blend shapes
# N x J x 3 x 3
pose = np.zeros((batch_size, n_j*3))
J_transformed, J_transformec_jac, A, A_jac = fun1(batch_size, n_j, pose, J, parents)
delta = 1e-8
thr_acc = 1e-5
for rot_id in range(0, n_j):
for i in range(0, 3):
pose_p = pose.copy()
pose_p[0][rot_id * 3 + i] += delta
J_transformed_p, J_transformec_jac_p, A_p, A_jac_p = fun1(batch_size, n_j, pose_p, J, parents)
dJ = 1.0/delta * (J_transformed_p - J_transformed)
dJ_pred = J_transformec_jac[:, rot_id, i]
dA = 1.0/delta * (A_p - A)
dA_pred = A_jac[:, rot_id, i]
j_err = np.linalg.norm(dJ - dJ_pred)
a_err = np.linalg.norm(dA - dA_pred)
assert (a_err < thr_acc)
assert(j_err < thr_acc)
print('test finished')
def test_lbs_diff(data_path):
batch_size = 1
bm_path = data_path + '/body_models/smplx/SMPLX_MALE.npz'
smpl_dict = np.load(bm_path, encoding='latin1', allow_pickle=True)
p2n = smpl_dict['part2num']
w = smpl_dict['weights']
num_betas = 10 # number of body parameters
num_dmpls = 8 # number of DMPL parameters
njoints = smpl_dict['posedirs'].shape[2] // 3
model_type = {69: 'smpl', 153: 'smplh', 162: 'smplx', 45: 'mano'}[njoints]
v_template = np.repeat(smpl_dict['v_template'][np.newaxis], batch_size, axis=0)
num_total_betas = smpl_dict['shapedirs'].shape[-1]
if num_betas < 1:
num_betas = num_total_betas
shapedirs = smpl_dict['shapedirs'][:, :, :]
# Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*30 x 207
posedirs = smpl_dict['posedirs']
posedirs = posedirs.reshape([posedirs.shape[0] * 3, -1]).T
# indices of parents for each joints
kintree_table = smpl_dict['kintree_table'].astype(np.int32)
parents = kintree_table[0]
# LBS weights
# weights = np.repeat(smpl_dict['weights'][np.newaxis], batch_size, axis=0)
weights = smpl_dict['weights']
J_regressor = smpl_dict['J_regressor']
trans = np.zeros((batch_size, 3))
# root_orient
# if self.model_type in ['smpl', 'smplh']:
root_orient = np.zeros((batch_size, 3))
# pose_body
pose_body = np.zeros((batch_size, 63))
n_j_b = 21
# pose_hand
pose_hand = np.zeros((batch_size, 1 * 3 * 2))
betas = np.zeros((batch_size, num_betas))
expression = np.zeros((batch_size, num_betas))
shape_components = np.concatenate([betas, expression], axis=1)
# Add shape contribution
v_shaped = v_template
# Get the joints
# NxJx3 array
n_j = SMPLX.NUM_JOINTS + 1
J = np.zeros((batch_size, n_j, 3))
#J = vertices2joints(J_regressor, v_shaped)
J[0] = J_regressor @ v_shaped
# 3. Add pose blend shapes
# N x J x 3 x 3
pose = np.zeros((batch_size, n_j*3))
pose[0, 0:3] = np.asarray([-2.98, 0.07, -0.08])
#test tensor vs ndarray
betas_t = torch.tensor(betas, dtype=torch.float)
global_orient = torch.tensor(pose[:, :3], dtype=torch.float)
body_pose = torch.tensor(pose[:, 3:3*(SMPLX.NUM_BODY_JOINTS+1)], dtype=torch.float)
lh_pose = torch.tensor(pose[:, 3*(SMPLX.NUM_BODY_JOINTS+1) : 3*(SMPLX.NUM_BODY_JOINTS+SMPLX.NUM_HAND_JOINTS+1)], dtype=torch.float)
rh_pose = torch.tensor(
pose[:, 3 * (SMPLX.NUM_BODY_JOINTS + SMPLX.NUM_HAND_JOINTS + 1) : 3 * (SMPLX.NUM_BODY_JOINTS + 2*SMPLX.NUM_HAND_JOINTS + 1)],
dtype=torch.float)
smpl = SMPLX(model_path=bm_path, ext='npz', betas=betas_t, use_pca=False, flat_hand_mean=True, use_face_contour=True)
bm = smpl(global_orient=global_orient, body_pose=body_pose, left_hand_pose=lh_pose, right_hand_pose=rh_pose)
verts = bm.vertices[0].detach().cpu().numpy()
faces = smpl.faces
curr_mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False)
obj_txt = trimesh.exchange.obj.export_obj(curr_mesh)
with open('smplx.obj', 'w') as f_out:
f_out.write(obj_txt)
v_t = bm.vertices.detach().cpu().numpy()
j_t = bm.joints.detach().cpu().numpy()
v_inds = np.arange(0, 100)
n_v = len(v_inds)
J, v_shaped, homogen_coord, transform_jac_chain = prepare_J(shape_components, v_template, shapedirs, J_regressor, n_v)
verts, verts_jac, J_transformed, J_transformed_jac, A, A_jac, J = lbs_diff(pose,
posedirs,
parents,
J, v_shaped,
weights,
homogen_coord,
transform_jac_chain,
v_inds)
j_err = np.linalg.norm(j_t[:, 0:n_j] - J_transformed)
v_err = np.linalg.norm(v_t[:, v_inds] - verts)
print('nd-t errors joint {} vert {}'.format(j_err, v_err))
# if j_err > 1e-5:
# for i in range(0, n_j):
# print(i)
# print(j_t[0][i])
# print(J_transformed[0][i])
v_id = 99
delta = 1e-8
thr_acc = 1e-5
for rot_id in range(0, n_j):
for i in range(0, 3):
pose_p = pose.copy()
pose_p[0][rot_id * 3 + i] += delta
# J_transformed_p, J_transformec_jac_p, A_p, A_jac_p = fun1(batch_size, n_j, pose_p, J, parents)
t_0 = time.time()
verts_p, verts_jac_p, J_transformed_p, J_transformed_jac_p, A_p, A_jac_p, J_p = \
lbs_diff(pose_p, posedirs, parents, J, v_shaped, weights, homogen_coord, transform_jac_chain, v_inds)
t_1 = time.time()
# print('whole time {} s '.format(t_1-t_0))
dJ = 1.0/delta * (J_transformed_p - J_transformed)
dJ_pred = J_transformed_jac[:, rot_id, i]
dA = 1.0/delta * (A_p - A)
dA_pred = A_jac[:, rot_id, i]
dV = 1.0/delta * (verts_p - verts)
dV_pred = verts_jac[:, rot_id, i]
v_err = np.linalg.norm(dV_pred[0, v_id] - dV[0, v_id])
# print(v_err)
assert (v_err < thr_acc)
# if v_err > thr_acc:
# print(dV_pred[0, v_id])
# print(dV[0, v_id])
# print('-')
jac_err = np.linalg.norm(dJ - dJ_pred)
print('{} {} : {} {}'.format(rot_id, i, jac_err, v_err))
assert (jac_err < thr_acc)
# if jac_err > thr_acc:
# print('---')
# for ii in range(0, 55):
# print(dJ[0,ii])
# print(dJ_pred[0,ii])
# print('-')
#
# print('-')
a_err = np.linalg.norm(dA - dA_pred)
assert (a_err < thr_acc)
# if a_err > thr_acc:
# for ii in range(0, 55):
# print(dJ[0,ii])
# print(dJ_pred[0,ii])
# print('-')
print('test finished')
def test_lbs_diff_nopd():
batch_size = 1
data_path = '/home/alexander/projects/pykinect_prev/data/'
# data_path = '/storage/projects/pykinect/data/'
bm_path = data_path + '/body_models/smplx/SMPLX_MALE.npz'
smpl_dict = np.load(bm_path, encoding='latin1', allow_pickle=True)
p2n = smpl_dict['part2num']
w = smpl_dict['weights']
num_betas = 10 # number of body parameters
num_dmpls = 8 # number of DMPL parameters
njoints = smpl_dict['posedirs'].shape[2] // 3
model_type = {69: 'smpl', 153: 'smplh', 162: 'smplx', 45: 'mano'}[njoints]
v_template = np.repeat(smpl_dict['v_template'][np.newaxis], batch_size, axis=0)
num_total_betas = smpl_dict['shapedirs'].shape[-1]
if num_betas < 1:
num_betas = num_total_betas
shapedirs = smpl_dict['shapedirs'][:, :, :]
# Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*30 x 207
posedirs = smpl_dict['posedirs']
posedirs = posedirs.reshape([posedirs.shape[0] * 3, -1]).T
# indices of parents for each joints
kintree_table = smpl_dict['kintree_table'].astype(np.int32)
parents = kintree_table[0]
# LBS weights
# weights = np.repeat(smpl_dict['weights'][np.newaxis], batch_size, axis=0)
weights = smpl_dict['weights']
J_regressor = smpl_dict['J_regressor']
trans = np.zeros((batch_size, 3))
# root_orient
# if self.model_type in ['smpl', 'smplh']:
root_orient = np.zeros((batch_size, 3))
# pose_body
pose_body = np.zeros((batch_size, 63))
n_j_b = 21
# pose_hand
pose_hand = np.zeros((batch_size, 1 * 3 * 2))
betas = np.zeros((batch_size, num_betas))
expression = np.zeros((batch_size, num_betas))
shape_components = np.concatenate([betas, expression], axis=1)
# Add shape contribution
v_shaped = v_template
# Get the joints
# NxJx3 array
n_j = SMPLX.NUM_JOINTS + 1
J = np.zeros((batch_size, n_j, 3))
#J = vertices2joints(J_regressor, v_shaped)
J[0] = J_regressor @ v_shaped
# 3. Add pose blend shapes
# N x J x 3 x 3
pose = np.zeros((batch_size, n_j*3))
pose[0, 0:3] = np.asarray([-2.98, 0.07, -0.08])
#test tensor vs ndarray
betas_t = torch.tensor(betas, dtype=torch.float)
global_orient = torch.tensor(pose[:, :3], dtype=torch.float)
body_pose = torch.tensor(pose[:, 3:3*(SMPLX.NUM_BODY_JOINTS+1)], dtype=torch.float)
lh_pose = torch.tensor(pose[:, 3*(SMPLX.NUM_BODY_JOINTS+1) : 3*(SMPLX.NUM_BODY_JOINTS+SMPLX.NUM_HAND_JOINTS+1)], dtype=torch.float)
rh_pose = torch.tensor(
pose[:, 3 * (SMPLX.NUM_BODY_JOINTS + SMPLX.NUM_HAND_JOINTS + 1) : 3 * (SMPLX.NUM_BODY_JOINTS + 2*SMPLX.NUM_HAND_JOINTS + 1)],
dtype=torch.float)
smpl = SMPLX(model_path=bm_path, ext='npz', betas=betas_t, use_pca=False, flat_hand_mean=True, use_face_contour=True)
bm = smpl(global_orient=global_orient, body_pose=body_pose, left_hand_pose=lh_pose, right_hand_pose=rh_pose)
verts = bm.vertices[0].detach().cpu().numpy()
faces = smpl.faces
curr_mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False)
obj_txt = trimesh.exchange.obj.export_obj(curr_mesh)
with open('smplx.obj', 'w') as f_out:
f_out.write(obj_txt)
v_t = bm.vertices.detach().cpu().numpy()
j_t = bm.joints.detach().cpu().numpy()
v_inds = np.arange(0, 100)
n_v = len(v_inds)
J, v_shaped, homogen_coord, transform_jac_chain = prepare_J(shape_components, v_template, shapedirs, J_regressor, n_v)
verts, verts_jac, J_transformed, J_transformed_jac, A, A_jac, J, bpm = lbs_diff_nopd(pose,
posedirs,
parents,
J, v_shaped,
weights,
homogen_coord,
transform_jac_chain,
v_inds)
j_err = np.linalg.norm(j_t[:, 0:n_j] - J_transformed)
v_err = np.linalg.norm(v_t[:, v_inds] - verts)
print('nd-t errors joint {} vert {}'.format(j_err, v_err))
if j_err > 1e-5:
for i in range(0, n_j):
print(i)
print(j_t[0][i])
print(J_transformed[0][i])
v_id = 99
delta = 1e-6
for rot_id in range(1, n_j):
for i in range(0, 3):
pose_p = pose.copy()
pose_p[0][rot_id * 3 + i] += delta
# J_transformed_p, J_transformec_jac_p, A_p, A_jac_p = fun1(batch_size, n_j, pose_p, J, parents)
t_0 = time.time()
verts_p, verts_jac_p, J_transformed_p, J_transformed_jac_p, A_p, A_jac_p, J_p, bpm = \
lbs_diff_nopd(pose_p, posedirs, parents, J, v_shaped, weights, homogen_coord, transform_jac_chain, v_inds, bpm=bpm)
t_1 = time.time()
# print('whole time {} s '.format(t_1-t_0))
dJ = 1.0/delta * (J_transformed_p - J_transformed)
dJ_pred = J_transformed_jac[:, rot_id, i]
dA = 1.0/delta * (A_p - A)
dA_pred = A_jac[:, rot_id, i]
dV = 1.0/delta * (verts_p - verts)
dV_pred = verts_jac[:, rot_id, i]
v_err = np.linalg.norm(dV_pred[0, v_id] - dV[0, v_id])
# print(v_err)
# if v_err > 1e-5:
# print(dV_pred[0, v_id])
# print(dV[0, v_id])
# dT = 1.0/delta * (T_p - T)
# dT_pred = T_jac[:, rot_id, i]
# print(np.linalg.norm(dT - dT_pred))
jac_err = np.linalg.norm(dJ - dJ_pred)
print('{} {} : {} {}'.format(rot_id, i, jac_err, v_err))
# if jac_err > 0.1:
# print('---')
# for ii in range(0, 55):
# print(dJ[0,ii])
# print(dJ_pred[0,ii])
# print('-')
print('-')
# print(np.linalg.norm(dA - dA_pred))
def test_lbs_diff_nopd(data_path):
batch_size = 1
bm_path = data_path + '/body_models/smplx/SMPLX_MALE.npz'
smpl_dict = np.load(bm_path, encoding='latin1', allow_pickle=True)
p2n = smpl_dict['part2num']
w = smpl_dict['weights']
num_betas = 10 # number of body parameters
num_dmpls = 8 # number of DMPL parameters
njoints = smpl_dict['posedirs'].shape[2] // 3
v_template = np.repeat(smpl_dict['v_template'][np.newaxis], batch_size, axis=0)
num_total_betas = smpl_dict['shapedirs'].shape[-1]
if num_betas < 1:
num_betas = num_total_betas
shapedirs = smpl_dict['shapedirs'][:, :, :]
shapedirs_face = shapedirs[:, :, -10:]
# Pose blend shape basis: 6890 x 3 x 207, reshaped to 6890*30 x 207
posedirs = smpl_dict['posedirs']
posedirs = posedirs.reshape([posedirs.shape[0] * 3, -1]).T
# indices of parents for each joints
kintree_table = smpl_dict['kintree_table'].astype(np.int32)
parents = kintree_table[0]
# LBS weights
# weights = np.repeat(smpl_dict['weights'][np.newaxis], batch_size, axis=0)
weights = smpl_dict['weights']
J_regressor = smpl_dict['J_regressor']
trans = np.zeros((batch_size, 3))
# root_orient
# if self.model_type in ['smpl', 'smplh']:
root_orient = np.zeros((batch_size, 3))
# pose_body
pose_body = np.zeros((batch_size, 63))
n_j_b = 21
# pose_hand
pose_hand = np.zeros((batch_size, 1 * 3 * 2))
betas = np.zeros((batch_size, num_betas))
expression = np.zeros((batch_size, num_betas))
shape_components = np.concatenate([betas, expression], axis=1)
# Add shape contribution
v_shaped = v_template
# Get the joints
# NxJx3 array
n_j = SMPLX.NUM_JOINTS + 1
J = np.zeros((batch_size, n_j, 3))
#J = vertices2joints(J_regressor, v_shaped)
J[0] = J_regressor @ v_shaped
# 3. Add pose blend shapes
# N x J x 3 x 3
pose = np.zeros((batch_size, n_j*3))
pose[0, 0:3] = np.asarray([-2.98, 0.07, -0.08])
#test tensor vs ndarray
betas_t = torch.tensor(betas, dtype=torch.float)
global_orient = torch.tensor(pose[:, :3], dtype=torch.float)
body_pose = torch.tensor(pose[:, 3:3*(SMPLX.NUM_BODY_JOINTS+1)], dtype=torch.float)
lh_pose = torch.tensor(pose[:, 3*(SMPLX.NUM_BODY_JOINTS+1) : 3*(SMPLX.NUM_BODY_JOINTS+SMPLX.NUM_HAND_JOINTS+1)], dtype=torch.float)
rh_pose = torch.tensor(
pose[:, 3 * (SMPLX.NUM_BODY_JOINTS + SMPLX.NUM_HAND_JOINTS + 1) : 3 * (SMPLX.NUM_BODY_JOINTS + 2*SMPLX.NUM_HAND_JOINTS + 1)],
dtype=torch.float)
smpl = SMPLX(model_path=bm_path, ext='npz', betas=betas_t, use_pca=False, flat_hand_mean=True, use_face_contour=True)
bm = smpl(global_orient=global_orient, body_pose=body_pose, left_hand_pose=lh_pose, right_hand_pose=rh_pose)
verts = bm.vertices[0].detach().cpu().numpy()
faces = smpl.faces
# curr_mesh = trimesh.Trimesh(vertices=verts, faces=faces, process=False)
# obj_txt = trimesh.exchange.obj.export_obj(curr_mesh)
# with open('smplx.obj', 'w') as f_out:
# f_out.write(obj_txt)
v_t = bm.vertices.detach().cpu().numpy()
j_t = bm.joints.detach().cpu().numpy()
v_inds = np.arange(0, 100)
n_v = len(v_inds)
shape_components[0, 0:10] = np.random.randn(10)
J, v_shaped, homogen_coord, transform_jac_chain = prepare_J(shape_components, v_template, shapedirs, J_regressor, n_v)
face_expr_0 = np.random.rand(10)
verts, verts_jac, J_transformed, J_transformed_jac, A, A_jac, J, bpm = lbs_diff_nopd(pose,
shapedirs_face,
parents,
J, v_shaped,
weights,
homogen_coord,
transform_jac_chain,
v_inds,
face_expression=face_expr_0)
verts_jac = verts_jac[:-10].reshape(1, n_j, 3, len(v_inds), 3)
# verts_jac.fill(0)
# verts_jac = verts_jac[-10:]
j_err = np.linalg.norm(j_t[:, 0:n_j] - J_transformed)
v_err = np.linalg.norm(v_t[:, v_inds] - verts)
print('nd-t errors joint {} vert {}'.format(j_err, v_err))
# if j_err > 1e-5:
# for i in range(0, n_j):
# print(i)
# print(j_t[0][i])
# print(J_transformed[0][i])
v_id = 99
delta = 1e-8
thr_acc = 1e-5
for rot_id in range(0, n_j):
for i in range(0, 3):
pose_p = pose.copy()
pose_p[0][rot_id * 3 + i] += delta
# J_transformed_p, J_transformec_jac_p, A_p, A_jac_p = fun1(batch_size, n_j, pose_p, J, parents)
t_0 = time.time()
verts_p, verts_jac_p, J_transformed_p, J_transformed_jac_p, A_p, A_jac_p, J_p, bpm = \
lbs_diff_nopd(pose_p, shapedirs_face, parents, J, v_shaped, weights, homogen_coord, transform_jac_chain,
v_inds, bpm=bpm, face_expression=face_expr_0)
t_1 = time.time()
dJ = 1.0/delta * (J_transformed_p - J_transformed)
dJ_pred = J_transformed_jac[:, rot_id, i]
dA = 1.0/delta * (A_p - A)
dA_pred = A_jac[:, rot_id, i]
dV = 1.0/delta * (verts_p - verts)
dV_pred = verts_jac[:, rot_id, i]
v_err = np.linalg.norm(dV_pred[0, v_id] - dV[0, v_id])
# print(v_err)
# assert (v_err < thr_acc)
# if v_err > thr_acc:
# print(dV_pred[0, v_id])
# print(dV[0, v_id])
# print('-')
jac_err = np.linalg.norm(dJ - dJ_pred)
print('{} {} : {} {}'.format(rot_id, i, jac_err, v_err))
# assert (jac_err < thr_acc)
if jac_err > thr_acc:
print('---')
for ii in range(0, 55):
print(dJ[0,ii])
print(dJ_pred[0,ii])
print('-')
#
print('-')
a_err =
|
np.linalg.norm(dA - dA_pred)
|
numpy.linalg.norm
|
"""Module containing functions for temporal RSA"""
from itertools import islice
import mne
import numpy as np
from joblib.parallel import Parallel, delayed
from mne import EpochsArray
from mne.cov import compute_whitener
from numpy.testing import assert_array_equal
from sklearn.model_selection import StratifiedShuffleSplit
from sklearn.preprocessing.label import LabelEncoder
from .metrics import CDIST_METRICS
from .utils import _npairs, _get_unique_targets
from .log import log
log.name = __name__
def mean_group(array, targets):
"""
Average rows of array according to the unique values of targets
Arguments
---------
array : ndarray (n_samples, n_features, n_times)
array containing the epoch data
targets : ndarray (n_samples, )
array containing targets for the samples
Returns
-------
avg_array : ndarray (n_unique_targets, n_features, n_times)
array containing the average within each group
unique_targets : ndarray (n_unique_targets, )
array containing the unique targets, corresponding to the order in
avg_array
"""
targets_ = np.array(targets)
unique_targets = np.unique(targets_)
n_unique_targets = len(unique_targets)
avg_array = np.zeros((n_unique_targets, array.shape[1], array.shape[2]))
for i, t in enumerate(unique_targets):
mask = targets_ == t
avg_array[i, ...] = array[mask, ...].mean(axis=0)
return avg_array, unique_targets
def _get_mask_binary_trials(target1, target2, targets_train, targets_test):
unique_targets = _get_unique_targets(targets_train, targets_test)
target1 = unique_targets[target1]
target2 = unique_targets[target2]
mask_train = (targets_train == target1) | \
(targets_train == target2)
mask_test = (targets_test == target1) | \
(targets_test == target2)
return mask_train, mask_test
def _get_combinations_triu(unique_targets):
n_unique_targets = len(unique_targets)
for p1 in range(n_unique_targets):
for p2 in range(p1, n_unique_targets):
yield unique_targets[p1], unique_targets[p2]
def _run_metric(metric_fx, epoch_train, targets_train,
epoch_test, targets_test, time_diag_only=False):
# check if metric is symmetric
try:
symmetric = metric_fx.is_symmetric
except AttributeError:
symmetric = False
# get some vars
n_times = epoch_train.shape[-1]
unique_targets = _get_unique_targets(targets_train, targets_test)
n_unique_targets = len(unique_targets)
n_pairwise_targets = _npairs(n_unique_targets)
if time_diag_only:
n_pairwise_times = n_times
else:
n_pairwise_times = _npairs(n_times) if symmetric \
else n_times * n_times
# check if we have one of our metrics
try:
vectorized = metric_fx.is_vectorized
except AttributeError:
vectorized = False
# preallocate output with ones; for classification we assume that
# if target1 == target2, then acc = 1
rdms = np.ones((n_pairwise_targets, n_pairwise_times))
if vectorized:
# we don't need to loop explicitly through pairwise targets
itime = 0
# now we can loop through time
for t1 in range(n_times):
# log.info("Training on time {0:.3f}".format(t1))
start_t2 = t1 if symmetric or time_diag_only else 0
end_t2 = t1 + 1 if time_diag_only else n_times
# fit only once
metric_fx.fit(epoch_train[..., t1], targets_train)
for t2 in range(start_t2, end_t2):
rdms[:, itime] = metric_fx.score(epoch_test[..., t2],
targets_test)
itime += 1
else:
for ipair, (p1, p2) in enumerate(
_get_combinations_triu(unique_targets)):
log.info("Running for pair number {0} ({1}, {2})".format(ipair,
p1, p2))
if p1 != p2:
mask_train, mask_test = _get_mask_binary_trials(p1, p2,
targets_train,
targets_test)
data_train = epoch_train[mask_train]
data_test = epoch_test[mask_test]
targets_train_ = targets_train[mask_train]
targets_test_ = targets_test[mask_test]
itime = 0
# now we can loop through time
for t1 in range(n_times):
start_t2 = t1 if symmetric or time_diag_only else 0
end_t2 = t1 + 1 if time_diag_only else n_times
# fit only once
metric_fx.fit(data_train[..., t1], targets_train_)
for t2 in range(start_t2, end_t2):
rdms[ipair, itime] = \
metric_fx.score(data_test[..., t2], targets_test_)
itime += 1
return rdms
def _multiv_normalize(epoch_train, epoch_test, cv_normalize_noise=None):
if cv_normalize_noise not in ('epoch', 'baseline', None):
raise ValueError(
"cv_normalize_noise must be one of {0}".format(
('epoch', 'baseline', None)))
if cv_normalize_noise:
log.info("Applying multivariate noise normalization "
"with method '{0}'".format(cv_normalize_noise))
tmax = 0. if cv_normalize_noise == 'baseline' else None
cov_train = mne.compute_covariance(epoch_train,
tmax=tmax, method='shrunk')
W_train, ch_names = compute_whitener(cov_train, epoch_train.info)
# whiten both training and testing set
epoch_train = np.array([np.dot(W_train, e)
for e in epoch_train.get_data()])
epoch_test = np.array([np.dot(W_train, e)
for e in epoch_test.get_data()])
else:
epoch_train = epoch_train.get_data()
epoch_test = epoch_test.get_data()
return epoch_train, epoch_test
def _compute_fold(metric_fx, targets, train, test, epoch,
cv_normalize_noise=None, mean_groups=False,
time_diag_only=False):
"""
Computes pairwise metric across time for one fold
Arguments
---------
metric_fx : either an allowed string (e.g., 'correlation') or an object
with attributes 'fit' and 'score' (similar to scikit-learn estimators)
targets : array (n_trials,)
target (condition) for each trials; they must be integers
train : array-like of int
indices of the training data
test : array-like of int
indices of the testing data
epoch : instance of mne.Epoch
cv_normalize_noise : str | None (default None)
Multivariately normalize the trials before applying the metric
(distance or classification). Normalization is performed with
cross-validation, that is the covariance matrix is estimated in the
training set, and then applied to the test set. Normalization is
always performed on single trials, thus before averaging within each
class if `mean_groups` is set to True.
Valid values for `cv_normalize_noise` are 'epoch' | 'baseline' | None:
- 'epoch' computes the covariance matrix on the entire epoch;
- 'baseline' uses only the baseline condition; it requires `epoch`
to have a valid baseline (i.e., to have performed baseline
correction)
mean_groups : bool (default False)
Whether the trials belonging to each target should be averaged prior
to running the metric. This is useful if the metric is a distance
metric. Should be set to False for classification.
time_diag_only : bool (default False)
Whether to run only for the diagonal in time,
e.g. for train_time == test_time
Returns
-------
rdms: array (n_pairwise_targets, n_pairwise_times)
the cross-validated RDM over time
targets_pairs : list of len n_pairwise_targets
the labels corresponding to each element in rdms
"""
targets = np.asarray(targets)
if targets.dtype != np.dtype('int64'):
raise ValueError("targets must be integers, "
"not {0}".format(targets.dtype))
# impose conditions in epoch as targets, so that covariance
# matrix is computed within each target
events_ = epoch.events.copy()
events_[:, 2] = targets
epoch_ = EpochsArray(epoch.get_data(), info=epoch.info,
events=events_, tmin=epoch.times[0])
epoch_.baseline = epoch.baseline
# get training and testing data
epoch_train = epoch_.copy()[train]
targets_train = targets[train]
assert(len(epoch_train) == len(targets_train))
epoch_test = epoch_.copy()[test]
targets_test = targets[test]
assert(len(epoch_test) == len(targets_test))
# perform multi variate noise normalization
epoch_train, epoch_test = _multiv_normalize(epoch_train, epoch_test,
cv_normalize_noise)
if mean_groups:
# average within train and test for each target
epoch_train, targets_train = mean_group(epoch_train, targets_train)
epoch_test, targets_test = mean_group(epoch_test, targets_test)
# the targets should be the same in both training and testing
# set or else we are correlating weird things together
assert_array_equal(targets_train, targets_test)
rdms = _run_metric(metric_fx, epoch_train, targets_train, epoch_test,
targets_test, time_diag_only=time_diag_only)
# return also the pairs labels. since we are taking triu, we loop first
# across rows
unique_targets = _get_unique_targets(targets_train, targets_test)
targets_pairs = []
for tr_lbl, te_lbl in _get_combinations_triu(unique_targets):
targets_pairs.append('+'.join(map(str, [tr_lbl, te_lbl])))
return rdms, targets_pairs
def compute_temporal_rdm(epoch, targets, metric='correlation',
cv=StratifiedShuffleSplit(n_splits=10, test_size=0.5),
cv_normalize_noise=None, mean_groups=False,
time_diag_only=False,
n_jobs=1, batch_size=200):
"""
Computes pairwise metric across time
Arguments
---------
epoch : instance of mne.Epoch
targets : array (n_trials,)
target (condition) for each trials
metric: str | BaseMetric | sklearn estimator
type of metric to use, one of 'cityblock', 'correlation', 'cosine',
'dice', 'euclidean', 'hamming', 'sqeuclidean' for distances.
Alternatively, any object with attributes fit/score, similar to
sklearn estimators.
cv : instance of sklearn cross-validator
Cross-validator used to split the data into training/test datasets
(default StratifiedShuffleSplit(n_splits=10, test_size=0.5)
cv_normalize_noise : str | None (default None)
Multivariately normalize the trials before applying the metric
(distance or classification). Normalization is performed with
cross-validation, that is the covariance matrix is estimated in the
training set, and then applied to the test set. Normalization is
always performed on single trials, thus before averaging within each
class if `mean_groups` is set to True.
Valid values for `cv_normalize_noise` are 'epoch' | 'baseline' | None:
- 'epoch' computes the covariance matrix on the entire epoch;
- 'baseline' uses only the baseline condition; it requires `epoch`
to have a valid baseline (i.e., to have performed baseline
correction)
mean_groups : bool (default False)
Whether the trials belonging to each target should be averaged prior
to running the metric. This is useful if the metric is a distance
metric. Should be set to False for classification.
time_diag_only : bool (default False)
Whether to run only for the diagonal in time,
e.g. for train_time == test_time
n_jobs : int (default 1)
batch_size : int (default 200)
size of the batches for cross-validation. To be used if the
number of splits are very large in order to reduce the memory load
Returns
-------
rdm: ndarray (n_pairwise_targets, n_pairwise_times) or
(n_pairwise_targets, n_times * n_times)
the cross-validated RDM over time; if the metric is symmetric,
then for efficiency purposes only the upper triangular matrix over
time is returned, and the full matrix can be reconstructed with
`np.triu_indices_from`. Otherwise, the entire flattened matrix over
time is returned, and the full matrix can be reconstructed with
`np.reshape((n_times, n_times))`. The order is row first, then columns.
targets_pairs : list-like (n_pairwise_targets,)
the labels for each row of rdm
"""
# set up metric
if metric in CDIST_METRICS:
metric_fx = CDIST_METRICS[metric]
elif hasattr(metric, 'fit') and hasattr(metric, 'score'):
metric_fx = metric
else:
raise ValueError(
"I don't know how to deal with metric {0}. It's not one of {1} "
"and it doesn't have fit/score attributes".format(
metric, sorted(CDIST_METRICS.keys())))
# fix targets
targets_, le = _conform_targets(targets)
splits = cv.split(targets_, targets_)
n_splits = cv.get_n_splits(targets_)
# need to batch it for memory if more than 200 splits
# trick from https://stackoverflow.com/questions/14822184/
# is-there-a-ceiling-equivalent-of-operator-in-python/17511341#17511341
n_batches = -(-n_splits // batch_size)
log.info("Using n_batches {0}".format(n_batches))
rdm = None
for i_batch in range(n_batches):
log.info("Running batch {0}/{1}".format(i_batch+1, n_batches))
rdm_cv = Parallel(n_jobs=n_jobs)(
delayed(_compute_fold)(metric_fx, targets_, train, test, epoch,
mean_groups=mean_groups,
cv_normalize_noise=cv_normalize_noise,
time_diag_only=time_diag_only)
for train, test in islice(splits, batch_size))
rdm_cv, targets_pairs = zip(*rdm_cv)
if rdm is None:
rdm = np.sum(rdm_cv, axis=0)
else:
rdm += np.sum(rdm_cv, axis=0)
# remove to free up some memory
del rdm_cv
rdm /= n_splits
return rdm, _invert_targets_pairs(targets_pairs[0], le)
def _invert_targets_pairs(targets_pairs, label_encoder):
"""
Given a list of targets pairs of the form 'target1+target2', revert back
to the original labeling by using `label_encoder.inverse_transform`
Parameters
----------
targets_pairs : list or array-like of str
label_encoder : fitted LabelEncoder
Returns
-------
targets_pairs : list of str
the inversed targets_pairs
"""
t1t2 = [l.split('+') for l in targets_pairs]
t1, t2 = zip(*t1t2)
t1 = label_encoder.inverse_transform([int(t) for t in t1])
t2 = label_encoder.inverse_transform([int(t) for t in t2])
return ['+'.join([str(tt1), str(tt2)]) for tt1, tt2 in zip(t1, t2)]
def _make_pseudotrials_array(array, targets, navg=4, rng=None):
"""
Create pseudotrials by averaging within each group defined in `targets`
a number `navg` of trials. The trials are randomly divided into groups of
size `navg` for each target. If the number of trials in a group is not
divisible by `navg`, one pseudotrials will be created by averaging the
remainder trials.
Parameters
----------
array : (n_epochs, n_channels, n_times)
targets : (n_epochs,)
navg : int
number of trials to average
rng : random number generator
Returns
-------
avg_trials : (ceil(n_epochs/navg), n_channels, n_times)
array containing the averaged trials
avg_targets : (ceil(n_epochs/navg),)
unique targets corresponding to the avg_trials
"""
if rng is None:
rng = np.random.RandomState()
unique_targets, count_targets = np.unique(targets, return_counts=True)
# count how many new trials we're getting for each condition
n_splits_targets = -(-count_targets//navg)
n_avg_trials = n_splits_targets.sum()
# store the indices of the targets among which we'll be averaging
idx_avg = dict()
for i, t in enumerate(unique_targets):
idx_target = np.where(targets == t)[0]
# shuffle so we randomly pick them
rng.shuffle(idx_target)
idx_avg[t] = np.array_split(idx_target, n_splits_targets[i])
# now average
avg_trials =
|
np.zeros((n_avg_trials, array.shape[1], array.shape[2]))
|
numpy.zeros
|
# Copyright 2018 The RLgraph authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
import unittest
from contrib.bitflip_env.rlgraph.environments import OpenAIGymEnv
class TestOpenAIAtariEnv(unittest.TestCase):
"""
Tests creation, resetting and stepping through an openAI Atari Env.
"""
def test_openai_atari_env(self):
env = OpenAIGymEnv("Pong-v0")
# Simple test runs with fixed actions.
s = env.reset()
# Assert we have pixels.
self.assertGreaterEqual(
|
np.mean(s)
|
numpy.mean
|
# pylint: disable=too-many-lines
"""Fields are the basis of Viscid's data abstration
Fields belong in grids, or by themselves as a result of a calculation.
They can belong to a :class:`Grid` as the result of a file load, or
by themselves as the result of a calculation. This module has some
convenience functions for creating fields similar to `Numpy`.
"""
from __future__ import print_function
from itertools import count, islice
from inspect import isclass
import numpy as np
import viscid
from viscid import logger
from viscid.compat import string_types, izip_longest
from viscid import coordinate
from viscid.cython import interp_trilin
from viscid.sliceutil import to_slice
from viscid import tree
from viscid.vutil import subclass_spider
LAYOUT_DEFAULT = "none" # do not translate
LAYOUT_INTERLACED = "interlaced"
LAYOUT_FLAT = "flat"
LAYOUT_SCALAR = "scalar"
LAYOUT_OTHER = "other"
__all__ = ['arrays2field', 'dat2field', 'full', 'empty', 'zeros', 'ones',
'full_like', 'empty_like', 'zeros_like', 'ones_like',
'scalar_fields_to_vector', 'wrap_field']
def arrays2field(crd_arrs, dat_arr, name="NoName", center=None,
crd_type=None, crd_names="xyzuvw"):
"""Turn arrays into fields so they can be used in viscid.plot, etc.
This is a convenience function that takes care of making coordnates
and the like. If the default behavior doesn't work for you, you'll
need to make your own coordnates and call
:py:func:`viscid.field.wrap_field`.
Args:
crd_arrs (list of ndarrays): xyz list of ndarrays that
describe the node centered coordnates of the field
dat_arr (ndarray): data with len(crd_arrs) or len(crd_arrs) + 1
dimensions
name (str): some name
center (str, None): If not None, translate field to this
centering (node or cell)
"""
crds = coordinate.arrays2crds(crd_arrs, crd_type=crd_type, crd_names=crd_names)
# discover what kind of data was given
crds_shape_nc = list(crds.shape_nc)
crds_shape_cc = list(crds.shape_cc)
dat_arr_shape = list(dat_arr.shape)
if len(dat_arr.shape) == len(crds.shape_nc):
discovered_type = "scalar"
discovered_layout = LAYOUT_FLAT
if crds_shape_nc == dat_arr_shape:
discovered_center = "node"
elif crds_shape_cc == dat_arr_shape:
discovered_center = "cell"
else:
raise ValueError("Can't detect centering for scalar dat_arr")
elif len(dat_arr.shape) == len(crds.shape_nc) + 1:
discovered_type = "vector"
if crds_shape_nc == dat_arr_shape[:-1]:
discovered_layout = LAYOUT_INTERLACED
discovered_center = "node"
elif crds_shape_cc == dat_arr_shape[:-1]:
discovered_layout = LAYOUT_INTERLACED
discovered_center = "cell"
elif crds_shape_nc == dat_arr_shape[1:]:
discovered_layout = LAYOUT_FLAT
discovered_center = "node"
elif crds_shape_cc == dat_arr_shape[1:]:
discovered_layout = LAYOUT_FLAT
discovered_center = "cell"
else:
raise ValueError("Can't detect centering for vector dat_arr")
else:
raise ValueError("crds and data have incompatable dimensions: {0} {1}"
"".format(dat_arr.shape, crds.shape_nc))
fld = wrap_field(dat_arr, crds, name=name, fldtype=discovered_type,
center=discovered_center, layout=discovered_layout)
fld = fld.as_centered(center)
return fld
def dat2field(dat_arr, name="NoName", fldtype="scalar", center=None,
layout=LAYOUT_FLAT):
"""Makes np.arange coordnate arrays and calls arrays2field
Args:
dat_arr (ndarray): data
name (str): name of field
fldtype (str, optional): 'scalar' / 'vector'
center (str, None): If not None, translate field to this
centering (node or cell)
layout (TYPE, optional): Description
"""
sshape = []
if fldtype.lower() == "scalar":
sshape = dat_arr.shape
elif fldtype.lower() == "vector":
if layout == LAYOUT_FLAT:
sshape = dat_arr.shape[1:]
elif layout == LAYOUT_INTERLACED:
sshape = dat_arr.shape[:-1]
else:
raise ValueError("Unknown layout: {0}".format(layout))
else:
raise ValueError("Unknown type: {0}".format(fldtype))
crd_arrs = [np.arange(s).astype(dat_arr.dtype) for s in sshape]
return arrays2field(crd_arrs, dat_arr, name=name, center=center)
def full(crds, fill_value, dtype="f8", name="NoName", center="cell",
layout=LAYOUT_FLAT, nr_comps=0, crd_type=None, crd_names="xyzuvw",
**kwargs):
"""Analogous to `numpy.full`
Parameters:
crds (Coordinates, list, or tuple): Can be a coordinates
object. Can also be a list of ndarrays describing
coordinate arrays. Or, if it's just a list or tuple of
integers, those integers are taken to be the nz,ny,nx shape
and the coordinates will be fill with :py:func:`np.arange`.
fill_value (number, None): Initial value of array. None
indicates uninitialized (i.e., `numpy.empty`)
dtype (optional): some way to describe numpy dtype of data
name (str): a way to refer to the field programatically
center (str, optional): cell or node, there really isn't
support for edge / face yet
layout (str, optional): how data is stored, is in "flat" or
"interlaced" (interlaced == AOS)
nr_comps (int, optional): for vector fields, nr of components
**kwargs: passed through to Field constructor
"""
if not isinstance(crds, coordinate.Coordinates):
# if crds is a list/tuple of integers, then make coordinate
# arrays using arange
if not isinstance(crds, (list, tuple, np.ndarray)):
try:
crds = list(crds)
except TypeError:
crds = [crds]
if all([isinstance(c, int) for c in crds]):
crds = [np.arange(c).astype(dtype) for c in crds]
# now assume that crds is a list of coordinate arrays that arrays2crds
# can understand
crds = coordinate.arrays2crds(crds, crd_type=crd_type, crd_names=crd_names)
if center.lower() == "cell":
sshape = crds.shape_cc
elif center.lower() == "node":
sshape = crds.shape_nc
else:
sshape = crds.shape_nc
if nr_comps == 0:
fldtype = "scalar"
shape = sshape
else:
fldtype = "vector"
if layout.lower() == LAYOUT_INTERLACED:
shape = list(sshape) + [nr_comps]
else:
shape = [nr_comps] + list(sshape)
if fill_value is None:
dat = np.empty(shape, dtype=dtype)
else:
if hasattr(np, "full"):
dat =
|
np.full(shape, fill_value, dtype=dtype)
|
numpy.full
|
import collections
import multiprocessing
import logging
from multiprocessing.pool import ThreadPool
import numpy as np
import pandas as pd
from datetime import datetime
from scipy import stats
from .bmr.base import BMRBase
from .models.base import DoseResponseModel
from .models.dichotomous import Dichotomous
from . import exports
class Session(object):
"""
Modeling session. Composed of a dataset, modeling inputs, some model
specifications, and BMRs.
"""
ZEROISH = 1e-8
TIME_FORMAT = '%b %d %Y, %I:%M %p'
def __init__(self, mcmc_iterations=20000, mcmc_num_chains=2,
mcmc_warmup_fraction=0.5, seed=12345, **kwargs):
self.mcmc_iterations = mcmc_iterations
self.mcmc_num_chains = mcmc_num_chains
self.mcmc_warmup_fraction = mcmc_warmup_fraction
self.seed = seed
self._unset_dataset()
self.models = []
self.bmrs = []
self.name = kwargs.get('name', self._get_default_name())
self.created = self._get_timestamp().isoformat()
def add_models(self, *args):
for model in args:
if not isinstance(model, DoseResponseModel):
raise ValueError('Not a DoseResponseModel')
model._set_session(self)
self.models.append(model)
def _unset_dataset(self):
self.dataset_type = None
self.dataset = None
def _get_default_name(self):
return 'New run {}'.format(self._get_timestamp().strftime(self.TIME_FORMAT))
def _get_timestamp(self):
return datetime.now()
DICHOTOMOUS_SUMMARY = 'D'
DICHOTOMOUS_INDIVIDUAL = 'E'
CONTINUOUS_SUMMARY = 'C'
CONTINUOUS_INDIVIDUAL = 'I'
DICHOTOMOUS_TYPES = ['D', 'E']
CONTINUOUS_TYPES = ['C', 'I']
def add_dichotomous_data(self, dose, n, incidence):
if not isinstance(dose, collections.Iterable) or \
not isinstance(n, collections.Iterable) or \
not isinstance(incidence, collections.Iterable):
raise ValueError('Must be iterables')
if any([len(dose) != len(n), len(n) != len(incidence)]):
raise ValueError('All arrays must be same length')
if (len(dose) < 2):
raise ValueError('Must have at least 2 values')
incidence = np.array(incidence, dtype=np.int64)
n =
|
np.array(n, dtype=np.int64)
|
numpy.array
|
import numpy as np
from kinematics.dhparameters import DHParameters
class Kinematics:
def __init__(self):
self.joint1_dh = DHParameters(0, 0.1625, 0)
self.joint2_dh = DHParameters(0, 0, np.pi / 2)
self.joint3_dh = DHParameters(-0.425, 0, 0)
self.joint4_dh = DHParameters(-0.39225, 0.1333, 0)
self.joint5_dh = DHParameters(0, 0.0997, np.pi / 2)
self.joint6_dh = DHParameters(0, 0.0996, -np.pi / 2)
def compute_transformation_matrix(self, theta, dh_params):
c = np.cos(theta)
s =
|
np.sin(theta)
|
numpy.sin
|
import math
import os
import time
#import multiprocessing as mp
from joblib import Parallel, delayed
from joblib import dump, load
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.colors as colors
from mpl_toolkits.mplot3d.art3d import Poly3DCollection
import torch
from scipy.sparse import csr_matrix
from scipy.sparse.csgraph import floyd_warshall
# gudhi is needed to construct a simplex tree and to plot the persistence diagram.
try:
import gudhi
from gudhi.clustering.tomato import Tomato
except:
print('Failed to import gudhi')
from sklearn.metrics import pairwise_distances
# hard-coded
#MAX_DIST_INIT = 100000
MAX_N_PLOT = 5000
NUMBER_OF_FRAMES = 6
class WitnessComplex():
__slots__ = [
'landmarks',
'witnesses',
'distances',
'distances_isomap',
'landmarks_idxs',
'isomap_eps',
'landmarks_dist',
'simplex_tree',
'simplex_tree_computed',
'metric_computed'
]
def __init__(self, landmarks, witnesses, landmarks_idxs, n_jobs = 1, isomap_eps = 0):
#todo: implement other metrices
self.landmarks = landmarks
self.witnesses = witnesses
self.metric_computed = False
self.simplex_tree_computed = False
self.landmarks_idxs = landmarks_idxs
self.isomap_eps = isomap_eps
self.distances = pairwise_distances(witnesses, landmarks, n_jobs = n_jobs)
if isomap_eps > 0:
#distances = pairwise_distances(witnesses, n_jobs = -1)
# todo: optimize
def _create_large_matrix():
matrix = np.zeros((self.distances.shape[0], self.distances.shape[0]))
for i in range(self.distances.shape[0]):
for j in range(self.distances.shape[1]):
if self.distances[i][j] < self.isomap_eps:
matrix[i][landmarks_idxs[j]] = self.distances[i][j]
return matrix
def _create_small_matrix(matrix):
for i in range(self.distances.shape[0]):
for j in range(self.distances.shape[1]):
self.distances[i][j] = matrix[i][landmarks_idxs[j]]
matrix = _create_large_matrix()
matrix = csr_matrix(matrix)
matrix = floyd_warshall(csgraph = matrix, directed = False)
self.distances_isomap = matrix
_create_small_matrix(matrix)
def compute_simplicial_complex(self, d_max, create_metric=False, r_max=None, create_simplex_tree=False, n_jobs = 1):
if n_jobs == 1:
self.compute_simplicial_complex_single(d_max=d_max, r_max=r_max)
else:
self.compute_simplicial_complex_parallel(d_max=d_max, r_max=r_max, n_jobs=n_jobs)
def _compute_metric_for_one_witness(self, row):
sorted_row = sorted([*enumerate(row)], key=lambda x: x[1])
landmark_dist_w = torch.ones(len(self.landmarks), len(self.landmarks))*math.inf
for element in sorted_row:
landmark_dist_w[element[0], :] = torch.ones(len(self.landmarks))*element[1]
landmark_dist_w[:, element[0]] = torch.ones(len(self.landmarks))*element[1]
return landmark_dist_w
def compute_metric_optimized(self, n_jobs=1):
'''
Computes matrix containing the filtration values for the appearance of 1-simplicies.
landmark_dist: n_l x n_l
'''
assert isinstance(n_jobs, int)
global _compute_metric_multiprocessing
def _compute_metric_multiprocessing(distances):
landmark_dist_process = torch.ones(len(self.landmarks), len(self.landmarks))*math.inf
for row_i in range(distances.shape[0]):
row = distances[row_i, :]
sorted_row = sorted([*enumerate(row)], key=lambda x: x[1])
landmark_dist_w = torch.ones(len(self.landmarks), len(self.landmarks))*math.inf
for element in sorted_row:
landmark_dist_w[element[0], :] = torch.ones(len(self.landmarks))*element[1]
landmark_dist_w[:, element[0]] = torch.ones(len(self.landmarks))*element[1]
landmark_dist_process = \
torch.min(torch.stack((landmark_dist_w, landmark_dist_process)),
dim=0)[0]
return landmark_dist_process
if n_jobs == 1:
landmark_dist = torch.ones(len(self.landmarks), len(self.landmarks))*math.inf
for row_i in range(self.distances.shape[0]):
row = self.distances[row_i, :]
landmark_dist_w = self._compute_metric_for_one_witness(row)
landmark_dist = \
torch.min(torch.stack((landmark_dist, landmark_dist_w)),
dim=0)[0]
self.landmarks_dist = landmark_dist
self.metric_computed = True
else:
if n_jobs == -1:
n_jobs = os.cpu_count()
mp.set_start_method('fork')
pool = mp.Pool(processes=n_jobs)
distances_chunk = np.array_split(self.distances, n_jobs)
results = pool.map(_compute_metric_multiprocessing, distances_chunk)
pool.close()
pool.join()
self.landmarks_dist = torch.min(torch.stack((results)), dim=0)[0]
self.metric_computed = True
def compute_1d_simplex_tree(self, r_max = None):
assert self.metric_computed
simplex_tree = gudhi.SimplexTree()
for i in range(0, len(self.landmarks)):
for j in range(i, len(self.landmarks)):
if r_max is None or float(self.landmarks_dist[i][j]) < r_max:
simplex_tree.insert([i, j], float(self.landmarks_dist[i][j]))
self.simplex_tree = simplex_tree
self.simplex_tree_computed = True
#########################################################################################
def _update_register_simplex(self, simplicial_complex_temp, i_add, i_dist):
simplex_add = []
for e in simplicial_complex_temp:
element = e[0]
if (element[0] != i_add and len(element) == 1) or (1 < len(element) < 2):
element_copy = element.copy()
element_copy.append(i_add)
simplex_add.append([element_copy, i_dist])
else:
pass
return simplex_add
def compute_simplicial_complex_single(self, d_max, r_max=None):
'''
Computes simplex tree and a matrix containing the filtration values for the appearance of 1-simplicies.
d_max: max dimension of simplicies in the simplex tree
r_max: max filtration value
'''
simplicial_complex = []
try:
simplex_tree = gudhi.SimplexTree()
except:
print('Cannot create simplex tree')
for row_i in range(self.distances.shape[0]):
row = self.distances[row_i, :]
# sort row by landmarks witnessed
sorted_row = sorted([*enumerate(row)], key=lambda x: x[1])
if r_max != None:
sorted_row_new_temp = []
for element in sorted_row:
if element[1] < r_max:
sorted_row_new_temp.append(element)
sorted_row = sorted_row_new_temp
simplices_temp = []
for i in range(len(sorted_row)):
simplices_temp.append([[sorted_row[i][0]], sorted_row[i][1]])
simplex_add = self._update_register_simplex(simplices_temp.copy(), sorted_row[i][0],
sorted_row[i][1])
simplices_temp += simplex_add
simplicial_complex += simplices_temp
#self.simplicial_complex = simplicial_complex
#print(simplicial_complex)
sorted_simplicial_compex = sorted(simplicial_complex, key=lambda x: x[1])
for simplex in sorted_simplicial_compex:
simplex_tree.insert(simplex[0], filtration=simplex[1])
self.simplex_tree = simplex_tree
#t = time.time()
self.simplex_tree.expansion(d_max)
#t = time.time() - t
#print(t)
self.simplex_tree_computed = True
def compute_simplicial_complex_parallel(self, d_max=math.inf, r_max=math.inf, n_jobs=-1):
#global process_wc
#@delayed
#@wrap_non_picklable_objects
def process_wc(distances, ind, r_max=r_max, d_max=d_max):
simplicial_complex = []
def update_register_simplex(simplicial_complex, i_add, i_dist):
simplex_add = []
for e in simplicial_complex:
element = e[0]
if (element[0] != i_add and len(element) == 1) or (
1 < len(element) < 2):
element_copy = element.copy()
element_copy.append(i_add)
simplex_add.append([element_copy, i_dist])
else:
pass
return simplex_add
for row_i in range(distances[ind].shape[0]):
row = distances[ind][row_i, :]
sorted_row = sorted([*enumerate(row)], key=lambda x: x[1])
if r_max != None:
sorted_row_new_temp = []
for element in sorted_row:
if element[1] < r_max:
sorted_row_new_temp.append(element)
sorted_row = sorted_row_new_temp
simplices_temp = []
for i in range(len(sorted_row)):
simplices_temp.append([[sorted_row[i][0]], sorted_row[i][1]])
simplex_add = update_register_simplex(simplices_temp.copy(),
sorted_row[i][0],
sorted_row[i][1])
simplices_temp += simplex_add
simplicial_complex += simplices_temp
return simplicial_complex
def combine_results(results):
simplicial_complex = []
for result in results:
simplicial_complex += result
return simplicial_complex
try:
simplex_tree = gudhi.SimplexTree()
except:
print('Cannot create simplex tree')
if n_jobs == -1:
n_jobs = mp.cpu_count()
#mp.set_start_method('fork')
#pool = mp.Pool(processes=n_jobs)
distances_chunk =
|
np.array_split(self.distances, n_jobs)
|
numpy.array_split
|
import torch
from torch.utils.data import Dataset, DataLoader
import torchvision
from pytorch_pretrained_bert import BertTokenizer
#import stanfordnlp
import os
from glob import glob
import random
import pickle
import json
import numpy as np
#import scipy.io
from PIL import Image, ImageDraw
from tqdm import tqdm
from nltk.tokenize import word_tokenize
# -- local import ----------------
#from utils import get_iou, get_include
base_dir = 'dataset/LSMDC/'
gender_dir = base_dir + 'supplementary/csv_ids'
im_dir = base_dir + 'features_mvad/image/'
hb_dir = base_dir + 'features_mvad/human_bbox/'
hb_agg_dir = base_dir + 'features_mvad/human_pose_agg/'
i3d_dir = base_dir + 'features_mvad/i3d_rgb_map/'
i3d_agg_dir = base_dir + 'features_mvad/human_i3d/'
face_dir = base_dir + 'features_mvad/human_head/'
hb_name_idr = base_dir + 'features_mvad/human_id/'
mvad_pkl = {'train':base_dir + 'features_mvad/MVAD_train_agg.pkl',
'val':base_dir + 'features_mvad/MVAD_val_agg.pkl',
'test':base_dir + 'features_mvad/MVAD_test_agg.pkl'}
class MVADDataset(Dataset):
def __init__(self, mode='train', bert_model='bert-base-uncased',
max_sent_len=40, hN=8, feats=['i3d_rgb','face']):
'''
params:
mode: train, val
max_sent_len: int
iou_threshold: float
neg_sample_num: int
'''
self.bert_range = 'whole'
self.mode = mode
self.feats = feats
self.hN = hN # sample image number per clip
# --- Load MPII data --------------------------
with open(mvad_pkl[mode], 'rb') as f:
mvad_data = pickle.load(f)
# --- Load Bert ---------------------------------
self.tokenizer = BertTokenizer.from_pretrained(bert_model)
self.bert_cls_id = self.tokenizer.convert_tokens_to_ids(["[CLS]"])[0]
self.bert_sep_id = self.tokenizer.convert_tokens_to_ids(["[SEP]"])[0]
self.bert_msk_id = self.tokenizer.convert_tokens_to_ids(["[MASK]"])[0]
for agg5 in tqdm(mvad_data, ncols=60):
for clip_data in agg5:
clip_id = clip_data['clip_id']
word_list = clip_data['word_list']
# --- Tokenize sentence -----------------------
sent_emb = []
word2tok = []
for si, word in enumerate(word_list):
if len(word) > 0:
word2tok.append(len(sent_emb))
sent_emb += self.tokenize(word)
clip_data['bert'] = sent_emb
# Change word index into tok index
for someone_info in clip_data['someone_info']:
someone_info['bert_loc'] = word2tok[someone_info['loc']]
try:
someone_info['bert_dep'] = word2tok[someone_info['dep']]
except:
someone_info['bert_dep'] = word2tok[-2]
self.datas = mvad_data
print("\# of total_data: ", len(self.datas))
def tokenize(self, text, max_len=512):
tokenized_text = self.tokenizer.tokenize(text)[:max_len]
indexed_tokens = self.tokenizer.convert_tokens_to_ids(tokenized_text)
return indexed_tokens
def __getitem__(self, idx):
'''
idx:
5 x [clip_id, someone_locs, sent_emb]
return
sent_emb : sN x [L]
sent_tok : sN x [L]
sent_msk : sN x [L]
some_msk : sN x [L]
clip_msk : sN x [5]
im : [5 x hN x 3 x 224 x 224]
im_msk : [5 x hN]
pos_5 : [5 x hN x 17 x 2]
pos_msk_5: [5 x hN x 17]
meta : sN x {'clip_id', 's_idx', 'sent'}
'''
# Build Bert
agg5 = self.datas[idx]
L = sum([len(cd['bert']) for cd in agg5]) + 6
sN = sum([len(cd['someone_info']) for cd in agg5])
sent_emb_t = np.zeros((1, L), dtype=np.int64)
sent_tok_t = np.zeros((1, L), dtype=np.int64)
sent_msk_t = np.ones((1, L), dtype=np.int64)
some_msk_t = np.zeros((sN, L))
dep_root_msk_t = np.zeros((sN, L))
clip_msk_t = np.zeros((sN, 5))
gt_position_t = np.zeros((sN, self.hN))
gt_mat_t = np.zeros((sN, sN))
gt_gender_t = np.zeros((sN, 2)) # 0: logit, 1: mask
meta_t, clip_info, s_pids= [], [], []
s_id, cur_len = 0, 1
sent_emb_t[0,0] = self.bert_cls_id
for c_idx, cd in enumerate(agg5):
# ----- sent processing --------------------------
sent_emb_t[0, cur_len:cur_len + len(cd['bert'])] = cd['bert']
sent_emb_t[0, cur_len + len(cd['bert'])] = self.bert_sep_id
pos_trjs, pos_trjs_names, trjs = [], [], {}
for s_idx, sd in enumerate(cd['someone_info']):
some_msk_t[s_id, sd['bert_loc'] + cur_len] = 1
dep_root_msk_t[s_id, sd['bert_dep'] + cur_len] = 1
clip_msk_t[s_id, c_idx] = 1.
trj_id = str(sd['hb_id'])
if trj_id not in trjs:
trjs[trj_id] = s_idx
pos_trjs.append(trj_id)
gt_position_t[s_id, trjs[trj_id]] = 1.
# gender
if sd['gender'] != 2:
gt_gender_t[s_id][0] = sd['gender']
gt_gender_t[s_id][1] = 1
s_pids.append(sd['name'])
pos_trjs_names.append(sd['name'])
meta_t.append({'clip_id': cd['clip_id'],
'c_idx': c_idx,
's_idx': s_idx,
't_gt_idx': trjs[str(trj_id)],
'sent': cd['sent']})
s_id += 1
cur_len += len(cd['bert']) + 1
clip_info.append((cd['clip_id'], pos_trjs, pos_trjs_names))
# Text re-id GT
for i in range(sN):
for j in range(sN):
if s_pids[i] == s_pids[j]:
gt_mat_t[i][j] = 1.
# Build Visual
hN = self.hN
im_5, im_msk_5, bbox_meta_5 = [], np.zeros((5,hN)), np.zeros((5,hN,4))
pos_5, pos_msk_5 = np.zeros((5,hN,17,2)), np.zeros((5,hN,17))
i3d_rgb_5, i3d_flow_5 = np.zeros((5,hN,1024)), np.zeros((5, hN, 1024))
face_5, face_msk_5 = np.zeros((5,hN,512)), np.zeros((5,hN))
gt_vmat, gt_vmat_msk =
|
np.zeros((5*hN, 5*hN))
|
numpy.zeros
|
#!/usr/bin/env python
# coding: utf-8
#
# Project: Azimuthal integration
# https://github.com/silx-kit/pyFAI
#
# Copyright (C) 2015-2018 European Synchrotron Radiation Facility, Grenoble, France
#
# Principal author: <NAME> (<EMAIL>)
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
# THE SOFTWARE.
from __future__ import division, print_function, absolute_import
"""Test suite for math utilities library"""
__author__ = "<NAME>"
__contact__ = "<EMAIL>"
__license__ = "MIT"
__copyright__ = "European Synchrotron Radiation Facility, Grenoble, France"
__date__ = "17/05/2019"
import unittest
import numpy
from pyFAI.utils import ellipse as ellipse_mdl
def modulo(value, div=numpy.pi):
"""hack to calculate the value%div but returns the smallest
absolute value, possibly negative"""
q = value / div
i = round(q)
return (i - q) * div
class TestEllipse(unittest.TestCase):
def test_ellipse(self):
angles = numpy.arange(0, numpy.pi * 2, 0.2)
pty = numpy.sin(angles) * 20 + 50
ptx = numpy.cos(angles) * 10 + 100
ellipse = ellipse_mdl.fit_ellipse(pty, ptx)
self.assertAlmostEqual(ellipse.center_1, 50)
self.assertAlmostEqual(ellipse.center_2, 100)
self.assertAlmostEqual(ellipse.half_long_axis, 20)
self.assertAlmostEqual(ellipse.half_short_axis, 10)
self.assertAlmostEqual(modulo(ellipse.angle), 0)
def test_ellipse2(self):
angles = numpy.arange(0, numpy.pi * 2, 0.2)
pty = numpy.sin(angles) * 10 + 50
ptx = numpy.cos(angles) * 20 + 100
ellipse = ellipse_mdl.fit_ellipse(pty, ptx)
self.assertAlmostEqual(ellipse.center_1, 50)
self.assertAlmostEqual(ellipse.center_2, 100)
self.assertAlmostEqual(ellipse.half_long_axis, 20)
self.assertAlmostEqual(ellipse.half_short_axis, 10)
self.assertAlmostEqual(modulo(ellipse.angle), 0)
def test_half_circle(self):
angles = numpy.linspace(0, numpy.pi, 10)
pty = numpy.sin(angles) * 20 + 10
ptx = numpy.cos(angles) * 20 + 10
ellipse = ellipse_mdl.fit_ellipse(pty, ptx)
self.assertAlmostEqual(ellipse.center_1, 10)
self.assertAlmostEqual(ellipse.center_2, 10)
self.assertAlmostEqual(ellipse.half_long_axis, 20)
self.assertAlmostEqual(ellipse.half_short_axis, 20)
def test_quarter_circle(self):
angles = numpy.linspace(0, numpy.pi / 2, 10)
pty = numpy.sin(angles) * 20 + 10
ptx = numpy.cos(angles) * 20 + 10
ellipse = ellipse_mdl.fit_ellipse(pty, ptx)
self.assertAlmostEqual(ellipse.center_1, 10)
self.assertAlmostEqual(ellipse.center_2, 10)
self.assertAlmostEqual(ellipse.half_long_axis, 20)
self.assertAlmostEqual(ellipse.half_short_axis, 20)
def test_halfquater_circle_5ptx(self):
angles = numpy.linspace(0, numpy.pi / 4, 5)
pty = numpy.sin(angles) * 20 + 10
ptx = numpy.cos(angles) * 20 + 10
ellipse = ellipse_mdl.fit_ellipse(pty, ptx)
self.assertAlmostEqual(ellipse.center_1, 10, places=5)
self.assertAlmostEqual(ellipse.center_2, 10, places=5)
self.assertAlmostEqual(ellipse.half_long_axis, 20, places=5)
self.assertAlmostEqual(ellipse.half_short_axis, 20, places=5)
def test_centered_to_zero(self):
angles = numpy.linspace(0, numpy.pi, 10)
pty = numpy.sin(angles) * 20
ptx = numpy.cos(angles) * 20
ellipse = ellipse_mdl.fit_ellipse(pty, ptx)
self.assertAlmostEqual(ellipse.center_1, 0, places=5)
self.assertAlmostEqual(ellipse.center_2, 0, places=5)
self.assertAlmostEqual(ellipse.half_long_axis, 20, places=5)
self.assertAlmostEqual(ellipse.half_short_axis, 20, places=5)
def test_line(self):
pty =
|
numpy.arange(10)
|
numpy.arange
|
import copy
import numpy as np
from .grid import Grid, CachedData
def array_at_verts_basic2d(a):
"""
Computes values at cell vertices on 2d array using neighbor averaging.
Parameters
----------
a : ndarray
Array values at cell centers, could be a slice in any orientation.
Returns
-------
averts : ndarray
Array values at cell vertices, shape (a.shape[0]+1, a.shape[1]+1).
"""
assert a.ndim == 2
shape_verts2d = (a.shape[0]+1, a.shape[1]+1)
# create a 3D array of size (nrow+1, ncol+1, 4)
averts3d = np.full(shape_verts2d + (4,), np.nan)
averts3d[:-1, :-1, 0] = a
averts3d[:-1, 1:, 1] = a
averts3d[1:, :-1, 2] = a
averts3d[1:, 1:, 3] = a
# calculate the mean over the last axis, ignoring NaNs
averts = np.nanmean(averts3d, axis=2)
return averts
class StructuredGrid(Grid):
"""
class for a structured model grid
Parameters
----------
delc
delc array
delr
delr array
Properties
----------
nlay
returns the number of model layers
nrow
returns the number of model rows
ncol
returns the number of model columns
delc
returns the delc array
delr
returns the delr array
xyedges
returns x-location points for the edges of the model grid and
y-location points for the edges of the model grid
Methods
----------
get_cell_vertices(i, j)
returns vertices for a single cell at row, column i, j.
"""
def __init__(self, delc=None, delr=None, top=None, botm=None, idomain=None,
lenuni=None, epsg=None, proj4=None, prj=None, xoff=0.0,
yoff=0.0, angrot=0.0, nlay=None, nrow=None, ncol=None,
laycbd=None):
super(StructuredGrid, self).__init__('structured', top, botm, idomain,
lenuni, epsg, proj4, prj, xoff,
yoff, angrot)
if delc is not None:
self.__nrow = len(delc)
self.__delc = delc.astype(float)
else:
self.__nrow = nrow
self.__delc = delc
if delr is not None:
self.__ncol = len(delr)
self.__delr = delr.astype(float)
else:
self.__ncol = ncol
self.__delr = delr
if top is not None:
assert self.__nrow * self.__ncol == len(np.ravel(top))
if botm is not None:
assert self.__nrow * self.__ncol == len(np.ravel(botm[0]))
if nlay is not None:
self.__nlay = nlay
else:
if laycbd is not None:
self.__nlay = len(botm) - np.sum(laycbd>0)
else:
self.__nlay = len(botm)
else:
self.__nlay = nlay
if laycbd is not None:
self.__laycbd = laycbd
else:
self.__laycbd = np.zeros(self.__nlay, dtype=int)
####################
# Properties
####################
@property
def is_valid(self):
if self.__delc is not None and self.__delr is not None:
return True
return False
@property
def is_complete(self):
if self.__delc is not None and self.__delr is not None and \
super(StructuredGrid, self).is_complete:
return True
return False
@property
def nlay(self):
return self.__nlay
@property
def nrow(self):
return self.__nrow
@property
def ncol(self):
return self.__ncol
@property
def nnodes(self):
return self.__nlay * self.__nrow * self.__ncol
@property
def shape(self):
return self.__nlay, self.__nrow, self.__ncol
@property
def extent(self):
self._copy_cache = False
xyzgrid = self.xyzvertices
self._copy_cache = True
return (np.min(xyzgrid[0]), np.max(xyzgrid[0]),
np.min(xyzgrid[1]), np.max(xyzgrid[1]))
@property
def delc(self):
return copy.deepcopy(self.__delc)
@property
def delr(self):
return copy.deepcopy(self.__delr)
@property
def delz(self):
cache_index = 'delz'
if cache_index not in self._cache_dict or \
self._cache_dict[cache_index].out_of_date:
delz = self.top_botm[:-1, :, :] - self.top_botm[1:, :, :]
self._cache_dict[cache_index] = CachedData(delz)
if self._copy_cache:
return self._cache_dict[cache_index].data
else:
return self._cache_dict[cache_index].data_nocopy
@property
def top_botm_withnan(self):
"""
Same as top_botm array but with NaN where idomain==0 both above and
below a cell.
"""
cache_index = 'top_botm_withnan'
if cache_index not in self._cache_dict or \
self._cache_dict[cache_index].out_of_date:
is_inactive_above = np.full(self.top_botm.shape, True)
is_inactive_above[:-1, :, :] = self._idomain==0
is_inactive_below = np.full(self.top_botm.shape, True)
is_inactive_below[1:, :, :] = self._idomain==0
where_to_nan = np.logical_and(is_inactive_above, is_inactive_below)
top_botm_withnan = np.where(where_to_nan, np.nan, self.top_botm)
self._cache_dict[cache_index] = CachedData(top_botm_withnan)
if self._copy_cache:
return self._cache_dict[cache_index].data
else:
return self._cache_dict[cache_index].data_nocopy
@property
def xyzvertices(self):
"""
Method to get all grid vertices in a layer
Returns:
[]
2D array
"""
cache_index = 'xyzgrid'
if cache_index not in self._cache_dict or \
self._cache_dict[cache_index].out_of_date:
xedge = np.concatenate(([0.], np.add.accumulate(self.__delr)))
length_y = np.add.reduce(self.__delc)
yedge = np.concatenate(([length_y], length_y -
np.add.accumulate(self.delc)))
xgrid, ygrid = np.meshgrid(xedge, yedge)
zgrid, zcenter = self._zcoords()
if self._has_ref_coordinates:
# transform x and y
pass
xgrid, ygrid = self.get_coords(xgrid, ygrid)
if zgrid is not None:
self._cache_dict[cache_index] = \
CachedData([xgrid, ygrid, zgrid])
else:
self._cache_dict[cache_index] = \
CachedData([xgrid, ygrid])
if self._copy_cache:
return self._cache_dict[cache_index].data
else:
return self._cache_dict[cache_index].data_nocopy
@property
def xyedges(self):
"""
Return a list of two 1D numpy arrays: one with the cell edge x
coordinate (size = ncol+1) and the other with the cell edge y
coordinate (size = nrow+1) in model space - not offset or rotated.
"""
cache_index = 'xyedges'
if cache_index not in self._cache_dict or \
self._cache_dict[cache_index].out_of_date:
xedge = np.concatenate(([0.], np.add.accumulate(self.__delr)))
length_y = np.add.reduce(self.__delc)
yedge = np.concatenate(([length_y], length_y -
np.add.accumulate(self.delc)))
self._cache_dict[cache_index] = \
CachedData([xedge, yedge])
if self._copy_cache:
return self._cache_dict[cache_index].data
else:
return self._cache_dict[cache_index].data_nocopy
@property
def zedges(self):
"""
Return zedges for (column, row)==(0, 0).
"""
cache_index = 'zedges'
if cache_index not in self._cache_dict or \
self._cache_dict[cache_index].out_of_date:
zedge = np.concatenate((np.array([self.top[0, 0]]),
self.botm[:, 0, 0]))
self._cache_dict[cache_index] = \
CachedData(zedge)
if self._copy_cache:
return self._cache_dict[cache_index].data
else:
return self._cache_dict[cache_index].data_nocopy
@property
def zverts_smooth(self):
"""
Get a unique z of cell vertices for smooth (instead of stepwise) layer
elevations using bilinear interpolation.
Returns
-------
zverts : ndarray, shape (nlay+1, nrow+1, ncol+1)
z of cell vertices. NaN values are assigned in accordance with
inactive cells defined by idomain.
"""
cache_index = 'zverts_smooth'
if cache_index not in self._cache_dict or \
self._cache_dict[cache_index].out_of_date:
zverts_smooth = self._zverts_smooth()
self._cache_dict[cache_index] = CachedData(zverts_smooth)
if self._copy_cache:
return self._cache_dict[cache_index].data
else:
return self._cache_dict[cache_index].data_nocopy
def _zverts_smooth(self):
"""
For internal use only. The user should call zverts_smooth.
"""
# initialize the result array
shape_verts = (self.nlay+1, self.nrow+1, self.ncol+1)
zverts_basic = np.empty(shape_verts, dtype='float64')
# assign NaN to top_botm where idomain==0 both above and below
if self._idomain is not None:
_top_botm = self.top_botm_withnan
# perform basic interpolation (this will be useful in all cases)
# loop through layers
for k in range(self.nlay+1):
zvertsk = array_at_verts_basic2d(_top_botm[k, : , :])
zverts_basic[k, : , :] = zvertsk
if self.is_regular():
# if the grid is regular, basic interpolation is the correct one
zverts = zverts_basic
else:
# cell centers
xcenters, ycenters = self.get_local_coords(self.xcellcenters,
self.ycellcenters)
# flip y direction because RegularGridInterpolator requires
# increasing input coordinates
ycenters = np.flip(ycenters, axis=0)
_top_botm = np.flip(_top_botm, axis=1)
xycenters = (ycenters[:, 0], xcenters[0, :])
# vertices
xverts, yverts = self.get_local_coords(self.xvertices,
self.yvertices)
xyverts = np.ndarray((xverts.size, 2))
xyverts[:, 0] = yverts.ravel()
xyverts[:, 1] = xverts.ravel()
# interpolate
import scipy.interpolate as interp
shape_verts2d = (self.nrow+1, self.ncol+1)
zverts = np.empty(shape_verts, dtype='float64')
# loop through layers
for k in range(self.nlay+1):
# interpolate layer elevation
zcenters_k = _top_botm[k, : , :]
interp_func = interp.RegularGridInterpolator(xycenters,
zcenters_k, bounds_error=False, fill_value=np.nan)
zverts_k = interp_func(xyverts)
zverts_k = zverts_k.reshape(shape_verts2d)
zverts[k, : , :] = zverts_k
# use basic interpolation for remaining NaNs at boundaries
where_nan = np.isnan(zverts)
zverts[where_nan] = zverts_basic[where_nan]
return zverts
@property
def xyzcellcenters(self):
"""
Return a list of two numpy one-dimensional float array one with
the cell center x coordinate and the other with the cell center y
coordinate for every row in the grid in model space -
not offset of rotated, with the cell center y coordinate.
"""
cache_index = 'cellcenters'
if cache_index not in self._cache_dict or \
self._cache_dict[cache_index].out_of_date:
# get x centers
x = np.add.accumulate(self.__delr) - 0.5 * self.delr
# get y centers
Ly = np.add.reduce(self.__delc)
y = Ly - (np.add.accumulate(self.__delc) - 0.5 *
self.__delc)
x_mesh, y_mesh = np.meshgrid(x, y)
if self.__nlay is not None:
# get z centers
z = np.empty((self.__nlay, self.__nrow, self.__ncol))
z[0, :, :] = (self._top[:, :] + self._botm[0, :, :]) / 2.
ibs = np.arange(self.__nlay)
quasi3d = [cbd !=0 for cbd in self.__laycbd]
if np.any(quasi3d):
ibs[1:] = ibs[1:] + np.cumsum(quasi3d)[:self.__nlay - 1]
for l, ib in enumerate(ibs[1:], 1):
z[l, :, :] = (self._botm[ib - 1, :, :] +
self._botm[ib, :, :]) / 2.
else:
z = None
if self._has_ref_coordinates:
# transform x and y
x_mesh, y_mesh = self.get_coords(x_mesh, y_mesh)
# store in cache
self._cache_dict[cache_index] = CachedData([x_mesh, y_mesh, z])
if self._copy_cache:
return self._cache_dict[cache_index].data
else:
return self._cache_dict[cache_index].data_nocopy
@property
def grid_lines(self):
"""
Get the grid lines as a list
"""
# get edges initially in model coordinates
use_ref_coords = self.use_ref_coords
self.use_ref_coords = False
xyedges = self.xyedges
self.use_ref_coords = use_ref_coords
xmin = xyedges[0][0]
xmax = xyedges[0][-1]
ymin = xyedges[1][-1]
ymax = xyedges[1][0]
lines = []
# Vertical lines
for j in range(self.ncol + 1):
x0 = xyedges[0][j]
x1 = x0
y0 = ymin
y1 = ymax
lines.append([(x0, y0), (x1, y1)])
# horizontal lines
for i in range(self.nrow + 1):
x0 = xmin
x1 = xmax
y0 = xyedges[1][i]
y1 = y0
lines.append([(x0, y0), (x1, y1)])
if self._has_ref_coordinates:
lines_trans = []
for ln in lines:
lines_trans.append([self.get_coords(*ln[0]),
self.get_coords(*ln[1])])
return lines_trans
return lines
###############
### Methods ###
###############
def intersect(self, x, y, local=False, forgive=False):
"""
Get the row and column of a point with coordinates x and y
When the point is on the edge of two cells, the cell with the lowest
row or column is returned.
Parameters
----------
x : float
The x-coordinate of the requested point
y : float
The y-coordinate of the requested point
local: bool (optional)
If True, x and y are in local coordinates (defaults to False)
forgive: bool (optional)
Forgive x,y arguments that fall outside the model grid and
return NaNs instead (defaults to False - will throw exception)
Returns
-------
row : int
The row number
col : int
The column number
"""
# transform x and y to local coordinates
x, y = super(StructuredGrid, self).intersect(x, y, local, forgive)
# get the cell edges in local coordinates
xe, ye = self.xyedges
xcomp = x > xe
if np.all(xcomp) or not np.any(xcomp):
if forgive:
col = np.nan
else:
raise Exception(
'x, y point given is outside of the model area')
else:
col = np.where(xcomp)[0][-1]
ycomp = y < ye
if np.all(ycomp) or not np.any(ycomp):
if forgive:
row = np.nan
else:
raise Exception(
'x, y point given is outside of the model area')
else:
row = np.where(ycomp)[0][-1]
if np.any(np.isnan([row, col])):
row = col = np.nan
return row, col
def _cell_vert_list(self, i, j):
"""Get vertices for a single cell or sequence of i, j locations."""
self._copy_cache = False
pts = []
xgrid, ygrid = self.xvertices, self.yvertices
pts.append([xgrid[i, j], ygrid[i, j]])
pts.append([xgrid[i + 1, j], ygrid[i + 1, j]])
pts.append([xgrid[i + 1, j + 1], ygrid[i + 1, j + 1]])
pts.append([xgrid[i, j + 1], ygrid[i, j + 1]])
pts.append([xgrid[i, j], ygrid[i, j]])
self._copy_cache = True
if np.isscalar(i):
return pts
else:
vrts = np.array(pts).transpose([2, 0, 1])
return [v.tolist() for v in vrts]
def get_cell_vertices(self, i, j):
"""
Method to get a set of cell vertices for a single cell
used in the Shapefile export utilities
:param i: (int) cell row number
:param j: (int) cell column number
:return: list of x,y cell vertices
"""
self._copy_cache = False
cell_verts = [(self.xvertices[i, j], self.yvertices[i, j]),
(self.xvertices[i, j+1], self.yvertices[i, j+1]),
(self.xvertices[i+1, j+1], self.yvertices[i+1, j+1]),
(self.xvertices[i+1, j], self.yvertices[i+1, j]),]
self._copy_cache = True
return cell_verts
def plot(self, **kwargs):
"""
Plot the grid lines.
Parameters
----------
kwargs : ax, colors. The remaining kwargs are passed into the
the LineCollection constructor.
Returns
-------
lc : matplotlib.collections.LineCollection
"""
from ..plot import PlotMapView
mm = PlotMapView(modelgrid=self)
return mm.plot_grid(**kwargs)
# Importing
@classmethod
def from_gridspec(cls, gridspec_file, lenuni=0):
f = open(gridspec_file, 'r')
raw = f.readline().strip().split()
nrow = int(raw[0])
ncol = int(raw[1])
raw = f.readline().strip().split()
xul, yul, rot = float(raw[0]), float(raw[1]), float(raw[2])
delr = []
j = 0
while j < ncol:
raw = f.readline().strip().split()
for r in raw:
if '*' in r:
rraw = r.split('*')
for n in range(int(rraw[0])):
delr.append(float(rraw[1]))
j += 1
else:
delr.append(float(r))
j += 1
delc = []
i = 0
while i < nrow:
raw = f.readline().strip().split()
for r in raw:
if '*' in r:
rraw = r.split('*')
for n in range(int(rraw[0])):
delc.append(float(rraw[1]))
i += 1
else:
delc.append(float(r))
i += 1
f.close()
grd = cls(np.array(delc), np.array(delr), lenuni=lenuni)
xll = grd._xul_to_xll(xul)
yll = grd._yul_to_yll(yul)
cls.set_coord_info(xoff=xll, yoff=yll, angrot=rot)
return cls
# Exporting
def write_shapefile(self, filename='grid.shp', epsg=None, prj=None):
"""
Write a shapefile of the grid with just the row and column attributes.
"""
from ..export.shapefile_utils import write_grid_shapefile
if epsg is None and prj is None:
epsg = self.epsg
write_grid_shapefile(filename, self, array_dict={}, nan_val=-1.0e9,
epsg=epsg, prj=prj)
def is_regular(self):
"""
Test whether the grid spacing is regular or not (including in the
vertical direction).
"""
# Relative tolerance to use in test
rel_tol = 1.e-5
# Regularity test in x direction
rel_diff_x = (self.delr - self.delr[0]) / self.delr[0]
is_regular_x =
|
np.count_nonzero(rel_diff_x > rel_tol)
|
numpy.count_nonzero
|
"""
Single Neuron Linear Regression with data normalization
N = #Samples
i = [0, ... ,N]
M = Dimension of samples +1(offset b)
Output a_i
a_i = w.transpose()*x_i
Cost C
C = sum(0.5*(a_i-y_i)**2)
"""
import numpy as np
from dataset1_linreg import DataSet
def get_norm_params(x_arr):
mean_x =
|
np.sum(x_arr, axis=1)
|
numpy.sum
|
import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import cv2
import json
import time
import numpy as np
import tensorflow as tf
from queue import Queue
from threading import Thread
from merceedge.tests.detect_object.utils.app_utils import FPS, WebcamVideoStream, draw_boxes_and_labels
from merceedge.tests.detect_object.object_detection.utils import label_map_util
from merceedge.core import WireLoad
CWD_PATH = os.path.dirname(os.path.realpath(__file__))
# CWD_PATH = os.getcwd()
# Path to frozen detection graph. This is the actual model that is used for the object detection.
MODEL_NAME = 'ssd_mobilenet_v1_coco_11_06_2017'
PATH_TO_CKPT = os.path.join(CWD_PATH, '..', 'detect_object',
'object_detection', MODEL_NAME, 'frozen_inference_graph.pb')
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = os.path.join(CWD_PATH, '..', 'detect_object',
'object_detection', 'data', 'mscoco_label_map.pbtxt')
NUM_CLASSES = 90
# Loading label map
label_map = label_map_util.load_labelmap(PATH_TO_LABELS)
categories = label_map_util.convert_label_map_to_categories(label_map, max_num_classes=NUM_CLASSES,
use_display_name=True)
category_index = label_map_util.create_category_index(categories)
def detect_objects(image_np, sess, detection_graph, min_score_thresh=0.5):
# Expand dimensions since the model expects images to have shape: [1, None, None, 3]
image_np_expanded = np.expand_dims(image_np, axis=0)
image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
# Each box represents a part of the image where a particular object was detected.
boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
# Each score represent how level of confidence for each of the objects.
# Score is shown on the result image, together with the class label.
scores = detection_graph.get_tensor_by_name('detection_scores:0')
classes = detection_graph.get_tensor_by_name('detection_classes:0')
num_detections = detection_graph.get_tensor_by_name('num_detections:0')
# Actual detection.
(boxes, scores, classes, num_detections) = sess.run(
[boxes, scores, classes, num_detections],
feed_dict={image_tensor: image_np_expanded})
# Visualization of the results of a detection.
rect_points, class_names, class_colors = draw_boxes_and_labels(
boxes=
|
np.squeeze(boxes)
|
numpy.squeeze
|
import os
import time
import numpy as np
base_dir = "/data/datasets/fake_512x512"
output_dir = os.path.join(base_dir, 'preprocessed')
number_of_files = 200
# Validate inputs
os.makedirs(output_dir, exist_ok=True)
def generate(i):
output_file = os.path.join(output_dir, 'np_stack_{}.npz'.format(i))
start = time.time()
img = np.random.rand(2, 512, 512)
label = np.zeros((2, 512, 512))
stack =
|
np.stack((img, label))
|
numpy.stack
|
from src.generator.Generator import Generator
from src.dataset.Dataset import Dataset
from src.environment.EnvironmentManager import EnvironmentManager as EM
from typing import List
from os import path
from src.util.Interpolation import slerp
import numpy as np
STYLESWIN_NAME = "styleswin"
class StyleSwinGenerator(Generator):
_DIM_Z = 512
_PATH_TO_IMAGES = "environment/styleswin/out/"
_IMAGE_EXT = ".png"
def __init__(self, dataset: Dataset):
"""
Constructs a new StyleSwin generator.
Args:
dataset (Dataset): The dataset to associate the generator with.
"""
super().__init__(STYLESWIN_NAME, dataset)
def latent_space_std(self) -> np.ndarray:
return
|
np.ones(self._DIM_Z)
|
numpy.ones
|
import mdtraj as md
import networkx as nx
import numpy as np
import matplotlib.pyplot as plt
from collections import defaultdict
import scipy.optimize
import unyt as u
class BondCalculator:
def __init__(self, traj, T):
self.traj = traj
graph = traj.top.to_bondgraph()
bonds = self.identify_bonds(graph)
angles = self.identify_angles(graph)
bond_params = dict()
angle_params = dict()
for bond_type, pairs in bonds.items():
bond_lengths, bond_prob = self.calc_lengths(pairs, range=[0, 1.0])
params = self.calc_parameters(bond_lengths, bond_prob)
k = 2 * u.kb * (T*u.K) / (params[0] * u.nm)**2 * u.Na
l0 = params[1] * u.nm
bond_params[bond_type]= {"k": k, "x0": l0}
for angle_type, triplets in angles.items():
bond_angles, angle_prob = self.calc_angles(triplets, range=[0, 2*np.pi])
params = self.calc_parameters(bond_angles, angle_prob)
k = 2 * u.kb * (T*u.K) / (params[0] * u.rad)**2 * u.Na
t0 = params[1] * u.rad
angle_params[angle_type]= {"k": k, "x0": t0}
self.bond_params = bond_params
self.angle_params = angle_params
def identify_bonds(self, graph):
all_bonds = [edge for edge in graph.edges]
bonds = defaultdict(list)
for bond in all_bonds:
index = tuple(sorted([bond[0].name, bond[1].name]))
pair = tuple([particle.index for particle in bond])
bonds[index].append(pair)
return bonds
def identify_angles(self, graph):
angle_subgraph = nx.Graph()
angle_subgraph.add_edge(0, 1)
angle_subgraph.add_edge(1, 2)
matcher = nx.algorithms.isomorphism.GraphMatcher(graph, angle_subgraph)
all_angles = []
for m in matcher.subgraph_isomorphisms_iter():
all_angles.append(tuple(k for k in m.keys()))
angles = defaultdict(list)
for angle in all_angles:
index = tuple(particle.name for particle in angle)
if angle[0].name < angle[2].name:
index = tuple(reversed(index))
triplet = tuple(particle.index for particle in angle)
angles[index].append(triplet)
return angles
def calc_lengths(self, pairs, range=None):
quantity = md.compute_distances(self.traj, pairs)
hist, edges = np.histogram(quantity, density=True, range=range, bins=200)
bins = (edges[1:]+edges[:-1]) * 0.5
return bins, hist
def calc_angles(self, triplets, range=None):
quantity = md.compute_angles(self.traj, triplets)
hist, edges = np.histogram(quantity, density=True, range=range, bins=200)
bins = (edges[1:]+edges[:-1]) * 0.5
hist /= np.sin(bins)
hist /= np.sum(hist)*(bins[1]-bins[0])
return bins, hist
def cost_function(self, args, x, y):
w, x0 = args
return np.sum((self.gaussian(w, x0, x) - y)**2)
def gaussian(self, w, x0, x):
return ((w *
|
np.sqrt(np.pi / 2)
|
numpy.sqrt
|
import numpy as np
from classy import Class
from linear_theory import f_of_a
from velocileptors.LPT.lpt_rsd_fftw import LPT_RSD
# k vector to use:
kvec = np.concatenate( ([0.0005,],\
np.logspace(np.log10(0.0015),np.log10(0.025),10, endpoint=True),\
np.arange(0.03,0.51,0.01)) )
# Reference Cosmology:
z = 0.61
Omega_M = 0.31
fb = 0.1571
h = 0.6766
ns = 0.9665
speed_of_light = 2.99792458e5
pkparams = {
'output': 'mPk',
'P_k_max_h/Mpc': 20.,
'z_pk': '0.0,10',
'A_s': np.exp(3.040)*1e-10,
'n_s': 0.9665,
'h': h,
'N_ur': 3.046,
'N_ncdm': 0,#1,
#'m_ncdm': 0,
'tau_reio': 0.0568,
'omega_b': h**2 * fb * Omega_M,
'omega_cdm': h**2 * (1-fb) * Omega_M}
import time
t1 = time.time()
pkclass = Class()
pkclass.set(pkparams)
pkclass.compute()
Hz_fid = pkclass.Hubble(z) * speed_of_light / h # this H(z) in units km/s/(Mpc/h) = 100 * E(z)
chiz_fid = pkclass.angular_distance(z) * (1.+z) * h # this is the comoving radius in units of Mpc/h
print(Hz_fid, chiz_fid)
def compute_pell_tables(pars, z=0.61, fid_dists= (Hz_fid,chiz_fid) ):
OmegaM, h, sigma8 = pars
Hzfid, chizfid = fid_dists
omega_b = 0.02242
lnAs = 3.047
ns = 0.9665
nnu = 1
nur = 2.033
mnu = 0.06
omega_nu = 0.0106 * mnu
omega_c = (OmegaM - omega_b/h**2 - omega_nu/h**2) * h**2
pkparams = {
'output': 'mPk',
'P_k_max_h/Mpc': 20.,
'z_pk': '0.0,10',
'A_s': np.exp(lnAs)*1e-10,
'n_s': ns,
'h': h,
'N_ur': nur,
'N_ncdm': nnu,
'm_ncdm': mnu,
'tau_reio': 0.0568,
'omega_b': omega_b,
'omega_cdm': omega_c}
pkclass = Class()
pkclass.set(pkparams)
pkclass.compute()
# Caluclate AP parameters
Hz = pkclass.Hubble(z) * speed_of_light / h # this H(z) in units km/s/(Mpc/h) = 100 * E(z)
chiz = pkclass.angular_distance(z) * (1.+z) * h # this is the comoving radius in units of Mpc/h
apar, aperp = Hzfid / Hz, chiz / chizfid
# Calculate growth rate
fnu = pkclass.Omega_nu / pkclass.Omega_m()
f = f_of_a(1/(1.+z), OmegaM=OmegaM) * (1 - 0.6 * fnu)
# Calculate and renormalize power spectrum
ki =
|
np.logspace(-3.0,1.0,200)
|
numpy.logspace
|
import numpy
from scipy import optimize
import algopy
## This is y-data:
y_data = numpy.array([0.2867, 0.1171, -0.0087, 0.1326, 0.2415, 0.2878, 0.3133, 0.3701, 0.3996, 0.3728, 0.3551, 0.3587, 0.1408, 0.0416, 0.0708, 0.1142, 0, 0, 0])
## This is x-data:
t =
|
numpy.array([67., 88, 104, 127, 138, 160, 169, 188, 196, 215, 240, 247, 271, 278, 303, 305, 321, 337, 353])
|
numpy.array
|
#!/usr/bin/env python
# coding: utf-8
# <NAME> used car sales service is developing an app to attract new customers. In that app, you can quickly find out the market value of your car. You have access to historical data: technical specifications, trim versions, and prices. You need to build the model to determine the value.
#
# <NAME> is interested in:
#
# - the quality of the prediction;
# - the speed of the prediction;
# - the time required for training
#
# ---
# Features
#
# - DateCrawled — date profile was downloaded from the database
# - VehicleType — vehicle body type
# - RegistrationYear — vehicle registration year
# - Gearbox — gearbox type
# - Power — power (hp)
# - Model — vehicle model
# - Mileage — mileage (measured in km due to dataset's regional specifics)
# - RegistrationMonth — vehicle registration month
# - FuelType — fuel type
# - Brand — vehicle brand
# - NotRepaired — vehicle repaired or not
# - DateCreated — date of profile creation
# - NumberOfPictures — number of vehicle pictures
# - PostalCode — postal code of profile owner (user)
# - LastSeen — date of the last activity of the user
#
# Target
# - Price — price (Euro)
#
# Analysis done January 2022
# ## Data preparation
# In[1]:
# import libraries
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import math
import time
import lightgbm as lgb
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
from sklearn.ensemble import RandomForestRegressor
from sklearn.tree import DecisionTreeRegressor
from catboost import CatBoostRegressor
from sklearn.model_selection import cross_val_score
from sklearn.metrics import make_scorer
from sklearn.model_selection import RandomizedSearchCV
import random
random_state=42
random.seed(random_state)
np.random.seed(random_state)
# import sys and insert code to ignore warnings
import sys
if not sys.warnoptions:
import warnings
warnings.simplefilter("ignore")
# __Helper functions__
# In[2]:
# function for timing execution of cell [refrence](https://stackoverflow.com/questions/52738709/how-to-store-time-values-in-a-variable-in-jupyter)
# couldn't get it to work though...
def exec_time(start, end):
diff_time = end - start
m, s = divmod(diff_time, 60)
h, m = divmod(m, 60)
s,m,h = int(round(s, 0)), int(round(m, 0)), int(round(h, 0))
print("time: " + "{0:02d}:{1:02d}:{2:02d}".format(h, m, s))
# function for displaying outlier statistics for column
def outlier_stats(data):
data_mean, data_std = np.mean(data),
|
np.std(data)
|
numpy.std
|
import numpy as np
import pandas as pd
from tensorflow import keras
class KerasAgent:
def __init__(self, num_bandits, filename, margin=0.99):
self.total_reward = 0
self.filename = filename
self.margin = margin
self.model = keras.models.load_model(self.filename)
self.machine_states = pd.DataFrame(
index=range(num_bandits),
columns=['step', 'n_pulls', 'n_success', 'n_opp_pulls', 'streak', 'win_streak', 'opp_streak']
).fillna(0)
def description(self):
return f"Keras - {self.filename}, margin:{self.margin:.2f}"
def step(self, observation, configuration):
if observation.step == 0:
return np.random.randint(configuration.banditCount)
reward = observation.reward - self.total_reward
self.total_reward = observation.reward
last_action = observation.lastActions[observation.agentIndex]
opp_action = observation.lastActions[1 - observation.agentIndex]
self.machine_states['step'] = observation.step
self.machine_states.at[last_action, 'n_pulls'] += 1
self.machine_states.at[last_action, 'n_success'] += reward
self.machine_states.at[opp_action, 'n_opp_pulls'] += 1
self.machine_states.at[last_action, 'streak'] += 1
self.machine_states.loc[self.machine_states.index != last_action, 'streak'] = 0
self.machine_states.at[opp_action, 'opp_streak'] += 1
self.machine_states.loc[self.machine_states.index != opp_action, 'opp_streak'] = 0
if reward:
self.machine_states.at[last_action, 'win_streak'] += 1
else:
self.machine_states.at[last_action, 'win_streak'] = 0
probs = self.model(self.machine_states.to_numpy())
max_return =
|
np.max(probs)
|
numpy.max
|
import pandas as pd
import numpy as np
from plantcv.plantcv import params
def constellaqc(denovo_groups, annotated_groups):
"""
Compare de novo annotations of Constella to known standards in order to estimate error rates
Inputs:
denovo_groups = A pandas array representing homology groups predicted by Constella for plms
annotated_groups = A pandas array representing the true biological identities of plms
:param denovo_groups: pandas.core.frame.DataFrame
:param annotated_groups: pandas.core.frame.DataFrame
"""
known_feat = np.unique(annotated_groups.loc[:, 'group'])
pred_group = np.unique(denovo_groups.loc[:, 'group'])
scores = []
for anno in known_feat:
# anno_bool_index = annotated_groups.loc[:, 'group'] == anno
anno_group_calls = denovo_groups.loc[annotated_groups.loc[:, 'group'] == anno, 'group'].values
# print(anno, 'count: ', np.sum(anno_bool_index))
score_row = []
for denovo in pred_group:
score_row.append(np.sum(anno_group_calls == denovo))
scores.append(score_row)
scores = pd.DataFrame(scores, index=known_feat, columns=pred_group)
if params.debug is not None:
print('Known Feature-Predicted Group Scoring Matrix:\n')
print(scores)
anno_sum = []
anno_no = []
anno_error = []
ni = []
for anno in known_feat:
anno_sum.append(np.sum(scores.loc[anno, :].values))
anno_no.append(np.sum(scores.loc[anno, :].values != 0))
anno_error.append(np.sum(scores.loc[anno, :].values != 0) - 1)
ni.append(1)
pred_sum = []
pred_no = []
pred_error = []
nj = []
for denovo in pred_group:
pred_sum.append(np.sum(scores.loc[:, denovo].values))
pred_no.append(np.sum(scores.loc[:, denovo].values != 0))
pred_error.append(
|
np.sum(scores.loc[:, denovo].values != 0)
|
numpy.sum
|
#!/usr/bin/env python
# encoding: utf-8
"""
UtilizationSupplement.py
Copyright (c) NREL. All rights reserved.
"""
from math import atan2
import numpy as np
from wisdem.commonse.constants import eps
from wisdem.commonse.utilities import CubicSplineSegment, cubic_spline_eval, smooth_max, smooth_min, nodal2sectional, sectional2nodal
from openmdao.api import ExplicitComponent
from scipy.optimize import brentq, minimize_scalar
#-------------------------------------------------------------------------------
# Name: UtilizationSupplement.py
# Purpose: It contains functions to calculate utilizations for cylindric members,
# for instance tower sections and monopile
#
# Author: ANing/RRD/GBarter
#
# Created: 07/14/2015 - It is based on towerSupplement.py by ANing, 2012.
# Copyright: (c) rdamiani 2015
# Licence: <Apache 2015>
#-------------------------------------------------------------------------------
class GeometricConstraints(ExplicitComponent):
"""docstring for OtherConstraints"""
def initialize(self):
self.options.declare('nPoints')
self.options.declare('diamFlag', default=True)
def setup(self):
nPoints = self.options['nPoints']
self.add_input('d', np.zeros(nPoints), units='m')
self.add_input('t', np.zeros(nPoints-1), units='m')
self.add_input('min_d_to_t', 120.0)
self.add_input('max_taper', 0.4)
self.add_output('weldability', np.zeros(nPoints-1))
self.add_output('manufacturability', np.zeros(nPoints-1))
# Derivatives
self.declare_partials('*', '*', method='fd', form='central', step=1e-6)
def compute(self, inputs, outputs):
diamFlag = self.options['diamFlag']
d,_ = nodal2sectional(inputs['d'])
t = inputs['t']
# Check if the input was radii instead of diameters and convert if necessary
if not diamFlag: d *= 2.0
min_d_to_t = inputs['min_d_to_t']
max_taper = inputs['max_taper']
outputs['weldability'] = 1.0 - (d/t)/min_d_to_t
d_ratio = d[1:]/d[:-1]
manufacturability = np.minimum(d_ratio, 1.0/d_ratio) - max_taper
outputs['manufacturability'] = np.r_[manufacturability, manufacturability[-1]]
# def compute_partials(self, inputs, J):
# dw_dd = np.diag(-1.0/self.t/self.min_d_to_t)
# dw_dt = np.diag(self.d/self.t**2/self.min_d_to_t)
# dw = np.hstack([dw_dd, dw_dt])
# dm_dd = np.zeros_like(self.d)
# dm_dd[0] = self.d[-1]/self.d[0]**2
# dm_dd[-1] = -1.0/self.d[0]
# dm = np.hstack([dm_dd, np.zeros(len(self.t))])
def fatigue(M_DEL, N_DEL, d, t, m=4, DC=80.0, eta=1.265, stress_factor=1.0, weld_factor=True):
"""estimate fatigue damage for tower station
Parmeters
---------
M_DEL : array_like(float) (N*m)
damage equivalent moment at tower section
N_DEL : array_like(int)
corresponding number of cycles in lifetime
d : array_like(float) (m)
tower diameter at section
t : array_like(float) (m)
tower shell thickness at section
m : int
slope of S/N curve
DC : float (N/mm**2)
some max stress from a standard
eta : float
safety factor
stress_factor : float
load_factor * stress_concentration_factor
weld_factor : bool
if True include an empirical weld factor
Returns
-------
damage : float
damage from Miner's rule for this tower section
"""
# convert to mm
dvec = np.array(d)*1e3
tvec = np.array(t)*1e3
t = sectional2nodal(t)
nvec = len(d)
damage = np.zeros(nvec)
# initialize weld factor (added cubic spline around corner)
if weld_factor:
x1 = 24.0
x2 = 26.0
spline = CubicSplineSegment(x1, x2, 1.0, (25.0/x2)**0.25, 0.0, 25.0**0.25*-0.25*x2**-1.25)
for i in range(nvec):
d = dvec[i]
t = tvec[i]
# weld factor
if not weld_factor or t <= x1:
weld = 1.0
elif t >= x2:
weld = (25.0/t)**0.25
else:
weld = spline.eval(t)
# stress
r = d/2.0
I = np.pi*r**3*t
c = r
sigma = M_DEL[i]*c/I * stress_factor * 1e3 # convert to N/mm^2
# maximum allowed stress
Smax = DC * weld / eta
# number of cycles to failure
Nf = (Smax/sigma)**m
# number of cycles for this load
N1 = 2e6 # TODO: where does this come from?
N = N_DEL[i]/N1
# damage
damage[i] = N/Nf
return damage
def vonMisesStressUtilization(axial_stress, hoop_stress, shear_stress, gamma, sigma_y):
"""combine stress for von Mises"""
# von mises stress
a = ((axial_stress + hoop_stress)/2.0)**2
b = ((axial_stress - hoop_stress)/2.0)**2
c = shear_stress**2
von_mises = np.sqrt(a + 3.0*(b+c))
# stress margin
stress_utilization = gamma * von_mises / sigma_y
return stress_utilization # This must be <1 to pass
def hoopStress(d, t, q_dyn):
r = d/2.0-t/2.0 # radius of cylinder middle surface
return (-q_dyn * r / t)
def hoopStressEurocode(z, d, t, L_reinforced, q_dyn):
"""default method for computing hoop stress using Eurocode method
GB 06/21/2018: Ansys comparisons for submerged case suggests this over-compensates for stiffener
I'm not even sure the Eurocode is implemented correctly here. Suggest using the standard
hoop stress expression above or API's handling of ring stiffeners below.
"""
r = d/2.0-t/2.0 # radius of cylinder middle surface
omega = L_reinforced/np.sqrt(r*t)
C_theta = 1.5 # clamped-clamped
k_w = 0.46*(1.0 + 0.1*np.sqrt(C_theta/omega*r/t))
kw = smooth_max(k_w, 0.65)
kw = smooth_min(k_w, 1.0)
Peq = k_w*q_dyn
return hoopStress(d, t, Peq)
def bucklingGL(d, t, Fz, Myy, tower_height, E, sigma_y, gamma_f=1.2, gamma_b=1.1, gamma_g=1.1):
# other factors
alpha = 0.21 # buckling imperfection factor
beta = 1.0 # bending coefficient
sk_factor = 2.0 # fixed-free
tower_height = tower_height * sk_factor
# geometry
A = np.pi * d * t
I = np.pi * (d/2.0)**3 * t
Wp = I / (d/2.0)
# applied loads
Nd = -Fz * gamma_g
Md = Myy * gamma_f
# plastic resistance
Np = A * sigma_y / gamma_b
Mp = Wp * sigma_y / gamma_b
# factors
Ne = np.pi**2 * (E * I) / (1.1 * tower_height**2)
lambda_bar = np.sqrt(Np * gamma_b / Ne)
phi = 0.5 * (1 + alpha*(lambda_bar - 0.2) + lambda_bar**2)
kappa = np.ones_like(d)
idx = lambda_bar > 0.2
kappa[idx] = 1.0 / (phi[idx] + np.sqrt(phi[idx]**2 - lambda_bar[idx]**2))
delta_n = 0.25*kappa*lambda_bar**2
delta_n = np.minimum(delta_n, 0.1)
GL_utilization = Nd/(kappa*Np) + beta*Md/Mp + delta_n #this is utilization must be <1
return GL_utilization
def shellBucklingEurocode(d, t, sigma_z, sigma_t, tau_zt, L_reinforced, E, sigma_y, gamma_f=1.2, gamma_b=1.1):
"""
Estimate shell buckling utilization along tower.
Arguments:
npt - number of locations at each node at which stress is evaluated.
sigma_z - axial stress at npt*node locations. must be in order
[(node1_pts1-npt), (node2_pts1-npt), ...]
sigma_t - azimuthal stress given at npt*node locations
tau_zt - shear stress (z, theta) at npt*node locations
E - modulus of elasticity
sigma_y - yield stress
L_reinforced - reinforcement length - structure is re-discretized with this spacing
gamma_f - safety factor for stresses
gamma_b - safety factor for buckling
Returns:
z
EU_utilization: - array of shell buckling utilizations evaluted at (z[0] at npt locations, \n
z[0]+L_reinforced at npt locations, ...). \n
Each utilization must be < 1 to avoid failure.
"""
n = len(d)
EU_utilization = np.zeros(n)
sigma_z_sh = np.zeros(n)
sigma_t_sh = np.zeros(n)
tau_zt_sh = np.zeros(n)
for i in range(n):
h = L_reinforced[i]
r1 = d[i]/2.0 - t[i]/2.0
r2 = d[i]/2.0 - t[i]/2.0
sigma_z_shell = sigma_z[i]
sigma_t_shell = sigma_t[i]
tau_zt_shell = tau_zt[i]
# TODO: the following is non-smooth, although in general its probably OK
# change to magnitudes and add safety factor
sigma_z_shell = gamma_f*abs(sigma_z_shell)
sigma_t_shell = gamma_f*abs(sigma_t_shell)
tau_zt_shell = gamma_f*abs(tau_zt_shell)
EU_utilization[i] = _shellBucklingOneSection(h, r1, r2, t[i], gamma_b, sigma_z_shell, sigma_t_shell, tau_zt_shell, E[i], sigma_y[i])
#make them into vectors
sigma_z_sh[i]=sigma_z_shell
sigma_t_sh[i]=sigma_t_shell
tau_zt_sh[i]=tau_zt_shell
return EU_utilization # this is utilization must be <1
def _cxsmooth(omega, rovert):
Cxb = 6.0 # clamped-clamped
constant = 1 + 1.83/1.7 - 2.07/1.7**2
ptL1 = 1.7-0.25
ptR1 = 1.7+0.25
ptL2 = 0.5*rovert - 1.0
ptR2 = 0.5*rovert + 1.0
ptL3 = (0.5+Cxb)*rovert - 1.0
ptR3 = (0.5+Cxb)*rovert + 1.0
if omega < ptL1:
Cx = constant - 1.83/omega + 2.07/omega**2
elif omega >= ptL1 and omega <= ptR1:
fL = constant - 1.83/ptL1 + 2.07/ptL1**2
fR = 1.0
gL = 1.83/ptL1**2 - 4.14/ptL1**3
gR = 0.0
Cx = cubic_spline_eval(ptL1, ptR1, fL, fR, gL, gR, omega)
elif omega > ptR1 and omega < ptL2:
Cx = 1.0
elif omega >= ptL2 and omega <= ptR2:
fL = 1.0
fR = 1 + 0.2/Cxb*(1-2.0*ptR2/rovert)
gL = 0.0
gR = -0.4/Cxb/rovert
Cx = cubic_spline_eval(ptL2, ptR2, fL, fR, gL, gR, omega)
elif omega > ptR2 and omega < ptL3:
Cx = 1 + 0.2/Cxb*(1-2.0*omega/rovert)
elif omega >= ptL3 and omega <= ptR3:
fL = 1 + 0.2/Cxb*(1-2.0*ptL3/rovert)
fR = 0.6
gL = -0.4/Cxb/rovert
gR = 0.0
Cx = cubic_spline_eval(ptL3, ptR3, fL, fR, gL, gR, omega)
else:
Cx = 0.6
return Cx
def _sigmasmooth(omega, E, rovert):
Ctheta = 1.5 # clamped-clamped
ptL = 1.63*rovert*Ctheta - 1
ptR = 1.63*rovert*Ctheta + 1
if omega < 20.0*Ctheta:
offset = (10.0/(20*Ctheta)**2 - 5/(20*Ctheta)**3)
Cthetas = 1.5 + 10.0/omega**2 - 5/omega**3 - offset
sigma = 0.92*E*Cthetas/omega/rovert
elif omega >= 20.0*Ctheta and omega < ptL:
sigma = 0.92*E*Ctheta/omega/rovert
elif omega >= ptL and omega <= ptR:
alpha1 = 0.92/1.63 - 2.03/1.63**4
fL = 0.92*E*Ctheta/ptL/rovert
fR = E*(1.0/rovert)**2*(alpha1 + 2.03*(Ctheta/ptR*rovert)**4)
gL = -0.92*E*Ctheta/rovert/ptL**2
gR = -E*(1.0/rovert)*2.03*4*(Ctheta/ptR*rovert)**3*Ctheta/ptR**2
sigma = cubic_spline_eval(ptL, ptR, fL, fR, gL, gR, omega)
else:
alpha1 = 0.92/1.63 - 2.03/1.63**4
sigma = E*(1.0/rovert)**2*(alpha1 + 2.03*(Ctheta/omega*rovert)**4)
return sigma
def _tausmooth(omega, rovert):
ptL1 = 9
ptR1 = 11
ptL2 = 8.7*rovert - 1
ptR2 = 8.7*rovert + 1
if omega < ptL1:
C_tau = np.sqrt(1.0 + 42.0/omega**3 - 42.0/10**3)
elif omega >= ptL1 and omega <= ptR1:
fL = np.sqrt(1.0 + 42.0/ptL1**3 - 42.0/10**3)
fR = 1.0
gL = -63.0/ptL1**4/fL
gR = 0.0
C_tau = cubic_spline_eval(ptL1, ptR1, fL, fR, gL, gR, omega)
elif omega > ptR1 and omega < ptL2:
C_tau = 1.0
elif omega >= ptL2 and omega <= ptR2:
fL = 1.0
fR = 1.0/3.0*np.sqrt(ptR2/rovert) + 1 - np.sqrt(8.7)/3
gL = 0.0
gR = 1.0/6/np.sqrt(ptR2*rovert)
C_tau = cubic_spline_eval(ptL2, ptR2, fL, fR, gL, gR, omega)
else:
C_tau = 1.0/3.0*np.sqrt(omega/rovert) + 1 - np.sqrt(8.7)/3
return C_tau
def _shellBucklingOneSection(h, r1, r2, t, gamma_b, sigma_z, sigma_t, tau_zt, E, sigma_y):
"""
Estimate shell buckling for one tapered cylindrical shell section.
Arguments:
h - height of conical section
r1 - radius at bottom
r2 - radius at top
t - shell thickness
E - modulus of elasticity
sigma_y - yield stress
gamma_b - buckling reduction safety factor
sigma_z - axial stress component
sigma_t - azimuthal stress component
tau_zt - shear stress component (z, theta)
Returns:
EU_utilization, shell buckling utilization which must be < 1 to avoid failure
"""
#NOTE: definition of r1, r2 switched from Eurocode document to be consistent with FEM.
# ----- geometric parameters --------
beta = atan2(r1-r2, h)
L = h/np.cos(beta)
# ------------- axial stress -------------
# length parameter
le = L
re = 0.5*(r1+r2)/np.cos(beta)
omega = le/np.sqrt(re*t)
rovert = re/t
# compute Cx
Cx = _cxsmooth(omega, rovert)
# if omega <= 1.7:
# Cx = 1.36 - 1.83/omega + 2.07/omega/omega
# elif omega > 0.5*rovert:
# Cxb = 6.0 # clamped-clamped
# Cx = max(0.6, 1 + 0.2/Cxb*(1-2.0*omega/rovert))
# else:
# Cx = 1.0
# critical axial buckling stress
sigma_z_Rcr = 0.605*E*Cx/rovert
# compute buckling reduction factors
lambda_z0 = 0.2
beta_z = 0.6
eta_z = 1.0
Q = 25.0 # quality parameter - high
lambda_z = np.sqrt(sigma_y/sigma_z_Rcr)
delta_wk = 1.0/Q*np.sqrt(rovert)*t
alpha_z = 0.62/(1 + 1.91*(delta_wk/t)**1.44)
chi_z = _buckling_reduction_factor(alpha_z, beta_z, eta_z, lambda_z0, lambda_z)
# design buckling stress
sigma_z_Rk = chi_z*sigma_y
sigma_z_Rd = sigma_z_Rk/gamma_b
# ---------------- hoop stress ------------------
# length parameter
le = L
re = 0.5*(r1+r2)/(np.cos(beta))
omega = le/np.sqrt(re*t)
rovert = re/t
# Ctheta = 1.5 # clamped-clamped
# CthetaS = 1.5 + 10.0/omega**2 - 5.0/omega**3
# # critical hoop buckling stress
# if (omega/Ctheta < 20.0):
# sigma_t_Rcr = 0.92*E*CthetaS/omega/rovert
# elif (omega/Ctheta > 1.63*rovert):
# sigma_t_Rcr = E*(1.0/rovert)**2*(0.275 + 2.03*(Ctheta/omega*rovert)**4)
# else:
# sigma_t_Rcr = 0.92*E*Ctheta/omega/rovert
sigma_t_Rcr = np.maximum(eps, _sigmasmooth(omega, E, rovert))
# buckling reduction factor
alpha_t = 0.65 # high fabrication quality
lambda_t0 = 0.4
beta_t = 0.6
eta_t = 1.0
lambda_t = np.sqrt(sigma_y/sigma_t_Rcr)
chi_theta = _buckling_reduction_factor(alpha_t, beta_t, eta_t, lambda_t0, lambda_t)
sigma_t_Rk = chi_theta*sigma_y
sigma_t_Rd = sigma_t_Rk/gamma_b
# ----------------- shear stress ----------------------
# length parameter
le = h
rho = np.sqrt((r1+r2)/(2.0*r2))
re = (1.0 + rho - 1.0/rho)*r2*np.cos(beta)
omega = le/np.sqrt(re*t)
rovert = re/t
# if (omega < 10):
# C_tau = np.sqrt(1.0 + 42.0/omega**3)
# elif (omega > 8.7*rovert):
# C_tau = 1.0/3.0*np.sqrt(omega/rovert)
# else:
# C_tau = 1.0
C_tau = _tausmooth(omega, rovert)
tau_zt_Rcr = 0.75*E*C_tau*
|
np.sqrt(1.0/omega)
|
numpy.sqrt
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
from sklearn.base import BaseEstimator, ClassifierMixin
from sklearn.utils import shuffle
class TLMLP(BaseEstimator, ClassifierMixin):
"""
Multi Layer Perceptron (Single hidden layer)
"""
def __init__(self,
hid_num=10,
epochs=1000,
r=0.5):
self.hid_num = hid_num
self.epochs = epochs
self.r = r
def __sigmoid(self, x, a=1):
return 1 / (1 + np.exp(- a * x))
def __dsigmoid(self, x, a=1):
return a * x * (1.0 - x)
def __add_bias(self, X):
return np.c_[X, np.ones(X.shape[0])]
def __ltov(self, n, label):
return [0 if i != label else 1 for i in range(1, n + 1)]
def __calc_out(self, w, x):
return self.__sigmoid(np.dot(w, x))
def __out_error(self, z, y):
return (z - y) * self.__dsigmoid(z)
def __hid_error(self, z, eo):
return np.dot(self.wo.T, eo) * self.__dsigmoid(z)
def __w_update(self, w, e, z):
e = np.atleast_2d(e)
z =
|
np.atleast_2d(z)
|
numpy.atleast_2d
|
import numpy as np
from scipy import optimize
class InterParams:
def __init__(self, xE):
self.method = "NPS"
self.n = xE.shape[0]
self.m = xE.shape[1]
self.xi = np.copy(xE)
self.w = None
self.v = None
self.y = None
self.sigma = None
def interpolateparameterization(self, yE):
self.w = np.zeros((self.m, 1))
self.v =
|
np.zeros((self.n + 1, 1))
|
numpy.zeros
|
# -*- coding: utf-8 -*-
"""
This script allows for conversion of actigraphy data from GENEActiv devices
into inactograms, to better visualize patterns of inactivity accross days.
It is designed to work with binary files extracted with the GENEActiv software.
It can also work with pre-analysed CSV files form the GENEActiv software, but
these files do not contain enough information to calculate sleep bouts, and
thus only activity can be plotted.
<NAME>, The Storch Lab, McGill University, 2020
MIT License
Copyright (c) 2020 <NAME>, The Storch Lab, McGill University
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
"""
import os
import pickle
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from matplotlib.patches import Polygon
def extract_bin(filepath):
"""Extract data from a GENEActiv binary file."""
# Import the whole file as text
with open(filepath, 'r') as f:
data = f.readlines()
# Only works with GENEActiv devices (at least for now)
if not data[2].strip().split(':')[-1] == 'GENEActiv':
raise Exception('Not a GENEActiv device')
return
# Create a calibration dictionnary from the header
calibration = {}
for i in range(47,55):
tmp = data[i].strip().split(':')
calibration[tmp[0]]=int(tmp[1])
# Find number of pages of recording, frequency, and length in lines of a page
n_pages = int(data[57].strip().split(':')[-1])
fs = float(data[19].strip().split(':')[-1].split(' Hz')[0])
block_length = (len(data)-59)//n_pages
# Initialize numpy arrays for storing raw values
x = np.empty(n_pages*300)
y = np.empty(n_pages*300)
z = np.empty(n_pages*300)
light = np.empty(n_pages*300)
# button = np.empty(n_pages*300)
# temperature = np.empty(n_pages)
for p in range(n_pages):
'''
A hexstring is 300 values encoded as following:
12 bits for x (signed)
12 bits for y (signed)
12 bits for z (signed)
10 bits for light
1 bit for button
1 bit for reserved 0
resulting in a 48-bit or 6-byte block encoded in 12 hexadecimal values,
so we slice the string every 12 character.
'''
hexstring = data[68 + (block_length*p)].strip()
# temperature[p] = float(data[64 + (block_length*p)].strip().split(':')[-1])
for i in range(300):
'''
For signed values, remove 4096 if the first bit is 1.
x is in the 12 first bits, we just need to bitshift 36 times.
y, z, and light are in the middle so retain the last bits using
bitwise logic after bit-shifting
'''
d = int(hexstring[i*12:(i+1)*12],16)
x[300*p + i] = -4096 * (d >> 47) + (d >> 36)
y[300*p + i] = -4096 * (d >> 35 & 1) + (d >> 24 & 0xFFF)
z[300*p + i] = -4096 * (d >> 23 & 1) + (d >> 12 & 0xFFF)
light[300*p + i] = d >> 2 & 0x3FF
# button.append(d >> 1 & 1)
# temperature = temperature.repeat(300)
start_date = pd.to_datetime(data[62].strip().split('Time:')[1], format='%Y-%m-%d %H:%M:%S:%f')
timestamps = pd.date_range(start=start_date, periods=n_pages*300, freq=f'{1/fs}S')
# data_df = pd.DataFrame({'x':x, 'y':y, 'z':z, 'light':light, 'button':button, 'temperature':temperature},
# index=timestamps)
data_df = pd.DataFrame({'x':x, 'y':y, 'z':z, 'light':light}, index=timestamps)
data_df['x'] = (data_df['x'] * 100 - calibration['x offset']) / calibration['x gain']
data_df['y'] = (data_df['y'] * 100 - calibration['y offset']) / calibration['y gain']
data_df['z'] = (data_df['z'] * 100 - calibration['z offset']) / calibration['z gain']
data_df['light'] = data_df['light'] * calibration['Lux'] / calibration['Volts']
data_smooth = data_df.rolling('5S').median()
data_smooth['svmg'] = np.abs(np.sqrt(data_df['x']**2 + data_df['y']**2 + data_df['z']**2) - 1)
return data_smooth
def extract_csv(filepath):
data = pd.read_csv(filepath, header=100, index_col=0, parse_dates=True,
names=['x', 'y', 'z', 'light', 'button', 'temperature',
'svmg', 'x_dev', 'y_dev', 'z_dev', 'peak_lux'])
data.index = pd.to_datetime(data.index, format='%Y-%m-%d %H:%M:%S:000', infer_datetime_format=True)
return data
def calc_angle(data, method='max', win_size=5):
""""Extract data from a CSV file."""
data['angle'] = np.arctan(data['z'] / np.sqrt(data['x'] ** 2 + data['y'] ** 2)) * 180 / np.pi
angle_change = data['angle'].resample(f'5S').mean().diff().abs().rename('angle_change')
win_size *= 12
if method == 'median':
roll = angle_change.rolling(win_size + 1, center=True).median().rename('rolling')
elif method == 'max':
roll = angle_change.rolling(win_size + 1, center=True).max().rename('rolling')
return data, angle_change, roll
def calc_sleep(roll, thresh_method='fixed', thresh_value=5):
if thresh_method == 'perc':
thresh = np.nanpercentile(roll, 10)*15
elif thresh_method == 'fixed':
thresh = thresh_value
sleep = (roll < thresh) * 1
return sleep.rename('sleep')
def plot_actogram(data, tz_off=-5, binsize=5, doubleplot=1, scale=5, title=1, first=0, last=0):
""""Prepare data and plot an inactogram"""
if not type(data) == pd.core.series.Series:
print('Wrong data type, please input a pandas Series')
return
daylength = 1440 // binsize
# Extract and resample
data = data.resample(f'{binsize}T').sum()
start = data.index[0].timetuple()
end = data.index[-1].timetuple()
frontpad = np.zeros((start[3]*60 + start[4]) // binsize)
backpad = np.zeros(daylength - (end[3]*60 + end[4]) // binsize - 1)
counts = np.concatenate([frontpad, data.values, backpad])
# Keep wanted days only
if last:
counts = counts[:last*daylength]
if not first:
counts = counts[first*daylength:]
ndays = counts.shape[0] // daylength
# Digitize
edges = np.histogram_bin_edges(counts, bins=scale)
perc = (
|
np.digitize(counts, edges)
|
numpy.digitize
|
import os
import time
from pathlib import Path
import tensorflow as tf
from dotenv import load_dotenv, find_dotenv
from keras.callbacks import TensorBoard
from mdn import sample_from_output
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import normalize
from keras.layers import Dense, Input, Concatenate, BatchNormalization
from keras.models import Model
import numpy as np
from sklearn import preprocessing
import keras.backend as K
import mdn
import matplotlib.pyplot as plt
np.random.seed(42)
def build_base_network(input_shape):
inputs = Input(shape=input_shape)
hidden = BatchNormalization()(inputs)
# oups, forgot activation here... should have been:
# Dense(16, activation='relu')
hidden = Dense(16)(hidden)
hidden = BatchNormalization()(hidden)
model = Model(inputs=inputs, outputs=hidden)
return model
def create_mdn_estimator(X, y, X_val, y_val, batch_size=32, nb_epochs=1000, nb_mixtures=1):
input_shape = X.shape[1:]
base_network = build_base_network(input_shape)
input_a = Input(shape=input_shape)
x = base_network(input_a)
mixture_layer = mdn.MDN(1, nb_mixtures)(x)
mdn_model = Model([input_a], [mixture_layer])
loss = mdn.get_mixture_loss_func(1, nb_mixtures)
mdn_model.compile(loss=loss, optimizer='adam')
tb_cb = TensorBoard(log_dir='./mdn_logs/{}'.format(time.time()),
histogram_freq=0, batch_size=32, write_graph=True, write_grads=True, write_images=False, embeddings_freq=0, embeddings_layer_names=None, embeddings_metadata=None,
embeddings_data=None, update_freq='epoch')
mdn_model.fit(
X,
y,
batch_size=batch_size,
epochs=nb_epochs,
validation_data=(X_val, y_val),
verbose=1, callbacks=[tb_cb])
return mdn_model
def make_mdn_prediction(mdn_model, X_test, return_sample=False, nb_mixture=1, scaling=1.):
assert nb_mixture == 1, "Only 1 mixture is supported"
y_pred = mdn_model.predict(X_test)
y_mu = y_pred[:, 0] * scaling
y_std = np.sqrt(y_pred[:, 1] * scaling ** 2)
if return_sample:
y_sample = np.apply_along_axis(sample_from_output, 1, y_pred, 1, nb_mixture, temp=1.0)
return y_mu, y_std, y_sample
else:
return y_mu, y_std
def main():
load_dotenv(find_dotenv())
input_data_file = Path(os.environ["project_dir"]) / "data/external/pcm_main_rotor_embeded.npz"
# input_data_file = Path(os.environ["project_dir"]) / "data/external/pcm_main_rotor.npz"
data = np.load(input_data_file)
X, y = data["X"], data["y"]
nb_epochs = 1000
batch_size = 32
nb_mixtures = 1
X = normalize(X, axis=0, norm="max")
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
max_y_train = np.max(y_train)
y_train /= max_y_train
X_val = X_test
y_val = y_test / max_y_train
model = create_mdn_estimator(X_train, y_train, X_val, y_val, batch_size=batch_size, nb_epochs=nb_epochs, nb_mixtures=nb_mixtures)
y_mu_test, y_std_test = make_mdn_prediction(model, X_test, scaling=max_y_train)
y_true = y_test
n_to_show = 50
plt.scatter(np.arange(y_true.shape[0])[:n_to_show],
|
np.squeeze(y_true)
|
numpy.squeeze
|
"""
Modules for numpy.where to make it more IDL-like.
"""
from __future__ import print_function
import numpy as np
def andwhere(data, val1, test1, val2=None, test2=None, return_indices=False):
""" Performs an 'and' where search, i.e., where(input > 3 and input < 4).
Using the parameter names, where(data test1 val1 and data test2 val2).
Can also do a single test, i.e., where(input > 3).
Example
-------
To check data > 1.1 and data < 2.5,
> out = where(data=[1,2,3], val1=1.1, test1='>', val2='2.5', test2='<')
> print(out)
[1] # index
> print(data[out])
[2] # value at index 1
Parameters
----------
data : list or array
val1 : int, float, or str
First value you wish to check 'data' against.
test1 : str
Either '<', '>', '<=', '>=', or '=='.
val2 :
Second value you wish to check 'data' against.
test2 : str
Either '<', '>', '<=', '>=', or '=='.
return_indices : {True, False}
If True, returns only the indices of valid 'data' entries. If
False, returns only the values of 'data' corresponding to those
entries.
Returns
-------
If 'return_indices' is False,
data_cut<1/2> : array
The 'data' array cut down by the testing parameters.
If 'return_indices' is True:
The index array of 'data' corresponding to items cut down by the
testing parameters.
"""
# Transform the list to numpy array.
data = np.array(data)
# Transform the first equality tests.
if test1 == '<':
indices1 = np.where(data < val1)[0]
elif test1 == '>':
indices1 = np.where(data > val1)[0]
elif test1 == '<=':
indices1 = np.where(data <= val1)[0]
elif test1 == '>=':
indices1 = np.where(data >= val1)[0]
elif test1 == '==':
indices1 = np.where(data >= val1)[0]
else:
print("Invalid equality check, {}".format(test1))
data_cut1 = data[indices1]
# If only one equality check entered, finish.
if val2 == None and test2 == None:
if return_indices:
return indices1
else:
return data_cut1
# If a second check was entered, continue
# Transform the second equality tests.
if test2 == '<':
indices2 = np.where(data_cut1 < val2)[0]
elif test2 == '>':
indices2 = np.where(data_cut1 > val2)[0]
elif test2 == '<=':
indices2 = np.where(data_cut1 <= val2)[0]
elif test2 == '>=':
indices2 = np.where(data_cut1 >= val2)[0]
elif test2 == '==':
indices2 =
|
np.where(data_cut1 >= val2)
|
numpy.where
|
import tools as tls
import camera
import numpy as np
import cv2
import matplotlib.pyplot as plt
def region_of_interest(img, vertices):
"""
Applies an image mask.
Only keeps the region of the image defined by the polygon
formed from `vertices`. The rest of the image is set to black.
`vertices` should be a numpy array of integer points.
"""
#defining a blank mask to start with
mask = np.zeros_like(img)
#defining a 3 channel or 1 channel color to fill the mask with depending on the input image
if len(img.shape) > 2:
channel_count = img.shape[2] # i.e. 3 or 4 depending on your image
ignore_mask_color = (255,) * channel_count
else:
ignore_mask_color = 255
#filling pixels inside the polygon defined by "vertices" with the fill color
cv2.fillPoly(mask, vertices, ignore_mask_color)
#returning the image only where mask pixels are nonzero
masked_image = cv2.bitwise_and(img, mask)
return masked_image
def sobel_absolute_scaled(gray):
# allow images with color depth = one
if len(gray.shape) != 2:
raise TypeError
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0)
abs_sobelx = np.absolute(sobelx)
scaled_sobel = np.uint8(255*abs_sobelx/np.max(abs_sobelx))
return scaled_sobel
def sobel_magnitude(gray, sobel_kernel=3):
# allow images with color depth = one
if len(gray.shape) != 2:
raise TypeError
# Take the gradient in x and y separately
sobelx = cv2.Sobel(gray, cv2.CV_64F, 1, 0, ksize=sobel_kernel)
sobely = cv2.Sobel(gray, cv2.CV_64F, 0, 1, ksize=sobel_kernel)
# Calculate the magnitude
gradmag = np.sqrt(sobelx**2 + sobely**2)
# Rescale to 8 bit
scale_factor = np.max(gradmag)/255
gradmag = (gradmag/scale_factor).astype(np.uint8)
return gradmag
def sobel_direction(gray, sobel_kernel=3): #, thresh=(0, np.pi/2)):
# allow images with color depth = one
if len(gray.shape) != 2:
raise TypeError
# Take the gradient in x and y separately
sobel_x = cv2.Sobel(gray, cv2.CV_64F, 1, 0, sobel_kernel)
sobel_y = cv2.Sobel(gray, cv2.CV_64F, 0, 1, sobel_kernel)
# Take the absolute value of the x and y gradients
abs_sobel_x = np.absolute(sobel_x)
abs_sobel_y = np.absolute(sobel_y)
# calculate the direction of the gradient
absgraddir = np.arctan2(abs_sobel_y, abs_sobel_x)
return absgraddir
def channel_threshold(channel, thresh=(170,255)):
# Threshold color channel
binary = np.zeros_like(channel)
binary[(channel >= thresh[0]) & (channel <= thresh[1])] = 1
return binary
def find_lane_pixels(binary_warped, leftx_base, rightx_base):
# Create an output image to draw on and visualize the result
out_img = np.dstack((binary_warped, binary_warped, binary_warped))
# Choose the number of sliding windows
nwindows = 9
# Set the width of the windows +/- margin
margin = 150
# Set minimum number of pixels found to recenter window
minpix = 4
# Set height of windows - based on nwindows above and image shape
window_height = np.int(binary_warped.shape[0]//nwindows)
# Identify the x and y positions of all nonzero pixels in the image
nonzero = binary_warped.nonzero()
nonzeroy = np.array(nonzero[0])
nonzerox = np.array(nonzero[1])
# Current positions to be updated later for each window in nwindows
leftx_current = leftx_base
rightx_current = rightx_base
# Create empty lists to receive left and right lane pixel indices
left_lane_inds = []
right_lane_inds = []
# Step through the windows one by one
for window in range(nwindows):
# Identify window boundaries in x and y (and right and left)
win_y_low = binary_warped.shape[0] - (window+1)*window_height
win_y_high = binary_warped.shape[0] - window*window_height
### TO-DO: Find the four below boundaries of the window ###
win_xleft_low = leftx_current - margin
win_xleft_high = leftx_current + margin
win_xright_low = rightx_current - margin
win_xright_high = rightx_current + margin
# Draw the windows on the visualization image
cv2.rectangle(out_img, (win_xleft_low, win_y_low), (win_xleft_high, win_y_high), (0,255,0), 2)
cv2.rectangle(out_img, (win_xright_low, win_y_low), (win_xright_high, win_y_high), (0,255,0), 2)
# Identify the nonzero pixels in x and y within the window #
good_left_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xleft_low) & (nonzerox < win_xleft_high)).nonzero()[0]
good_right_inds = ((nonzeroy >= win_y_low) & (nonzeroy < win_y_high) &
(nonzerox >= win_xright_low) & (nonzerox < win_xright_high)).nonzero()[0]
# Append these indices to the lists
left_lane_inds.append(good_left_inds)
right_lane_inds.append(good_right_inds)
# If you found > minpix pixels, recenter next window on their mean position
if len(good_left_inds) > minpix:
leftx_current = np.int(np.mean(nonzerox[good_left_inds]))
if len(good_right_inds) > minpix:
rightx_current = np.int(np.mean(nonzerox[good_right_inds]))
# Concatenate the arrays of indices (previously was a list of lists of pixels)
left_lane_inds = np.concatenate(left_lane_inds)
right_lane_inds = np.concatenate(right_lane_inds)
# Extract left and right line pixel positions
leftx = nonzerox[left_lane_inds]
lefty = nonzeroy[left_lane_inds]
rightx = nonzerox[right_lane_inds]
righty = nonzeroy[right_lane_inds]
return leftx, lefty, rightx, righty, out_img
class lane_detector:
def __init__(self, filname):
data = camera.load(filname)
self.mtx = data["mtx"]
self.dist = data["dist"]
self.r_thresh=(145, 200)
self.g_thresh=(200, 255)
self.b_thresh=(225,255)
self.font = cv2.FONT_HERSHEY_PLAIN
self.color = (255,255,255)
self.offset = 100
self.left = []
self.right = []
self.prev_left = 0
self.prev_right = 0
self.out = 'output_images'
self.base = 'frame'
self.ext = '.jpg'
self.debug_binary = False
self.debug_lines = False
self.debug_histogram = False
self.debug_warped = False
self.debug_detect = False
def threshold_blue(self, thresh):
self.b_thresh = tuple(thresh)
def undistort(self, image):
return cv2.undistort(image, self.mtx, self.dist, None, self.mtx)
def warp(self, binary, src, dst):
# only width and height, discard depth if provided
#w,h = binary.shape[1::-1]
# get M, the transform matrix
M = cv2.getPerspectiveTransform(src, dst)
w,h = np.amax(dst,axis=0)
# returned the warped image
return cv2.warpPerspective(binary, M, (w,h), flags=cv2.INTER_LINEAR)
def unwarp(self, binary, src, dst, w, h):
# get Minv, the transform matrix
Minv = cv2.getPerspectiveTransform(dst, src)
# returned the warped image
return cv2.warpPerspective(binary, Minv, (w,h), flags=cv2.INTER_LINEAR)
def gaussian_blur(self, img, kernel_size):
return cv2.GaussianBlur(img, (kernel_size, kernel_size), 0)
def gradients(self, undist):
# separate components of hls color space
(_, _, rgb_r) = tls.channels(undist)
(_, _, lab_b) = tls.channels(tls.bgr2lab(undist))
(luv_l, _, _) = tls.channels(tls.bgr2luv(undist))
# color space threshold on lab_b
r_channel = sobel_magnitude(lab_b)
r_binary = channel_threshold(r_channel, self.r_thresh)
# color space threshold on luv_l
g_binary = channel_threshold(luv_l, self.g_thresh)
# color space threshold of rgb_r channel
b_binary = channel_threshold(rgb_r, self.b_thresh)
# RGB or BGR
return np.dstack((b_binary, g_binary, r_binary))
def process(self, image):
# undistorte the image
undist = self.undistort(image)
# get width and height,
w,h = image.shape[1::-1]
# apply gradients and threshold
color = self.gradients(undist)
if self.debug_binary:
tls.save_image_as(color*255, '{}_binary{}'.format(self.base, self.ext), tls.path_join(self.out, 'binary'))
# combine all channels with bitwise or
binary = cv2.bitwise_or(color[:,:,0], cv2.bitwise_or(color[:,:,1], color[:,:,2]))
# calculate src and dst points
src = np.array([[570, h//2 + self.offset], # top left point
[710, h//2 + self.offset], # top right point
[w,h], # bottom right point
[50,h]], dtype = np.float32) # bottom left point
(tl,tr,br,bl) = src
widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
maxWidth = max(int(widthA), int(widthB))
heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
maxHeight = max(int(heightA), int(heightB))
# calculate the destination points
dst = np.array([[0,0], [maxWidth-1, 0],
[maxWidth-1, maxHeight-1],
[0, maxHeight-1]], dtype = np.float32)
if self.debug_lines:
lines = np.copy(undist)
cv2.line(lines, tuple(src[0]), tuple(src[1]), (255,0,0), 5)
cv2.line(lines, tuple(src[1]), tuple(src[2]), (255,0,0), 5)
cv2.line(lines, tuple(src[2]), tuple(src[3]), (255,0,0), 5)
cv2.line(lines, tuple(src[3]), tuple(src[0]), (255,0,0), 5)
cv2.line(lines, tuple(dst[0]), tuple(dst[1]), (0,255,0), 5)
cv2.line(lines, tuple(dst[1]), tuple(dst[2]), (0,255,0), 5)
cv2.line(lines, tuple(dst[2]), tuple(dst[3]), (0,255,0), 5)
cv2.line(lines, tuple(dst[3]), tuple(dst[0]), (0,255,0), 5)
tls.save_image_as(lines, '{}_lines{}'.format(self.base,self.ext), tls.path_join(self.out, 'lines'))
# create color warped image for debugging
if self.debug_warped:
colorWarped = self.warp(color, src, dst)
tls.save_image_as(colorWarped*255, '{}_warped{}'.format(self.base,self.ext), tls.path_join(self.out, 'color'))
# warp the binary image
warped = self.warp(binary, src, dst)
if self.debug_warped:
tls.save_image_as(warped*255, '{}_warped{}'.format(self.base,self.ext), tls.path_join(self.out, 'warped'))
# Take a histogram of the bottom half of the image
histogram = np.sum((warped[warped.shape[0]//2:,:]), axis=0)
# calculate the midpoint in the histogram
midpoint =
|
np.int(histogram.shape[0]//2)
|
numpy.int
|
"""
$Header: /nfs/slac/g/glast/ground/cvs/pointlike/python/uw/pulsar/edf.py,v 1.1 2011/04/27 18:32:03 kerrm Exp $
a module for implementing EDF (empirical distribution function) TOA determination; heavily beta
Authors: <NAME> <<EMAIL>>
"""
import numpy as np
import pylab as pl
#from lcfitters import get_gauss2,get_gauss1
from scipy.interpolate import interp1d
from scipy.optimize import fmin
#lct = get_gauss2(pulse_frac=0.1)
#lct = get_gauss1(pulse_frac=0.1,width1=0.02)
#lct = get_gauss2(x1=0.25,x2=0.75,pulse_frac=0.1,width1=0.02,width2=0.02,ratio=1)
#lct = get_gauss2(x1=0.3,x2=0.7,pulse_frac=0.3,width1=0.15,width2=0.08,ratio=1)
#ph1 = lct.random(1000)
#ph2 = lct.random(1000)
def comp_edfs2(edf1,edf2):
""" Calculate a Kuiper test statistic for two edfs."""
idx1 = np.arange(1,edf1.n+1,dtype=float)/edf1.n
idx2 = np.arange(1,edf2.n+1,dtype=float)/edf2.n
s = np.argsort(np.append(edf1.ph,edf2.ph))
idx = np.append(idx1,idx2)
mask = np.append([True]*edf1.n,[False]*edf2.n)
idx = idx[s]
mask = mask[s]
e1 = 0; e2 = 0
all_e1s = np.empty_like(idx)
all_e2s = np.empty_like(idx)
for i in xrange(len(s)):
if mask[i]: e1 = idx[i]
else: e2 = idx[i]
all_e1s[i] = e1
all_e2s[i] = e2
return np.max(all_e1s-all_e2s) + np.max(all_e2s-all_e1s)
def timeit(e1,e2,n=10):
for i in xrange(n):
comp_edfs2(e1,e2)
class EDF(object):
def __init__(self,ph,comp_n=100000):
self.ph = np.sort(ph)
self.n = len(self.ph)
#self.comp_vals = self(np.linspace(0,1,comp_n))
def __call__(self,phi):
if not hasattr(phi,'__len__'):
phi = [phi]
return np.searchsorted(self.ph,phi).astype(float)/self.n
def comp(self,e):
# Kuiper test
return comp_edfs2(self,e)
#return np.max(self.comp_vals-e.comp_vals) + \
# np.max(e.comp_vals-self.comp_vals)
def random(self,n):
# NB -- this needs to be checked/optimized
rvals = np.random.rand(n)
y = np.linspace(0,1,self.n+1)
#idx = np.searchsorted(y,rvals)
idx = (rvals*self.n+1).astype(int)
ph = np.append(self.ph,1+self.ph[0])
rvals = self.n*((y[idx]-rvals)*ph[idx-1] + (rvals-y[idx-1])*ph[idx])
return
|
np.mod(rvals,1)
|
numpy.mod
|
import numpy as np
from paddle import fluid
from interaction.transformer import TransformerDecoder
from interaction.trigger import TriggerController
from perception.common.backbone import MobileNetV2
class AttentionController(object):
def __init__(self,
inputs_type='visual_token',
num_actions=1000,
act_tr_dim=778,
act_emb_ndarray=None,
num_frames=10,
tokens_per_frame=20,
inst_crop_shape=[3, 128, 128],
inst_crop_flatten_dim=512,
inst_fm_shape=[512, 5, 5],
inst_fm_conv_reduce_dim=128,
inst_fm_flatten_dim=512,
inst_cls_dim=80,
inst_pos_dim=50,
visual_token_dim=562,
model_dim=512,
num_decoder_blocks=6,
num_heads=8,
ffn_dim=2048,
dropout=0.0,
normalize_before=False,
frame_emb_trainable=True,
frame_sin_emb_temp=10000,
trigger_loss_coef=5.0,
obj_loss_coef=1.0,
act_loss_coef=1.0,
use_last_act_loss=False,
attn_mask_as_input=False,
attn_weights_as_output=False,
mode='train'):
assert inputs_type in ['visual_token', 'instance', 'without_inst_fm',
'without_inst_cls', 'without_inst_pos',
'inst_crop', 'inst_crop_wo_crop',
'inst_crop_wo_cls', 'inst_crop_wo_pos']
self.num_actions = num_actions
self.act_tr_dim = act_tr_dim
self.act_emb_ndarray = act_emb_ndarray
self.num_frames = num_frames
self.tokens_per_frame = tokens_per_frame
self.inst_crop_shape = inst_crop_shape
self.inst_crop_flatten_dim = inst_crop_flatten_dim
self.inst_fm_shape = inst_fm_shape
self.inst_fm_conv_reduce_dim = inst_fm_conv_reduce_dim
self.inst_fm_flatten_dim = inst_fm_flatten_dim
self.inst_cls_dim = inst_cls_dim
self.inst_pos_dim = inst_pos_dim
self.visual_token_dim = visual_token_dim
self.model_dim = model_dim
self.num_decoder_blocks = num_decoder_blocks
self.num_heads = num_heads
self.ffn_dim = ffn_dim
self.dropout = dropout
self.normalize_before = normalize_before
self.frame_emb_trainable = frame_emb_trainable
self.frame_sin_emb_temp = frame_sin_emb_temp
self.trigger_loss_coef = trigger_loss_coef
self.obj_loss_coef = obj_loss_coef
self.act_loss_coef = act_loss_coef
self.use_last_act_loss = use_last_act_loss
self.attn_mask_as_input = attn_mask_as_input
self.attn_weights_as_output = attn_weights_as_output
self.mode = mode
self._build_input_layer(inputs_type)
self._create_embeddings()
self._build_model()
def _build_input_layer(self, inputs_type):
if self.mode in ['train', 'test']:
bs = -1
tgt_seq_len = self.num_frames * self.tokens_per_frame
else:
bs = 1
tgt_seq_len = self.tokens_per_frame
past_seq_len = -1
# For ablation study
inputs = []
if inputs_type == 'visual_token':
inputs.append('visual_token')
elif inputs_type == 'instance':
inputs.extend(['inst_fm', 'inst_cls', 'inst_pos_emb'])
elif inputs_type == 'without_inst_fm':
inputs.extend(['inst_cls', 'inst_pos_emb'])
elif inputs_type == 'without_inst_cls':
inputs.extend(['inst_fm', 'inst_pos_emb'])
elif inputs_type == 'without_inst_pos':
inputs.extend(['inst_fm', 'inst_cls'])
elif inputs_type == 'inst_crop':
inputs.extend(['inst_crop', 'inst_cls', 'inst_pos_emb'])
elif inputs_type == 'inst_crop_wo_crop':
inputs.extend(['inst_cls', 'inst_pos_emb'])
elif inputs_type == 'inst_crop_wo_cls':
inputs.extend(['inst_crop', 'inst_pos_emb'])
elif inputs_type == 'inst_crop_wo_pos':
inputs.extend(['inst_crop', 'inst_cls'])
self.feed_list = []
for i in inputs:
if i == 'visual_token':
# `visual_tokens`: are from GAP of RoIAligned feature map
# and pos embedding of instances
self.visual_tokens = fluid.data(
'visual_tokens', [bs, tgt_seq_len, self.visual_token_dim],
dtype='float32')
self.feed_list.append(self.visual_tokens)
elif i == 'inst_fm':
self.inst_fm = fluid.data(
'inst_fm', [bs, tgt_seq_len] + self.inst_fm_shape,
dtype='float32')
self.feed_list.append(self.inst_fm)
elif i == 'inst_cls':
self.inst_cls = fluid.data(
'inst_cls', [bs, tgt_seq_len, self.inst_cls_dim],
dtype='float32')
self.feed_list.append(self.inst_cls)
elif i == 'inst_pos_emb':
self.inst_pos_emb = fluid.data(
'inst_pos_emb', [bs, tgt_seq_len, self.inst_pos_dim],
dtype='float32')
self.feed_list.append(self.inst_pos_emb)
elif i == 'inst_crop':
self.inst_crop = fluid.data(
'inst_crop', [bs, tgt_seq_len] + self.inst_crop_shape,
dtype='float32')
self.feed_list.append(self.inst_crop)
self.frame_ids = fluid.data(
'frame_ids', [bs, tgt_seq_len], dtype='int64')
self.padding_mask = fluid.data(
'padding_mask', [bs, tgt_seq_len], dtype='float32')
self.feed_list.extend([self.frame_ids, self.padding_mask])
if self.mode == 'train':
self.past_kv_arr = None
self.past_padding_mask = None
nframes = tgt_seq_len // self.tokens_per_frame
self.act_ids = fluid.data(
'act_ids', [bs, nframes], dtype='int64')
self.has_act = fluid.data(
'has_act', [bs, nframes], dtype='float32')
self.is_obj = fluid.data(
'is_obj', [bs, tgt_seq_len], dtype='float32')
self.feed_list.extend([self.act_ids, self.has_act, self.is_obj])
elif self.mode == 'test':
self.past_kv_arr = None
self.past_padding_mask = None
# temperature hyperparameter for softmax
self.softmax_temp = fluid.data(
'softmax_temp', [1], dtype='float32')
self.top_k = fluid.data('top_k', [1], dtype='int64')
self.feed_list.append(self.softmax_temp)
if self.attn_mask_as_input:
# NOTE: for jetson, as the converting from frame_ids
# to attn_mask reequires py_func, which wouldn't
# work for paddle inference.
self.attn_mask = fluid.data(
'attn_mask', [bs, tgt_seq_len, tgt_seq_len],
dtype='float32')
self.feed_list.append(self.attn_mask)
elif self.mode == 'inference':
# TODO: check whether this step by step inference works
self.past_kv_arr = fluid.data(
'past_kv_arr',
[bs, self.num_decoder_blocks, 2, self.num_heads,
past_seq_len, self.model_dim // self.num_heads],
dtype='float32')
self.past_padding_mask = fluid.data(
'past_padding_mask', [bs, past_seq_len], dtype='float32')
self.feed_list.extend([self.past_kv_arr, self.past_padding_mask])
def _create_embeddings(self):
if self.frame_emb_trainable:
emb_data = np.random.random((self.num_frames + 1, self.model_dim))
else:
raise NotImplementedError
emb_data = None
self.wfe = fluid.ParamAttr(
name='wfe',
learning_rate=0.0001 if self.frame_emb_trainable else 0.0,
initializer=fluid.initializer.NumpyArrayInitializer(emb_data),
trainable=self.frame_emb_trainable)
# For inference, use emb after projection
act_dim = self.act_tr_dim if self.mode in ['train', 'test'] \
else self.model_dim
if self.act_emb_ndarray is None:
act_emb_ndarray = np.random.random(
(self.num_actions + 1, act_dim))
else:
# Add zero pad
act_emb_ndarray = np.concatenate(
[self.act_emb_ndarray,
np.zeros((1, act_dim), dtype=np.float32)])
self.wae = fluid.ParamAttr(
name='wae',
learning_rate=0.0001 if self.mode == 'train' else 0.0,
initializer=fluid.initializer.NumpyArrayInitializer(
act_emb_ndarray),
trainable=self.mode == 'train')
def _convert_frame_ids2attnmask(self, frame_ids):
# NOTE: make sure the frame_ids is non-decreasing
# e.g. [1, 1, 2, 2, 1, 3] is not allowed
def _idlst2mask(ids):
# e.g. convert to [1, 1, 2, 2]
# [[1, 1, 0, 0],
# [1, 1, 0, 0],
# [1, 1, 1, 1],
# [1, 1, 1, 1]]
n = len(ids)
repeat, r, c = [0], 0, ids[0]
for i in ids:
if i == c:
r += 1
else:
repeat.append(r)
r, c = 1, i
repeat.append(r)
cum = np.cumsum(repeat)
mask =
|
np.zeros((n, n), dtype=np.float32)
|
numpy.zeros
|
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from skimage.measure import compare_ssim
import torch
from torch.autograd import Variable
from modules import dist_model
class PerceptualLoss(torch.nn.Module):
def __init__(self, model='net-lin', net='alex', colorspace='rgb', spatial=False, use_gpu=True, gpu_ids=[0]): # VGG using our perceptually-learned weights (LPIPS metric)
# def __init__(self, model='net', net='vgg', use_gpu=True): # "default" way of using VGG as a perceptual loss
super(PerceptualLoss, self).__init__()
print('Setting up Perceptual loss...')
self.use_gpu = use_gpu
self.spatial = spatial
self.gpu_ids = gpu_ids
self.model = dist_model.DistModel()
self.model.initialize(model=model, net=net, use_gpu=use_gpu, colorspace=colorspace, spatial=self.spatial, gpu_ids=gpu_ids)
print('...[%s] initialized'%self.model.name())
print('...Done')
def forward(self, pred, target, normalize=False):
"""
Pred and target are Variables.
If normalize is True, assumes the images are between [0,1] and then scales them between [-1,+1]
If normalize is False, assumes the images are already between [-1,+1]
Inputs pred and target are Nx3xHxW
Output pytorch Variable N long
"""
if normalize:
target = 2 * target - 1
pred = 2 * pred - 1
return self.model.forward(target, pred)
def normalize_tensor(in_feat,eps=1e-10):
norm_factor = torch.sqrt(torch.sum(in_feat**2,dim=1,keepdim=True))
return in_feat/(norm_factor+eps)
def l2(p0, p1, range=255.):
return .5*np.mean((p0 / range - p1 / range)**2)
def psnr(p0, p1, peak=255.):
return 10*np.log10(peak**2/np.mean((1.*p0-1.*p1)**2))
def dssim(p0, p1, range=255.):
return (1 - compare_ssim(p0, p1, data_range=range, multichannel=True)) / 2.
def rgb2lab(in_img,mean_cent=False):
from skimage import color
img_lab = color.rgb2lab(in_img)
if(mean_cent):
img_lab[:,:,0] = img_lab[:,:,0]-50
return img_lab
def tensor2np(tensor_obj):
# change dimension of a tensor object into a numpy array
return tensor_obj[0].cpu().float().numpy().transpose((1,2,0))
def np2tensor(np_obj):
# change dimenion of np array into tensor array
return torch.Tensor(np_obj[:, :, :, np.newaxis].transpose((3, 2, 0, 1)))
def tensor2tensorlab(image_tensor,to_norm=True,mc_only=False):
# image tensor to lab tensor
from skimage import color
img = tensor2im(image_tensor)
img_lab = color.rgb2lab(img)
if(mc_only):
img_lab[:,:,0] = img_lab[:,:,0]-50
if(to_norm and not mc_only):
img_lab[:,:,0] = img_lab[:,:,0]-50
img_lab = img_lab/100.
return np2tensor(img_lab)
def tensorlab2tensor(lab_tensor,return_inbnd=False):
from skimage import color
import warnings
warnings.filterwarnings("ignore")
lab = tensor2np(lab_tensor)*100.
lab[:,:,0] = lab[:,:,0]+50
rgb_back = 255.*np.clip(color.lab2rgb(lab.astype('float')),0,1)
if(return_inbnd):
# convert back to lab, see if we match
lab_back = color.rgb2lab(rgb_back.astype('uint8'))
mask = 1.*
|
np.isclose(lab_back,lab,atol=2.)
|
numpy.isclose
|
from keras.utils import to_categorical, Sequence
from rdkit import Chem
from rdkit.Chem import rdmolops, AllChem
import numpy as np
import pandas as pd
import pickle
import random
import math
import os
def one_hot(x, allowable_set):
# If x is not in allowed set, use last index
if x not in allowable_set:
x = allowable_set[-1]
return list(map(lambda s: x == s, allowable_set))
def find_distance(a1, num_atoms, bond_adj_list, max_distance=7):
"""Computes distances from provided atom.
Parameters
----------
a1: RDKit atom
The source atom to compute distances from.
num_atoms: int
The total number of atoms.
bond_adj_list: list of lists
`bond_adj_list[i]` is a list of the atom indices that atom `i` shares a
bond with. This list is symmetrical so if `j in bond_adj_list[i]` then `i in
bond_adj_list[j]`.
max_distance: int, optional (default 7)
The max distance to search.
Returns
-------
distances: np.ndarray
Of shape `(num_atoms, max_distance)`. Provides a one-hot encoding of the
distances. That is, `distances[i]` is a one-hot encoding of the distance
from `a1` to atom `i`.
"""
distance = np.zeros((num_atoms, max_distance))
radial = 0
# atoms `radial` bonds away from `a1`
adj_list = set(bond_adj_list[a1])
# atoms less than `radial` bonds away
all_list = set([a1])
while radial < max_distance:
distance[list(adj_list), radial] = 1
all_list.update(adj_list)
# find atoms `radial`+1 bonds away
next_adj = set()
for adj in adj_list:
next_adj.update(bond_adj_list[adj])
adj_list = next_adj - all_list
radial = radial + 1
return np.array(distance)
def graph_distance(num_atoms, adj, max_distance=7):
# Get canonical adjacency list
bond_adj_list = [[] for mol_id in range(num_atoms)]
for i in range(num_atoms):
for j in range(num_atoms):
if adj[i, j] == 1:
bond_adj_list[i].append(j)
bond_adj_list[j].append(i)
distance_matrix = np.zeros([num_atoms, num_atoms, max_distance])
for a1 in range(num_atoms):
# distance is a matrix of 1-hot encoded distances for all atoms
distance = find_distance(a1, num_atoms, bond_adj_list, max_distance=max_distance)
distance_matrix[a1, :, :] = distance
return distance_matrix
def degree_rotation_matrix(axis, degree):
theta = degree / 180 * np.pi
if axis == "x":
r = np.array([1, 0, 0, 0, np.cos(theta), -np.sin(theta), 0, np.sin(theta), np.cos(theta)]).reshape([3, 3])
elif axis == "y":
r = np.array([np.cos(theta), 0, np.sin(theta), 0, 1, 0, -np.sin(theta), 0, np.cos(theta)]).reshape([3, 3])
elif axis == "z":
r = np.array([np.cos(theta), -np.sin(theta), 0, np.sin(theta), np.cos(theta), 0, 0, 0, 1]).reshape([3, 3])
else:
raise ValueError("Unsupported axis for rotation: {}".format(axis))
return r
def optimize_conformer(m, algo="MMFF"):
# print("Calculating {}: {} ...".format(Chem.MolToSmiles(m)))
mol = Chem.AddHs(m)
mol2 = Chem.Mol(mol)
if algo == "ETKDG":
# Landrum et al. DOI: 10.1021/acs.jcim.5b00654
k = AllChem.EmbedMolecule(mol, AllChem.ETKDG())
if k != 0:
return None, None
elif algo == "UFF":
# Universal Force Field
AllChem.EmbedMultipleConfs(mol, 50, pruneRmsThresh=0.5)
try:
arr = AllChem.UFFOptimizeMoleculeConfs(mol, maxIters=2000)
except ValueError:
return None, None
if not arr:
return None, None
else:
arr = AllChem.UFFOptimizeMoleculeConfs(mol, maxIters=20000)
idx = np.argmin(arr, axis=0)[1]
conf = mol.GetConformers()[idx]
mol.RemoveAllConformers()
mol.AddConformer(conf)
elif algo == "MMFF":
# Merck Molecular Force Field
AllChem.EmbedMultipleConfs(mol, 50, pruneRmsThresh=0.5)
try:
arr = AllChem.MMFFOptimizeMoleculeConfs(mol, maxIters=2000)
except ValueError:
return None, None
if not arr:
return None, None
else:
arr = AllChem.MMFFOptimizeMoleculeConfs(mol, maxIters=20000)
idx = np.argmin(arr, axis=0)[1]
conf = mol.GetConformer(id=int(idx))
# conf = mol.GetConformers()[idx]
# mol.RemoveAllConformers()
# mol.AddConformer(conf)
mol2.AddConformer(conf)
return Chem.RemoveHs(mol2)
mol = Chem.RemoveHs(mol)
return mol
class Dataset(object):
def __init__(self, dataset, fold, iter, split, adj_cutoff=None, batch=128,
add_bf=False, model_type="3dgcn"):
self.dataset = dataset
self.path = "./dataset/{}.sdf".format(dataset)
self.task = None # "binary"
self.target_name = None # "active"
self.max_atoms = 0
self.split = split
self.fold = fold
self.iter = iter
self.adj_cutoff = adj_cutoff
self.add_bf = add_bf
self.model_type = model_type
self.batch = batch
self.outputs = 1
self.mols = []
self.coords = []
self.target = []
self.x, self.c, self.y = {}, {}, {}
self.use_overlap_area = False
self.use_full_ec = False
self.use_atom_symbol = True
self.use_degree = True
self.use_hybridization = True
self.use_implicit_valence = True
self.use_partial_charge = False
self.use_formal_charge = True
self.use_ring_size = True
self.use_hydrogen_bonding = True
self.use_acid_base = True
self.use_aromaticity = True
self.use_chirality = True
self.use_num_hydrogen = True
# Load data
self.load_dataset(iter)
# Calculate number of features
if self.add_bf:
print("Add bond features")
mp = MPGenerator_bond([], [], [], 1,
model_type=self.model_type,
use_overlap_area=self.use_overlap_area,
use_full_ec=self.use_full_ec,
use_atom_symbol=self.use_atom_symbol,
use_degree=self.use_degree,
use_hybridization=self.use_hybridization,
use_implicit_valence=self.use_implicit_valence,
use_partial_charge=self.use_partial_charge,
use_formal_charge=self.use_formal_charge,
use_ring_size=self.use_ring_size,
use_hydrogen_bonding=self.use_hydrogen_bonding,
use_acid_base=self.use_acid_base,
use_aromaticity=self.use_aromaticity,
use_chirality=self.use_chirality,
use_num_hydrogen=self.use_num_hydrogen)
else:
mp = MPGenerator([], [], [], 1,
use_full_ec=self.use_full_ec,
use_atom_symbol=self.use_atom_symbol,
use_degree=self.use_degree,
use_hybridization=self.use_hybridization,
use_implicit_valence=self.use_implicit_valence,
use_partial_charge=self.use_partial_charge,
use_formal_charge=self.use_formal_charge,
use_ring_size=self.use_ring_size,
use_hydrogen_bonding=self.use_hydrogen_bonding,
use_acid_base=self.use_acid_base,
use_aromaticity=self.use_aromaticity,
use_chirality=self.use_chirality,
use_num_hydrogen=self.use_num_hydrogen)
self.num_features = mp.get_num_features()
# Normalize
if self.task == "regression":
self.mean = np.mean(self.y["train"])
self.std = np.std(self.y["train"])
self.y["train"] = (self.y["train"] - self.mean) / self.std
self.y["test"] = (self.y["test"] - self.mean) / self.std
try:
self.y["valid"] = (self.y["valid"] - self.mean) / self.std
except:
print("Cannot normalize")
else:
self.mean = 0
self.std = 1
def load_dataset(self, iter):
# Dataset parameters
if self.dataset == "bace_reg" or self.dataset == "delaney" or self.dataset == "freesolv":
self.task = "regression"
self.target_name = "target"
self.loss = "mse"
elif self.dataset == "bace_cla" or self.dataset == "hiv":
self.task = "binary"
self.target_name = "active"
self.loss = "binary_crossentropy"
elif self.dataset == "tox21":
self.target_name = "NR-ER"
# elif self.dataset == "tox21": # Multitask tox21
# self.target_name = ["NR-Aromatase", "NR-AR", "NR-AR-LBD", "NR-ER", "NR-ER-LBD", "NR-PPAR-gamma", "NR-AhR",
# "SR-ARE", "SR-ATAD5", "SR-HSE", "SR-MMP", "SR-p53"]
else:
pass
# Load file
x, c, y = [], [], []
try:
mols = Chem.SDMolSupplier(self.path)
except:
mols = Chem.SDMolSupplier("../dataset/{}.sdf".format(self.dataset))
for mol in mols:
if mol is not None:
if mol.GetNumAtoms() > 200:
continue
# Multitask
if type(self.target_name) is list:
y.append([float(mol.GetProp(t)) if t in mol.GetPropNames() else -1 for t in self.target_name])
self.outputs = len(self.target_name)
# Single task
elif self.target_name in mol.GetPropNames():
_y = float(mol.GetProp(self.target_name))
if _y == -1:
continue
else:
y.append(_y)
else:
continue
x.append(mol)
c.append(mol.GetConformer().GetPositions())
assert len(x) == len(y)
# Filter and update maximum number of atoms
new_x, new_c, new_y = [], [], []
if self.max_atoms > 0:
for mol, coo, tar in zip(x, c, y):
if mol.GetNumAtoms() <= self.max_atoms:
new_x.append(mol)
new_c.append(coo)
new_y.append(tar)
x = new_x
c = new_c
y = new_y
else:
for mol, tar in zip(x, y):
self.max_atoms = max(self.max_atoms, mol.GetNumAtoms())
if self.task != "regression":
self.mols, self.coords, self.target = np.array(x), np.array(c), np.array(y, dtype=int)
else:
self.mols, self.coords, self.target = np.array(x), np.array(c), np.array(y)
# Shuffle data
np.random.seed(25)
# np.random.seed(100) -> before 1012
idx = np.random.permutation(len(self.mols))
self.mols, self.coords, self.target = self.mols[idx], self.coords[idx], self.target[idx]
# Split data
if self.split == "random" or self.fold == 1:
print('random split')
# Split data
spl1 = int(len(self.mols) * 0.2)
spl2 = int(len(self.mols) * 0.1)
self.x = {"train": self.mols[spl1:],
"valid": self.mols[spl2:spl1],
"test": self.mols[:spl2]}
self.c = {"train": self.coords[spl1:],
"valid": self.coords[spl2:spl1],
"test": self.coords[:spl2]}
self.y = {"train": self.target[spl1:],
"valid": self.target[spl2:spl1],
"test": self.target[:spl2]}
elif self.split == "":
print('cross-validation split')
# Split data
len_test = int(len(self.mols) / self.fold)
if iter == (self.fold - 1):
self.x = {"train": self.mols[:len_test * iter],
"test": self.mols[len_test * iter:]}
self.c = {"train": self.coords[:len_test * iter],
"test": self.coords[len_test * iter:]}
self.y = {"train": self.target[:len_test * iter],
"test": self.target[len_test * iter:]}
else:
self.x = {"train": np.concatenate((self.mols[:len_test * iter], self.mols[len_test * (iter + 1):])),
"test": self.mols[len_test * iter:len_test * (iter + 1)]}
self.c = {"train": np.concatenate((self.coords[:len_test * iter], self.coords[len_test * (iter + 1):])),
"test": self.coords[len_test * iter:len_test * (iter + 1)]}
self.y = {"train": np.concatenate((self.target[:len_test * iter], self.target[len_test * (iter + 1):])),
"test": self.target[len_test * iter:len_test * (iter + 1)]}
elif self.split == "stratified":
# Dataset parameters
if self.dataset == "bace_cla" or self.dataset == "hiv":
# Shuffle data
idx_inactive = np.squeeze(
|
np.argwhere(self.target == 0)
|
numpy.argwhere
|
# Double pendulum formula translated from the C code at
# http://www.physics.usyd.edu.au/~wheat/dpend_html/solve_dpend.c
from numpy import sin, cos
import numpy as np
import matplotlib.pyplot as plt
import scipy.integrate as integrate
import matplotlib.animation as animation
plt.style.use("animation_support")
G = 9.8 # acceleration due to gravity, in m/s^2
L1 = 1.0 # length of pendulum 1 in m
L2 = 1.0 # length of pendulum 2 in m
M1 = 1.0 # mass of pendulum 1 in kg
M2 = 1.0 # mass of pendulum 2 in kg
def derivs(state, t):
dydx = np.zeros_like(state)
dydx[0] = state[1]
del_ = state[2] - state[0]
den1 = (M1 + M2)*L1 - M2*L1*cos(del_)*cos(del_)
dydx[1] = (M2*L1*state[1]*state[1]*sin(del_)*cos(del_) +
M2*G*sin(state[2])*cos(del_) +
M2*L2*state[3]*state[3]*sin(del_) -
(M1 + M2)*G*sin(state[0]))/den1
dydx[2] = state[3]
den2 = (L2/L1)*den1
dydx[3] = (-M2*L2*state[3]*state[3]*sin(del_)*
|
cos(del_)
|
numpy.cos
|
#!/usr/bin/env python3
#
# Tests the Rosenbrock toy problems.
#
# This file is part of PINTS.
# Copyright (c) 2017-2018, University of Oxford.
# For licensing information, see the LICENSE file distributed with the PINTS
# software package.
#
import pints
import pints.toy
import unittest
import numpy as np
class TestRosenbrock(unittest.TestCase):
"""
Tests the Rosenbrock toy problems.
"""
def test_error(self):
f = pints.toy.RosenbrockError()
self.assertEqual(f.n_parameters(), 2)
fx = f([10, 10])
self.assertTrue(np.isscalar(fx))
self.assertEqual(fx, 810081)
xopt = f.optimum()
fopt = f(xopt)
self.assertEqual(fopt, 0)
np.random.seed(1)
for x in np.random.uniform(-5, 5, size=(10, 2)):
self.assertTrue(f(x) > fopt)
def test_log_pdf(self):
f = pints.toy.RosenbrockLogPDF()
self.assertEqual(f.n_parameters(), 2)
fx = f([0.5, 6.0])
self.assertTrue(np.isscalar(fx))
self.assertAlmostEqual(fx, np.log(1.0 / 3307.5))
xopt = f.optimum()
fopt = f(xopt)
self.assertEqual(fopt, 0)
# sensitivity test
l, dl = f.evaluateS1([3, 4])
self.assertEqual(l, -np.log(2505))
self.assertEqual(len(dl), 2)
self.assertEqual(dl[0], float(-6004.0 / 2505.0))
self.assertEqual(dl[1], float(200.0 / 501.0))
# suggested bounds and distance measure
bounds = f.suggested_bounds()
bounds = [[-2, 4], [-1, 12]]
bounds = np.transpose(bounds).tolist()
self.assertTrue(np.array_equal(bounds, f.suggested_bounds()))
x = np.ones((100, 3))
self.assertRaises(ValueError, f.distance, x)
x = np.ones((100, 3, 2))
self.assertRaises(ValueError, f.distance, x)
# there is no simple way to generate samples from Rosenbrock
nsamples = 10000
g = pints.toy.GaussianLogPDF([1, 1], [1, 1])
samples = g.sample(nsamples)
self.assertTrue(f.distance(samples) > 0)
x =
|
np.ones((100, 3))
|
numpy.ones
|
from __future__ import division
import ctypes, os, shutil
import numpy as np
# constants
c = 299792458
eps0 = 8.854187817e-12
e = 1.602176565e-19
m_e = 9.10938291e-31
hbar = 1.054571726e-34
h = 2*np.pi*hbar
a0 = 4*np.pi*eps0*hbar**2/m_e/e**2
Ry = h*c * m_e*e**4/8/eps0**2/h**3/c
# find and import shared object / DLL
rootdir = os.path.dirname(os.path.realpath(__file__))
if os.name=="posix":
lewenstein_so = ctypes.CDLL(os.path.join(rootdir,'lewenstein.so'))
elif os.name=="nt":
bits = ctypes.sizeof(ctypes.c_voidp)*8
archdirectory = os.path.join(rootdir,'dll' + str(bits))
cwd = os.getcwd()
os.chdir(archdirectory) # necessary to load dependencies correctly
lewenstein_so = ctypes.CDLL('lewenstein.dll')
os.chdir(cwd)
# Note: explicitly setting lewenstein_so.*.argtypes/restype is necessary to prevent segfault on 64 bit:
# http://stackoverflow.com/questions/17240621/wrapping-simple-c-example-with-ctypes-segmentation-fault
# base class for dipole elements
class dipole_elements(object):
dims = None
pointer = None
def __del__(self):
raise NotImplementedError('override in subclasses')
# wrap H dipole elements
lewenstein_so.dipole_elements_H_double.argtypes = [ctypes.c_int, ctypes.c_double]
lewenstein_so.dipole_elements_H_double.restype = ctypes.c_void_p
lewenstein_so.dipole_elements_H_double_destroy.argtypes = [ctypes.c_int, ctypes.c_void_p]
lewenstein_so.dipole_elements_H_double_destroy.restype = None
class dipole_elements_H(dipole_elements):
def __init__(self, dims, ip, wavelength=None):
if wavelength:
ip = sau_convert(ip, 'U', 'SAU', wavelength)
alpha = 2*ip
self.dims = dims
self.pointer = lewenstein_so.dipole_elements_H_double(dims, alpha)
def __del__(self):
lewenstein_so.dipole_elements_H_double_destroy(self.dims, self.pointer)
# wrap symmetric interpolated dipole elements
lewenstein_so.dipole_elements_symmetric_interpolate_double.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_double, ctypes.c_void_p, ctypes.c_void_p]
lewenstein_so.dipole_elements_symmetric_interpolate_double.restype = ctypes.c_void_p
lewenstein_so.dipole_elements_symmetric_interpolate_double_destroy.argtypes = [ctypes.c_int, ctypes.c_void_p]
lewenstein_so.dipole_elements_symmetric_interpolate_double_destroy.restype = None
class dipole_elements_symmetric_interpolate(dipole_elements):
_dr = None
_di = None
def __init__(self, dims, p, d, wavelength=None):
if wavelength is not None:
p = sau_convert(p, 'p', 'SAU', wavelength)
d = sau_convert(d, 'd', 'SAU', wavelength)
self.dims = dims
N = p.size
assert d.size==N
dp = np.min(np.diff(p))
assert np.isclose(dp, np.max(np.diff(p)), atol=0)
# dr and di must not be garbage collected until destructor is called, so make it a property of this class
self._dr = np.require(np.copy(d.real), np.double, ['C', 'A'])
self._di = np.require(np.copy(d.imag), np.double, ['C', 'A'])
self.pointer = lewenstein_so.dipole_elements_symmetric_interpolate_double(dims, N, dp, self._dr.ctypes.data, self._di.ctypes.data)
def __del__(self):
lewenstein_so.dipole_elements_symmetric_interpolate_double_destroy(self.dims, self.pointer)
# helper functions to generate weights
def piecewise_cossqr(t, ts, ys):
ts, ys = np.array(ts), np.array(ys)
y = np.zeros_like(t, ys.dtype)
for tstart, tend, ystart, yend in zip(ts[:-1], ts[1:], ys[:-1], ys[1:]):
piece = (tstart<=t) & (t<=tend)
tscaled = t[piece]/(tend-tstart) - tstart/(tend-tstart)
y[piece] = (ystart-yend) * np.cos(tscaled*np.pi/2)**2 + yend
return y
def weights_short_trajectory(tau,T=2*np.pi,periods_soft=0.01):
tau = tau - tau[0]
tau_truncated = tau[tau/T<=0.65]
return piecewise_cossqr(tau_truncated/T, [0, 0.65-periods_soft, 0.65], [1., 1., 0.])
def weights_long_trajectory(tau,T=2*np.pi,periods_soft=0.01):
tau = tau - tau[0]
tau_truncated = tau[tau/T<=1]
return piecewise_cossqr(tau_truncated/T, [0, 0.65, 0.65+periods_soft, 1-periods_soft, 1], [0., 0., 1., 1., 0.])
def get_weights(tau,T=2*np.pi,periods_one=1,periods_soft=.5):
tau = tau - tau[0]
tau_truncated = tau[tau/T<=periods_one+periods_soft]
return piecewise_cossqr(tau_truncated/T, [0, periods_one, periods_one+periods_soft], [1., 1., 0.])
# helper function for unit conversion
def sau_convert(value, quantity, target, wavelength):
# scaled atomic unit quantities expressed in SI units
unit = {}
unit['t'] = wavelength / c / (2*np.pi)
unit['omega'] = 1/unit['t']
unit['U'] = hbar * unit['omega'] # hbar*omega
unit['q'] = e
unit['s'] = a0 * np.sqrt(2*Ry/unit['U']) # [concluded from (23) in Lewenstein paper]
unit['E'] = unit['U'] / unit['q'] / unit['s'] # [concluded from (2) in Lewenstein paper]
unit['d'] = unit['q'] * unit['s'] # dipole element
unit['m'] = m_e
unit['p'] = unit['m'] * unit['s']/unit['t'] # momentum
if target=="SI":
return value * unit[quantity]
elif target=="SAU":
return value / unit[quantity]
else:
raise ValueError('target must be SI or SAU')
# wrap lewenstein function
lewenstein_so.lewenstein_double.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_double, ctypes.c_double, ctypes.c_void_p, ctypes.c_void_p]
lewenstein_so.lewenstein_double.restype = None
def lewenstein(t,Et,ip,wavelength=None,weights=None,at=None,dipole_elements=None,epsilon_t=1e-4):
# default value for weights
if weights is None and wavelength is None:
weights = get_weights(t)
elif weights is None and wavelength is not None:
weights = get_weights(t, wavelength/c)
# unit conversion
if wavelength is not None:
t = sau_convert(t, 't', 'SAU', wavelength)
Et = sau_convert(Et, 'E', 'SAU', wavelength)
ip = sau_convert(ip, 'U', 'SAU', wavelength)
# default value for ground state amplitude
if at is None: at = np.ones_like(t)
# allocate memory for output
output = np.empty_like(Et)
# make sure t axis starts at zero
t = t - t[0]
# make sure we have appropriate memory layout before passing to C code
t = np.require(t, np.double, ['C', 'A'])
Et = np.require(Et, np.double, ['C', 'A'])
weights = np.require(weights, np.double, ['C', 'A'])
at = np.require(at, np.double, ['C', 'A'])
output = np.require(output, np.double, ['C', 'A', 'W'])
# get dimensions
N = t.size
dims = Et.shape[1] if len(Et.shape)>1 else 1
weights_length = weights.size
# check dimensions
assert at.size==N
assert Et.shape[0]==N
assert dims in [1,2,3]
assert Et.size==N*dims
# default value for dipole elements
if dipole_elements is None: dipole_elements = dipole_elements_H(dims, ip=ip)
# call C function
assert dipole_elements.dims==dims
lewenstein_so.lewenstein_double(dims, N, t.ctypes.data, Et.ctypes.data, weights_length, weights.ctypes.data, at.ctypes.data, ip, epsilon_t, dipole_elements.pointer, output.ctypes.data)
# unit conversion
if wavelength is not None:
output = sau_convert(output, 'd', 'SI', wavelength)
return output
# wrap yakovlev function
lewenstein_so.yakovlev_double.argtypes = [ctypes.c_int, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_int, ctypes.c_void_p, ctypes.c_void_p, ctypes.c_double, ctypes.c_void_p]
lewenstein_so.yakovlev_double.restype = None
def yakovlev(t,Et,ip,at,wavelength=None,weights=None,dtfraction=None):
# default value for weights
if weights is None and wavelength is None:
weights = get_weights(t)
elif weights is None and wavelength is not None:
weights = get_weights(t, wavelength/c)
# unit conversion
if wavelength is not None:
t = sau_convert(t, 't', 'SAU', wavelength)
Et = sau_convert(Et, 'E', 'SAU', wavelength)
ip = sau_convert(ip, 'U', 'SAU', wavelength)
# allocate memory for output
output = np.empty_like(Et)
# make sure t axis starts at zero
t = t - t[0]
# compute dtfraction if not given
if dtfraction is None:
dt = t[1]
atsqr = at**2
dtfraction = np.empty_like(at)
dtfraction[0] = 0
dtfraction[1:] = -np.diff(at**2)/dt
# make sure we have appropriate memory layout before passing to C code
t = np.require(t, np.double, ['C', 'A'])
Et = np.require(Et, np.double, ['C', 'A'])
weights = np.require(weights, np.double, ['C', 'A'])
dtfraction = np.require(dtfraction, np.double, ['C', 'A'])
at = np.require(at, np.double, ['C', 'A'])
output =
|
np.require(output, np.double, ['C', 'A', 'W'])
|
numpy.require
|
import numpy as np
import json
from random import choice, seed
from datetime import datetime, timedelta
class OccupancyGenerator:
"""
This class use the queueing system to generate the occupancy schedule
TODO: Add occupancy actions
"""
def __init__(self,
model,
num_occupant=10,
random_seed=None,
transition_matrics=None):
"""
This class contains multiple editable attributes to generate the occupancy schedule. Default setting includes:
Work shift: 9:00 ~ 17:00, where people start arriving/leaving 30 minutes earily.
Group meeting: 16:00, once per day, last average 15 minutes.
Lunch time: 12:00 ~ 13:00.
Call for absence probability: 1%.
Chat with colleague: average 30 minutes each.
Customer service time: average 30 minutes each.
Average number of guests per day: 3.
:parameter model: The ``COBS.Model`` class object as the target building model.
:parameter num_occupant: The number of long-term occupants belongs to the model.
:parameter random_seed: The seed for numpy and random module. None means no seed specified.
:parameter transition_matrics: A list/tuple of numpy.ndarray, or a single numpy.ndarray, or None.
Each numpy.ndarray must be in the shape of (len(self.possible_locations), len(self.possible_locations)).
The first len(self.possible_locations) - 1 row and column represents the transition rate between zones that are in the order of self.possible_locations.
The last row and column represents the transition rate of the office to other zones (will overwrite previous transition rate).
Transition rate in the unit of seconds.
None means the occupant always stay in the office.
"""
if random_seed is not None:
seed(random_seed)
np.random.seed(random_seed)
self.work_start_time = 9 * 60 * 60 # Work start from 9:00. unit: second
self.work_end_time = 17 * 60 * 60 # Work end at 17:00. unit: second
self.meeting_time = 16 * 60 * 60 # Daily progress report at 16:00, in meeting room
self.meeting_length_avg = 15 * 60 # Daily progress report average length 15 min
self.meeting_length_std = 1 * 60 # Daily progress report std.dev 1 min
self.max_earliness = 30 * 60 # Tend to come 8:30, average arrive at 9:00. Leave is similar. Exponential distribution
self.call_for_absence_prob = 0.01 # Possibility of not come to the office
self.lunch_break_start = 12 * 60 * 60 # Lunch serve start time 12:00. unit: second
self.lunch_break_end = 13 * 60 * 60 # Lunch serve end time 13:00. unit: second
self.eat_time_a = 10 # average time for each person to eat lunch. Beta distribution
self.eat_time_b = self.lunch_break_end - self.lunch_break_start # average time for each person to eat lunch. Beta distribution
self.cut_off_time = 14 * 60 * 60 # After this time, the person won't come to work
self.day_cut_off = 24 * 60 * 60
self.start_synthetic_data = datetime(2020, 3, 25) # start date
self.end_synthetic_data = datetime(2020, 3, 27) # end date
self.report_interval = timedelta(seconds=60) # Time interval between two consecutive package
self.guest_lambda = 3 # Poisson arrival for unknown customers. unit: person per day
self.visit_colleague_lambda = 3 # How many times a worker goes to a colleague's office
self.average_stay_in_colleague_office = 30 * 60
self.std_stay_in_colleague_office = 4 * 60
self.average_stay_customer = 30 * 60
self.std_stay_customer = 5 * 60
# TODO: Add zone trespass time
self.model = model
self.possible_locations = self.model.get_available_names_under_group("Zone")
self.work_zones = self.possible_locations[:]
self.zone_link = model.get_link_zones()
self.meeting_room = choice(self.possible_locations)
self.lunch_room = choice(self.possible_locations)
self.entry_zone = choice(list(self.zone_link["Outdoor"]))
self.possible_locations.insert(0, "Outdoor")
self.possible_locations.append("busy")
self.weekdays = ["Sunday", "Monday", "Tuesday", "Wednesday", "Thursday", "Friday", "Saturday"]
self.work_zones.remove(self.lunch_room)
if self.meeting_room != self.lunch_room:
self.work_zones.remove(self.meeting_room)
if isinstance(transition_matrics, (tuple, list)):
if len(transition_matrics) != num_occupant:
raise ValueError(f"Length of the transition_matrics must be num_occupant {num_occupant}.")
self.worker_assign = [Person(self,
office=choice(self.work_zones),
transition_rate_matrix=transition_matrics[i]) for i in range(num_occupant)]
elif isinstance(transition_matrics, np.ndarray):
self.worker_assign = [Person(self,
office=choice(self.work_zones),
transition_rate_matrix=transition_matrics.copy()) for _ in range(num_occupant)]
elif transition_matrics is None:
self.worker_assign = [Person(self,
office=choice(self.work_zones)) for _ in range(num_occupant)]
else:
raise ValueError("transition_matrics must be a list/tuple of numpy.ndarray, single numpy.ndarray, or None.")
# value = (np.random.beta(eat_time_a, eat_time_b, 10000) + 0.1) * 100
def set_transition_matrics(self, transition_matrics):
"""
Set the transition matrics to each corresponding person.
:param transition_matrics: A list of matrics or one matrix
"""
if isinstance(transition_matrics, (tuple, list)):
if len(transition_matrics) != len(self.worker_assign):
raise ValueError(f"Length of the transition_matrics must be num_occupant {len(self.worker_assign)}.")
for i, q in enumerate(transition_matrics):
self.worker_assign[i].set_transition_matrix(q)
elif isinstance(transition_matrics, np.ndarray):
if transition_matrics.ndim == 3:
if transition_matrics.shape[0] != len(self.worker_assign):
raise ValueError(f"For concatenated numpy array, the shape of the transition_matrics must be"
f" ({len(self.worker_assign)}, "
f"{len(self.possible_locations)}, {len(self.possible_locations)}).")
for i in range(transition_matrics.shape[0]):
self.worker_assign[i].set_transition_matrix(transition_matrics[i, :, :])
else:
for worker in self.worker_assign:
worker.set_transition_matrix(transition_matrics.copy())
def get_path(self, start, end):
"""
Use BFS to find the shortest path between two zones.
:parameter start: The entry of the start zone.
:parameter end: The entry of the target zone.
:return: A list of zone names that the occupant need to cross.
"""
queue = [(start, [start])]
visited = set()
while queue:
vertex, path = queue.pop(0)
visited.add(vertex)
for node in self.zone_link[vertex]:
if node == end:
return path + [end]
else:
if node not in visited:
visited.add(node)
queue.append((node, path + [node]))
return [start]
def generate_all_people_daily_movement(self, use_scheduled_events=True):
"""
Generate a list of ``Person`` objects and simulate the movement for each person.
:return: list of ``Person`` objects.
"""
available_worker = list()
for i, worker in enumerate(self.worker_assign):
if worker.decide_come():
available_worker.append(i)
# print(available_worker)
guests = np.random.poisson(self.guest_lambda) if use_scheduled_events else 0
guest_assign = np.random.choice(available_worker, size=guests)
all_people = list()
guest_counter = 0
for i in available_worker:
worker = self.worker_assign[i]
all_people.append(worker)
guest_list = np.random.randint(1, 4, size=np.sum(guest_assign == i))
appointments = worker.generate_daily_route(guest_list, use_scheduled_events)
for j, appointment in enumerate(appointments):
for _ in range(guest_list[j]):
new_guest = Person(self)
guest_counter += 1
new_guest.customer_come(*appointment)
all_people.append(new_guest)
return all_people
def generate_daily_schedule(self, add_to_model=True, overwrite_dict=None, use_scheduled_events=True):
"""
Generate a numpy matrix contains the locations of all occupants in the day and add tp the model.
:parameter add_to_model: Default is True. If False, then only generate the schedule in numpy and IDF format but not save to the model automatically.
:parameter overwrite_dict: Default is None. If set to a dict with {zone_name: old_people_object_name}, it will overwrite existing People instead of creating a new one
:parameter use_scheduled_events: Default is True. Determines if the lunch and group meeting event will be simulated
:return: Three objects, (IDF format schedule, numpy format schedule, list of all accessble locations in the building).
"""
all_zones = self.model.get_available_names_under_group("Zone")
valid_zones = list()
for zone in all_zones:
if zone in self.possible_locations:
valid_zones.append(zone)
all_people = self.generate_all_people_daily_movement(use_scheduled_events)
locations = list()
for person in all_people:
locations.append(person.position.copy())
if person.office is not None:
locations[-1][locations[-1] == self.possible_locations.index('busy')] = \
self.possible_locations.index(person.office)
location_matrix = np.vstack(locations)
all_commands = list()
if add_to_model:
act, work, cloth, air = self.occupancy_prep()
self.model.add_configuration("Output:Variable", values={"Variable Name": "Zone People Occupant Count",
"Reporting_Frequency": "timestep"})
self.model.add_configuration("Output:Variable",
values={"Variable Name": "Zone Thermal Comfort Fanger Model PMV",
"Reporting_Frequency": "timestep"})
zone_occupancy = np.zeros((len(self.possible_locations), 24 * 60))
for zone in valid_zones:
i = self.possible_locations.index(zone)
occupancy = np.sum(location_matrix == i, axis=0)
result_command = {"Name": f"Generated_Schedule_Zone_{zone}",
"Schedule Type Limits Name": "Any Number",
"Field 1": "Through: 12/31",
"Field 2": "For: Weekdays"}
counter = 3
for t in range(1, 24 * 60 + 1):
zone_occupancy[i, t - 1] = occupancy[t * 60 - 1]
if t != 24 * 60 and occupancy[(t + 1) * 60 - 1] == occupancy[t * 60 - 1]:
continue
hour = t // 60
min = t % 60
result_command[f"Field {counter}"] = f"Until {hour:02d}:{min:02d}"
result_command[f"Field {counter + 1}"] = f"{occupancy[t * 60 - 1]}"
counter += 2
all_commands.append(result_command)
if add_to_model:
self.model.add_configuration("Schedule:Compact", values=result_command)
if overwrite_dict is not None and zone in overwrite_dict:
self.model.edit_configuration("People",
{"Name": overwrite_dict[zone]},
{"Number of People": 1,
"Number of People Schedule Name": f"Generated_Schedule_Zone_{zone}"})
else:
people_values = {"Name": f"Test_Zone_{zone}",
"Zone or ZoneList Name": zone,
"Number of People Schedule Name": f"Generated_Schedule_Zone_{zone}",
"Number of People": 1,
"Activity Level Schedule Name": act,
"Work Efficiency Schedule Name": work,
"Clothing Insulation Schedule Name": cloth,
"Air Velocity Schedule Name": air,
"Thermal Comfort Model 1 Type": "Fanger"}
self.model.add_configuration("People", values=people_values)
return all_commands, location_matrix, zone_occupancy, self.possible_locations
def one_day_numpy_to_schedule(self, array, name):
result_command = {"Name": f"{name}",
"Schedule Type Limits Name": "Any Number"}
counter = 1
for t in range(1, 24 * 60 + 1):
if t < 24 * 60 and array[t] == array[t - 1]:
continue
hour = t // 60
minute = t % 60
result_command[f"Time {counter}"] = f"Until {hour:02d}:{minute:02d}"
result_command[f"Value Until Time {counter}"] = f"{int(array[t - 1])}"
counter += 1
return self.model.add_configuration("Schedule:Day:Interval", values=result_command)
def daily_to_week(self, daily_name_list, name, start_day):
result_command = {"Name": f"{name}"}
for i, daily_name in enumerate(daily_name_list):
result_command[f"{self.weekdays[(start_day + i) % len(self.weekdays)]} Schedule:Day Name"] = daily_name
result_command["Holiday Schedule:Day Name"] = result_command["Sunday Schedule:Day Name"]
result_command["SummerDesignDay Schedule:Day Name"] = result_command["Sunday Schedule:Day Name"]
result_command["WinterDesignDay Schedule:Day Name"] = result_command["Sunday Schedule:Day Name"]
result_command["CustomDay1 Schedule:Day Name"] = result_command["Sunday Schedule:Day Name"]
result_command["CustomDay2 Schedule:Day Name"] = result_command["Sunday Schedule:Day Name"]
return self.model.add_configuration("Schedule:Week:Daily", values=result_command)
def weeks_to_year(self, week_name_list, name):
result_command = {"Name": f"{name}",
"Schedule Type Limits Name": "Any Number"}
start = datetime(1995 + self.model.leap_weather, 1, 1)
start_next = datetime(1995 + self.model.leap_weather, 1, 1)
counter = 1
for t in range(1, 54):
start_next = start_next + timedelta(days=7)
if t < 53 and week_name_list[t - 1] == week_name_list[t]:
continue
end = start_next - timedelta(days=1)
result_command[f"Schedule:Week Name {counter}"] = week_name_list[t - 1]
result_command[f"Start Month {counter}"] = start.month
result_command[f"Start Day {counter}"] = start.day
result_command[f"End Month {counter}"] = end.month
result_command[f"End Day {counter}"] = end.day
start = start_next
counter += 1
result_command[f"End Month {counter - 1}"] = 12
result_command[f"End Day {counter - 1}"] = 31
return self.model.add_configuration("Schedule:Year", values=result_command)
def occupancy_prep(self):
activity_values = {"Name": "Test_Activity_Schedule",
"Schedule Type Limits Name": "Any Number",
"Field 1": "Through:12/31",
"Field 2": "For: Alldays",
"Field 3": "Until 24:00",
"Field 4": "200"}
work_efficiency = {"Name": "Test_Work_Schedule",
"Schedule Type Limits Name": "Fraction",
"Field 1": "Through:12/31",
"Field 2": "For: Alldays",
"Field 3": "Until 24:00",
"Field 4": "0.1"}
cloth_schedule = {"Name": "Test_Cloth_Schedule",
"Schedule Type Limits Name": "Fraction",
"Field 1": "Through:12/31",
"Field 2": "For: Alldays",
"Field 3": "Until 24:00",
"Field 4": "0.9"}
air_velocity = {"Name": "Test_Air_Velocity",
"Schedule Type Limits Name": "Fraction",
"Field 1": "Through:12/31",
"Field 2": "For: Alldays",
"Field 3": "Until 24:00",
"Field 4": "0.25"}
returns = [activity_values["Name"], work_efficiency["Name"], cloth_schedule["Name"], air_velocity["Name"]]
if len(self.model.get_configuration("People")) == 0:
self.model.add_configuration("Schedule:Compact", values=activity_values)
self.model.add_configuration("Schedule:Compact", values=work_efficiency)
self.model.add_configuration("Schedule:Compact", values=cloth_schedule)
self.model.add_configuration("Schedule:Compact", values=air_velocity)
else:
prev = self.model.get_configuration("People")[0]
for i, name, var in ((0, "Activity Level Schedule Name", activity_values),
(1, "Work Efficiency Schedule Name", work_efficiency),
(2, "Clothing Insulation Schedule Name", cloth_schedule),
(3, "Air Velocity Schedule Name", air_velocity)):
if name not in prev:
self.model.add_configuration("Schedule:Compact", values=var)
else:
returns[i] = prev[name]
return returns
def generate_schedule_using_numpy(self, occupancy, room_name=None, start_day=0, overwrite_dict=None):
"""
Generate the occupancy pattern based on a given numpy ndarray, and add it to the model.
:parameter occupancy: The numpy array with shape of (365, number_of_room, 24 * 60),
where the first dimension indicates the 365 days on a year, the second dimension indicates the occupancy for
each room, and the third dimension indicates the minute in a day. The value of this ndarray should be the
number of occupants in the room at a specific time on a specific day. If the second dimension < actual number
of rooms, the rest rooms are considered unoccupied all the time.
:parameter room_name: an iterable object contains the name of rooms in the order they stored in the occupancy
ndarray's second dimension. If room_name is not provided, then the default order will be used.
:parameter start_day: Specify the start day of the week. 0 means Sunday, and 6 means Saturday.
:parameter overwrite_dict: Default is None. If set to a dict with {zone_name: old_people_object_name},
it will overwrite existing People instead of creating a new one
"""
if not isinstance(occupancy, np.ndarray) or \
occupancy.ndim != 3 or \
occupancy.shape[0] != 365 + self.model.leap_weather or \
occupancy.shape[2] != 24 * 60:
raise ValueError(f"Wrong format of the occupancy numpy array. "
f"The shape must be ({365 + self.model.leap_weather}, n, 24 * 60)")
if room_name is None:
room_name = self.model.get_available_names_under_group("Zone")
occupancy = occupancy.astype(int)
days, rooms, _ = occupancy.shape
name = self.model.get_configuration("RunPeriod")[0].Name
self.model.edit_configuration("RunPeriod",
{"Name": name},
{"Day of Week for Start Day": self.weekdays[start_day]})
occupancy, corres_id = np.unique(occupancy.reshape(-1, 24 * 60), axis=0, return_inverse=True)
for i, row in enumerate(occupancy):
self.one_day_numpy_to_schedule(row, name=f"Day Type {i}")
occupancy, corres_id = np.unique(np.concatenate((corres_id.reshape(days, -1),
np.zeros((7 - days % 7, rooms))), axis=0).T.reshape(-1, 7),
axis=0, return_inverse=True)
for i, row in enumerate(occupancy.astype(int)):
self.daily_to_week(map(lambda x: f"Day Type {x}", row), name=f"Week Type {i}", start_day=start_day)
for i, row in enumerate(corres_id.reshape(rooms, -1).astype(int)):
if i == len(room_name):
break
self.weeks_to_year(list(map(lambda x: f"Week Type {x}", row)), name=f"Year For {room_name[i]}")
if overwrite_dict is not None and room_name[i] in overwrite_dict:
self.model.edit_configuration("People",
{"Name": overwrite_dict[room_name[i]]},
{"Number of People": 1,
"Number of People Schedule Name": f"Year For {room_name[i]}"})
else:
act, work, cloth, air = self.occupancy_prep()
people_values = {"Name": f"Test_Zone_{room_name[i]}",
"Zone or ZoneList Name": room_name[i],
"Number of People Schedule Name": f"Year For {room_name[i]}",
"Number of People": 1,
"Activity Level Schedule Name": act,
"Work Efficiency Schedule Name": work,
"Clothing Insulation Schedule Name": cloth,
"Air Velocity Schedule Name": air,
"Thermal Comfort Model 1 Type": "Fanger"}
self.model.add_configuration("People", values=people_values)
def save_light_config(self, output_name=None):
if self.light_config is None:
self.initialize_light_config()
if output_name is None:
output_name = "light_config.json"
with open(output_name, 'w') as output_file:
json.dump(self.light_config, output_file)
def initialize_light_config(self):
zone_lights = self.model.get_lights()
self.light_config = dict()
print(self.model.get_windows())
for zone in zone_lights:
self.light_config[zone] = list()
for light in zone_lights[zone]:
self.light_config[zone].append({"name": light,
"probability": 1,
"condition": {zone_name: {"occupancy > 0": 1,
"occupancy == 0": 1}
for zone_name in self.possible_locations}})
def generate_light(self, input_name=None):
pass
class Person:
"""
This class contains the detail location of a single occupant.
"""
def __init__(self, generator, office=None, transition_rate_matrix=None):
"""
Each long-term occupant will have an office, and he tend to stay in office more than other places.
:parameter generator: The OccupancyGenerator which provides the settings.
:parameter office: The designated office for long-term occupants.
:parameter transition_rate_matrix: The transition rate matrix for the current occupants (if None, assume the occupant tends to stay in the office).
"""
self.office = office
self.position = np.zeros(generator.day_cut_off)
self.source = generator
self.start_time = 0
self.end_time = 0
self.transition_matrix = None
if transition_rate_matrix is not None:
self.set_transition_matrix(transition_rate_matrix)
def set_transition_matrix(self, transition_rate_matrix):
"""
Define the transition matrix for the current person
:param transition_rate_matrix: The transition matrix - a numpy array with shape
(num_possible_zone + 2, num_possible_zone + 2). The order is [Outdoor, each zone, office]
"""
if not isinstance(transition_rate_matrix, np.ndarray):
raise ValueError(f"The provided transition matrix be a numpy.ndarray")
if len(self.source.possible_locations) != transition_rate_matrix.shape[0] or \
len(self.source.possible_locations) != transition_rate_matrix.shape[1]:
raise ValueError(f"The provided transition matrix must in shape "
f"({len(self.source.possible_locations)}, {len(self.source.possible_locations)})")
office_idx = self.source.possible_locations.index(self.office)
self.transition_matrix = transition_rate_matrix[:-1, :-1]
if np.sum(transition_rate_matrix[-1, :]) +
|
np.sum(transition_rate_matrix[-1, :])
|
numpy.sum
|
# encoding: utf-8
"""
Defines a common implementation of the PyNN API.
Simulator modules are not required to use any of the code herein, provided they
provide the correct interface, but it is suggested that they use as much as is
consistent with good performance (optimisations may require overriding some of
the default definitions given here).
Utility functions and classes:
is_conductance()
check_weight()
check_delay()
Accessing individual neurons:
IDMixin
Common API implementation/base classes:
1. Simulation set-up and control:
setup()
end()
run()
reset()
get_time_step()
get_current_time()
get_min_delay()
get_max_delay()
rank()
num_processes()
2. Creating, connecting and recording from individual neurons:
create()
connect()
set()
initialize()
build_record()
3. Creating, connecting and recording from populations of neurons:
Population
PopulationView
Assembly
Projection
:copyright: Copyright 2006-2013 by the PyNN team, see AUTHORS.
:license: CeCILL, see LICENSE for details.
$Id: common.py 1258 2013-01-31 15:01:25Z apdavison $
"""
import numpy, os
import logging
from warnings import warn
import operator
import tempfile
from pyNN import random, recording, errors, models, standardmodels, core, space, descriptions
from pyNN.recording import files
from itertools import chain
if not 'simulator' in locals():
simulator = None # should be set by simulator-specific modules
DEFAULT_WEIGHT = 0.0
DEFAULT_BUFFER_SIZE = 10000
DEFAULT_MAX_DELAY = 10.0
DEFAULT_TIMESTEP = 0.1
DEFAULT_MIN_DELAY = DEFAULT_TIMESTEP
logger = logging.getLogger("PyNN")
# =============================================================================
# Utility functions and classes
# =============================================================================
def is_conductance(target_cell):
"""
Returns True if the target cell uses conductance-based synapses, False if
it uses current-based synapses, and None if the synapse-basis cannot be
determined.
"""
if hasattr(target_cell, 'local') and target_cell.local and hasattr(target_cell, 'celltype'):
is_conductance = target_cell.celltype.conductance_based
else:
is_conductance = None
return is_conductance
def check_weight(weight, synapse_type, is_conductance):
if weight is None:
weight = DEFAULT_WEIGHT
if core.is_listlike(weight):
weight = numpy.array(weight)
nan_filter = (1 - numpy.isnan(weight)).astype(bool) # weight arrays may contain NaN, which should be ignored
filtered_weight = weight[nan_filter]
all_negative = (filtered_weight <= 0).all()
all_positive = (filtered_weight >= 0).all()
if not (all_negative or all_positive):
raise errors.InvalidWeightError("Weights must be either all positive or all negative")
elif numpy.isreal(weight):
all_positive = weight >= 0
all_negative = weight < 0
else:
raise errors.InvalidWeightError("Weight must be a number or a list/array of numbers.")
if is_conductance or synapse_type == 'excitatory':
if not all_positive:
raise errors.InvalidWeightError("Weights must be positive for conductance-based and/or excitatory synapses")
elif is_conductance == False and synapse_type == 'inhibitory':
if not all_negative:
raise errors.InvalidWeightError("Weights must be negative for current-based, inhibitory synapses")
else: # is_conductance is None. This happens if the cell does not exist on the current node.
logger.debug("Can't check weight, conductance status unknown.")
return weight
def check_delay(delay):
if delay is None:
delay = get_min_delay()
# If the delay is too small , we have to throw an error
if delay < get_min_delay() or delay > get_max_delay():
raise errors.ConnectionError("delay (%s) is out of range [%s,%s]" % \
(delay, get_min_delay(), get_max_delay()))
return delay
# =============================================================================
# Accessing individual neurons
# =============================================================================
class IDMixin(object):
"""
Instead of storing ids as integers, we store them as ID objects,
which allows a syntax like:
p[3,4].tau_m = 20.0
where p is a Population object.
"""
# Simulator ID classes should inherit both from the base type of the ID
# (e.g., int or long) and from IDMixin.
def __getattr__(self, name):
try:
val = self.__getattribute__(name)
except AttributeError:
if name == "parent":
raise Exception("parent is not set")
try:
val = self.get_parameters()[name]
except KeyError:
raise errors.NonExistentParameterError(name,
self.celltype.__class__.__name__,
self.celltype.get_parameter_names())
return val
def __setattr__(self, name, value):
if name == "parent":
object.__setattr__(self, name, value)
elif self.celltype.has_parameter(name):
self.set_parameters(**{name: value})
else:
object.__setattr__(self, name, value)
def set_parameters(self, **parameters):
"""
Set cell parameters, given as a sequence of parameter=value arguments.
"""
# if some of the parameters are computed from the values of other
# parameters, need to get and translate all parameters
if self.local:
if self.is_standard_cell:
computed_parameters = self.celltype.computed_parameters()
have_computed_parameters = numpy.any([p_name in computed_parameters
for p_name in parameters])
if have_computed_parameters:
all_parameters = self.get_parameters()
all_parameters.update(parameters)
parameters = all_parameters
parameters = self.celltype.translate(parameters)
self.set_native_parameters(parameters)
else:
raise errors.NotLocalError("Cannot set parameters for a cell that does not exist on this node.")
def get_parameters(self):
"""Return a dict of all cell parameters."""
if self.local:
parameters = self.get_native_parameters()
if self.is_standard_cell:
parameters = self.celltype.reverse_translate(parameters)
return parameters
else:
raise errors.NotLocalError("Cannot obtain parameters for a cell that does not exist on this node.")
@property
def celltype(self):
return self.parent.celltype
@property
def is_standard_cell(self):
return issubclass(self.celltype.__class__, standardmodels.StandardCellType)
def _set_position(self, pos):
"""
Set the cell position in 3D space.
Cell positions are stored in an array in the parent Population.
"""
assert isinstance(pos, (tuple, numpy.ndarray))
assert len(pos) == 3
self.parent._set_cell_position(self, pos)
def _get_position(self):
"""
Return the cell position in 3D space.
Cell positions are stored in an array in the parent Population, if any,
or within the ID object otherwise. Positions are generated the first
time they are requested and then cached.
"""
return self.parent._get_cell_position(self)
position = property(_get_position, _set_position)
@property
def local(self):
return self.parent.is_local(self)
def inject(self, current_source):
"""Inject current from a current source object into the cell."""
current_source.inject_into([self])
def get_initial_value(self, variable):
"""Get the initial value of a state variable of the cell."""
return self.parent._get_cell_initial_value(self, variable)
def set_initial_value(self, variable, value):
"""Set the initial value of a state variable of the cell."""
self.parent._set_cell_initial_value(self, variable, value)
def as_view(self):
"""Return a PopulationView containing just this cell."""
index = self.parent.id_to_index(self)
return self.parent[index:index+1]
# =============================================================================
# Functions for simulation set-up and control
# =============================================================================
def setup(timestep=DEFAULT_TIMESTEP, min_delay=DEFAULT_MIN_DELAY,
max_delay=DEFAULT_MAX_DELAY, **extra_params):
"""
Initialises/reinitialises the simulator. Any existing network structure is
destroyed.
extra_params contains any keyword arguments that are required by a given
simulator but not by others.
"""
invalid_extra_params = ('mindelay', 'maxdelay', 'dt')
for param in invalid_extra_params:
if param in extra_params:
raise Exception("%s is not a valid argument for setup()" % param)
if min_delay > max_delay:
raise Exception("min_delay has to be less than or equal to max_delay.")
if min_delay < timestep:
raise Exception("min_delay (%g) must be greater than timestep (%g)" % (min_delay, timestep))
def end(compatible_output=True):
"""Do any necessary cleaning up before exiting."""
raise NotImplementedError
def run(simtime):
"""Run the simulation for simtime ms."""
raise NotImplementedError
def reset():
"""
Reset the time to zero, neuron membrane potentials and synaptic weights to
their initial values, and delete any recorded data. The network structure
is not changed, nor is the specification of which neurons to record from.
"""
simulator.reset()
def initialize(cells, variable, value):
assert isinstance(cells, (BasePopulation, Assembly)), type(cells)
cells.initialize(variable, value)
def get_current_time():
"""Return the current time in the simulation."""
return simulator.state.t
def get_time_step():
"""Return the integration time step."""
return simulator.state.dt
def get_min_delay():
"""Return the minimum allowed synaptic delay."""
return simulator.state.min_delay
def get_max_delay():
"""Return the maximum allowed synaptic delay."""
return simulator.state.max_delay
def num_processes():
"""Return the number of MPI processes."""
return simulator.state.num_processes
def rank():
"""Return the MPI rank of the current node."""
return simulator.state.mpi_rank
# =============================================================================
# Low-level API for creating, connecting and recording from individual neurons
# =============================================================================
def build_create(population_class):
def create(cellclass, cellparams=None, n=1):
"""
Create n cells all of the same type.
If n > 1, return a list of cell ids/references.
If n==1, return just the single id.
"""
return population_class(n, cellclass, cellparams) # return the Population or Population.all_cells?
return create
def build_connect(projection_class, connector_class):
def connect(source, target, weight=0.0, delay=None, synapse_type=None,
p=1, rng=None):
"""
Connect a source of spikes to a synaptic target.
source and target can both be individual cells or lists of cells, in
which case all possible connections are made with probability p, using
either the random number generator supplied, or the default rng
otherwise. Weights should be in nA or µS.
"""
if isinstance(source, IDMixin):
source = source.as_view()
if isinstance(target, IDMixin):
target = target.as_view()
connector = connector_class(p_connect=p, weights=weight, delays=delay)
return projection_class(source, target, connector, target=synapse_type, rng=rng)
return connect
def set(cells, param, val=None):
"""
Set one or more parameters of an individual cell or list of cells.
param can be a dict, in which case val should not be supplied, or a string
giving the parameter name, in which case val is the parameter value.
"""
assert isinstance(cells, (BasePopulation, Assembly))
cells.set(param, val)
def build_record(variable, simulator):
def record(source, filename):
"""
Record spikes to a file. source can be an individual cell, a Population,
PopulationView or Assembly.
"""
# would actually like to be able to record to an array and choose later
# whether to write to a file.
if not isinstance(source, (BasePopulation, Assembly)):
source = source.parent
source._record(variable, to_file=filename)
# recorder_list is used by end()
if isinstance(source, BasePopulation):
simulator.recorder_list.append(source.recorders[variable]) # this is a bit hackish - better to add to Population.__del__?
if isinstance(source, Assembly):
for population in source.populations:
simulator.recorder_list.append(population.recorders[variable])
if variable == 'v':
record.__name__ = "record_v"
record.__doc__ = """
Record membrane potential to a file. source can be an individual
cell, a Population, PopulationView or Assembly."""
elif variable == 'gsyn':
record.__name__ = "record_gsyn"
record.__doc__ = """
Record synaptic conductances to a file. source can be an individual
cell, a Population, PopulationView or Assembly."""
return record
# =============================================================================
# High-level API for creating, connecting and recording from populations of
# neurons.
# =============================================================================
class BasePopulation(object):
record_filter = None
def __getitem__(self, index):
"""
Return either a single cell (ID object) from the Population, if index
is an integer, or a subset of the cells (PopulationView object), if
index is a slice or array.
Note that __getitem__ is called when using [] access, e.g.
p = Population(...)
p[2] is equivalent to p.__getitem__(2).
p[3:6] is equivalent to p.__getitem__(slice(3, 6))
"""
if isinstance(index, int):
return self.all_cells[index]
elif isinstance(index, (slice, list, numpy.ndarray)):
return PopulationView(self, index)
elif isinstance(index, tuple):
return PopulationView(self, list(index))
else:
raise TypeError("indices must be integers, slices, lists, arrays or tuples, not %s" % type(index).__name__)
def __len__(self):
"""Return the total number of cells in the population (all nodes)."""
return self.size
@property
def local_size(self):
return len(self.local_cells) # would self._mask_local.sum() be faster?
def __iter__(self):
"""Iterator over cell ids on the local node."""
return iter(self.local_cells)
@property
def conductance_based(self):
return self.celltype.conductance_based
def is_local(self, id):
"""
Determine whether the cell with the given ID exists on the local MPI node.
"""
assert id.parent is self
index = self.id_to_index(id)
return self._mask_local[index]
def all(self):
"""Iterator over cell ids on all nodes."""
return iter(self.all_cells)
def __add__(self, other):
"""
A Population/PopulationView can be added to another Population,
PopulationView or Assembly, returning an Assembly.
"""
assert isinstance(other, BasePopulation)
return Assembly(self, other)
def _get_cell_position(self, id):
index = self.id_to_index(id)
return self.positions[:, index]
def _set_cell_position(self, id, pos):
index = self.id_to_index(id)
self.positions[:, index] = pos
def _get_cell_initial_value(self, id, variable):
assert isinstance(self.initial_values[variable], core.LazyArray)
index = self.id_to_local_index(id)
return self.initial_values[variable][index]
def _set_cell_initial_value(self, id, variable, value):
assert isinstance(self.initial_values[variable], core.LazyArray)
index = self.id_to_local_index(id)
self.initial_values[variable][index] = value
def nearest(self, position):
"""Return the neuron closest to the specified position."""
# doesn't always work correctly if a position is equidistant between
# two neurons, i.e. 0.5 should be rounded up, but it isn't always.
# also doesn't take account of periodic boundary conditions
pos = numpy.array([position] * self.positions.shape[1]).transpose()
dist_arr = (self.positions - pos)**2
distances = dist_arr.sum(axis=0)
nearest = distances.argmin()
return self[nearest]
def sample(self, n, rng=None):
"""
Randomly sample n cells from the Population, and return a PopulationView
object.
"""
assert isinstance(n, int)
if not rng:
rng = random.NumpyRNG()
indices = rng.permutation(numpy.arange(len(self)))[0:n]
logger.debug("The %d cells recorded have indices %s" % (n, indices))
logger.debug("%s.sample(%s)", self.label, n)
return PopulationView(self, indices)
def get(self, parameter_name, gather=False):
"""
Get the values of a parameter for every local cell in the population.
"""
# if all the cells have the same value for this parameter, should
# we return just the number, rather than an array?
if hasattr(self, "_get_array"):
values = self._get_array(parameter_name).tolist()
else:
values = [getattr(cell, parameter_name) for cell in self] # list or array?
if gather == True and num_processes() > 1:
all_values = { rank(): values }
all_indices = { rank(): self.local_cells.tolist()}
all_values = recording.gather_dict(all_values)
all_indices = recording.gather_dict(all_indices)
if rank() == 0:
values = reduce(operator.add, all_values.values())
indices = reduce(operator.add, all_indices.values())
idx = numpy.argsort(indices)
values = numpy.array(values)[idx]
return values
def set(self, param, val=None):
"""
Set one or more parameters for every cell in the population. param
can be a dict, in which case val should not be supplied, or a string
giving the parameter name, in which case val is the parameter value.
val can be a numeric value, or list of such (e.g. for setting spike
times).
e.g. p.set("tau_m",20.0).
p.set({'tau_m':20,'v_rest':-65})
"""
#"""
# -- Proposed change to arguments --
#Set one or more parameters for every cell in the population.
#
#Each value may be a single number or a list/array of numbers of the same
#size as the population. If the parameter itself takes lists/arrays as
#values (e.g. spike times), then the value provided may be either a
#single lists/1D array, a list of lists/1D arrays, or a 2D array.
#
#e.g. p.set(tau_m=20.0).
# p.set(tau_m=20, v_rest=[-65.0, -65.3, ... , -67.2])
#"""
if isinstance(param, str):
param_dict = {param: val}
elif isinstance(param, dict):
param_dict = param
else:
raise errors.InvalidParameterValueError
param_dict = self.celltype.checkParameters(param_dict, with_defaults=False)
logger.debug("%s.set(%s)", self.label, param_dict)
if hasattr(self, "_set_array"):
self._set_array(**param_dict)
else:
for cell in self:
cell.set_parameters(**param_dict)
def tset(self, parametername, value_array):
"""
'Topographic' set. Set the value of parametername to the values in
value_array, which must have the same dimensions as the Population.
"""
#"""
# -- Proposed change to arguments --
#'Topographic' set. Each value in parameters should be a function that
#accepts arguments x,y,z and returns a single value.
#"""
if parametername not in self.celltype.get_parameter_names():
raise errors.NonExistentParameterError(parametername, self.celltype, self.celltype.get_parameter_names())
if (self.size,) == value_array.shape: # the values are numbers or non-array objects
local_values = value_array[self._mask_local]
assert local_values.size == self.local_cells.size, "%d != %d" % (local_values.size, self.local_cells.size)
elif len(value_array.shape) == 2: # the values are themselves 1D arrays
if value_array.shape[0] != self.size:
raise errors.InvalidDimensionsError("Population: %d, value_array first dimension: %s" % (self.size,
value_array.shape[0]))
local_values = value_array[self._mask_local] # not sure this works
else:
raise errors.InvalidDimensionsError("Population: %d, value_array: %s" % (self.size,
str(value_array.shape)))
assert local_values.shape[0] == self.local_cells.size, "%d != %d" % (local_values.size, self.local_cells.size)
try:
logger.debug("%s.tset('%s', array(shape=%s, min=%s, max=%s))",
self.label, parametername, value_array.shape,
value_array.min(), value_array.max())
except TypeError: # min() and max() won't work for non-numeric values
logger.debug("%s.tset('%s', non_numeric_array(shape=%s))",
self.label, parametername, value_array.shape)
# Set the values for each cell
if hasattr(self, "_set_array"):
self._set_array(**{parametername: local_values})
else:
for cell, val in zip(self, local_values):
setattr(cell, parametername, val)
def rset(self, parametername, rand_distr):
"""
'Random' set. Set the value of parametername to a value taken from
rand_distr, which should be a RandomDistribution object.
"""
# Note that we generate enough random numbers for all cells on all nodes
# but use only those relevant to this node. This ensures that the
# sequence of random numbers does not depend on the number of nodes,
# provided that the same rng with the same seed is used on each node.
logger.debug("%s.rset('%s', %s)", self.label, parametername, rand_distr)
if isinstance(rand_distr.rng, random.NativeRNG):
self._native_rset(parametername, rand_distr)
else:
rarr = rand_distr.next(n=self.all_cells.size, mask_local=False)
rarr = numpy.array(rarr) # isn't rarr already an array?
assert rarr.size == self.size, "%s != %s" % (rarr.size, self.size)
self.tset(parametername, rarr)
def _call(self, methodname, arguments):
"""
Call the method methodname(arguments) for every cell in the population.
e.g. p.call("set_background","0.1") if the cell class has a method
set_background().
"""
raise NotImplementedError()
def _tcall(self, methodname, objarr):
"""
`Topographic' call. Call the method methodname() for every cell in the
population. The argument to the method depends on the coordinates of
the cell. objarr is an array with the same dimensions as the
Population.
e.g. p.tcall("memb_init", vinitArray) calls
p.cell[i][j].memb_init(vInitArray[i][j]) for all i,j.
"""
raise NotImplementedError()
def randomInit(self, rand_distr):
"""
Set initial membrane potentials for all the cells in the population to
random values.
"""
warn("The randomInit() method is deprecated, and will be removed in a future release. Use initialize('v', rand_distr) instead.")
self.initialize('v', rand_distr)
def initialize(self, variable, value):
"""
Set initial values of state variables, e.g. the membrane potential.
`value` may either be a numeric value (all neurons set to the same
value) or a `RandomDistribution` object (each neuron gets a
different value)
"""
logger.debug("In Population '%s', initialising %s to %s" % (self.label, variable, value))
if isinstance(value, random.RandomDistribution):
initial_value = value.next(n=self.all_cells.size, mask_local=self._mask_local)
if self.local_size > 1:
assert len(initial_value) == self.local_size, "%d != %d" % (len(initial_value), self.local_size)
else:
initial_value = value
self.initial_values[variable] = core.LazyArray(initial_value, shape=(self.local_size,))
if hasattr(self, "_set_initial_value_array"):
self._set_initial_value_array(variable, initial_value)
else:
if isinstance(value, random.RandomDistribution):
for cell, val in zip(self, initial_value):
cell.set_initial_value(variable, val)
else:
for cell in self: # only on local node
cell.set_initial_value(variable, initial_value)
def can_record(self, variable):
"""Determine whether `variable` can be recorded from this population."""
return (variable in self.celltype.recordable)
def _add_recorder(self, variable):
"""Create a new Recorder for the supplied variable."""
assert variable not in self.recorders
if hasattr(self, "parent"):
population = self.grandparent
else:
population = self
logger.debug("Adding recorder for %s to %s" % (variable, self.label))
population.recorders[variable] = population.recorder_class(variable,
population=population)
def _record(self, variable, to_file=True):
"""
Private method called by record() and record_v().
"""
if variable is None: # reset the list of things to record
# note that if _record(None) is called on a view of a population
# recording will be reset for the entire population, not just the view
for recorder in self.recorders.values():
recorder.reset()
self.recorders = {}
else:
if not self.can_record(variable):
raise errors.RecordingError(variable, self.celltype)
logger.debug("%s.record('%s')", self.label, variable)
if variable not in self.recorders:
self._add_recorder(variable)
if self.record_filter is not None:
self.recorders[variable].record(self.record_filter)
else:
self.recorders[variable].record(self.all_cells)
if isinstance(to_file, basestring):
self.recorders[variable].file = to_file
def record(self, to_file=True):
"""
Record spikes from all cells in the Population.
"""
self._record('spikes', to_file)
def record_v(self, to_file=True):
"""
Record the membrane potential for all cells in the Population.
"""
self._record('v', to_file)
def record_gsyn(self, to_file=True):
"""
Record synaptic conductances for all cells in the Population.
"""
self._record('gsyn', to_file)
def printSpikes(self, file, gather=True, compatible_output=True):
"""
Write spike times to file.
file should be either a filename or a PyNN File object.
If compatible_output is True, the format is "spiketime cell_id",
where cell_id is the index of the cell counting along rows and down
columns (and the extension of that for 3-D).
This allows easy plotting of a `raster' plot of spiketimes, with one
line for each cell.
The timestep, first id, last id, and number of data points per cell are
written in a header, indicated by a '#' at the beginning of the line.
If compatible_output is False, the raw format produced by the simulator
is used. This may be faster, since it avoids any post-processing of the
spike files.
For parallel simulators, if gather is True, all data will be gathered
to the master node and a single output file created there. Otherwise, a
file will be written on each node, containing only the cells simulated
on that node.
"""
self.recorders['spikes'].write(file, gather, compatible_output, self.record_filter)
def getSpikes(self, gather=True, compatible_output=True):
"""
Return a 2-column numpy array containing cell ids and spike times for
recorded cells.
Useful for small populations, for example for single neuron Monte-Carlo.
"""
return self.recorders['spikes'].get(gather, compatible_output, self.record_filter)
# if we haven't called record(), this will give a KeyError. A more
# informative error message would be nice.
def print_v(self, file, gather=True, compatible_output=True):
"""
Write membrane potential traces to file.
file should be either a filename or a PyNN File object.
If compatible_output is True, the format is "v cell_id",
where cell_id is the index of the cell counting along rows and down
columns (and the extension of that for 3-D).
The timestep, first id, last id, and number of data points per cell are
written in a header, indicated by a '#' at the beginning of the line.
If compatible_output is False, the raw format produced by the simulator
is used. This may be faster, since it avoids any post-processing of the
voltage files.
For parallel simulators, if gather is True, all data will be gathered
to the master node and a single output file created there. Otherwise, a
file will be written on each node, containing only the cells simulated
on that node.
"""
self.recorders['v'].write(file, gather, compatible_output, self.record_filter)
def get_v(self, gather=True, compatible_output=True):
"""
Return a 2-column numpy array containing cell ids and Vm for
recorded cells.
"""
return self.recorders['v'].get(gather, compatible_output, self.record_filter)
def print_gsyn(self, file, gather=True, compatible_output=True):
"""
Write synaptic conductance traces to file.
file should be either a filename or a PyNN File object.
If compatible_output is True, the format is "t g cell_id",
where cell_id is the index of the cell counting along rows and down
columns (and the extension of that for 3-D).
The timestep, first id, last id, and number of data points per cell are
written in a header, indicated by a '#' at the beginning of the line.
If compatible_output is False, the raw format produced by the simulator
is used. This may be faster, since it avoids any post-processing of the
voltage files.
"""
self.recorders['gsyn'].write(file, gather, compatible_output, self.record_filter)
def get_gsyn(self, gather=True, compatible_output=True):
"""
Return a 3-column numpy array containing cell ids and synaptic
conductances for recorded cells.
"""
return self.recorders['gsyn'].get(gather, compatible_output, self.record_filter)
def get_spike_counts(self, gather=True):
"""
Returns the number of spikes for each neuron.
"""
return self.recorders['spikes'].count(gather, self.record_filter)
def meanSpikeCount(self, gather=True):
"""
Returns the mean number of spikes per neuron.
"""
spike_counts = self.recorders['spikes'].count(gather, self.record_filter)
total_spikes = sum(spike_counts.values())
if rank() == 0 or not gather: # should maybe use allgather, and get the numbers on all nodes
if len(spike_counts) > 0:
return float(total_spikes)/len(spike_counts)
else:
return 0
else:
return numpy.nan
def inject(self, current_source):
"""
Connect a current source to all cells in the Population.
"""
if not self.celltype.injectable:
raise TypeError("Can't inject current into a spike source.")
current_source.inject_into(self)
def save_positions(self, file):
"""
Save positions to file. The output format is id x y z
"""
# first column should probably be indices, not ids. This would make it
# simulator independent.
if isinstance(file, basestring):
file = files.StandardTextFile(file, mode='w')
cells = self.all_cells
result = numpy.empty((len(cells), 4))
result[:,0] = cells
result[:,1:4] = self.positions.T
if rank() == 0:
file.write(result, {'population' : self.label})
file.close()
class Population(BasePopulation):
"""
A group of neurons all of the same type.
"""
nPop = 0
def __init__(self, size, cellclass, cellparams=None, structure=None,
label=None):
"""
Create a population of neurons all of the same type.
size - number of cells in the Population. For backwards-compatibility,
n may also be a tuple giving the dimensions of a grid,
e.g. n=(10,10) is equivalent to n=100 with structure=Grid2D()
cellclass should either be a standardized cell class (a class inheriting
from common.standardmodels.StandardCellType) or a string giving the
name of the simulator-specific model that makes up the population.
cellparams should be a dict which is passed to the neuron model
constructor
structure should be a Structure instance.
label is an optional name for the population.
"""
if not isinstance(size, int): # also allow a single integer, for a 1D population
assert isinstance(size, tuple), "`size` must be an integer or a tuple of ints. You have supplied a %s" % type(size)
# check the things inside are ints
for e in size:
assert isinstance(e, int), "`size` must be an integer or a tuple of ints. Element '%s' is not an int" % str(e)
assert structure is None, "If you specify `size` as a tuple you may not specify structure."
if len(size) == 1:
structure = space.Line()
elif len(size) == 2:
nx, ny = size
structure = space.Grid2D(nx/float(ny))
elif len(size) == 3:
nx, ny, nz = size
structure = space.Grid3D(nx/float(ny), nx/float(nz))
else:
raise Exception("A maximum of 3 dimensions is allowed. What do you think this is, string theory?")
size = reduce(operator.mul, size)
self.size = size
self.label = label or 'population%d' % Population.nPop
self.celltype = cellclass(cellparams)
self._structure = structure or space.Line()
self._positions = None
self._is_sorted = True
# Build the arrays of cell ids
# Cells on the local node are represented as ID objects, other cells by integers
# All are stored in a single numpy array for easy lookup by address
# The local cells are also stored in a list, for easy iteration
self._create_cells(cellclass, cellparams, size)
self.initial_values = {}
for variable, value in self.celltype.default_initial_values.items():
self.initialize(variable, value)
self.recorders = {}
Population.nPop += 1
@property
def local_cells(self):
return self.all_cells[self._mask_local]
@property
def cell(self):
warn("The `Population.cell` attribute is not an official part of the \
API, and its use is deprecated. It will be removed in a future \
release. All uses of `cell` may be replaced by `all_cells`")
return self.all_cells
def id_to_index(self, id):
"""
Given the ID(s) of cell(s) in the Population, return its (their) index
(order in the Population).
>>> assert p.id_to_index(p[5]) == 5
>>> assert p.id_to_index(p.index([1,2,3])) == [1,2,3]
"""
if not numpy.iterable(id):
if not self.first_id <= id <= self.last_id:
raise ValueError("id should be in the range [%d,%d], actually %d" % (self.first_id, self.last_id, id))
return int(id - self.first_id) # this assumes ids are consecutive
else:
if isinstance(id, PopulationView):
id = id.all_cells
id = numpy.array(id)
if (self.first_id > id.min()) or (self.last_id < id.max()):
raise ValueError("ids should be in the range [%d,%d], actually [%d, %d]" % (self.first_id, self.last_id, id.min(), id.max()))
return (id - self.first_id).astype(int) # this assumes ids are consecutive
def id_to_local_index(self, id):
"""
Given the ID(s) of cell(s) in the Population, return its (their) index
(order in the Population), counting only cells on the local MPI node.
"""
if num_processes() > 1:
return self.local_cells.tolist().index(id) # probably very slow
#return numpy.nonzero(self.local_cells == id)[0][0] # possibly faster?
# another idea - get global index, use idx-sum(mask_local[:idx])?
else:
return self.id_to_index(id)
def _get_structure(self):
return self._structure
def _set_structure(self, structure):
assert isinstance(structure, space.BaseStructure)
if structure != self._structure:
self._positions = None # setting a new structure invalidates previously calculated positions
self._structure = structure
structure = property(fget=_get_structure, fset=_set_structure)
# arguably structure should be read-only, i.e. it is not possible to change it after Population creation
@property
def position_generator(self):
def gen(i):
return self.positions[:,i]
return gen
def _get_positions(self):
"""
Try to return self._positions. If it does not exist, create it and then
return it.
"""
if self._positions is None:
self._positions = self.structure.generate_positions(self.size)
assert self._positions.shape == (3, self.size)
return self._positions
def _set_positions(self, pos_array):
assert isinstance(pos_array, numpy.ndarray)
assert pos_array.shape == (3, self.size), "%s != %s" % (pos_array.shape, (3, self.size))
self._positions = pos_array.copy() # take a copy in case pos_array is changed later
self._structure = None # explicitly setting positions destroys any previous structure
positions = property(_get_positions, _set_positions,
"""A 3xN array (where N is the number of neurons in the Population)
giving the x,y,z coordinates of all the neurons (soma, in the
case of non-point models).""")
def describe(self, template='population_default.txt', engine='default'):
"""
Returns a human-readable description of the population.
The output may be customized by specifying a different template
togther with an associated template engine (see ``pyNN.descriptions``).
If template is None, then a dictionary containing the template context
will be returned.
"""
context = {
"label": self.label,
"celltype": self.celltype.describe(template=None),
"structure": None,
"size": self.size,
"size_local": len(self.local_cells),
"first_id": self.first_id,
"last_id": self.last_id,
}
if len(self.local_cells) > 0:
first_id = self.local_cells[0]
context.update({
"local_first_id": first_id,
"cell_parameters": first_id.get_parameters(),
})
if self.structure:
context["structure"] = self.structure.describe(template=None)
return descriptions.render(engine, template, context)
class PopulationView(BasePopulation):
"""
A view of a subset of neurons within a Population.
In most ways, Populations and PopulationViews have the same behaviour, i.e.
they can be recorded, connected with Projections, etc. It should be noted
that any changes to neurons in a PopulationView will be reflected in the
parent Population and vice versa.
It is possible to have views of views.
"""
def __init__(self, parent, selector, label=None):
"""
Create a view of a subset of neurons within a parent Population or
PopulationView.
selector - a slice or numpy mask array. The mask array should either be
a boolean array of the same size as the parent, or an
integer array containing cell indices, i.e. if p.size == 5,
PopulationView(p, array([False, False, True, False, True]))
PopulationView(p, array([2,4]))
PopulationView(p, slice(2,5,2))
will all create the same view.
"""
self.parent = parent
self.mask = selector # later we can have fancier selectors, for now we just have numpy masks
self.label = label or "view of %s with mask %s" % (parent.label, self.mask)
# maybe just redefine __getattr__ instead of the following...
self.celltype = self.parent.celltype
# If the mask is a slice, IDs will be consecutives without duplication.
# If not, then we need to remove duplicated IDs
if not isinstance(self.mask, slice):
if isinstance(self.mask, list):
self.mask = numpy.array(self.mask)
if self.mask.dtype is numpy.dtype('bool'):
if len(self.mask) != len(self.parent):
raise Exception("Boolean masks should have the size of Parent Population")
self.mask = numpy.arange(len(self.parent))[self.mask]
if len(numpy.unique(self.mask)) != len(self.mask):
logging.warning("PopulationView can contain only once each ID, duplicated IDs are remove")
self.mask = numpy.unique(self.mask)
self.all_cells = self.parent.all_cells[self.mask] # do we need to ensure this is ordered?
idx = numpy.argsort(self.all_cells)
self._is_sorted = numpy.all(idx == numpy.arange(len(self.all_cells)))
self.size = len(self.all_cells)
self._mask_local = self.parent._mask_local[self.mask]
self.local_cells = self.all_cells[self._mask_local]
self.first_id = numpy.min(self.all_cells) # only works if we assume all_cells is sorted, otherwise could use min()
self.last_id = numpy.max(self.all_cells)
self.recorders = self.parent.recorders
self.record_filter= self.all_cells
@property
def initial_values(self):
# this is going to be complex - if we keep initial_values as a dict,
# need to return a dict-like object that takes account of self.mask
raise NotImplementedError
@property
def structure(self):
return self.parent.structure
# should we allow setting structure for a PopulationView? Maybe if the
# parent has some kind of CompositeStructure?
@property
def positions(self):
return self.parent.positions.T[self.mask].T # make positions N,3 instead of 3,N to avoid all this transposing?
def id_to_index(self, id):
"""
Given the ID(s) of cell(s) in the PopulationView, return its/their
index/indices (order in the PopulationView).
>>> assert id_to_index(p.index(5)) == 5
>>> assert id_to_index(p.index([1,2,3])) == [1,2,3]
"""
if not numpy.iterable(id):
if self._is_sorted:
if id not in self.all_cells:
raise IndexError("ID %s not present in the View" %id)
return numpy.searchsorted(self.all_cells, id)
else:
result = numpy.where(self.all_cells == id)[0]
if len(result) == 0:
raise IndexError("ID %s not present in the View" %id)
else:
return result
else:
if self._is_sorted:
return numpy.searchsorted(self.all_cells, id)
else:
result = numpy.array([])
for item in id:
data = numpy.where(self.all_cells == item)[0]
if len(data) == 0:
raise IndexError("ID %s not present in the View" %item)
elif len(data) > 1:
raise Exception("ID %s is duplicated in the View" %item)
else:
result = numpy.append(result, data)
return result
@property
def grandparent(self):
"""
Returns the parent Population at the root of the tree (since the
immediate parent may itself be a PopulationView).
The name "grandparent" is of course a little misleading, as it could
be just the parent, or the great, great, great, ..., grandparent.
"""
if hasattr(self.parent, "parent"):
return self.parent.grandparent
else:
return self.parent
def describe(self, template='populationview_default.txt', engine='default'):
"""
Returns a human-readable description of the population view.
The output may be customized by specifying a different template
togther with an associated template engine (see ``pyNN.descriptions``).
If template is None, then a dictionary containing the template context
will be returned.
"""
context = {"label": self.label,
"parent": self.parent.label,
"mask": self.mask,
"size": self.size}
return descriptions.render(engine, template, context)
# =============================================================================
class Assembly(object):
"""
A group of neurons, may be heterogeneous, in contrast to a Population where
all the neurons are of the same type.
"""
count = 0
def __init__(self, *populations, **kwargs):
"""
Create an Assembly of Populations and/or PopulationViews.
kwargs may contain a keyword argument 'label'.
"""
if kwargs:
assert kwargs.keys() == ['label']
self.populations = []
for p in populations:
self._insert(p)
self.label = kwargs.get('label', 'assembly%d' % Assembly.count)
assert isinstance(self.label, basestring), "label must be a string or unicode"
Assembly.count += 1
def _insert(self, element):
if not isinstance(element, BasePopulation):
raise TypeError("argument is a %s, not a Population." % type(element).__name__)
if isinstance(element, PopulationView):
if not element.parent in self.populations:
double = False
for p in self.populations:
data = numpy.concatenate((p.all_cells, element.all_cells))
if len(
|
numpy.unique(data)
|
numpy.unique
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.