prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
from __future__ import division from __future__ import print_function import os import math import random import time import argparse import csv from datetime import datetime import numpy as np import torch import torch.nn.functional as F import torch.optim as optim from texttable import Texttable import scipy.sparse as sp from sklearn.metrics import adjusted_rand_score, normalized_mutual_info_score from utils import get_powers_sparse, scipy_sparse_to_torch_sparse from utils import split_labels, getClassMean, write_log, extract_edges from metrics import triplet_loss_InnerProduct_alpha, Prob_Balanced_Ratio_Loss, Prob_Balanced_Normalized_Loss from metrics import label_size_ratio, print_performance_mean_std, get_cut_and_distribution, link_sign_loss_function from PyG_models import SSSNET from cluster import Cluster from preprocess import load_data from param_parser import parameter_parser args = parameter_parser() torch.manual_seed(args.seed) device = args.device if args.dataset[-1] != '/': args.dataset += '/' if args.cuda: torch.cuda.manual_seed(args.seed) no_magnet = True compare_names = [] if 'spectral' in args.all_methods: compare_names = ['A','sns','dns','L','L_sym','BNC','BRC','SPONGE','SPONGE_sym'] num_gnn = 0 if 'SSSNET' in args.all_methods: num_gnn += 1 compare_names.append('SSSNET') compare_names_all = [] compare_names_all.extend(compare_names[:-1]) for feat_opt in args.feature_options: compare_names_all.append( compare_names[-1]+'_'+feat_opt) else: compare_names_all = compare_names class SSSNET_Trainer(object): """ Object to train and score different models. """ def __init__(self, args, random_seed): """ Constructing the trainer instance. :param args: Arguments object. """ self.args = args self.device = args.device label, self.train_mask, self.val_mask, self.test_mask, self.seed_mask, comb = load_data(args, args.load_only, random_seed) # normalize label, the minimum should be 0 as class index _label_ = label - np.amin(label) self.label = torch.from_numpy(_label_[np.newaxis]).to(device) self.cluster_dim = np.amax(_label_)+1 self.num_clusters = self.cluster_dim self.feat_adj_reg, self.feat_L, self.feat_given, self.A_p_scipy, self.A_n_scipy = comb self.edge_index_p = torch.LongTensor(self.A_p_scipy.nonzero()).to(self.args.device) self.edge_weight_p = torch.FloatTensor(sp.csr_matrix(self.A_p_scipy).data).to(self.args.device) self.edge_index_n = torch.LongTensor(self.A_n_scipy.nonzero()).to(self.args.device) self.edge_weight_n = torch.FloatTensor(sp.csr_matrix(self.A_n_scipy).data).to(self.args.device) self.A_p = get_powers_sparse(self.A_p_scipy, hop=1, tau=self.args.tau)[1].to(self.args.device) self.A_n = get_powers_sparse(self.A_n_scipy, hop=1, tau=0)[1].to(self.args.device) self.A_pt = get_powers_sparse(self.A_p_scipy.transpose(), hop=1, tau=self.args.tau)[1].to(self.args.device) self.A_nt = get_powers_sparse(self.A_n_scipy.transpose(), hop=1, tau=0)[1].to(self.args.device) if self.args.dense: self.A_p = self.A_p.to_dense() self.A_n = self.A_n.to_dense() self.A_pt = self.A_pt.to_dense() self.A_nt = self.A_nt.to_dense() self.c = Cluster((0.5*(self.A_p_scipy+self.A_p_scipy.transpose()), 0.5*(self.A_n_scipy+self.A_n_scipy.transpose()), int(self.num_clusters))) date_time = datetime.now().strftime('%m-%d-%H:%M:%S') if args.dataset[:-1].lower() == 'ssbm': default_values = [args.p, args.K,args.N,args.seed_ratio, args.train_ratio, args.test_ratio,args.size_ratio,args.eta, args.num_trials] elif args.dataset[:-1].lower() == 'polarized': default_values = [args.total_n, args.num_com, args.p, args.K,args.N,args.seed_ratio, args.train_ratio, args.test_ratio,args.size_ratio,args.eta, args.num_trials] else: default_values = [args.K, args.seed_ratio, args.train_ratio, args.test_ratio, args.num_trials] save_name = '_'.join([str(int(100*value)) for value in default_values]) save_name += 'Seed' + str(random_seed) self.log_path = os.path.join(os.path.dirname(os.path.realpath( __file__)), args.log_root, args.dataset[:-1], save_name, date_time) if os.path.isdir(self.log_path) == False: try: os.makedirs(self.log_path) except FileExistsError: print('Folder exists!') self.splits = self.train_mask.shape[1] if len(self.test_mask.shape) == 1: #data.test_mask = test_mask.unsqueeze(1).repeat(1, splits) self.test_mask = np.repeat( self.test_mask[:, np.newaxis], self.splits, 1) write_log(vars(args), self.log_path) # write the setting def SSSNET(self, feat_choice): ################################# # SSSNET ################################# if feat_choice == 'A_reg': self.features = self.feat_adj_reg elif feat_choice == 'L': self.features = self.feat_L elif feat_choice == 'given': self.features = self.feat_given elif feat_choice == 'None': self.features = torch.eye(self.A_p_scipy.shape[0]).to(self.args.device) res_full =
np.zeros([self.splits, 1])
numpy.zeros
#!/usr/bin/env python3 # # TImestream DAta Storage (TIDAS). # # Copyright (c) 2015-2019 by the parties listed in the AUTHORS file. All rights # reserved. Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from __future__ import absolute_import, division, print_function from mpi4py import MPI import os import sys import argparse import shutil import numpy as np import numpy.testing as nt import calendar from tidas import ( DataType, BackendType, CompressionType, AccessMode, Dictionary, Intrvl, Intervals, Field, Schema, Group, Block, Volume, ) from tidas.mpi import mpi_dist_uniform, MPIVolume def dict_setup(): ret = Dictionary() ret.put_string("string", "blahblahblah") ret.put_float64("float64", -123456789.0123) ret.put_float32("float32", -123.456) ret.put_int8("int8", -100) ret.put_uint8("uint8", 100) ret.put_int16("int16", -10000) ret.put_uint16("uint16", 10000) ret.put_int32("int32", -1000000000) ret.put_uint32("uint32", 1000000000) ret.put_int64("int64", -100000000000) ret.put_uint64("uint64", 100000000000) return ret def dict_verify(dct): nt.assert_equal(dct.get_string("string"), "blahblahblah") nt.assert_equal(dct.get_int8("int8"), -100) nt.assert_equal(dct.get_uint8("uint8"), 100) nt.assert_equal(dct.get_int16("int16"), -10000) nt.assert_equal(dct.get_uint16("uint16"), 10000) nt.assert_equal(dct.get_int32("int32"), -1000000000) nt.assert_equal(dct.get_uint32("uint32"), 1000000000) nt.assert_equal(dct.get_int64("int64"), -100000000000) nt.assert_equal(dct.get_uint64("uint64"), 100000000000) nt.assert_almost_equal(dct.get_float32("float32"), -123.456, decimal=3) nt.assert_almost_equal(dct.get_float64("float64"), -123456789.0123) return def schema_setup(ndet): fields = list() fields.append(Field("int8", DataType.int8, "int8")) fields.append(Field("uint8", DataType.uint8, "uint8")) fields.append(Field("int16", DataType.int16, "int16")) fields.append(Field("uint16", DataType.uint16, "uint16")) fields.append(Field("int32", DataType.int32, "int32")) fields.append(Field("uint32", DataType.uint32, "uint32")) fields.append(Field("int64", DataType.int64, "int64")) fields.append(Field("uint64", DataType.uint64, "uint64")) fields.append(Field("float32", DataType.float32, "float32")) fields.append(Field("float64", DataType.float64, "float64")) fields.append(Field("string", DataType.string, "string")) for d in range(ndet): dname = "det_{}".format(d) fields.append(Field(dname, DataType.float64, "volts")) ret = Schema(fields) return ret def test_schema_verify(fields): for fl in fields: if fl.name == "int8": assert fl.type == DataType.int8 assert fl.name == fl.units elif fl.name == "uint8": assert fl.type == DataType.uint8 assert fl.name == fl.units elif fl.name == "int16": assert fl.type == DataType.int16 assert fl.name == fl.units elif fl.name == "uint16": assert fl.type == DataType.uint16 assert fl.name == fl.units elif fl.name == "int32": assert fl.type == DataType.int32 assert fl.name == fl.units elif fl.name == "uint32": assert fl.type == DataType.uint32 assert fl.name == fl.units elif fl.name == "int64": assert fl.type == DataType.int64 assert fl.name == fl.units elif fl.name == "uint64": assert fl.type == DataType.uint64 assert fl.name == fl.units elif fl.name == "float32": assert fl.type == DataType.float32 assert fl.name == fl.units elif fl.name == "float64": assert fl.type == DataType.float64 assert fl.name == fl.units elif fl.name == "string": assert fl.type == DataType.string assert fl.name == fl.units else: # Must be a det assert fl.type == DataType.float64 assert fl.units == "volts" return def intervals_setup(nint): ilist = [] gap = 1.0 span = 123.4 gap_samp = 5 span_samp = 617 for i in range(nint): start = gap + float(i) * (span + gap) stop = float(i + 1) * (span + gap) first = gap_samp + i * (span_samp + gap_samp) last = (i + 1) * (span_samp + gap_samp) ilist.append(Intrvl(start, stop, first, last)) return ilist def intervals_verify(ilist): comp = test_intervals_setup(len(ilist)) for i in range(len(comp)): nt.assert_almost_equal(ilist[i].start, comp[i].start) nt.assert_almost_equal(ilist[i].stop, comp[i].stop) assert ilist[i].first == comp[i].first assert ilist[i].last == comp[i].last def group_setup(grp, ndet, nsamp): time = np.zeros(nsamp, dtype=np.float64) int8_data = np.zeros(nsamp, dtype=np.int8) uint8_data = np.zeros(nsamp, dtype=np.uint8) int16_data = np.zeros(nsamp, dtype=np.int16) uint16_data = np.zeros(nsamp, dtype=np.uint16) int32_data = np.zeros(nsamp, dtype=np.int32) uint32_data = np.zeros(nsamp, dtype=np.uint32) int64_data = np.zeros(nsamp, dtype=np.int64) uint64_data = np.zeros(nsamp, dtype=np.uint64) float32_data = np.zeros(nsamp, dtype=np.float32) float64_data = np.zeros(nsamp, dtype=np.float64) string_data = np.empty(nsamp, dtype="S64") for i in range(nsamp): fi = float(i) time[i] = fi * 0.001 int8_data[i] = -(i % 128) uint8_data[i] = i % 128 int16_data[i] = -(i % 32768) uint16_data[i] = i % 32768 int32_data[i] = -i uint32_data[i] = i int64_data[i] = -i uint64_data[i] = i float32_data[i] = fi float64_data[i] = fi string_data[i] = "foobarbahblat" grp.write_times(0, time) grp.write("int8", 0, int8_data) grp.write("uint8", 0, uint8_data) grp.write("int16", 0, int16_data) grp.write("uint16", 0, uint16_data) grp.write("int32", 0, int32_data) grp.write("uint32", 0, uint32_data) grp.write("int64", 0, int64_data) grp.write("uint64", 0, uint64_data) grp.write("float32", 0, float32_data) grp.write("float64", 0, float64_data) grp.write("string", 0, string_data) for d in range(ndet): dname = "det_{}".format(d) np.random.seed(d) data = np.random.normal(loc=0.0, scale=10.0, size=nsamp) grp.write(dname, 0, data) return def group_verify(grp, ndet, nsamp): time_check = np.zeros(nsamp, dtype=np.float64) int8_data_check = np.zeros(nsamp, dtype=np.int8) uint8_data_check = np.zeros(nsamp, dtype=np.uint8) int16_data_check = np.zeros(nsamp, dtype=np.int16) uint16_data_check = np.zeros(nsamp, dtype=np.uint16) int32_data_check = np.zeros(nsamp, dtype=np.int32) uint32_data_check = np.zeros(nsamp, dtype=np.uint32) int64_data_check = np.zeros(nsamp, dtype=np.int64) uint64_data_check = np.zeros(nsamp, dtype=np.uint64) float32_data_check = np.zeros(nsamp, dtype=np.float32) float64_data_check = np.zeros(nsamp, dtype=np.float64) string_data_check = np.zeros(nsamp, dtype="S64") for i in range(nsamp): fi = float(i) time_check[i] = fi * 0.001 int8_data_check[i] = -(i % 128) uint8_data_check[i] = i % 128 int16_data_check[i] = -(i % 32768) uint16_data_check[i] = i % 32768 int32_data_check[i] = -i uint32_data_check[i] = i int64_data_check[i] = -i uint64_data_check[i] = i float32_data_check[i] = fi float64_data_check[i] = fi string_data_check[i] = "foobarbahblat" time = grp.read_times(0, nsamp) int8_data = grp.read("int8", 0, nsamp) uint8_data = grp.read("uint8", 0, nsamp) int16_data = grp.read("int16", 0, nsamp) uint16_data = grp.read("uint16", 0, nsamp) int32_data = grp.read("int32", 0, nsamp) uint32_data = grp.read("uint32", 0, nsamp) int64_data = grp.read("int64", 0, nsamp) uint64_data = grp.read("uint64", 0, nsamp) float32_data = grp.read("float32", 0, nsamp) float64_data = grp.read("float64", 0, nsamp) string_data = grp.read("string", 0, nsamp) nt.assert_equal(int8_data, int8_data_check) nt.assert_equal(uint8_data, uint8_data_check) nt.assert_equal(int16_data, int16_data_check) nt.assert_equal(uint16_data, uint16_data_check)
nt.assert_equal(int32_data, int32_data_check)
numpy.testing.assert_equal
import enum import numpy as np from rrc_iprl_package.control.contact_point import ContactPoint from rrc_iprl_package.traj_opt.fixed_contact_point_opt import \ FixedContactPointOpt from rrc_iprl_package.traj_opt.static_object_opt import StaticObjectOpt from scipy.spatial.distance import pdist, squareform from scipy.spatial.transform import Rotation from trifinger_simulation.tasks import move_cube # Here, hard code the base position of the fingers (as angle on the arena) r = 0.15 theta_0 = 90 theta_1 = 310 theta_2 = 200 # theta_2 = 3.66519 # 210 degrees # CUBOID_SIZE in trifinger_simulation surf_2021 branch is set to cube dims CUBE_HALF_SIZE = move_cube._CUBOID_SIZE[0] / 2 + 0.001 OBJ_SIZE = move_cube._CUBOID_SIZE OBJ_MASS = 0.016 # 16 grams FINGER_BASE_POSITIONS = [ np.array( [[np.cos(theta_0 * (np.pi / 180)) * r, np.sin(theta_0 * (np.pi / 180)) * r, 0]] ), np.array( [[np.cos(theta_1 * (np.pi / 180)) * r, np.sin(theta_1 * (np.pi / 180)) * r, 0]] ), np.array( [[np.cos(theta_2 * (np.pi / 180)) * r, np.sin(theta_2 * (np.pi / 180)) * r, 0]] ), ] BASE_ANGLE_DEGREES = [0, -120, -240] class PolicyMode(enum.Enum): RESET = enum.auto() TRAJ_OPT = enum.auto() IMPEDANCE = enum.auto() RL_PUSH = enum.auto() RESIDUAL = enum.auto() # Information about object faces given face_id OBJ_FACES_INFO = { 1: { "center_param": np.array([0.0, -1.0, 0.0]), "face_down_default_quat": np.array([0.707, 0, 0, 0.707]), "adjacent_faces": [6, 4, 3, 5], "opposite_face": 2, "up_axis": np.array([0.0, 1.0, 0.0]), # UP axis when this face is ground face }, 2: { "center_param": np.array([0.0, 1.0, 0.0]), "face_down_default_quat": np.array([-0.707, 0, 0, 0.707]), "adjacent_faces": [6, 4, 3, 5], "opposite_face": 1, "up_axis": np.array([0.0, -1.0, 0.0]), }, 3: { "center_param": np.array([1.0, 0.0, 0.0]), "face_down_default_quat": np.array([0, 0.707, 0, 0.707]), "adjacent_faces": [1, 2, 4, 6], "opposite_face": 5, "up_axis": np.array([-1.0, 0.0, 0.0]), }, 4: { "center_param": np.array([0.0, 0.0, 1.0]), "face_down_default_quat": np.array([0, 1, 0, 0]), "adjacent_faces": [1, 2, 3, 5], "opposite_face": 6, "up_axis": np.array([0.0, 0.0, -1.0]), }, 5: { "center_param": np.array([-1.0, 0.0, 0.0]), "face_down_default_quat": np.array([0, -0.707, 0, 0.707]), "adjacent_faces": [1, 2, 4, 6], "opposite_face": 3, "up_axis": np.array([1.0, 0.0, 0.0]), }, 6: { "center_param": np.array([0.0, 0.0, -1.0]), "face_down_default_quat": np.array([0, 0, 0, 1]), "adjacent_faces": [1, 2, 3, 5], "opposite_face": 4, "up_axis": np.array([0.0, 0.0, 1.0]), }, } """ Compute joint torques to move fingertips to desired locations Inputs: tip_pos_desired_list: List of desired fingertip positions for each finger q_current: Current joint angles dq_current: Current joint velocities tip_forces_wf: fingertip forces in world frame tol: tolerance for determining when fingers have reached goal """ def impedance_controller( tip_pos_desired_list, tip_vel_desired_list, q_current, dq_current, custom_pinocchio_utils, tip_forces_wf=None, Kp=(25, 25, 25, 25, 25, 25, 25, 25, 25), Kv=(1, 1, 1, 1, 1, 1, 1, 1, 1), grav=-9.81, ): torque = 0 for finger_id in range(3): # Get contact forces for single finger if tip_forces_wf is None: f_wf = None else: f_wf = np.expand_dims( np.array(tip_forces_wf[finger_id * 3 : finger_id * 3 + 3]), 1 ) finger_torque = impedance_controller_single_finger( finger_id, tip_pos_desired_list[finger_id], tip_vel_desired_list[finger_id], q_current, dq_current, custom_pinocchio_utils, tip_force_wf=f_wf, Kp=Kp, Kv=Kv, grav=grav, ) torque += finger_torque return torque """ Compute joint torques to move fingertip to desired location Inputs: finger_id: Finger 0, 1, or 2 tip_desired: Desired fingertip pose **ORIENTATION??** for orientation: transform fingertip reference frame to world frame (take into account object orientation) for now, just track position q_current: Current joint angles dq_current: Current joint velocities tip_forces_wf: fingertip forces in world frame tol: tolerance for determining when fingers have reached goal """ def impedance_controller_single_finger( finger_id, tip_pos_desired, tip_vel_desired, q_current, dq_current, custom_pinocchio_utils, tip_force_wf=None, Kp=(25, 25, 25, 25, 25, 25, 25, 25, 25), Kv=(1, 1, 1, 1, 1, 1, 1, 1, 1), grav=-9.81, ): Kp_x = Kp[finger_id * 3 + 0] Kp_y = Kp[finger_id * 3 + 1] Kp_z = Kp[finger_id * 3 + 2] Kp = np.diag([Kp_x, Kp_y, Kp_z]) Kv_x = Kv[finger_id * 3 + 0] Kv_y = Kv[finger_id * 3 + 1] Kv_z = Kv[finger_id * 3 + 2] Kv = np.diag([Kv_x, Kv_y, Kv_z]) # Compute current fingertip position x_current = custom_pinocchio_utils.forward_kinematics(q_current)[finger_id] delta_x = np.expand_dims(np.array(tip_pos_desired) - np.array(x_current), 1) # print("Current x: {}".format(x_current)) # print("Desired x: {}".format(tip_desired)) # print("Delta: {}".format(delta_x)) # Get full Jacobian for finger Ji = custom_pinocchio_utils.get_tip_link_jacobian(finger_id, q_current) # Just take first 3 rows, which correspond to linear velocities of fingertip Ji = Ji[:3, :] # Get g matrix for gravity compensation _, g = custom_pinocchio_utils.get_lambda_and_g_matrix( finger_id, q_current, Ji, grav ) # Get current fingertip velocity dx_current = Ji @ np.expand_dims(np.array(dq_current), 1) delta_dx = np.expand_dims(np.array(tip_vel_desired), 1) - np.array(dx_current) if tip_force_wf is not None: torque = ( np.squeeze(Ji.T @ (Kp @ delta_x + Kv @ delta_dx) + Ji.T @ tip_force_wf) + g ) else: torque = np.squeeze(Ji.T @ (Kp @ delta_x + Kv @ delta_dx)) + g # print("Finger {} delta".format(finger_id)) # print(np.linalg.norm(delta_x)) return torque """ Compute contact point position in world frame Inputs: cp_param: Contact point param [px, py, pz] cube: Block object, which contains object shape info """ def get_cp_pos_wf_from_cp_param( cp_param, cube_pos_wf, cube_quat_wf, cube_half_size=CUBE_HALF_SIZE ): cp = get_cp_of_from_cp_param(cp_param, cube_half_size) rotation = Rotation.from_quat(cube_quat_wf) translation = np.asarray(cube_pos_wf) return rotation.apply(cp.pos_of) + translation """ Get contact point positions in world frame from cp_params """ def get_cp_pos_wf_from_cp_params( cp_params, cube_pos, cube_quat, cube_half_size=CUBE_HALF_SIZE, **kwargs ): # Get contact points in wf fingertip_goal_list = [] for i in range(len(cp_params)): # for i in range(cp_params.shape[0]): fingertip_goal_list.append( get_cp_pos_wf_from_cp_param( cp_params[i], cube_pos, cube_quat, cube_half_size ) ) return fingertip_goal_list """ Compute contact point position in object frame Inputs: cp_param: Contact point param [px, py, pz] """ def get_cp_of_from_cp_param(cp_param, cube_half_size=CUBE_HALF_SIZE): obj_shape = (cube_half_size, cube_half_size, cube_half_size) cp_of = [] # Get cp position in OF for i in range(3): cp_of.append(-obj_shape[i] + (cp_param[i] + 1) * obj_shape[i]) cp_of = np.asarray(cp_of) x_param = cp_param[0] y_param = cp_param[1] z_param = cp_param[2] # For now, just hard code quat if y_param == -1: quat = (0, 0, np.sqrt(2) / 2, np.sqrt(2) / 2) elif y_param == 1: quat = (0, 0, -np.sqrt(2) / 2, np.sqrt(2) / 2) elif x_param == 1: quat = (0, 0, 1, 0) elif z_param == 1: quat = (0, np.sqrt(2) / 2, 0, np.sqrt(2) / 2) elif x_param == -1: quat = (0, 0, 0, 1) elif z_param == -1: quat = (0, np.sqrt(2) / 2, 0, -np.sqrt(2) / 2) cp = ContactPoint(cp_of, quat) return cp """ Get face id on cube, given cp_param cp_param: [x,y,z] """ def get_face_from_cp_param(cp_param): x_param = cp_param[0] y_param = cp_param[1] z_param = cp_param[2] # For now, just hard code quat if y_param == -1: face = 1 elif y_param == 1: face = 2 elif x_param == 1: face = 3 elif z_param == 1: face = 4 elif x_param == -1: face = 5 elif z_param == -1: face = 6 return face """ Trasform point p from world frame to object frame, given object pose """ def get_wf_from_of(p, obj_pose): cube_pos_wf = obj_pose.position cube_quat_wf = obj_pose.orientation rotation = Rotation.from_quat(cube_quat_wf) translation = np.asarray(cube_pos_wf) return rotation.apply(p) + translation """ Trasform point p from object frame to world frame, given object pose """ def get_of_from_wf(p, obj_pose): cube_pos_wf = obj_pose.position cube_quat_wf = obj_pose.orientation rotation = Rotation.from_quat(cube_quat_wf) translation = np.asarray(cube_pos_wf) rotation_inv = rotation.inv() translation_inv = -rotation_inv.apply(translation) return rotation_inv.apply(p) + translation_inv ############################################################################## # Lift mode functions ############################################################################## """ Run trajectory optimization current_position: current joint positions of robot x0: object initial position for traj opt x_goal: object goal position for traj opt nGrid: number of grid points dt: delta t """ def run_fixed_cp_traj_opt( cp_params, current_position, custom_pinocchio_utils, x0, x_goal, nGrid, dt, npz_filepath=None, ): cp_params_on_obj = [] for cp in cp_params: if cp is not None: cp_params_on_obj.append(cp) fnum = len(cp_params_on_obj) # Formulate and solve optimization problem opt_problem = FixedContactPointOpt( nGrid=nGrid, # Number of timesteps dt=dt, # Length of each timestep (seconds) fnum=fnum, cp_params=cp_params_on_obj, x0=x0, x_goal=x_goal, obj_shape=OBJ_SIZE, obj_mass=OBJ_MASS, npz_filepath=npz_filepath, ) x_soln = np.array(opt_problem.x_soln) dx_soln = np.array(opt_problem.dx_soln) l_wf_soln = np.array(opt_problem.l_wf_soln) return x_soln, dx_soln, l_wf_soln """ Get initial contact points on cube Assign closest cube face to each finger Since we are lifting object, don't worry about wf z-axis, just care about wf xy-plane """ def get_lifting_cp_params(obj_pose): # face that is touching the ground ground_face = get_closest_ground_face(obj_pose) # Transform finger base positions to object frame base_pos_list_of = [] for f_wf in FINGER_BASE_POSITIONS: f_of = get_of_from_wf(f_wf, obj_pose) base_pos_list_of.append(f_of) # Find distance from x axis and y axis, and store in xy_distances # Need some additional logic to prevent multiple fingers from being assigned to same face x_axis = np.array([1, 0]) y_axis = np.array([0, 1]) # Object frame axis corresponding to plane parallel to ground plane x_ind, y_ind = __get_parallel_ground_plane_xy(ground_face) xy_distances = np.zeros( (3, 2) ) # Row corresponds to a finger, columns are x and y axis distances for f_i, f_of in enumerate(base_pos_list_of): point_in_plane = np.array( [f_of[0, x_ind], f_of[0, y_ind]] ) # Ignore dimension of point that's not in the plane x_dist = __get_distance_from_pt_2_line(x_axis, np.array([0, 0]), point_in_plane) y_dist = __get_distance_from_pt_2_line(y_axis,
np.array([0, 0])
numpy.array
from os.path import join, isfile, isdir from glob import glob from scipy.interpolate import RectBivariateSpline from collections import namedtuple, OrderedDict import netCDF4 as nc import numpy as np import geokit as gk import pandas as pd from ..util import ResError # make a data handler Index = namedtuple("Index", "yi xi") class NCSource(object): """The NCSource object manages weather data from a generic set of netCDF4 file sources If furthermore allows access a number of common functionalities and constants which are often encountered when simulating renewable energy technologies Note: ----- Various constants can be set for a given weather source which can impact later simulation workflows. Note that not all weather sources will have all of these constants available. Also more may be implemented besides (so be sure to check the DocString for the source you intend to use). These constants include: MAX_LON_DIFFERENCE The maximum logitude difference to accept between a grid cell and the coordinates you would like to extract data for MAX_LAT_DIFFERENCE The maximum latitude difference to accept between a grid cell and the coordinates you would like to extract data for WIND_SPEED_HEIGHT_FOR_WIND_ENERGY The suggested altitude of wind speed data to use for wind-energy simulations WIND_SPEED_HEIGHT_FOR_SOLAR_ENERGY The suggested altitude of wind speed data to use for wind-energy simulations LONG_RUN_AVERAGE_WINDSPEED A path to a raster file with the long-time average wind speed in each grid cell * Can be used in wind energy simulations * Calculated at the height specified in `WIND_SPEED_HEIGHT_FOR_WIND_ENERGY` * Time range included in the long run averaging depends on the data source LONG_RUN_AVERAGE_WINDDIR A path to a raster file with the long-time average wind direction in each grid cell * Can be used in wind energy simulations * Calculated at the height specified in `WIND_SPEED_HEIGHT_FOR_WIND_ENERGY` * Time range included in the long run averaging depends on the data source LONG_RUN_AVERAGE_GHI A path to a raster file with the long-time average global horizontal irradiance in each grid cell * Can be used in solar energy simulations * Calculated at the surface * Time range included in the long run averaging depends on the data source LONG_RUN_AVERAGE_DNI A path to a raster file with the long-time average direct normal irradiance in each grid cell * Can be used in solar energy simulations * Calculated at the surface * Time range included in the long run averaging depends on the data source See Also: --------- reskit.weather.MerraSource reskit.weather.SarahSource reskit.weather.Era5Source """ WIND_SPEED_HEIGHT_FOR_WIND_ENERGY = None WIND_SPEED_HEIGHT_FOR_SOLAR_ENERGY = None LONG_RUN_AVERAGE_WINDSPEED = None LONG_RUN_AVERAGE_WINDDIR = None LONG_RUN_AVERAGE_GHI = None LONG_RUN_AVERAGE_DNI = None MAX_LON_DIFFERENCE = None MAX_LAT_DIFFERENCE = None def __init__(self, source, bounds=None, index_pad=0, time_name="time", lat_name="lat", lon_name="lon", tz=None, _max_lon_diff=0.6, _max_lat_diff=0.6, verbose=True, forward_fill=True, flip_lat=False, flip_lon=False, time_offset_minutes=None): """Initialize a generic netCDF4 file source Note: ----- Generally not intended for normal use. Look into MerraSource, CordexSource, or CosmoSource Parameters: ----------- path : str or list of strings The path to the main data file(s) to load If multiple files are given, or if a directory of netCDF4 files is given, then it is assumed that all files ending with the extension '.nc' or '.nc4' should be managed by this object. * Be sure that all the netCDF4 files given share the same time and spatial dimensions! bounds : Anything acceptable to geokit.Extent.load(), optional The boundaries of the data which is needed * Usage of this will help with memory mangement * If None, the full dataset is loaded in memory * The actual extent of the loaded data depends on the source's available data index_pad : int, optional The padding to apply to the boundaries * Useful in case of interpolation * Units are in longitudinal degrees time_name : str, optional The name of the time parameter in the netCDF4 dataset lat_name : str, optional The name of the latitude parameter in the netCDF4 dataset lon_name : str, optional The name of the longitude parameter in the netCDF4 dataset tz : str, optional Applies the indicated timezone onto the time axis * For example, use "GMT" for unadjusted time verbose : bool, optional If True, then status outputs are printed when searching for and reading weather data forward_fill : bool, optional If True, then missing data in the weather file is forward-filled * Generally, there should be no missing data at all. This option is only intended to catch the rare scenarios where one or two timesteps are missing flip_lat : bool, optional If True, flips the latitude dimension when reading weather data from the source * Should only be given if latitudes are given in descending order flip_lon : bool, optional If True, flips the longitude dimension when reading weather data from the source * Should only be given if longitudes are given in descending order time_offset_minutes : numeric, optional If not none, adds the specific offset in minutes to the timesteps read from the weather file See Also: --------- MerraSource SarahSource Era5Source """ # Collect sources def addSource(src): out = [] if isinstance(src, list): for s in src: out.extend(addSource(s)) elif isinstance(src, str): if isfile(src): # Assume its an NC file out.extend([src, ]) elif isdir(src): # Assume its a directory of NC files for s in glob(join(src, "*.nc")): out.append(s) for s in glob(join(src, "*.nc4")): out.append(s) else: # Assume we were given a glob string for s in glob(src): out.extend(addSource(s)) return out sources = addSource(source) if len(sources) == 0: raise ResError("No '.nc' or '.nc4' files found") sources.sort() # Collect all variable information self.variables = OrderedDict() self.fill = forward_fill expectedShape = OrderedDict() units = [] names = [] for src in sources: if verbose: print(src) ds = nc.Dataset(src, keepweakref=True) for var in ds.variables: if not var in self.variables: self.variables[var] = src expectedShape[var] = ds[var].shape try: unit = ds[var].units except: unit = "Unknown" try: name = ds[var].standard_name except: name = "Unknown" names.append(name) units.append(unit) else: if ds[var].shape[1:] != expectedShape[var][1:]: raise ResError("Variable %s does not match expected shape %s. From %s" % ( var, expectedShape[var], src)) ds.close() tmp = pd.DataFrame(columns=["name", "units", "path", ], index=self.variables.keys()) tmp["name"] = names tmp["units"] = units tmp["shape"] = [expectedShape[v] for v in tmp.index] tmp["path"] = [self.variables[v] for v in tmp.index] self.variables = tmp # set basic variables ds = nc.Dataset(self.variables["path"][lat_name], keepweakref=True) self._allLats = ds[lat_name][:] ds.close() ds = nc.Dataset(self.variables["path"][lon_name], keepweakref=True) self._allLons = ds[lon_name][:] ds.close() self._maximal_lon_difference = _max_lon_diff self._maximal_lat_difference = _max_lat_diff if len(self._allLats.shape) == 1 and len(self._allLons.shape) == 1: self.dependent_coordinates = False self._lonN = self._allLons.size self._latN = self._allLats.size elif len(self._allLats.shape) == 2 and len(self._allLons.shape) == 2: self.dependent_coordinates = True self._lonN = self._allLons.shape[1] self._latN = self._allLats.shape[0] else: raise ResError("latitude and longitude shapes are not usable") # set lat and lon selections if bounds is not None: self.bounds = gk.Extent.load(bounds).castTo(4326) if abs(self.bounds.xMin - self.bounds.xMax) <= self.MAX_LON_DIFFERENCE: self.bounds = gk.Extent( self.bounds.xMin - self.MAX_LON_DIFFERENCE / 2, self.bounds.yMin, self.bounds.xMax + self.MAX_LON_DIFFERENCE / 2, self.bounds.yMax, srs=gk.srs.EPSG4326) if abs(self.bounds.yMin - self.bounds.yMax) <= self.MAX_LAT_DIFFERENCE: self.bounds = gk.Extent( self.bounds.xMin, self.bounds.yMin - self.MAX_LAT_DIFFERENCE / 2, self.bounds.xMax, self.bounds.yMax + self.MAX_LAT_DIFFERENCE / 2, srs=gk.srs.EPSG4326) # find slices which contains our extent if self.dependent_coordinates: left = self._allLons < self.bounds.xMin right = self._allLons > self.bounds.xMax if (left | right).all(): left[:, :-1] = np.logical_and(left[:, 1:], left[:, :-1]) right[:, 1:] = np.logical_and(right[:, 1:], right[:, :-1]) bot = self._allLats < self.bounds.yMin top = self._allLats > self.bounds.yMax if (top | bot).all(): top[:-1, :] = np.logical_and(top[1:, :], top[:-1, :]) bot[1:, :] = np.logical_and(bot[1:, :], bot[:-1, :]) self._lonStart = np.argmin((bot | left | top).all(0)) - 1 - index_pad self._lonStop = self._lonN - np.argmin((bot | top | right).all(0)[::-1]) + 1 + index_pad self._latStart = np.argmin((bot | left | right).all(1)) - 1 - index_pad self._latStop = self._latN - np.argmax((left | top | right).all(1)[::-1]) + 1 + index_pad else: tmp = np.logical_and(self._allLons >= self.bounds.xMin, self._allLons <= self.bounds.xMax) self._lonStart = np.argmax(tmp) - 1 self._lonStop = self._lonStart + 1 + np.argmin(tmp[self._lonStart + 1:]) + 1 tmp = np.logical_and(self._allLats >= self.bounds.yMin, self._allLats <= self.bounds.yMax) self._latStart = np.argmax(tmp) - 1 self._latStop = self._latStart + 1 +
np.argmin(tmp[self._latStart + 1:])
numpy.argmin
# Copyright 2018 The Cirq Developers # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for wave_function.py""" import itertools import pytest import numpy as np import cirq def assert_dirac_notation_numpy(vec, expected, decimals=2): assert cirq.dirac_notation(np.array(vec), decimals=decimals) == expected def assert_dirac_notation_python(vec, expected, decimals=2): assert cirq.dirac_notation(vec, decimals=decimals) == expected def test_state_mixin(): class TestClass(cirq.StateVectorMixin): def state_vector(self) -> np.ndarray: return np.array([0, 0, 1, 0]) qubits = cirq.LineQubit.range(2) test = TestClass(qubit_map={qubits[i]: i for i in range(2)}) assert test.dirac_notation() == '|10⟩' np.testing.assert_almost_equal(test.bloch_vector_of(qubits[0]), np.array([0, 0, -1])) np.testing.assert_almost_equal(test.density_matrix_of(qubits[0:1]), np.array([[0, 0], [0, 1]])) def test_bloch_vector_simple_H_zero(): sqrt = np.sqrt(0.5) H_state = np.array([sqrt, sqrt]) bloch = cirq.bloch_vector_from_state_vector(H_state, 0) desired_simple = np.array([1,0,0]) np.testing.assert_array_almost_equal(bloch, desired_simple) def test_bloch_vector_simple_XH_zero(): sqrt = np.sqrt(0.5) XH_state = np.array([sqrt, sqrt]) bloch = cirq.bloch_vector_from_state_vector(XH_state, 0) desired_simple = np.array([1,0,0]) np.testing.assert_array_almost_equal(bloch, desired_simple) def test_bloch_vector_simple_YH_zero(): sqrt = np.sqrt(0.5) YH_state = np.array([-1.0j * sqrt, 1.0j * sqrt]) bloch = cirq.bloch_vector_from_state_vector(YH_state, 0) desired_simple = np.array([-1,0,0]) np.testing.assert_array_almost_equal(bloch, desired_simple) def test_bloch_vector_simple_ZH_zero(): sqrt = np.sqrt(0.5) ZH_state = np.array([sqrt, -sqrt]) bloch = cirq.bloch_vector_from_state_vector(ZH_state, 0) desired_simple = np.array([-1,0,0]) np.testing.assert_array_almost_equal(bloch, desired_simple) def test_bloch_vector_simple_TH_zero(): sqrt = np.sqrt(0.5) TH_state = np.array([sqrt, 0.5+0.5j]) bloch = cirq.bloch_vector_from_state_vector(TH_state, 0) desired_simple = np.array([sqrt,sqrt,0]) np.testing.assert_array_almost_equal(bloch, desired_simple) def test_bloch_vector_equal_sqrt3(): sqrt3 = 1/np.sqrt(3) test_state = np.array([0.888074, 0.325058 + 0.325058j]) bloch = cirq.bloch_vector_from_state_vector(test_state, 0) desired_simple = np.array([sqrt3,sqrt3,sqrt3]) np.testing.assert_array_almost_equal(bloch, desired_simple) def test_bloch_vector_multi_pure(): HH_state = np.array([0.5,0.5,0.5,0.5]) bloch_0 = cirq.bloch_vector_from_state_vector(HH_state, 0) bloch_1 = cirq.bloch_vector_from_state_vector(HH_state, 1) desired_simple = np.array([1,0,0]) np.testing.assert_array_almost_equal(bloch_1, desired_simple) np.testing.assert_array_almost_equal(bloch_0, desired_simple) def test_bloch_vector_multi_mixed(): sqrt = np.sqrt(0.5) HCNOT_state = np.array([sqrt, 0., 0., sqrt]) bloch_0 = cirq.bloch_vector_from_state_vector(HCNOT_state, 0) bloch_1 = cirq.bloch_vector_from_state_vector(HCNOT_state, 1) zero = np.zeros(3) np.testing.assert_array_almost_equal(bloch_0, zero) np.testing.assert_array_almost_equal(bloch_1, zero) RCNOT_state = np.array([0.90612745, -0.07465783j, -0.37533028j, 0.18023996]) bloch_mixed_0 = cirq.bloch_vector_from_state_vector(RCNOT_state, 0) bloch_mixed_1 = cirq.bloch_vector_from_state_vector(RCNOT_state, 1) true_mixed_0 = np.array([0., -0.6532815, 0.6532815]) true_mixed_1 = np.array([0., 0., 0.9238795]) np.testing.assert_array_almost_equal(true_mixed_0, bloch_mixed_0) np.testing.assert_array_almost_equal(true_mixed_1, bloch_mixed_1) def test_bloch_vector_multi_big(): big_H_state = np.array([0.1767767] * 32) desired_simple = np.array([1,0,0]) for qubit in range(0, 5): bloch_i = cirq.bloch_vector_from_state_vector(big_H_state, qubit) np.testing.assert_array_almost_equal(bloch_i, desired_simple) def test_bloch_vector_invalid(): with pytest.raises(ValueError): _ = cirq.bloch_vector_from_state_vector( np.array([0.5, 0.5, 0.5]), 0) with pytest.raises(IndexError): _ = cirq.bloch_vector_from_state_vector( np.array([0.5, 0.5,0.5,0.5]), -1) with pytest.raises(IndexError): _ = cirq.bloch_vector_from_state_vector( np.array([0.5, 0.5,0.5,0.5]), 2) def test_density_matrix(): test_state = np.array([0.-0.35355339j, 0.+0.35355339j, 0.-0.35355339j, 0.+0.35355339j, 0.+0.35355339j, 0.-0.35355339j, 0.+0.35355339j, 0.-0.35355339j]) full_rho = cirq.density_matrix_from_state_vector(test_state) np.testing.assert_array_almost_equal(full_rho, np.outer(test_state, np.conj(test_state))) rho_one = cirq.density_matrix_from_state_vector(test_state, [1]) true_one = np.array([[0.5+0.j, 0.5+0.j], [0.5+0.j, 0.5+0.j]]) np.testing.assert_array_almost_equal(rho_one, true_one) rho_two_zero = cirq.density_matrix_from_state_vector(test_state, [0,2]) true_two_zero = np.array([[ 0.25+0.j, -0.25+0.j, -0.25+0.j, 0.25+0.j], [-0.25+0.j, 0.25+0.j, 0.25+0.j, -0.25+0.j], [-0.25+0.j, 0.25+0.j, 0.25+0.j, -0.25+0.j], [ 0.25+0.j, -0.25+0.j, -0.25+0.j, 0.25+0.j]]) np.testing.assert_array_almost_equal(rho_two_zero, true_two_zero) # two and zero will have same single qubit density matrix. rho_two = cirq.density_matrix_from_state_vector(test_state, [2]) true_two = np.array([[0.5+0.j, -0.5+0.j], [-0.5+0.j, 0.5+0.j]]) np.testing.assert_array_almost_equal(rho_two, true_two) rho_zero = cirq.density_matrix_from_state_vector(test_state, [0]) np.testing.assert_array_almost_equal(rho_zero, true_two) def test_density_matrix_invalid(): bad_state = np.array([0.5,0.5,0.5]) good_state = np.array([0.5,0.5,0.5,0.5]) with pytest.raises(ValueError): _ = cirq.density_matrix_from_state_vector(bad_state) with pytest.raises(ValueError): _ = cirq.density_matrix_from_state_vector(bad_state, [0, 1]) with pytest.raises(IndexError): _ = cirq.density_matrix_from_state_vector(good_state, [-1, 0, 1]) with pytest.raises(IndexError): _ = cirq.density_matrix_from_state_vector(good_state, [-1]) def test_dirac_notation(): sqrt = np.sqrt(0.5) exp_pi_2 = 0.5 + 0.5j assert_dirac_notation_numpy([0, 0], "0") assert_dirac_notation_python([1], "|⟩") assert_dirac_notation_numpy([sqrt, sqrt], "0.71|0⟩ + 0.71|1⟩") assert_dirac_notation_python([-sqrt, sqrt], "-0.71|0⟩ + 0.71|1⟩") assert_dirac_notation_numpy([sqrt, -sqrt], "0.71|0⟩ - 0.71|1⟩") assert_dirac_notation_python([-sqrt, -sqrt], "-0.71|0⟩ - 0.71|1⟩") assert_dirac_notation_numpy([sqrt, 1j * sqrt], "0.71|0⟩ + 0.71j|1⟩") assert_dirac_notation_python([sqrt, exp_pi_2], "0.71|0⟩ + (0.5+0.5j)|1⟩") assert_dirac_notation_numpy([exp_pi_2, -sqrt], "(0.5+0.5j)|0⟩ - 0.71|1⟩") assert_dirac_notation_python([exp_pi_2, 0.5 - 0.5j], "(0.5+0.5j)|0⟩ + (0.5-0.5j)|1⟩") assert_dirac_notation_numpy([0.5, 0.5, -0.5, -0.5], "0.5|00⟩ + 0.5|01⟩ - 0.5|10⟩ - 0.5|11⟩") assert_dirac_notation_python([0.71j, 0.71j], "0.71j|0⟩ + 0.71j|1⟩") def test_dirac_notation_partial_state(): sqrt = np.sqrt(0.5) exp_pi_2 = 0.5 + 0.5j assert_dirac_notation_numpy([1, 0], "|0⟩") assert_dirac_notation_python([1j, 0], "1j|0⟩") assert_dirac_notation_numpy([0, 1], "|1⟩") assert_dirac_notation_python([0, 1j], "1j|1⟩") assert_dirac_notation_numpy([sqrt, 0, 0, sqrt], "0.71|00⟩ + 0.71|11⟩") assert_dirac_notation_python([sqrt, sqrt, 0, 0], "0.71|00⟩ + 0.71|01⟩") assert_dirac_notation_numpy([exp_pi_2, 0, 0, exp_pi_2], "(0.5+0.5j)|00⟩ + (0.5+0.5j)|11⟩") assert_dirac_notation_python([0, 0, 0, 1], "|11⟩") def test_dirac_notation_precision(): sqrt = np.sqrt(0.5) assert_dirac_notation_numpy([sqrt, sqrt], "0.7|0⟩ + 0.7|1⟩", decimals=1) assert_dirac_notation_python([sqrt, sqrt], "0.707|0⟩ + 0.707|1⟩", decimals=3) def test_to_valid_state_vector(): np.testing.assert_almost_equal(cirq.to_valid_state_vector( np.array([1.0, 0.0, 0.0, 0.0], dtype=np.complex64), 2), np.array([1.0, 0.0, 0.0, 0.0])) np.testing.assert_almost_equal(cirq.to_valid_state_vector( np.array([0.0, 1.0, 0.0, 0.0], dtype=np.complex64), 2), np.array([0.0, 1.0, 0.0, 0.0])) np.testing.assert_almost_equal(cirq.to_valid_state_vector(0, 2), np.array([1.0, 0.0, 0.0, 0.0])) np.testing.assert_almost_equal(cirq.to_valid_state_vector(1, 2), np.array([0.0, 1.0, 0.0, 0.0])) def test_invalid_to_valid_state_vector(): with pytest.raises(ValueError): _ = cirq.to_valid_state_vector( np.array([1.0, 0.0], dtype=np.complex64), 2) with pytest.raises(ValueError): _ = cirq.to_valid_state_vector(-1, 2) with pytest.raises(ValueError): _ = cirq.to_valid_state_vector(5, 2) with pytest.raises(TypeError): _ = cirq.to_valid_state_vector('not an int', 2) def test_check_state(): cirq.validate_normalized_state( np.array([0.5, 0.5, 0.5, 0.5], dtype=np.complex64), 2) with pytest.raises(ValueError): cirq.validate_normalized_state(np.array([1, 1], dtype=np.complex64), 2) with pytest.raises(ValueError): cirq.validate_normalized_state( np.array([1.0, 0.2, 0.0, 0.0], dtype=np.complex64), 2) with pytest.raises(ValueError): cirq.validate_normalized_state( np.array([1.0, 0.0, 0.0, 0.0], dtype=np.float64), 2) def test_sample_state_big_endian(): results = [] for x in range(8): state = cirq.to_valid_state_vector(x, 3) sample = cirq.sample_state_vector(state, [2, 1, 0]) results.append(sample) expecteds = [[list(reversed(x))] for x in list(itertools.product([False, True], repeat=3))] for result, expected in zip(results, expecteds): np.testing.assert_equal(result, expected) def test_sample_state_partial_indices(): for index in range(3): for x in range(8): state = cirq.to_valid_state_vector(x, 3) np.testing.assert_equal(cirq.sample_state_vector(state, [index]), [[bool(1 & (x >> (2 - index)))]]) def test_sample_state_partial_indices_oder(): for x in range(8): state = cirq.to_valid_state_vector(x, 3) expected = [[bool(1 & (x >> 0)), bool(1 & (x >> 1))]] np.testing.assert_equal(cirq.sample_state_vector(state, [2, 1]), expected) def test_sample_state_partial_indices_all_orders(): for perm in itertools.permutations([0, 1, 2]): for x in range(8): state = cirq.to_valid_state_vector(x, 3) expected = [[bool(1 & (x >> (2 - p))) for p in perm]] np.testing.assert_equal(cirq.sample_state_vector(state, perm), expected) def test_sample_state(): state = np.zeros(8, dtype=np.complex64) state[0] = 1 / np.sqrt(2) state[2] = 1 / np.sqrt(2) for _ in range(10): sample = cirq.sample_state_vector(state, [2, 1, 0]) assert (np.array_equal(sample, [[False, False, False]]) or np.array_equal(sample, [[False, True, False]])) # Partial sample is correct. for _ in range(10): np.testing.assert_equal(cirq.sample_state_vector(state, [2]), [[False]]) np.testing.assert_equal(cirq.sample_state_vector(state, [0]), [[False]]) def test_sample_empty_state(): state = np.array([]) np.testing.assert_almost_equal(cirq.sample_state_vector(state, []), np.zeros(shape=(1,0))) def test_sample_no_repetitions(): state = cirq.to_valid_state_vector(0, 3) np.testing.assert_almost_equal( cirq.sample_state_vector(state, [1], repetitions=0), np.zeros(shape=(0, 1))) np.testing.assert_almost_equal( cirq.sample_state_vector(state, [1, 2], repetitions=0), np.zeros(shape=(0, 2))) def test_sample_state_repetitions(): for perm in itertools.permutations([0, 1, 2]): for x in range(8): state = cirq.to_valid_state_vector(x, 3) expected = [[bool(1 & (x >> (2 - p))) for p in perm]] * 3 result = cirq.sample_state_vector(state, perm, repetitions=3) np.testing.assert_equal(result, expected) def test_sample_state_negative_repetitions(): state = cirq.to_valid_state_vector(0, 3) with pytest.raises(ValueError, match='-1'): cirq.sample_state_vector(state, [1], repetitions=-1) def test_sample_state_not_power_of_two(): with pytest.raises(ValueError, match='3'): cirq.sample_state_vector(np.array([1, 0, 0]), [1]) with pytest.raises(ValueError, match='5'): cirq.sample_state_vector(np.array([0, 1, 0, 0, 0]), [1]) def test_sample_state_index_out_of_range(): state = cirq.to_valid_state_vector(0, 3) with pytest.raises(IndexError, match='-2'): cirq.sample_state_vector(state, [-2]) with pytest.raises(IndexError, match='3'): cirq.sample_state_vector(state, [3]) def test_sample_no_indices(): state = cirq.to_valid_state_vector(0, 3) np.testing.assert_almost_equal( cirq.sample_state_vector(state, []), np.zeros(shape=(1, 0))) def test_sample_no_indices_repetitions(): state = cirq.to_valid_state_vector(0, 3) np.testing.assert_almost_equal( cirq.sample_state_vector(state, [], repetitions=2), np.zeros(shape=(2, 0))) def test_measure_state_computational_basis(): results = [] for x in range(8): initial_state = cirq.to_valid_state_vector(x, 3) bits, state = cirq.measure_state_vector(initial_state, [2, 1, 0]) results.append(bits) np.testing.assert_almost_equal(state, initial_state) expected = [list(reversed(x)) for x in list(itertools.product([False, True], repeat=3))] assert results == expected def test_measure_state_reshape(): results = [] for x in range(8): initial_state = np.reshape(cirq.to_valid_state_vector(x, 3), [2] * 3) bits, state = cirq.measure_state_vector(initial_state, [2, 1, 0]) results.append(bits) np.testing.assert_almost_equal(state, initial_state) expected = [list(reversed(x)) for x in list(itertools.product([False, True], repeat=3))] assert results == expected def test_measure_state_partial_indices(): for index in range(3): for x in range(8): initial_state = cirq.to_valid_state_vector(x, 3) bits, state = cirq.measure_state_vector(initial_state, [index]) np.testing.assert_almost_equal(state, initial_state) assert bits == [bool(1 & (x >> (2 - index)))] def test_measure_state_partial_indices_order(): for x in range(8): initial_state = cirq.to_valid_state_vector(x, 3) bits, state = cirq.measure_state_vector(initial_state, [2, 1]) np.testing.assert_almost_equal(state, initial_state) assert bits == [bool(1 & (x >> 0)), bool(1 & (x >> 1))] def test_measure_state_partial_indices_all_orders(): for perm in itertools.permutations([0, 1, 2]): for x in range(8): initial_state = cirq.to_valid_state_vector(x, 3) bits, state = cirq.measure_state_vector(initial_state, perm) np.testing.assert_almost_equal(state, initial_state) assert bits == [bool(1 & (x >> (2 - p))) for p in perm] def test_measure_state_collapse(): initial_state = np.zeros(8, dtype=np.complex64) initial_state[0] = 1 / np.sqrt(2) initial_state[2] = 1 / np.sqrt(2) for _ in range(10): bits, state = cirq.measure_state_vector(initial_state, [2, 1, 0]) assert bits in [[False, False, False], [False, True, False]] expected = np.zeros(8, dtype=np.complex64) expected[2 if bits[1] else 0] = 1.0 np.testing.assert_almost_equal(state, expected) assert state is not initial_state # Partial sample is correct. for _ in range(10): bits, state = cirq.measure_state_vector(initial_state, [2]) np.testing.assert_almost_equal(state, initial_state) assert bits == [False] bits, state = cirq.measure_state_vector(initial_state, [0]) np.testing.assert_almost_equal(state, initial_state) assert bits == [False] def test_measure_state_out_is_state(): initial_state = np.zeros(8, dtype=np.complex64) initial_state[0] = 1 / np.sqrt(2) initial_state[2] = 1 / np.sqrt(2) bits, state = cirq.measure_state_vector(initial_state, [2, 1, 0], out=initial_state) expected = np.zeros(8, dtype=np.complex64) expected[2 if bits[1] else 0] = 1.0 np.testing.assert_array_almost_equal(initial_state, expected) assert state is initial_state def test_measure_state_out_is_not_state(): initial_state = np.zeros(8, dtype=np.complex64) initial_state[0] = 1 / np.sqrt(2) initial_state[2] = 1 / np.sqrt(2) out = np.zeros_like(initial_state) _, state = cirq.measure_state_vector(initial_state, [2, 1, 0], out=out) assert out is not initial_state assert out is state def test_measure_state_not_power_of_two(): with pytest.raises(ValueError, match='3'): _, _ = cirq.measure_state_vector(np.array([1, 0, 0]), [1]) with pytest.raises(ValueError, match='5'): cirq.measure_state_vector(
np.array([0, 1, 0, 0, 0])
numpy.array
import re from scipy import misc import numpy as np # np.set_printoptions(threshold=np.nan) import sys import pandas as pd import os from config import Config as cfg from libs.pyntcloud.pyntcloud import PyntCloud import glob from sklearn.model_selection import train_test_split from itertools import compress from config import DATA_TYPES_3D from sklearn.decomposition import PCA from colorama import Fore, Back, Style ###################################################################################################### ###################################################################################################### def read(file): if file.endswith('.float3'): return readFloat(file) elif file.endswith('.flo'): return readFlow(file) elif file.endswith('.ppm'): return readImage(file) elif file.endswith('.pgm'): return readImage(file) elif file.endswith('.png'): return readImage(file) elif file.endswith('.jpg'): return readImage(file) elif file.endswith('.pfm'): return readPFM(file)[0] else: raise Exception('don\'t know how to read %s' % file) def write(file, data): if file.endswith('.float3'): return writeFloat(file, data) elif file.endswith('.flo'): return writeFlow(file, data) elif file.endswith('.ppm'): return writeImage(file, data) elif file.endswith('.pgm'): return writeImage(file, data) elif file.endswith('.png'): return writeImage(file, data) elif file.endswith('.jpg'): return writeImage(file, data) elif file.endswith('.pfm'): return writePFM(file, data) else: raise Exception('don\'t know how to write %s' % file) def readPFM(file): file = open(file, 'rb') color = None width = None height = None scale = None endian = None header = file.readline().rstrip() if header.decode("ascii") == 'PF': color = True elif header.decode("ascii") == 'Pf': color = False else: raise Exception('Not a PFM file.') dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii")) if dim_match: width, height = list(map(int, dim_match.groups())) else: raise Exception('Malformed PFM header.') scale = float(file.readline().decode("ascii").rstrip()) if scale < 0: # little-endian endian = '<' scale = -scale else: endian = '>' # big-endian data = np.fromfile(file, endian + 'f') shape = (height, width, 3) if color else (height, width) data = np.reshape(data, shape) data = np.flipud(data) return data, scale def writePFM(file, image, scale=1): file = open(file, 'wb') color = None if image.dtype.name != 'float32': raise Exception('Image dtype must be float32.') image = np.flipud(image) if len(image.shape) == 3 and image.shape[2] == 3: # color image color = True elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale color = False else: raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.') file.write('PF\n' if color else 'Pf\n'.encode()) file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0])) endian = image.dtype.byteorder if endian == '<' or endian == '=' and sys.byteorder == 'little': scale = -scale file.write('%f\n'.encode() % scale) image.tofile(file) def readFlow(name): if name.endswith('.pfm') or name.endswith('.PFM'): return readPFM(name)[0][:,:,0:2] f = open(name, 'rb') header = f.read(4) if header.decode("utf-8") != 'PIEH': raise Exception('Flow file header does not contain PIEH') width = np.fromfile(f, np.int32, 1).squeeze() height = np.fromfile(f, np.int32, 1).squeeze() flow = np.fromfile(f, np.float32, width * height * 2).reshape((height, width, 2)) return flow.astype(np.float32) def readImage(name): if name.endswith('.pfm') or name.endswith('.PFM'): data = readPFM(name)[0] if len(data.shape)==3: return data[:,:,0:3] else: return data return misc.imread(name) def writeImage(name, data): if name.endswith('.pfm') or name.endswith('.PFM'): return writePFM(name, data, 1) return misc.imsave(name, data) def writeFlow(name, flow): f = open(name, 'wb') f.write('PIEH'.encode('utf-8')) np.array([flow.shape[1], flow.shape[0]], dtype=np.int32).tofile(f) flow = flow.astype(np.float32) flow.tofile(f) def readFloat(name): f = open(name, 'rb') if(f.readline().decode("utf-8")) != 'float\n': raise Exception('float file %s did not contain <float> keyword' % name) dim = int(f.readline()) dims = [] count = 1 for i in range(0, dim): d = int(f.readline()) dims.append(d) count *= d dims = list(reversed(dims)) data = np.fromfile(f, np.float32, count).reshape(dims) if dim > 2: data = np.transpose(data, (2, 1, 0)) data = np.transpose(data, (1, 0, 2)) return data def writeFloat(name, data): f = open(name, 'wb') dim=len(data.shape) if dim>3: raise Exception('bad float file dimension: %d' % dim) f.write(('float\n').encode('ascii')) f.write(('%d\n' % dim).encode('ascii')) if dim == 1: f.write(('%d\n' % data.shape[0]).encode('ascii')) else: f.write(('%d\n' % data.shape[1]).encode('ascii')) f.write(('%d\n' % data.shape[0]).encode('ascii')) for i in range(2, dim): f.write(('%d\n' % data.shape[i]).encode('ascii')) data = data.astype(np.float32) if dim==2: data.tofile(f) else: np.transpose(data, (2, 0, 1)).tofile(f) ###################################################################################################### ###################################################################################################### ###################################################################################################### ###################################################################################################### def getBlackListDirs(): black_dirs_txt = "black_list_dirs.txt" with open(black_dirs_txt, 'r') as f: black_dirs = f.read().splitlines() return black_dirs def load_sequence(datatype3d_base_dir, sceneflow_base_dir, sample_base_dir, data_type): samples = [] sceneflow_dir = os.path.join(sceneflow_base_dir, sample_base_dir) for path in sorted(glob.glob(sceneflow_dir + "/*")): sceneflow_path = path.replace('\\', '/') sample_number_0 = os.path.basename(path).split('.')[0] if data_type == DATA_TYPES_3D['POINTCLOUD']: sample_path_0 = os.path.join(sample_base_dir, sample_number_0 + ".npy") elif data_type == DATA_TYPES_3D['BOTH']: sample_path_0 = os.path.join(sample_base_dir, sample_number_0 + ".npz") sample_name = sample_base_dir.replace('/', '-') + "-" + sample_number_0 sample_number_1 = str(int(os.path.basename(path).split('.')[0]) + 1).zfill(4) if data_type == DATA_TYPES_3D['POINTCLOUD']: sample_path_1 = os.path.join(sample_base_dir, sample_number_1 + ".npy") elif data_type == DATA_TYPES_3D['BOTH']: sample_path_1 = os.path.join(sample_base_dir, sample_number_1 + ".npz") datatype3d_path_0 = os.path.join(datatype3d_base_dir, sample_path_0) datatype3d_path_1 = os.path.join(datatype3d_base_dir, sample_path_1) sample = [datatype3d_path_0, datatype3d_path_1, sceneflow_path, sample_name] samples.append(sample) return samples def sequence_exists(sceneflow_base_dir, sample_base_dir): """ Returns whether or not the path to a sequence exists :param sceneflow_base_dir: :param sample_base_dir: :return: """ sequence_path = os.path.join(sceneflow_base_dir, sample_base_dir) if os.path.isdir(sequence_path): return True else: return False def check_sequence_number(number): """ Checks if the sequence number ''number'' is a valid one :param number: :return: """ if number >= 750: raise Exception("Sequences range from 0000 to 0749") def load_files(input_base_dir, sceneflow_base_dir, data_split, data_type, sequences_to_use): """ Load numpy files containing the voxelgrids and the sceneflow groundtruth :param dataset_path: :return: list of path files for the voxelgrids and the sceneflow groungtruth """ black_list_dirs = getBlackListDirs() all_samples = [] if sequences_to_use == "ALL": ## Use the whole dataset for letter in os.listdir(os.path.join(sceneflow_base_dir, data_split)): for number in os.listdir(os.path.join(sceneflow_base_dir, data_split, letter)): sequence = os.path.join(letter, number) sample_base_dir = os.path.join(data_split, sequence).replace('\\', '/') if sample_base_dir in black_list_dirs: continue sequence_samples = load_sequence(input_base_dir, sceneflow_base_dir, sample_base_dir, data_type) all_samples.append(sequence_samples) else: for sequence_to_use in sequences_to_use: if sequence_to_use == "A" or sequence_to_use == "B" or sequence_to_use == "C": """Get a complete letter""" letter = sequence_to_use for number in os.listdir(os.path.join(sceneflow_base_dir, data_split, letter)): sequence = os.path.join(letter, number) sample_base_dir = os.path.join(data_split, sequence).replace('\\', '/') if sample_base_dir in black_list_dirs: continue sequence_samples = load_sequence(input_base_dir, sceneflow_base_dir, sample_base_dir, data_type) all_samples.append(sequence_samples) elif "-" in sequence_to_use: letter, numbers_range = sequence_to_use.split('/') _from, _to = numbers_range.split('-') _from, _to = int(_from), int(_to) check_sequence_number(_from) check_sequence_number(_to) for number in range(_from, _to + 1): number = str(number).zfill(4) sequence = os.path.join(letter, number) sample_base_dir = os.path.join(data_split, sequence).replace('\\', '/') if sample_base_dir in black_list_dirs or not sequence_exists(sceneflow_base_dir, sample_base_dir): continue sequence_samples = load_sequence(input_base_dir, sceneflow_base_dir, sample_base_dir, data_type) all_samples.append(sequence_samples) else: number = int(sequence_to_use.split('/')[1]) check_sequence_number(number) sample_base_dir = os.path.join(data_split, sequence_to_use).replace('\\', '/') if sample_base_dir in black_list_dirs: raise Exception("Sequence to eval is in Black List!") sequence_samples = load_sequence(input_base_dir, sceneflow_base_dir, sample_base_dir, data_type) all_samples.append(sequence_samples) final_samples = [] for sequence_samples in all_samples: for sample in sequence_samples: final_samples.append(sample) return final_samples def get_train_val_loader(dataset_dir, data_split, data_type, use_local, use_normal, sequences_to_train=None, batch_size_train=1, batch_size_val=1, validation_percentage=0.05): """ Compute dataset loader :param dataset_dir: :param batch_size: :return: """ import torch.utils.data from torch.utils.data.dataloader import default_collate if cfg.model_name == "SiameseModel3D": detection_collate = detection_collate_baseline_train elif cfg.model_name == "SiamesePointNet": detection_collate = detection_collate_pointnet_train if data_type == DATA_TYPES_3D['POINTCLOUD']: from loader import PointcloudDataset as Dataset elif data_type == DATA_TYPES_3D['BOTH']: if cfg.model_name == "SiameseModel3D": from loader import SiameseBaselineDatasetTrain as Dataset elif cfg.model_name == "SiamesePointNet": from loader import SiamesePointNetDatasetTrain as Dataset ## Load files lists if cfg.model_name == "SiameseModel3D": vg_or_pcl_dir = os.path.join(dataset_dir, "pointcloud_voxelgrid") else: if use_local: if use_normal: vg_or_pcl_dir = os.path.join(dataset_dir, "voxels_features_normals") else: vg_or_pcl_dir = os.path.join(dataset_dir, "voxels_features") else: if use_normal: vg_or_pcl_dir = os.path.join(dataset_dir, "voxels_xyz_normals_features") else: vg_or_pcl_dir = os.path.join(dataset_dir, "voxels_xyz_features") sceneflow_dir = os.path.join(dataset_dir, "sceneflow") samples = load_files(vg_or_pcl_dir, sceneflow_dir, data_split, data_type, sequences_to_train) samples_train, samples_val = train_test_split(samples, test_size=validation_percentage, random_state=20) ##################################################################### ## HELP: DO NOT REMOVE - USE TO GET THE SAMPLES IN VALIDATION SET ### ##################################################################### # validation_samples = [] # for sample_val in samples_val: # validation_samples.append(sample_val[-1]) # validation_samples.sort() # with open("validation_samples.txt", "w") as f: # for sample in validation_samples: # f.write(sample + "\n") ##################################################################### ##################################################################### ## Create TRAIN loader train_dataset = Dataset(samples_train) print("Train Dataset's length:", len(train_dataset)) train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=batch_size_train, shuffle=True, num_workers=8, collate_fn=detection_collate, drop_last=True, pin_memory=False) ## Create VAL loader val_dataset = Dataset(samples_val) print("Val Dataset's length:", len(val_dataset)) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=batch_size_val, shuffle=True, num_workers=8, collate_fn=detection_collate, drop_last=True, pin_memory=False) print("Number of training batches: ", len(train_loader), "(Samples: ", str(len(train_loader) * batch_size_train), ")") print("Number of val batches: ", len(val_loader), "(Samples: ", str(len(val_loader) * batch_size_val), ")") return train_loader, val_loader def get_eval_loader(dataset_dir, data_split, data_type, use_local, use_normal, sequences_to_eval=None, batch_size=1): """ Compute dataset loader :param dataset_dir: :param batch_size: :return: """ import torch.utils.data from torch.utils.data.dataloader import default_collate if cfg.model_name == "SiameseModel3D": detection_collate = detection_collate_baseline_test elif cfg.model_name == "SiamesePointNet": detection_collate = detection_collate_pointnet_test if data_type == DATA_TYPES_3D['POINTCLOUD']: from loader import PointcloudDataset as Dataset elif data_type == DATA_TYPES_3D['BOTH']: if cfg.model_name == "SiameseModel3D": from loader import SiameseBaselineDatasetTest as Dataset elif cfg.model_name == "SiamesePointNet": from loader import SiamesePointNetDatasetTest as Dataset ## Load files lists if cfg.model_name == "SiameseModel3D": vg_or_pcl_dir = os.path.join(dataset_dir, "pointcloud_voxelgrid") else: if use_local: if use_normal: vg_or_pcl_dir = os.path.join(dataset_dir, "voxels_features_normals") else: vg_or_pcl_dir = os.path.join(dataset_dir, "voxels_features") else: if use_normal: vg_or_pcl_dir = os.path.join(dataset_dir, "voxels_xyz_normals_features") else: vg_or_pcl_dir = os.path.join(dataset_dir, "voxels_xyz_features") sceneflow_dir = os.path.join(dataset_dir, "sceneflow") samples = load_files(vg_or_pcl_dir, sceneflow_dir, data_split, data_type, sequences_to_eval) ## Create TRAIN loader eval_dataset = Dataset(samples) print("eval Dataset's length:", len(eval_dataset)) eval_loader = torch.utils.data.DataLoader(eval_dataset, batch_size=batch_size, shuffle=True, num_workers=8, collate_fn=detection_collate, drop_last=True, pin_memory=False) print("Number of eval batches: ", len(eval_loader), "(Samples: ", str(len(eval_loader) * batch_size), ")") return eval_loader ################################################################################################# ################################################################################################# ################################################################################################# ################################################################################################# def compute_voxelgrid_and_sceneflow(color_frame, of_frame, disp_frame, dispChange_frame, data_type_3D): # import time # import matplotlib.pyplot as plt # import cv2 height, width, _ = color_frame.shape ## Store our input data with high precision # colors_np_A = color_frame.reshape(-1, 3) of = np.asarray(of_frame, dtype=np.float64) disp = np.asarray(disp_frame, dtype=np.float64) dispChange = np.asarray(dispChange_frame, dtype=np.float64) ## Create our matrix of indices indices = np.indices((height, width)) py, px = indices[0], indices[1] ## Get 3D Point Cloud z = np.float64(cfg.baseline) * np.float64(cfg.fx) / disp x = np.multiply((px - np.float64(cfg.cx)), z) / np.float64(cfg.fx) y = np.multiply((py - np.float64(cfg.cy)), z) / np.float64(cfg.fy) coordinates_np_matrix = np.dstack((x, y, z)) coordinates_np_matrix_cropped = coordinates_np_matrix[1:-1, 1:-1] coordinates_np = coordinates_np_matrix_cropped.reshape(-1, 3) ## Normal map A = coordinates_np_matrix[2:, 1:-1] - coordinates_np_matrix[0:-2, 1:-1] B = coordinates_np_matrix[1:-1, 2:] - coordinates_np_matrix[1:-1, 0:-2] normal_matrix = np.cross(A, B, axis=2) norm = np.linalg.norm(normal_matrix, axis=2) normal_matrix[:, :, 0] /= norm normal_matrix[:, :, 1] /= norm normal_matrix[:, :, 2] /= norm normal_np = normal_matrix.reshape(-1, 3) ## For visualization # normal += 1 # normal /= 2 # cv2.imshow("normal", normal) # cv2.waitKey() # exit() ## For visualization ## Compute scene flow (by first getting optical flow from input) u = of[:, :, 0] # Optical flow in horizontal direction v = of[:, :, 1] # optical flow in vertical direction m = np.float64(cfg.baseline) / (disp + dispChange) dX = np.multiply(m, u - np.divide(np.multiply(dispChange, px - np.float64(cfg.cx)), disp)) dY = np.multiply(m, v - np.divide(np.multiply(dispChange, py - np.float64(cfg.cy)), disp)) dZ = cfg.fx * cfg.baseline * ((1.0 / (disp + dispChange)) - (1.0 / disp)) sceneflow_np_matrix = np.dstack((dX, dY, dZ)) sceneflow_np_matrix_cropped = sceneflow_np_matrix[1:-1, 1:-1] sceneflow_np = sceneflow_np_matrix_cropped.reshape(-1, 3) if data_type_3D == DATA_TYPES_3D['POINTCLOUD']: mask = coordinates_np[:, 2] <= cfg.max_z coordinates_np = coordinates_np[mask] normal_np = normal_np[mask] sceneflow_np = sceneflow_np[mask] return (coordinates_np, normal_np), sceneflow_np points, normals, sceneflows = filter_pointcloud(coordinates_np, normal_np, sceneflow_np) if points.size == 0: return None, None voxel_coords = ((points - np.array([cfg.xrange[0], cfg.yrange[0], cfg.zrange[0]])) / (cfg.vx, cfg.vy, cfg.vz)).astype(np.int32) voxel_coords, inv_ind, voxel_counts = np.unique(voxel_coords, axis=0, return_inverse=True, return_counts=True) ## NOTE: inv_ind (inverse indices) : for every point, the voxel index in which the point resides ## TODO: REMOVE VOXELS WHICH CONTAIN LESS THAN A CERTAIN NUMBER OF POINTS ## # voxel_coords = voxel_coords[voxel_counts >= cfg.t] # good_pts_mask = get_good_pts_mask(voxel_counts, inv_ind, len(points)) # points = points[good_pts_mask] # normals = normals[good_pts_mask] # sceneflows = sceneflows[good_pts_mask] # inv_ind = inv_ind[good_pts_mask] ## TODO: REMOVE VOXELS WHICH CONTAIN LESS THAN A CERTAIN NUMBER OF POINTS ## voxel_sceneflows = [] # max_pts_inv_ind = [] # voxel_pts_ind = [] for i in range(len(voxel_coords)): mask = inv_ind == i sfs = sceneflows[mask] # pts_global_ind = np.asarray(list(compress(range(len(mask)), mask)), dtype=np.int32) sfs = np.median(sfs, axis=0) voxel_sceneflows.append(sfs) # max_pts_inv_ind.append(inv_ind[pts_global_ind]) # voxel_pts_ind.append(pts_global_ind) return (points, normals, voxel_coords, inv_ind, voxel_counts), (sceneflows, voxel_sceneflows) def preprocess_pointcloud(points, normals, sample_name, sceneflows=None): pass # if (points.size == 0): # raise Exception(sample_name, "has no points with current ranges!") # # points, normals, sceneflows = filter_pointcloud(points, normals, sceneflows) # points, normals, sceneflows = randomize(points, normals, sceneflows) # # voxel_coords = ((points - np.array([cfg.xrange[0], cfg.yrange[0], cfg.zrange[0]])) # / (cfg.vx, cfg.vy, cfg.vz)).astype(np.int32) # # voxel_coords, inv_ind, voxel_counts = np.unique(voxel_coords, axis=0, # return_inverse=True, return_counts=True) # # voxel_features = [] # voxel_sceneflows = [] if sceneflows is not None else None # # max_pts_inv_ind = [] if sceneflows is not None else None # # voxel_pts_ind = [] if sceneflows is not None else None # for i in range(len(voxel_coords)): # voxel = np.zeros((cfg.T, cfg.f), dtype=np.float64) # mask = inv_ind == i # n = normals[mask] # sfs = sceneflows[mask] if sceneflows is not None else None # # pts_global_ind = np.asarray(list(compress(range(len(mask)), mask)), dtype=np.int32) # # if voxel_counts[i] > cfg.T: # pts = pts[:cfg.T, :] # n = n[:cfg.T, :] # sfs = sfs[:cfg.T, :] if sceneflows is not None else None # # pts_global_ind = pts_global_ind[:cfg.T] # # ## augment the points with their coordinate in the voxel's reference system # voxel[:pts.shape[0], :] = np.concatenate((pts, pts - centroid(pts), n), axis=1) # voxel_features.append(voxel) # # if sceneflows is not None: # sfs = np.median(sfs, axis=0) # voxel_sceneflows.append(sfs) # # max_pts_inv_ind.append(inv_ind[pts_global_ind]) # # voxel_pts_ind.append(pts_global_ind) # # if sceneflows is not None: # voxel_sceneflows = np.array(voxel_sceneflows) # # max_pts_inv_ind = np.concatenate(max_pts_inv_ind) # # voxel_pts_ind = np.concatenate(voxel_pts_ind) # # return (points, np.array(voxel_features), voxel_coords, inv_ind), \ # (sceneflows, voxel_sceneflows) def preprocess_pointnet(points, normals, voxel_coords, inv_ind, sceneflows=None): points, normals, inv_ind, sceneflows = randomize(points, normals, inv_ind, sceneflows) voxel_pts = [] voxel_features = [] for i in range(len(voxel_coords)): pts_np = np.zeros((cfg.T, 3), dtype=np.float64) normals_np = np.zeros((cfg.T, 3), dtype=np.float64) mask = inv_ind == i pts = points[mask] n = normals[mask] sfs = sceneflows[mask] if sceneflows is not None else None if pts.shape[0] > cfg.T: pts = pts[:cfg.T, :] n = n[:cfg.T, :] sfs = sfs[:cfg.T, :] if sceneflows is not None else None pts_np[:pts.shape[0], :] = pts normals_np[:pts.shape[0], :] = n voxel_pts.append(pts_np) voxel_features.append(normals_np) return (points, np.array(voxel_pts), np.array(voxel_features), voxel_coords, inv_ind), \ sceneflows def preprocess_voxelnet(points, normals, voxel_coords, inv_ind, sceneflows=None): points, normals, inv_ind, sceneflows = randomize(points, normals, inv_ind, sceneflows) voxel_features = [] for i in range(len(voxel_coords)): voxel = np.zeros((cfg.T, 9), dtype=np.float32) mask = inv_ind == i pts = points[mask] n = normals[mask] if pts.shape[0] > cfg.T: pts = pts[:cfg.T, :] n = n[:cfg.T, :] voxel[:pts.shape[0], :] = np.concatenate((pts, pts[:, :3] - centroid(pts), n), axis=1) voxel_features.append(voxel) return (points, np.array(voxel_features), voxel_coords, inv_ind), sceneflows def get_good_pts_mask(voxel_counts, inv_ind, n_pts): ###################################################################### ## REMOVE VOXELS WHICH CONTAIN LESS THAN A CERTAIN NUMBER OF POINTS ## ############## AND REMOVE ALSO THE CORRESPONDING POINTS ############## ## Get the indices of those bad voxels bad_voxels_ind = np.where(voxel_counts < cfg.t)[0] ## Compute the indices of the points contained in those bad voxels bad_pts_ind = np.concatenate([np.nonzero(inv_ind == bad)[0] for bad in bad_voxels_ind]) ## Create a mask for the good points good_pts_mask = np.ones(n_pts, dtype=bool) good_pts_mask[bad_pts_ind] = False return good_pts_mask def centroid(pts): length = pts.shape[0] sum_x = np.sum(pts[:, 0]) sum_y = np.sum(pts[:, 1]) sum_z = np.sum(pts[:, 2]) return np.array([sum_x/length, sum_y/length, sum_z/length]) def compute_PCA(pts): pca = PCA(n_components=3) pca.fit(pts) pca_score = pca.explained_variance_ratio_ V = pca.components_ # x_pca_axis, y_pca_axis, z_pca_axis = 0.2 * V normal_vector = V[np.argmin(pca_score, axis=0)] ## VISUALIZE STUFF ## # from mpl_toolkits.mplot3d import Axes3D # import matplotlib.pyplot as plt # centr = centroid(pts) # fig = plt.figure(1, figsize=(4, 3)) # ax = Axes3D(fig, rect=[0, 0, .95, 1], elev=30, azim=20) # ax.scatter(pts[:, 0], pts[:, 1], pts[:, 2], marker='+', alpha=.4) # ax.quiver(centr[0], centr[1], centr[2], x_pca_axis[0], x_pca_axis[1], x_pca_axis[2], color='r') # ax.quiver(centr[0], centr[1], centr[2], y_pca_axis[0], y_pca_axis[1], y_pca_axis[2], color='g') # ax.quiver(centr[0], centr[1], centr[2], normal_vector[0], normal_vector[1], normal_vector[2], color='b') # plt.show() ## VISUALIZE STUFF ## return normal_vector def filter_pointcloud(points, normals, sceneflows=None): pxs = points[:, 0] pys = points[:, 1] pzs = points[:, 2] filter_x = np.where((pxs >= cfg.xrange[0]) & (pxs < cfg.xrange[1]))[0] filter_y = np.where((pys >= cfg.yrange[0]) & (pys < cfg.yrange[1]))[0] filter_z = np.where((pzs >= cfg.zrange[0]) & (pzs < cfg.zrange[1]))[0] filter_xy = np.intersect1d(filter_x, filter_y) filter_xyz = np.intersect1d(filter_xy, filter_z) if sceneflows is not None: sceneflows = sceneflows[filter_xyz] return points[filter_xyz], normals[filter_xyz], sceneflows def randomize(points, normals, inv_ind, sceneflows=None): if sceneflows is not None: assert points.shape==normals.shape==sceneflows.shape, "randomize 1 " else: assert points.shape==normals.shape, "Inputs with different shapes in randomize 1" assert points.shape[0] == len(inv_ind), "Inputs with different shapes in randomize 2" # Generate the permutation index array. permutation = np.random.permutation(points.shape[0]) # Shuffle the arrays by giving the permutation in the square brackets. shuffled_points = points[permutation] shuffled_normals = normals[permutation] shuffled_inv_ind = inv_ind[permutation] shuffled_sceneflows = sceneflows[permutation] if sceneflows is not None else None return shuffled_points, shuffled_normals, shuffled_inv_ind, shuffled_sceneflows ####################### ## COLLATE FUNCTIONS ## ####################### def detection_collate_baseline_train(batch): voxel_coords_t0 = [] voxel_coords_t1 = [] voxel_sceneflows = [] sample_names = [] for i, sample in enumerate(batch): # Pointcloud data t0 voxel_coords_t0.append( np.pad(sample[0], ((0, 0), (1, 0)), mode='constant', constant_values=i)) # Pointcloud data t1 voxel_coords_t1.append( np.pad(sample[1], ((0, 0), (1, 0)), mode='constant', constant_values=i)) voxel_sceneflows.append(sample[2]) sample_names.append(sample[3]) return np.concatenate(voxel_coords_t0), \ np.concatenate(voxel_coords_t1), \
np.concatenate(voxel_sceneflows)
numpy.concatenate
import matplotlib.pyplot as plt import numpy from numpy import linalg as linalg import math from amanzi_xml.observations.ObservationXMLv2 import ObservationXMLv2 as ObsXML from amanzi_xml.observations.ObservationData import ObservationData as ObsDATA import amanzi_xml.utils.search as search import model_hantush_anisotropic_2d import prettytable # load input xml file # -- create an ObservationXML object def loadInputXML(filename): Obs_xml = ObsXML(filename) return Obs_xml # load the data file # -- use above xml object to get observation filename # -- create an ObservationData object # -- load the data using this object def loadDataFile(Obs_xml): output_file = Obs_xml.getObservationFilename() Obs_data = ObsDATA("amanzi-output/"+output_file) Obs_data.getObservationData() coords = Obs_xml.getAllCoordinates() for obs in Obs_data.observations.values(): region = obs.region obs.coordinate = coords[region] return Obs_data def plotHantushObservations(Obs_xml, Obs_data, axes1): colors = ['g','r','b'] i = 0 for obs in Obs_data.observations.values(): drawdown = numpy.array([obs.data]) axes1.scatter(obs.times, drawdown, marker='s', s=25, c=colors[i]) i = i + 1 return colors def plotHantushAnalytic(filename, axes1, Obs_xml, Obs_data): colors = ['g','r','b'] mymodel = model_hantush_anisotropic_2d.createFromXML(filename) tindex =
numpy.arange(118)
numpy.arange
import warnings import numpy as np from scipy.stats import norm, lognorm, beta, betaprime, gamma, uniform, gumbel_r from .util import maxfloat from .fast_truncnorm import truncnorm META_NOISE_MODELS = ( 'beta', 'beta_std', 'norm', 'lognorm', 'lognorm_varstd', 'betaprime', 'gamma', 'censored_norm', 'censored_gumbel', 'censored_lognorm', 'censored_lognorm_varstd', 'censored_betaprime', 'censored_gamma', 'truncated_norm', 'truncated_norm_lookup', 'truncated_norm_fit', 'truncated_gumbel', 'truncated_gumbel_lookup', 'truncated_lognorm', 'truncated_lognorm_varstd' ) META_NOISE_MODELS_REPORT = ('beta', 'beta_std') META_NOISE_MODELS_READOUT = ('lognorm', 'lognorm_varstd', 'betaprime', 'gamma') def _lognorm_params(mode, stddev): """ Compute scipy lognorm's shape and scale for a given mode and SD The analytical formula is exact and was computed with WolframAlpha. Parameters ---------- mode : float or array-like Mode of the distribution. stddev : float or array-like Standard deviation of the distribution. Returns ---------- shape : float Scipy lognorm shape parameter. scale : float Scipy lognorm scale parameter. """ mode = np.maximum(1e-5, mode) a = stddev ** 2 / mode ** 2 x = 1 / 4 * np.sqrt(np.maximum(1e-300, -(16 * (2 / 3) ** (1 / 3) * a) / ( np.sqrt(3) * np.sqrt(256 * a ** 3 + 27 * a ** 2) - 9 * a) ** (1 / 3) + 2 * (2 / 3) ** (2 / 3) * ( np.sqrt(3) * np.sqrt(256 * a ** 3 + 27 * a ** 2) - 9 * a) ** ( 1 / 3) + 1)) + \ 1 / 2 * np.sqrt( (4 * (2 / 3) ** (1 / 3) * a) / (np.sqrt(3) * np.sqrt(256 * a ** 3 + 27 * a ** 2) - 9 * a) ** (1 / 3) - (np.sqrt(3) * np.sqrt(256 * a ** 3 + 27 * a ** 2) - 9 * a) ** (1 / 3) / (2 ** (1 / 3) * 3 ** (2 / 3)) + 1 / (2 * np.sqrt(np.maximum(1e-300, -(16 * (2 / 3) ** (1 / 3) * a) / ( np.sqrt(3) * np.sqrt(256 * a ** 3 + 27 * a ** 2) - 9 * a) ** (1 / 3) + 2 * (2 / 3) ** (2 / 3) * ( np.sqrt(3) * np.sqrt(256 * a ** 3 + 27 * a ** 2) - 9 * a) ** ( 1 / 3) + 1))) + 1 / 2) + \ 1 / 4 shape = np.sqrt(np.log(x)) scale = mode * x return shape, scale class truncated_lognorm: # noqa """ Implementation of the truncated lognormal distribution. Only the upper truncation bound is supported as the lognormal distribution is naturally lower-bounded at zero. Parameters ---------- loc : float or array-like Scipy lognorm's loc parameter. scale : float or array-like Scipy lognorm's scale parameter. s : float or array-like Scipy lognorm's s parameter. b : float or array-like Upper truncation bound. """ def __init__(self, loc, scale, s, b): self.loc = loc self.scale = scale self.s = s self.b = b self.dist = lognorm(loc=loc, scale=scale, s=s) self.lncdf_b = self.dist.cdf(self.b) def pdf(self, x): pdens = (x <= self.b) * self.dist.pdf(x) / self.lncdf_b return pdens def cdf(self, x): cdens = (x > self.b) + (x <= self.b) * self.dist.cdf(x) / self.lncdf_b return cdens def rvs(self, size=None): if size is None: if hasattr(self.scale, '__len__'): size = self.scale.shape else: size = 1 cdens = uniform(loc=0, scale=self.b).rvs(size) x = self.cdf_inv(cdens) return x def cdf_inv(self, cdens): x = (cdens >= 1) * self.b + (cdens < 1) * self.dist.ppf(cdens * self.lncdf_b) return x class truncated_gumbel: # noqa """ Implementation of the truncated Gumbel distribution. Parameters ---------- loc : float or array-like Scipy gumbel_r's loc parameter. scale : float or array-like Scipy gumbel_r's scale parameter. a : float or array-like Lower truncation bound. b : float or array-like Upper truncation bound. """ def __init__(self, loc, scale, a=0, b=np.inf): self.loc = loc self.scale = scale self.a = a self.b = b self.dist = gumbel_r(loc=loc, scale=scale) with warnings.catch_warnings(): warnings.simplefilter('ignore', RuntimeWarning) self.cdf_to_a = self.dist.cdf(self.a) self.cdf_a_to_b = self.dist.cdf(self.b) - self.cdf_to_a def pdf(self, x): pdens = ((x > self.a) & (x < self.b)) * self.dist.pdf(maxfloat(x)).astype(np.float64) / self.cdf_a_to_b return pdens def cdf(self, x): with warnings.catch_warnings(): warnings.simplefilter('ignore', RuntimeWarning) cdf_to_x = self.dist.cdf(x) cdens = (x >= self.b) + ((x > self.a) & (x < self.b)) * (cdf_to_x - self.cdf_to_a) / self.cdf_a_to_b return cdens def rvs(self, size=None): if size is None: if hasattr(self.scale, '__len__'): size = self.loc.shape else: size = 1 cdens = uniform(loc=self.cdf_to_a, scale=self.cdf_a_to_b).rvs(size) x = self.cdf_inv(cdens) return x def cdf_inv(self, cdens): x = (cdens > self.cdf_to_a) * self.dist.ppf(cdens) return x def get_dist(meta_noise_model, mode, scale, meta_noise_type='noisy_report', lookup_table=None): """ Helper function to select appropriately parameterized metacognitive noise distributions. """ if meta_noise_model not in META_NOISE_MODELS: raise ValueError(f"Unkonwn distribution '{meta_noise_model}'.") elif (meta_noise_type == 'noisy_report') and meta_noise_model in META_NOISE_MODELS_READOUT: raise ValueError(f"Distribution '{meta_noise_model}' is only valid for noisy-readout models.") elif (meta_noise_type == 'noisy_readout') and meta_noise_model in META_NOISE_MODELS_REPORT: raise ValueError(f"Distribution '{meta_noise_model}' is only valid for noisy-report models.") if meta_noise_model.startswith('censored_'): distname = meta_noise_model[meta_noise_model.find('_')+1:] else: distname = meta_noise_model if distname == 'norm': dist = norm(loc=mode, scale=scale) elif distname == 'gumbel': dist = gumbel_r(loc=mode, scale=scale * np.sqrt(6) / np.pi) elif distname == 'lognorm_varstd': dist = lognorm(loc=0, scale=np.maximum(1e-5, mode) * np.exp(scale ** 2), s=scale) elif distname == 'lognorm': shape, scale = _lognorm_params(np.maximum(1e-5, mode), scale) dist = lognorm(loc=0, scale=scale, s=shape) elif distname == 'lognorm_varstd': dist = lognorm(loc=0, scale=np.maximum(1e-5, mode) * np.exp(scale ** 2), s=scale) elif distname == 'beta': a = mode * (1 / scale - 2) + 1 b = (1 - mode) * (1 / scale - 2) + 1 dist = beta(a, b) elif distname == 'beta_std': mode = np.maximum(1e-5, np.minimum(1-1e-5, mode)) a = 1 + (1 - mode) * mode**2 / scale**2 b = (1/mode - 1) * a - 1/mode + 2 dist = beta(a, b) elif distname == 'betaprime': mode = np.minimum(1 / scale - 1 - 1e-3, mode) a = (mode * (1 / scale + 1) + 1) / (mode + 1) b = (1 / scale - mode - 1) / (mode + 1) dist = betaprime(a, b) elif distname == 'gamma': a = (mode + np.sqrt(mode**2 + 4*scale**2))**2 / (4*scale**2) b = (mode + np.sqrt(mode**2 + 4*scale**2)) / (2*scale**2) dist = gamma(a=a, loc=0, scale=1/b) elif distname.startswith('truncated_'): if meta_noise_type == 'noisy_report': if distname.endswith('_lookup') and (distname.startswith('truncated_norm_') or distname.startswith('truncated_gumbel_')): m_ind = np.searchsorted(lookup_table['mode'], mode) scale = lookup_table['scale'][np.abs(lookup_table['truncscale'][m_ind] - scale).argmin(axis=-1)] elif distname == 'truncated_norm_fit': mode_ = mode.copy() mode_[mode_ < 0.5] = 1 - mode_[mode_ < 0.5] scale = np.minimum(scale, 1/np.sqrt(12) - 1e-3) alpha1, beta1, alpha2, beta2, theta = -0.1512684, 4.15388204, -1.01723445, 2.47820677, 0.73799941 scale = scale / (beta1*mode_**alpha1*np.sqrt(1/12-scale**2)) * (mode_ < theta) + \ (np.arctanh(2*np.sqrt(3)*scale) / (beta2*mode_**alpha2)) * (mode_ >= theta) if distname.startswith('truncated_norm'): dist = truncnorm(-mode / scale, (1 - mode) / scale, loc=mode, scale=scale) elif distname.startswith('truncated_gumbel'): dist = truncated_gumbel(loc=mode, scale=scale * np.sqrt(6) / np.pi, b=1) elif distname == 'truncated_lognorm': shape, scale = _lognorm_params(np.maximum(1e-5, mode), scale) dist = truncated_lognorm(loc=0, scale=scale, s=shape, b=1) elif distname == 'truncated_lognorm_varstd': dist = truncated_lognorm(loc=0, scale=np.maximum(1e-5, mode) * np.exp(scale ** 2), s=scale, b=1) elif meta_noise_type == 'noisy_readout': if distname.endswith('_lookup') and (distname.startswith('truncated_norm_') or distname.startswith('truncated_gumbel_')): m_ind = np.searchsorted(lookup_table['mode'], np.minimum(10, mode)) # atm 10 is the maximum mode scale = lookup_table['scale'][np.abs(lookup_table['truncscale'][m_ind] - scale).argmin(axis=-1)] elif distname == 'truncated_norm_fit': a, b, c, d, e, f = 0.88632051, -1.45129289, 0.25329918, 2.09066054, -1.2262868, 1.47179606 scale = a*scale*(mode+1)**b + c*(mode+1)**f*(np.exp(np.minimum(100, d*scale*(mode+1)**e))-1) if distname.startswith('truncated_norm'): dist = truncnorm(-mode / scale, np.inf, loc=mode, scale=scale) elif distname.startswith('truncated_gumbel'): dist = truncated_gumbel(loc=mode, scale=scale * np.sqrt(6) / np.pi) else: raise ValueError(f"'{meta_noise_type}' is an unknown metacognitive type") return dist # noqa def get_dist_mean(distname, mode, scale): """ Helper function to get the distribution mean of certain distributions. """ if distname == 'gumbel': mean = mode + np.euler_gamma * scale * np.sqrt(6) / np.pi elif distname == 'norm': mean = mode else: raise ValueError(f"Distribution {distname} not supported.") return mean def get_pdf(x, distname, mode, scale, lb=0, ub=1, meta_noise_type='noisy_report'): """ Helper function to get the probability density of a distribution. """ if distname.startswith('censored_'): likelihood_dist = distname[distname.find('_') + 1:] dist = get_dist(likelihood_dist, mode=mode, scale=scale) with warnings.catch_warnings(): warnings.simplefilter('ignore', RuntimeWarning) cdf_margin_low = dist.cdf(lb) cdf_margin_high = (1 - dist.cdf(ub)) pdf = ((x > lb) & (x < ub)) * dist.pdf(x) + \ (x <= lb) * cdf_margin_low + \ (x >= ub) * cdf_margin_high else: pdf = get_dist(distname, mode, scale, meta_noise_type).pdf(x) return pdf def get_likelihood(x, distname, mode, scale, lb=1e-8, ub=1 - 1e-8, binsize_meta=1e-3, logarithm=False): """ Helper function to get the likelihood of a distribution. """ if distname.startswith('censored_'): likelihood_dist = distname[distname.find('_') + 1:] dist = get_dist(likelihood_dist, mode=mode, scale=scale) if distname.endswith('gumbel'): x = x.astype(maxfloat) window = (dist.cdf(
np.minimum(1, x + binsize_meta)
numpy.minimum
#------------------------------------------------------------ # Programmer(s): <NAME> @ SMU #------------------------------------------------------------ # Copyright (c) 2019, Southern Methodist University. # All rights reserved. # For details, see the LICENSE file. #------------------------------------------------------------ # matplotlib-based plotting and analysis utilities for ARKode # solver diagnostics #### Data Structures #### class ErrorTest: """ An ErrorTest object stores, for each error test performed: index -- the time step index h -- the time step size estimate -- the estimate of the local error errfail -- a flag denoting whether the error test failed """ def __init__(self, step, h, dsm): self.index = step self.h = h if (dsm <= 0.0): self.estimate = 1.e-10 else: self.estimate = dsm self.errfail = 0 if (dsm > 1.0): self.errfail = 1 def Write(self): print(' ErrorTest: index =',self.index,', h =',self.h,', estimate =',self.estimate,', errfail =',self.errfail) ########## class AdaptH: """ An AdaptH object stores, for each time step adaptivity calculation: eh[0,1,2] -- the biased error history array hh[0,1,2] -- the time step history array h_accuracy[0,1] -- the accuracy step estimates, before and after applying step size bounds h_stability[0,1] -- the stability step estimates, before and after applying cfl & stability bounds stab_restrict -- flag whether step was stability-limited eta -- the final time step growth factor """ def __init__(self, eh0, eh1, eh2, hh0, hh1, hh2, ha0, hs0, ha1, hs1, eta): self.eh0 = eh0 self.eh1 = eh1 self.eh2 = eh2 self.hh0 = hh0 self.hh1 = hh1 self.hh2 = hh2 self.h_accuracy0 = ha0 self.h_accuracy1 = ha1 self.h_stability0 = hs0 self.h_stability1 = hs1 self.eta = eta if (hs0 < ha0): self.stab_restrict = 1 else: self.stab_restrict = 0 def Write(self): print(' AdaptH: errhist =',self.eh0,self.eh1,self.eh2,', stephist =',self.hh0,self.hh1,self.hh2,', ha0 =',self.h_accuracy0,', hs0 =',self.h_stability0,', ha1 =',self.h_accuracy1,', hs1 =',self.h_stability1,', stabrestrict =',self.stabrestrict,', eta =',self.eta) ########## class StageStep: """ A StageStep object stores, for each RK stage of every time step: step -- the time step index h -- the time step size stage -- the stage index tn -- the stage time """ def __init__(self, step, h, stage, tn): self.step = step self.h = h self.stage = stage self.tn = tn def Write(self): print(' StageStep: step =',self.step,', stage =',self.stage) print(' h =',self.h,', tn =',self.tn) ########## class TimeStep: """ A TimeStep object stores, for every time step: StageSteps -- array of StageStep objects comprising the step h_attempts -- array of step sizes attempted (typically only one, unless convergence or error failures occur) step -- the time step index tn -- maximum stage time in step h_final -- the final successful time step size ErrTest -- an ErrorTest object for the step err_fails -- total error test failures in step """ def __init__(self): self.StageSteps = [] self.h_attempts = [] self.step = -1 self.tn = -1.0 self.h_final = -1.0 self.err_fails = 0 def AddStage(self, Stage): self.step = Stage.step if (self.h_final != Stage.h): self.h_final = Stage.h self.h_attempts.append(Stage.h) self.StageSteps.append(Stage) self.tn = max(self.tn,Stage.tn) def AddErrorTest(self, ETest): self.ErrTest = ETest self.err_fails += ETest.errfail def AddHAdapt(self, HAdapt): self.HAdapt = HAdapt def Write(self): print('TimeStep: step =',self.step,', tn =',self.tn) print(' h_attempts =',self.h_attempts) print(' h_final =',self.h_final) print(' err_fails =',self.err_fails) for i in range(len(self.StageSteps)): self.StageSteps[i].Write() #### Utility functions #### def load_line(line): """ This routine parses a line of the diagnostics output file to determine what type of data it contains (an RK stage step, an error test, or a time step adaptivity calculation), and creates the relevant object for that data line. Each of these output types are indexed by a specific linetype for use by the calling routine. The function returns [linetype, entry]. """ import shlex txt = shlex.split(line) if ("step" in txt): linetype = 0 step = int(txt[2]) h = float(txt[3]) stage = int(txt[4]) tn = float(txt[5]) entry = StageStep(step, h, stage, tn) elif ("etest" in txt): linetype = 3 step = int(txt[2]) h = float(txt[3]) dsm = float(txt[4]) entry = ErrorTest(step, h, dsm) elif ("adapt" in txt): linetype = 4 eh0 = float(txt[2]) eh1 = float(txt[3]) eh2 = float(txt[4]) hh0 = float(txt[5]) hh1 = float(txt[6]) hh2 = float(txt[7]) ha0 = float(txt[8]) hs0 = float(txt[9]) ha1 = float(txt[10]) hs1 = float(txt[11]) eta = float(txt[12]) entry = AdaptH(eh0, eh1, eh2, hh0, hh1, hh2, ha0, hs0, ha1, hs1, eta) else: linetype = -1 entry = 0 return [linetype, entry] ########## def load_diags(fname): """ This routine opens the diagnostics output file, loads all lines to create an array of TimeSteps with all of the relevant data contained therein. """ f = open(fname) step = -1 stage = -1 TimeSteps = [] for line in f: linetype, entry = load_line(line) if (linetype == 0): # stage step if (entry.step != step): # new step step = entry.step TimeSteps.append(TimeStep()) TimeSteps[step].AddStage(entry) stage = entry.stage elif (linetype == 3): # error test TimeSteps[step].AddErrorTest(entry) elif (linetype == 4): # h adaptivity TimeSteps[step].AddHAdapt(entry) f.close() return TimeSteps ########## def write_diags(TimeSteps): """ This routine takes in the array of TimeSteps (returned from load_diags), and writes out the internal representation of the time step history to stdout. """ for i in range(len(TimeSteps)): print(' ') TimeSteps[i].Write() ########## def plot_h_vs_t(TimeSteps,fname): """ This routine takes in the array of TimeSteps (returned from load_diags), and plots the time step sizes h as a function of the simulation time t. Failed time steps are marked on the plot with either a red X or green O, where X corresponds to an error test failure. The resulting plot is stored in the file <fname>, that should include an extension appropriate for the matplotlib 'savefig' command. """ import pylab as plt import numpy as np hvals = [] tvals = [] EfailH = [] EfailT = [] CfailH = [] CfailT = [] for istep in range(len(TimeSteps)): # store successful step size and time hvals.append(TimeSteps[istep].h_final) tvals.append(TimeSteps[istep].tn) # account for convergence failures and error test failures if (TimeSteps[istep].err_fails > 0): EfailH.append(TimeSteps[istep].h_attempts[0]) EfailT.append(TimeSteps[istep].tn) # convert data to numpy arrays h = np.array(hvals) t = np.array(tvals) eh = np.array(EfailH) et = np.array(EfailT) # generate plot plt.figure() plt.semilogy(t,h,'b-') if (len(eh) > 0): plt.semilogy(et,eh,'rx') plt.xlabel('time') plt.ylabel('step size') plt.title('Step size versus time') if (len(eh) > 0): plt.legend(('successful','error fails'), loc='lower right', shadow=True) plt.grid() plt.savefig(fname) ########## def plot_h_vs_tstep(TimeSteps,fname): """ This routine takes in the array of TimeSteps (returned from load_diags), and plots the time step sizes h as a function of the time step iteration index. Failed time steps are marked on the plot a red X if an error test failure occurred. The resulting plot is stored in the file <fname>, that should include an extension appropriate for the matplotlib 'savefig' command. """ import pylab as plt import numpy as np hvals = [] ivals = [] EfailH = [] EfailI = [] for istep in range(len(TimeSteps)): # store successful step size and time hvals.append(TimeSteps[istep].h_final) ivals.append(istep) # account for convergence failures and error test failures if (TimeSteps[istep].err_fails > 0): EfailH.append(TimeSteps[istep].h_attempts[0]) EfailI.append(istep) # convert data to numpy arrays h = np.array(hvals) I = np.array(ivals) eh = np.array(EfailH) eI = np.array(EfailI) # generate plot plt.figure() plt.semilogy(I,h,'b-') if (len(eI) > 0): plt.semilogy(eI,eh,'rx') plt.xlabel('time step') plt.ylabel('step size') plt.title('Step size versus time step') if (len(eI) > 0): plt.legend(('successful','error fails'), loc='lower right', shadow=True) plt.grid() plt.savefig(fname) ########## def plot_oversolve_vs_t(TimeSteps,fname): """ This routine takes in the array of TimeSteps (returned from load_diags), and plots the oversolve as a function of the simulation time t. We cap the computed oversolve value at 1000 to get more intuitive plots since first few time steps are purposefully too small. The resulting plot is stored in the file <fname>, that should include an extension appropriate for the matplotlib 'savefig' command. """ import pylab as plt import numpy as np Ovals = [] tvals = [] for istep in range(len(TimeSteps)): # store oversolve and time Ovals.append(min(1e3,1.0 / TimeSteps[istep].ErrTest.estimate)) tvals.append(TimeSteps[istep].tn) # convert data to numpy arrays O = np.array(Ovals) t = np.array(tvals) # generate plot plt.figure() plt.semilogy(t,O,'b-') plt.xlabel('time') plt.ylabel('oversolve') plt.title('Oversolve versus time') plt.grid() plt.savefig(fname) ########## def etest_stats(TimeSteps,fptr): """ This routine takes in the array of TimeSteps (returned from load_diags), and computes statistics on how well the time step adaptivity estimations predicted step values that met the accuracy requirements. Note: we ignore steps immediately following an error test failure, since etamax is bounded above by 1. The resulting data is appended to the stream corresponding to fptr (either the result of 'open' or sys.stdout). """ import numpy as np errfails = 0 oversolve10 = 0 oversolve100 = 0 oversolve_max = 0.0 oversolve_min = 1.0e200 oversolves = [] nsteps = len(TimeSteps) hvals = [] for istep in range(nsteps): if (TimeSteps[istep].err_fails > 0): errfails += 1 hvals.append(TimeSteps[istep].h_final) # if this or previous step had an error test failure, skip oversolve results ignore = 0 if (istep > 0): if( (TimeSteps[istep].err_fails > 0) or (TimeSteps[istep-1].err_fails > 0)): ignore = 1 else: if(TimeSteps[istep].err_fails > 0): ignore = 1 if (ignore == 0): over = 1.0 / TimeSteps[istep].ErrTest.estimate oversolves.append(over) if (over > 100.0): oversolve100 += 1 elif (over > 10.0): oversolve10 += 1 oversolve_max = max(oversolve_max, over) oversolve_min = min(oversolve_min, over) # generate means and percentages ov = np.array(oversolves) hv = np.array(hvals) hval_mean = np.mean(hv) hval_max = np.max(hv) hval_min = np.min(hv) oversolve_mean =
np.mean(ov)
numpy.mean
from .. import util from ..probabilities import mass from ..core.data import Observations, Model import h5py import numpy as np import astropy.units as u import matplotlib.pyplot as plt import matplotlib.colors as mpl_clr import matplotlib.ticker as mpl_tick import astropy.visualization as astroviz import logging __all__ = ['ModelVisualizer', 'CIModelVisualizer', 'ObservationsVisualizer', 'ModelCollection'] def _get_model(theta, observations): try: return Model(theta, observations=observations) except ValueError: logging.warning(f"Model did not converge with {theta=}") return None # -------------------------------------------------------------------------- # Individual model visualizers # -------------------------------------------------------------------------- class _ClusterVisualizer: _MARKERS = ('o', '^', 'D', '+', 'x', '*', 's', 'p', 'h', 'v', '1', '2') # Default xaxis limits for all profiles. Set by inits, can be reset by user rlims = None # ----------------------------------------------------------------------- # Artist setups # ----------------------------------------------------------------------- def _setup_artist(self, fig, ax, *, use_name=True): '''setup a plot (figure and ax) with one single ax''' if ax is None: if fig is None: # no figure or ax provided, make one here fig, ax = plt.subplots() else: # Figure provided, no ax provided. Try to grab it from the fig # if that doens't work, create it cur_axes = fig.axes if len(cur_axes) > 1: raise ValueError(f"figure {fig} already has too many axes") elif len(cur_axes) == 1: ax = cur_axes[0] else: ax = fig.add_subplot() else: if fig is None: # ax is provided, but no figure. Grab it's figure from it fig = ax.get_figure() if hasattr(self, 'name') and use_name: fig.suptitle(self.name) return fig, ax def _setup_multi_artist(self, fig, shape, *, allow_blank=True, use_name=True, constrained_layout=True, subfig_kw=None, **sub_kw): '''setup a subplot with multiple axes''' if subfig_kw is None: subfig_kw = {} def create_axes(base, shape): '''create the axes of `shape` on this base (fig)''' # make sure shape is a tuple of atleast 1d, at most 2d if not isinstance(shape, tuple): # TODO doesnt work on an int shape = tuple(shape) if len(shape) == 1: shape = (shape, 1) elif len(shape) > 2: mssg = f"Invalid `shape` for subplots {shape}, must be 2D" raise ValueError(mssg) # split into dict of nrows, ncols shape = dict(zip(("nrows", "ncols"), shape)) # if either of them is also a tuple, means we want columns or rows # of varying sizes, switch to using subfigures # TODO what are the chances stuff like `sharex` works correctly? if isinstance(shape['nrows'], tuple): subfigs = base.subfigures(ncols=shape['ncols'], nrows=1, squeeze=False, **subfig_kw) for ind, sf in enumerate(subfigs.flatten()): try: nr = shape['nrows'][ind] except IndexError: if allow_blank: continue mssg = (f"Number of row entries {shape['nrows']} must " f"match number of columns ({shape['ncols']})") raise ValueError(mssg) sf.subplots(ncols=1, nrows=nr, **sub_kw) elif isinstance(shape['ncols'], tuple): subfigs = base.subfigures(nrows=shape['nrows'], ncols=1, squeeze=False, **subfig_kw) for ind, sf in enumerate(subfigs.flatten()): try: nc = shape['ncols'][ind] except IndexError: if allow_blank: continue mssg = (f"Number of col entries {shape['ncols']} must " f"match number of rows ({shape['nrows']})") raise ValueError(mssg) sf.subplots(nrows=1, ncols=nc, **sub_kw) # otherwise just make a simple subplots and return that else: base.subplots(**shape, **sub_kw) return base, base.axes # ------------------------------------------------------------------ # Create figure, if necessary # ------------------------------------------------------------------ if fig is None: fig = plt.figure(constrained_layout=constrained_layout) # ------------------------------------------------------------------ # If no shape is provided, just return the figure, probably empty # ------------------------------------------------------------------ if shape is None: axarr = [] # ------------------------------------------------------------------ # Otherwise attempt to first grab this figures axes, or create them # ------------------------------------------------------------------ else: # this fig has axes, check that they match shape if axarr := fig.axes: # TODO this won't actually work, cause fig.axes is just a list if axarr.shape != shape: mssg = (f"figure {fig} already contains axes with " f"mismatched shape ({axarr.shape} != {shape})") raise ValueError(mssg) else: fig, axarr = create_axes(fig, shape) # ------------------------------------------------------------------ # If desired, default to titling the figure based on it's "name" # ------------------------------------------------------------------ if hasattr(self, 'name') and use_name: fig.suptitle(self.name) # ------------------------------------------------------------------ # Ensure the axes are always returned in an array # ------------------------------------------------------------------ return fig, np.atleast_1d(axarr) def _set_ylabel(self, ax, label, label_position='left', *, residual_ax=None): tick_prms = dict(which='both', labelright=(label_position == 'right'), labelleft=(label_position == 'left')) if label_position == 'top': ax.set_ylabel('') ax.set_title(label) else: if (unit_label := ax.get_ylabel()) and unit_label != r'$\mathrm{}$': label += f' [{unit_label}]' ax.set_ylabel(label) ax.yaxis.set_label_position(label_position) ax.yaxis.set_tick_params(**tick_prms) if residual_ax is not None: residual_ax.yaxis.set_label_position(label_position) residual_ax.yaxis.set_tick_params(**tick_prms) residual_ax.yaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') def _set_xlabel(self, ax, label='Distance from centre', *, residual_ax=None, remove_all=False): bottom_ax = ax if residual_ax is None else residual_ax if unit_label := bottom_ax.get_xlabel(): label += f' [{unit_label}]' bottom_ax.set_xlabel(label) # if has residual ax, remove the ticks/labels on the top ax if residual_ax is not None: ax.set_xlabel('') ax.xaxis.set_tick_params(bottom=False, labelbottom=False) # if desired, simply remove everything if remove_all: bottom_ax.set_xlabel('') bottom_ax.xaxis.set_tick_params(bottom=False, labelbottom=False) # ----------------------------------------------------------------------- # Unit support # ----------------------------------------------------------------------- def _support_units(method): import functools @functools.wraps(method) def _unit_decorator(self, *args, **kwargs): # convert based on median distance parameter eqvs = util.angular_width(self.d) with astroviz.quantity_support(), u.set_enabled_equivalencies(eqvs): return method(self, *args, **kwargs) return _unit_decorator # ----------------------------------------------------------------------- # Plotting functionality # ----------------------------------------------------------------------- def _get_median(self, percs): '''from an array of data percentiles, return the median array''' return percs[percs.shape[0] // 2] if percs.ndim > 1 else percs def _get_err(self, dataset, key): '''gather the error variables corresponding to `key` from `dataset`''' try: return dataset[f'Δ{key}'] except KeyError: try: return np.c_[dataset[f'Δ{key},down'], dataset[f'Δ{key},up']].T except KeyError: return None def _plot_model(self, ax, data, intervals=None, *, x_data=None, x_unit='pc', y_unit=None, CI_kwargs=None, **kwargs): CI_kwargs = dict() if CI_kwargs is None else CI_kwargs # ------------------------------------------------------------------ # Evaluate the shape of the data array to determine confidence # intervals, if applicable # ------------------------------------------------------------------ if data is None or data.ndim == 0: return elif data.ndim == 1: data = data.reshape((1, data.size)) if not (data.shape[0] % 2): mssg = 'Invalid `data`, must have odd-numbered zeroth axis shape' raise ValueError(mssg) midpoint = data.shape[0] // 2 if intervals is None: intervals = midpoint elif intervals > midpoint: mssg = f'{intervals}σ is outside stored range of {midpoint}σ' raise ValueError(mssg) # ------------------------------------------------------------------ # Convert any units desired # ------------------------------------------------------------------ x_domain = self.r if x_data is None else x_data if x_unit: x_domain = x_domain.to(x_unit) if y_unit: data = data.to(y_unit) # ------------------------------------------------------------------ # Plot the median (assumed to be the middle axis of the intervals) # ------------------------------------------------------------------ median = data[midpoint] med_plot, = ax.plot(x_domain, median, **kwargs) # ------------------------------------------------------------------ # Plot confidence intervals successively from the midpoint # ------------------------------------------------------------------ output = [med_plot] CI_kwargs.setdefault('color', med_plot.get_color()) alpha = 0.8 / (intervals + 1) for sigma in range(1, intervals + 1): CI = ax.fill_between( x_domain, data[midpoint + sigma], data[midpoint - sigma], alpha=(1 - alpha), **CI_kwargs ) output.append(CI) alpha += alpha return output def _plot_data(self, ax, dataset, y_key, *, x_key='r', x_unit='pc', y_unit=None, err_transform=None, **kwargs): # TODO need to handle colours better defaultcolour = None # ------------------------------------------------------------------ # Get data and relevant errors for plotting # ------------------------------------------------------------------ xdata = dataset[x_key] ydata = dataset[y_key] xerr = self._get_err(dataset, x_key) yerr = self._get_err(dataset, y_key) # ------------------------------------------------------------------ # Convert any units desired # ------------------------------------------------------------------ if x_unit is not None: xdata = xdata.to(x_unit) if y_unit is not None: ydata = ydata.to(y_unit) # ------------------------------------------------------------------ # If given, transform errors based on `err_transform` function # ------------------------------------------------------------------ if err_transform is not None: yerr = err_transform(yerr) # ------------------------------------------------------------------ # Setup default plotting details, style, labels # ------------------------------------------------------------------ kwargs.setdefault('marker', '.') kwargs.setdefault('linestyle', 'None') kwargs.setdefault('color', defaultcolour) label = dataset.cite() if 'm' in dataset.mdata: label += fr' ($m={dataset.mdata["m"]}\ M_\odot$)' # ------------------------------------------------------------------ # Plot # ------------------------------------------------------------------ # TODO not sure if I like the mfc=none style, # mostly due to https://github.com/matplotlib/matplotlib/issues/3400 return ax.errorbar(xdata, ydata, xerr=xerr, yerr=yerr, mfc='none', label=label, **kwargs) def _plot_profile(self, ax, ds_pattern, y_key, model_data, *, y_unit=None, residuals=False, err_transform=None, res_kwargs=None, **kwargs): '''figure out what needs to be plotted and call model/data plotters all **kwargs passed to both _plot_model and _plot_data model_data dimensions *must* be (mass bins, intervals, r axis) ''' # TODO we might still want to allow for specific model/data kwargs? ds_pattern = ds_pattern or '' strict = kwargs.pop('strict', False) # Restart marker styles each plotting call markers = iter(self._MARKERS) # TODO need to figure out how we handle passed kwargs better default_clr = kwargs.pop('color', None) if res_kwargs is None: res_kwargs = {} # ------------------------------------------------------------------ # Determine the relevant datasets to the given pattern # ------------------------------------------------------------------ datasets = self.obs.filter_datasets(ds_pattern) if strict and ds_pattern and not datasets: mssg = (f"No datasets matching '{ds_pattern}' exist in {self.obs}." f"To plot models without data, set `show_obs=False`") # raise DataError raise KeyError(mssg) # ------------------------------------------------------------------ # Iterate over the datasets, keeping track of all relevant masses # and calling `_plot_data` # ------------------------------------------------------------------ masses = {} for key, dset in datasets.items(): mrk = next(markers) # get mass bin of this dataset, for later model plotting if 'm' in dset.mdata: m = dset.mdata['m'] * u.Msun mass_bin = np.where(self.mj == m)[0][0] else: mass_bin = self.star_bin if mass_bin in masses: clr = masses[mass_bin][0][0].get_color() else: clr = default_clr # plot the data try: line = self._plot_data(ax, dset, y_key, marker=mrk, color=clr, err_transform=err_transform, y_unit=y_unit, **kwargs) except KeyError as err: if strict: raise err else: # warnings.warn(err.args[0]) continue masses.setdefault(mass_bin, []) masses[mass_bin].append(line) # ------------------------------------------------------------------ # Based on the masses of data plotted, plot the corresponding axes of # the model data, calling `_plot_model` # ------------------------------------------------------------------ res_ax = None if model_data is not None: # ensure that the data is (mass bin, intervals, r domain) if len(model_data.shape) != 3: raise ValueError("invalid model data shape") # No data plotted, use the star_bin if not masses: if model_data.shape[0] > 1: masses = {self.star_bin: None} else: masses = {0: None} for mbin, errbars in masses.items(): ymodel = model_data[mbin, :, :] # TODO having model/data be same color is kinda hard to read # this is why I added mfc=none, but I dont like that either if errbars is not None: clr = errbars[0][0].get_color() else: clr = default_clr self._plot_model(ax, ymodel, color=clr, y_unit=y_unit, **kwargs) if residuals: res_ax = self._add_residuals(ax, ymodel, errbars, res_ax=res_ax, y_unit=y_unit, **res_kwargs) # Adjust x limits if self.rlims is not None: ax.set_xlim(*self.rlims) return ax, res_ax # ----------------------------------------------------------------------- # Plot extras # ----------------------------------------------------------------------- def _add_residuals(self, ax, ymodel, errorbars, percentage=False, *, show_chi2=False, xmodel=None, y_unit=None, size="15%", res_ax=None, divider_kwargs=None): ''' errorbars : a list of outputs from calls to plt.errorbars ''' from mpl_toolkits.axes_grid1 import make_axes_locatable if errorbars is None: errorbars = [] if divider_kwargs is None: divider_kwargs = {} # ------------------------------------------------------------------ # Get model data and spline # ------------------------------------------------------------------ if xmodel is None: xmodel = self.r if y_unit is not None: ymodel = ymodel.to(y_unit) ymedian = self._get_median(ymodel) yspline = util.QuantitySpline(xmodel, ymedian) # ------------------------------------------------------------------ # Setup axes, adding a new smaller axe for the residual underneath, # if it hasn't already been created (and passed to `res_ax`) # ------------------------------------------------------------------ if res_ax is None: divider = make_axes_locatable(ax) res_ax = divider.append_axes('bottom', size=size, pad=0, sharex=ax) res_ax.grid() res_ax.set_xscale(ax.get_xscale()) res_ax.spines['top'].set(**divider_kwargs) # ------------------------------------------------------------------ # Plot the model line, hopefully centred on zero # ------------------------------------------------------------------ if percentage: baseline = 100 * (ymodel - ymedian) / ymodel else: baseline = ymodel - ymedian self._plot_model(res_ax, baseline, color='k') # ------------------------------------------------------------------ # Get data from the plotted errorbars # ------------------------------------------------------------------ chi2 = 0. for errbar in errorbars: # -------------------------------------------------------------- # Get the actual datapoints, and the hopefully correct units # -------------------------------------------------------------- xdata, ydata = errbar[0].get_data() ydata = ydata.to(ymedian.unit) # -------------------------------------------------------------- # Grab relevant formatting (colours and markers) # -------------------------------------------------------------- clr = errbar[0].get_color() mrk = errbar[0].get_marker() # -------------------------------------------------------------- # Parse the errors from the size of the errorbar lines (messy) # -------------------------------------------------------------- xerr = yerr = None if errbar.has_xerr: xerr_lines = errbar[2][0] yerr_lines = errbar[2][1] if errbar.has_yerr else None elif errbar.has_yerr: xerr_lines, yerr_lines = None, errbar[2][0] else: xerr_lines = yerr_lines = None if xerr_lines: xerr_segs = xerr_lines.get_segments() << xdata.unit xerr = u.Quantity([np.abs(seg[:, 0] - xdata[i]) for i, seg in enumerate(xerr_segs)]).T if yerr_lines: yerr_segs = yerr_lines.get_segments() << ydata.unit if percentage: yerr = 100 * np.array([ np.abs(seg[:, 1] - ydata[i]) / ydata[i] for i, seg in enumerate(yerr_segs) ]).T else: yerr = u.Quantity([np.abs(seg[:, 1] - ydata[i]) for i, seg in enumerate(yerr_segs)]).T # -------------------------------------------------------------- # Compute the residuals and plot them # -------------------------------------------------------------- if percentage: res = 100 * (ydata - yspline(xdata)) / yspline(xdata) else: res = ydata - yspline(xdata) res_ax.errorbar(xdata, res, xerr=xerr, yerr=yerr, color=clr, marker=mrk, linestyle='none') # -------------------------------------------------------------- # Optionally compute chi-squared statistic # -------------------------------------------------------------- if show_chi2: chi2 += np.sum((res / yerr)**2) if show_chi2: fake = plt.Line2D([], [], label=fr"$\chi^2={chi2:.2f}$") res_ax.legend(handles=[fake], handlelength=0, handletextpad=0) # ------------------------------------------------------------------ # Label y-axes # ------------------------------------------------------------------ if percentage: res_ax.set_ylabel(r'Residuals') res_ax.yaxis.set_major_formatter(mpl_tick.PercentFormatter()) else: res_ax.set_ylabel(f'Residuals [{res_ax.get_ylabel()}]') # ------------------------------------------------------------------ # Set bounds at 100% or less # ------------------------------------------------------------------ if percentage: ylim = res_ax.get_ylim() res_ax.set_ylim(max(ylim[0], -100), min(ylim[1], 100)) return res_ax def _add_hyperparam(self, ax, ymodel, xdata, ydata, yerr): # TODO this is still a complete mess yspline = util.QuantitySpline(self.r, ymodel) if hasattr(ax, 'aeff_text'): aeff_str = ax.aeff_text.get_text() aeff = float(aeff_str[aeff_str.rfind('$') + 1:]) else: # TODO figure out best place to place this at ax.aeff_text = ax.text(0.1, 0.3, '') aeff = 0. aeff += util.hyperparam_effective(ydata, yspline(xdata), yerr) ax.aeff_text.set_text(fr'$\alpha_{{eff}}=${aeff:.4e}') # ----------------------------------------------------------------------- # Observables plotting # ----------------------------------------------------------------------- @_support_units def plot_LOS(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', y_unit='km/s', label_position='top', blank_xaxis=False, res_kwargs=None, **kwargs): fig, ax = self._setup_artist(fig, ax) ax.set_xscale("log") if show_obs: pattern, var = '*velocity_dispersion*', 'σ' strict = show_obs == 'strict' else: pattern = var = None strict = False ax, res_ax = self._plot_profile(ax, pattern, var, self.LOS, strict=strict, residuals=residuals, x_unit=x_unit, y_unit=y_unit, res_kwargs=res_kwargs, **kwargs) label = 'LOS Velocity Dispersion' self._set_ylabel(ax, label, label_position, residual_ax=res_ax) self._set_xlabel(ax, residual_ax=res_ax, remove_all=blank_xaxis) ax.legend() return fig @_support_units def plot_pm_tot(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', y_unit='mas/yr', label_position='top', blank_xaxis=False, res_kwargs=None, **kwargs): fig, ax = self._setup_artist(fig, ax) ax.set_xscale("log") if show_obs: pattern, var = '*proper_motion*', 'PM_tot' strict = show_obs == 'strict' else: pattern = var = None strict = False ax, res_ax = self._plot_profile(ax, pattern, var, self.pm_tot, strict=strict, residuals=residuals, x_unit=x_unit, y_unit=y_unit, res_kwargs=res_kwargs, **kwargs) label = "Total PM Dispersion" self._set_ylabel(ax, label, label_position, residual_ax=res_ax) self._set_xlabel(ax, residual_ax=res_ax, remove_all=blank_xaxis) ax.legend() return fig @_support_units def plot_pm_ratio(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', label_position='top', blank_xaxis=False, res_kwargs=None, **kwargs): fig, ax = self._setup_artist(fig, ax) ax.set_xscale("log") if show_obs: pattern, var = '*proper_motion*', 'PM_ratio' strict = show_obs == 'strict' else: pattern = var = None strict = False ax, res_ax = self._plot_profile(ax, pattern, var, self.pm_ratio, strict=strict, residuals=residuals, x_unit=x_unit, res_kwargs=res_kwargs, **kwargs) label = "PM Anisotropy" self._set_ylabel(ax, label, label_position, residual_ax=res_ax) self._set_xlabel(ax, residual_ax=res_ax, remove_all=blank_xaxis) ax.legend() return fig @_support_units def plot_pm_T(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', y_unit='mas/yr', label_position='top', blank_xaxis=False, res_kwargs=None, **kwargs): fig, ax = self._setup_artist(fig, ax) ax.set_xscale("log") if show_obs: pattern, var = '*proper_motion*', 'PM_T' strict = show_obs == 'strict' else: pattern = var = None strict = False ax, res_ax = self._plot_profile(ax, pattern, var, self.pm_T, strict=strict, residuals=residuals, x_unit=x_unit, y_unit=y_unit, res_kwargs=res_kwargs, **kwargs) label = "Tangential PM Dispersion" self._set_ylabel(ax, label, label_position, residual_ax=res_ax) self._set_xlabel(ax, residual_ax=res_ax, remove_all=blank_xaxis) ax.legend() return fig @_support_units def plot_pm_R(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', y_unit='mas/yr', label_position='top', blank_xaxis=False, res_kwargs=None, **kwargs): fig, ax = self._setup_artist(fig, ax) ax.set_xscale("log") if show_obs: pattern, var = '*proper_motion*', 'PM_R' strict = show_obs == 'strict' else: pattern = var = None strict = False ax, res_ax = self._plot_profile(ax, pattern, var, self.pm_R, strict=strict, residuals=residuals, x_unit=x_unit, y_unit=y_unit, res_kwargs=res_kwargs, **kwargs) label = "Radial PM Dispersion" self._set_ylabel(ax, label, label_position, residual_ax=res_ax) self._set_xlabel(ax, residual_ax=res_ax, remove_all=blank_xaxis) ax.legend() return fig @_support_units def plot_number_density(self, fig=None, ax=None, show_obs=True, residuals=False, *, x_unit='pc', label_position='top', blank_xaxis=False, res_kwargs=None, **kwargs): def quad_nuisance(err): return np.sqrt(err**2 + (self.s2 << err.unit**2)) fig, ax = self._setup_artist(fig, ax) ax.loglog() if show_obs: pattern, var = '*number_density*', 'Σ' strict = show_obs == 'strict' kwargs.setdefault('err_transform', quad_nuisance) else: pattern = var = None strict = False ax, res_ax = self._plot_profile(ax, pattern, var, self.numdens, strict=strict, residuals=residuals, x_unit=x_unit, res_kwargs=res_kwargs, **kwargs) # bit arbitrary, but probably fine for the most part ax.set_ylim(bottom=0.5e-4) label = 'Number Density' self._set_ylabel(ax, label, label_position, residual_ax=res_ax) self._set_xlabel(ax, residual_ax=res_ax, remove_all=blank_xaxis) ax.legend() return fig @_support_units def plot_all(self, fig=None, sharex=True, **kwargs): '''Plots all the primary profiles (numdens, LOS, PM) but *not* the mass function, pulsars, or any secondary profiles (cum-mass, remnants, etc) ''' # TODO working with residuals here is hard because constrianed_layout # doesn't seem super aware of them fig, axes = self._setup_multi_artist(fig, (3, 2), sharex=sharex) axes = axes.reshape((3, 2)) res_kwargs = dict(size="25%", show_chi2=False, percentage=True) kwargs.setdefault('res_kwargs', res_kwargs) # left plots self.plot_number_density(fig=fig, ax=axes[0, 0], label_position='left', blank_xaxis=True, **kwargs) self.plot_LOS(fig=fig, ax=axes[1, 0], label_position='left', blank_xaxis=True, **kwargs) self.plot_pm_ratio(fig=fig, ax=axes[2, 0], label_position='left', **kwargs) # right plots self.plot_pm_tot(fig=fig, ax=axes[0, 1], label_position='right', blank_xaxis=True, **kwargs) self.plot_pm_T(fig=fig, ax=axes[1, 1], label_position='right', blank_xaxis=True, **kwargs) self.plot_pm_R(fig=fig, ax=axes[2, 1], label_position='right', **kwargs) # brute force clear out any "residuals" labels for ax in fig.axes: if 'Residual' in ax.get_ylabel(): ax.set_ylabel('') return fig # ---------------------------------------------------------------------- # Mass Function Plotting # ---------------------------------------------------------------------- @_support_units def plot_mass_func(self, fig=None, show_obs=True, show_fields=True, *, colours=None, PI_legend=False, logscaled=False, field_kw=None): # ------------------------------------------------------------------ # Setup axes, splitting into two columns if necessary and adding the # extra ax for the field plot if desired # ------------------------------------------------------------------ N_rbins = sum([len(d) for d in self.mass_func.values()]) shape = ((int(np.ceil(N_rbins / 2)), int(np.floor(N_rbins / 2))), 2) # If adding the fields, include an extra column on the left for it if show_fields: shape = ((1, *shape[0]), shape[1] + 1) fig, axes = self._setup_multi_artist(fig, shape, sharex=True) axes = axes.T.flatten() ax_ind = 0 # ------------------------------------------------------------------ # If desired, use the `plot_MF_fields` method to show the fields # ------------------------------------------------------------------ if show_fields: ax = axes[ax_ind] if field_kw is None: field_kw = {} field_kw.setdefault('radii', []) self.plot_MF_fields(fig, ax, **field_kw) ax_ind += 1 # ------------------------------------------------------------------ # Iterate over each PI, gathering data to plot # ------------------------------------------------------------------ for PI in sorted(self.mass_func, key=lambda k: self.mass_func[k][0]['r1']): bins = self.mass_func[PI] # Get data for this PI mf = self.obs[PI] mbin_mean = (mf['m1'] + mf['m2']) / 2. mbin_width = mf['m2'] - mf['m1'] N = mf['N'] / mbin_width ΔN = mf['ΔN'] / mbin_width # -------------------------------------------------------------- # Iterate over radial bin dicts for this PI # -------------------------------------------------------------- for rind, rbin in enumerate(bins): ax = axes[ax_ind] clr = rbin.get('colour', None) # ---------------------------------------------------------- # Plot observations # ---------------------------------------------------------- if show_obs: r_mask = ((mf['r1'] == rbin['r1']) & (mf['r2'] == rbin['r2'])) N_data = N[r_mask].value err_data = ΔN[r_mask].value err = self.F * err_data pnts = ax.errorbar(mbin_mean[r_mask], N_data, yerr=err, fmt='o', color=clr) clr = pnts[0].get_color() # ---------------------------------------------------------- # Plot model. Doesn't utilize the `_plot_profile` method, as # this is *not* a profile, but does use similar, but simpler, # logic # ---------------------------------------------------------- # The mass domain is provided explicitly, to support visualizers # which don't store the entire mass range (e.g. CImodels) mj = rbin['mj'] dNdm = rbin['dNdm'] midpoint = dNdm.shape[0] // 2 median = dNdm[midpoint] med_plot, = ax.plot(mj, median, '--', c=clr) alpha = 0.8 / (midpoint + 1) for sigma in range(1, midpoint + 1): ax.fill_between( mj, dNdm[midpoint + sigma], dNdm[midpoint - sigma], alpha=1 - alpha, color=clr ) alpha += alpha if logscaled: ax.set_xscale('log') ax.set_xlabel(None) # ---------------------------------------------------------- # "Label" each bin with it's radial bounds. # Uses fake text to allow for using loc='best' from `legend`. # Really this should be a part of plt (see matplotlib#17946) # ---------------------------------------------------------- r1 = rbin['r1'].to_value('arcmin') r2 = rbin['r2'].to_value('arcmin') fake = plt.Line2D([], [], label=f"r = {r1:.2f}'-{r2:.2f}'") handles = [fake] leg_kw = {'handlelength': 0, 'handletextpad': 0} # If this is the first bin, also add a PI tag if PI_legend and not rind and not show_fields: pi_fake = plt.Line2D([], [], label=PI) handles.append(pi_fake) leg_kw['labelcolor'] = ['k', clr] ax.legend(handles=handles, **leg_kw) ax_ind += 1 # ------------------------------------------------------------------ # Put labels on subfigs # ------------------------------------------------------------------ for sf in fig.subfigs[show_fields:]: sf.supxlabel(r'Mass [$M_\odot$]') fig.subfigs[show_fields].supylabel('dN/dm') return fig @_support_units def plot_MF_fields(self, fig=None, ax=None, *, radii=("rh",), cmap=None, grid=True): '''plot all mass function fields in this observation ''' import shapely.geometry as geom fig, ax = self._setup_artist(fig, ax) # Centre dot ax.plot(0, 0, 'kx') # ------------------------------------------------------------------ # Iterate over each PI and it's radial bins # ------------------------------------------------------------------ for PI, bins in self.mass_func.items(): for rbin in bins: # ---------------------------------------------------------- # Plot the field using this `Field` slice's own plotting method # ---------------------------------------------------------- clr = rbin.get("colour", None) rbin['field'].plot(ax, fc=clr, alpha=0.7, ec='k', label=PI) # make this label private so it's only added once to legend PI = f'_{PI}' # ------------------------------------------------------------------ # If desired, add a "pseudo" grid in the polar projection, at 2 # arcmin intervals, up to the rt # ------------------------------------------------------------------ # Ensure the gridlines don't affect the axes scaling ax.autoscale(False) if grid: # TODO this should probably use distance to furthest field rt = self.rt if hasattr(self, 'rt') else (20 << u.arcmin) ticks = np.arange(2, rt.to_value('arcmin'), 2) # make sure this grid matches normal grids grid_kw = { 'color': plt.rcParams.get('grid.color'), 'linestyle': plt.rcParams.get('grid.linestyle'), 'linewidth': plt.rcParams.get('grid.linewidth'), 'alpha': plt.rcParams.get('grid.alpha'), 'zorder': 0.5 } for gr in ticks: circle = np.array(geom.Point(0, 0).buffer(gr).exterior.coords).T gr_line, = ax.plot(*circle, **grid_kw) ax.annotate(f'{gr:.0f}"', xy=(circle[0].max(), 0), color=grid_kw['color']) # ------------------------------------------------------------------ # Try to plot the various radii quantities from this model, if desired # ------------------------------------------------------------------ # TODO for CI this could be a CI of rh, ra, rt actually (60) for r_type in radii: # This is to explicitly avoid very ugly exceptions from geom if r_type not in {'rh', 'ra', 'rt'}: mssg = f'radii must be one of {{rh, ra, rt}}, not `{r_type}`' raise TypeError(mssg) radius = getattr(self, r_type).to_value('arcmin') circle = np.array(geom.Point(0, 0).buffer(radius).exterior.coords).T ax.plot(*circle, ls='--') ax.text(0, circle[1].max(), r_type) # ------------------------------------------------------------------ # Add plot labels and legends # ------------------------------------------------------------------ ax.set_xlabel('RA [arcmin]') ax.set_ylabel('DEC [arcmin]') # TODO figure out a better way of handling this always using best? (75) ax.legend(loc='upper left' if grid else 'best') return fig # ----------------------------------------------------------------------- # Model plotting # ----------------------------------------------------------------------- @_support_units def plot_density(self, fig=None, ax=None, kind='all', *, x_unit='pc', label_position='left'): if kind == 'all': kind = {'MS', 'tot', 'BH', 'WD', 'NS'} fig, ax = self._setup_artist(fig, ax) # ax.set_title('Surface Mass Density') # Total density if 'tot' in kind: kw = {"label": "Total", "color": "tab:cyan"} self._plot_profile(ax, None, None, self.rho_tot, x_unit=x_unit, **kw) # Total Remnant density if 'rem' in kind: kw = {"label": "Remnants", "color": "tab:purple"} self._plot_profile(ax, None, None, self.rho_rem, x_unit=x_unit, **kw) # Main sequence density if 'MS' in kind: kw = {"label": "Main-sequence stars", "color": "tab:orange"} self._plot_profile(ax, None, None, self.rho_MS, x_unit=x_unit, **kw) if 'WD' in kind: kw = {"label": "White Dwarfs", "color": "tab:green"} self._plot_profile(ax, None, None, self.rho_WD, x_unit=x_unit, **kw) if 'NS' in kind: kw = {"label": "Neutron Stars", "color": "tab:red"} self._plot_profile(ax, None, None, self.rho_NS, x_unit=x_unit, **kw) # Black hole density if 'BH' in kind: kw = {"label": "Black Holes", "color": "tab:gray"} self._plot_profile(ax, None, None, self.rho_BH, x_unit=x_unit, **kw) ax.set_yscale("log") ax.set_xscale("log") self._set_ylabel(ax, 'Mass Density', label_position) self._set_xlabel(ax) fig.legend(loc='upper center', ncol=6, bbox_to_anchor=(0.5, 1.), fancybox=True) return fig @_support_units def plot_surface_density(self, fig=None, ax=None, kind='all', *, x_unit='pc', label_position='left'): if kind == 'all': kind = {'MS', 'tot', 'BH', 'WD', 'NS'} fig, ax = self._setup_artist(fig, ax) # ax.set_title('Surface Mass Density') # Total density if 'tot' in kind: kw = {"label": "Total", "color": "tab:cyan"} self._plot_profile(ax, None, None, self.Sigma_tot, x_unit=x_unit, **kw) # Total Remnant density if 'rem' in kind: kw = {"label": "Remnants", "color": "tab:purple"} self._plot_profile(ax, None, None, self.Sigma_rem, x_unit=x_unit, **kw) # Main sequence density if 'MS' in kind: kw = {"label": "Main-sequence stars", "color": "tab:orange"} self._plot_profile(ax, None, None, self.Sigma_MS, x_unit=x_unit, **kw) if 'WD' in kind: kw = {"label": "White Dwarfs", "color": "tab:green"} self._plot_profile(ax, None, None, self.Sigma_WD, x_unit=x_unit, **kw) if 'NS' in kind: kw = {"label": "Neutron Stars", "color": "tab:red"} self._plot_profile(ax, None, None, self.Sigma_NS, x_unit=x_unit, **kw) # Black hole density if 'BH' in kind: kw = {"label": "Black Holes", "color": "tab:gray"} self._plot_profile(ax, None, None, self.Sigma_BH, x_unit=x_unit, **kw) ax.set_yscale("log") ax.set_xscale("log") self._set_ylabel(ax, 'Surface Mass Density', label_position) self._set_xlabel(ax) fig.legend(loc='upper center', ncol=6, bbox_to_anchor=(0.5, 1.), fancybox=True) return fig @_support_units def plot_cumulative_mass(self, fig=None, ax=None, kind='all', *, x_unit='pc', label_position='left'): if kind == 'all': kind = {'MS', 'tot', 'BH', 'WD', 'NS'} fig, ax = self._setup_artist(fig, ax) # ax.set_title('Cumulative Mass') # Total density if 'tot' in kind: kw = {"label": "Total", "color": "tab:cyan"} self._plot_profile(ax, None, None, self.cum_M_tot, x_unit=x_unit, **kw) # Main sequence density if 'MS' in kind: kw = {"label": "Main-sequence stars", "color": "tab:orange"} self._plot_profile(ax, None, None, self.cum_M_MS, x_unit=x_unit, **kw) if 'WD' in kind: kw = {"label": "White Dwarfs", "color": "tab:green"} self._plot_profile(ax, None, None, self.cum_M_WD, x_unit=x_unit, **kw) if 'NS' in kind: kw = {"label": "Neutron Stars", "color": "tab:red"} self._plot_profile(ax, None, None, self.cum_M_NS, x_unit=x_unit, **kw) # Black hole density if 'BH' in kind: kw = {"label": "Black Holes", "color": "tab:gray"} self._plot_profile(ax, None, None, self.cum_M_BH, x_unit=x_unit, **kw) ax.set_yscale("log") ax.set_xscale("log") self._set_ylabel(ax, rf'$M_{{enc}}$', label_position) self._set_xlabel(ax) fig.legend(loc='upper center', ncol=5, bbox_to_anchor=(0.5, 1.), fancybox=True) return fig @_support_units def plot_remnant_fraction(self, fig=None, ax=None, *, show_total=True, x_unit='pc', label_position='left'): '''Fraction of mass in remnants vs MS stars, like in baumgardt''' fig, ax = self._setup_artist(fig, ax) ax.set_title("Remnant Fraction") ax.set_xscale("log") self._plot_profile(ax, None, None, self.frac_M_MS, x_unit=x_unit, label="Main-sequence stars") self._plot_profile(ax, None, None, self.frac_M_rem, x_unit=x_unit, label="Remnants") label = r"Mass fraction $M_{MS}/M_{tot}$, $M_{remn.}/M_{tot}$" self._set_ylabel(ax, label, label_position) self._set_xlabel(ax) ax.set_ylim(0.0, 1.0) if show_total: from matplotlib.offsetbox import AnchoredText tot = AnchoredText(fr'$f_{{\mathrm{{remn}}}}={self.f_rem:.2f}$', frameon=True, loc='upper center') tot.patch.set_boxstyle("round,pad=0.,rounding_size=0.2") ax.add_artist(tot) ax.legend() return fig # ----------------------------------------------------------------------- # Goodness of fit statistics # ----------------------------------------------------------------------- @_support_units def _compute_profile_chi2(self, ds_pattern, y_key, model_data, *, x_key='r', err_transform=None, reduced=True): '''compute chi2 for this dataset (pattern)''' chi2 = 0. # ensure that the data is (mass bin, intervals, r domain) if len(model_data.shape) != 3: raise ValueError("invalid model data shape") # ------------------------------------------------------------------ # Determine the relevant datasets to the given pattern # ------------------------------------------------------------------ ds_pattern = ds_pattern or '' datasets = self.obs.filter_datasets(ds_pattern) # ------------------------------------------------------------------ # Iterate over the datasets, computing chi2 for each # ------------------------------------------------------------------ for dset in datasets.values(): # -------------------------------------------------------------- # get mass bin of this dataset # -------------------------------------------------------------- if 'm' in dset.mdata: m = dset.mdata['m'] * u.Msun mass_bin = np.where(self.mj == m)[0][0] else: mass_bin = self.star_bin # -------------------------------------------------------------- # get data values # -------------------------------------------------------------- try: xdata = dset[x_key] # x_key='r' ydata = dset[y_key] except KeyError: continue yerr = self._get_err(dset, y_key) if err_transform is not None: yerr = err_transform(yerr) yerr = yerr.to(ydata.unit) # -------------------------------------------------------------- # get model values # -------------------------------------------------------------- xmodel = self.r.to(xdata.unit) ymedian = self._get_median(model_data[mass_bin, :, :]) # TEMPORRAY FIX FOR RATIO # ymedian[np.isnan(ymedian)] = 1.0 << ymedian.unit ymodel = util.QuantitySpline(xmodel, ymedian)(xdata).to(ydata.unit) # -------------------------------------------------------------- # compute chi2 # -------------------------------------------------------------- denom = (ydata.size - 13) if reduced else 1. chi2 += np.nansum(((ymodel - ydata) / yerr)**2) / denom return chi2 @_support_units def _compute_massfunc_chi2(self, *, reduced=True): chi2 = 0. # ------------------------------------------------------------------ # Iterate over each PI, gathering data # ------------------------------------------------------------------ for PI in sorted(self.mass_func, key=lambda k: self.mass_func[k][0]['r1']): bins = self.mass_func[PI] # Get data for this PI mf = self.obs[PI] mbin_mean = (mf['m1'] + mf['m2']) / 2. mbin_width = mf['m2'] - mf['m1'] N = mf['N'] / mbin_width ΔN = mf['ΔN'] / mbin_width # -------------------------------------------------------------- # Iterate over radial bin dicts for this PI # -------------------------------------------------------------- for rind, rbin in enumerate(bins): # ---------------------------------------------------------- # Get data # ---------------------------------------------------------- r_mask = ((mf['r1'] == rbin['r1']) & (mf['r2'] == rbin['r2'])) xdata = mbin_mean[r_mask] ydata = N[r_mask].value yerr = self.F * ΔN[r_mask].value # ---------------------------------------------------------- # Get model # ---------------------------------------------------------- xmodel = rbin['mj'] ymedian = self._get_median(rbin['dNdm']) ymodel = util.QuantitySpline(xmodel, ymedian)(xdata) # TODO really should get this Nparam dynamically, if some fixed denom = (ydata.size - 13) if reduced else 1. chi2 += np.sum(((ymodel - ydata) / yerr)**2) / denom return chi2 @property def chi2(self): '''compute chi2 between median model and all datasets Be cognizant that this is only the median model chi2, and not necessarily useful for actual statistics ''' # TODO seems to produce alot of infs? def numdens_nuisance(err): return np.sqrt(err**2 + (self.s2 << err.unit**2)) all_components = [ {'ds_pattern': '*velocity_dispersion*', 'y_key': 'σ', 'model_data': self.LOS}, {'ds_pattern': '*proper_motion*', 'y_key': 'PM_tot', 'model_data': self.pm_tot}, {'ds_pattern': '*proper_motion*', 'y_key': 'PM_ratio', 'model_data': self.pm_ratio}, {'ds_pattern': '*proper_motion*', 'y_key': 'PM_T', 'model_data': self.pm_T}, {'ds_pattern': '*proper_motion*', 'y_key': 'PM_R', 'model_data': self.pm_R}, {'ds_pattern': '*number_density*', 'y_key': 'Σ', 'model_data': self.numdens, 'err_transform': numdens_nuisance}, ] chi2 = 0. for comp in all_components: chi2 += self._compute_profile_chi2(**comp) chi2 += self._compute_massfunc_chi2() return chi2 class ModelVisualizer(_ClusterVisualizer): ''' class for making, showing, saving all the plots related to a single model ''' @classmethod def from_chain(cls, chain, observations, method='median'): ''' create a Visualizer instance based on a chain, y taking the median of the chain parameters ''' reduc_methods = {'median': np.median, 'mean': np.mean} # if 3d (Niters, Nwalkers, Nparams) # if 2d (Nwalkers, Nparams) # if 1d (Nparams) chain = chain.reshape((-1, chain.shape[-1])) theta = reduc_methods[method](chain, axis=0) return cls(Model(theta, observations), observations) @classmethod def from_theta(cls, theta, observations): ''' create a Visualizer instance based on a theta, see `Model` for allowed theta types ''' return cls(Model(theta, observations), observations) def __init__(self, model, observations=None): self.model = model self.obs = observations if observations else model.observations self.name = observations.cluster self.rh = model.rh self.ra = model.ra self.rt = model.rt self.F = model.F self.s2 = model.theta['s2'] self.d = model.d self.r = model.r self.rlims = (9e-3, self.r.max().value + 5) << self.r.unit self._2πr = 2 * np.pi * model.r self.star_bin = model.nms - 1 self.mj = model.mj self.f_rem = np.sum(model.Mj[model._remnant_bins]) / model.M self.LOS = np.sqrt(self.model.v2pj)[:, np.newaxis, :] self.pm_T = np.sqrt(model.v2Tj)[:, np.newaxis, :] self.pm_R = np.sqrt(model.v2Rj)[:, np.newaxis, :] self.pm_tot = np.sqrt(0.5 * (self.pm_T**2 + self.pm_R**2)) self.pm_ratio = self.pm_T / self.pm_R self._init_numdens(model, observations) self._init_massfunc(model, observations) self._init_surfdens(model, observations) self._init_dens(model, observations) self._init_mass_frac(model, observations) self._init_cum_mass(model, observations) # TODO alot of these init functions could be more homogenous @_ClusterVisualizer._support_units def _init_numdens(self, model, observations): model_nd = model.Sigmaj / model.mj[:, np.newaxis] nd = np.empty(model_nd.shape)[:, np.newaxis, :] << model_nd.unit # Check for observational numdens profiles, to compute scaling factor K if obs_nd := observations.filter_datasets('*number_density'): if len(obs_nd) > 1: mssg = ('Too many number density datasets, ' 'computing scaling factor using only final dataset') logging.warning(mssg) obs_nd = list(obs_nd.values())[-1] obs_r = obs_nd['r'].to(model.r.unit) for mbin in range(model_nd.shape[0]): nd_interp = util.QuantitySpline(model.r, model_nd[mbin, :]) K = (np.nansum(obs_nd['Σ'] * nd_interp(obs_r) / obs_nd['Σ']**2) / np.nansum(nd_interp(obs_r)**2 / obs_nd['Σ']**2)) nd[mbin, 0, :] = K * model_nd[mbin, :] else: mssg = 'No number density datasets found, setting K=1' logging.info(mssg) nd[:, 0, :] = model_nd[:, :] self.numdens = nd @_ClusterVisualizer._support_units def _init_massfunc(self, model, observations, *, cmap=None): ''' sets self.mass_func as a dict of PI's, where each PI has a list of subdicts. Each subdict represents a single radial slice (within this PI) and contains the radii, the mass func values, and the field slice ''' cmap = cmap or plt.cm.rainbow self.mass_func = {} cen = (observations.mdata['RA'], observations.mdata['DEC']) PI_list = observations.filter_datasets('*mass_function*') densityj = [util.QuantitySpline(model.r, model.Sigmaj[j]) for j in range(model.nms)] for i, (key, mf) in enumerate(PI_list.items()): self.mass_func[key] = [] clr = cmap(i / len(PI_list)) field = mass.Field.from_dataset(mf, cen=cen) rbins = np.unique(np.c_[mf['r1'], mf['r2']], axis=0) rbins.sort(axis=0) for r_in, r_out in rbins: this_slc = {'r1': r_in, 'r2': r_out} field_slice = field.slice_radially(r_in, r_out) this_slc['field'] = field_slice this_slc['colour'] = clr this_slc['dNdm'] = np.empty((1, model.nms)) this_slc['mj'] = model.mj[:model.nms] sample_radii = field_slice.MC_sample(300).to(u.pc) for j in range(model.nms): Nj = field_slice.MC_integrate(densityj[j], sample_radii) widthj = (model.mj[j] * model.mes_widths[j]) this_slc['dNdm'][0, j] = (Nj / widthj).value self.mass_func[key].append(this_slc) @_ClusterVisualizer._support_units def _init_dens(self, model, observations): shp = (np.newaxis, np.newaxis, slice(None)) self.rho_tot = np.sum(model.rhoj, axis=0)[shp] self.rho_MS = np.sum(model.rhoj[model._star_bins], axis=0)[shp] self.rho_rem = np.sum(model.rhoj[model._remnant_bins], axis=0)[shp] self.rho_BH = np.sum(model.BH_rhoj, axis=0)[shp] self.rho_WD = np.sum(model.WD_rhoj, axis=0)[shp] self.rho_NS = np.sum(model.NS_rhoj, axis=0)[shp] @_ClusterVisualizer._support_units def _init_surfdens(self, model, observations): shp = (np.newaxis, np.newaxis, slice(None)) self.Sigma_tot = np.sum(model.Sigmaj, axis=0)[shp] self.Sigma_MS = np.sum(model.Sigmaj[model._star_bins], axis=0)[shp] self.Sigma_rem = np.sum(model.Sigmaj[model._remnant_bins], axis=0)[shp] self.Sigma_BH = np.sum(model.BH_Sigmaj, axis=0)[shp] self.Sigma_WD = np.sum(model.WD_Sigmaj, axis=0)[shp] self.Sigma_NS = np.sum(model.NS_Sigmaj, axis=0)[shp] @_ClusterVisualizer._support_units def _init_mass_frac(self, model, observations): int_MS = util.QuantitySpline(self.r, self._2πr * self.Sigma_MS) int_rem = util.QuantitySpline(self.r, self._2πr * self.Sigma_rem) int_tot = util.QuantitySpline(self.r, self._2πr * self.Sigma_tot) mass_MS = np.empty((1, 1, self.r.size)) mass_rem = np.empty((1, 1, self.r.size)) mass_tot = np.empty((1, 1, self.r.size)) # TODO the rbins at the end always mess up fractional stuff, drop to 0 mass_MS[0, 0, 0] = mass_rem[0, 0, 0] = mass_tot[0, 0, 0] = np.nan for i in range(1, self.r.size - 2): mass_MS[0, 0, i] = int_MS.integral(self.r[i], self.r[i + 1]).value mass_rem[0, 0, i] = int_rem.integral(self.r[i], self.r[i + 1]).value mass_tot[0, 0, i] = int_tot.integral(self.r[i], self.r[i + 1]).value self.frac_M_MS = mass_MS / mass_tot self.frac_M_rem = mass_rem / mass_tot @_ClusterVisualizer._support_units def _init_cum_mass(self, model, observations): int_tot = util.QuantitySpline(self.r, self._2πr * self.Sigma_tot) int_MS = util.QuantitySpline(self.r, self._2πr * self.Sigma_MS) int_BH = util.QuantitySpline(self.r, self._2πr * self.Sigma_BH) int_WD = util.QuantitySpline(self.r, self._2πr * self.Sigma_WD) int_NS = util.QuantitySpline(self.r, self._2πr * self.Sigma_NS) cum_tot = np.empty((1, 1, self.r.size)) << u.Msun cum_MS = np.empty((1, 1, self.r.size)) << u.Msun cum_BH = np.empty((1, 1, self.r.size)) << u.Msun cum_WD = np.empty((1, 1, self.r.size)) << u.Msun cum_NS = np.empty((1, 1, self.r.size)) << u.Msun for i in range(0, self.r.size): cum_tot[0, 0, i] = int_tot.integral(model.r[0], model.r[i]) cum_MS[0, 0, i] = int_MS.integral(model.r[0], model.r[i]) cum_BH[0, 0, i] = int_BH.integral(model.r[0], model.r[i]) cum_WD[0, 0, i] = int_WD.integral(model.r[0], model.r[i]) cum_NS[0, 0, i] = int_NS.integral(model.r[0], model.r[i]) self.cum_M_tot = cum_tot self.cum_M_MS = cum_MS self.cum_M_WD = cum_WD self.cum_M_NS = cum_NS self.cum_M_BH = cum_BH class CIModelVisualizer(_ClusterVisualizer): ''' class for making, showing, saving all the plots related to a bunch of models in the form of confidence intervals ''' @_ClusterVisualizer._support_units def plot_f_rem(self, fig=None, ax=None, bins='auto', color='b'): fig, ax = self._setup_artist(fig, ax) color = mpl_clr.to_rgb(color) facecolor = color + (0.33, ) ax.hist(self.f_rem, histtype='stepfilled', bins=bins, ec=color, fc=facecolor, lw=2) return fig @_ClusterVisualizer._support_units def plot_BH_mass(self, fig=None, ax=None, bins='auto', color='b'): fig, ax = self._setup_artist(fig, ax) color = mpl_clr.to_rgb(color) facecolor = color + (0.33, ) ax.hist(self.BH_mass, histtype='stepfilled', bins=bins, ec=color, fc=facecolor, lw=2) return fig @_ClusterVisualizer._support_units def plot_BH_num(self, fig=None, ax=None, bins='auto', color='b'): fig, ax = self._setup_artist(fig, ax) color = mpl_clr.to_rgb(color) facecolor = color + (0.33, ) ax.hist(self.BH_num, histtype='stepfilled', bins=bins, ec=color, fc=facecolor, lw=2) return fig def __init__(self, observations): self.obs = observations self.name = observations.cluster @classmethod def from_chain(cls, chain, observations, N=100, *, verbose=False, pool=None): import functools viz = cls(observations) viz.N = N # ------------------------------------------------------------------ # Get info about the chain and set of models # ------------------------------------------------------------------ # Flatten walkers, if not already chain = chain.reshape((-1, chain.shape[-1]))[-N:] median_chain = np.median(chain, axis=0) # TODO get these indices more dynamically viz.F = median_chain[7] viz.s2 = median_chain[6] viz.d = median_chain[12] << u.kpc # Setup the radial domain to interpolate everything onto # We estimate the maximum radius needed will be given by the model with # the largest value of the truncation parameter "g". This should be a # valid enough assumption for our needs. While we have it, we'll also # use this model to grab the other values we need, which shouldn't # change much between models, so using this extreme model is okay. # warning: in very large N samples, this g might be huge, and lead to a # very large rt. I'm not really sure yet how that might affect the CIs # or plots # TODO https://github.com/nmdickson/GCfit/issues/100 huge_model = Model(chain[np.argmax(chain[:, 4])], viz.obs) viz.rt = huge_model.rt viz.r = np.r_[0, np.geomspace(1e-5, viz.rt.value, num=99)] << u.pc viz.rlims = (9e-3, viz.r.max().value + 5) << viz.r.unit # Assume that this example model has same nms bin as all models # This approximation isn't exactly correct (especially when Ndot != 0), # but close enough for plots viz.star_bin = 0 # mj only contains nms and tracer bins (the only ones we plot anyways) mj_MS = huge_model.mj[huge_model._star_bins][-1] mj_tracer = huge_model.mj[huge_model._tracer_bins] viz.mj = np.r_[mj_MS, mj_tracer] # ------------------------------------------------------------------ # Setup the final full parameters arrays with dims of # [mass bins, intervals (from percentile of models), radial bins] for # all "profile" datasets # ------------------------------------------------------------------ Nr = viz.r.size # velocities vel_unit = np.sqrt(huge_model.v2Tj).unit Nm = 1 + len(mj_tracer) vpj = np.full((Nm, N, Nr), np.nan) << vel_unit vTj, vRj, vtotj = vpj.copy(), vpj.copy(), vpj.copy() vaj = np.full((Nm, N, Nr), np.nan) << u.dimensionless_unscaled # mass density rho_unit = huge_model.rhoj.unit rho_tot = np.full((1, N, Nr), np.nan) << rho_unit rho_MS, rho_BH = rho_tot.copy(), rho_tot.copy() rho_WD, rho_NS = rho_tot.copy(), rho_tot.copy() # surface density Sigma_unit = huge_model.Sigmaj.unit Sigma_tot = np.full((1, N, Nr), np.nan) << Sigma_unit Sigma_MS, Sigma_BH = Sigma_tot.copy(), Sigma_tot.copy() Sigma_WD, Sigma_NS = Sigma_tot.copy(), Sigma_tot.copy() # Cumulative mass mass_unit = huge_model.M.unit cum_M_tot = np.full((1, N, Nr), np.nan) << mass_unit cum_M_MS, cum_M_BH = cum_M_tot.copy(), cum_M_tot.copy() cum_M_WD, cum_M_NS = cum_M_tot.copy(), cum_M_tot.copy() # Mass Fraction frac_M_MS = np.full((1, N, Nr), np.nan) << u.dimensionless_unscaled frac_M_rem = frac_M_MS.copy() f_rem = np.full(N, np.nan) << u.dimensionless_unscaled # number density numdens = np.full((1, N, Nr), np.nan) << u.pc**-2 # mass function massfunc = viz._prep_massfunc(viz.obs) # massfunc = np.empty((N, N_rbins, huge_model.nms)) for rbins in massfunc.values(): for rslice in rbins: rslice['mj'] = huge_model.mj[:huge_model.nms] rslice['dNdm'] = np.full((N, huge_model.nms), np.nan) # BH mass BH_mass = np.full(N, np.nan) << u.Msun BH_num = np.full(N, np.nan) << u.dimensionless_unscaled # ------------------------------------------------------------------ # Setup iteration and pooling # ------------------------------------------------------------------ get_model = functools.partial(_get_model, observations=viz.obs) try: _map = map if pool is None else pool.imap_unordered except AttributeError: mssg = ("Invalid pool, currently only support pools with an " "`imap_unordered` method") raise ValueError(mssg) if verbose: import tqdm loader = tqdm.tqdm(enumerate(_map(get_model, chain)), total=N) else: loader = enumerate(_map(get_model, chain)) # ------------------------------------------------------------------ # iterate over all models in the sample and compute/store their # relevant parameters # ------------------------------------------------------------------ for model_ind, model in loader: if model is None: # TODO would be better to extend chain so N are still computed # for now this ind will be filled with nan continue equivs = util.angular_width(model.d) # Velocities # convoluted way of going from a slice to a list of indices tracers = list(range(len(model.mj))[model._tracer_bins]) for i, mass_bin in enumerate([model.nms - 1] + tracers): slc = (i, model_ind, slice(None)) vTj[slc], vRj[slc], vtotj[slc], \ vaj[slc], vpj[slc] = viz._init_velocities(model, mass_bin) slc = (0, model_ind, slice(None)) # Mass Densities rho_MS[slc], rho_tot[slc], rho_BH[slc], \ rho_WD[slc], rho_NS[slc] = viz._init_dens(model) # Surface Densities Sigma_MS[slc], Sigma_tot[slc], Sigma_BH[slc], \ Sigma_WD[slc], Sigma_NS[slc] = viz._init_surfdens(model) # Cumulative Mass distribution cum_M_MS[slc], cum_M_tot[slc], cum_M_BH[slc], \ cum_M_WD[slc], cum_M_NS[slc] = viz._init_cum_mass(model) # Number Densities numdens[slc] = viz._init_numdens(model, equivs=equivs) # Mass Functions for rbins in massfunc.values(): for rslice in rbins: mf = rslice['dNdm'] mf[model_ind, ...] = viz._init_dNdm(model, rslice, equivs) # Mass Fractions frac_M_MS[slc], frac_M_rem[slc] = viz._init_mass_frac(model) f_rem[model_ind] = np.sum(model.Mj[model._remnant_bins]) / model.M # Black holes BH_mass[model_ind] = np.sum(model.BH_Mj) BH_num[model_ind] = np.sum(model.BH_Nj) # ------------------------------------------------------------------ # compute and store the percentiles and medians # ------------------------------------------------------------------ q = [97.72, 84.13, 50., 15.87, 2.28] axes = (1, 0, 2) # `np.percentile` messes up the dimensions perc = np.nanpercentile viz.pm_T = np.transpose(perc(vTj, q, axis=1), axes) viz.pm_R = np.transpose(perc(vRj, q, axis=1), axes) viz.pm_tot = np.transpose(perc(vtotj, q, axis=1), axes) viz.pm_ratio = np.transpose(perc(vaj, q, axis=1), axes) viz.LOS = np.transpose(perc(vpj, q, axis=1), axes) viz.rho_MS = np.transpose(perc(rho_MS, q, axis=1), axes) viz.rho_tot = np.transpose(perc(rho_tot, q, axis=1), axes) viz.rho_BH = np.transpose(perc(rho_BH, q, axis=1), axes) viz.rho_WD = np.transpose(perc(rho_WD, q, axis=1), axes) viz.rho_NS = np.transpose(perc(rho_NS, q, axis=1), axes) viz.Sigma_MS = np.transpose(perc(Sigma_MS, q, axis=1), axes) viz.Sigma_tot = np.transpose(perc(Sigma_tot, q, axis=1), axes) viz.Sigma_BH = np.transpose(perc(Sigma_BH, q, axis=1), axes) viz.Sigma_WD = np.transpose(perc(Sigma_WD, q, axis=1), axes) viz.Sigma_NS = np.transpose(perc(Sigma_NS, q, axis=1), axes) viz.cum_M_MS = np.transpose(perc(cum_M_MS, q, axis=1), axes) viz.cum_M_tot = np.transpose(perc(cum_M_tot, q, axis=1), axes) viz.cum_M_BH = np.transpose(perc(cum_M_BH, q, axis=1), axes) viz.cum_M_WD = np.transpose(perc(cum_M_WD, q, axis=1), axes) viz.cum_M_NS = np.transpose(perc(cum_M_NS, q, axis=1), axes) viz.numdens = np.transpose(perc(numdens, q, axis=1), axes) viz.mass_func = massfunc for rbins in viz.mass_func.values(): for rslice in rbins: rslice['dNdm'] = perc(rslice['dNdm'], q, axis=0) viz.frac_M_MS = perc(frac_M_MS, q, axis=1) viz.frac_M_rem = perc(frac_M_rem, q, axis=1) viz.f_rem = f_rem viz.BH_mass = BH_mass viz.BH_num = BH_num return viz def _init_velocities(self, model, mass_bin): vT = np.sqrt(model.v2Tj[mass_bin]) vT_interp = util.QuantitySpline(model.r, vT) vT = vT_interp(self.r) vR = np.sqrt(model.v2Rj[mass_bin]) vR_interp = util.QuantitySpline(model.r, vR) vR = vR_interp(self.r) vtot = np.sqrt(0.5 * (model.v2Tj[mass_bin] + model.v2Rj[mass_bin])) vtot_interp = util.QuantitySpline(model.r, vtot) vtot = vtot_interp(self.r) va = np.sqrt(model.v2Tj[mass_bin] / model.v2Rj[mass_bin]) finite = np.isnan(va) va_interp = util.QuantitySpline(model.r[~finite], va[~finite], ext=3) va = va_interp(self.r) vp = np.sqrt(model.v2pj[mass_bin]) vp_interp = util.QuantitySpline(model.r, vp) vp = vp_interp(self.r) return vT, vR, vtot, va, vp def _init_dens(self, model): rho_MS = np.sum(model.rhoj[:model.nms], axis=0) rho_MS_interp = util.QuantitySpline(model.r, rho_MS) rho_MS = rho_MS_interp(self.r) rho_tot = np.sum(model.rhoj, axis=0) rho_tot_interp = util.QuantitySpline(model.r, rho_tot) rho_tot = rho_tot_interp(self.r) rho_BH = np.sum(model.BH_rhoj, axis=0) rho_BH_interp = util.QuantitySpline(model.r, rho_BH) rho_BH = rho_BH_interp(self.r) rho_WD = np.sum(model.WD_rhoj, axis=0) rho_WD_interp = util.QuantitySpline(model.r, rho_WD) rho_WD = rho_WD_interp(self.r) rho_NS = np.sum(model.NS_rhoj, axis=0) rho_NS_interp = util.QuantitySpline(model.r, rho_NS) rho_NS = rho_NS_interp(self.r) return rho_MS, rho_tot, rho_BH, rho_WD, rho_NS def _init_surfdens(self, model): Sigma_MS = np.sum(model.Sigmaj[:model.nms], axis=0) Sigma_MS_interp = util.QuantitySpline(model.r, Sigma_MS) Sigma_MS = Sigma_MS_interp(self.r) Sigma_tot = np.sum(model.Sigmaj, axis=0) Sigma_tot_interp = util.QuantitySpline(model.r, Sigma_tot) Sigma_tot = Sigma_tot_interp(self.r) Sigma_BH = np.sum(model.BH_Sigmaj, axis=0) Sigma_BH_interp = util.QuantitySpline(model.r, Sigma_BH) Sigma_BH = Sigma_BH_interp(self.r) Sigma_WD = np.sum(model.WD_Sigmaj, axis=0) Sigma_WD_interp = util.QuantitySpline(model.r, Sigma_WD) Sigma_WD = Sigma_WD_interp(self.r) Sigma_NS = np.sum(model.NS_Sigmaj, axis=0) Sigma_NS_interp = util.QuantitySpline(model.r, Sigma_NS) Sigma_NS = Sigma_NS_interp(self.r) return Sigma_MS, Sigma_tot, Sigma_BH, Sigma_WD, Sigma_NS def _init_cum_mass(self, model): # TODO it seems like the integrated mass is a bit less than total Mj? _2πr = 2 * np.pi * model.r cum_M_MS = _2πr * np.sum(model.Sigmaj[:model.nms], axis=0) cum_M_MS_interp = util.QuantitySpline(model.r, cum_M_MS) cum_M_MS = [cum_M_MS_interp.integral(self.r[0], ri) for ri in self.r] cum_M_tot = _2πr * n
p.sum(model.Sigmaj, axis=0)
numpy.sum
#!/usr/bin/env python """Implementation of dataset structure for dataloader from pytorch. Two ways of training: with ground truth labels and with labels from current segmentation given the algorithm""" __all__ = ['load_data'] __author__ = '<NAME>' __date__ = 'August 2018' from torch.utils.data import Dataset import torch import numpy as np import re import logging from ute.utils.mapping import GroundTruth from ute.utils.arg_pars import opt from ute.utils.logging_setup import logger from ute.utils.util_functions import join_data class FeatureDataset(Dataset): def __init__(self, root_dir, end, subaction='coffee', videos=None, features=None): """ Filling out the _feature_list parameter. This is a list of [video name, index frame in video, ground truth, feature vector] for each frame of each video :param root_dir: root directory where exists folder 'ascii' with features or pure video files :param end: extension of files for current video representation (could be 'gz', 'txt', 'avi') """ self._logger = logging.getLogger('basic') self._logger.debug('FeatureDataset') self._root_dir = root_dir self._feature_list = None self._end = end self._old2new = {} self._videoname2idx = {} self._idx2videoname = {} self._videos = videos self._subaction = subaction self._features = features self.gt_map = GroundTruth() self._with_predictions() subactions = np.unique(self._feature_list[..., 2]) for idx, old in enumerate(subactions): self._old2new[int(old)] = idx def index2name(self): return self._idx2videoname def _with_predictions(self): self._logger.debug('__init__') for video_idx, video in enumerate(self._videos): filename = re.match(r'[\.\/\w]*\/(\w+).\w+', video.path) if filename is None: logging.ERROR('Check paths videos, template to extract video name' ' does not match') filename = filename.group(1) self._videoname2idx[filename] = video_idx self._idx2videoname[video_idx] = filename names = np.asarray([video_idx] * video.n_frames).reshape((-1, 1)) idxs = np.asarray(list(range(0, video.n_frames))).reshape((-1, 1)) if opt.gt_training: gt_file =
np.asarray(video._gt)
numpy.asarray
import time from collections import deque import erdos import numpy as np import pylot.prediction.utils from pylot.prediction.messages import PredictionMessage from pylot.prediction.obstacle_prediction import ObstaclePrediction from pylot.utils import Location, Transform, time_epoch_ms import torch try: from pylot.prediction.prediction.r2p2.r2p2_model import R2P2 except ImportError: raise Exception('Error importing R2P2.') class R2P2PredictorOperator(erdos.Operator): """Wrapper operator for R2P2 ego-vehicle prediction module. Args: point_cloud_stream (:py:class:`erdos.ReadStream`, optional): Stream on which point cloud messages are received. tracking_stream (:py:class:`erdos.ReadStream`): Stream on which :py:class:`~pylot.perception.messages.ObstacleTrajectoriesMessage` are received. prediction_stream (:py:class:`erdos.ReadStream`): Stream on which :py:class:`~pylot.prediction.messages.PredictionMessage` messages are published. lidar_setup (:py:class:`pylot.drivers.sensor_setup.LidarSetup`): Setup of the lidar. This setup is used to get the maximum range of the lidar. """ def __init__(self, point_cloud_stream, tracking_stream, prediction_stream, flags, lidar_setup): print("WARNING: R2P2 predicts only vehicle trajectories") self._logger = erdos.utils.setup_logging(self.config.name, self.config.log_file_name) self._csv_logger = erdos.utils.setup_csv_logging( self.config.name + '-csv', self.config.csv_log_file_name) self._flags = flags self._device = torch.device('cuda') self._r2p2_model = R2P2().to(self._device) state_dict = torch.load(flags.r2p2_model_path) self._r2p2_model.load_state_dict(state_dict) point_cloud_stream.add_callback(self.on_point_cloud_update) tracking_stream.add_callback(self.on_trajectory_update) erdos.add_watermark_callback([point_cloud_stream, tracking_stream], [prediction_stream], self.on_watermark) self._lidar_setup = lidar_setup self._point_cloud_msgs = deque() self._tracking_msgs = deque() @staticmethod def connect(point_cloud_stream, tracking_stream): prediction_stream = erdos.WriteStream() return [prediction_stream] def destroy(self): self._logger.warn('destroying {}'.format(self.config.name)) def on_watermark(self, timestamp, prediction_stream): self._logger.debug('@{}: received watermark'.format(timestamp)) if timestamp.is_top: return point_cloud_msg = self._point_cloud_msgs.popleft() tracking_msg = self._tracking_msgs.popleft() start_time = time.time() nearby_trajectories, nearby_vehicle_ego_transforms, \ nearby_trajectories_tensor, binned_lidars_tensor = \ self._preprocess_input(tracking_msg, point_cloud_msg) num_predictions = len(nearby_trajectories) self._logger.info( '@{}: Getting R2P2 predictions for {} vehicles'.format( timestamp, num_predictions)) if num_predictions == 0: prediction_stream.send(PredictionMessage(timestamp, [])) return # Run the forward pass. z = torch.tensor( np.random.normal(size=(num_predictions, self._flags.prediction_num_future_steps, 2))).to(torch.float32).to(self._device) model_start_time = time.time() prediction_array, _ = self._r2p2_model.forward( z, nearby_trajectories_tensor, binned_lidars_tensor) model_runtime = (time.time() - model_start_time) * 1000 self._csv_logger.debug("{},{},{},{:.4f}".format( time_epoch_ms(), timestamp.coordinates[0], 'r2p2-modelonly-runtime', model_runtime)) prediction_array = prediction_array.cpu().detach().numpy() obstacle_predictions_list = self._postprocess_predictions( prediction_array, nearby_trajectories, nearby_vehicle_ego_transforms) runtime = (time.time() - start_time) * 1000 self._csv_logger.debug("{},{},{},{:.4f}".format( time_epoch_ms(), timestamp.coordinates[0], 'r2p2-runtime', runtime)) prediction_stream.send( PredictionMessage(timestamp, obstacle_predictions_list)) def _preprocess_input(self, tracking_msg, point_cloud_msg): nearby_vehicle_trajectories, nearby_vehicle_ego_transforms = \ tracking_msg.get_nearby_obstacles_info( self._flags.prediction_radius, lambda t: t.obstacle.is_vehicle()) point_cloud = point_cloud_msg.point_cloud.points num_nearby_vehicles = len(nearby_vehicle_trajectories) if num_nearby_vehicles == 0: return [], [], [], [] # Pad and rotate the trajectory of each nearby vehicle to its # coordinate frame. Also, remove the z-coordinate of the trajectory. nearby_trajectories_tensor = [] # Pytorch tensor for network input. for i in range(num_nearby_vehicles): cur_trajectory = nearby_vehicle_trajectories[ i].get_last_n_transforms(self._flags.prediction_num_past_steps) cur_trajectory = np.stack( [[point.location.x, point.location.y, point.location.z] for point in cur_trajectory]) rotated_trajectory = nearby_vehicle_ego_transforms[ i].inverse_transform_points(cur_trajectory)[:, :2] nearby_trajectories_tensor.append(rotated_trajectory) nearby_trajectories_tensor =
np.stack(nearby_trajectories_tensor)
numpy.stack
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests for spectral_ops.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np from tensorflow.python.framework import dtypes from tensorflow.python.ops import array_ops from tensorflow.python.ops import gradients_impl from tensorflow.python.ops import math_ops from tensorflow.python.ops import random_ops from tensorflow.python.ops.signal import spectral_ops from tensorflow.python.ops.signal import window_ops from tensorflow.python.platform import test class SpectralOpsTest(test.TestCase): @staticmethod def _np_hann_periodic_window(length): if length == 1: return np.ones(1) odd = length % 2 if not odd: length += 1 window = 0.5 - 0.5 * np.cos(2.0 * np.pi * np.arange(length) / (length - 1)) if not odd: window = window[:-1] return window @staticmethod def _np_frame(data, window_length, hop_length): num_frames = 1 + int(np.floor((len(data) - window_length) // hop_length)) shape = (num_frames, window_length) strides = (data.strides[0] * hop_length, data.strides[0]) return np.lib.stride_tricks.as_strided(data, shape=shape, strides=strides) @staticmethod def _np_stft(data, fft_length, hop_length, window_length): frames = SpectralOpsTest._np_frame(data, window_length, hop_length) window = SpectralOpsTest._np_hann_periodic_window(window_length) return np.fft.rfft(frames * window, fft_length) @staticmethod def _np_inverse_stft(stft, fft_length, hop_length, window_length): frames = np.fft.irfft(stft, fft_length) # Pad or truncate frames's inner dimension to window_length. frames = frames[..., :window_length] frames = np.pad(frames, [[0, 0]] * (frames.ndim - 1) + [[0, max(0, window_length - frames.shape[-1])]], "constant") window = SpectralOpsTest._np_hann_periodic_window(window_length) return SpectralOpsTest._np_overlap_add(frames * window, hop_length) @staticmethod def _np_overlap_add(stft, hop_length): num_frames, window_length = np.shape(stft) # Output length will be one complete window, plus another hop_length's # worth of points for each additional window. output_length = window_length + (num_frames - 1) * hop_length output = np.zeros(output_length) for i in range(num_frames): output[i * hop_length:i * hop_length + window_length] += stft[i,] return output def _compare(self, signal, frame_length, frame_step, fft_length): with self.cached_session(use_gpu=True) as sess: actual_stft = spectral_ops.stft( signal, frame_length, frame_step, fft_length, pad_end=False) signal_ph = array_ops.placeholder(dtype=dtypes.as_dtype(signal.dtype)) actual_stft_from_ph = spectral_ops.stft( signal_ph, frame_length, frame_step, fft_length, pad_end=False) actual_inverse_stft = spectral_ops.inverse_stft( actual_stft, frame_length, frame_step, fft_length) actual_stft, actual_stft_from_ph, actual_inverse_stft = sess.run( [actual_stft, actual_stft_from_ph, actual_inverse_stft], feed_dict={signal_ph: signal}) actual_stft_ph = array_ops.placeholder(dtype=actual_stft.dtype) actual_inverse_stft_from_ph = sess.run( spectral_ops.inverse_stft( actual_stft_ph, frame_length, frame_step, fft_length), feed_dict={actual_stft_ph: actual_stft}) # Confirm that there is no difference in output when shape/rank is fully # unknown or known. self.assertAllClose(actual_stft, actual_stft_from_ph) self.assertAllClose(actual_inverse_stft, actual_inverse_stft_from_ph) expected_stft = SpectralOpsTest._np_stft( signal, fft_length, frame_step, frame_length) self.assertAllClose(expected_stft, actual_stft, 1e-4, 1e-4) expected_inverse_stft = SpectralOpsTest._np_inverse_stft( expected_stft, fft_length, frame_step, frame_length) self.assertAllClose( expected_inverse_stft, actual_inverse_stft, 1e-4, 1e-4) def test_shapes(self): with self.session(use_gpu=True): signal = np.zeros((512,)).astype(np.float32) # If fft_length is not provided, the smallest enclosing power of 2 of # frame_length (8) is used. stft = spectral_ops.stft(signal, frame_length=7, frame_step=8, pad_end=True) self.assertAllEqual([64, 5], stft.shape.as_list()) self.assertAllEqual([64, 5], self.evaluate(stft).shape) stft = spectral_ops.stft(signal, frame_length=8, frame_step=8, pad_end=True) self.assertAllEqual([64, 5], stft.shape.as_list()) self.assertAllEqual([64, 5], self.evaluate(stft).shape) stft = spectral_ops.stft(signal, frame_length=8, frame_step=8, fft_length=16, pad_end=True) self.assertAllEqual([64, 9], stft.shape.as_list()) self.assertAllEqual([64, 9], self.evaluate(stft).shape) stft = spectral_ops.stft(signal, frame_length=16, frame_step=8, fft_length=8, pad_end=True) self.assertAllEqual([64, 5], stft.shape.as_list()) self.assertAllEqual([64, 5], self.evaluate(stft).shape) stft = np.zeros((32, 9)).astype(np.complex64) inverse_stft = spectral_ops.inverse_stft(stft, frame_length=8, fft_length=16, frame_step=8) expected_length = (stft.shape[0] - 1) * 8 + 8 self.assertAllEqual([256], inverse_stft.shape.as_list()) self.assertAllEqual([expected_length], self.evaluate(inverse_stft).shape) def test_stft_and_inverse_stft(self): """Test that spectral_ops.stft/inverse_stft match a NumPy implementation.""" # Tuples of (signal_length, frame_length, frame_step, fft_length). test_configs = [ (512, 64, 32, 64), (512, 64, 64, 64), (512, 72, 64, 64), (512, 64, 25, 64), (512, 25, 15, 36), (123, 23, 5, 42), ] for signal_length, frame_length, frame_step, fft_length in test_configs: signal = np.random.random(signal_length).astype(np.float32) self._compare(signal, frame_length, frame_step, fft_length) def test_stft_round_trip(self): # Tuples of (signal_length, frame_length, frame_step, fft_length, # threshold, corrected_threshold). test_configs = [ # 87.5% overlap. (4096, 256, 32, 256, 1e-5, 1e-6), # 75% overlap. (4096, 256, 64, 256, 1e-5, 1e-6), # Odd frame hop. (4096, 128, 25, 128, 1e-3, 1e-6), # Odd frame length. (4096, 127, 32, 128, 1e-3, 1e-6), # 50% overlap. (4096, 128, 64, 128, 0.40, 1e-6), ] for (signal_length, frame_length, frame_step, fft_length, threshold, corrected_threshold) in test_configs: # Generate a random white Gaussian signal. signal = random_ops.random_normal([signal_length]) with self.cached_session(use_gpu=True) as sess: stft = spectral_ops.stft(signal, frame_length, frame_step, fft_length, pad_end=False) inverse_stft = spectral_ops.inverse_stft(stft, frame_length, frame_step, fft_length) inverse_stft_corrected = spectral_ops.inverse_stft( stft, frame_length, frame_step, fft_length, window_fn=spectral_ops.inverse_stft_window_fn(frame_step)) signal, inverse_stft, inverse_stft_corrected = sess.run( [signal, inverse_stft, inverse_stft_corrected]) # Truncate signal to the size of inverse stft. signal = signal[:inverse_stft.shape[0]] # Ignore the frame_length samples at either edge. signal = signal[frame_length:-frame_length] inverse_stft = inverse_stft[frame_length:-frame_length] inverse_stft_corrected = inverse_stft_corrected[ frame_length:-frame_length] # Check that the inverse and original signal are close up to a scale # factor. inverse_stft_scaled = inverse_stft / np.mean(np.abs(inverse_stft)) signal_scaled = signal / np.mean(
np.abs(signal)
numpy.abs
""" Data getters: δ Lyr Cluster: get_deltalyr_kc19_gaia_data get_deltalyr_kc19_comovers get_deltalyr_kc19_cleansubset get_autorotation_dataframe Kepler 1627: get_kep1627_kepler_lightcurve get_kep1627_muscat_lightcuve get_keplerfieldfootprint_dict get_flare_df get_becc_limits get_koi7368_lightcurve Get cluster datasets (useful for HR diagrams!): get_gaia_catalog_of_nearby_stars get_clustermembers_cg18_subset get_mutau_members get_ScoOB2_members get_BPMG_members get_gaia_catalog_of_nearby_stars Supplement a set of Gaia stars with extinctions and corrected photometry: supplement_gaia_stars_extinctions_corrected_photometry Supplement columns: append_phot_binary_column append_phot_membershipexclude_column Clean Gaia sources based on photometry: get_clean_gaia_photometric_sources All-sky photometric surveys (GALEX/2MASS) get_galex_data get_2mass_data Proposal/RM-related: get_simulated_RM_data One-offs to get the Stephenson-1 and RSG-5 information: get_candidate_stephenson1_member_list get_candidate_rsg5_member_list supplement_sourcelist_with_gaiainfo """ ############# ## LOGGING ## ############# import logging from astrobase import log_sub, log_fmt, log_date_fmt DEBUG = False if DEBUG: level = logging.DEBUG else: level = logging.INFO LOGGER = logging.getLogger(__name__) logging.basicConfig( level=level, style=log_sub, format=log_fmt, datefmt=log_date_fmt, ) LOGDEBUG = LOGGER.debug LOGINFO = LOGGER.info LOGWARNING = LOGGER.warning LOGERROR = LOGGER.error LOGEXCEPTION = LOGGER.exception ############# ## IMPORTS ## ############# import os, collections, pickle import numpy as np, pandas as pd from glob import glob from copy import deepcopy from datetime import datetime from collections import OrderedDict from numpy import array as nparr from astropy.io import fits from astropy import units as u from astropy.table import Table from astroquery.vizier import Vizier from astroquery.xmatch import XMatch from astropy.coordinates import SkyCoord import cdips.utils.lcutils as lcu import cdips.lcproc.detrend as dtr import cdips.lcproc.mask_orbit_edges as moe from cdips.utils.catalogs import ( get_cdips_catalog, get_tic_star_information ) from cdips.utils.gaiaqueries import ( query_neighborhood, given_source_ids_get_gaia_data, given_dr2_sourceids_get_edr3_xmatch ) from rudolf.paths import DATADIR, RESULTSDIR, PHOTDIR, LOCALDIR def get_flare_df(): from rudolf.plotting import _get_detrended_flare_data flaredir = os.path.join(RESULTSDIR, 'flares') # read data method = 'itergp' cachepath = os.path.join(flaredir, f'flare_checker_cache_{method}.pkl') c = _get_detrended_flare_data(cachepath, method) flpath = os.path.join(flaredir, f'fldict_{method}.csv') df = pd.read_csv(flpath) FL_AMP_CUTOFF = 5e-3 sel = df.ampl_rec > FL_AMP_CUTOFF sdf = df[sel] return sdf def get_kep1627_kepler_lightcurve(lctype='longcadence'): """ Collect and stitch available Kepler quarters, after median-normalizing in each quater. """ assert lctype in ['longcadence', 'shortcadence', 'longcadence_byquarter', 'koi7368', 'koi7368_byquarter'] if lctype in ['longcadence', 'longcadence_byquarter']: lcfiles = glob(os.path.join(DATADIR, 'phot', 'kplr*_llc.fits')) elif lctype == 'shortcadence': lcfiles = glob(os.path.join(DATADIR, 'phot', 'full_MAST_sc', 'MAST_*', 'Kepler', 'kplr006184894*', 'kplr*_slc.fits')) elif lctype in ['koi7368', 'koi7368_byquarter']: lcfiles = glob(os.path.join(DATADIR, 'KOI_7368', 'phot', 'kplr010736489*_llc.fits')) else: raise NotImplementedError('could do short cadence here too') assert len(lcfiles) > 1 timelist,f_list,ferr_list,qual_list,texp_list = [],[],[],[],[] for lcfile in lcfiles: hdul = fits.open(lcfile) d = hdul[1].data yval = 'PDCSAP_FLUX' time = d['TIME'] _f, _f_err = d[yval], d[yval+'_ERR'] flux = (_f/np.nanmedian(_f) - 1) # normalize around zero for GP regression flux_err = _f_err/np.nanmedian(_f) qual = d['SAP_QUALITY'] sel = np.isfinite(time) & np.isfinite(flux) & np.isfinite(flux_err) texp = np.nanmedian(np.diff(time[sel])) timelist.append(time[sel]) f_list.append(flux[sel]) ferr_list.append(flux_err[sel]) qual_list.append(qual[sel]) texp_list.append(texp) if ( lctype == 'longcadence' or lctype == 'shortcadence' or lctype == 'koi7368' ): time = np.hstack(timelist) flux = np.hstack(f_list) flux_err = np.hstack(ferr_list) qual = np.hstack(qual_list) texp = np.nanmedian(texp_list) elif lctype == 'longcadence_byquarter' or lctype == 'koi7368_byquarter': return ( timelist, f_list, ferr_list, qual_list, texp_list ) # require ascending time s = np.argsort(time) flux = flux[s] flux_err = flux_err[s] qual = qual[s] time = time[s] assert np.all(np.diff(time) > 0) return ( time.astype(np.float64), flux.astype(np.float64), flux_err.astype(np.float64), qual, texp ) def get_kep1627_muscat_lightcuve(): """ Collect MuSCAT data. Return an ordered dict with keys 'muscat_b' and values time, flux, flux_err. """ datasets = OrderedDict() bandpasses = 'g,r,i,z'.split(',') # nb. the files from the team contain airmass, dx, dy, FWHM, and peak ADU # too. not needed in our approach for bp in bandpasses: lcpath = glob( os.path.join(PHOTDIR, 'MUSCAT3', f'*muscat3_{bp}_*csv') )[0] df = pd.read_csv(lcpath) # converting b/c theano only understands float64 _time, _flux, _fluxerr = ( nparr(df.BJD_TDB).astype(np.float64), nparr(df.Flux).astype(np.float64), nparr(df.Err).astype(np.float64) ) _texp = np.nanmedian(np.diff(_time)) key = f'muscat3_{bp}' datasets[key] = [_time, _flux, _fluxerr, _texp] return datasets def get_candidate_stephenson1_member_list(): outpath = os.path.join(DATADIR, 'gaia', 'stephenson1_kc19.csv') if not os.path.exists(outpath): # Kounkel & Covey 2019 Stephenson1 candidate member list. csvpath = os.path.join(DATADIR, 'gaia', 'string_table1.csv') df = pd.read_csv(csvpath) sdf = df[np.array(df.group_id).astype(int) == 73] sdf['source_id'].to_csv(outpath, index=False) return pd.read_csv(outpath) def get_candidate_rsg5_member_list(): outpath = os.path.join(DATADIR, 'gaia', 'rsg5_kc19.csv') if not os.path.exists(outpath): # Kounkel & Covey 2019 Stephenson1 candidate member list. csvpath = os.path.join(DATADIR, 'gaia', 'string_table1.csv') df = pd.read_csv(csvpath) sdf = df[np.array(df.group_id).astype(int) == 96] sdf['source_id'].to_csv(outpath, index=False) return pd.read_csv(outpath) def supplement_sourcelist_with_gaiainfo(df, groupname='stephenson1'): dr2_source_ids = np.array(df.source_id).astype(np.int64) dr2_x_edr3_df = given_dr2_sourceids_get_edr3_xmatch( dr2_source_ids, groupname, overwrite=True, enforce_all_sourceids_viable=True ) # Take the closest (proper motion and epoch-corrected) angular distance as # THE single match. get_edr3_xm = lambda _df: ( _df.sort_values(by='angular_distance'). drop_duplicates(subset='dr2_source_id', keep='first') ) s_edr3 = get_edr3_xm(dr2_x_edr3_df) edr3_source_ids = np.array(s_edr3.dr3_source_id).astype(np.int64) # get gaia dr2 data df_dr2 = given_source_ids_get_gaia_data(dr2_source_ids, groupname, n_max=10000, overwrite=True, enforce_all_sourceids_viable=True, savstr='', gaia_datarelease='gaiadr2') df_edr3 = given_source_ids_get_gaia_data(edr3_source_ids, groupname, n_max=10000, overwrite=True, enforce_all_sourceids_viable=True, savstr='', gaia_datarelease='gaiaedr3') outpath_dr2 = os.path.join(DATADIR, 'gaia', f'{groupname}_kc19_dr2.csv') outpath_edr3 = os.path.join(DATADIR, 'gaia', f'{groupname}_kc19_edr3.csv') outpath_dr2xedr3 = os.path.join(DATADIR, 'gaia', f'{groupname}_kc19_dr2xedr3.csv') df_dr2.to_csv(outpath_dr2, index=False) df_edr3.to_csv(outpath_edr3, index=False) dr2_x_edr3_df.to_csv(outpath_dr2xedr3, index=False) def get_deltalyr_kc19_gaia_data(return_all_targets=0): """ Get all Kounkel & Covey 2019 "Stephenson 1" members. """ outpath_dr2 = os.path.join(DATADIR, 'gaia', 'stephenson1_kc19_dr2.csv') outpath_edr3 = os.path.join(DATADIR, 'gaia', 'stephenson1_kc19_edr3.csv') if not os.path.exists(outpath_dr2): df = get_candidate_stephenson1_member_list() supplement_sourcelist_with_gaiainfo(df, groupname='stephenson1') df_dr2 = pd.read_csv(outpath_dr2) df_edr3 = pd.read_csv(outpath_edr3) trgt_id = "2103737241426734336" # Kepler 1627 trgt_df = df_edr3[df_edr3.source_id.astype(str) == trgt_id] if not return_all_targets: return df_dr2, df_edr3, trgt_df trgt_id_dict = { 'KOI-7368': "2128840912955018368", 'KOI-7913': "2106235301785454208", 'Kepler-1643': "2082142734285082368" # aka. KOI-6186 } koi_df_dict = {} for k,trgt_id in trgt_id_dict.items(): _df = df_edr3[df_edr3.source_id.astype(str) == trgt_id] if len(_df) == 0: print(f'Running single-object EDR3 search for {trgt_id}...') _df = given_source_ids_get_gaia_data( np.array([trgt_id]).astype(np.int64), str(trgt_id), n_max=2, overwrite=False, enforce_all_sourceids_viable=True, savstr='', gaia_datarelease='gaiaedr3') assert len(_df) > 0 koi_df_dict[k] = _df return df_dr2, df_edr3, trgt_df, koi_df_dict def get_rsg5_kc19_gaia_data(): """ Get all Kounkel & Covey 2019 "RSG_5" (Theia 96) members. """ outpath_dr2 = os.path.join(DATADIR, 'gaia', 'rsg5_kc19_dr2.csv') outpath_edr3 = os.path.join(DATADIR, 'gaia', 'rsg5_kc19_edr3.csv') if not os.path.exists(outpath_dr2): df = get_candidate_rsg5_member_list() supplement_sourcelist_with_gaiainfo(df, groupname='rsg5') df_dr2 = pd.read_csv(outpath_dr2) df_edr3 = pd.read_csv(outpath_edr3) return df_dr2, df_edr3 def get_deltalyr_kc19_comovers(): """ Get the kinematic neighbors of Kepler 1627. The contents of this file are EDR3 properties. made by plot_XYZvtang.py sel = ( (df_edr3.delta_pmdec_prime_km_s > -5) & (df_edr3.delta_pmdec_prime_km_s < 2) & (df_edr3.delta_pmra_prime_km_s > -4) & (df_edr3.delta_pmra_prime_km_s < 2) ) """ raise NotImplementedError('this is deprecated. use get_deltalyr_kc19_cleansubset.') csvpath = os.path.join(RESULTSDIR, 'tables', 'stephenson1_edr3_XYZvtang_candcomovers.csv') return pd.read_csv(csvpath) def get_deltalyr_kc19_cleansubset(): """ To make this subset, I took the KC19 members (EDR3-crossedmatched). Then, I ran them through plot_XYZvtang, which created "stephenson1_edr3_XYZvtang_allphysical.csv" Then, I opened it up in glue. I made a selection lasso in kinematic velocity space, in XZ, and XY position space. """ csvpath = os.path.join(RESULTSDIR, 'glue_stephenson1_edr3_XYZvtang_allphysical', 'set0_select_kinematic_YX_ZX.csv') return pd.read_csv(csvpath) def get_set1_koi7368(): """ As for get_deltalyr_kc19_cleansubset, but for the KOI 7368 neighbors. """ csvpath = os.path.join(RESULTSDIR, 'glue_stephenson1_edr3_XYZvtang_allphysical', 'set1_select_kinematic_YX_ZX.csv') return pd.read_csv(csvpath) def get_gaia_catalog_of_nearby_stars(): fitspath = os.path.join( DATADIR, 'nearby_stars', 'GaiaCollaboration_2021_GCNS.fits' ) hl = fits.open(fitspath) d = hl[1].data df = Table(d).to_pandas() COLDICT = { 'GaiaEDR3': 'edr3_source_id', 'RA_ICRS': 'ra', 'DE_ICRS': 'dec', 'Plx': 'parallax', 'pmRA': 'pmra', 'pmDE': 'pmdec', 'Gmag': 'phot_g_mean_mag', 'BPmag': 'phot_bp_mean_mag', 'RPmag': 'phot_rp_mean_mag' } df = df.rename(columns=COLDICT) return df def get_clustermembers_cg18_subset(clustername): """ e.g., IC_2602, or "Melotte_22" for Pleaides. """ csvpath = '/Users/luke/local/cdips/catalogs/cdips_targets_v0.6_nomagcut_gaiasources.csv' df = pd.read_csv(csvpath, sep=',') sel0 = ( df.cluster.str.contains(clustername) & df.reference_id.str.contains('CantatGaudin2018a') ) sdf = df[sel0] sel = [] for ix, r in sdf.iterrows(): c = np.array(r['cluster'].split(',')) ref = np.array(r['reference_id'].split(',')) this = np.any( np.in1d( 'CantatGaudin2018a', ref[np.argwhere( c == clustername ).flatten()] ) ) sel.append(this) sel = np.array(sel).astype(bool) csdf = sdf[sel] if 'l' not in csdf: _c = SkyCoord(ra=nparr(csdf.ra)*u.deg, dec=nparr(csdf.dec)*u.deg) csdf['l'] = _c.galactic.l.value csdf['b'] = _c.galactic.b.value return csdf def get_BPMG_members(): """ BPMG = beta pic moving group This retrieves BPMG members from Ujjwal+2020. I considered also requiring Gagne+18 matches, but this yielded only 25 stars. """ csvpath = '/Users/luke/local/cdips/catalogs/cdips_targets_v0.6_nomagcut_gaiasources.csv' df = pd.read_csv(csvpath, sep=',') sel0 = ( df.cluster.str.contains('BPMG') & df.reference_id.str.contains('Ujjwal2020') ) sdf = df[sel0] if 'l' not in sdf: _c = SkyCoord(ra=nparr(sdf.ra)*u.deg, dec=nparr(sdf.dec)*u.deg) sdf['l'] = _c.galactic.l.value sdf['b'] = _c.galactic.b.value return sdf def get_mutau_members(): tablepath = os.path.join(DATADIR, 'cluster', 'Gagne_2020_mutau_table12_apjabb77et12_mrt.txt') df = Table.read(tablepath, format='ascii.cds').to_pandas() sel = ( (df['Memb-Type'] == 'IM') | (df['Memb-Type'] == 'CM') #| #(df['Memb-Type'] == 'LM') ) sdf = df[sel] #Gagne's tables are pretty annoying RAh, RAm, RAs = nparr(sdf['Hour']), nparr(sdf['Minute']), nparr(sdf['Second']) RA_hms = [str(rah).zfill(2)+'h'+ str(ram).zfill(2)+'m'+ str(ras).zfill(2)+'s' for rah,ram,ras in zip(RAh, RAm, RAs)] DEd, DEm, DEs = nparr(sdf['Degree']),nparr(sdf['Arcminute']),nparr(sdf['Arcsecond']) DEsign = nparr(sdf['Sign']) DEsign[DEsign != '-'] = '+' DE_dms = [str(desgn)+ str(ded).zfill(2)+'d'+ str(dem).zfill(2)+'m'+ str(des).zfill(2)+'s' for desgn,ded,dem,des in zip(DEsign, DEd, DEm, DEs)] coords = SkyCoord(ra=RA_hms, dec=DE_dms, frame='icrs') RA = coords.ra.value dec = coords.dec.value sdf['ra'] = RA sdf['dec'] = dec _c = SkyCoord(ra=nparr(sdf.ra)*u.deg, dec=nparr(sdf.dec)*u.deg) sdf['l'] = _c.galactic.l.value sdf['b'] = _c.galactic.b.value # columns COLDICT = { 'plx': 'parallax', 'pmRA': 'pmra', 'pmDE': 'pmdec', 'Gmag': 'phot_g_mean_mag', 'BPmag': 'phot_bp_mean_mag', 'RPmag': 'phot_rp_mean_mag' } sdf = sdf.rename(columns=COLDICT) return sdf def get_ScoOB2_members(): from cdips.catalogbuild.vizier_xmatch_utils import get_vizier_table_as_dataframe vizier_search_str = "Damiani J/A+A/623/A112" whichcataloglist = "J/A+A/623/A112" srccolumns = 'DR2Name|RAJ2000|DEJ2000|GLON|GLAT|Plx|pmGLON|pmGLAT|Sel|Pop' dstcolumns = 'source_id|ra|dec|l|b|parallax|pm_l|pl_b|Sel|Pop' # ScoOB2_PMS df0 = get_vizier_table_as_dataframe( vizier_search_str, srccolumns, dstcolumns, whichcataloglist=whichcataloglist, table_num=0 ) # ScoOB2_UMS df1 = get_vizier_table_as_dataframe( vizier_search_str, srccolumns, dstcolumns, whichcataloglist=whichcataloglist, table_num=1 ) gdf0 = given_source_ids_get_gaia_data( np.array(df0.source_id).astype(np.int64), 'ScoOB2_PMS_Damiani19', n_max=12000, overwrite=False ) gdf1 = given_source_ids_get_gaia_data( np.array(df1.source_id).astype(np.int64), 'ScoOB2_UMS_Damiani19', n_max=12000, overwrite=False ) selcols = ['source_id', 'Sel', 'Pop'] mdf0 = gdf0.merge(df0[selcols], on='source_id', how='inner') mdf1 = gdf1.merge(df1[selcols], on='source_id', how='inner') assert len(mdf0) == 10839 assert len(mdf1) == 3598 df = pd.concat((mdf0, mdf1)).reset_index() # proper-motion and v_tang selected... # require population to be UCL-1, since: # Counter({'': 1401, 'D2b': 3510, 'IC2602': 260, 'D1': 2058, 'LCC-1': 84, # 'UCL-2': 51, 'D2a': 750, 'UCL-3': 47, 'Lup III': 69, 'UCL-1': # 551, 'USC-D2': 1210, 'USC-f': 347, 'USC-n': 501}) sel = (df.Sel == 'pv') sel &= (df.Pop == 'UCL-1') sdf = df[sel] return sdf ORIENTATIONTRUTHDICT = { 'prograde': 0, 'retrograde': -150, 'polar': 85 } def get_simulated_RM_data(orientation, makeplot=1): # # https://github.com/gummiks/rmfit. Hirano+11,+12 implementation by # <NAME>. # from rmfit import RMHirano assert orientation in ['prograde', 'retrograde', 'polar'] lam = ORIENTATIONTRUTHDICT[orientation] t_cadence = 20/(24*60) # 15 minutes, in days T0 = 2454953.790531 P = 7.20281 aRs = 12.03 i = 86.138 vsini = 20 rprs = 0.0433 e = 0. w = 90. # lam = 0 u = [0.515, 0.23] beta = 4 sigma = vsini / 1.31 # assume sigma is vsini/1.31 (see Hirano et al. 2010) times = np.arange(-2.5/24+T0,2.5/24+t_cadence+T0,t_cadence) R = RMHirano(lam,vsini,P,T0,aRs,i,rprs,e,w,u,beta,sigma,supersample_factor=7,exp_time=t_cadence,limb_dark='quadratic') rm = R.evaluate(times) return times, rm def get_keplerfieldfootprint_dict(): kep = pd.read_csv( os.path.join(DATADIR, 'skychart', 'kepler_field_footprint.csv') ) # we want the corner points, not the mid-points is_mipoint = ((kep['row']==535) & (kep['column']==550)) kep = kep[~is_mipoint] kep_coord = SkyCoord( np.array(kep['ra'])*u.deg, np.array(kep['dec'])*u.deg, frame='icrs' ) kep_elon = kep_coord.barycentrictrueecliptic.lon.value kep_elat = kep_coord.barycentrictrueecliptic.lat.value kep['elon'] = kep_elon kep['elat'] = kep_elat kep_d = {} for module in
np.unique(kep['module'])
numpy.unique
import math import cv2 import numpy as np from utils.colors import get_zenburn_colors def length_scaling(depth): return math.exp(-depth/5) def recursive_branch(image, initial_length, depth, angle, start_point, zen_colors=None, MAX_DEPTH=15, SIGMA_ANGLE=0.1): if zen_colors is None: zen_colors = get_zenburn_colors() length = initial_length * length_scaling(depth) length = np.random.normal(length, length/9) end_x = int(start_point[0] + length * math.cos(angle)) end_y = int(start_point[1] - length * math.sin(angle)) end_point = (end_x, end_y) start_index = int(((depth - 1) / MAX_DEPTH) * len(zen_colors)) end_index = int((depth / MAX_DEPTH) * len(zen_colors)) colors = zen_colors[min(
np.random.randint(start_index, end_index)
numpy.random.randint
""" impyute.deletion.complete_case """ import numpy as np def complete_case(data): """ Return only data rows with all columns Parameters ---------- data: numpy.ndarray Data to impute. Returns ------- numpy.ndarray Imputed data. """ return data[~
np.isnan(data)
numpy.isnan
#!/usr/bin/env python import numpy as np import scipy.spatial # Local modules import raveutils as ru def trimesh_from_point_cloud(cloud): """ Convert a point cloud into a convex hull trimesh Parameters ---------- cloud: array_like The input point cloud. It can be ``pcl.Cloud`` or :obj:`numpy.array` Returns ------- vertices: array_like The trimesh vertices faces: array_like The trimesh faces See Also -------- :obj:`scipy.spatial.ConvexHull`: For more details about convex hulls """ points =
np.asarray(cloud)
numpy.asarray
from dnetworks.layers.recurrent import RNNCell import numpy as np import dnetworks from dnetworks.layers import ( LinearLayer, ConstantPad, Conv2D, MaxPooling2D, AveragePooling2D, RNNCell ) from .test_utils import ( test_parameters_linearlayer, test_parameters_convolution, test_parameters_rnncell ) def test_linearlayer(): """ Tests the linear layer class. """ weights, bias, A, dZ = test_parameters_linearlayer() layer = LinearLayer(3, 2) layer.weights = weights layer.bias = bias expected_Z = np.array([[-13.], [50.5]]) expected_dA = np.array([[4.5],[3.], [7.6]]) obtained_Z = layer.forward(A) obtained_dA = layer.backward(dZ) np.testing.assert_almost_equal(expected_Z, obtained_Z) np.testing.assert_almost_equal(expected_dA, obtained_dA) def test_paddinglayer(): """ Tests padding layer class. """ X = np.array([[1, 1, 1], [1, 1, 1]]) expected = np.array( [[0, 0, 0, 0, 0], [0, 1, 1, 1, 0], [0, 1, 1, 1, 0], [0, 0, 0, 0, 0]] ) padding = 1 dimension = 2 constant = 0 padclass = ConstantPad(padding, dimension, constant) obtained = padclass.pad(X) np.testing.assert_almost_equal(expected, obtained) def test_conv2d(): """ Test Convolutional 2D layer class. """ image, weights, bias = test_parameters_convolution() expected_Z = np.array( [[[[17]], [[26]], [[11]], [[ 5]]], [[[39]], [[32]], [[28]], [[ 8]]], [[[29]], [[46]], [[24]], [[17]]], [[[43]], [[49]], [[50]], [[29]]]] ) expected_dA = np.array( [[[[326.]], [[475.]], [[296.]], [[159.]]], [[[488.]], [[555.]], [[491.]], [[201.]]], [[[522.]], [[798.]], [[628.]], [[378.]]], [[[316.]], [[392.]], [[370.]], [[190.]]]] ) expected_dW = np.array( [[[[771, 927, 626], [833, 1200, 739], [529, 749, 569]]]] ) expected_db = np.array([[453]]) in_channels = 1 out_channels = 1 kernel_size = (3, 3) stride = 1 padding = 1 convolution = Conv2D( in_channels, out_channels, kernel_size, stride, padding ) convolution.weights = weights convolution.bias = bias obtained_Z = convolution.forward(image) obtained_dA = convolution.backward(obtained_Z) obtained_dW = convolution.dW obtained_db = convolution.db np.testing.assert_almost_equal(expected_Z, obtained_Z) np.testing.assert_almost_equal(expected_dA, obtained_dA) np.testing.assert_almost_equal(expected_dW, obtained_dW) np.testing.assert_almost_equal(expected_db, obtained_db) def test_maxpooling2d(): """ Tests Max pooling layer class. """ image, _, _ = test_parameters_convolution() expected_Z = np.array( [[[[4]], [[4]]], [[[4]], [[4]]]] ) expected_dA = np.array( [[[[ 0.]], [[ 8.]], [[ 0.]], [[ 0.]]], [[[ 0.]], [[ 0.]], [[ 0.]], [[ 0.]]], [[[ 8.]], [[16.]], [[ 0.]], [[ 0.]]], [[[ 4.]], [[ 0.]], [[ 8.]], [[ 0.]]]] ) kernel_size = (3, 3) stride = 1 padding = 0 convolution = MaxPooling2D(kernel_size, stride, padding) obtained_Z = convolution.forward(image) obtained_dA = convolution.backward(obtained_Z)
np.testing.assert_almost_equal(expected_Z, obtained_Z)
numpy.testing.assert_almost_equal
from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals _DETECTRON_OPS_LIB = 'libcaffe2_detectron_ops_gpu.so' _CMAKE_INSTALL_PREFIX = '/usr/local' HIGHEST_BACKBONE_LVL = 5 LOWEST_BACKBONE_LVL = 2 import argparse import cv2 # import glob import copy import logging import os import sys import six import time import importlib import pprint import contextlib import re import scipy.sparse import collections import numpy as np import numpy.random as npr import matplotlib.pyplot as plt # sys.path.append('/root/pmt/thirdparty/densepose/np') # path to where detectron # bash this with model missing in 'filename' and add the path to sys # find / -type f -iname "filename*" # sys.path.append('path/to/where/cafffe2/is') from caffe2.python import workspace from caffe2.proto import caffe2_pb2 from caffe2.python import core from caffe2.python import dyndep from caffe2.python import scope from caffe2.python import cnn from caffe2.python import muji from caffe2.python.modeling import initializers from caffe2.python.modeling.parameter_info import ParameterTags from pycocotools import mask as COCOmask from pycocotools.coco import COCO import pycocotools.mask as mask_util from .assets.config import assert_and_infer_cfg from .assets.config import cfg from .assets.config import merge_cfg_from_file from .assets.config import load_cfg import cython_bbox as cython_bbox import cython_nms as cython_nms from collections import defaultdict from collections import OrderedDict from six import string_types from six.moves import cPickle as pickle from six.moves import urllib from glob import glob from scipy.io import loadmat from matplotlib.patches import Polygon box_utils_bbox_overlaps = cython_bbox.bbox_overlaps bbox_overlaps = cython_bbox.bbox_overlaps logger = logging.getLogger(__name__) FpnLevelInfo = collections.namedtuple( 'FpnLevelInfo', ['blobs', 'dims', 'spatial_scales'] ) def _progress_bar(count, total): """Report download progress. Credit: https://stackoverflow.com/questions/3173320/text-progress-bar-in-the-console/27871113 """ bar_len = 60 filled_len = int(round(bar_len * count / float(total))) percents = round(100.0 * count / float(total), 1) bar = '=' * filled_len + '-' * (bar_len - filled_len) sys.stdout.write( ' [{}] {}% of {:.1f}MB file \r'. format(bar, percents, total / 1024 / 1024) ) sys.stdout.flush() if count >= total: sys.stdout.write('\n') def download_url( url, dst_file_path, chunk_size=8192, progress_hook=_progress_bar ): """Download url and write it to dst_file_path. Credit: https://stackoverflow.com/questions/2028517/python-urllib2-progress-hook """ response = urllib.request.urlopen(url) if six.PY2: total_size = response.info().getheader('Content-Length').strip() else: total_size = response.info().get('Content-Length').strip() total_size = int(total_size) bytes_so_far = 0 with open(dst_file_path, 'wb') as f: while 1: chunk = response.read(chunk_size) bytes_so_far += len(chunk) if not chunk: break if progress_hook: progress_hook(bytes_so_far, total_size) f.write(chunk) return bytes_so_far def get_class_string(class_index, score, dataset): class_text = dataset.classes[class_index] if dataset is not None else \ 'id{:d}'.format(class_index) return class_text + ' {:0.2f}'.format(score).lstrip('0') def kp_connections(keypoints): kp_lines = [ [keypoints.index('left_eye'), keypoints.index('right_eye')], [keypoints.index('left_eye'), keypoints.index('nose')], [keypoints.index('right_eye'), keypoints.index('nose')], [keypoints.index('right_eye'), keypoints.index('right_ear')], [keypoints.index('left_eye'), keypoints.index('left_ear')], [keypoints.index('right_shoulder'), keypoints.index('right_elbow')], [keypoints.index('right_elbow'), keypoints.index('right_wrist')], [keypoints.index('left_shoulder'), keypoints.index('left_elbow')], [keypoints.index('left_elbow'), keypoints.index('left_wrist')], [keypoints.index('right_hip'), keypoints.index('right_knee')], [keypoints.index('right_knee'), keypoints.index('right_ankle')], [keypoints.index('left_hip'), keypoints.index('left_knee')], [keypoints.index('left_knee'), keypoints.index('left_ankle')], [keypoints.index('right_shoulder'), keypoints.index('left_shoulder')], [keypoints.index('right_hip'), keypoints.index('left_hip')], ] return kp_lines def colormap(rgb=False): color_list = np.array( [ 0.000, 0.447, 0.741, 0.850, 0.325, 0.098, 0.929, 0.694, 0.125, 0.494, 0.184, 0.556, 0.466, 0.674, 0.188, 0.301, 0.745, 0.933, 0.635, 0.078, 0.184, 0.300, 0.300, 0.300, 0.600, 0.600, 0.600, 1.000, 0.000, 0.000, 1.000, 0.500, 0.000, 0.749, 0.749, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 1.000, 0.667, 0.000, 1.000, 0.333, 0.333, 0.000, 0.333, 0.667, 0.000, 0.333, 1.000, 0.000, 0.667, 0.333, 0.000, 0.667, 0.667, 0.000, 0.667, 1.000, 0.000, 1.000, 0.333, 0.000, 1.000, 0.667, 0.000, 1.000, 1.000, 0.000, 0.000, 0.333, 0.500, 0.000, 0.667, 0.500, 0.000, 1.000, 0.500, 0.333, 0.000, 0.500, 0.333, 0.333, 0.500, 0.333, 0.667, 0.500, 0.333, 1.000, 0.500, 0.667, 0.000, 0.500, 0.667, 0.333, 0.500, 0.667, 0.667, 0.500, 0.667, 1.000, 0.500, 1.000, 0.000, 0.500, 1.000, 0.333, 0.500, 1.000, 0.667, 0.500, 1.000, 1.000, 0.500, 0.000, 0.333, 1.000, 0.000, 0.667, 1.000, 0.000, 1.000, 1.000, 0.333, 0.000, 1.000, 0.333, 0.333, 1.000, 0.333, 0.667, 1.000, 0.333, 1.000, 1.000, 0.667, 0.000, 1.000, 0.667, 0.333, 1.000, 0.667, 0.667, 1.000, 0.667, 1.000, 1.000, 1.000, 0.000, 1.000, 1.000, 0.333, 1.000, 1.000, 0.667, 1.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.167, 0.000, 0.000, 0.333, 0.000, 0.000, 0.500, 0.000, 0.000, 0.667, 0.000, 0.000, 0.833, 0.000, 0.000, 1.000, 0.000, 0.000, 0.000, 0.143, 0.143, 0.143, 0.286, 0.286, 0.286, 0.429, 0.429, 0.429, 0.571, 0.571, 0.571, 0.714, 0.714, 0.714, 0.857, 0.857, 0.857, 1.000, 1.000, 1.000 ] ).astype(np.float32) color_list = color_list.reshape((-1, 3)) * 255 if not rgb: color_list = color_list[:, ::-1] return color_list def keypoint_utils_get_keypoints(): """Get the COCO keypoints and their left/right flip coorespondence map.""" # Keypoints are not available in the COCO json for the test split, so we # provide them here. keypoints = [ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle' ] keypoint_flip_map = { 'left_eye': 'right_eye', 'left_ear': 'right_ear', 'left_shoulder': 'right_shoulder', 'left_elbow': 'right_elbow', 'left_wrist': 'right_wrist', 'left_hip': 'right_hip', 'left_knee': 'right_knee', 'left_ankle': 'right_ankle' } return keypoints, keypoint_flip_map def convert_from_cls_format(cls_boxes, cls_segms, cls_keyps): """Convert from the class boxes/segms/keyps format generated by the testing code. """ box_list = [b for b in cls_boxes if len(b) > 0] if len(box_list) > 0: boxes = np.concatenate(box_list) else: boxes = None if cls_segms is not None: segms = [s for slist in cls_segms for s in slist] else: segms = None if cls_keyps is not None: keyps = [k for klist in cls_keyps for k in klist] else: keyps = None classes = [] for j in range(len(cls_boxes)): classes += [j] * len(cls_boxes[j]) return boxes, segms, keyps, classes def vis_utils_vis_one_image( im, boxes, segms=None, keypoints=None, body_uv=None, thresh=0.9, kp_thresh=2, dpi=200, box_alpha=0.0, dataset=None, show_class=False, ext='pdf'): """Visual debugging of detections.""" if isinstance(boxes, list): boxes, segms, keypoints, classes = convert_from_cls_format( boxes, segms, keypoints) if boxes is None or boxes.shape[0] == 0 or max(boxes[:, 4]) < thresh: return dataset_keypoints, _ = keypoint_utils_get_keypoints() if segms is not None and len(segms) > 0: masks = mask_util.decode(segms) color_list = colormap(rgb=True) / 255 kp_lines = kp_connections(dataset_keypoints) cmap = plt.get_cmap('rainbow') colors = [cmap(i) for i in np.linspace(0, 1, len(kp_lines) + 2)] # Display in largest to smallest order to reduce occlusion areas = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) sorted_inds = np.argsort(-areas) IUV_fields = body_uv[1] # All_Coords = np.zeros(im.shape) All_inds = np.zeros([im.shape[0],im.shape[1]]) K = 26 ## inds = np.argsort(boxes[:,4]) ## for i, ind in enumerate(inds): entry = boxes[ind,:] if entry[4] > 0.65: entry=entry[0:4].astype(int) #### output = IUV_fields[ind] #### All_Coords_Old = All_Coords[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2],:] All_Coords_Old[All_Coords_Old==0]=output.transpose([1,2,0])[All_Coords_Old==0] All_Coords[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2],:]= All_Coords_Old ### CurrentMask = (output[0,:,:]>0).astype(np.float32) All_inds_old = All_inds[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2]] All_inds_old[All_inds_old==0] = CurrentMask[All_inds_old==0]*i All_inds[ entry[1] : entry[1]+output.shape[1],entry[0]:entry[0]+output.shape[2]] = All_inds_old # All_Coords[:,:,1:3] = 255. * All_Coords[:,:,1:3] All_Coords[All_Coords>255] = 255. All_Coords = All_Coords.astype(np.uint8) return All_Coords def envu_get_detectron_ops_lib(): """Retrieve Detectron ops library.""" # Candidate prefixes for detectron ops lib path prefixes = [_CMAKE_INSTALL_PREFIX, sys.prefix, sys.exec_prefix] + sys.path # Candidate subdirs for detectron ops lib subdirs = ['lib', 'torch/lib'] # Try to find detectron ops lib for prefix in prefixes: for subdir in subdirs: ops_path = os.path.join(prefix, subdir, _DETECTRON_OPS_LIB) if os.path.exists(ops_path): #print('Found Detectron ops lib: {}'.format(ops_path)) return ops_path raise Exception('Detectron ops lib not found') def c2_utils_import_detectron_ops(): """Import Detectron ops.""" detectron_ops_lib = envu_get_detectron_ops_lib() dyndep.InitOpsLibrary(detectron_ops_lib) def dummy_datasets_get_coco_dataset(): """A dummy COCO dataset that includes only the 'classes' field.""" ds = AttrDict() classes = [ '__background__', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard', 'tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', 'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed', 'dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush' ] ds.classes = {i: name for i, name in enumerate(classes)} return ds def im_detect_body_uv(model, im_scale, boxes): """Compute body uv predictions.""" M = cfg.BODY_UV_RCNN.HEATMAP_SIZE P = cfg.BODY_UV_RCNN.NUM_PATCHES if boxes.shape[0] == 0: pred_body_uvs = np.zeros((0, P, M, M), np.float32) return pred_body_uvs inputs = {'body_uv_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'body_uv_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.body_uv_net.Proto().name) AnnIndex = workspace.FetchBlob(core.ScopedName('AnnIndex')).squeeze() Index_UV = workspace.FetchBlob(core.ScopedName('Index_UV')).squeeze() U_uv = workspace.FetchBlob(core.ScopedName('U_estimated')).squeeze() V_uv = workspace.FetchBlob(core.ScopedName('V_estimated')).squeeze() # In case of 1 if AnnIndex.ndim == 3: AnnIndex = np.expand_dims(AnnIndex, axis=0) if Index_UV.ndim == 3: Index_UV = np.expand_dims(Index_UV, axis=0) if U_uv.ndim == 3: U_uv = np.expand_dims(U_uv, axis=0) if V_uv.ndim == 3: V_uv = np.expand_dims(V_uv, axis=0) K = cfg.BODY_UV_RCNN.NUM_PATCHES + 1 outputs = [] for ind, entry in enumerate(boxes): # Compute ref box width and height bx = int(max(entry[2] - entry[0], 1)) by = int(max(entry[3] - entry[1], 1)) # preds[ind] axes are CHW; bring p axes to WHC CurAnnIndex = np.swapaxes(AnnIndex[ind], 0, 2) CurIndex_UV = np.swapaxes(Index_UV[ind], 0, 2) CurU_uv = np.swapaxes(U_uv[ind], 0, 2) CurV_uv = np.swapaxes(V_uv[ind], 0, 2) # Resize p from (HEATMAP_SIZE, HEATMAP_SIZE, c) to (int(bx), int(by), c) CurAnnIndex = cv2.resize(CurAnnIndex, (by, bx)) CurIndex_UV = cv2.resize(CurIndex_UV, (by, bx)) CurU_uv = cv2.resize(CurU_uv, (by, bx)) CurV_uv = cv2.resize(CurV_uv, (by, bx)) # Bring Cur_Preds axes back to CHW CurAnnIndex = np.swapaxes(CurAnnIndex, 0, 2) CurIndex_UV = np.swapaxes(CurIndex_UV, 0, 2) CurU_uv = np.swapaxes(CurU_uv, 0, 2) CurV_uv = np.swapaxes(CurV_uv, 0, 2) # Removed squeeze calls due to singleton dimension issues CurAnnIndex = np.argmax(CurAnnIndex, axis=0) CurIndex_UV = np.argmax(CurIndex_UV, axis=0) CurIndex_UV = CurIndex_UV * (CurAnnIndex>0).astype(np.float32) output = np.zeros([3, int(by), int(bx)], dtype=np.float32) output[0] = CurIndex_UV for part_id in range(1, K): CurrentU = CurU_uv[part_id] CurrentV = CurV_uv[part_id] output[1, CurIndex_UV==part_id] = CurrentU[CurIndex_UV==part_id] output[2, CurIndex_UV==part_id] = CurrentV[CurIndex_UV==part_id] outputs.append(output) num_classes = cfg.MODEL.NUM_CLASSES cls_bodys = [[] for _ in range(num_classes)] person_idx = keypoint_utils_get_person_class_index() cls_bodys[person_idx] = outputs return cls_bodys def compute_oks(src_keypoints, src_roi, dst_keypoints, dst_roi): """Compute OKS for predicted keypoints wrt gt_keypoints. src_keypoints: 4xK src_roi: 4x1 dst_keypoints: Nx4xK dst_roi: Nx4 """ sigmas = np.array([ .26, .25, .25, .35, .35, .79, .79, .72, .72, .62, .62, 1.07, 1.07, .87, .87, .89, .89]) / 10.0 vars = (sigmas * 2)**2 # area src_area = (src_roi[2] - src_roi[0] + 1) * (src_roi[3] - src_roi[1] + 1) # measure the per-keypoint distance if keypoints visible dx = dst_keypoints[:, 0, :] - src_keypoints[0, :] dy = dst_keypoints[:, 1, :] - src_keypoints[1, :] e = (dx**2 + dy**2) / vars / (src_area + np.spacing(1)) / 2 e = np.sum(np.exp(-e), axis=1) / e.shape[1] return e def keypoint_utils_nms_oks(kp_predictions, rois, thresh): """Nms based on kp predictions.""" scores = np.mean(kp_predictions[:, 2, :], axis=1) order = scores.argsort()[::-1] keep = [] while order.size > 0: i = order[0] keep.append(i) ovr = compute_oks( kp_predictions[i], rois[i], kp_predictions[order[1:]], rois[order[1:]]) inds = np.where(ovr <= thresh)[0] order = order[inds + 1] return keep def scores_to_probs(scores): """Transforms CxHxW of scores to probabilities spatially.""" channels = scores.shape[0] for c in range(channels): temp = scores[c, :, :] max_score = temp.max() temp = np.exp(temp - max_score) / np.sum(np.exp(temp - max_score)) scores[c, :, :] = temp return scores def keypoint_utils_heatmaps_to_keypoints(maps, rois): """Extract predicted keypoint locations from heatmaps. Output has shape (#rois, 4, #keypoints) with the 4 rows corresponding to (x, y, logit, prob) for each keypoint. """ # This function converts a discrete image coordinate in a HEATMAP_SIZE x # HEATMAP_SIZE image to a continuous keypoint coordinate. We maintain # consistency with keypoints_to_heatmap_labels by using the conversion from # Heckbert 1990: c = d + 0.5, where d is a discrete coordinate and c is a # continuous coordinate. offset_x = rois[:, 0] offset_y = rois[:, 1] widths = rois[:, 2] - rois[:, 0] heights = rois[:, 3] - rois[:, 1] widths = np.maximum(widths, 1) heights = np.maximum(heights, 1) widths_ceil = np.ceil(widths) heights_ceil = np.ceil(heights) # NCHW to NHWC for use with OpenCV maps = np.transpose(maps, [0, 2, 3, 1]) min_size = cfg.KRCNN.INFERENCE_MIN_SIZE xy_preds = np.zeros( (len(rois), 4, cfg.KRCNN.NUM_KEYPOINTS), dtype=np.float32) for i in range(len(rois)): if min_size > 0: roi_map_width = int(np.maximum(widths_ceil[i], min_size)) roi_map_height = int(np.maximum(heights_ceil[i], min_size)) else: roi_map_width = widths_ceil[i] roi_map_height = heights_ceil[i] width_correction = widths[i] / roi_map_width height_correction = heights[i] / roi_map_height roi_map = cv2.resize( maps[i], (roi_map_width, roi_map_height), interpolation=cv2.INTER_CUBIC) # Bring back to CHW roi_map = np.transpose(roi_map, [2, 0, 1]) roi_map_probs = scores_to_probs(roi_map.copy()) w = roi_map.shape[2] for k in range(cfg.KRCNN.NUM_KEYPOINTS): pos = roi_map[k, :, :].argmax() x_int = pos % w y_int = (pos - x_int) // w assert (roi_map_probs[k, y_int, x_int] == roi_map_probs[k, :, :].max()) x = (x_int + 0.5) * width_correction y = (y_int + 0.5) * height_correction xy_preds[i, 0, k] = x + offset_x[i] xy_preds[i, 1, k] = y + offset_y[i] xy_preds[i, 2, k] = roi_map[k, y_int, x_int] xy_preds[i, 3, k] = roi_map_probs[k, y_int, x_int] return xy_preds def keypoint_utils_get_person_class_index(): """Index of the person class in COCO.""" return 1 def keypoint_results(cls_boxes, pred_heatmaps, ref_boxes): num_classes = cfg.MODEL.NUM_CLASSES cls_keyps = [[] for _ in range(num_classes)] person_idx = keypoint_utils_get_person_class_index() xy_preds = keypoint_utils_heatmaps_to_keypoints(pred_heatmaps, ref_boxes) # NMS OKS if cfg.KRCNN.NMS_OKS: keep = keypoint_utils_nms_oks(xy_preds, ref_boxes, 0.3) xy_preds = xy_preds[keep, :, :] ref_boxes = ref_boxes[keep, :] pred_heatmaps = pred_heatmaps[keep, :, :, :] cls_boxes[person_idx] = cls_boxes[person_idx][keep, :] kps = [xy_preds[i] for i in range(xy_preds.shape[0])] cls_keyps[person_idx] = kps return cls_keyps def im_detect_keypoints(model, im_scale, boxes): """Infer instance keypoint poses. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scales (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_heatmaps (ndarray): R x J x M x M array of keypoint location logits (softmax inputs) for each of the J keypoint types output by the network (must be processed by keypoint_results to convert into point predictions in the original image coordinate space) """ M = cfg.KRCNN.HEATMAP_SIZE if boxes.shape[0] == 0: pred_heatmaps = np.zeros((0, cfg.KRCNN.NUM_KEYPOINTS, M, M), np.float32) return pred_heatmaps inputs = {'keypoint_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'keypoint_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.keypoint_net.Proto().name) pred_heatmaps = workspace.FetchBlob(core.ScopedName('kps_score')).squeeze() # In case of 1 if pred_heatmaps.ndim == 3: pred_heatmaps = np.expand_dims(pred_heatmaps, axis=0) return pred_heatmaps def combine_heatmaps_size_dep(hms_ts, ds_ts, us_ts, boxes, heur_f): """Combines heatmaps while taking object sizes into account.""" assert len(hms_ts) == len(ds_ts) and len(ds_ts) == len(us_ts), \ 'All sets of hms must be tagged with downscaling and upscaling flags' # Classify objects into small+medium and large based on their box areas areas = box_utils_boxes_area(boxes) sm_objs = areas < cfg.TEST.KPS_AUG.AREA_TH l_objs = areas >= cfg.TEST.KPS_AUG.AREA_TH # Combine heatmaps computed under different transformations for each object hms_c = np.zeros_like(hms_ts[0]) for i in range(hms_c.shape[0]): hms_to_combine = [] for hms_t, ds_t, us_t in zip(hms_ts, ds_ts, us_ts): # Discard downscaling predictions for small and medium objects if sm_objs[i] and ds_t: continue # Discard upscaling predictions for large objects if l_objs[i] and us_t: continue hms_to_combine.append(hms_t[i]) hms_c[i] = heur_f(hms_to_combine) return hms_c def im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes, hflip=False ): """Detects keypoints at the given width-relative aspect ratio.""" # Perform keypoint detectionon the transformed image im_ar = image_utils_aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils_aspect_ratio(boxes, aspect_ratio) if hflip: heatmaps_ar = im_detect_keypoints_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes_ar ) else: im_scale = im_conv_body_only( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE ) heatmaps_ar = im_detect_keypoints(model, im_scale, boxes_ar) return heatmaps_ar def im_detect_keypoints_scale( model, im, target_scale, target_max_size, boxes, hflip=False ): """Computes keypoint predictions at the given scale.""" if hflip: heatmaps_scl = im_detect_keypoints_hflip( model, im, target_scale, target_max_size, boxes ) else: im_scale = im_conv_body_only(model, im, target_scale, target_max_size) heatmaps_scl = im_detect_keypoints(model, im_scale, boxes) return heatmaps_scl def get_keypoints(): """Get the COCO keypoints and their left/right flip coorespondence map.""" # Keypoints are not available in the COCO json for the test split, so we # provide them here. keypoints = [ 'nose', 'left_eye', 'right_eye', 'left_ear', 'right_ear', 'left_shoulder', 'right_shoulder', 'left_elbow', 'right_elbow', 'left_wrist', 'right_wrist', 'left_hip', 'right_hip', 'left_knee', 'right_knee', 'left_ankle', 'right_ankle' ] keypoint_flip_map = { 'left_eye': 'right_eye', 'left_ear': 'right_ear', 'left_shoulder': 'right_shoulder', 'left_elbow': 'right_elbow', 'left_wrist': 'right_wrist', 'left_hip': 'right_hip', 'left_knee': 'right_knee', 'left_ankle': 'right_ankle' } return keypoints, keypoint_flip_map def keypoint_utils_flip_heatmaps(heatmaps): """Flip heatmaps horizontally.""" keypoints, flip_map = get_keypoints() heatmaps_flipped = heatmaps.copy() for lkp, rkp in flip_map.items(): lid = keypoints.index(lkp) rid = keypoints.index(rkp) heatmaps_flipped[:, rid, :, :] = heatmaps[:, lid, :, :] heatmaps_flipped[:, lid, :, :] = heatmaps[:, rid, :, :] heatmaps_flipped = heatmaps_flipped[:, :, :, ::-1] return heatmaps_flipped def im_detect_keypoints_hflip(model, im, target_scale, target_max_size, boxes): """Computes keypoint predictions on the horizontally flipped image. Function signature is the same as for im_detect_keypoints_aug. """ # Compute keypoints for the flipped image im_hf = im[:, ::-1, :] boxes_hf = box_utils_flip_boxes(boxes, im.shape[1]) im_scale = im_conv_body_only(model, im_hf, target_scale, target_max_size) heatmaps_hf = im_detect_keypoints(model, im_scale, boxes_hf) # Invert the predicted keypoints heatmaps_inv = keypoint_utils_flip_heatmaps(heatmaps_hf) return heatmaps_inv def im_detect_keypoints_aug(model, im, boxes): """Computes keypoint predictions with test-time augmentations. Arguments: model (DetectionModelHelper): the detection model to use im (ndarray): BGR image to test boxes (ndarray): R x 4 array of bounding boxes Returns: heatmaps (ndarray): R x J x M x M array of keypoint location logits """ # Collect heatmaps predicted under different transformations heatmaps_ts = [] # Tag predictions computed under downscaling and upscaling transformations ds_ts = [] us_ts = [] def add_heatmaps_t(heatmaps_t, ds_t=False, us_t=False): heatmaps_ts.append(heatmaps_t) ds_ts.append(ds_t) us_ts.append(us_t) # Compute the heatmaps for the original image (identity transform) im_scale = im_conv_body_only(model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE) heatmaps_i = im_detect_keypoints(model, im_scale, boxes) add_heatmaps_t(heatmaps_i) # Perform keypoints detection on the horizontally flipped image if cfg.TEST.KPS_AUG.H_FLIP: heatmaps_hf = im_detect_keypoints_hflip( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes ) add_heatmaps_t(heatmaps_hf) # Compute detections at different scales for scale in cfg.TEST.KPS_AUG.SCALES: ds_scl = scale < cfg.TEST.SCALE us_scl = scale > cfg.TEST.SCALE heatmaps_scl = im_detect_keypoints_scale( model, im, scale, cfg.TEST.KPS_AUG.MAX_SIZE, boxes ) add_heatmaps_t(heatmaps_scl, ds_scl, us_scl) if cfg.TEST.KPS_AUG.SCALE_H_FLIP: heatmaps_scl_hf = im_detect_keypoints_scale( model, im, scale, cfg.TEST.KPS_AUG.MAX_SIZE, boxes, hflip=True ) add_heatmaps_t(heatmaps_scl_hf, ds_scl, us_scl) # Compute keypoints at different aspect ratios for aspect_ratio in cfg.TEST.KPS_AUG.ASPECT_RATIOS: heatmaps_ar = im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes ) add_heatmaps_t(heatmaps_ar) if cfg.TEST.KPS_AUG.ASPECT_RATIO_H_FLIP: heatmaps_ar_hf = im_detect_keypoints_aspect_ratio( model, im, aspect_ratio, boxes, hflip=True ) add_heatmaps_t(heatmaps_ar_hf) # Select the heuristic function for combining the heatmaps if cfg.TEST.KPS_AUG.HEUR == 'HM_AVG': np_f = np.mean elif cfg.TEST.KPS_AUG.HEUR == 'HM_MAX': np_f = np.amax else: raise NotImplementedError( 'Heuristic {} not supported'.format(cfg.TEST.KPS_AUG.HEUR) ) def heur_f(hms_ts): return np_f(hms_ts, axis=0) # Combine the heatmaps if cfg.TEST.KPS_AUG.SCALE_SIZE_DEP: heatmaps_c = combine_heatmaps_size_dep( heatmaps_ts, ds_ts, us_ts, boxes, heur_f ) else: heatmaps_c = heur_f(heatmaps_ts) return heatmaps_c def box_utils_expand_boxes(boxes, scale): """Expand an array of boxes by a given scale.""" w_half = (boxes[:, 2] - boxes[:, 0]) * .5 h_half = (boxes[:, 3] - boxes[:, 1]) * .5 x_c = (boxes[:, 2] + boxes[:, 0]) * .5 y_c = (boxes[:, 3] + boxes[:, 1]) * .5 w_half *= scale h_half *= scale boxes_exp = np.zeros(boxes.shape) boxes_exp[:, 0] = x_c - w_half boxes_exp[:, 2] = x_c + w_half boxes_exp[:, 1] = y_c - h_half boxes_exp[:, 3] = y_c + h_half return boxes_exp def segm_results(cls_boxes, masks, ref_boxes, im_h, im_w): num_classes = cfg.MODEL.NUM_CLASSES cls_segms = [[] for _ in range(num_classes)] mask_ind = 0 # To work around an issue with cv2.resize (it seems to automatically pad # with repeated border values), we manually zero-pad the masks by 1 pixel # prior to resizing back to the original image resolution. This prevents # "top hat" artifacts. We therefore need to expand the reference boxes by an # appropriate factor. M = cfg.MRCNN.RESOLUTION scale = (M + 2.0) / M ref_boxes = box_utils_expand_boxes(ref_boxes, scale) ref_boxes = ref_boxes.astype(np.int32) padded_mask = np.zeros((M + 2, M + 2), dtype=np.float32) # skip j = 0, because it's the background class for j in range(1, num_classes): segms = [] for _ in range(cls_boxes[j].shape[0]): if cfg.MRCNN.CLS_SPECIFIC_MASK: padded_mask[1:-1, 1:-1] = masks[mask_ind, j, :, :] else: padded_mask[1:-1, 1:-1] = masks[mask_ind, 0, :, :] ref_box = ref_boxes[mask_ind, :] w = ref_box[2] - ref_box[0] + 1 h = ref_box[3] - ref_box[1] + 1 w = np.maximum(w, 1) h = np.maximum(h, 1) mask = cv2.resize(padded_mask, (w, h)) mask = np.array(mask > cfg.MRCNN.THRESH_BINARIZE, dtype=np.uint8) im_mask = np.zeros((im_h, im_w), dtype=np.uint8) x_0 = max(ref_box[0], 0) x_1 = min(ref_box[2] + 1, im_w) y_0 = max(ref_box[1], 0) y_1 = min(ref_box[3] + 1, im_h) im_mask[y_0:y_1, x_0:x_1] = mask[ (y_0 - ref_box[1]):(y_1 - ref_box[1]), (x_0 - ref_box[0]):(x_1 - ref_box[0]) ] # Get RLE encoding used by the COCO evaluation API rle = mask_util.encode( np.array(im_mask[:, :, np.newaxis], order='F') )[0] segms.append(rle) mask_ind += 1 cls_segms[j] = segms assert mask_ind == masks.shape[0] return cls_segms def im_detect_mask(model, im_scale, boxes): """Infer instance segmentation masks. This function must be called after im_detect_bbox as it assumes that the Caffe2 workspace is already populated with the necessary blobs. Arguments: model (DetectionModelHelper): the detection model to use im_scales (list): image blob scales as returned by im_detect_bbox boxes (ndarray): R x 4 array of bounding box detections (e.g., as returned by im_detect_bbox) Returns: pred_masks (ndarray): R x K x M x M array of class specific soft masks output by the network (must be processed by segm_results to convert into hard masks in the original image coordinate space) """ M = cfg.MRCNN.RESOLUTION if boxes.shape[0] == 0: pred_masks = np.zeros((0, M, M), np.float32) return pred_masks inputs = {'mask_rois': _get_rois_blob(boxes, im_scale)} # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS: _add_multilevel_rois_for_test(inputs, 'mask_rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.mask_net.Proto().name) # Fetch masks pred_masks = workspace.FetchBlob( core.ScopedName('mask_fcn_probs') ).squeeze() if cfg.MRCNN.CLS_SPECIFIC_MASK: pred_masks = pred_masks.reshape([-1, cfg.MODEL.NUM_CLASSES, M, M]) else: pred_masks = pred_masks.reshape([-1, 1, M, M]) return pred_masks def im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes, hflip=False): """Computes mask detections at the given width-relative aspect ratio.""" # Perform mask detection on the transformed image im_ar = image_utils_aspect_ratio_rel(im, aspect_ratio) boxes_ar = box_utils_aspect_ratio(boxes, aspect_ratio) if hflip: masks_ar = im_detect_mask_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes_ar ) else: im_scale = im_conv_body_only( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE ) masks_ar = im_detect_mask(model, im_scale, boxes_ar) return masks_ar def im_detect_mask_scale( model, im, target_scale, target_max_size, boxes, hflip=False ): """Computes masks at the given scale.""" if hflip: masks_scl = im_detect_mask_hflip( model, im, target_scale, target_max_size, boxes ) else: im_scale = im_conv_body_only(model, im, target_scale, target_max_size) masks_scl = im_detect_mask(model, im_scale, boxes) return masks_scl def im_detect_mask_hflip(model, im, target_scale, target_max_size, boxes): """Performs mask detection on the horizontally flipped image. Function signature is the same as for im_detect_mask_aug. """ # Compute the masks for the flipped image im_hf = im[:, ::-1, :] boxes_hf = box_utils_flip_boxes(boxes, im.shape[1]) im_scale = im_conv_body_only(model, im_hf, target_scale, target_max_size) masks_hf = im_detect_mask(model, im_scale, boxes_hf) # Invert the predicted soft masks masks_inv = masks_hf[:, :, :, ::-1] return masks_inv def im_conv_body_only(model, im, target_scale, target_max_size): """Runs `model.conv_body_net` on the given image `im`.""" im_blob, im_scale, _im_info = blob_utils_get_image_blob( im, target_scale, target_max_size ) workspace.FeedBlob(core.ScopedName('data'), im_blob) workspace.RunNet(model.conv_body_net.Proto().name) return im_scale def im_detect_mask_aug(model, im, boxes): """Performs mask detection with test-time augmentations. Arguments: model (DetectionModelHelper): the detection model to use im (ndarray): BGR image to test boxes (ndarray): R x 4 array of bounding boxes Returns: masks (ndarray): R x K x M x M array of class specific soft masks """ assert not cfg.TEST.MASK_AUG.SCALE_SIZE_DEP, \ 'Size dependent scaling not implemented' # Collect masks computed under different transformations masks_ts = [] # Compute masks for the original image (identity transform) im_scale_i = im_conv_body_only(model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE) masks_i = im_detect_mask(model, im_scale_i, boxes) masks_ts.append(masks_i) # Perform mask detection on the horizontally flipped image if cfg.TEST.MASK_AUG.H_FLIP: masks_hf = im_detect_mask_hflip( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes ) masks_ts.append(masks_hf) # Compute detections at different scales for scale in cfg.TEST.MASK_AUG.SCALES: max_size = cfg.TEST.MASK_AUG.MAX_SIZE masks_scl = im_detect_mask_scale(model, im, scale, max_size, boxes) masks_ts.append(masks_scl) if cfg.TEST.MASK_AUG.SCALE_H_FLIP: masks_scl_hf = im_detect_mask_scale( model, im, scale, max_size, boxes, hflip=True ) masks_ts.append(masks_scl_hf) # Compute masks at different aspect ratios for aspect_ratio in cfg.TEST.MASK_AUG.ASPECT_RATIOS: masks_ar = im_detect_mask_aspect_ratio(model, im, aspect_ratio, boxes) masks_ts.append(masks_ar) if cfg.TEST.MASK_AUG.ASPECT_RATIO_H_FLIP: masks_ar_hf = im_detect_mask_aspect_ratio( model, im, aspect_ratio, boxes, hflip=True ) masks_ts.append(masks_ar_hf) # Combine the predicted soft masks if cfg.TEST.MASK_AUG.HEUR == 'SOFT_AVG': masks_c = np.mean(masks_ts, axis=0) elif cfg.TEST.MASK_AUG.HEUR == 'SOFT_MAX': masks_c = np.amax(masks_ts, axis=0) elif cfg.TEST.MASK_AUG.HEUR == 'LOGIT_AVG': def logit(y): return -1.0 * np.log((1.0 - y) / np.maximum(y, 1e-20)) logit_masks = [logit(y) for y in masks_ts] logit_masks = np.mean(logit_masks, axis=0) masks_c = 1.0 / (1.0 + np.exp(-logit_masks)) else: raise NotImplementedError( 'Heuristic {} not supported'.format(cfg.TEST.MASK_AUG.HEUR) ) return masks_c def box_utils_box_voting(top_dets, all_dets, thresh, scoring_method='ID', beta=1.0): """Apply bounding-box voting to refine `top_dets` by voting with `all_dets`. See: https://arxiv.org/abs/1505.01749. Optional score averaging (not in the referenced paper) can be applied by setting `scoring_method` appropriately. """ # top_dets is [N, 5] each row is [x1 y1 x2 y2, sore] # all_dets is [N, 5] each row is [x1 y1 x2 y2, sore] top_dets_out = top_dets.copy() top_boxes = top_dets[:, :4] all_boxes = all_dets[:, :4] all_scores = all_dets[:, 4] top_to_all_overlaps = bbox_overlaps(top_boxes, all_boxes) for k in range(top_dets_out.shape[0]): inds_to_vote = np.where(top_to_all_overlaps[k] >= thresh)[0] boxes_to_vote = all_boxes[inds_to_vote, :] ws = all_scores[inds_to_vote] top_dets_out[k, :4] = np.average(boxes_to_vote, axis=0, weights=ws) if scoring_method == 'ID': # Identity, nothing to do pass elif scoring_method == 'TEMP_AVG': # Average probabilities (considered as P(detected class) vs. # P(not the detected class)) after smoothing with a temperature # hyperparameter. P = np.vstack((ws, 1.0 - ws)) P_max = np.max(P, axis=0) X = np.log(P / P_max) X_exp = np.exp(X / beta) P_temp = X_exp / np.sum(X_exp, axis=0) P_avg = P_temp[0].mean() top_dets_out[k, 4] = P_avg elif scoring_method == 'AVG': # Combine new probs from overlapping boxes top_dets_out[k, 4] = ws.mean() elif scoring_method == 'IOU_AVG': P = ws ws = top_to_all_overlaps[k, inds_to_vote] P_avg = np.average(P, weights=ws) top_dets_out[k, 4] = P_avg elif scoring_method == 'GENERALIZED_AVG': P_avg = np.mean(ws**beta)**(1.0 / beta) top_dets_out[k, 4] = P_avg elif scoring_method == 'QUASI_SUM': top_dets_out[k, 4] = ws.sum() / float(len(ws))**beta else: raise NotImplementedError( 'Unknown scoring method {}'.format(scoring_method) ) return top_dets_out def box_utils_soft_nms( dets, sigma=0.5, overlap_thresh=0.3, score_thresh=0.001, method='linear' ): """Apply the soft NMS algorithm from https://arxiv.org/abs/1704.04503.""" if dets.shape[0] == 0: return dets, [] methods = {'hard': 0, 'linear': 1, 'gaussian': 2} assert method in methods, 'Unknown soft_nms method: {}'.format(method) dets, keep = cython_nms.soft_nms( np.ascontiguousarray(dets, dtype=np.float32), np.float32(sigma), np.float32(overlap_thresh), np.float32(score_thresh), np.uint8(methods[method]) ) return dets, keep def box_results_with_nms_and_limit(scores, boxes): """Returns bounding-box detection results by thresholding on scores and applying non-maximum suppression (NMS). `boxes` has shape (#detections, 4 * #classes), where each row represents a list of predicted bounding boxes for each of the object classes in the dataset (including the background class). The detections in each row originate from the same object proposal. `scores` has shape (#detection, #classes), where each row represents a list of object detection confidence scores for each of the object classes in the dataset (including the background class). `scores[i, j]`` corresponds to the box at `boxes[i, j * 4:(j + 1) * 4]`. """ num_classes = cfg.MODEL.NUM_CLASSES cls_boxes = [[] for _ in range(num_classes)] # Apply threshold on detection probabilities and apply NMS # Skip j = 0, because it's the background class for j in range(1, num_classes): inds = np.where(scores[:, j] > cfg.TEST.SCORE_THRESH)[0] scores_j = scores[inds, j] boxes_j = boxes[inds, j * 4:(j + 1) * 4] dets_j = np.hstack((boxes_j, scores_j[:, np.newaxis])).astype( np.float32, copy=False ) if cfg.TEST.SOFT_NMS.ENABLED: nms_dets, _ = box_utils_soft_nms( dets_j, sigma=cfg.TEST.SOFT_NMS.SIGMA, overlap_thresh=cfg.TEST.NMS, score_thresh=0.0001, method=cfg.TEST.SOFT_NMS.METHOD ) else: keep = box_utils_nms(dets_j, cfg.TEST.NMS) nms_dets = dets_j[keep, :] # Refine the post-NMS boxes using bounding-box voting if cfg.TEST.BBOX_VOTE.ENABLED: nms_dets = box_utils_box_voting( nms_dets, dets_j, cfg.TEST.BBOX_VOTE.VOTE_TH, scoring_method=cfg.TEST.BBOX_VOTE.SCORING_METHOD ) cls_boxes[j] = nms_dets # Limit to max_per_image detections **over all classes** if cfg.TEST.DETECTIONS_PER_IM > 0: image_scores = np.hstack( [cls_boxes[j][:, -1] for j in range(1, num_classes)] ) if len(image_scores) > cfg.TEST.DETECTIONS_PER_IM: image_thresh = np.sort(image_scores)[-cfg.TEST.DETECTIONS_PER_IM] for j in range(1, num_classes): keep = np.where(cls_boxes[j][:, -1] >= image_thresh)[0] cls_boxes[j] = cls_boxes[j][keep, :] im_results = np.vstack([cls_boxes[j] for j in range(1, num_classes)]) boxes = im_results[:, :-1] scores = im_results[:, -1] return scores, boxes, cls_boxes def _add_multilevel_rois_for_test(blobs, name): """Distributes a set of RoIs across FPN pyramid levels by creating new level specific RoI blobs. Arguments: blobs (dict): dictionary of blobs name (str): a key in 'blobs' identifying the source RoI blob Returns: [by ref] blobs (dict): new keys named by `name + 'fpn' + level` are added to dict each with a value that's an R_level x 5 ndarray of RoIs (see _get_rois_blob for format) """ lvl_min = cfg.FPN.ROI_MIN_LEVEL lvl_max = cfg.FPN.ROI_MAX_LEVEL lvls = fpn_map_rois_to_fpn_levels(blobs[name][:, 1:5], lvl_min, lvl_max) fpn_add_multilevel_roi_blobs( blobs, name, blobs[name], lvls, lvl_min, lvl_max ) def _project_im_rois(im_rois, scales): """Project image RoIs into the image pyramid built by _get_image_blob. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates scales (list): scale factors as returned by _get_image_blob Returns: rois (ndarray): R x 4 matrix of projected RoI coordinates levels (ndarray): image pyramid levels used by each projected RoI """ rois = im_rois.astype(np.float, copy=False) * scales levels = np.zeros((im_rois.shape[0], 1), dtype=np.int) return rois, levels def _get_rois_blob(im_rois, im_scale): """Converts RoIs into network inputs. Arguments: im_rois (ndarray): R x 4 matrix of RoIs in original image coordinates im_scale_factors (list): scale factors as returned by _get_image_blob Returns: blob (ndarray): R x 5 matrix of RoIs in the image pyramid with columns [level, x1, y1, x2, y2] """ rois, levels = _project_im_rois(im_rois, im_scale) rois_blob = np.hstack((levels, rois)) return rois_blob.astype(np.float32, copy=False) def _get_blobs(im, rois, target_scale, target_max_size): """Convert an image and RoIs within that image into network inputs.""" blobs = {} blobs['data'], im_scale, blobs['im_info'] = \ blob_utils_get_image_blob(im, target_scale, target_max_size) if rois is not None: blobs['rois'] = _get_rois_blob(rois, im_scale) return blobs, im_scale def im_detect_bbox(model, im, target_scale, target_max_size, boxes=None): """Bounding box object detection for an image with given box proposals. Arguments: model (DetectionModelHelper): the detection model to use im (ndarray): color image to test (in BGR order) boxes (ndarray): R x 4 array of object proposals in 0-indexed [x1, y1, x2, y2] format, or None if using RPN Returns: scores (ndarray): R x K array of object class scores for K classes (K includes background as object category 0) boxes (ndarray): R x 4*K array of predicted bounding boxes im_scales (list): list of image scales used in the input blob (as returned by _get_blobs and for use with im_detect_mask, etc.) """ inputs, im_scale = _get_blobs(im, boxes, target_scale, target_max_size) # When mapping from image ROIs to feature map ROIs, there's some aliasing # (some distinct image ROIs get mapped to the same feature ROI). # Here, we identify duplicate feature ROIs, so we only compute features # on the unique subset. if cfg.DEDUP_BOXES > 0 and not cfg.MODEL.FASTER_RCNN: v = np.array([1, 1e3, 1e6, 1e9, 1e12]) hashes = np.round(inputs['rois'] * cfg.DEDUP_BOXES).dot(v) _, index, inv_index = np.unique( hashes, return_index=True, return_inverse=True ) inputs['rois'] = inputs['rois'][index, :] boxes = boxes[index, :] # Add multi-level rois for FPN if cfg.FPN.MULTILEVEL_ROIS and not cfg.MODEL.FASTER_RCNN: _add_multilevel_rois_for_test(inputs, 'rois') for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v) workspace.RunNet(model.net.Proto().name) # Read out blobs if cfg.MODEL.FASTER_RCNN: rois = workspace.FetchBlob(core.ScopedName('rois')) # unscale back to raw image space boxes = rois[:, 1:5] / im_scale # Softmax class probabilities scores = workspace.FetchBlob(core.ScopedName('cls_prob')).squeeze() # In case there is 1 proposal scores = scores.reshape([-1, scores.shape[-1]]) if cfg.TEST.BBOX_REG: # Apply bounding-box regression deltas box_deltas = workspace.FetchBlob(core.ScopedName('bbox_pred')).squeeze() # In case there is 1 proposal box_deltas = box_deltas.reshape([-1, box_deltas.shape[-1]]) if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: # Remove predictions for bg class (compat with MSRA code) box_deltas = box_deltas[:, -4:] pred_boxes = box_utils_bbox_transform( boxes, box_deltas, cfg.MODEL.BBOX_REG_WEIGHTS ) pred_boxes = box_utils_clip_tiled_boxes(pred_boxes, im.shape) if cfg.MODEL.CLS_AGNOSTIC_BBOX_REG: pred_boxes = np.tile(pred_boxes, (1, scores.shape[1])) else: # Simply repeat the boxes, once for each class pred_boxes = np.tile(boxes, (1, scores.shape[1])) if cfg.DEDUP_BOXES > 0 and not cfg.MODEL.FASTER_RCNN: # Map scores and predictions back to the original set of boxes scores = scores[inv_index, :] pred_boxes = pred_boxes[inv_index, :] return scores, pred_boxes, im_scale def box_utils_aspect_ratio(boxes, aspect_ratio): """Perform width-relative aspect ratio transformation.""" boxes_ar = boxes.copy() boxes_ar[:, 0::4] = aspect_ratio * boxes[:, 0::4] boxes_ar[:, 2::4] = aspect_ratio * boxes[:, 2::4] return boxes_ar def image_utils_aspect_ratio_rel(im, aspect_ratio): """Performs width-relative aspect ratio transformation.""" im_h, im_w = im.shape[:2] im_ar_w = int(round(aspect_ratio * im_w)) im_ar = cv2.resize(im, dsize=(im_ar_w, im_h)) return im_ar def im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals=None, hflip=False ): """Computes bbox detections at the given width-relative aspect ratio. Returns predictions in the original image space. """ # Compute predictions on the transformed image im_ar = image_utils_aspect_ratio_rel(im, aspect_ratio) if not cfg.MODEL.FASTER_RCNN: box_proposals_ar = box_utils_aspect_ratio(box_proposals, aspect_ratio) else: box_proposals_ar = None if hflip: scores_ar, boxes_ar, _ = im_detect_bbox_hflip( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals=box_proposals_ar ) else: scores_ar, boxes_ar, _ = im_detect_bbox( model, im_ar, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals_ar ) # Invert the detected boxes boxes_inv = box_utils_aspect_ratio(boxes_ar, 1.0 / aspect_ratio) return scores_ar, boxes_inv def im_detect_bbox_scale( model, im, target_scale, target_max_size, box_proposals=None, hflip=False ): """Computes bbox detections at the given scale. Returns predictions in the original image space. """ if hflip: scores_scl, boxes_scl, _ = im_detect_bbox_hflip( model, im, target_scale, target_max_size, box_proposals=box_proposals ) else: scores_scl, boxes_scl, _ = im_detect_bbox( model, im, target_scale, target_max_size, boxes=box_proposals ) return scores_scl, boxes_scl def box_utils_flip_boxes(boxes, im_width): """Flip boxes horizontally.""" boxes_flipped = boxes.copy() boxes_flipped[:, 0::4] = im_width - boxes[:, 2::4] - 1 boxes_flipped[:, 2::4] = im_width - boxes[:, 0::4] - 1 return boxes_flipped def im_detect_bbox_hflip( model, im, target_scale, target_max_size, box_proposals=None ): """Performs bbox detection on the horizontally flipped image. Function signature is the same as for im_detect_bbox. """ # Compute predictions on the flipped image im_hf = im[:, ::-1, :] im_width = im.shape[1] if not cfg.MODEL.FASTER_RCNN: box_proposals_hf = box_utils_flip_boxes(box_proposals, im_width) else: box_proposals_hf = None scores_hf, boxes_hf, im_scale = im_detect_bbox( model, im_hf, target_scale, target_max_size, boxes=box_proposals_hf ) # Invert the detections computed on the flipped image boxes_inv = box_utils_flip_boxes(boxes_hf, im_width) return scores_hf, boxes_inv, im_scale def im_detect_bbox_aug(model, im, box_proposals=None): """Performs bbox detection with test-time augmentations. Function signature is the same as for im_detect_bbox. """ assert not cfg.TEST.BBOX_AUG.SCALE_SIZE_DEP, \ 'Size dependent scaling not implemented' assert not cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION' or \ cfg.TEST.BBOX_AUG.COORD_HEUR == 'UNION', \ 'Coord heuristic must be union whenever score heuristic is union' assert not cfg.TEST.BBOX_AUG.COORD_HEUR == 'UNION' or \ cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION', \ 'Score heuristic must be union whenever coord heuristic is union' assert not cfg.MODEL.FASTER_RCNN or \ cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION', \ 'Union heuristic must be used to combine Faster RCNN predictions' # Collect detections computed under different transformations scores_ts = [] boxes_ts = [] def add_preds_t(scores_t, boxes_t): scores_ts.append(scores_t) boxes_ts.append(boxes_t) # Perform detection on the horizontally flipped image if cfg.TEST.BBOX_AUG.H_FLIP: scores_hf, boxes_hf, _ = im_detect_bbox_hflip( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, box_proposals=box_proposals ) add_preds_t(scores_hf, boxes_hf) # Compute detections at different scales for scale in cfg.TEST.BBOX_AUG.SCALES: max_size = cfg.TEST.BBOX_AUG.MAX_SIZE scores_scl, boxes_scl = im_detect_bbox_scale( model, im, scale, max_size, box_proposals ) add_preds_t(scores_scl, boxes_scl) if cfg.TEST.BBOX_AUG.SCALE_H_FLIP: scores_scl_hf, boxes_scl_hf = im_detect_bbox_scale( model, im, scale, max_size, box_proposals, hflip=True ) add_preds_t(scores_scl_hf, boxes_scl_hf) # Perform detection at different aspect ratios for aspect_ratio in cfg.TEST.BBOX_AUG.ASPECT_RATIOS: scores_ar, boxes_ar = im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals ) add_preds_t(scores_ar, boxes_ar) if cfg.TEST.BBOX_AUG.ASPECT_RATIO_H_FLIP: scores_ar_hf, boxes_ar_hf = im_detect_bbox_aspect_ratio( model, im, aspect_ratio, box_proposals, hflip=True ) add_preds_t(scores_ar_hf, boxes_ar_hf) # Compute detections for the original image (identity transform) last to # ensure that the Caffe2 workspace is populated with blobs corresponding # to the original image on return (postcondition of im_detect_bbox) scores_i, boxes_i, im_scale_i = im_detect_bbox( model, im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE, boxes=box_proposals ) add_preds_t(scores_i, boxes_i) # Combine the predicted scores if cfg.TEST.BBOX_AUG.SCORE_HEUR == 'ID': scores_c = scores_i elif cfg.TEST.BBOX_AUG.SCORE_HEUR == 'AVG': scores_c = np.mean(scores_ts, axis=0) elif cfg.TEST.BBOX_AUG.SCORE_HEUR == 'UNION': scores_c = np.vstack(scores_ts) else: raise NotImplementedError( 'Score heur {} not supported'.format(cfg.TEST.BBOX_AUG.SCORE_HEUR) ) # Combine the predicted boxes if cfg.TEST.BBOX_AUG.COORD_HEUR == 'ID': boxes_c = boxes_i elif cfg.TEST.BBOX_AUG.COORD_HEUR == 'AVG': boxes_c = np.mean(boxes_ts, axis=0) elif cfg.TEST.BBOX_AUG.COORD_HEUR == 'UNION': boxes_c = np.vstack(boxes_ts) else: raise NotImplementedError( 'Coord heur {} not supported'.format(cfg.TEST.BBOX_AUG.COORD_HEUR) ) return scores_c, boxes_c, im_scale_i def im_list_to_blob(ims): """Convert a list of images into a network input. Assumes images were prepared using prep_im_for_blob or equivalent: i.e. - BGR channel order - pixel means subtracted - resized to the desired input size - float32 numpy ndarray format Output is a 4D HCHW tensor of the images concatenated along axis 0 with shape. """ if not isinstance(ims, list): ims = [ims] max_shape = np.array([im.shape for im in ims]).max(axis=0) # Pad the image so they can be divisible by a stride if cfg.FPN.FPN_ON: stride = float(cfg.FPN.COARSEST_STRIDE) max_shape[0] = int(np.ceil(max_shape[0] / stride) * stride) max_shape[1] = int(np.ceil(max_shape[1] / stride) * stride) num_images = len(ims) blob = np.zeros( (num_images, max_shape[0], max_shape[1], 3), dtype=np.float32 ) for i in range(num_images): im = ims[i] blob[i, 0:im.shape[0], 0:im.shape[1], :] = im # Move channels (axis 3) to axis 1 # Axis order will become: (batch elem, channel, height, width) channel_swap = (0, 3, 1, 2) blob = blob.transpose(channel_swap) return blob def prep_im_for_blob(im, pixel_means, target_size, max_size): """Prepare an image for use as a network input blob. Specially: - Subtract per-channel pixel mean - Convert to float32 - Rescale to each of the specified target size (capped at max_size) Returns a list of transformed images, one for each target size. Also returns the scale factors that were used to compute each returned image. """ im = im.astype(np.float32, copy=False) im -= pixel_means im_shape = im.shape im_size_min = np.min(im_shape[0:2]) im_size_max = np.max(im_shape[0:2]) im_scale = float(target_size) / float(im_size_min) # Prevent the biggest axis from being more than max_size if np.round(im_scale * im_size_max) > max_size: im_scale = float(max_size) / float(im_size_max) im = cv2.resize( im, None, None, fx=im_scale, fy=im_scale, interpolation=cv2.INTER_LINEAR ) return im, im_scale def blob_utils_get_image_blob(im, target_scale, target_max_size): """Convert an image into a network input. Arguments: im (ndarray): a color image in BGR order Returns: blob (ndarray): a data blob holding an image pyramid im_scale (float): image scale (target size) / (original size) im_info (ndarray) """ processed_im, im_scale = prep_im_for_blob( im, cfg.PIXEL_MEANS, target_scale, target_max_size ) blob = im_list_to_blob(processed_im) # NOTE: this height and width may be larger than actual scaled input image # due to the FPN.COARSEST_STRIDE related padding in im_list_to_blob. We are # maintaining this behavior for now to make existing results exactly # reproducible (in practice using the true input image height and width # yields nearly the same results, but they are sometimes slightly different # because predictions near the edge of the image will be pruned more # aggressively). height, width = blob.shape[2], blob.shape[3] im_info = np.hstack((height, width, im_scale))[np.newaxis, :] return blob, im_scale, im_info.astype(np.float32) def _scale_enum(anchor, scales): """Enumerate a set of anchors for each scale wrt an anchor.""" w, h, x_ctr, y_ctr = _whctrs(anchor) ws = w * scales hs = h * scales anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors def _mkanchors(ws, hs, x_ctr, y_ctr): """Given a vector of widths (ws) and heights (hs) around a center (x_ctr, y_ctr), output a set of anchors (windows). """ ws = ws[:, np.newaxis] hs = hs[:, np.newaxis] anchors = np.hstack( ( x_ctr - 0.5 * (ws - 1), y_ctr - 0.5 * (hs - 1), x_ctr + 0.5 * (ws - 1), y_ctr + 0.5 * (hs - 1) ) ) return anchors def _whctrs(anchor): """Return width, height, x center, and y center for an anchor (window).""" w = anchor[2] - anchor[0] + 1 h = anchor[3] - anchor[1] + 1 x_ctr = anchor[0] + 0.5 * (w - 1) y_ctr = anchor[1] + 0.5 * (h - 1) return w, h, x_ctr, y_ctr def _ratio_enum(anchor, ratios): """Enumerate a set of anchors for each aspect ratio wrt an anchor.""" w, h, x_ctr, y_ctr = _whctrs(anchor) size = w * h size_ratios = size / ratios ws = np.round(np.sqrt(size_ratios)) hs = np.round(ws * ratios) anchors = _mkanchors(ws, hs, x_ctr, y_ctr) return anchors def _generate_anchors(base_size, scales, aspect_ratios): """Generate anchor (reference) windows by enumerating aspect ratios X scales wrt a reference (0, 0, base_size - 1, base_size - 1) window. """ anchor = np.array([1, 1, base_size, base_size], dtype=np.float) - 1 anchors = _ratio_enum(anchor, aspect_ratios) anchors = np.vstack( [_scale_enum(anchors[i, :], scales) for i in range(anchors.shape[0])] ) return anchors def generate_anchors( stride=16, sizes=(32, 64, 128, 256, 512), aspect_ratios=(0.5, 1, 2) ): """Generates a matrix of anchor boxes in (x1, y1, x2, y2) format. Anchors are centered on stride / 2, have (approximate) sqrt areas of the specified sizes, and aspect ratios as given. """ return _generate_anchors( stride, np.array(sizes, dtype=np.float) / stride, np.array(aspect_ratios, dtype=np.float) ) def _create_cell_anchors(): """ Generate all types of anchors for all fpn levels/scales/aspect ratios. This function is called only once at the beginning of inference. """ k_max, k_min = cfg.FPN.RPN_MAX_LEVEL, cfg.FPN.RPN_MIN_LEVEL scales_per_octave = cfg.RETINANET.SCALES_PER_OCTAVE aspect_ratios = cfg.RETINANET.ASPECT_RATIOS anchor_scale = cfg.RETINANET.ANCHOR_SCALE A = scales_per_octave * len(aspect_ratios) anchors = {} for lvl in range(k_min, k_max + 1): # create cell anchors array stride = 2. ** lvl cell_anchors = np.zeros((A, 4)) a = 0 for octave in range(scales_per_octave): octave_scale = 2 ** (octave / float(scales_per_octave)) for aspect in aspect_ratios: anchor_sizes = (stride * octave_scale * anchor_scale, ) anchor_aspect_ratios = (aspect, ) cell_anchors[a, :] = generate_anchors( stride=stride, sizes=anchor_sizes, aspect_ratios=anchor_aspect_ratios) a += 1 anchors[lvl] = cell_anchors return anchors def test_retinanet_im_detect_bbox(model, im, timers=None): """Generate RetinaNet detections on a single image.""" if timers is None: timers = defaultdict(Timer) # Although anchors are input independent and could be precomputed, # recomputing them per image only brings a small overhead anchors = _create_cell_anchors() timers['im_detect_bbox'].tic() k_max, k_min = cfg.FPN.RPN_MAX_LEVEL, cfg.FPN.RPN_MIN_LEVEL A = cfg.RETINANET.SCALES_PER_OCTAVE * len(cfg.RETINANET.ASPECT_RATIOS) inputs = {} inputs['data'], im_scale, inputs['im_info'] = \ blob_utils_get_image_blob(im, cfg.TEST.SCALE, cfg.TEST.MAX_SIZE) cls_probs, box_preds = [], [] for lvl in range(k_min, k_max + 1): suffix = 'fpn{}'.format(lvl) cls_probs.append(core.ScopedName('retnet_cls_prob_{}'.format(suffix))) box_preds.append(core.ScopedName('retnet_bbox_pred_{}'.format(suffix))) for k, v in inputs.items(): workspace.FeedBlob(core.ScopedName(k), v.astype(np.float32, copy=False)) workspace.RunNet(model.net.Proto().name) cls_probs = workspace.FetchBlobs(cls_probs) box_preds = workspace.FetchBlobs(box_preds) # here the boxes_all are [x0, y0, x1, y1, score] boxes_all = defaultdict(list) cnt = 0 for lvl in range(k_min, k_max + 1): # create cell anchors array stride = 2. ** lvl cell_anchors = anchors[lvl] # fetch per level probability cls_prob = cls_probs[cnt] box_pred = box_preds[cnt] cls_prob = cls_prob.reshape(( cls_prob.shape[0], A, int(cls_prob.shape[1] / A), cls_prob.shape[2], cls_prob.shape[3])) box_pred = box_pred.reshape(( box_pred.shape[0], A, 4, box_pred.shape[2], box_pred.shape[3])) cnt += 1 if cfg.RETINANET.SOFTMAX: cls_prob = cls_prob[:, :, 1::, :, :] cls_prob_ravel = cls_prob.ravel() # In some cases [especially for very small img sizes], it's possible that # candidate_ind is empty if we impose threshold 0.05 at all levels. This # will lead to errors since no detections are found for this image. Hence, # for lvl 7 which has small spatial resolution, we take the threshold 0.0 th = cfg.RETINANET.INFERENCE_TH if lvl < k_max else 0.0 candidate_inds = np.where(cls_prob_ravel > th)[0] if (len(candidate_inds) == 0): continue pre_nms_topn = min(cfg.RETINANET.PRE_NMS_TOP_N, len(candidate_inds)) inds = np.argpartition( cls_prob_ravel[candidate_inds], -pre_nms_topn)[-pre_nms_topn:] inds = candidate_inds[inds] inds_5d = np.array(np.unravel_index(inds, cls_prob.shape)).transpose() classes = inds_5d[:, 2] anchor_ids, y, x = inds_5d[:, 1], inds_5d[:, 3], inds_5d[:, 4] scores = cls_prob[:, anchor_ids, classes, y, x] boxes = np.column_stack((x, y, x, y)).astype(dtype=np.float32) boxes *= stride boxes += cell_anchors[anchor_ids, :] if not cfg.RETINANET.CLASS_SPECIFIC_BBOX: box_deltas = box_pred[0, anchor_ids, :, y, x] else: box_cls_inds = classes * 4 box_deltas = np.vstack( [box_pred[0, ind:ind + 4, yi, xi] for ind, yi, xi in zip(box_cls_inds, y, x)] ) pred_boxes = ( box_utils_bbox_transform(boxes, box_deltas) if cfg.TEST.BBOX_REG else boxes) pred_boxes /= im_scale pred_boxes = box_utils_clip_tiled_boxes(pred_boxes, im.shape) box_scores = np.zeros((pred_boxes.shape[0], 5)) box_scores[:, 0:4] = pred_boxes box_scores[:, 4] = scores for cls in range(1, cfg.MODEL.NUM_CLASSES): inds =
np.where(classes == cls - 1)
numpy.where
""" Integrates the Multi-Fidelity Co-Kriging method described in [LeGratiet2013]. (Author: <NAME> <EMAIL>) This code was implemented using the package scikit-learn as basis. (Author: <NAME>, <EMAIL>) OpenMDAO adaptation. Regression and correlation functions were directly copied from scikit-learn package here to avoid scikit-learn dependency. (Author: <NAME>, <EMAIL>) ISAE/DMSM - ONERA/DCPS """ import numpy as np from numpy import atleast_2d as array2d from scipy import linalg from scipy.optimize import minimize from scipy.spatial.distance import squareform from openmdao.surrogate_models.surrogate_model import MultiFiSurrogateModel import logging _logger = logging.getLogger() MACHINE_EPSILON = np.finfo(np.double).eps # machine precision NUGGET = 10. * MACHINE_EPSILON # nugget for robustness INITIAL_RANGE_DEFAULT = 0.3 # initial range for optimizer TOLERANCE_DEFAULT = 1e-6 # stopping criterion for MLE optimization THETA0_DEFAULT = 0.5 THETAL_DEFAULT = 1e-5 THETAU_DEFAULT = 50 if hasattr(linalg, 'solve_triangular'): # only in scipy since 0.9 solve_triangular = linalg.solve_triangular else: # slower, but works def solve_triangular(x, y, lower=True): """Solve triangular.""" return linalg.solve(x, y) def constant_regression(x): """ Zero order polynomial (constant, p = 1) regression model. x --> f(x) = 1 Parameters ---------- x : array_like Input data. Returns ------- array_like Constant regression output. """ x = np.asarray(x, dtype=np.float) n_eval = x.shape[0] f = np.ones([n_eval, 1]) return f def linear_regression(x): """ First order polynomial (linear, p = n+1) regression model. x --> f(x) = [ 1, x_1, ..., x_n ].T Parameters ---------- x : array_like Input data. Returns ------- array_like Linear regression output. """ x = np.asarray(x, dtype=np.float) n_eval = x.shape[0] f = np.hstack([np.ones([n_eval, 1]), x]) return f def squared_exponential_correlation(theta, d): """ Squared exponential correlation model (Radial Basis Function). (Infinitely differentiable stochastic process, very smooth):: n theta, dx --> r(theta, dx) = exp( sum - theta_i * (dx_i)^2 ) i = 1 Parameters ---------- theta : array_like An array with shape 1 (isotropic) or n (anisotropic) giving the autocorrelation parameter(s). d : array_like An array with shape (n_eval, n_features) giving the componentwise distances between locations x and x' at which the correlation model should be evaluated. Returns ------- array_like An array with shape (n_eval, ) containing the values of the autocorrelation model. """ theta = np.asarray(theta, dtype=np.float) d = np.asarray(d, dtype=np.float) if d.ndim > 1: n_features = d.shape[1] else: n_features = 1 if theta.size == 1: return np.exp(-theta[0] * np.sum(d ** 2, axis=1)) elif theta.size != n_features: raise ValueError("Length of theta must be 1 or %s" % n_features) else: return np.exp(-np.sum(theta.reshape(1, n_features) * d ** 2, axis=1)) def l1_cross_distances(X, Y=None): """ Compute the nonzero componentwise L1 cross-distances between the vectors in X and Y. Parameters ---------- X : array_like An array with shape (n_samples_X, n_features). Y : array_like An array with shape (n_samples_Y, n_features). Returns ------- array with shape (n_samples * (n_samples - 1) / 2, n_features) The array of componentwise L1 cross-distances. """ X = array2d(X) if Y is None: n_samples, n_features = X.shape n_nonzero_cross_dist = n_samples * (n_samples - 1) // 2 D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples - 1): ll_0 = ll_1 ll_1 = ll_0 + n_samples - k - 1 D[ll_0:ll_1] = np.abs(X[k] - X[(k + 1):]) else: Y = array2d(Y) n_samples_X, n_features_X = X.shape n_samples_Y, n_features_Y = Y.shape if n_features_X != n_features_Y: raise ValueError("X and Y must have the same dimensions.") n_features = n_features_X n_nonzero_cross_dist = n_samples_X * n_samples_Y D = np.zeros((n_nonzero_cross_dist, n_features)) ll_1 = 0 for k in range(n_samples_X): ll_0 = ll_1 ll_1 = ll_0 + n_samples_Y # - k - 1 D[ll_0:ll_1] = np.abs(X[k] - Y) return D class MultiFiCoKriging(object): """ Integrate the Multi-Fidelity Co-Kriging method described in [LeGratiet2013]. Parameters ---------- regr : str or callable, optional A regression function returning an array of outputs of the linear regression functional basis for Universal Kriging purpose. regr is assumed to be the same for all levels of code. Default assumes a simple constant regression trend. Available built-in regression models are: 'constant', 'linear'. rho_regr : str or callable, optional A regression function returning an array of outputs of the linear regression functional basis. Defines the regression function for the autoregressive parameter rho. rho_regr is assumed to be the same for all levels of code. Default assumes a simple constant regression trend. Available built-in regression models are: 'constant', 'linear'. normalize : bool, optional When true, normalize X and Y so that the mean is at zero. theta : double, array_like or list, optional Value of correlation parameters if they are known; no optimization is run. Default is None, so that optimization is run. if double: value is replicated for all features and all levels. if array_like: an array with shape (n_features, ) for isotropic calculation. It is replicated for all levels. if list: a list of nlevel arrays specifying value for each level. theta0 : double, array_like or list, optional Starting point for the maximum likelihood estimation of the best set of parameters. Default is None and meaning use of the default 0.5*np.ones(n_features) if double: value is replicated for all features and all levels. if array_like: an array with shape (n_features, ) for isotropic calculation. It is replicated for all levels. if list: a list of nlevel arrays specifying value for each level. thetaL : double, array_like or list, optional Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None meaning use of the default 1e-5*np.ones(n_features). if double: value is replicated for all features and all levels. if array_like: An array with shape matching theta0's. It is replicated for all levels of code. if list: a list of nlevel arrays specifying value for each level. thetaU : double, array_like or list, optional Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None meaning use of default value 50*np.ones(n_features). if double: value is replicated for all features and all levels. if array_like: An array with shape matching theta0's. It is replicated for all levels of code. if list: a list of nlevel arrays specifying value for each level. Attributes ---------- corr : object Correlation function to use, default is squared_exponential_correlation. n_features : ndarray Number of features for each fidelity level. n_samples : ndarray Number of samples for each fidelity level. nlevel : int Number of fidelity levels. normalize : bool, optional When true, normalize X and Y so that the mean is at zero. regr : str or callable A regression function returning an array of outputs of the linear regression functional basis for Universal Kriging purpose. regr is assumed to be the same for all levels of code. Default assumes a simple constant regression trend. Available built-in regression models are: 'constant', 'linear' rho_regr : str or callable or None A regression function returning an array of outputs of the linear regression functional basis. Defines the regression function for the autoregressive parameter rho. rho_regr is assumed to be the same for all levels of code. Default assumes a simple constant regression trend. Available built-in regression models are: 'constant', 'linear' theta : double, array_like or list or None Value of correlation parameters if they are known; no optimization is run. Default is None, so that optimization is run. if double: value is replicated for all features and all levels. if array_like: an array with shape (n_features, ) for isotropic calculation. It is replicated for all levels. if list: a list of nlevel arrays specifying value for each level theta0 : double, array_like or list or None Starting point for the maximum likelihood estimation of the best set of parameters. Default is None and meaning use of the default 0.5*np.ones(n_features) if double: value is replicated for all features and all levels. if array_like: an array with shape (n_features, ) for isotropic calculation. It is replicated for all levels. if list: a list of nlevel arrays specifying value for each level thetaL : double, array_like or list or None Lower bound on the autocorrelation parameters for maximum likelihood estimation. Default is None meaning use of the default 1e-5*np.ones(n_features). if double: value is replicated for all features and all levels. if array_like: An array with shape matching theta0's. It is replicated for all levels of code. if list: a list of nlevel arrays specifying value for each level thetaU : double, array_like or list or None Upper bound on the autocorrelation parameters for maximum likelihood estimation. Default is None meaning use of default value 50*np.ones(n_features). if double: value is replicated for all features and all levels. if array_like: An array with shape matching theta0's. It is replicated for all levels of code. if list: a list of nlevel arrays specifying value for each level X_mean : float Mean of the low fidelity training data for X. X_std : float Standard deviation of the low fidelity training data for X. y_mean : float Mean of the low fidelity training data for y. y_std : float Standard deviation of the low fidelity training data for y. _nfev : int Number of function evaluations. Notes ----- Implementation is based on the Package Scikit-Learn (Author: <NAME>, <EMAIL>) which translates the DACE Matlab toolbox, see [NLNS2002]_. References ---------- .. [NLNS2002] <NAME>, <NAME>, and <NAME>. `DACE - A MATLAB Kriging Toolbox.` (2002) http://www2.imm.dtu.dk/~hbn/dace/dace.pdf .. [WBSWM1992] <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, and <NAME> (1992). "Screening, predicting, and computer experiments." `Technometrics,` 34(1) 15--25. http://www.jstor.org/pss/1269548 .. [LeGratiet2013] <NAME> (2013). "Multi-fidelity Gaussian process regression for computer experiments." PhD thesis, Universite Paris-Diderot-Paris VII. .. [TBKH2011] <NAME>., <NAME>., <NAME>., & <NAME>. (2011). "The development of a hybridized particle swarm for kriging hyperparameter tuning." `Engineering optimization`, 43(6), 675-699. Examples -------- >>> from openmdao.surrogate_models.multifi_cokriging import MultiFiCoKriging >>> import numpy as np >>> # Xe: DOE for expensive code (nested in Xc) >>> # Xc: DOE for cheap code >>> # ye: expensive response >>> # yc: cheap response >>> Xe = np.array([[0],[0.4],[1]]) >>> Xc = np.vstack((np.array([[0.1],[0.2],[0.3],[0.5],[0.6],[0.7],[0.8],[0.9]]),Xe)) >>> ye = ((Xe*6-2)**2)*np.sin((Xe*6-2)*2) >>> yc = 0.5*((Xc*6-2)**2)*np.sin((Xc*6-2)*2)+(Xc-0.5)*10. - 5 >>> model = MultiFiCoKriging(theta0=1, thetaL=1e-5, thetaU=50.) >>> model.fit([Xc, Xe], [yc, ye]) >>> # Prediction on x=0.05 >>> np.abs(float(model.predict([0.05])[0])- ((0.05*6-2)**2)*np.sin((0.05*6-2)*2)) < 0.05 True """ _regression_types = { 'constant': constant_regression, 'linear': linear_regression } def __init__(self, regr='constant', rho_regr='constant', normalize=True, theta=None, theta0=None, thetaL=None, thetaU=None): """ Initialize all attributes. """ self.corr = squared_exponential_correlation self.regr = regr self.rho_regr = rho_regr self.theta = theta self.theta0 = theta0 self.thetaL = thetaL self.thetaU = thetaU self.normalize = normalize self.X_mean = 0 self.X_std = 1 self.y_mean = 0 self.y_std = 1 self.n_features = None self.n_samples = None self.nlevel = None self._nfev = 0 def _build_R(self, lvl, theta): """ Build the correlation matrix with given theta for the specified level. Parameters ---------- lvl : int Level of fidelity theta : array_like An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta``). Returns ------- ndarray Correlation matrix. """ D = self.D[lvl] n_samples = self.n_samples[lvl] R = np.eye(n_samples) * (1. + NUGGET) corr = squareform(self.corr(theta, D)) R = R + corr return R def fit(self, X, y, initial_range=INITIAL_RANGE_DEFAULT, tol=TOLERANCE_DEFAULT): """ Implement the Multi-Fidelity co-kriging model fitting method. Parameters ---------- X : list of double array_like elements A list of arrays with the input at which observations were made, from lowest fidelity to highest fidelity. Designs must be nested with X[i] = np.vstack([..., X[i+1]). y : list of double array_like elements A list of arrays with the observations of the scalar output to be predicted, from lowest fidelity to highest fidelity. initial_range : float Initial range for the optimizer. tol : float Optimizer terminates when the tolerance tol is reached. """ # Run input checks # Transforms floats and arrays in lists to have a multifidelity # structure self._check_list_structure(X, y) # Checks if all parameters are structured as required self._check_params() X = self.X y = self.y nlevel = self.nlevel n_samples = self.n_samples # initialize lists self.beta = nlevel * [0] self.beta_rho = nlevel * [None] self.beta_regr = nlevel * [None] self.C = nlevel * [0] self.D = nlevel * [0] self.F = nlevel * [0] self.p = nlevel * [0] self.q = nlevel * [0] self.G = nlevel * [0] self.sigma2 = nlevel * [0] self._R_adj = nlevel * [None] # Training data will be normalized using statistical quantities from the low fidelity set. if self.normalize: self.X_mean = X_mean = np.mean(X[0], axis=0) self.X_std = X_std = np.std(X[0], axis=0) self.y_mean = y_mean = np.mean(y[0], axis=0) self.y_std = y_std = np.std(y[0], axis=0) X_std[X_std == 0.] = 1. y_std[y_std == 0.] = 1. for lvl in range(nlevel): if self.normalize: X[lvl] = (X[lvl] - X_mean) / X_std y[lvl] = (y[lvl] - y_mean) / y_std # Calculate matrix of distances D between samples self.D[lvl] = l1_cross_distances(X[lvl]) if (np.min(np.sum(self.D[lvl], axis=1)) == 0.): raise ValueError("Multiple input features cannot have the same value.") # Regression matrix and parameters self.F[lvl] = self.regr(X[lvl]) self.p[lvl] = self.F[lvl].shape[1] # Concatenate the autoregressive part for levels > 0 if lvl > 0: F_rho = self.rho_regr(X[lvl]) self.q[lvl] = F_rho.shape[1] self.F[lvl] = np.hstack((F_rho * np.dot((self.y[lvl - 1])[-n_samples[lvl]:], np.ones((1, self.q[lvl]))), self.F[lvl])) else: self.q[lvl] = 0 n_samples_F_i = self.F[lvl].shape[0] if n_samples_F_i != n_samples[lvl]: raise ValueError("Number of rows in F and X do not match. Most " "likely something is going wrong with the " "regression model.") if int(self.p[lvl] + self.q[lvl]) >= n_samples_F_i: raise ValueError(f"Ordinary least squares problem is undetermined " f"n_samples={n_samples[lvl]} must be greater than the regression" f" model size p+q={self.p[lvl] + self.q[lvl]}.") # Set attributes self.X = X self.y = y self.rlf_value = np.zeros(nlevel) for lvl in range(nlevel): # Determine Gaussian Process model parameters if self.theta[lvl] is None: # Maximum Likelihood Estimation of the parameters sol = self._max_rlf(lvl=lvl, initial_range=initial_range, tol=tol) self.theta[lvl] = sol['theta'] self.rlf_value[lvl] = sol['rlf_value'] if np.isinf(self.rlf_value[lvl]): raise ValueError("Bad parameter region. Try increasing upper bound") else: self.rlf_value[lvl] = self.rlf(lvl=lvl) if np.isinf(self.rlf_value[lvl]): raise ValueError("Bad point. Try increasing theta0.") return def rlf(self, lvl, theta=None): """ Determine BLUP parameters and evaluate negative reduced likelihood function for theta. Maximizing this function wrt the autocorrelation parameters theta is equivalent to maximizing the likelihood of the assumed joint Gaussian distribution of the observations y evaluated onto the design of experiments X. Parameters ---------- lvl : int Level of fidelity. theta : array_like, optional An array containing the autocorrelation parameters at which the Gaussian Process model parameters should be determined. Default uses the built-in autocorrelation parameters (ie ``theta = self.theta``). Returns ------- double The value of the negative concentrated reduced likelihood function associated to the given autocorrelation parameters theta. """ if theta is None: # Use built-in autocorrelation parameters theta = self.theta[lvl] # Initialize output rlf_value = 1e20 # Retrieve data n_samples = self.n_samples[lvl] y = self.y[lvl] F = self.F[lvl] p = self.p[lvl] q = self.q[lvl] R = self._build_R(lvl, theta) try: C = linalg.cholesky(R, lower=True) except linalg.LinAlgError: _logger.warning(('Cholesky decomposition of R at level %i failed' % lvl) + ' with theta=' + str(theta)) return rlf_value # Get generalized least squares solution Ft = solve_triangular(C, F, lower=True) Yt = solve_triangular(C, y, lower=True) try: Q, G = linalg.qr(Ft, econ=True) except TypeError: # qr() got an unexpected keyword argument 'econ' # DeprecationWarning: qr econ argument will be removed after scipy # 0.7. The economy transform will then be available through the # mode='economic' argument. Q, G = linalg.qr(Ft, mode='economic') pass # Universal Kriging beta = solve_triangular(G, np.dot(Q.T, Yt)) err = Yt - np.dot(Ft, beta) err2 = np.dot(err.T, err)[0, 0] self._err = err sigma2 = err2 / (n_samples - p - q) detR = ((np.diag(C))**(2. / n_samples)).prod() rlf_value = (n_samples - p - q) * np.log10(sigma2) \ + n_samples * np.log10(detR) self.beta_rho[lvl] = beta[:q] self.beta_regr[lvl] = beta[q:] self.beta[lvl] = beta self.sigma2[lvl] = sigma2 self.C[lvl] = C self.G[lvl] = G return rlf_value def _max_rlf(self, lvl, initial_range, tol): """ Estimate autocorrelation parameter theta as maximizer of the reduced likelihood function. (Minimization of the negative reduced likelihood function is used for convenience.) Parameters ---------- lvl : int Level of fidelity initial_range : float Initial range of the optimizer tol : float Optimizer terminates when the tolerance tol is reached. Returns ------- array_like The optimal hyperparameters. double The optimal negative reduced likelihood function value. dict res['theta']: optimal theta res['rlf_value']: optimal value for likelihood """ # Initialize input thetaL = self.thetaL[lvl] thetaU = self.thetaU[lvl] def rlf_transform(x): return self.rlf(theta=10.**x, lvl=lvl) # Use specified starting point as first guess theta0 = self.theta0[lvl] x0 = np.log10(theta0[0]) constraints = [] for i in range(theta0.size): constraints.append({'type': 'ineq', 'fun': lambda log10t, i=i: log10t[i] - np.log10(thetaL[0][i])}) constraints.append({'type': 'ineq', 'fun': lambda log10t, i=i: np.log10(thetaU[0][i]) - log10t[i]}) constraints = tuple(constraints) sol = minimize(rlf_transform, x0, method='COBYLA', constraints=constraints, options={'rhobeg': initial_range, 'tol': tol, 'disp': 0}) log10_optimal_x = sol['x'] optimal_rlf_value = sol['fun'] self._nfev += sol['nfev'] optimal_theta = 10. ** log10_optimal_x res = {} res['theta'] = optimal_theta res['rlf_value'] = optimal_rlf_value return res def predict(self, X, eval_MSE=True): """ Perform the predictions of the kriging model on X. Parameters ---------- X : array_like An array with shape (n_eval, n_features) giving the point(s) at which the prediction(s) should be made. eval_MSE : bool, optional A boolean specifying whether the Mean Squared Error should be evaluated or not. Default assumes evalMSE is True. Returns ------- array_like An array with shape (n_eval, ) with the Best Linear Unbiased Prediction at X. If all_levels is set to True, an array with shape (n_eval, nlevel) giving the BLUP for all levels. array_like, optional (if eval_MSE is True) An array with shape (n_eval, ) with the Mean Squared Error at X. If all_levels is set to True, an array with shape (n_eval, nlevel) giving the MSE for all levels. """ X = array2d(X) nlevel = self.nlevel n_eval, n_features_X = X.shape # Normalize if self.normalize: X = (X - self.X_mean) / self.X_std # Calculate kriging mean and variance at level 0 mu = np.zeros((n_eval, nlevel)) f = self.regr(X) f0 = self.regr(X) dx = l1_cross_distances(X, Y=self.X[0]) # Get regression function and correlation F = self.F[0] C = self.C[0] beta = self.beta[0] Ft = solve_triangular(C, F, lower=True) yt = solve_triangular(C, self.y[0], lower=True) r_ = self.corr(self.theta[0], dx).reshape(n_eval, self.n_samples[0]) gamma = solve_triangular(C.T, yt - np.dot(Ft, beta), lower=False) # Scaled predictor mu[:, 0] = (np.dot(f, beta) + np.dot(r_, gamma)).ravel() if eval_MSE: MSE = np.zeros((n_eval, nlevel)) r_t = solve_triangular(C, r_.T, lower=True) G = self.G[0] u_ = solve_triangular(G.T, f.T - np.dot(Ft.T, r_t), lower=True) MSE[:, 0] = self.sigma2[0] * \ (1 - (r_t**2).sum(axis=0) + (u_**2).sum(axis=0)) # Calculate recursively kriging mean and variance at level i for i in range(1, nlevel): C = self.C[i] F = self.F[i] g = self.rho_regr(X) dx = l1_cross_distances(X, Y=self.X[i]) r_ = self.corr(self.theta[i], dx).reshape( n_eval, self.n_samples[i]) f = np.vstack((g.T * mu[:, i - 1], f0.T)) Ft = solve_triangular(C, F, lower=True) yt = solve_triangular(C, self.y[i], lower=True) r_t = solve_triangular(C, r_.T, lower=True) G = self.G[i] beta = self.beta[i] # scaled predictor mu[:, i] = (np.dot(f.T, beta) + np.dot(r_t.T, yt - np.dot(Ft, beta))).ravel() if eval_MSE: Q_ = (np.dot((yt - np.dot(Ft, beta)).T, yt - np.dot(Ft, beta)))[0, 0] u_ = solve_triangular(G.T, f - np.dot(Ft.T, r_t), lower=True) sigma2_rho = np.dot(g, self.sigma2[ i] * linalg.inv(np.dot(G.T, G))[:self.q[i], :self.q[i]] + np.dot(beta[:self.q[i]], beta[:self.q[i]].T)) sigma2_rho = (sigma2_rho * g).sum(axis=1) MSE[:, i] = sigma2_rho * MSE[:, i - 1] \ + Q_ / (2 * (self.n_samples[i] - self.p[i] - self.q[i])) \ * (1 - (r_t**2).sum(axis=0)) \ + self.sigma2[i] * (u_**2).sum(axis=0) # scaled predictor for i in range(nlevel): # Predictor mu[:, i] = self.y_mean + self.y_std * mu[:, i] if eval_MSE: MSE[:, i] = self.y_std**2 * MSE[:, i] if eval_MSE: return mu[:, -1].reshape((n_eval, 1)), MSE[:, -1].reshape((n_eval, 1)) else: return mu[:, -1].reshape((n_eval, 1)) def _check_list_structure(self, X, y): """ Transform floats and arrays in the training data lists to have a multifidelity structure. Parameters ---------- X : list of double array_like elements A list of arrays with the input at which observations were made, from lowest fidelity to highest fidelity. Designs must be nested with X[i] = np.vstack([..., X[i+1]) y : list of double array_like elements A list of arrays with the observations of the scalar output to be predicted, from lowest fidelity to highest fidelity. """ if type(X) is not list: nlevel = 1 X = [X] else: nlevel = len(X) if type(y) is not list: y = [y] if len(X) != len(y): raise ValueError("X and y must have the same length.") n_samples = np.zeros(nlevel, dtype=int) n_features = np.zeros(nlevel, dtype=int) n_samples_y = np.zeros(nlevel, dtype=int) for i in range(nlevel): n_samples[i], n_features[i] = X[i].shape if i > 0 and n_features[i] != n_features[i - 1]: raise ValueError("All X must have the same number of columns.") y[i] = np.asarray(y[i]).ravel()[:, np.newaxis] n_samples_y[i] = y[i].shape[0] if n_samples[i] != n_samples_y[i]: raise ValueError("X and y must have the same number of rows.") self.n_features = n_features[0] if type(self.theta) is not list: self.theta = nlevel * [self.theta] elif len(self.theta) != nlevel: raise ValueError(f"theta must be a list of {nlevel} element(s).") if type(self.theta0) is not list: self.theta0 = nlevel * [self.theta0] elif len(self.theta0) != nlevel: raise ValueError(f"theta0 must be a list of {nlevel} element(s).") if type(self.thetaL) is not list: self.thetaL = nlevel * [self.thetaL] elif len(self.thetaL) != nlevel: raise ValueError(f"thetaL must be a list of {nlevel} element(s).") if type(self.thetaU) is not list: self.thetaU = nlevel * [self.thetaU] elif len(self.thetaU) != nlevel: raise ValueError(f"thetaU must be a list of {nlevel} element(s).") self.nlevel = nlevel self.X = X[:] self.y = y[:] self.n_samples = n_samples return def _check_params(self): """ Perform sanity checks on all parameters. """ # Check regression model if not callable(self.regr): if self.regr in self._regression_types: self.regr = self._regression_types[self.regr] else: raise ValueError(f"regr should be one of {self._regression_types.keys()} or " f"callable, {self.regr} was given.") # Check rho regression model if not callable(self.rho_regr): if self.rho_regr in self._regression_types: self.rho_regr = self._regression_types[self.rho_regr] else: raise ValueError(f"regr should be one of {self._regression_types.keys()} or " f"callable, {self.rho_regr} was given.") for i in range(self.nlevel): # Check correlation parameters if self.theta[i] is not None: self.theta[i] = array2d(self.theta[i]) if np.any(self.theta[i] <= 0): raise ValueError("theta must be strictly positive.") if self.theta0[i] is not None: self.theta0[i] = array2d(self.theta0[i]) if np.any(self.theta0[i] <= 0): raise ValueError("theta0 must be strictly positive.") else: self.theta0[i] =
array2d(self.n_features * [THETA0_DEFAULT])
numpy.atleast_2d
import matplotlib.pyplot as plt import os import numpy as np from imantics import Polygons, Mask import json from tqdm import tqdm small_data_num = 500 def get_file_names(folder, SMALL=False): all_file_names = os.listdir(folder) file_names = [] for file_name in all_file_names: if file_name.endswith('jpg'): file_names.append(file_name[:-4]) if SMALL: if not small_data_num < len(file_names): print('small_data_num is more than true data number') pass file_names = file_names[:small_data_num] return file_names def get_img_mask_path(folder, file_names): img_pathes = [] mask_pathes = [] for file_name in file_names: img_path = os.path.join(folder, file_name+'.jpg') img_pathes.append(img_path) mask_path = os.path.join(folder, file_name+'.png') mask_pathes.append(mask_path) return img_pathes, mask_pathes def get_img_shape(img_path): pic = plt.imread(img_path) h, w, c = pic.shape return h, w def get_mask_cate(mask_path): mask = plt.imread(mask_path)*255 mask = mask.astype(np.uint8) cat_value = [] for i in range(256): table = [mask==i] if not np.sum(table) == 0: cat_value.append(i) if len(cat_value) > 9: print(cat_value) #从png的mask里提取mask per object, #input: mask(0-1) #output:masks: list, each of them is numpy array(bool) def extract_mask(mask): mask = mask.astype(np.uint8) masks = [] masks_cat = [] for i in range(1, 256): sub_mask = (mask==i) if np.sum(sub_mask) !=0: masks.append(sub_mask) masks_cat.append(i) return masks, masks_cat #extract bbox from mask of one object def bbox(mask): rows = np.any(mask, axis=1) cols = np.any(mask, axis=0) rmin, rmax = np.where(rows)[0][[0, -1]] cmin, cmax = np.where(cols)[0][[0, -1]] width = cmax - cmin + 1 height = rmax - rmin + 1 maskInt = mask.astype(int) area = np.sum(maskInt) return area, [int(cmin), int(rmin), int(width), int(height)] def mask_to_polygons(mask): polygons = Mask(mask).polygons().points # filter out invalid polygons (< 3 points) polygons_filtered = [] for polygon in polygons: polygon = polygon.reshape(-1) polygon = polygon.tolist() if len(polygon) % 2 == 0 and len(polygon) >= 6: polygons_filtered.append(polygon) return polygons_filtered def devide_set(file_names, mode, val_split=0.2, seed=1234): file_names =
np.array(file_names)
numpy.array
# -*- coding: utf-8 -*- """ CIE Chromaticity Diagrams Plotting ================================== Defines the *CIE* chromaticity diagrams plotting objects: - :func:`colour.plotting.plot_chromaticity_diagram_CIE1931` - :func:`colour.plotting.plot_chromaticity_diagram_CIE1960UCS` - :func:`colour.plotting.plot_chromaticity_diagram_CIE1976UCS` - :func:`colour.plotting.plot_sds_in_chromaticity_diagram_CIE1931` - :func:`colour.plotting.plot_sds_in_chromaticity_diagram_CIE1960UCS` - :func:`colour.plotting.plot_sds_in_chromaticity_diagram_CIE1976UCS` """ from __future__ import division import bisect import numpy as np from matplotlib.collections import LineCollection from matplotlib.patches import Polygon from colour.algebra import normalise_vector from colour.colorimetry import sd_to_XYZ, sds_and_msds_to_sds from colour.models import (Luv_to_uv, Luv_uv_to_xy, UCS_to_uv, UCS_uv_to_xy, XYZ_to_Luv, XYZ_to_UCS, XYZ_to_xy, xy_to_XYZ) from colour.plotting import (CONSTANTS_COLOUR_STYLE, CONSTANTS_ARROW_STYLE, XYZ_to_plotting_colourspace, artist, filter_cmfs, override_style, render) from colour.utilities import (domain_range_scale, first_item, is_string, normalise_maximum, tstack, suppress_warnings) from colour.utilities.deprecation import handle_arguments_deprecation __author__ = 'Colour Developers' __copyright__ = 'Copyright (C) 2013-2020 - Colour Developers' __license__ = 'New BSD License - https://opensource.org/licenses/BSD-3-Clause' __maintainer__ = '<NAME>' __email__ = '<EMAIL>' __status__ = 'Production' __all__ = [ 'plot_spectral_locus', 'plot_chromaticity_diagram_colours', 'plot_chromaticity_diagram', 'plot_chromaticity_diagram_CIE1931', 'plot_chromaticity_diagram_CIE1960UCS', 'plot_chromaticity_diagram_CIE1976UCS', 'plot_sds_in_chromaticity_diagram', 'plot_sds_in_chromaticity_diagram_CIE1931', 'plot_sds_in_chromaticity_diagram_CIE1960UCS', 'plot_sds_in_chromaticity_diagram_CIE1976UCS' ] @override_style() def plot_spectral_locus(cmfs='CIE 1931 2 Degree Standard Observer', spectral_locus_colours=None, spectral_locus_labels=None, method='CIE 1931', **kwargs): """ Plots the *Spectral Locus* according to given method. Parameters ---------- cmfs : unicode, optional Standard observer colour matching functions used for computing the spectral locus boundaries. ``cmfs`` can be of any type or form supported by the :func:`colour.plotting.filter_cmfs` definition. spectral_locus_colours : array_like or unicode, optional *Spectral Locus* colours, if ``spectral_locus_colours`` is set to *RGB*, the colours will be computed according to the corresponding chromaticity coordinates. spectral_locus_labels : array_like, optional Array of wavelength labels used to customise which labels will be drawn around the spectral locus. Passing an empty array will result in no wavelength labels being drawn. method : unicode, optional **{'CIE 1931', 'CIE 1960 UCS', 'CIE 1976 UCS'}**, *Chromaticity Diagram* method. Other Parameters ---------------- \\**kwargs : dict, optional {:func:`colour.plotting.artist`, :func:`colour.plotting.render`}, Please refer to the documentation of the previously listed definitions. Returns ------- tuple Current figure and axes. Examples -------- >>> plot_spectral_locus(spectral_locus_colours='RGB') # doctest: +ELLIPSIS (<Figure size ... with 1 Axes>, <...AxesSubplot...>) .. image:: ../_static/Plotting_Plot_Spectral_Locus.png :align: center :alt: plot_spectral_locus """ if spectral_locus_colours is None: spectral_locus_colours = CONSTANTS_COLOUR_STYLE.colour.dark settings = {'uniform': True} settings.update(kwargs) _figure, axes = artist(**settings) method = method.upper() cmfs = first_item(filter_cmfs(cmfs).values()) illuminant = CONSTANTS_COLOUR_STYLE.colour.colourspace.whitepoint wavelengths = cmfs.wavelengths equal_energy = np.array([1 / 3] * 2) if method == 'CIE 1931': ij = XYZ_to_xy(cmfs.values, illuminant) labels = ((390, 460, 470, 480, 490, 500, 510, 520, 540, 560, 580, 600, 620, 700) if spectral_locus_labels is None else spectral_locus_labels) elif method == 'CIE 1960 UCS': ij = UCS_to_uv(XYZ_to_UCS(cmfs.values)) labels = ((420, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 645, 680) if spectral_locus_labels is None else spectral_locus_labels) elif method == 'CIE 1976 UCS': ij = Luv_to_uv(XYZ_to_Luv(cmfs.values, illuminant), illuminant) labels = ((420, 440, 450, 460, 470, 480, 490, 500, 510, 520, 530, 540, 550, 560, 570, 580, 590, 600, 610, 620, 630, 645, 680) if spectral_locus_labels is None else spectral_locus_labels) else: raise ValueError( 'Invalid method: "{0}", must be one of ' '[\'CIE 1931\', \'CIE 1960 UCS\', \'CIE 1976 UCS\']'.format( method)) pl_ij = tstack([
np.linspace(ij[0][0], ij[-1][0], 20)
numpy.linspace
#!/usr/bin/env python # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function from __future__ import division import paddle import paddle.fluid as fluid import numpy as np from scipy import stats from scipy.special import logsumexp import unittest from tests.distributions import utils from zhusuan.distributions.normal import * device = paddle.set_device('gpu') paddle.disable_static(device) # TODO: test sample value class TestNormal(unittest.TestCase): def setUp(self): self._Normal_std = lambda mean, std, **kwargs: Normal( mean=mean, std=std, **kwargs) self._Normal_logstd = lambda mean, logstd, **kwargs: Normal( mean=mean, logstd=logstd, **kwargs) def test_init(self): # with self.assertRaisesRegexp( # ValueError, "Please use named arguments"): # Normal(paddle.ones(1), paddle.ones(1)) # with self.assertRaisesRegexp( # ValueError, "Either.*should be passed"): # Normal(mean=paddle.ones([2, 1])) try: Normal(mean=paddle.ones([2, 1]), std=paddle.zeros([2, 4, 3]), logstd=paddle.zeros([2, 2, 3])) except: raise ValueError("Either.*should be passed") try: Normal(mean=paddle.ones([2, 1]), logstd=paddle.zeros([2, 4, 3])) except: raise ValueError("should be broadcastable to match") try: Normal(mean=paddle.ones([2, 1]), std=paddle.ones([2, 4, 3])) except: raise ValueError("should be broadcastable to match") Normal(mean=paddle.ones([32, 1], dtype='float32'), logstd=paddle.ones([32, 1, 3], dtype='float32')) Normal(mean=paddle.ones([32, 1], dtype='float32'), std=paddle.ones([32, 1, 3], 'float32') ) ## TODO: Define the value shape and batch shape in Normal module # def test_value_shape(self): # # # get value shape # norm = Normal(mean=paddle.cast(paddle.to_tensor([]), 'float32'), # logstd=paddle.cast(paddle.to_tensor([]), 'float32')) # self.assertEqual(norm.get_value_shape(), []) # norm = Normal(mean=paddle.cast(paddle.to_tensor([]), 'float32'), # std=paddle.cast(paddle.to_tensor([]), 'float32')) # self.assertEqual(norm.get_value_shape(), []) # # # dynamic # self.assertTrue(norm._value_shape().dtype is 'int32') # self.assertEqual(norm._value_shape(), []) # # self.assertEqual(norm._value_shape().dtype, 'int32') # def test_batch_shape(self): # utils.test_batch_shape_2parameter_univariate( # self, self._Normal_std, np.zeros, np.ones) # utils.test_batch_shape_2parameter_univariate( # self, self._Normal_logstd, np.zeros, np.zeros) def test_sample_shape(self): utils.test_2parameter_sample_shape_same( self, self._Normal_std, np.zeros, np.ones) utils.test_2parameter_sample_shape_same( self, self._Normal_logstd, np.zeros, np.zeros) def test_sample_reparameterized(self): mean = paddle.ones([2, 3]) logstd = paddle.ones([2, 3]) mean.stop_gradient = False logstd.stop_gradient = False norm_rep = Normal(mean=mean, logstd=logstd) samples = norm_rep.sample() mean_grads, logstd_grads = paddle.grad(outputs=[samples], inputs=[mean, logstd], allow_unused=True) self.assertTrue(mean_grads is not None) self.assertTrue(logstd_grads is not None) norm_no_rep = Normal(mean=mean, logstd=logstd, is_reparameterized=False) samples = norm_no_rep.sample() mean_grads, logstd_grads = paddle.grad(outputs=[samples], inputs=[mean, logstd], allow_unused=True) self.assertEqual(mean_grads, None) self.assertEqual(logstd_grads, None) def test_path_derivative(self): mean = paddle.ones([2, 3]) logstd = paddle.ones([2, 3]) mean.stop_gradient = False logstd.stop_gradient = False n_samples = 7 norm_rep = Normal(mean=mean, logstd=logstd, use_path_derivative=True) samples = norm_rep.sample(n_samples) log_prob = norm_rep.log_prob(samples) mean_path_grads, logstd_path_grads = paddle.grad(outputs=[log_prob], inputs=[mean, logstd], allow_unused=True, retain_graph=True) sample_grads = paddle.grad(outputs=[log_prob],inputs=[samples], allow_unused=True, retain_graph=True) mean_true_grads = paddle.grad(outputs=[samples],inputs=[mean], grad_outputs=sample_grads, allow_unused=True, retain_graph=True)[0] logstd_true_grads = paddle.grad(outputs=[samples],inputs=[logstd], grad_outputs=sample_grads, allow_unused=True, retain_graph=True)[0] # TODO: Figure out why path gradients unmatched with true gradients # np.testing.assert_allclose(mean_path_grads.numpy(), mean_true_grads.numpy() ) # np.testing.assert_allclose(logstd_path_grads.numpy(), logstd_true_grads.numpy()) norm_no_rep = Normal(mean=mean, logstd=logstd, is_reparameterized=False, use_path_derivative=True) samples = norm_no_rep.sample(n_samples) log_prob = norm_no_rep.log_prob(samples) mean_path_grads, logstd_path_grads = paddle.grad(outputs=[log_prob], inputs=[mean, logstd], allow_unused=True) self.assertTrue(mean_path_grads is None) self.assertTrue(mean_path_grads is None) def test_log_prob_shape(self): utils.test_2parameter_log_prob_shape_same( self, self._Normal_std, np.zeros, np.ones, np.zeros) utils.test_2parameter_log_prob_shape_same( self, self._Normal_logstd, np.zeros, np.zeros, np.zeros) def test_value(self): def _test_value(given, mean, logstd): mean = np.array(mean, np.float32) given = np.array(given, np.float32) logstd = np.array(logstd, np.float32) std = np.exp(logstd) target_log_p = np.array(stats.norm.logpdf(given, mean, np.exp(logstd)), np.float32) target_p = np.array(stats.norm.pdf(given, mean,
np.exp(logstd)
numpy.exp
# -*- coding: utf-8 -*- # Copyright 2020 The PsiXy Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """An example that tests the fit routine. Synthetic behavioral data is generated using a known model. A new model is fit to this data, blind to the true model parameters. The routine is evaluated based on its ability to recover the true model parameters. """ import os from pathlib import Path import numpy as np import matplotlib import matplotlib.pyplot as plt import psixy.catalog import psixy.task import psixy.models import psixy.sequence def main(): """Execute script.""" # Settings. n_sequence = 20 n_epoch = 50 task_idx = 2 task_list, feature_matrix = psixy.task.shepard_hovland_jenkins_1961() task = task_list[2] encoder = psixy.models.Deterministic(task.stimulus_id, feature_matrix) class_id_list = np.array([0, 1], dtype=int) # Generate some sequences. s_seq_list = generate_stimulus_sequences( task.class_id, n_sequence, n_epoch ) # Define known model. model_true = psixy.models.ALCOVE(feature_matrix, class_id_list, encoder) model_true.params['rho'] = 1.0 model_true.params['tau'] = 1.0 model_true.params['beta'] = 6.5 model_true.params['phi'] = 2.0 model_true.params['lambda_w'] = 0.03 model_true.params['lambda_a'] = 0.0033 # Simulate behavioral data with known model. prob_resp_attn = model_true.predict(s_seq_list, mode='all') # n_seq, n_trial, n_output n_trial = prob_resp_attn.shape[1] sampled_class = np.zeros([n_sequence, n_trial], dtype=int) for i_seq in range(n_sequence): for i_trial in range(n_trial): sampled_class[i_seq, i_trial] = np.random.choice( class_id_list, p=prob_resp_attn[i_seq, i_trial, :] ) response_time_ms = 1000 * np.ones(sampled_class.shape) b_seq_list = psixy.sequence.AFCSequence(sampled_class, response_time_ms) # Fit a new model. model_inf = psixy.models.ALCOVE(feature_matrix, class_id_list, encoder) model_inf.params['rho'] = 1.0 model_inf.params['tau'] = 1.0 model_inf.params['beta'] = 6.5 model_inf.params['phi'] = 2.0 model_inf.params['lambda_w'] = 0.03 model_inf.params['lambda_a'] = 0.0033 loss_train = model_inf.fit(s_seq_list, b_seq_list, verbose=1) def generate_stimulus_sequences(class_id_in, n_sequence, n_epoch): """Generate stimulus sequences.""" np.random.seed(seed=245) n_stimuli = len(class_id_in) cat_idx = np.arange(n_stimuli, dtype=int) cat_idx_all = np.zeros([n_sequence, n_epoch * n_stimuli], dtype=int) for i_seq in range(n_sequence): curr_cat_idx = np.array([], dtype=int) for i_epoch in range(n_epoch): curr_cat_idx = np.hstack( [curr_cat_idx,
np.random.permutation(cat_idx)
numpy.random.permutation
#!/usr/bin/env python3 #Load generic Python Modules import argparse #parse arguments import os #access operating systems function import subprocess #run command import sys #system command #============== from amesgcm.Script_utils import check_file_tape,prYellow,prRed,prCyan,prGreen,prPurple from amesgcm.Script_utils import print_fileContent,print_varContent,FV3_file_type,find_tod_in_diurn from amesgcm.Script_utils import wbr_cmap,rjw_cmap,dkass_temp_cmap,dkass_dust_cmap from amesgcm.FV3_utils import lon360_to_180,lon180_to_360,UT_LTtxt,area_weights_deg from amesgcm.FV3_utils import add_cyclic,azimuth2cart,mollweide2cart,robin2cart,ortho2cart #=====Attempt to import specific scientic modules one may not find in the default python on NAS ==== try: import matplotlib matplotlib.use('Agg') # Force matplotlib to not use any Xwindows backend. import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import (LogFormatter, NullFormatter, LogFormatterSciNotation, MultipleLocator) #format ticks from netCDF4 import Dataset, MFDataset from numpy import sqrt, exp, max, mean, min, log, log10,sin,cos,abs from matplotlib.colors import LogNorm from matplotlib.ticker import LogFormatter except ImportError as error_msg: prYellow("Error while importing modules") prYellow('Your are using python '+str(sys.version_info[0:3])) prYellow('Please, source your virtual environment');prCyan(' source envPython3.7/bin/activate.csh \n') print("Error was: ", error_msg) exit() except Exception as exception: # Output unexpected Exceptions. print(exception.__class__.__name__ + ": ", exception) exit() degr = u"\N{DEGREE SIGN}" #====================================================== # ARGUMENTS PARSER #====================================================== global current_version;current_version=3.2 parser = argparse.ArgumentParser(description="""\033[93mAnalysis Toolkit for the Ames GCM, V%s\033[00m """%(current_version), formatter_class=argparse.RawTextHelpFormatter) parser.add_argument('custom_file', nargs='?',type=argparse.FileType('r'),default=None, #sys.stdin help='Use optional input file Custom.in to plot the graphs \n' '> Usage: MarsPlot Custom.in [other options]\n' 'UPDATE as needed with \033[96mpip3 install git+https://github.com/alex-kling/amesgcm.git --upgrade\033[00m \n' 'Tutorial at: \033[93mhttps://github.com/alex-kling/amesgcm\033[00m') parser.add_argument('-i', '--inspect_file', default=None, help="""Inspect Netcdf file content. Variables are sorted by dimensions \n""" """> Usage: MarsPlot -i 00000.atmos_daily.nc\n""" """Options: use --dump (variable content) and --stat (min, mean,max) jointly with --inspect \n""" """> MarsPlot -i 00000.atmos_daily.nc -dump pfull 'temp[6,:,30,10]' (quotes '' are needed when browsing dimensions)\n""" """> MarsPlot -i 00000.atmos_daily.nc -stat 'ucomp[5,:,:,:]' 'vcomp[5,:,:,:]'\n""") #These two options are to be used jointly with --inspect parser.add_argument('--dump','-dump', nargs='+',default=None, help=argparse.SUPPRESS) parser.add_argument('--stat','-stat', nargs='+',default=None, help=argparse.SUPPRESS) help=argparse.SUPPRESS parser.add_argument('-d','--date', nargs='+',default=None, help='Specify the range of files to use, default is the last file \n' '> Usage: MarsPlot Custom.in -d 700 (one file) \n' ' MarsPlot Custom.in -d 350 700 (start file end file)') parser.add_argument('--template','-template', action='store_true', help="""Generate a template Custom.in for customization of the plots.\n """ """(Use '--temp' for a skinned version of the template)\n""") parser.add_argument('-temp','--temp', action='store_true',help=argparse.SUPPRESS) #same as --template but without the instructions parser.add_argument('-do','--do', nargs=1,type=str,default=None, #sys.stdin help='(Re)-use a template file my_custom.in. First search in ~/amesGCM3/mars_templates/,\n' ' then in /u/mkahre/MCMC/analysis/working/shared_templates/ \n' '> Usage: MarsPlot -do my_custom [other options]') parser.add_argument('-sy', '--stack_year', action='store_true',default=False, help='Stack consecutive years in 1D time series instead of having them back to back\n' '> Usage: MarsPlot Custom.in -sy \n') parser.add_argument("-o", "--output",default="pdf", choices=['pdf','eps','png'], help='Output file format\n' 'Default is pdf if ghostscript (gs) is available and png otherwise\n' '> Usage: MarsPlot Custom.in -o png \n' ' : MarsPlot Custom.in -o png -pw 500 (set pixel width to 500, default is 2000)\n') parser.add_argument('-vert', '--vertical', action='store_true',default=False, help='Output figures as vertical pages instead of horizonal \n') parser.add_argument("-pw", "--pwidth",default=2000,type=float, help=argparse.SUPPRESS) parser.add_argument('-dir', '--directory', default=os.getcwd(), help='Target directory if input files are not present in current directory \n' '> Usage: MarsPlot Custom.in [other options] -dir /u/akling/FV3/verona/c192L28_dliftA/history') parser.add_argument('--debug', action='store_true', help='Debug flag: do not by-pass errors on a particular figure') #====================================================== # MAIN PROGRAM #====================================================== def main(): global output_path ; output_path = os.getcwd() global input_paths ; input_paths=[];input_paths.append(parser.parse_args().directory) global out_format ; out_format=parser.parse_args().output global debug ;debug =parser.parse_args().debug global Ncdf_num #host the simulation timestamps global objectList #contains all figure object global customFileIN #template name global levels;levels=21 #number of contour for 2D plots global my_dpi;my_dpi=96. #pixel per inch for figure output global label_size;label_size=18 #Label size for title, xlabel, ylabel global title_size;title_size=24 #Label size for title, xlabel, ylabel global label_factor;label_factor=3/10# reduce the font size as the number of pannel increases size global tick_factor;tick_factor=1/2 global title_factor;title_factor=10/12 global width_inch; #pixel width for saving figure global height_inch; #pixel width for saving figure global vertical_page;vertical_page=parser.parse_args().vertical #vertical pages instead of horizonal for saving figure global shared_dir; shared_dir='/u/mkahre/MCMC/analysis/working/shared_templates' #directory containing shared templates #Set Figure dimensions pixel_width=parser.parse_args().pwidth if vertical_page: width_inch=pixel_width/1.4/my_dpi;height_inch=pixel_width/my_dpi else: width_inch=pixel_width/my_dpi;height_inch=pixel_width/1.4/my_dpi objectList=[Fig_2D_lon_lat('fixed.zsurf',True),\ Fig_2D_lat_lev('atmos_average.ucomp',True),\ Fig_2D_time_lat('atmos_average.taudust_IR',False),\ Fig_2D_lon_lev('atmos_average_pstd.temp',False),\ Fig_2D_time_lev('atmos_average_pstd.temp',False),\ Fig_2D_lon_time('atmos_average.temp',False),\ Fig_1D('atmos_average.temp',False)] #============================= #----------Group together the 1st two figures---- objectList[0].subID=1;objectList[0].nPan=2 #1st object of a 2 panel figure objectList[1].subID=2;objectList[1].nPan=2 #2nd object of a 2 panel figure # Begin main loop: # ----- Option 1 :Inspect content of a Netcdf file ---- if parser.parse_args().inspect_file: check_file_tape(parser.parse_args().inspect_file,abort=False) #NAS-specific, check if the file is on tape if parser.parse_args().dump: #Dumping variable content print_varContent(parser.parse_args().inspect_file,parser.parse_args().dump,False) elif parser.parse_args().stat: #Printing variable stats print_varContent(parser.parse_args().inspect_file,parser.parse_args().stat,True) else: # Show information on all the variables print_fileContent(parser.parse_args().inspect_file) # ----- Option 2: Generate a template file ---- elif parser.parse_args().template or parser.parse_args().temp: make_template() # --- Gather simulation information from template or inline argument else: # --- Option 2, case A: Use Custom.in for everything ---- if parser.parse_args().custom_file: print('Reading '+parser.parse_args().custom_file.name) namelist_parser(parser.parse_args().custom_file.name) # --- Option 2, case B: Use Custom.in in ~/FV3/templates for everything ---- if parser.parse_args().do: print('Reading '+path_to_template(parser.parse_args().do)) namelist_parser(path_to_template(parser.parse_args().do)) # Set bounds (e.g. starting file, end file) if parser.parse_args().date: #a date single date or a range is provided # first check if the value provided is the right type try: bound=np.asarray(parser.parse_args().date).astype(float) except Exception as e: prRed('*** Syntax Error***') prRed("""Please use: 'MarsPlot Custom.in -d XXXX [YYYY] -o out' """) exit() else: # no date is provided, default is last file XXXXX.fixed.nc in directory bound=get_Ncdf_num() #If one or multiple XXXXX.fixed.nc files are found, use the last one if bound is not None :bound=bound[-1] #----- #Initialization Ncdf_num=get_Ncdf_num() #Get all timestamps in directory if Ncdf_num is not None: Ncdf_num=select_range(Ncdf_num,bound) # Apply bounds to the desired dates nfiles=len(Ncdf_num) #number of timestamps else: #No XXXXX.fixed.nc, in the directory. It is assumed we will be looking at one single file nfiles=1 #print('MarsPlot is running...') #Make a ./plots folder in the current directory if it does not exist dir_plot_present=os.path.exists(output_path+'/'+'plots') if not dir_plot_present: os.makedirs(output_path+'/'+'plots') fig_list=list()#list of figures #============Do plots================== global i_list; for i_list in range(0,len(objectList)): status=objectList[i_list].plot_type+' :'+objectList[i_list].varfull progress(i_list,len(objectList),status,None) #display the figure in progress objectList[i_list].do_plot() if objectList[i_list].success and out_format=='pdf' and not debug : sys.stdout.write("\033[F");sys.stdout.write("\033[K") #if success,flush the previous output status=objectList[i_list].plot_type+' :'+objectList[i_list].varfull+objectList[i_list].fdim_txt progress(i_list,len(objectList),status,objectList[i_list].success) # Add the figure to the list of figures if objectList[i_list].subID==objectList[i_list].nPan: #only for the last panel of a subplot if i_list< len(objectList)-1 and not objectList[i_list+1].addLine: fig_list.append(objectList[i_list].fig_name) #Last subplot if i_list== len(objectList)-1 :fig_list.append(objectList[i_list].fig_name) progress(100,100,'Done')# 100% completed #========Making multipage pdf============= if out_format=="pdf" and len(fig_list)>0: print('Merging figures...') #print("Plotting figures:",fig_list) debug_filename=output_path+'/.debug_MCMC_plots.txt' #debug file (masked), use to redirect the outputs from ghost script fdump = open(debug_filename, 'w') # #Construct list of figures---- all_fig=' ' for figID in fig_list: #Add outer quotes(" ") to deal with white space in Windows, e.g. '"/Users/my folder/Diagnostics.pdf"' figID='"'+figID+'"' all_fig+=figID+' ' #Output name for the pdf try: if parser.parse_args().do: basename=parser.parse_args().do[0] else: input_file=output_path+'/'+parser.parse_args().custom_file.name basename=input_file.split('/')[-1].split('.')[0].strip() #get the input file name, e.g "Custom_01" or except: #Special case where no Custom.in is provided basename='Custom' #default name is Custom.in, output Diagnostics.pdf if basename=='Custom': output_pdf=fig_name=output_path+'/'+'Diagnostics.pdf' #default name is Custom_XX.in, output Diagnostics_XX.pdf elif basename[0:7]=="Custom_": output_pdf=fig_name=output_path+'/Diagnostics_'+basename[7:9]+'.pdf' #same name as input file #name is different use it else: output_pdf=fig_name=output_path+'/'+basename+'.pdf' #same name as input file #Also add outer quote to the output pdf output_pdf='"'+output_pdf+'"' #command to make a multipage pdf out of the the individual figures using ghost scritp. # Also remove the temporary files when done cmd_txt='gs -sDEVICE=pdfwrite -dNOPAUSE -dBATCH -dSAFER -dEPSCrop -sOutputFile='+output_pdf+' '+all_fig try: #Test the ghost script and remove command, exit otherwise-- subprocess.check_call(cmd_txt,shell=True, stdout=fdump, stderr=fdump) #Execute the commands now subprocess.call(cmd_txt,shell=True, stdout=fdump, stderr=fdump) #run ghostscript to merge the pdf cmd_txt='rm -f '+all_fig subprocess.call(cmd_txt,shell=True, stdout=fdump, stderr=fdump)#remove temporary pdf figs cmd_txt='rm -f '+'"'+debug_filename+'"' subprocess.call(cmd_txt,shell=True)#remove debug file #If the plot directory was not present initially, remove it if not dir_plot_present: cmd_txt='rm -r '+'"'+output_path+'"'+'/plots' subprocess.call(cmd_txt,shell=True) give_permission(output_pdf) print(output_pdf + ' was generated') except subprocess.CalledProcessError: print("ERROR with ghostscript when merging pdf, please try alternative formats") if debug:raise #====================================================== # DATA OPERATION UTILITIES #====================================================== def shift_data(lon,data): ''' This function shift the longitude and data from a 0->360 to a -180/+180 grid. Args: lon: 1D array of longitude 0->360 data: 2D array with last dimension being the longitude Returns: lon: 1D array of longitude -180/+180 data: shifted data Note: Use np.ma.hstack instead of np.hstack to keep the masked array properties ''' lon_180=lon.copy() nlon=len(lon_180) # for 1D plots: if 1D, reshape array if len(data.shape) <=1: data=data.reshape(1,nlon) #=== lon_180[lon_180>180]-=360. data=np.hstack((data[:,lon_180<0],data[:,lon_180>=0])) lon_180=np.append(lon_180[lon_180<0],lon_180[lon_180>=0]) # If 1D plot, squeeze array if data.shape[0]==1: data=np.squeeze(data) return lon_180,data def MY_func(Ls_cont): ''' This function return the Mars Year Args: Ls_cont: solar longitude, contineuous Returns: MY : int the Mars year ''' return (Ls_cont)//(360.)+1 def get_lon_index(lon_query_180,lons): ''' Given a range of requested longitudes, return the indexes to extract data from the netcdf file Args: lon_query_180: requested longitudes in -180/+180 units: value, [min, max] or None lons: 1D array of longitude in the native coordinates (0->360) Returns: loni: 1D array of file indexes txt_lon: text descriptor for the extracted longitudes *** Note that the keyword 'all' is passed as -99999 by the rT() functions ''' Nlon=len(lons) lon_query_180=np.array(lon_query_180) #If None, set to default, i.e 'all' for a zonal average if lon_query_180.any()==None: lon_query_180=np.array(-99999) #=============FV3 format ============== # lons are 0>360, convert to -180>+180 #====================================== if lons.max()>180: #one longitude is provided if lon_query_180.size==1: #request zonal average if lon_query_180==-99999: loni=
np.arange(0,Nlon)
numpy.arange
""" WS-DeepNet - A Multilayer Perceptron in Python ============================================== Hi! This is an Multilayer Perceptron implementation in Python, using Numpy as helper for some math operations. """ import numpy as np class NeuralNetwork(object): """ Usage ----- Import this class and use its constructor to inform: - How many input nodes this net should have (int) - How many hidden layers you want (int) - How many output nodes you need (int) - What is the desired learning rate (float) Example: ``` from my_answers import NeuralNetwork nn = NeuralNetwork(3, 2, 1, 0.98) ``` This will create a neural network object into the nn variable with 3 input layers, 2 hidden layers and 1 output, using 0.98 as learning rate. """ def __init__(self, input_nodes, hidden_nodes, output_nodes, learning_rate): """ The default behavior is to use: - 32 hidden nodes - 1 output nodes - learning_rate = 0.98 - 3000 iterations Set your values during the network creation, like: `nn = NeuralNetwork(3, 2, 1, 0.98)` """ # Hyperparameters from default or from constructor self.input_nodes = input_nodes self.hidden_nodes = hidden_nodes self.output_nodes = output_nodes # Initialize the weights self.weights_input_to_hidden = np.random.normal(0.0, self.input_nodes**-0.5, (self.input_nodes, self.hidden_nodes)) self.weights_hidden_to_output = np.random.normal(0.0, self.hidden_nodes**-0.5, (self.hidden_nodes, self.output_nodes)) self.lr = learning_rate # The default activation function is a sigmoid(x) self.activation_function = lambda x: 1 / (1 + np.exp(-x)) def train(self, features, targets): """ Train the network on batch of features and targets. Arguments --------- features: 2D array, each row is one data record, each column is a feature targets: 1D array of target values """ n_records = features.shape[0] delta_weights_i_h = np.zeros(self.weights_input_to_hidden.shape) delta_weights_h_o = np.zeros(self.weights_hidden_to_output.shape) for X, y in zip(features, targets): final_outputs, hidden_outputs = self.forward_pass_train(X) delta_weights_i_h, delta_weights_h_o = self.backpropagation(final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o) self.update_weights(delta_weights_i_h, delta_weights_h_o, n_records) def forward_pass_train(self, X): """ This is the feedforward step used during the training process. Arguments --------- X: features batch """ # This is where the inputs feed the hidden layer through the first # layer of weights. hidden_inputs = np.dot(X, self.weights_input_to_hidden) hidden_outputs = self.activation_function(hidden_inputs) # This is the final flow. We are going to use a linear output # here instead of the sigmoid function. # The linear output is represented by f(x) = x. final_inputs = np.dot(hidden_outputs, self.weights_hidden_to_output) final_outputs = final_inputs # Return final_outputs and hidden_outputs, to make it easier to train # the network duting the backpropagation steps. return final_outputs, hidden_outputs def backpropagation(self, final_outputs, hidden_outputs, X, y, delta_weights_i_h, delta_weights_h_o): """ Implement backpropagation Arguments --------- final_outputs: output from forward pass y: target (i.e. label) batch delta_weights_i_h: change in weights from input to hidden layers delta_weights_h_o: change in weights from hidden to output layers """ # The error of the output layer. # Its formula is E = y - ŷ, where y is the label and ŷ is the # output given after the feedforward step. error = y - final_outputs # Since we are using a linear function, the output error term is: output_error_term = error # The hidden layer's contribution to the error # and its gradient. hidden_error =
np.dot(self.weights_hidden_to_output, output_error_term)
numpy.dot
import unittest import numpy as np import pandas as pd from numpy import testing as nptest from operational_analysis.toolkits import power_curve from operational_analysis.toolkits.power_curve.parametric_forms import * noise = 0.1 class TestPowerCurveFunctions(unittest.TestCase): def setUp(self): np.random.seed(42) params = [1300, -7, 11, 2, 0.5] self.x = pd.Series(np.random.random(100) * 30) self.y = pd.Series(logistic5param(self.x, *params) + np.random.random(100) * noise) def test_IEC(self): # Create test data using logistic5param form curve = power_curve.IEC(self.x, self.y) y_pred = curve(self.x) # Does the IEC power curve match the test data? nptest.assert_allclose(self.y, y_pred, rtol=1, atol=noise * 2, err_msg="Power curve did not properly fit.") def test_logistic_5_param(self): # Create test data using logistic5param form curve = power_curve.logistic_5_parametric(self.x, self.y) y_pred = curve(self.x) # Does the logistic-5 power curve match the test data? nptest.assert_allclose(self.y, y_pred, rtol=1, atol=noise * 2, err_msg="Power curve did not properly fit.") def test_gam(self): # Create test data using logistic5param form curve = power_curve.gam(windspeed_column = self.x, power_column = self.y, n_splines = 20) y_pred = curve(self.x) # Does the spline-fit power curve match the test data? nptest.assert_allclose(self.y, y_pred, rtol=0.05, atol = 20, err_msg="Power curve did not properly fit.") def test_3paramgam(self): # Create test data using logistic5param form winddir = np.random.random(100) airdens = np.random.random(100) curve = power_curve.gam_3param(windspeed_column = self.x, winddir_column=winddir, airdens_column=airdens, power_column = self.y, n_splines = 20) y_pred = curve(self.x, winddir, airdens) # Does the spline-fit power curve match the test data? nptest.assert_allclose(self.y, y_pred, rtol=0.05, atol = 20, err_msg="Power curve did not properly fit.") def tearDown(self): pass class TestParametricForms(unittest.TestCase): def setUp(self): pass def test_logistic5parameter(self): y_pred = logistic5param(np.array([1., 2., 3.]), *[1300., -7., 11., 2., 0.5]) y = np.array([2.29403585, 5.32662505, 15.74992462]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not properly fit.") y_pred = logistic5param(np.array([1, 2, 3]), *[1300., -7., 11., 2., 0.5]) y = np.array([2.29403585, 5.32662505, 15.74992462]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not handle integer inputs properly.") y_pred = logistic5param(np.array([0.01, 0.0]), 1300, 7, 11, 2, 0.5) y = np.array([ 1300.0 , 1300.0 ]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not handle zero properly (b>0).") y_pred = logistic5param(np.array([0.01, 0.0]), 1300, -7, 11, 2, 0.5) y = np.array([ 2.0 , 2.0 ]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not handle zero properly (b<0).") def test_logistic5parameter_capped(self): # Numpy array + Lower Bound y_pred = logistic5param_capped(np.array([1., 2., 3.]), *[1300., -7., 11., 2., 0.5], lower=5., upper=20.) y = np.array([5., 5.32662505, 15.74992462]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not properly fit.") # Numpy array + Upper and Lower Bound y_pred = logistic5param_capped(np.array([1., 2., 3.]), *[1300., -7., 11., 2., 0.5], lower=5., upper=10.) y = np.array([5., 5.32662505, 10.]) nptest.assert_allclose(y, y_pred, err_msg="Power curve did not properly fit.") # Pandas Series + Upper and Lower Bound y_pred = logistic5param_capped(pd.Series([1., 2., 3.]), *[1300., -7., 11., 2., 0.5], lower=5., upper=20.) y = pd.Series([5., 5.32662505, 15.74992462])
nptest.assert_allclose(y, y_pred, err_msg="Power curve did not properly fit.")
numpy.testing.assert_allclose
import numpy as np from scipy.stats import entropy from sklearn.cluster import KMeans import random import pickle """Author: <NAME>""" """email: <EMAIL>""" """This file contains helper functions to run genfact algorithm create_clusters : Takes featuredata and classdata as array and clustersize as a number. Returns clusters of featuredata sorted in the descending order of clusterscore. crossover: Takes population of featuredata, array of classdata for the population, predictive model, datatype of featuredata and offspringsize as a number. Returns new population after crossover and classdata for the new population evaluatefitness: Takes population of featuredata, array of classdata for the population. For each sample in population it finds the another sample in the population as counterfactual having different class and minimum euclidean distance (fitness) with respect to the sample. The fitness and counterfactuals are returned selectbest: Based on populationsize it returns the most fit set of factual and counterfactual pairs run_genetic: Using the clustered featuredata, datatype and the model it run the genetic algorithm and returns the factual and counterfactual pairs. """ def create_clusters(featuredata,classdata,clustsize=20): k=round(len(classdata)/(clustsize*2))#round(len(np.unique(classdata))*1.5) kmeansk = KMeans(n_clusters=k) y_kmeans = kmeansk.fit_predict(featuredata) clusters=[] clusterclassfraction=[] clusterentropy = [] for i in range(k): cdata = featuredata[y_kmeans == i] tclass = classdata[y_kmeans == i] classfraction=np.unique(tclass, return_counts=True)[1]/len(tclass) clusters.append(cdata) clusterclassfraction.append(classfraction) classfractionentropy=[entropy(i) for i in clusterclassfraction] sizeofclusters=[len(i) for i in clusters] clusterscore = [x/
np.log(y+1)
numpy.log
import os from jetnet.datasets import JetNet from jetnet import evaluation import numpy as np datasets = ["g", "q", "t"] samples_dict = {key: {} for key in datasets} real_samples = {} num_samples = 50000 # mapping folder names to gen and disc names in the final table model_name_map = { "fc": ["FC", "FC"], "fcmp": ["FC", "MP"], "fcpnet": ["FC", "PointNet"], "graphcnn": ["GraphCNN", "FC"], "graphcnnmp": ["GraphCNN", "MP"], "graphcnnpnet": ["GraphCNN", "PointNet"], "mp": ["MP", "MP"], "mpfc": ["MP", "FC"], "mplfc": ["MP-LFC", "MP"], "mppnet": ["MP", "PointNet"], "treeganfc": ["TreeGAN", "FC"], "treeganmp": ["TreeGAN", "MP"], "treeganpnet": ["TreeGAN", "PointNet"], } # Load samples # models_dir = "/graphganvol/MPGAN/trained_models/" models_dir = "./trained_models/" for dir in os.listdir(models_dir): if dir == ".DS_Store" or dir == "README.md": continue model_name = dir.split("_")[0] if model_name in model_name_map: dataset = dir.split("_")[1] samples = np.load(f"{models_dir}/{dir}/gen_jets.npy")[:num_samples, :, :3] samples_dict[dataset][model_name] = samples for dataset in datasets: real_samples[dataset] = ( JetNet( dataset, "/graphganvol/MPGAN/datasets/", normalize=False, train=False, use_mask=False ) .data[:num_samples] .numpy() ) # order in final table order = [ "fc", "graphcnn", "treeganfc", "fcpnet", "graphcnnpnet", "treeganpnet", "-", "mp", "mplfc", "-", "fcmp", "graphcnnmp", "treeganmp", "mpfc", "mppnet", ] # get evaluation metrics for all samples and save in folder evals_dict = {key: {} for key in datasets} for key in order: print(key) for dataset in datasets: print(dataset) if key not in samples_dict[dataset]: print(f"{key} samples for {dataset} jets not found") continue gen_jets = samples_dict[dataset][key] real_jets = real_samples[dataset] evals = {} evals["w1m"] = evaluation.w1m(gen_jets, real_jets) evals["w1p"] = evaluation.w1p(gen_jets, real_jets, average_over_features=False) evals["w1efp"] = evaluation.w1efp(gen_jets, real_jets, average_over_efps=False) evals["fpnd"] = evaluation.fpnd(gen_jets[:, :30], dataset, device="cuda", batch_size=256) cov, mmd = evaluation.cov_mmd(real_jets, gen_jets) evals["coverage"] = cov evals["mmd"] = mmd f = open(f"{models_dir}/{key}_{dataset}/evals.txt", "w+") f.write(str(evals)) f.close() evals_dict[dataset][key] = evals # load eval metrics if already saved from numpy import array for dataset in datasets: for key in order: if key != "-": with open(f"{models_dir}/{key}_{dataset}/evals.txt", "r") as f: evals_dict[dataset][key] = eval(f.read()) if "cov" in evals_dict[dataset][key]: evals_dict[dataset][key]["coverage"] = evals_dict[dataset][key]["cov"] del evals_dict[dataset][key]["cov"] with open(f"{models_dir}/{key}_{dataset}/evals.txt", "w") as f: f.write(str(evals_dict[dataset][key])) # find best values best_key_dict = {key: {} for key in datasets} eval_keys = ["w1m", "w1p", "w1efp", "fpnd", "coverage", "mmd"] for dataset in datasets: model_keys = list(evals_dict[dataset].keys()) lists = {key: [] for key in eval_keys} for key in model_keys: evals = evals_dict[dataset][key] lists["w1m"].append(np.round(evals["w1m"][0], 5)) lists["w1p"].append(np.round(np.mean(evals["w1p"][0]), 4)) lists["w1efp"].append(np.round(np.mean(evals["w1efp"][0]), 5 if dataset == "t" else 6)) lists["fpnd"].append(np.round(evals["fpnd"], 2)) lists["coverage"].append(1 - np.round(evals["coverage"], 2)) # invert to maximize cov lists["mmd"].append(np.round(evals["mmd"], 3)) for key in eval_keys: best_key_dict[dataset][key] = np.array(model_keys)[ np.flatnonzero(np.array(lists[key]) == np.array(lists[key]).min()) ] def format_mean_sd(mean, sd): """round mean and standard deviation to most significant digit of sd and apply latex formatting""" decimals = -int(np.floor(np.log10(sd))) decimals -= int((sd * 10 ** decimals) >= 9.5) if decimals < 0: ten_to = 10 ** (-decimals) if mean > ten_to: mean = ten_to * (mean // ten_to) else: mean_ten_to = 10 ** np.floor(np.log10(mean)) mean = mean_ten_to * (mean // mean_ten_to) sd = ten_to * (sd // ten_to) decimals = 0 if mean >= 1e3 and sd >= 1e3: mean = np.round(mean * 1e-3) sd = np.round(sd * 1e-3) return f"${mean:.{decimals}f}$k $\\pm {sd:.{decimals}f}$k" else: return f"${mean:.{decimals}f} \\pm {sd:.{decimals}f}$" def format_fpnd(fpnd): if fpnd >= 1e6: fpnd = np.round(fpnd * 1e-6) return f"${fpnd:.0f}$M" elif fpnd >= 1e3: fpnd = np.round(fpnd * 1e-3) return f"${fpnd:.0f}$k" elif fpnd >= 10: fpnd = np.round(fpnd) return f"${fpnd:.0f}$" elif fpnd >= 1: return f"${fpnd:.1f}$" else: return f"${fpnd:.2f}$" def bold_best_key(val_str: str, bold: bool): if bold: return f"$\\mathbf{{{val_str[1:-1]}}}$" else: return val_str # Make and save table table_dict = {key: {} for key in datasets} for dataset in datasets: lines = [] for key in order: if key == "-": lines.append("\cmidrule(lr){2-3}\n") else: line = f" & {model_name_map[key][0]} & {model_name_map[key][1]}" evals = evals_dict[dataset][key] line += " & " + bold_best_key( format_mean_sd(evals["w1m"][0] * 1e3, evals["w1m"][1] * 1e3), key in best_key_dict[dataset]["w1m"], ) line += " & " + bold_best_key( format_mean_sd(
np.mean(evals["w1p"][0])
numpy.mean
import numpy as np from colr import color from gym import Env from gym.spaces import Discrete, Box class TwoZeroFourEightEnv(Env): def __init__(self): self.metadata = {"render.modes": ["human", "ansi"]} self.action_space = Discrete(4) self.observation_space = Box(low=0, high=2 ** 16 - 1, shape=(4,), dtype=np.uint16) self.board = Board() def step(self, action): is_move_valid, total_merged = self.board.move(action) reward = total_merged if is_move_valid else -2 done = self.board.is_game_over() info = {"score": self.board.score, "max_tile": self.board.max_tile()} return self.board.state, reward, done, info def reset(self): self.board.reset() return self.board.state def render(self, mode="human"): print(self.board.draw()) class Board: def __init__(self): print("Initializing board ...") self.width, self.height = 4, 4 self.score, self.state = None, None self.moves_backward = self._compute_moves_backward() self.moves_forward = self._compute_moves_forward() self.DIRECTIONS = {0: "UP", 1: "DOWN", 2: "LEFT", 3: "RIGHT"} self.PALETTE = { 0: ("000000", "000000"), 2 ** 1: ("222222", "eee4da"), 2 ** 2: ("222222", "ede0c8"), 2 ** 3: ("222222", "f2b179"), 2 ** 4: ("222222", "f59563"), 2 ** 5: ("222222", "f67c5f"), 2 ** 6: ("222222", "f65e3b"), 2 ** 7: ("222222", "edcf72"), 2 ** 8: ("222222", "edcc61"), 2 ** 9: ("222222", "edc850"), 2 ** 10: ("222222", "edc53f"), 2 ** 11: ("222222", "edc22e"), 2 ** 12: ("f9f6f2", "3c3a32"), 2 ** 13: ("f9f6f2", "3c3a32"), 2 ** 14: ("f9f6f2", "3c3a32"), 2 ** 15: ("f9f6f2", "3c3a32"), 2 ** 16: ("f9f6f2", "3c3a32") } self.reset() def reset(self): self.score = 0 self.state = np.uint64(0) self._add_random_tile() self._add_random_tile() def max_tile(self): return 2 ** np.max([cell for row in self._unpack_rows(self.state) for cell in self._unpack_cells(row)]) def is_game_over(self): return all([self._move(action, self.state)[0] == self.state for action in self.DIRECTIONS]) def move(self, action): new_state, total_merged = self._move(action, self.state) self.score += total_merged if new_state == self.state: return False, total_merged self.state = new_state self._add_random_tile() return True, total_merged def draw(self): grid = self._state_as_grid() result = f"SCORE : {self.score}\n" result += "┌" + ("────────┬" * self.width)[:-1] + "┐\n" for i, row in enumerate(grid): result += "|" + "|".join([ color(" " * 8, fore=self.PALETTE[cell][0], back=self.PALETTE[cell][1], style="bold") for cell in row ]) + "|\n" result += "|" + "|".join([ color(str(cell if cell != 0 else "").center(8), fore=self.PALETTE[cell][0], back=self.PALETTE[cell][1], style="bold") for cell in row ]) + "|\n" result += "|" + "|".join([ color(" " * 8, fore=self.PALETTE[cell][0], back=self.PALETTE[cell][1], style="bold") for cell in row ]) + "|\n" if i + 1 < grid.shape[0]: result += "├" + ("────────┼" * self.width)[:-1] + "┤\n" result += "└" + ("────────┴" * self.width)[:-1] + "┘\n" return result def _add_random_tile(self): def num_zero_tiles(s): nz = 0 mask = np.uint64(0x000000000000000F) for _ in range(16): if s & mask == 0: nz += 1 s >>= np.uint(4) return nz n_zeros = num_zero_tiles(self.state) index = np.random.randint(0, n_zeros) tile = np.uint64(2) if np.random.uniform() > 0.9 else np.uint64(1) state = self.state while True: while state & np.uint64(0xf) != 0: state >>= np.uint64(4) tile <<= np.uint64(4) if index == 0: break index -= 1 state >>= np.uint64(4) tile <<= np.uint64(4) self.state |= tile def _move(self, action, current_state): def move_up(state): columns = self._unpack_columns(state) columns, total_merged = zip(*[self.moves_forward[column] for column in columns]) return self._pack_columns(columns), np.sum(total_merged) def move_down(state): columns = self._unpack_columns(state) columns, total_merged = zip(*[self.moves_backward[column] for column in columns]) return self._pack_columns(columns), np.sum(total_merged) def move_left(state): rows = self._unpack_rows(state) rows, total_merged = zip(*[self.moves_backward[row] for row in rows]) return self._pack_rows(rows), np.sum(total_merged) def move_right(state): rows = self._unpack_rows(state) rows, total_merged = zip(*[self.moves_forward[row] for row in rows]) return self._pack_rows(rows), np.sum(total_merged) moves = {"UP": move_up, "DOWN": move_down, "LEFT": move_left, "RIGHT": move_right} move = moves.get(self.DIRECTIONS.get(action)) return move(current_state) @staticmethod def _pack_rows(rows): state = np.uint64(0) for row in map(np.uint64, rows): state <<= np.uint64(16) state |= row return state @staticmethod def _unpack_rows(state): rows = [] for _ in range(4): mask = np.uint64(0x000000000000FFFF) rows.append(np.uint16(state & mask)) state >>= np.uint64(16) rows.reverse() return np.array(rows) @staticmethod def _pack_columns(columns): state = np.uint64(0) mask = np.uint64(0x000F000F000F000F) for column in map(np.uint64, columns): state <<= np.uint64(4) state |= ((column >> np.uint64(12)) | (column << np.uint64(8)) | ( column << np.uint64(28)) | column << np.uint64(48)) & mask return state @staticmethod def _unpack_columns(state): columns = [] mask = np.uint64(0x000F000F000F000F) for _ in range(4): column = state & mask column = ((column << np.uint64(12)) | (column >> np.uint64(8)) | (column >> np.uint64(28)) | ( column >> np.uint64(48))) columns.append(np.uint16(column)) state >>= np.uint64(4) columns.reverse() return np.array(columns) @staticmethod def _pack_cells(cells): row = np.int16(0) for cell in cells: row <<= 4 row |= cell return row @staticmethod def _unpack_cells(row_or_column): cells = [] mask = np.uint16(0x000000000000000F) for _ in range(4): cells.append(np.uint8(row_or_column & mask)) row_or_column >>= np.uint(4) cells.reverse() return np.array(cells) def _compute_moves_backward(self): moves = {} for state in range(np.iinfo(np.uint16).max): current = np.uint16(state) cells = self._unpack_cells(current) cells = np.compress(cells != 0, cells) cells = np.pad(cells, (0, 4 - cells.size + 1)) next_ = [] total_merged = 0 for i in range(4): if cells[i] == cells[i + 1]: next_.append(cells[i] + 1 if cells[i] != 0 else 0) total_merged += 2 ** (cells[i] + 1) if cells[i] != 0 else 0 cells[i + 1] = 0 else: next_.append(cells[i]) next_ = np.array(next_) next_ = np.compress(next_ != 0, next_) next_ = np.pad(next_, (0, 4 - next_.size)) moves[current] = (self._pack_cells(next_), total_merged) return moves def _compute_moves_forward(self): moves = {} for state in range(np.iinfo(np.uint16).max): current = np.uint16(state) cells = self._unpack_cells(current) cells = np.compress(cells != 0, cells) cells = np.pad(cells, (4 - cells.size + 1, 0)) next_ = [] total_merged = 0 for i in range(4, 0, -1): if cells[i] == cells[i - 1]: next_.append(cells[i] + 1 if cells[i] != 0 else 0) total_merged += 2 ** (cells[i] + 1) if cells[i] != 0 else 0 cells[i - 1] = 0 else: next_.append(cells[i]) next_.reverse() next_ = np.array(next_) next_ =
np.compress(next_ != 0, next_)
numpy.compress
import tensorflow as tf import tensorflow_probability as tfp # from tensorflow.core.protobuf import config_pb2 import numpy as np # import os # from fit_model import load_data import matplotlib.pyplot as plt import time import numbers import pandas as pd import tf_keras_tfp_lbfgs as funfac from dotenv import load_dotenv import os import requests from datetime import datetime, timedelta # for the file selection dialogue (see https://codereview.stackexchange.com/questions/162920/file-selection-button-for-jupyter-notebook) import traitlets from ipywidgets import widgets from IPython.display import display from tkinter import Tk, filedialog class SelectFilesButton(widgets.Button): """A file widget that leverages tkinter.filedialog.""" # see https: // codereview.stackexchange.com / questions / 162920 / file - selection - button - for -jupyter - notebook def __init__(self, out, CallBack=None,Load=True): super(SelectFilesButton, self).__init__() # Add the selected_files trait self.add_traits(files=traitlets.traitlets.List()) # Create the button. if Load: self.description = "Load" else: self.description = "Save" self.isLoad=Load self.icon = "square-o" self.style.button_color = "orange" # Set on click behavior. self.on_click(self.select_files) self.CallBack = CallBack self.out = widgets.Output() @staticmethod def select_files(b): """Generate instance of tkinter.filedialog. Parameters ---------- b : obj: An instance of ipywidgets.widgets.Button """ with b.out: try: # Create Tk root root = Tk() # Hide the main window root.withdraw() # Raise the root to the top of all windows. root.call('wm', 'attributes', '.', '-topmost', True) # List of selected files will be set to b.value if b.isLoad: filename = filedialog.askopenfilename() # multiple=False else: filename = filedialog.asksaveasfilename() # print('Load/Save Dialog finished') #b.description = "Files Selected" #b.icon = "check-square-o" #b.style.button_color = "lightgreen" if b.CallBack is not None: #print('Invoking CallBack') b.CallBack(filename) #else: #print('no CallBack') except: #print('Problem in Load/Save') #print('File is'+b.files) pass cumulPrefix = '_cumul_' # this is used as a keyword to identify whether this plot was already plotted def getNumArgs(myFkt): from inspect import signature sig = signature(myFkt) return len(sig.parameters) class DataLoader(object): def __init__(self): load_dotenv() def pull_data(self, uri='http://ec2-3-122-224-7.eu-central-1.compute.amazonaws.com:8080/daily_data'): return requests.get(uri).json() # return requests.get('http://ec2-3-122-224-7.eu-central-1.compute.amazonaws.com:8080/daily_data').json() def get_new_data(self): uri = "http://ec2-3-122-224-7.eu-central-1.compute.amazonaws.com:8080/data" json_data = self.pull_data(uri) table =
np.array(json_data["rows"])
numpy.array
"""Ensembles of motifs""" import numpy as np import settings, log logger = log.get("ensembles") class Ensemble: """Ensemble base class. Parameters ---------- image : img.SparseImage A sparse image encoding a set of motifs and the points they select from a data set. Attributes ---------- size : int Number of motifs present in the ensemble. domain : img.Point list Points classified by motifs in the ensemble. motifs : motifs.Motif list Motifs present in the ensemble. """ def __init__(self, image): # keep the image around for a few things logger.info(f"Building ensemble from image {image}...") self._image = image self._point_map = list(image.domain) self._motif_map = image.motifs # construct inclusion matrix by building rows per-motif rows = [] for motif in self._motif_map: rows.append(self._to_row(image.motif_domain(motif))) self._inclusion = np.transpose(np.array(rows)) logger.info(f"Ensemble {self} built with {len(self._motif_map)} motifs and {len(self._point_map)} points.") def _to_row(self, points): """Converts a list of points to a row in the ensemble's inclusion matrix. Parameters ---------- points : img.Point list A list of points classified by a single motif Returns ------- np.Array A 0-1 integer array representing the provided list of points Notes ----- Internal helper function, not intended for use outside this base class. Functional inverse of `_to_points`. """ row = [1 if point in points else 0 for point in self._point_map] return np.array(row) def _to_points(self, row): """Converts a row in the ensemble's inclusion matrix to a list of points. Parameters ---------- row : np.Array A 0-1 np.Array from a row in the inclusion matrix. Returns ------- img.Point list List of points encoded in the provided row. Notes ----- Internal helper function, not intended for use outside this base class. Functional inverse of `_to_row`. """ result = [] for point, value in zip(self._point_map, np.nditer(row, order='C')): if value: result.append(point) return result @property def size(self): return len(self._motif_map) @property def domain(self): return self._point_map @property def motifs(self): return self._motif_map def motif_domain(self, motif): """Set of points classified by a motif in the ensemble. Parameters ---------- motif : motifs.Motif A motif object in the ensemble. Returns ------- img.Point list A list of points classified by the provided motif. See Also -------- `domain` - the `domain` attribute gives the list of points classified by all motifs in the ensemble. """ return self._image.motif_domain(motif) def classify(self, point): """Classifies a single point using the ensemble. Parameters ---------- point : img.Point A point-to-be-classified. Returns ------- bool True/false classification of the provided point. Notes ----- Assumes the class extending `Ensemble` uses `classified` to determine what is and isn't classified. """ return (point in self.classified()) def update(self): """Updates some internal state to "improve" the ensemble. Intended to be overwritten. Raises ------ NotImplementedError """ raise NotImplementedError def classified(self, threshold=None): """Provides a set of positively-classified points. Parameters ---------- threshold : float, optional A [0,1]-valued threshold indicating the minimum positive probability for a point to be classified. Defaults to `settings.CLASSIFICATION_THRESHOLD`. Returns ------- img.Point list List of points in the ensemble domain with sufficiently high classification probability. Notes ----- Assumes the class extending `Ensemble` uses `probabilities` to determine confidence of classification. """ if threshold is None: threshold = settings.CLASSIFICATION_THRESHOLD return self._to_points(self.probabilities() >= threshold) def probabilities(self): """Provides classification probabilities for points in the ensemble's domain. Intended to be overwritten. Returns ------- np.Array An [0,1]-valued np.Array whose dimensions match the `Ensemble._point_map` attribute. Raises ------ NotImplementedError """ raise NotImplementedError def probabilities_per_point(self): """Provide classification probabilities for every point in the domain as a list of pairs. Returns ------- (img.Point, float) list A list of points in the ensemble domain paired-up with their positive classification probabilities. """ return zip(self._point_map, self.probabilities()) class Disjunction(Ensemble): """Ensemble computing classification via a "disjunction" of individual motif classifications. Parameters ---------- image : img.SparseImage A sparse image encoding a set of motifs and the points they select from a data set. accuracy_smoothing : int, optional Constant integer to add to numerators and denominators to smooth accuracy computations. Defaults to 1. Attributes ---------- size : int Number of *relevant* motifs present in the ensemble. domain : img.Point list Points classified by motifs in the ensemble. motifs : motifs.Motif list Motifs present in the ensemble. accuracies : np.Array 1-dimensional float array encoding accuracies per-motif. Indices match that of the `motifs` attribute. """ def __init__(self, image, accuracy_smoothing=1): # build inclusion matrix, via super super().__init__(image) # keep observations for accuracy computations self._observations = [] # and a set of accuracies built from observations self._accuracy_smoothing = accuracy_smoothing self.accuracies = np.ones(len(self._motif_map)) def update(self, point, classification): """Update the per-motif accuracy prediction, given an observation. Parameters ---------- point : img.Point A point in the ensemble's domain whose classification has been observed. classification : bool The classification of the observed point. """ self._observations.append( (point, classification) ) accuracies = [] for motif in self._motif_map: prediction = point in self.motif_domain(motif) correct = sum([1 for (point, classification) in self._observations if prediction == classification]) total = len(self._observations) accuracies.append( (correct + self._accuracy_smoothing) / (total + self._accuracy_smoothing) ) self.accuracies = np.array(accuracies) def _relevant_motifs(self): """Select all motifs with accuracy above a particular threshold. Returns ------- np.Array A 0-1 array indicating which motifs have accuracies above a threshold. Notes ----- The accuracy threshold is determined by the value `settings.ACCURACY_THRESHOLD`. """ return np.where( self.accuracies >= settings.ACCURACY_THRESHOLD, np.ones_like(self.accuracies),
np.zeros_like(self.accuracies)
numpy.zeros_like
# coding=utf-8 # Copyright 2019 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Unit test for Saccader model.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl.testing import parameterized import numpy as np import tensorflow.compat.v1 as tf from saccader.visual_attention import saccader from saccader.visual_attention import saccader_config def _get_test_cases(): """Provides test cases.""" is_training = [True, False] policy = ["learned", "random", "ordered_logits", "sobel_mean", "sobel_var"] i = 0 cases = [] for p in policy: for t in is_training: cases.append(("case_%d" % i, p, t)) i += 1 return tuple(cases) class SaccaderTest(tf.test.TestCase, parameterized.TestCase): def test_import(self): self.assertIsNotNone(saccader) @parameterized.named_parameters( *_get_test_cases() ) def test_build(self, policy, is_training): config = saccader_config.get_config() num_times = 2 image_shape = (224, 224, 3) num_classes = 10 config.num_classes = num_classes config.num_times = num_times batch_size = 3 images = tf.constant( np.random.rand(*((batch_size,) + image_shape)), dtype=tf.float32) model = saccader.Saccader(config) logits = model(images, num_times=num_times, is_training=is_training, policy=policy)[0] init_op = model.init_op self.evaluate(init_op) self.assertEqual((batch_size, num_classes), self.evaluate(logits).shape) @parameterized.named_parameters( *_get_test_cases() ) def test_locations(self, policy, is_training): config = saccader_config.get_config() num_times = 2 image_shape = (224, 224, 3) num_classes = 10 config.num_classes = num_classes config.num_times = num_times batch_size = 4 images = tf.constant(
np.random.rand(*((batch_size,) + image_shape))
numpy.random.rand
#!/usr/bin/env python3 """ Created on Tue Apr 24 15:48:52 2020 @author: <NAME> """ import sys from os.path import splitext import numpy as np # import spatialmath as sp from spatialmath import SE3 from spatialmath.base.argcheck import getvector, verifymatrix from roboticstoolbox.robot.ELink import ELink, ETS # from roboticstoolbox.backends.PyPlot.functions import \ # _plot, _teach, _fellipse, _vellipse, _plot_ellipse, \ # _plot2, _teach2 from roboticstoolbox.tools import xacro from roboticstoolbox.tools import URDF from roboticstoolbox.robot.Robot import Robot from roboticstoolbox.robot.Gripper import Gripper from pathlib import PurePath, PurePosixPath from ansitable import ANSITable, Column from spatialmath import SpatialAcceleration, SpatialVelocity, \ SpatialInertia, SpatialForce class ERobot(Robot): """ The ERobot. A superclass which represents the kinematics of a serial-link manipulator :param et_list: List of elementary transforms which represent the robot kinematics :type et_list: ET list :param name: Name of the robot :type name: str, optional :param manufacturer: Manufacturer of the robot :type manufacturer: str, optional :param base: Location of the base is the world frame :type base: SE3, optional :param tool: Offset of the flange of the robot to the end-effector :type tool: SE3, optional :param gravity: The gravity vector :type n: ndarray(3) :references: - Kinematic Derivatives using the Elementary Transform Sequence, <NAME> and <NAME> """ # TODO do we need tool and base as well? def __init__( self, elinks, base_link=None, gripper_links=None, **kwargs ): self._ets = [] self._linkdict = {} self._n = 0 self._ee_links = [] self._base_link = None if isinstance(elinks, ETS): # were passed an ETS string ets = elinks elinks = [] # chop it up into segments, a link frame after every joint start = 0 for j, k in enumerate(ets.joints()): ets_j = ets[start:k+1] start = k + 1 if j == 0: parent = None else: parent = elinks[-1] elink = ELink(ets_j, parent=parent, name=f"link{j:d}") elinks.append(elink) n = len(ets.joints()) tool = ets[start:] if len(tool) > 0: elinks.append(ELink(tool, parent=elinks[-1], name="ee")) elif isinstance(elinks, list): # were passed a list of ELinks # check all the incoming ELink objects n = 0 for link in elinks: if isinstance(link, ELink): self._linkdict[link.name] = link else: raise TypeError("Input can be only ELink") if link.isjoint: n += 1 else: raise TypeError('elinks must be a list of ELinks or an ETS') self._n = n # scan for base for link in elinks: # is this a base link? if link._parent is None: if self._base_link is not None: raise ValueError('Multiple base links') self._base_link = link else: # no, update children of this link's parent link._parent._child.append(link) # Set up the gripper, make a list containing the root of all # grippers if gripper_links is not None: if isinstance(gripper_links, ELink): gripper_links = [gripper_links] else: gripper_links = [] # An empty list to hold all grippers self.grippers = [] # Make a gripper object for each gripper for link in gripper_links: g_links = self.dfs_links(link) # Remove gripper links from the robot for g_link in g_links: elinks.remove(g_link) # Save the gripper object self.grippers.append(Gripper(g_links)) # Subtract the n of the grippers from the n of the robot for gripper in self.grippers: self._n -= gripper.n # Set the ee links self.ee_links = [] if len(gripper_links) == 0: for link in elinks: # is this a leaf node? and do we not have any grippers if len(link.child) == 0: # no children, must be an end-effector self.ee_links.append(link) else: for link in gripper_links: # use the passed in value self.ee_links.append(link.parent) # assign the joint indices if all([link.jindex is None for link in elinks]): jindex = [0] # "mutable integer" hack def visit_link(link, jindex): # if it's a joint, assign it a jindex and increment it if link.isjoint and link in elinks: link.jindex = jindex[0] jindex[0] += 1 # visit all links in DFS order self.dfs_links( self.base_link, lambda link: visit_link(link, jindex)) elif all([link.jindex is not None for link in elinks]): # jindex set on all, check they are unique and sequential jset = set(range(self._n)) for link in elinks: if link.jindex not in jset: raise ValueError( 'joint index {link.jindex} was ' 'repeated or out of range') jset -= set([link.jindex]) if len(jset) > 0: # pragma nocover # is impossible raise ValueError('joints {jset} were not assigned') else: # must be a mixture of ELinks with/without jindex raise ValueError( 'all links must have a jindex, or none have a jindex') # Current joint angles of the robot # TODO should go to Robot class? self.q = np.zeros(self.n) self.qd = np.zeros(self.n) self.qdd = np.zeros(self.n) self.control_type = 'v' super().__init__(elinks, **kwargs) def dfs_links(self, start, func=None): """ Visit all links from start in depth-first order and will apply func to each visited link :param start: the link to start at :type start: ELink :param func: An optional function to apply to each link as it is found :type func: function :returns: A list of links :rtype: list of ELink """ visited = [] def vis_children(link): visited.append(link) if func is not None: func(link) for li in link.child: if li not in visited: vis_children(li) vis_children(start) return visited # def dfs_path(self, l1, l2): # path = [] # visited = [l1] # def vis_children(link): # visited.append(link) # for li in link.child: # if li not in visited: # if li == l2 or vis_children(li): # path.append(li) # return True # vis_children(l1) # path.append(l1) # path.reverse() # return path def to_dict(self): ob = { 'links': [], 'name': self.name, 'n': self.n } self.fkine_all() for link in self.links: li = { 'axis': [], 'eta': [], 'geometry': [], 'collision': [] } for et in link.ets(): li['axis'].append(et.axis) li['eta'].append(et.eta) if link.v is not None: li['axis'].append(link.v.axis) li['eta'].append(link.v.eta) for gi in link.geometry: li['geometry'].append(gi.to_dict()) for gi in link.collision: li['collision'].append(gi.to_dict()) ob['links'].append(li) # Do the grippers now for gripper in self.grippers: for link in gripper.links: li = { 'axis': [], 'eta': [], 'geometry': [], 'collision': [] } for et in link.ets(): li['axis'].append(et.axis) li['eta'].append(et.eta) if link.v is not None: li['axis'].append(link.v.axis) li['eta'].append(link.v.eta) for gi in link.geometry: li['geometry'].append(gi.to_dict()) for gi in link.collision: li['collision'].append(gi.to_dict()) ob['links'].append(li) return ob def fk_dict(self): ob = { 'links': [] } self.fkine_all() # Do the robot for link in self.links: li = { 'geometry': [], 'collision': [] } for gi in link.geometry: li['geometry'].append(gi.fk_dict()) for gi in link.collision: li['collision'].append(gi.fk_dict()) ob['links'].append(li) # Do the grippers now for gripper in self.grippers: for link in gripper.links: li = { 'geometry': [], 'collision': [] } for gi in link.geometry: li['geometry'].append(gi.fk_dict()) for gi in link.collision: li['collision'].append(gi.fk_dict()) ob['links'].append(li) return ob # @classmethod # def urdf_to_ets(cls, file_path): # name, ext = splitext(file_path) # if ext == '.xacro': # urdf_string = xacro.main(file_path) # urdf = URDF.loadstr(urdf_string, file_path) # return ERobot( # urdf.elinks, # name=urdf.name # ) def urdf_to_ets_args(self, file_path, tld=None): """ [summary] :param file_path: File path relative to the xacro folder :type file_path: str, in Posix file path fprmat :param tld: top-level directory, defaults to None :type tld: str, optional :return: Links and robot name :rtype: tuple(ELink list, str) """ # get the path to the class that defines the robot classpath = sys.modules[self.__module__].__file__ # add on relative path to get to the URDF or xacro file base_path = PurePath(classpath).parent.parent / 'URDF' / 'xacro' file_path = base_path / PurePosixPath(file_path) name, ext = splitext(file_path) if ext == '.xacro': # it's a xacro file, preprocess it if tld is not None: tld = base_path / PurePosixPath(tld) urdf_string = xacro.main(file_path, tld) urdf = URDF.loadstr(urdf_string, file_path) else: # pragma nocover urdf = URDF.loadstr(open(file_path).read(), file_path) return urdf.elinks, urdf.name # @classmethod # def dh_to_ets(cls, robot): # """ # Converts a robot modelled with standard or modified DH parameters to # an ERobot representation # :param robot: The robot model to be converted # :type robot: SerialLink # :return: List of returned :class:`bluepy.btle.Characteristic` objects # :rtype: ets class # """ # ets = [] # q_idx = [] # M = 0 # for j in range(robot.n): # L = robot.links[j] # # Method for modified DH parameters # if robot.mdh: # # Append Tx(a) # if L.a != 0: # ets.append(ET.Ttx(L.a)) # M += 1 # # Append Rx(alpha) # if L.alpha != 0: # ets.append(ET.TRx(L.alpha)) # M += 1 # if L.is_revolute: # # Append Tz(d) # if L.d != 0: # ets.append(ET.Ttz(L.d)) # M += 1 # # Append Rz(q) # ets.append(ET.TRz(joint=j+1)) # q_idx.append(M) # M += 1 # else: # # Append Tz(q) # ets.append(ET.Ttz(joint=j+1)) # q_idx.append(M) # M += 1 # # Append Rz(theta) # if L.theta != 0: # ets.append(ET.TRz(L.alpha)) # M += 1 # return cls( # ets, # q_idx, # robot.name, # robot.manuf, # robot.base, # robot.tool) @property def qlim(self): v = np.zeros((2, self.n)) j = 0 for i in range(len(self.links)): if self.links[i].isjoint: v[:, j] = self.links[i].qlim j += 1 return v # @property # def qdlim(self): # return self.qdlim # --------------------------------------------------------------------- # @property def n(self): return self._n # --------------------------------------------------------------------- # @property def elinks(self): # return self._linkdict return self._links # --------------------------------------------------------------------- # @property def link_dict(self): return self._linkdict # --------------------------------------------------------------------- # @property def base_link(self): return self._base_link @base_link.setter def base_link(self, link): if isinstance(link, ELink): self._base_link = link else: # self._base_link = self.links[link] raise TypeError('Must be an ELink') # self._reset_fk_path() # --------------------------------------------------------------------- # # TODO get configuration string @property def ee_links(self): return self._ee_links # def add_ee(self, link): # if isinstance(link, ELink): # self._ee_link.append(link) # else: # raise ValueError('must be an ELink') # self._reset_fk_path() @ee_links.setter def ee_links(self, link): if isinstance(link, ELink): self._ee_links = [link] elif isinstance(link, list) and \ all([isinstance(x, ELink) for x in link]): self._ee_links = link else: raise TypeError('expecting an ELink or list of ELinks') # self._reset_fk_path() # --------------------------------------------------------------------- # # @property # def ets(self): # return self._ets # --------------------------------------------------------------------- # # @property # def M(self): # return self._M # --------------------------------------------------------------------- # # @property # def q_idx(self): # return self._q_idx # --------------------------------------------------------------------- # def ets(self, ee=None): if ee is None: if len(self.ee_links) == 1: link = self.ee_links[0] else: raise ValueError( 'robot has multiple end-effectors, specify one') # elif isinstance(ee, str) and ee in self._linkdict: # ee = self._linkdict[ee] elif isinstance(ee, ELink) and ee in self._links: link = ee else: raise ValueError('end-effector is not valid') ets = ETS() # build the ETS string from ee back to root while link is not None: ets = link.ets() * ets link = link.parent return ets def config(self): s = '' for link in self.links: if link.v is not None: if link.v.isprismatic: s += 'P' elif link.v.isrevolute: s += 'R' return s # --------------------------------------------------------------------- # def fkine(self, q=None, from_link=None, to_link=None): ''' Evaluates the forward kinematics of a robot based on its ETS and joint angles q. T = fkine(q) evaluates forward kinematics for the robot at joint configuration q. T = fkine() as above except uses the stored q value of the robot object. Trajectory operation: Calculates fkine for each point on a trajectory of joints q where q is (nxm) and the returning SE3 in (m) :param q: The joint angles/configuration of the robot (Optional, if not supplied will use the stored q values). :type q: float ndarray(n) :return: The transformation matrix representing the pose of the end-effector :rtype: SE3 :notes: - The robot's base or tool transform, if present, are incorporated into the result. :references: - Kinematic Derivatives using the Elementary Transform Sequence, <NAME> and <NAME> ''' if from_link is None: from_link = self.base_link if to_link is None: to_link = self.ee_links[0] trajn = 1 if q is None: q = self.q path, n = self.get_path(from_link, to_link) use_jindex = True try: q = getvector(q, self.n, 'col') except ValueError: try: q = getvector(q, n, 'col') use_jindex = False j = 0 except ValueError: trajn = q.shape[1] verifymatrix(q, (self.n, trajn)) for i in range(trajn): tr = self.base.A for link in path: if link.isjoint: if use_jindex: T = link.A(q[link.jindex, i], fast=True) else: T = link.A(q[j, i], fast=True) j += 1 else: T = link.A(fast=True) tr = tr @ T if i == 0: t = SE3(tr) else: t.append(SE3(tr)) return t def fkine_all(self, q=None): ''' Tall = fkine_all(q) evaluates fkine for each joint within a robot and returns a trajecotry of poses. Tall = fkine_all() as above except uses the stored q value of the robot object. :param q: The joint angles/configuration of the robot (Optional, if not supplied will use the stored q values). :type q: float ndarray(n) :return T: Homogeneous transformation trajectory :rtype T: SE3 list :notes: - The robot's base transform, if present, are incorporated into the result. :references: - Kinematic Derivatives using the Elementary Transform Sequence, <NAME> and <NAME> ''' if q is None: q = np.copy(self.q) else: q = getvector(q, self.n) for link in self.links: if link.isjoint: t = link.A(q[link.jindex]) else: t = link.A() if link.parent is None: link._fk = self.base * t else: link._fk = link.parent._fk * t # Update the collision objects transform as well for col in link.collision: col.wT = link._fk for gi in link.geometry: gi.wT = link._fk # Do the grippers now for gripper in self.grippers: for link in gripper.links: # print(link.jindex) if link.isjoint: t = link.A(gripper.q[link.jindex]) else: t = link.A() link._fk = link.parent._fk * t # Update the collision objects transform as well for col in link.collision: col.wT = link._fk for gi in link.geometry: gi.wT = link._fk # def jacob0(self, q=None): # """ # J0 = jacob0(q) is the manipulator Jacobian matrix which maps joint # velocity to end-effector spatial velocity. v = J0*qd in the # base frame. # J0 = jacob0() as above except uses the stored q value of the # robot object. # :param q: The joint angles/configuration of the robot (Optional, # if not supplied will use the stored q values). # :type q: float ndarray(n) # :return J: The manipulator Jacobian in ee frame # :rtype: float ndarray(6,n) # :references: # - Kinematic Derivatives using the Elementary Transform # Sequence, <NAME> and <NAME> # """ # if q is None: # q = np.copy(self.q) # else: # q = getvector(q, self.n) # T = (self.base.inv() * self.fkine(q)).A # U = np.eye(4) # j = 0 # J = np.zeros((6, self.n)) # for link in self._fkpath: # for k in range(link.M): # if k != link.q_idx: # U = U @ link.ets[k].T().A # else: # # self._jacoblink(link, k, T) # U = U @ link.ets[k].T(q[j]).A # Tu = np.linalg.inv(U) @ T # n = U[:3, 0] # o = U[:3, 1] # a = U[:3, 2] # x = Tu[0, 3] # y = Tu[1, 3] # z = Tu[2, 3] # if link.ets[k].axis == 'Rz': # J[:3, j] = (o * x) - (n * y) # J[3:, j] = a # elif link.ets[k].axis == 'Ry': # J[:3, j] = (n * z) - (a * x) # J[3:, j] = o # elif link.ets[k].axis == 'Rx': # J[:3, j] = (a * y) - (o * z) # J[3:, j] = n # elif link.ets[k].axis == 'tx': # J[:3, j] = n # J[3:, j] = np.array([0, 0, 0]) # elif link.ets[k].axis == 'ty': # J[:3, j] = o # J[3:, j] = np.array([0, 0, 0]) # elif link.ets[k].axis == 'tz': # J[:3, j] = a # J[3:, j] = np.array([0, 0, 0]) # j += 1 # return J def get_path(self, from_link, to_link): path = [] n = 0 link = to_link path.append(link) if link.isjoint: n += 1 while link != from_link: link = link.parent path.append(link) if link.isjoint: n += 1 path.reverse() return path, n def jacob0( self, q=None, from_link=None, to_link=None, offset=None, T=None): if from_link is None: from_link = self.base_link if to_link is None: to_link = self.ee_links[0] if offset is None: offset = SE3() path, n = self.get_path(from_link, to_link) if q is None: q = np.copy(self.q) else: try: q = getvector(q, n) except ValueError: q = getvector(q, self.n) if T is None: T = (self.base.inv() * self.fkine(q, from_link=from_link, to_link=to_link) * offset) T = T.A U = np.eye(4) j = 0 J = np.zeros((6, n)) for link in path: if link.isjoint: U = U @ link.A(q[j], fast=True) if link == to_link: U = U @ offset.A Tu = np.linalg.inv(U) @ T n = U[:3, 0] o = U[:3, 1] a = U[:3, 2] x = Tu[0, 3] y = Tu[1, 3] z = Tu[2, 3] if link.v.axis == 'Rz': J[:3, j] = (o * x) - (n * y) J[3:, j] = a elif link.v.axis == 'Ry': J[:3, j] = (n * z) - (a * x) J[3:, j] = o elif link.v.axis == 'Rx': J[:3, j] = (a * y) - (o * z) J[3:, j] = n elif link.v.axis == 'tx': J[:3, j] = n J[3:, j] = np.array([0, 0, 0]) elif link.v.axis == 'ty': J[:3, j] = o J[3:, j] = np.array([0, 0, 0]) elif link.v.axis == 'tz': J[:3, j] = a J[3:, j] = np.array([0, 0, 0]) j += 1 else: U = U @ link.A(fast=True) return J def jacobe(self, q=None, from_link=None, to_link=None, offset=None): """ Je = jacobe(q) is the manipulator Jacobian matrix which maps joint velocity to end-effector spatial velocity. v = Je*qd in the end-effector frame. Je = jacobe() as above except uses the stored q value of the robot object. :param q: The joint angles/configuration of the robot (Optional, if not supplied will use the stored q values). :type q: float ndarray(n) :return J: The manipulator Jacobian in ee frame :rtype: float ndarray(6,n) """ if from_link is None: from_link = self.base_link if to_link is None: to_link = self.ee_links[0] if offset is None: offset = SE3() if q is None: q = np.copy(self.q) # else: # q = getvector(q, n) T = (self.base.inv() * self.fkine(q, from_link=from_link, to_link=to_link) * offset) J0 = self.jacob0(q, from_link, to_link, offset, T) Je = self.jacobev(q, from_link, to_link, offset, T) @ J0 return Je def hessian0(self, q=None, J0=None, from_link=None, to_link=None): """ The manipulator Hessian tensor maps joint acceleration to end-effector spatial acceleration, expressed in the world-coordinate frame. This function calulcates this based on the ETS of the robot. One of J0 or q is required. Supply J0 if already calculated to save computation time :param q: The joint angles/configuration of the robot (Optional, if not supplied will use the stored q values). :type q: float ndarray(n) :param J0: The manipulator Jacobian in the 0 frame :type J0: float ndarray(6,n) :return: The manipulator Hessian in 0 frame :rtype: float ndarray(6,n,n) :references: - Kinematic Derivatives using the Elementary Transform Sequence, <NAME> and <NAME> """ if from_link is None: from_link = self.base_link if to_link is None: to_link = self.ee_links[0] path, n = self.get_path(from_link, to_link) if J0 is None: if q is None: q = np.copy(self.q) else: q = getvector(q, n) J0 = self.jacob0(q, from_link, to_link) else: verifymatrix(J0, (6, n)) H = np.zeros((6, n, n)) for j in range(n): for i in range(j, n): H[:3, i, j] = np.cross(J0[3:, j], J0[:3, i]) H[3:, i, j] = np.cross(J0[3:, j], J0[3:, i]) if i != j: H[:3, j, i] = H[:3, i, j] return H def manipulability(self, q=None, J=None, from_link=None, to_link=None): """ Calculates the manipulability index (scalar) robot at the joint configuration q. It indicates dexterity, that is, how isotropic the robot's motion is with respect to the 6 degrees of Cartesian motion. The measure is high when the manipulator is capable of equal motion in all directions and low when the manipulator is close to a singularity. One of J or q is required. Supply J if already calculated to save computation time :param q: The joint angles/configuration of the robot (Optional, if not supplied will use the stored q values). :type q: float ndarray(n) :param J: The manipulator Jacobian in any frame :type J: float ndarray(6,n) :return: The manipulability index :rtype: float :references: - Analysis and control of robot manipulators with redundancy, <NAME>, - Robotics Research: The First International Symposium (<NAME> and <NAME>, eds.), pp. 735-747, The MIT press, 1984. """ if from_link is None: from_link = self.base_link if to_link is None: to_link = self.ee_links[0] path, n = self.get_path(from_link, to_link) if J is None: if q is None: q =
np.copy(self.q)
numpy.copy
import numpy as np import matplotlib.pyplot as plt import umap import Macosko_utils as utils from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier # from evaluate import kNN_acc, kmeans_acc_ari_ami import numpy as np from sklearn.model_selection import train_test_split from sklearn.neighbors import KNeighborsClassifier import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans from munkres import Munkres import csv from numpy import savetxt from pandas import DataFrame from sklearn.metrics import adjusted_rand_score, adjusted_mutual_info_score import os import glob from matplotlib.backends.backend_pdf import PdfPages from MantelTest import Mantel from hub_toolbox.distances import euclidean_distance from sklearn.model_selection import StratifiedShuffleSplit import pandas as pd import numba def kNN_acc(X, L): X_train, X_test, Y_train, Y_test = train_test_split(X, L, random_state=0) knc = KNeighborsClassifier(n_neighbors=1) knc.fit(X_train, Y_train) Y_pred = knc.predict(X_test) score = knc.score(X_test, Y_test) return score def kmeans_acc_ari_ami(X, L): """ Calculate clustering accuracy. Require scikit-learn installed # Arguments y: true labels, numpy.array with shape `(n_samples,)` y_pred: predicted labels, numpy.array with shape `(n_samples,)` # Return accuracy, in [0,1] """ n_clusters = len(np.unique(L)) kmeans = KMeans(n_clusters=n_clusters, n_init=20) y_pred = kmeans.fit_predict(X) y_pred = y_pred.astype(np.int64) y_true = L.astype(np.int64) assert y_pred.size == y_true.size y_pred = y_pred.reshape((1, -1)) y_true = y_true.reshape((1, -1)) # D = max(y_pred.max(), L.max()) + 1 # w = np.zeros((D, D), dtype=np.int64) # for i in range(y_pred.size): # w[y_pred[i], L[i]] += 1 # # from sklearn.utils.linear_assignment_ import linear_assignment # from scipy.optimize import linear_sum_assignment # row_ind, col_ind = linear_sum_assignment(w.max() - w) # # return sum([w[i, j] for i in row_ind for j in col_ind]) * 1.0 / y_pred.size if len(np.unique(y_pred)) == len(np.unique(y_true)): C = len(np.unique(y_true)) cost_m = np.zeros((C, C), dtype=float) for i in np.arange(0, C): a = np.where(y_pred == i) # print(a.shape) a = a[1] l = len(a) for j in np.arange(0, C): yj = np.ones((1, l)).reshape(1, l) yj = j * yj cost_m[i, j] = np.count_nonzero(yj - y_true[0, a]) mk = Munkres() best_map = mk.compute(cost_m) (_, h) = y_pred.shape for i in np.arange(0, h): c = y_pred[0, i] v = best_map[c] v = v[1] y_pred[0, i] = v acc = 1 - (np.count_nonzero(y_pred - y_true) / h) else: acc = 0 # print(y_pred.shape) y_pred = y_pred[0] y_true = y_true[0] ari, ami = adjusted_rand_score(y_true, y_pred), adjusted_mutual_info_score(y_true, y_pred) return acc, ari, ami @numba.jit() def mantel_test(X, L, embed, describe = True): sss = StratifiedShuffleSplit(n_splits=50, test_size=1000, random_state=0) sss.get_n_splits(X, L) label_type = list(set(L)) r_lst = np.array([]) p_lst = np.array([]) for _, idx in sss.split(X, L): # print('Index: ', idx) # X_test = X[idx] # y_train = X_high, L_hl = X[idx], L[idx] X_low = embed[idx] # print(X_high.shape, L_high.shape) # print(X_low.shape, L_low.shape) label_idx = [] for _, i in enumerate(label_type): l_idx = np.where(L_hl == i) label_idx.append(l_idx) # print(label_type) # label_idx X_high_lst = [] X_low_lst = [] # for _, i in enumerate(label_type): # X_high_lst.append(X_high[label_idx[i]]) for i, _ in enumerate(label_type): centroid =
np.mean(X_high[label_idx[i]], axis=0)
numpy.mean
""" 1HN In-phase/Anti-phase Proton CEST =================================== Analyzes chemical exchange during the CEST block. Magnetization evolution is calculated using the (6n)×(6n), two-spin matrix, where n is the number of states:: { Ix(a), Iy(a), Iz(a), IxSz(a), IySz(a), IzSz(a), Ix(b), Iy(b), Iz(b), IxSz(b), IySz(b), IzSz(b), ... } References ---------- | Yuwen, Sekhar and Kay. Angew Chem Int Ed (2017) 56:6122-6125 | Yuwen and Kay. J Biomol NMR (2017) 67:295-307 | Yuwen and Kay. J Biomol NMR (2018) 70:93-102 Note ---- A sample configuration file for this module is available using the command:: $ chemex config cest_1hn_ip_ap """ import functools as ft import numpy as np import numpy.linalg as nl import chemex.experiments.helper as ceh import chemex.helper as ch import chemex.nmr.liouvillian as cnl _SCHEMA = { "type": "object", "properties": { "experiment": { "type": "object", "properties": { "d1": {"type": "number"}, "time_t1": {"type": "number"}, "carrier": {"type": "number"}, "b1_frq": {"type": "number"}, "b1_inh_scale": {"type": "number", "default": 0.1}, "b1_inh_res": {"type": "integer", "default": 11}, "observed_state": { "type": "string", "pattern": "[a-z]", "default": "a", }, "eta_block": {"type": "integer", "default": 0}, }, "required": ["d1", "time_t1", "carrier", "b1_frq"], } }, } def read(config): ch.validate(config, _SCHEMA) config["basis"] = cnl.Basis(type="ixyzsz_eq", spin_system="hn") config["fit"] = _fit_this() config["data"]["filter_ref_planes"] = True return ceh.load_experiment(config=config, pulse_seq_cls=PulseSeq) def _fit_this(): return { "rates": [ "r2_i_{states}", "r1_i_{observed_state}", "r1_s_{observed_state}", "etaxy_i_{observed_state}", "etaz_i_{observed_state}", ], "model_free": [ "tauc_{observed_state}", "s2_{observed_state}", "khh_{observed_state}", ], } class PulseSeq: def __init__(self, config, propagator): self.prop = propagator settings = config["experiment"] self.time_t1 = settings["time_t1"] self.d1 = settings["d1"] self.taua = 2.38e-3 self.prop.carrier_i = settings["carrier"] self.prop.b1_i = settings["b1_frq"] self.prop.b1_i_inh_scale = settings["b1_inh_scale"] self.prop.b1_i_inh_res = settings["b1_inh_res"] self.eta_block = settings["eta_block"] self.observed_state = settings["observed_state"] self.prop.detection = f"[2izsz_{self.observed_state}]" self.dephased = settings["b1_inh_scale"] == np.inf if self.eta_block > 0: self.taud = max(self.d1 - self.time_t1, 0.0) self.taue = 0.5 * self.time_t1 / self.eta_block else: self.taud = self.d1 self.p90_i = self.prop.perfect90_i self.p180_sx = self.prop.perfect180_s[0] self.p180_isx = self.prop.perfect180_i[0] @ self.prop.perfect180_s[0] @ft.lru_cache(maxsize=10000) def calculate(self, offsets, params_local): self.prop.update(params_local) self.prop.offset_i = 0.0 d_taud, d_taua = self.prop.delays([self.taud, self.taua]) start = d_taud @ self.prop.get_start_magnetization(terms="ie") start = self.prop.keep_components(start, terms=["ie", "iz"]) intst = {} for offset in set(offsets): self.prop.offset_i = offset if self.eta_block > 0: d_2taue = self.prop.delays(2.0 * self.taue) p_taue = self.prop.pulse_i(self.taue, 0.0, self.dephased) cest_block = p_taue @ self.p180_sx @ d_2taue @ self.p180_sx @ p_taue cest =
nl.matrix_power(cest_block, self.eta_block)
numpy.linalg.matrix_power
import csv import datetime import os import subprocess import sys from distutils import dir_util import monopsr import numpy as np import tensorflow as tf from PIL import Image from monopsr.core import box_3d_projector from monopsr.core import summary_utils from monopsr.datasets.kitti import calib_utils def save_predictions_box_2d_in_kitti_format(score_threshold, dataset, predictions_base_dir, predictions_box_2d_dir, global_step): """Converts and saves predictions (box_3d) into text files required for KITTI evaluation Args: score_threshold: score threshold to filter predictions dataset: Dataset object predictions_box_2d_dir: predictions (box_3d) folder predictions_base_dir: predictions base folder global_step: global step """ score_threshold = round(score_threshold, 3) data_split = dataset.data_split # Output folder kitti_predictions_2d_dir = predictions_base_dir + \ '/kitti_predictions_3d/{}/{}/{}/data'.format(data_split, score_threshold, global_step) if not os.path.exists(kitti_predictions_2d_dir): os.makedirs(kitti_predictions_2d_dir) # Do conversion num_samples = dataset.num_samples num_valid_samples = 0 print('\nGlobal step:', global_step) print('Converting detections from:', predictions_box_2d_dir) print('3D Detections being saved to:', kitti_predictions_2d_dir) for sample_idx in range(num_samples): # Print progress sys.stdout.write('\rConverting {} / {}'.format(sample_idx + 1, num_samples)) sys.stdout.flush() sample_name = dataset.sample_list[sample_idx].name prediction_file = sample_name + '.txt' kitti_predictions_2d_file_path = kitti_predictions_2d_dir + '/' + prediction_file predictions_file_path = predictions_box_2d_dir + '/' + prediction_file # If no predictions, skip to next file if not os.path.exists(predictions_file_path): np.savetxt(kitti_predictions_2d_file_path, []) continue all_predictions = np.loadtxt(predictions_file_path).reshape(-1, 6) # Change the order to be (x1, y1, x2, y2) copied_predictions = np.copy(all_predictions) all_predictions[:, 0:4] = copied_predictions[:, [1, 0, 3, 2]] score_filter = all_predictions[:, 4] >= score_threshold all_predictions = all_predictions[score_filter] # If no predictions, skip to next file if len(all_predictions) == 0: np.savetxt(kitti_predictions_2d_file_path, []) continue num_valid_samples += 1 # To keep each value in its appropriate position, an array of -1000 # (N, 16) is allocated but only values [4:16] are used kitti_predictions = np.full([all_predictions.shape[0], 16], -1000.0) # To avoid estimating alpha, -10 is used as a placeholder kitti_predictions[:, 3] = -10.0 # Get object types all_pred_classes = all_predictions[:, 5].astype(np.int32) obj_types = [dataset.classes[class_idx] for class_idx in all_pred_classes] # 2D predictions kitti_predictions[:, 4:8] = all_predictions[:, 0:4] # Score kitti_predictions[:, 15] = all_predictions[:, 4] # Round detections to 3 decimal places kitti_predictions = np.round(kitti_predictions, 3) # Stack 3D predictions text kitti_text_3d = np.column_stack([obj_types, kitti_predictions[:, 1:16]]) # Save to text files np.savetxt(kitti_predictions_2d_file_path, kitti_text_3d, newline='\r\n', fmt='%s') print('\nNum valid:', num_valid_samples) print('Num samples:', num_samples) def save_predictions_box_3d_in_kitti_format(score_threshold, dataset, predictions_base_dir, predictions_box_3d_dir, predictions_box_2d_dir, global_step, project_3d_box=False): """Converts and saves predictions (box_3d) into text files required for KITTI evaluation Args: score_threshold: score threshold to filter predictions dataset: Dataset object predictions_box_3d_dir: predictions (box_3d) folder predictions_box_2d_dir: predictions (box_2d) folder predictions_base_dir: predictions base folder global_step: global step project_3d_box: Bool whether to project 3D box to image space to get 2D box """ score_threshold = round(score_threshold, 3) data_split = dataset.data_split # Output folder kitti_predictions_3d_dir = predictions_base_dir + \ '/kitti_predictions_3d/{}/{}/{}/data'.format(data_split, score_threshold, global_step) if not os.path.exists(kitti_predictions_3d_dir): os.makedirs(kitti_predictions_3d_dir) # Do conversion num_samples = dataset.num_samples num_valid_samples = 0 print('\nGlobal step:', global_step) print('Converting detections from:', predictions_box_3d_dir) print('3D Detections being saved to:', kitti_predictions_3d_dir) for sample_idx in range(num_samples): # Print progress sys.stdout.write('\rConverting {} / {}'.format(sample_idx + 1, num_samples)) sys.stdout.flush() sample_name = dataset.sample_list[sample_idx].name prediction_file = sample_name + '.txt' kitti_predictions_3d_file_path = kitti_predictions_3d_dir + '/' + prediction_file predictions_3d_file_path = predictions_box_3d_dir + '/' + prediction_file predictions_2d_file_path = predictions_box_2d_dir + '/' + prediction_file # If no predictions, skip to next file if not os.path.exists(predictions_3d_file_path): np.savetxt(kitti_predictions_3d_file_path, []) continue all_predictions_3d = np.loadtxt(predictions_3d_file_path) if len(all_predictions_3d) == 0:
np.savetxt(kitti_predictions_3d_file_path, [])
numpy.savetxt
import numpy as np import math import scipy.stats import copy import random from typing import Union, List, Tuple, Optional from nnet import NNet import constants as c class Game: """ Implements Connect 4. Attrs: game_state: 2-axis numpy array that saves the current state of the game. 1 is player 1, -1 is player 2, 0 is an empty square. Index ordering is (column, row). player: Player whose turn is next. finished: True if the game is won or drawn. """ def __init__(self): self.game_state = np.zeros((c.COLUMNS, c.ROWS)) self.player = 1 self.finished = False def decide_move(self, method: str, iterations: int, model_name: str = c.DEFAULT_MODEL_NAME, print_out: bool = True) -> Union[int, np.ndarray]: """ Outputs a move for the current game state determined by a specified method. :param method: 'nnet': neural network with tree search, 'simple_nnet': neural network without tree search, 'mcts': Monte Carlo tree search, 'input': input via terminal. :param iterations: Number of iterations in tree searches :param model_name: Structure name of the neural network :param print_out: Prints out extra information by the neural network :return: Determined best move """ if method == 'input': while True: try: move = int(input('input column number between 1 and 7: ')) - 1 if move in self.get_legal_moves(self.game_state): return move except ValueError: pass print('input not valid') if method == 'mcts': pi = self.tree_search(iterations=iterations) return
np.argmax(pi)
numpy.argmax
__author__ = "<NAME>, <NAME>" import sys import os import string from qpsolvers import solve_qp import numpy as np import math from baselines.gail.planner.velocityplanner import BVPStage from baselines.gail.planner.velocityplanner import applybvpstage # simple version eps_H = 1e-2 est_minacc=0.5 # input V_0 a_0 (S_0 = 0), V_tgt (a_tgt = 0) S_tgt = S # Solution # 1. segment whole acc/dacc into N=5 parts # 2. minimize sampled t -> s''(t) + s'''(t) # 3. equal constrains: V_0 a_0 S_0 V_tgt a_tgt S_tgt V_previous = V_next a_previous = a_next # 4. inequal constrains: sampled t -> Vmax, t-> s''(t) >= 0 for acceleration or t-> s''(t) <= 0 for deceleration # V_0, a_0, S_0 = 7.775, 0.8, 0 # init_para = np.array([V_0, a_0]) # S_tgt = 29.4 # V_tgt = 8.333 # des_para = np.array([S_tgt, V_tgt, 0]) degree, num_seg = 5, 5 # degree of polynomials + 1, number of spline segments # degree * num_seg T_sampled = 20 # sampled T interval def ti(t): return np.array([0, t, t * t, pow(t, 3), pow(t, 4)]) def dti(t): return np.array([0, 1, 2 * t, 3 * t * t, 4 * pow(t, 3)]) def ddti(t): return np.array([0, 0, 2, 6 * t, 12 * t * t]) def dddti(t): return np.array([0, 0, 0, 6, 24 * t]) def calcspeed(X, V_0, a_0, V_tgt): S_tgt = X V_mid = V_tgt + V_0 V_mid = V_mid / 2.0 t_e = S_tgt / V_mid t_est = t_e / num_seg t_int = t_est / T_sampled # time interval after split into time segments H =
np.zeros((degree * num_seg, degree * num_seg))
numpy.zeros
import json import inflect import numpy as np import requests import tagme from nltk.stem.porter import * stemmer = PorterStemmer() p = inflect.engine() tagme.GCUBE_TOKEN = "" def sort_dict_by_values(dictionary): keys = [] values = [] for key, value in sorted(dictionary.items(), key=lambda item: (item[1], item[0]), reverse=True): keys.append(key) values.append(value) return keys, values def preprocess_relations(file, prop=False): relations = {} with open(file, encoding='utf-8') as f: content = f.readlines() for line in content: split_line = line.split() key = ' '.join(split_line[2:])[1:-3].lower() key = ' '.join([stemmer.stem(word) for word in key.split()]) if key not in relations: relations[key] = [] uri = split_line[0].replace('<', '').replace('>', '') if prop is True: uri_property = uri.replace('/ontology/', '/property/') relations[key].extend([uri, uri_property]) else: relations[key].append(uri) return relations def get_earl_entities(query, earl_url='http://localhost:4999'): result = {} result['question'] = query result['entities'] = [] result['relations'] = [] THRESHOLD = 0.1 response = requests.post(f'{earl_url}/processQuery', headers={"Content-Type": "application/json"}, json={"nlquery": query, "pagerankflag": False}) json_response = json.loads(response.text) type_list = [] chunk = [] for i in json_response['ertypes']: type_list.append(i) for i in json_response['chunktext']: chunk.append([i['surfacestart'], i['surfacelength']]) keys = list(json_response['rerankedlists'].keys()) reranked_lists = json_response['rerankedlists'] for i in range(len(keys)): if type_list[i] == 'entity': entity = {} entity['uris'] = [] entity['surface'] = chunk[i] for r in reranked_lists[keys[i]]: if r[0] > THRESHOLD: uri = {} uri['uri'] = r[1] uri['confidence'] = r[0] entity['uris'].append(uri) if entity['uris'] != []: result['entities'].append(entity) if type_list[i] == 'relation': relation = {} relation['uris'] = [] relation['surface'] = chunk[i] for r in reranked_lists[keys[i]]: if r[0] > THRESHOLD: uri = {} uri['uri'] = r[1] uri['confidence'] = r[0] relation['uris'].append(uri) if relation['uris'] != []: result['relations'].append(relation) return result def get_tag_me_entities(query): threshold = 0.1 try: response = requests.get("https://tagme.d4science.org/tagme/tag?lang=en&gcube-token={}&text={}" .format('1b4eb12e-d434-4b30-8c7f-91b3395b96e8-843339462', query)) entities = [] for annotation in json.loads(response.text)['annotations']: confidence = float(annotation['link_probability']) if confidence > threshold: entity = {} uris = {} uri = 'http://dbpedia.org/resource/' + annotation['title'].replace(' ', '_') uris['uri'] = uri uris['confidence'] = confidence surface = [annotation['start'], annotation['end'] - annotation['start']] entity['uris'] = [uris] entity['surface'] = surface entities.append(entity) except: entities = [] print('get_tag_me_entities: ', query) return entities def get_nliwod_entities(query, hashmap): ignore_list = [] entities = [] singular_query = [stemmer.stem(word) if p.singular_noun(word) == False else stemmer.stem(p.singular_noun(word)) for word in query.lower().split(' ')] string = ' '.join(singular_query) words = query.split(' ') indexlist = {} surface = [] current = 0 locate = 0 for i in range(len(singular_query)): indexlist[current] = {} indexlist[current]['len'] = len(words[i]) - 1 indexlist[current]['surface'] = [locate, len(words[i]) - 1] current += len(singular_query[i]) + 1 locate += len(words[i]) + 1 for key in hashmap.keys(): if key in string and len(key) > 2 and key not in ignore_list: e_list = list(set(hashmap[key])) k_index = string.index(key) if k_index in indexlist.keys(): surface = indexlist[k_index]['surface'] else: for i in indexlist: if k_index > i and k_index < (i + indexlist[i]['len']): surface = indexlist[i]['surface'] break for e in e_list: r_e = {} r_e['surface'] = surface r_en = {} r_en['uri'] = e r_en['confidence'] = 0.3 r_e['uris'] = [r_en] entities.append(r_e) return entities def get_spotlight_entities(query): entities = [] data = { 'text': query, 'confidence': '0.4', 'support': '10' } headers = {"accept": "application/json"} response = requests.get('http://api.dbpedia-spotlight.org/en/annotate', params=data, headers=headers) try: response_json = response.text.replace('@', '') output = json.loads(response_json) if 'Resources' in output.keys(): resource = output['Resources'] for item in resource: entity = {} uri = {} uri['uri'] = item['URI'] uri['confidence'] = float(item['similarityScore']) entity['uris'] = [uri] entity['surface'] = [int(item['offset']), len(item['surfaceForm'])] entities.append(entity) except json.JSONDecodeError: print('Spotlight:', query) return entities def get_falcon_entities(query): entities = [] relations = [] headers = { 'Content-Type': 'application/json', } params = ( ('mode', 'long'), ) data = "{\"text\": \"" + query + "\"}" response = requests.post('https://labs.tib.eu/falcon/api', headers=headers, params=params, data=data.encode('utf-8')) try: output = json.loads(response.text) for i in output['entities']: ent = {} ent['surface'] = "" ent_uri = {} ent_uri['confidence'] = 0.9 ent_uri['uri'] = i[0] ent['uris'] = [ent_uri] entities.append(ent) for i in output['relations']: rel = {} rel['surface'] = "" rel_uri = {} rel_uri['confidence'] = 0.9 rel_uri['uri'] = i[0] rel['uris'] = [rel_uri] relations.append(rel) except: print('get_falcon_entities: ', query) return entities, relations def merge_entity(old_e, new_e): for i in new_e: exist = False for j in old_e: for k in j['uris']: if i['uris'][0]['uri'] == k['uri']: k['confidence'] = max(k['confidence'], i['uris'][0]['confidence']) exist = True if not exist: old_e.append(i) return old_e def merge_relation(old_e, new_e): for i in range(len(new_e)): for j in range(len(old_e)): if new_e[i]['surface'] == old_e[j]['surface']: for i1 in range(len(new_e[i]['uris'])): notexist = True for j1 in range(len(old_e[j]['uris'])): if new_e[i]['uris'][i1]['uri'] == old_e[j]['uris'][j1]['uri']: old_e[j]['uris'][j1]['confidence'] = max(old_e[j]['uris'][j1]['confidence'], new_e[i]['uris'][i1]['confidence']) notexist = False if notexist: old_e[j]['uris'].append(new_e[i]['uris'][i1]) return old_e import argparse if __name__ == "__main__": argparser = argparse.ArgumentParser() argparser.add_argument('--qald_ver', type=str, required=True) argparser.add_argument('--earl_url', default='http://localhost:4999', type=str) args = argparser.parse_args() with open(f'data/QALD/{args.qald_ver}.json', 'r', encoding='utf-8') as f: data = json.load(f) properties = preprocess_relations('data/dbpedia/dbpedia_3Eng_1_property.ttl', True) print('properties: ', len(properties)) linked_data = [] count = 0 for q in data['questions']: q_idx = [i for i, q_by_lang in enumerate(q['question']) if q_by_lang['language'] == 'en'][0] query = q['question'][q_idx]['string'] earl = get_earl_entities(query, earl_url=args.earl_url) tagme_e = get_tag_me_entities(query) if len(tagme_e) > 0: earl['entities'] = merge_entity(earl['entities'], tagme_e) nliwod = get_nliwod_entities(query, properties) if len(nliwod) > 0: earl['relations'] = merge_entity(earl['relations'], nliwod) spot_e = get_spotlight_entities(query) if len(spot_e) > 0: earl['entities'] = merge_entity(earl['entities'], spot_e) e_falcon, r_falcon = get_falcon_entities(query) if len(e_falcon) > 0: earl['entities'] = merge_entity(earl['entities'], e_falcon) if len(r_falcon) > 0: earl['relations'] = merge_entity(earl['relations'], r_falcon) esim = [] for i in earl['entities']: i['uris'] = sorted(i['uris'], key=lambda k: k['confidence'], reverse=True) esim.append(max([j['confidence'] for j in i['uris']])) earl['entities'] = np.array(earl['entities']) esim = np.array(esim) inds = esim.argsort()[::-1] earl['entities'] = earl['entities'][inds] rsim = [] for i in earl['relations']: i['uris'] = sorted(i['uris'], key=lambda k: k['confidence'], reverse=True) rsim.append(max([j['confidence'] for j in i['uris']])) earl['relations'] =
np.array(earl['relations'])
numpy.array
import os, sys import numpy as np from six.moves import cPickle from sklearn.metrics import roc_curve, auc, precision_recall_curve, accuracy_score, roc_auc_score, confusion_matrix from scipy import stats __all__ = [ "pearsonr", "rsquare", "accuracy", "roc", "pr", "calculate_metrics" ] # class MLMetrics(object): class MLMetrics(object): def __init__(self, objective='binary'): self.objective = objective self.metrics = [] def update(self, label, pred, other_lst): met, _ = calculate_metrics(label, pred, self.objective) if len(other_lst)>0: met.extend(other_lst) self.metrics.append(met) self.compute_avg() def compute_avg(self): if len(self.metrics)>1: self.avg = np.array(self.metrics).mean(axis=0) self.sum = np.array(self.metrics).sum(axis=0) else: self.avg = self.metrics[0] self.sum = self.metrics[0] self.acc = self.avg[0] self.auc = self.avg[1] self.prc = self.avg[2] self.tp = int(self.sum[3]) self.tn = int(self.sum[4]) self.fp = int(self.sum[5]) self.fn = int(self.sum[6]) if len(self.avg)>7: self.other = self.avg[7:] def pearsonr(label, prediction): ndim = np.ndim(label) if ndim == 1: corr = [stats.pearsonr(label, prediction)] else: num_labels = label.shape[1] corr = [] for i in range(num_labels): #corr.append(np.corrcoef(label[:,i], prediction[:,i])) corr.append(stats.pearsonr(label[:,i], prediction[:,i])[0]) return corr def rsquare(label, prediction): ndim = np.ndim(label) if ndim == 1: y = label X = prediction m = np.dot(X,y)/np.dot(X, X) resid = y - m*X; ym = y - np.mean(y); rsqr2 = 1 - np.dot(resid.T,resid)/ np.dot(ym.T, ym); metric = [rsqr2] slope = [m] else: num_labels = label.shape[1] metric = [] slope = [] for i in range(num_labels): y = label[:,i] X = prediction[:,i] m = np.dot(X,y)/np.dot(X, X) resid = y - m*X; ym = y - np.mean(y); rsqr2 = 1 - np.dot(resid.T,resid)/ np.dot(ym.T, ym); metric.append(rsqr2) slope.append(m) return metric, slope def accuracy(label, prediction): ndim = np.ndim(label) if ndim == 1: metric = np.array(accuracy_score(label, np.round(prediction))) else: num_labels = label.shape[1] metric = np.zeros((num_labels)) for i in range(num_labels): metric[i] = accuracy_score(label[:,i], np.round(prediction[:,i])) return metric def roc(label, prediction): ndim = np.ndim(label) if ndim == 1: fpr, tpr, thresholds = roc_curve(label, prediction) score = auc(fpr, tpr) metric = np.array(score) curves = [(fpr, tpr)] else: num_labels = label.shape[1] curves = [] metric = np.zeros((num_labels)) for i in range(num_labels): fpr, tpr, thresholds = roc_curve(label[:,i], prediction[:,i]) score = auc(fpr, tpr) metric[i]= score curves.append((fpr, tpr)) return metric, curves def pr(label, prediction): ndim = np.ndim(label) if ndim == 1: precision, recall, thresholds = precision_recall_curve(label, prediction) score = auc(recall, precision) metric = np.array(score) curves = [(precision, recall)] else: num_labels = label.shape[1] curves = [] metric = np.zeros((num_labels)) for i in range(num_labels): precision, recall, thresholds = precision_recall_curve(label[:,i], prediction[:,i]) score = auc(recall, precision) metric[i] = score curves.append((precision, recall)) return metric, curves def tfnp(label, prediction): try: tn, fp, fn, tp = confusion_matrix(label, prediction).ravel() except Exception: tp, tn, fp, fn =0,0,0,0 return tp, tn, fp, fn def calculate_metrics(label, prediction, objective): """calculate metrics for classification""" # import pdb; pdb.set_trace() if (objective == "binary") | (objective == 'hinge'): ndim = np.ndim(label) #if ndim == 1: # label = one_hot_labels(label) correct = accuracy(label, prediction) auc_roc, roc_curves = roc(label, prediction) auc_pr, pr_curves = pr(label, prediction) # import pdb; pdb.set_trace() if ndim == 2: prediction=prediction[:,0] label = label[:,0] # pred_class = prediction[:,0]>0.5 pred_class = prediction>0.5 # tp, tn, fp, fn = tfnp(label[:,0], pred_class) tp, tn, fp, fn = tfnp(label, pred_class) # tn8, fp8, fn8, tp8 = tfnp(label[:,0], prediction[prediction>0.8][:,0]) # import pdb; pdb.set_trace() mean = [np.nanmean(correct), np.nanmean(auc_roc), np.nanmean(auc_pr),tp, tn, fp, fn] std = [np.nanstd(correct), np.nanstd(auc_roc), np.nanstd(auc_pr)] elif objective == "categorical": correct = np.mean(np.equal(np.argmax(label, axis=1), np.argmax(prediction, axis=1))) auc_roc, roc_curves = roc(label, prediction) auc_pr, pr_curves = pr(label, prediction) mean = [np.nanmean(correct), np.nanmean(auc_roc), np.nanmean(auc_pr)] std = [np.nanstd(correct), np.nanstd(auc_roc), np.nanstd(auc_pr)] for i in range(label.shape[1]): label_c, prediction_c = label[:,i], prediction[:,i] auc_roc, roc_curves = roc(label_c, prediction_c) mean.append(np.nanmean(auc_roc)) std.append(np.nanstd(auc_roc)) elif (objective == 'squared_error') | (objective == 'kl_divergence') | (objective == 'cdf'): ndim = np.ndim(label) #if ndim == 1: # label = one_hot_labels(label) label[label<0.5] = 0 label[label>=0.5] = 1 # import pdb; pdb.set_trace() correct = accuracy(label, prediction) auc_roc, roc_curves = roc(label, prediction) auc_pr, pr_curves = pr(label, prediction) # import pdb; pdb.set_trace() if ndim == 2: prediction=prediction[:,0] label = label[:,0] # pred_class = prediction[:,0]>0.5 pred_class = prediction>0.5 # tp, tn, fp, fn = tfnp(label[:,0], pred_class) tp, tn, fp, fn = tfnp(label, pred_class) # mean = [np.nanmean(correct), np.nanmean(auc_roc), np.nanmean(auc_pr),tp, tn, fp, fn] # std = [np.nanstd(correct), np.nanstd(auc_roc), np.nanstd(auc_pr)] # squared_error corr = pearsonr(label,prediction) rsqr, slope = rsquare(label, prediction) # mean = [np.nanmean(corr), np.nanmean(rsqr), np.nanmean(slope)] # std = [np.nanstd(corr), np.nanstd(rsqr), np.nanstd(slope)] mean = [np.nanmean(correct), np.nanmean(auc_roc), np.nanmean(auc_pr),tp, tn, fp, fn, np.nanmean(corr), np.nanmean(rsqr), np.nanmean(slope)] std = [np.nanstd(correct), np.nanstd(auc_roc), np.nanstd(auc_pr),
np.nanstd(corr)
numpy.nanstd
from conv_net import ConvNet from torchvision import datasets, transforms from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset import json import matplotlib.pyplot as plt import numpy as np import os import seaborn as sns import torch sns.set(style="white") sns.set_color_codes("dark") sns.set_context("paper", font_scale=1.5, rc={"lines.linewidth": 2.}) def plot_test_error(accuracies, iters): """ Plot the test error for the Enkf method """ fig, ax1 = plt.subplots() acc = 100 - np.array(accuracies) ax1.plot(acc, '.-', markersize=6., label=r'EnKF') ax1.set_ylabel('Test error in %') ax1.set_xlabel('Iterations') plt.xticks(range(len(iters)), iters) tkl = ax1.xaxis.get_ticklabels() for label in tkl[::2]: label.set_visible(False) plt.tight_layout() plt.legend() plt.savefig('enkf_test_error.pdf', bbox_inches='tight', pad_inches=0.1) plt.show() def plot_error_sgd_adam(accuracies): """ Plots test errors for different realizations of sigma ($\sigma=1, \sigma=3$) when the network is initialized and optimized with SGD and Adam. """ accs = np.array(accuracies) plt.plot(100 - accs[:49][:, 1].astype(float), label=r'SGD $\sigma=1$') plt.plot(100 - accs[49:98][:, 1].astype(float), label=r'SGD $\sigma=3$') plt.plot(100 - accs[99:147][:, 1].astype(float), label=r'ADAM $\sigma=1$') plt.plot(100 - accs[147:][:, 1].astype(float), label=r'ADAM $\sigma=3$') plt.xlabel('Epochs') plt.ylabel('Test error in %') plt.legend() # plt.xticks(range(0, 50, 10), range(1, 51, 10)) plt.savefig('sgd_adam_test_error.pdf', bbox_inches='tight', pad_inches=0.1) plt.show() def plot_different_accuracies(iters): """ Plots accuracies when 500, 5000 and 10000 ensembles are used with EnKF. """ norm_loss = 100 - np.array(torch.load('acc_loss.pt')[0]) more_loss = 100 - np.array(torch.load('more_ensembles_acc_loss.pt')[0]) less_loss = 100 - np.array(torch.load('less_ensembles_acc_loss.pt')[0]) fig, ax1 = plt.subplots() ax1.plot(less_loss, '.-', label='100 ensembles') ax1.plot(norm_loss, '.-', label='5000 ensembles') ax1.plot(more_loss, '.-', label='10000 ensembles') ax1.set_ylabel('Test Error in %') ax1.set_xlabel('Iterations') plt.xticks(range(len(iters)), iters) tkl = ax1.xaxis.get_ticklabels() for label in tkl[::2]: label.set_visible(False) plt.legend() plt.show() fig.savefig('ensembles_diff_test_accuracies.pdf') def plot_act_func_accuracies(iters): norm_loss = 100 - np.array(torch.load('acc_loss.pt')[0]) more_loss = 100 - np.array(torch.load('relu_acc_loss.pt')[0]) less_loss = 100 - np.array(torch.load('tanh_acc_loss.pt')[0]) fig, ax1 = plt.subplots(figsize=(6, 6)) ax1.plot(norm_loss, '.-', label='Logistic Function') ax1.plot(more_loss, '.-', label='ReLU') ax1.plot(less_loss, '.-', label='Tanh') ax1.set_ylabel('Test Error in %') ax1.set_xlabel('Iterations') plt.xticks(range(len(iters)), iters) tkl = ax1.xaxis.get_ticklabels() for label in tkl[::2]: label.set_visible(False) # ax1.set_title() # plt.tight_layout() plt.legend() plt.show() fig.savefig('act_func_test_accuracies.pdf', bbox_inches='tight', pad_inches=0.1) def adaptive_test_loss_splitted(normal_loss, dynamic_loss): adaptive_ta = 100 - np.unique(dynamic_loss.get('test_loss')) iterations = dynamic_loss.get('iteration') iterations.insert(0, 0) n_ens = dynamic_loss.get('n_ensembles') n_ens.insert(0, 5000) reps = dynamic_loss.get('model_reps') reps.insert(0, 8) normal_loss = 100 - np.array(normal_loss[0][:len(adaptive_ta)]) # prepare plots fig, (ax1, ax2) = plt.subplots( nrows=1, ncols=2, sharex=True, figsize=(8.5, 4)) ax3 = ax2.twinx() # plot 1 marker = 'o' p11, = ax1.plot(adaptive_ta, marker=marker, label='fixed') p12, = ax1.plot(normal_loss, marker=marker, label='adaptive') ax1.set_xticks(range(len(iterations))) ax1.set_xticklabels(iterations) ax1.set_ylabel('Test Error in %') ax1.set_xlabel('Iterations') # plot 2 marker = 's--' markersize = 6 # plot for n_ens normal p21, = ax2.plot(range(len(n_ens)), [5000] * len(n_ens), marker, markersize=markersize) # plot for n_ens dynamic p22, = ax2.plot(n_ens, marker, markersize=markersize) # empty fake plot for the correct label color ax2p = ax2.plot([], marker, label='# ensembles', c='k') ax2.set_ylabel('Number of ensembles') # plot 3 marker = '*--' markersize = 8 # plot for reps normal p31, = ax3.plot(range(len(reps)), [8]*len(reps), marker, c=p21.get_color(), ms=markersize) # plot for reps dynamic p32, = ax3.plot(range(len(reps)), reps, marker, c=p22.get_color(), ms=markersize) # empty fake plot for the correct label color ax3p = ax3.plot([], marker, label='repetitions', c='k', ms=markersize) ax3.set_xticks(range(len(reps))) # ax3.tick_params(axis='y') ax3.set_ylabel('Number of repetitions') # merge labels into one legend lgd = ax2p + ax3p labs = [l.get_label() for l in lgd] ax1.legend(prop={'size': 10}) ax2.legend(lgd, labs, prop={'size': 10}) # remove ax ticks from second plot ax2.tick_params(axis=u'both', which=u'both', length=0) ax3.yaxis.set_tick_params(length=0) fig.tight_layout() fig.subplots_adjust(top=0.942, bottom=0.166, left=0.095, right=0.918, hspace=0.1, wspace=0.388) fig.savefig('dynamic_changes_splitted.pdf', format='pdf', bbox_inches='tight') plt.show() def plot_accuracy_all_iteration_std(startswith, inset=True, path='.'): fig, ax1 = plt.subplots() for starts in startswith: if starts.startswith('SGD'): mu_sgd, std_sgd = _load_pt_files(starts, path) mu_sgd = np.insert(mu_sgd, 0, 0) std_sgd = np.insert(std_sgd, 0, 0) mu_sgd = 100 - mu_sgd elif starts.startswith('acc'): mu_enkf, std_enkf = _load_pt_files(starts, path) mu_enkf =
np.insert(mu_enkf, 0, 0)
numpy.insert
# -*- coding: utf-8 -*- """ @author: alexyang @contact: <EMAIL> @file: utils.py @time: 2018/4/20 21:36 @desc: """ import os import numpy as np import codecs import pickle def get_glove_vectors(vector_file): pre_trained_vectors = {} with codecs.open(vector_file, 'r', encoding='utf8')as reader: for line in reader: content = line.strip().split() pre_trained_vectors[content[0]] = np.array(list(map(float, content[1:]))) return pre_trained_vectors def get_gensim_vectors(vector_file): with codecs.open(vector_file, 'rb')as reader: pre_train_vectors = pickle.load(reader) return pre_train_vectors def split_train_valid(data, fold_index, fold_size): train = [] valid = [] for data_item in data: valid.append(data_item[(fold_index-1)*fold_size: fold_index*fold_size]) train.append(np.concatenate([data_item[:(fold_index-1)*fold_size], data_item[fold_index*fold_size:]])) return train, valid def batch_index(length, batch_size, n_iter=100): index = range(length) for j in range(n_iter): for i in range(int(length / batch_size) + (1 if length % batch_size else 0)): yield index[i * batch_size:(i + 1) * batch_size] def onehot_encoding(y): class_set = set(y) n_class = len(class_set) y_onehot_mapping = dict(zip(class_set, range(n_class))) onehot = [] for label in y: tmp = [0] * n_class tmp[y_onehot_mapping[label]] = 1 onehot.append(tmp) return
np.asarray(onehot, dtype=np.int32)
numpy.asarray
import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import matplotlib as mpl from pylab import rcParams import check """ "data" contains: 1. nsite, nocc, sigma, U as from input 2. nsample (int) deduced from the quantities below 3. e [nsample]: total energy 4. hd [nsample, nsite]: each row is a vector of diagonal of h (on-site potential fluctuation) 5. pair [nsample, nsite]: each row is a vector of pair densities 6. pop [nsample, nsite]: each row is a vector of populations 7. rdm1 [nsample*nsite, nsite]: every nsite rows correspond to a rdm1 (whose diagonal matches the corresponding row of pop) """ # given a site in the 1pdm, generate indices with pbc for all pops and coherences we want to collect for that site def get_pdm_terms(site_index, n, adj_sites=4, shift=0): """ inputs: site_index (int): center site index n (int): number of sites in lattice (for enforcing periodic boundary conditions) adj_site (int): how many adjacent sites to collect pop and coherence values from shift (int): return row indices shifted by this value (when collecting from matrix w/ compound index returns: ind_list (list of ints): all site indices to collect shift_ind_list (list of ints): site indices shifted down i*n rows to collect the correct sample coh_list (list of ints): coherences in fragment with central site shift_coh_list (list of ints): coherences shifted down i*n rows to select particular sample """ # if a term in sites is out of bounds, subtract bound length ind_list, shift_ind_list = [site_index], [site_index+shift] coh_list, shift_coh_list = [], [] #print("Site: ", site_index) for ind in range(site_index - adj_sites, site_index + adj_sites + 1): if ind != site_index: # we've already add the target site population to ind_list and shift_ind_list if ind < 0: ind += n elif ind >= n: ind -= n else: pass #print(ind) ind_list.append(ind) shift_ind_list.append(ind+shift) # shift down to specific matrix in set we are selecting coh_list.append(ind) shift_coh_list.append(ind+shift) return ind_list, shift_ind_list, coh_list, shift_coh_list parent_path = "/home/nricke/pymod/DMRC_data/hubbard/data" S_list = [1., 0.5, 0.3, 0.1] U_list = [1, 4, 8] no_list = [1,2,3,4,5] n_list = [10,12] adj_site_num = 4 nsamples = 100 # dict_keys: ['nsite', 'nocc', 'sigma', 'U', 'e', 'hd', 'pair', 'pop', 'rdm1', 'nsample'] # namelist: ["e", "hd", "pair", "pop", "rdm1"] """ We want the model to only take in 1pdm elements from all of this data, and check how 2-pdm on-site is reproduced We'll start with only trying to fit to on-site terms, but we'll probably want to collect coherences as well How should I actually store this data? In one dataframe for each folder in data? Probably all of this should fit in memory, and we can load and parse based on the values of S, U, no, and n, so a single dataframe is probably better """ ## create column names for dataframe column_name_list = ["n", "U", "sigma", "n_occ", "site_pop"] L_site_list, R_site_list, L_coh_list, R_coh_list = [], [], [], [] for i in range(adj_site_num): L_site_list.append("L"+str(i+1)) # sites left of target set R_site_list.append("R"+str(i+1)) # ditto for the right L_coh_list = ["c"+name for name in L_site_list] R_coh_list = ["c"+name for name in R_site_list] column_name_list = column_name_list + L_site_list + R_site_list + L_coh_list + R_coh_list + ["pair_density"] ## Load data for several sets of job parameters, and see how well we can fit on-site terms from neighboring populations XY_df_list = [] for n in n_list: x = np.zeros((n*nsamples, 2*adj_site_num + 1)) x_coh = np.zeros((n*nsamples, 2*adj_site_num)) n_arr = np.ones((n*nsamples,1))*n for U in U_list: print("U progress: ", U) U_arr =
np.ones((n*nsamples,1))
numpy.ones
""" Description: Author: <NAME> (<EMAIL>) Date: 2021-06-06 02:17:08 LastEditors: <NAME> (<EMAIL>) LastEditTime: 2021-06-06 02:17:08 """ import logging from functools import lru_cache from typing import Callable, Dict, List, Optional, Tuple, Union import numpy as np import torch from torch import nn from scipy.stats import truncnorm from torch.autograd import grad from torch.tensor import Tensor from torch.types import Device, _size from torch.nn.modules.utils import _pair from .torch_train import set_torch_deterministic __all__ = [ "shift", "Krylov", "circulant", "toeplitz", "complex_circulant", "complex_mult", "expi", "complex_matvec_mult", "complex_matmul", "real_to_complex", "get_complex_magnitude", "get_complex_energy", "complex_to_polar", "polar_to_complex", "absclamp", "absclamp_", "im2col_2d", "check_identity_matrix", "check_unitary_matrix", "check_equal_tensor", "batch_diag", "batch_eye_cpu", "batch_eye", "merge_chunks", "partition_chunks", "clip_by_std", "percentile", "gen_boolean_mask_cpu", "gen_boolean_mask", "fftshift_cpu", "ifftshift_cpu", "gen_gaussian_noise", "gen_gaussian_filter2d_cpu", "gen_gaussian_filter2d", "add_gaussian_noise_cpu", "add_gaussian_noise", "add_gaussian_noise_", "circulant_multiply", "calc_diagonal_hessian", "calc_jacobian", "polynomial", "gaussian", "lowrank_decompose", "get_conv2d_flops", ] def shift(v: Tensor, f: float = 1) -> Tensor: return torch.cat((f * v[..., -1:], v[..., :-1]), dim=-1) def Krylov(linear_map: Callable, v: Tensor, n: Optional[int] = None) -> Tensor: if n is None: n = v.size(-1) cols = [v] for _ in range(n - 1): v = linear_map(v) cols.append(v) return torch.stack(cols, dim=-2) def circulant(eigens: Tensor) -> Tensor: circ = Krylov(shift, eigens).transpose(-1, -2) return circ @lru_cache(maxsize=4) def _get_toeplitz_indices(n: int, device: Device) -> Tensor: # cached toeplitz indices. avoid repeatedly generate the indices. indices = circulant(torch.arange(n, device=device)) return indices def toeplitz(col: Tensor) -> Tensor: """ Efficient Toeplitz matrix generation from the first column. The column vector must in the last dimension. Batch generation is supported. Suitable for AutoGrad. Circulant matrix multiplication is ~4x faster than rfft-based implementation!\\ @col {torch.Tensor} (Batched) column vectors.\\ return out {torch.Tensor} (Batched) circulant matrices """ n = col.size(-1) indices = _get_toeplitz_indices(n, device=col.device) return col[..., indices] def complex_circulant(eigens: Tensor) -> Tensor: circ = Krylov(shift, eigens).transpose(-1, -2) return circ def complex_mult(X: Tensor, Y: Tensor) -> Tensor: """Complex-valued element-wise multiplication Args: X (Tensor): Real tensor with last dim of 2 or complex tensor Y (Tensor): Real tensor with last dim of 2 or complex tensor Returns: Tensor: tensor with the same type as input """ if not torch.is_complex(X) and not torch.is_complex(Y): assert X.shape[-1] == 2 and Y.shape[-1] == 2, "Last dimension of real-valued tensor must be 2" if hasattr(torch, "view_as_complex"): return torch.view_as_real(torch.view_as_complex(X) * torch.view_as_complex(Y)) else: return torch.stack( ( X[..., 0] * Y[..., 0] - X[..., 1] * Y[..., 1], X[..., 0] * Y[..., 1] + X[..., 1] * Y[..., 0], ), dim=-1, ) else: return X.mul(Y) def complex_matvec_mult(W: Tensor, X: Tensor) -> Tensor: return torch.sum(complex_mult(W, X.unsqueeze(0).repeat(W.size(0), 1, 1)), dim=1) def complex_matmul(X: Tensor, Y: Tensor) -> Tensor: assert X.shape[-1] == 2 and Y.shape[-1] == 2, "Last dimension must be 2" if torch.__version__ >= "1.8" or (torch.__version__ >= "1.7" and X.shape[:-3] == Y.shape[:-3]): return torch.view_as_real(torch.matmul(torch.view_as_complex(X), torch.view_as_complex(Y))) return torch.stack( [ X[..., 0].matmul(Y[..., 0]) - X[..., 1].matmul(Y[..., 1]), X[..., 0].matmul(Y[..., 1]) + X[..., 1].matmul(Y[..., 0]), ], dim=-1, ) def expi(x: Tensor) -> Tensor: if torch.__version__ >= "1.8" or (torch.__version__ >= "1.7" and not x.requires_grad): return torch.exp(1j * x) else: return x.cos().type(torch.cfloat) + 1j * x.sin().type(torch.cfloat) def real_to_complex(x: Tensor) -> Tensor: if torch.__version__ < "1.7": return torch.stack((x, torch.zeros_like(x).to(x.device)), dim=-1) else: return torch.view_as_real(x.to(torch.complex64)) def get_complex_magnitude(x: Tensor) -> Tensor: assert x.size(-1) == 2, "[E] Input must be complex Tensor" return torch.sqrt(x[..., 0] * x[..., 0] + x[..., 1] * x[..., 1]) def complex_to_polar(x: Tensor) -> Tensor: # real and imag to magnitude and angle if isinstance(x, torch.Tensor): mag = x.norm(p=2, dim=-1) angle = torch.view_as_complex(x).angle() x = torch.stack([mag, angle], dim=-1) elif isinstance(x, np.ndarray): x = x.astype(np.complex64) mag = np.abs(x) angle = np.angle(x) x = np.stack([mag, angle], axis=-1) else: raise NotImplementedError return x def polar_to_complex(mag: Tensor, angle: Tensor) -> Tensor: # magnitude and angle to real and imag if angle is None: return real_to_complex(angle) if mag is None: if isinstance(angle, torch.Tensor): x = torch.stack([angle.cos(), angle.sin()], dim=-1) elif isinstance(angle, np.ndarray): x = np.stack([np.cos(angle), np.sin(angle)], axis=-1) else: raise NotImplementedError else: if isinstance(angle, torch.Tensor): x = torch.stack([mag * angle.cos(), mag * angle.sin()], dim=-1) elif isinstance(angle, np.ndarray): x = np.stack([mag * np.cos(angle), mag * np.sin(angle)], axis=-1) else: raise NotImplementedError return x def get_complex_energy(x: Tensor) -> Tensor: assert x.size(-1) == 2, "[E] Input must be complex Tensor" return x[..., 0] * x[..., 0] + x[..., 1] * x[..., 1] def absclamp(x: Tensor, min: Optional[float] = None, max: Optional[float] = None) -> Tensor: if isinstance(x, torch.Tensor): mag = x.norm(p=2, dim=-1).clamp(min=min, max=max) angle = torch.view_as_complex(x).angle() x = polar_to_complex(mag, angle) elif isinstance(x, np.ndarray): x = x.astype(np.complex64) mag = np.clip(np.abs(x), a_min=min, a_max=max) angle = np.angle(x) x = polar_to_complex(mag, angle) else: raise NotImplementedError return x def absclamp_(x: Tensor, min: Optional[float] = None, max: Optional[float] = None) -> Tensor: if isinstance(x, torch.Tensor): y = torch.view_as_complex(x) mag = y.abs().clamp(min=min, max=max) angle = y.angle() x.data.copy_(polar_to_complex(mag, angle)) elif isinstance(x, np.ndarray): y = x.astype(np.complex64) mag = np.clip(np.abs(y), a_min=min, a_max=max) angle =
np.angle(y)
numpy.angle
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. import numpy as np import popart import torch from op_tester import op_tester def test_cumsum_1d(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, axis.item(0)) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_1d_exclusive(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) expected = np.array([0., 1., 3., 6., 10.]).astype(np.float32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], exclusive=1) builder.addOutputTensor(o) return [o] def reference(ref_data): out = torch.tensor(expected) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_1d_reverse(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], reverse=1) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) tx = torch.flip(tx, [0]) out = torch.cumsum(tx, 0) out = torch.flip(out, [0]) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_1d_reverse_exclusive(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) expected = np.array([14., 12., 9., 5., 0.]).astype(np.float32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], reverse=1, exclusive=1) builder.addOutputTensor(o) return [o] def reference(ref_data): out = torch.tensor(expected) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_2d_axis_0(op_tester): x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32).reshape((2, 3)) axis = np.array(0).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, axis.item(0)) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_2d_axis_1(op_tester): x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32).reshape((2, 3)) axis = np.array(1).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, axis.item(0)) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_2d_negative_axis(op_tester): x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32).reshape((2, 3)) axis = np.array(-1).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, axis.item(0)) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d(op_tester): a0 = np.array([[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], [[20, 22, 24, 26, 28], [30, 32, 34, 36, 38], [40, 42, 44, 46, 48], [50, 52, 54, 56, 58]], [[60, 63, 66, 69, 72], [75, 78, 81, 84, 87], [90, 93, 96, 99, 102], [105, 108, 111, 114, 117]]]).astype(np.float32) a1 = np.array([[[0, 1, 2, 3, 4], [5, 7, 9, 11, 13], [15, 18, 21, 24, 27], [30, 34, 38, 42, 46]], [[20, 21, 22, 23, 24], [45, 47, 49, 51, 53], [75, 78, 81, 84, 87], [110, 114, 118, 122, 126]], [[40, 41, 42, 43, 44], [85, 87, 89, 91, 93], [135, 138, 141, 144, 147], [190, 194, 198, 202, 206]]]).astype(np.float32) a2 = np.array([[[0, 1, 3, 6, 10], [5, 11, 18, 26, 35], [10, 21, 33, 46, 60], [15, 31, 48, 66, 85]], [[20, 41, 63, 86, 110], [25, 51, 78, 106, 135], [30, 61, 93, 126, 160], [35, 71, 108, 146, 185]], [[40, 81, 123, 166, 210], [45, 91, 138, 186, 235], [50, 101, 153, 206, 260], [55, 111, 168, 226, 285]]]).astype(np.float32) am1 = a2 am2 = a1 am3 = a0 expected = {-3: am3, -2: am2, -1: am1, 0: a0, 1: a1, 2: a2} testAxis = np.array([-3, -2, -1, 0, 1, 2]).astype(np.int32) for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): out = torch.tensor(expected[a]) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d_v2(op_tester): testAxis = [-3, -2, -1, 0, 1, 2] for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, a) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d_reverse(op_tester): a0 = np.array([[[60, 63, 66, 69, 72], [75, 78, 81, 84, 87], [90, 93, 96, 99, 102], [105, 108, 111, 114, 117]], [[60, 62, 64, 66, 68], [70, 72, 74, 76, 78], [80, 82, 84, 86, 88], [90, 92, 94, 96, 98]], [[40, 41, 42, 43, 44], [45, 46, 47, 48, 49], [50, 51, 52, 53, 54], [55, 56, 57, 58, 59]]]).astype(np.float32) a1 = np.array([[[30, 34, 38, 42, 46], [30, 33, 36, 39, 42], [25, 27, 29, 31, 33], [15, 16, 17, 18, 19]], [[110, 114, 118, 122, 126], [90, 93, 96, 99, 102], [65, 67, 69, 71, 73], [35, 36, 37, 38, 39]], [[190, 194, 198, 202, 206], [150, 153, 156, 159, 162], [105, 107, 109, 111, 113], [55, 56, 57, 58, 59]]]).astype(np.float32) a2 = np.array([[[10, 10, 9, 7, 4], [35, 30, 24, 17, 9], [60, 50, 39, 27, 14], [85, 70, 54, 37, 19]], [[110, 90, 69, 47, 24], [135, 110, 84, 57, 29], [160, 130, 99, 67, 34], [185, 150, 114, 77, 39]], [[210, 170, 129, 87, 44], [235, 190, 144, 97, 49], [260, 210, 159, 107, 54], [285, 230, 174, 117, 59]]]).astype(np.float32) am1 = a2 am2 = a1 am3 = a0 expected = {-3: am3, -2: am2, -1: am1, 0: a0, 1: a1, 2: a2} testAxis = np.array([-3, -2, -1, 0, 1, 2]).astype(np.int32) for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], reverse=1) builder.addOutputTensor(o) return [o] def reference(ref_data): out = torch.tensor(expected[a]) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d_reverse_v2(op_tester): testAxis = [-3, -2, -1, 0, 1, 2] for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], reverse=1) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) tx = torch.flip(tx, [a]) out = torch.cumsum(tx, a) out = torch.flip(out, [a]) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d_exclusive(op_tester): # Expected from tf as pytorch does not support # exclusive and reverse. a0 = np.array([[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], [[20, 22, 24, 26, 28], [30, 32, 34, 36, 38], [40, 42, 44, 46, 48], [50, 52, 54, 56, 58]]]).astype(np.float32) a1 = np.array( [[[0, 0, 0, 0, 0], [0, 1, 2, 3, 4], [5, 7, 9, 11, 13], [15, 18, 21, 24, 27]], [[0, 0, 0, 0, 0], [20, 21, 22, 23, 24], [45, 47, 49, 51, 53], [75, 78, 81, 84, 87]], [[0, 0, 0, 0, 0], [40, 41, 42, 43, 44], [85, 87, 89, 91, 93], [135, 138, 141, 144, 147]]]).astype(np.float32) a2 = np.array([[[0, 0, 1, 3, 6], [0, 5, 11, 18, 26], [0, 10, 21, 33, 46], [0, 15, 31, 48, 66]], [[0, 20, 41, 63, 86], [0, 25, 51, 78, 106], [0, 30, 61, 93, 126], [0, 35, 71, 108, 146]], [[0, 40, 81, 123, 166], [0, 45, 91, 138, 186], [0, 50, 101, 153, 206], [0, 55, 111, 168, 226]]]).astype(np.float32) am1 = a2 am2 = a1 am3 = a0 expected = {-3: am3, -2: am2, -1: am1, 0: a0, 1: a1, 2: a2} testAxis = np.array([-3, -2, -1, 0, 1, 2]).astype(np.int32) for a in testAxis: x =
np.arange(60)
numpy.arange
#!/usr/bin/python # -*- coding: utf-8 -*- import cv2 import numpy as np import matplotlib.pyplot as plt import pyforms from numpy import dot from pyforms import BaseWidget from pyforms.controls import ControlButton, ControlText, ControlSlider, \ ControlFile, ControlPlayer, ControlCheckBox, ControlCombo, ControlProgress from scipy.spatial.distance import squareform, pdist from helpers.functions import get_log_kernel, inv, linear_sum_assignment, \ local_maxima, select_frames from helpers.video_window import VideoWindow class MultipleBlobDetection(BaseWidget): def __init__(self): super(MultipleBlobDetection, self).__init__( 'Multiple Blob Detection') # Definition of the forms fields self._videofile = ControlFile('Video') self._outputfile = ControlText('Results output file') self._threshold_box = ControlCheckBox('Threshold') self._threshold = ControlSlider('Binary Threshold') self._threshold.value = 114 self._threshold.min = 1 self._threshold.max = 255 self._roi_x_min = ControlSlider('ROI x top') self._roi_x_max = ControlSlider('ROI x bottom') self._roi_y_min = ControlSlider('ROI y left') self._roi_y_max = ControlSlider('ROI y right') # self._blobsize = ControlSlider('Minimum blob size', 100, 100, 2000) self._player = ControlPlayer('Player') self._runbutton = ControlButton('Run') self._start_frame = ControlText('Start Frame') self._stop_frame = ControlText('Stop Frame') self._color_list = ControlCombo('Color channels') self._color_list.add_item('Red Image Channel', 2) self._color_list.add_item('Green Image Channel', 1) self._color_list.add_item('Blue Image Channel', 0) self._clahe = ControlCheckBox('CLAHE ') self._dilate = ControlCheckBox('Morphological Dilation') self._dilate_type = ControlCombo('Dilation Kernel Type') self._dilate_type.add_item('RECTANGLE', cv2.MORPH_RECT) self._dilate_type.add_item('ELLIPSE', cv2.MORPH_ELLIPSE) self._dilate_type.add_item('CROSS', cv2.MORPH_CROSS) self._dilate_size = ControlSlider('Dilation Kernel Size', default=3, min=1, max=10) self._dilate_size.value = 5 self._dilate_size.min = 1 self._dilate_size.max = 10 self._erode = ControlCheckBox('Morphological Erosion') self._erode_type = ControlCombo('Erode Kernel Type') self._erode_type.add_item('RECTANGLE', cv2.MORPH_RECT) self._erode_type.add_item('ELLIPSE', cv2.MORPH_ELLIPSE) self._erode_type.add_item('CROSS', cv2.MORPH_CROSS) self._erode_size = ControlSlider('Erode Kernel Size') self._erode_size.value = 5 self._erode_size.min = 1 self._erode_size.max = 10 self._open = ControlCheckBox('Morphological Opening') self._open_type = ControlCombo('Open Kernel Type') self._open_type.add_item('RECTANGLE', cv2.MORPH_RECT) self._open_type.add_item('ELLIPSE', cv2.MORPH_ELLIPSE) self._open_type.add_item('CROSS', cv2.MORPH_CROSS) self._open_size = ControlSlider('Open Kernel Size') self._open_size.value = 20 self._open_size.min = 1 self._open_size.max = 40 self._close = ControlCheckBox('Morphological Closing') self._close_type = ControlCombo('Close Kernel Type') self._close_type.add_item('RECTANGLE', cv2.MORPH_RECT) self._close_type.add_item('ELLIPSE', cv2.MORPH_ELLIPSE) self._close_type.add_item('CROSS', cv2.MORPH_CROSS) self._close_size = ControlSlider('Close Kernel Size', default=19, min=1, max=40) self._close_size.value = 20 self._close_size.min = 1 self._close_size.max = 40 self._LoG = ControlCheckBox('LoG - Laplacian of Gaussian') self._LoG_size = ControlSlider('LoG Kernel Size') self._LoG_size.value = 20 self._LoG_size.min = 1 self._LoG_size.max = 60 self._progress_bar = ControlProgress('Progress Bar') # Define the function that will be called when a file is selected self._videofile.changed_event = self.__video_file_selection_event # Define the event that will be called when the run button is processed self._runbutton.value = self.__run_event # Define the event called before showing the image in the player self._player.process_frame_event = self.__process_frame self._error_massages = {} # Define the organization of the Form Controls self.formset = [ ('_videofile', '_outputfile'), ('_start_frame', '_stop_frame'), ('_color_list', '_clahe', '_roi_x_min', '_roi_y_min'), ('_threshold_box', '_threshold', '_roi_x_max', '_roi_y_max'), ('_dilate', '_erode', '_open', '_close'), ('_dilate_type', '_erode_type', '_open_type', '_close_type'), ('_dilate_size', '_erode_size', '_open_size', '_close_size'), ('_LoG', '_LoG_size'), ('_runbutton', '_progress_bar'), '_player' ] self.is_roi_set = False def _parameters_check(self): self._error_massages = {} if not self._player.value: self._error_massages['video'] = 'No video specified' elif not self._start_frame.value or not self._stop_frame.value or \ int(self._start_frame.value) >= int(self._stop_frame.value) or \ int(self._start_frame.value) < 0 or int(self._stop_frame.value) < 0: self._error_massages['frames'] = 'Wrong start/end frame number' def __video_file_selection_event(self): """ When the video file is selected instanciate the video in the player """ self._player.value = self._videofile.value def __color_channel(self, frame): """ Returns only one color channel of input frame. Output is in grayscale. """ frame = frame[:, :, self._color_list.value] return frame def __create_kernels(self): """ Creates kernels for morphological operations. Check cv2.getStructuringElement() doc for more info: http://docs.opencv.org/3.0-beta/doc/py_tutorials/py_imgproc/ py_morphological_ops/py_morphological_ops.html Assumed that all kernels (except LoG kernel) are square. Example of use: open_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (19, 19)) erosion_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) dilate_kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3)) :return: _opening_kernel, _close_kernel, _erosion_kernel, \ _dilate_kernel, _LoG_kernel """ if self._open_type.value and self._open_size.value: _opening_kernel = cv2.getStructuringElement(self._open_type.value, (self._open_size.value, self._open_size.value)) else: _opening_kernel = None if self._close_type.value and self._close_size.value: _close_kernel = cv2.getStructuringElement(self._close_type.value, (self._close_size.value, self._close_size.value)) else: _close_kernel = None if self._erode_type.value and self._erode_size.value: _erosion_kernel = cv2.getStructuringElement(self._erode_type.value, (self._erode_size.value, self._erode_size.value)) else: _erosion_kernel = None if self._dilate_type.value and self._dilate_size.value: _dilate_kernel = cv2.getStructuringElement(self._dilate_type.value, (self._dilate_size.value, self._dilate_size.value)) else: _dilate_kernel = None if self._LoG.value and self._LoG_size.value: _LoG_kernel = get_log_kernel(self._LoG_size.value, int(self._LoG_size.value * 0.5)) else: _LoG_kernel = None return _opening_kernel, _close_kernel, _erosion_kernel, \ _dilate_kernel, _LoG_kernel def __morphological(self, frame): """ Apply morphological operations selected by the user. :param frame: input frame of selected video. :return: preprocessed frame. """ opening_kernel, close_kernel, erosion_kernel, \ dilate_kernel, log_kernel = self.__create_kernels() # prepare image - morphological operations if self._erode.value: frame = cv2.erode(frame, erosion_kernel, iterations=1) if self._open.value: frame = cv2.morphologyEx(frame, cv2.MORPH_OPEN, opening_kernel) if self._close.value: frame = cv2.morphologyEx(frame, cv2.MORPH_CLOSE, close_kernel) if self._dilate.value: frame = cv2.dilate(frame, dilate_kernel, iterations=1) # create LoG kernel for finding local maximas if self._LoG.value: frame = cv2.filter2D(frame, cv2.CV_32F, log_kernel) frame *= 255 # remove near 0 floats frame[frame < 0] = 0 return frame def __roi(self, frame): """ Define image region of interest. """ # ROI height, width = frame.shape self._roi_x_max.min = int(height / 2) self._roi_x_max.max = height self._roi_y_max.min = int(width / 2) self._roi_y_max.max = width self._roi_x_min.min = 0 self._roi_x_min.max = int(height / 2) self._roi_y_min.min = 0 self._roi_y_min.max = int(width / 2) if not self.is_roi_set: self._roi_x_max.value = height self._roi_y_max.value = width self.is_roi_set = True # x axis frame[:int(self._roi_x_min.value)][::] = 255 frame[int(self._roi_x_max.value)::][::] = 255 # y axis for m in range(height): # height for n in range(width): # width if n > self._roi_y_max.value or n < self._roi_y_min.value: frame[m][n] = 255 # frame[0::][:int(self._roi_y_min.value)] = 255 # frame[0::][int(self._roi_y_max.value):] = 255 return frame def _kalman(self, max_points, stop_frame, vid_fragment): """ Kalman Filter function. Takes measurements from video analyse function and estimates positions of detected objects. Munkres algorithm is used for assignments between estimates (states) and measurements. :param max_points: measurements. :param stop_frame: number of frames to analise :param vid_fragment: video fragment for estimates displaying :return: x_est, y_est - estimates of x and y positions in the following format: x_est[index_of_object][frame] gives x position of object with index = [index_of_object] in the frame = [frame]. The same goes with y positions. """ # font for displaying info on the image index_error = 0 value_error = 0 # step of filter dt = 1. R_var = 1 # measurements variance between x-x and y-y # Q_var = 0.1 # model variance # state covariance matrix - no initial covariances, variances only # [10^2 px, 10^2 px, ..] - P = np.diag([100, 100, 10, 10, 1, 1]) # state transition matrix for 6 state variables # (position - velocity - acceleration, # x, y) F = np.array([[1, 0, dt, 0, 0.5 * pow(dt, 2), 0], [0, 1, 0, dt, 0, 0.5 * pow(dt, 2)], [0, 0, 1, 0, dt, 0], [0, 0, 0, 1, 0, dt], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1]]) # x and y coordinates only - measurements matrix H = np.array([[1., 0., 0., 0., 0., 0.], [0., 1., 0., 0., 0., 0.]]) # no initial corelation between x and y positions - variances only R = np.array( [[R_var, 0.], [0., R_var]]) # measurement covariance matrix # Q must be the same shape as P Q =
np.diag([100, 100, 10, 10, 1, 1])
numpy.diag
import pytest import os import h5py import tempfile import numpy as np from numpy.testing import assert_allclose from numpy.testing import assert_raises from scipy.sparse import rand from keras import backend as K from keras.engine.saving import preprocess_weights_for_loading from keras.models import Model, Sequential from keras.layers import Dense, Lambda, RepeatVector, TimeDistributed from keras.layers import Embedding from keras.layers import Bidirectional, GRU, LSTM, CuDNNGRU, CuDNNLSTM from keras.layers import Conv2D, Flatten from keras.layers import Input, InputLayer from keras.initializers import Constant from keras import optimizers from keras import losses from keras import metrics from keras.models import save_model, load_model, save_mxnet_model from keras import datasets skipif_no_tf_gpu = pytest.mark.skipif( (K.backend() != 'tensorflow' or not K.tensorflow_backend._get_available_gpus()), reason='Requires TensorFlow backend and a GPU') def test_sequential_model_saving(): model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(RepeatVector(3)) model.add(TimeDistributed(Dense(3))) model.compile(loss=losses.MSE, optimizer=optimizers.RMSprop(lr=0.0001), metrics=[metrics.categorical_accuracy], sample_weight_mode='temporal') x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) out = model.predict(x) _, fname = tempfile.mkstemp('.h5') save_model(model, fname) new_model = load_model(fname) os.remove(fname) out2 = new_model.predict(x) assert_allclose(out, out2, atol=1e-05) # test that new updates are the same with both models x = np.random.random((1, 3)) y = np.random.random((1, 3, 3)) model.train_on_batch(x, y) new_model.train_on_batch(x, y) out = model.predict(x) out2 = new_model.predict(x) # Flaky tests. Reducing the tolerance to 2 decimal points. assert_allclose(out, out2, atol=1e-02) def test_sequential_model_saving_2(): # test with custom optimizer, loss custom_opt = optimizers.rmsprop custom_loss = losses.mse model = Sequential() model.add(Dense(2, input_shape=(3,))) model.add(Dense(3)) model.compile(loss=custom_loss, optimizer=custom_opt(), metrics=['acc']) x = np.random.random((1, 3)) y =
np.random.random((1, 3))
numpy.random.random
from unittest import TestCase from mock import patch from dglt.models.layers import GaussianSampling import torch import numpy as np import numpy.testing as npt from third_party.torchtest import torchtest as tt class test_GaussianSampling(TestCase): def test_init_no_bidirectional(self): torch.manual_seed(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False layer = GaussianSampling(2, 4, bidirectional=False) npt.assert_equal(np.array(layer.mu.weight.size()), np.array([4, 2])) npt.assert_equal(np.array(layer.mu.bias.size()), np.array([4])) npt.assert_equal(np.array(layer.logvar.weight.size()), np.array([4, 2])) npt.assert_equal(np.array(layer.logvar.bias.size()), np.array([4])) def test_init_bidirectional(self): torch.manual_seed(0) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False layer = GaussianSampling(2, 5, bidirectional=True) npt.assert_equal(np.array(layer.mu.weight.size()),
np.array([5, 4])
numpy.array
# plotter.py # for generating plots import matplotlib try: matplotlib.use('TkAgg') import matplotlib.pyplot as plt except: matplotlib.use('Agg') # for linux server with no tkinter import matplotlib.pyplot as plt plt.rcParams['image.cmap'] = 'inferno' # avoid Type 3 fonts matplotlib.rcParams['pdf.fonttype'] = 42 matplotlib.rcParams['ps.fonttype'] = 42 import numpy as np import os import torch from torch.nn.functional import pad from mpl_toolkits.mplot3d import Axes3D # for 3D plots from PIL import Image, ImageDraw # for video from src.OCflow import OCflow # the parameters used in this function are shared by most functions in this file def plotQuadcopter(x, net, prob, nt, sPath, sTitle="", approach='ocflow'): """ plot images of the 12-d quadcopter :param x: tensor, initial spatial point(s) at initial time :param net: Module, the network Phi (or in some cases the baseline) :param prob: problem object, which is needed for targets and obstacles :param nt: int, number of time steps :param sPath: string, path where you want the files saved :param sTitle: string, the title wanted to be applied to the figure :param approach: string, used to distinguish how the plot function behaves with inputs 'ocflow' or 'baseline' """ xtarget = prob.xtarget if approach == 'ocflow': traj, trajCtrl = OCflow(x, net, prob, tspan=[0.0, 1.0], nt=nt, stepper="rk4", alph=net.alph, intermediates=True) trajCtrl = trajCtrl[:,:,1:] # want last dimension to be nt elif approach == 'baseline': # overload inputs to treat x and net differently for baseline traj = x # expects a tensor of size (nex, d, nt+1) trajCtrl = net # expects a tensor (nex, a, nt) where a is the dimension of the controls else: print("approach=" , approach, " is not an acceptable parameter value for plotQuadcopter") # 3-d plot bounds xbounds = [-3.0, 3.0] ybounds = [-3.0, 3.0] zbounds = [-3.0, 3.0] # make grid of plots nCol = 3 nRow = 2 fig = plt.figure(figsize=plt.figaspect(1.0)) fig.set_size_inches(16, 8) fig.suptitle(sTitle) # positional movement training ax = fig.add_subplot(nRow, nCol, 1, projection='3d') ax.set_title('Flight Path') ax.scatter(xtarget[0].cpu().numpy(), xtarget[1].cpu().numpy(), xtarget[2].cpu().numpy(), s=140, marker='x', c='r', label="target") for i in range(traj.shape[0]): ax.plot(traj[i, 0, :].view(-1).cpu().numpy(), traj[i, 1, :].view(-1).cpu().numpy(), traj[i, 2, :].view(-1).cpu().numpy(), 'o-') # ax.legend() ax.view_init(10, -30) ax.set_xlim(*xbounds) ax.set_ylim(*ybounds) ax.set_zlim(*zbounds) # plotting path from eagle view ax = fig.add_subplot(nRow, nCol, 2) # traj is nex by d+1 by nt+1 ax.plot(traj[0, 0, :].cpu().numpy(), traj[0, 1, :].cpu().numpy(), 'o-') xtarget = xtarget.detach().cpu().numpy() ax.scatter(xtarget[0], xtarget[1], marker='x', color='red') ax.set_xlim(*xbounds) ax.set_ylim(*ybounds) ax.set_aspect('equal') ax.set_title('Path From Bird View') # plot controls ax = fig.add_subplot(nRow, nCol, 3) timet = range(nt) # not using the t=0 values ax.plot(timet, trajCtrl[0, 0, :].cpu().numpy(), 'o-', label='u') ax.plot(timet, trajCtrl[0, 1, :].cpu().numpy(), 'o-', label=r'$\tau_\psi$') ax.plot(timet, trajCtrl[0, 2, :].cpu().numpy(), 'o-', label=r'$\tau_\theta$') ax.plot(timet, trajCtrl[0, 3, :].cpu().numpy(), 'o-', label=r'$\tau_\phi$') ax.legend() ax.set_xticks([0, nt / 2, nt]) ax.set_xlabel('nt') ax.set_ylabel('control') # plot L at each time step ax = fig.add_subplot(nRow, nCol, 4) timet = range(nt) # not using the t=0 values trajL = torch.sum(trajCtrl[0, :, :] ** 2, dim=0, keepdims=True) totL = torch.sum(trajL[0, :]) / nt ax.plot(timet, trajL[0, :].cpu().numpy(), 'o-', label='L') ax.legend() ax.set_xticks([0, nt / 2, nt]) ax.set_xlabel('nt') ax.set_ylabel('L') ax.set_title('L(x,T)=' + str(totL.item())) # plot velocities ax = fig.add_subplot(nRow, nCol, 5) timet = range(nt+1) ax.plot(timet, traj[0, 6, :].cpu().numpy(), 'o-', label=r'$v_x$') ax.plot(timet, traj[0, 7, :].cpu().numpy(), 'o-', label=r'$v_y$') ax.plot(timet, traj[0, 8, :].cpu().numpy(), 'o-', label=r'$v_z$') ax.plot(timet, traj[0, 9, :].cpu().numpy(), 'o-', label=r'$v_\psi$') ax.plot(timet, traj[0, 10, :].cpu().numpy(), 'o-', label=r'$v_\theta$') ax.plot(timet, traj[0, 11, :].cpu().numpy(), 'o-', label=r'$v_\phi$') ax.legend(ncol=2) ax.set_xticks([0, nt / 2, nt]) ax.set_xlabel('nt') ax.set_ylabel('value') # plot angles ax = fig.add_subplot(nRow, nCol, 6) timet = range(nt+1) ax.plot(timet, traj[0, 3, :].cpu().numpy(), 'o-', label=r'$\psi$') ax.plot(timet, traj[0, 4, :].cpu().numpy(), 'o-', label=r'$\theta$') ax.plot(timet, traj[0, 5, :].cpu().numpy(), 'o-', label=r'$\phi$') ax.legend() ax.set_xticks([0, nt / 2, nt]) ax.set_xlabel('nt') ax.set_ylabel('value') if not os.path.exists(os.path.dirname(sPath)): os.makedirs(os.path.dirname(sPath)) plt.savefig(sPath, dpi=300) plt.close() def videoQuadcopter(x, net, prob, nt, sPath, sTitle="", approach='ocflow'): """ make video for the 12-d quadcopter """ if approach != 'ocflow': print('approach ' + approach + ' is not supported') return 1 nex, d = x.shape LOWX, HIGHX, LOWY, HIGHY , msz= getMidcrossBounds(x,d) extent = [LOWX, HIGHX, LOWY, HIGHY] xtarget = prob.xtarget.view(-1).detach().cpu().numpy() # 3-d plot bounds xbounds = [-3.0, 3.0] ybounds = [-3.0, 3.0] zbounds = [-3.0, 3.0] traj, trajCtrl = OCflow(x, net, prob, tspan=[0.0, 1.0], nt=nt, stepper="rk4", alph=net.alph, intermediates=True) ims = [] if nex > 1: examples = [0,1,2] else: examples = [0] for ex in examples: tracePhiFlow = traj[ex, 0:d, :] tracePhiFlow = tracePhiFlow.detach().cpu().numpy() ctrls = trajCtrl[ex,:,:].detach().cpu().numpy() timet = range(1, nt + 1) for n in range(1,nt-1): # make grid of plots nCol = 1 nRow = 2 fig = plt.figure(figsize=plt.figaspect(1.0)) fig.set_size_inches(14, 10) # postional movement training ax = fig.add_subplot(nRow, nCol, 1, projection='3d') ax.set_title('Flight Path') for j in range(prob.nAgents): for i in range(ex): ax.plot(traj[i, 12*j, :nt-1], traj[i, 12*j+1, :nt-1], traj[i, 12*j+2, :nt-1], '-', linewidth=1, color='gray') ax.plot(tracePhiFlow[12 * j, :n], tracePhiFlow[12 * j + 1, :n], tracePhiFlow[12 * j + 2, :n],'o-', linewidth=2, markersize=msz) ax.scatter(xtarget[12 * j], xtarget[12 * j + 1], xtarget[12 * j + 2], s=140, marker='x', color='red') ax.view_init(10, -30) ax.set_xlim(*xbounds) ax.set_ylim(*ybounds) ax.set_zlim(*zbounds) # plot controls ax = fig.add_subplot(nRow, nCol, 2) # not using the t=0 values ax.plot(timet[:n], trajCtrl[ex, 0, 1:n+1].cpu().numpy(), 'o-', label='u') ax.plot(timet[:n], trajCtrl[ex, 1, 1:n+1].cpu().numpy(), 'o-', label=r'$\tau_\psi$') ax.plot(timet[:n], trajCtrl[ex, 2, 1:n+1].cpu().numpy(), 'o-', label=r'$\tau_\theta$') ax.plot(timet[:n], trajCtrl[ex, 3, 1:n+1].cpu().numpy(), 'o-', label=r'$\tau_\phi$') ax.legend(loc='upper center') ax.set_xticks([0, nt / 2, nt]) ax.set_xlabel('nt') ax.set_ylabel('control') ax.set_ylim(-80,80) ax.set_xlim(0,nt) ax.set_title('Controls') im = fig2img ( fig ) ims.append(im) plt.close(fig) sPath = sPath[:-4] + '.gif' ims[0].save(sPath, save_all=True, append_images=ims[1:], duration=100, loop=0) print('saved video to', sPath) def videoSwarm(x, net, prob, nt, sPath, sTitle="", approach='ocflow'): """ make video for the swarm trajectory planning """ nex = x.shape[0] d = x.shape[1] xtarget = prob.xtarget.detach().cpu().numpy() msz = 3 # markersize if approach == 'ocflow': traj, trajCtrl = OCflow(x, net, prob, tspan=[0.0, 1.0], nt=nt, stepper="rk4", alph=net.alph, intermediates=True) # 3-d plot bounds xbounds = [ min( x[:, 0::3].min().item() , xtarget[0::3].min().item()) - 1 , max( x[:, 0::3].max().item() , xtarget[0::3].max().item()) + 1 ] ybounds = [ min( x[:, 1::3].min().item() , xtarget[1::3].min().item()) - 1 , max( x[:, 1::3].max().item() , xtarget[1::3].max().item()) + 1 ] zbounds = [ min( x[:, 2::3].min().item() , xtarget[2::3].min().item()) - 1 , max( x[:, 2::3].max().item() , xtarget[2::3].max().item()) + 1 ] xls = torch.linspace(*xbounds, 50) yls = torch.linspace(*ybounds, 50) gridPts = torch.stack(torch.meshgrid(xls, yls)).to(x.dtype).to(x.dtype).to(x.device) gridShape = gridPts.shape[1:] gridPts = gridPts.reshape(2, -1).t() # setup example initial z z0 = pad(gridPts, [0, 1, 0, 0], value=-1.5) z0 = pad(z0, [0, 1, 0, 0], value=0.0) # make grid of subplots nCol = 2 nRow = 2 # fig = plt.figure(figsize=plt.figaspect(1.0)) # fig.set_size_inches(17, 10) # (14,10) # fig.suptitle(sTitle) ims = [] for n in range(nt): fig = plt.figure() fig.set_size_inches(17, 10) # positional movement/trajectory for place in [1,2,4]: # plot two angles of it ax = fig.add_subplot(nRow, nCol, place, projection='3d') ax.set_title('Flight Path') if prob.obstacle == 'blocks': shade = 0.4 # block 1 X, Y = np.meshgrid([-2, 2], [-0.5, 0.5]) ax.plot_surface(X, Y, 7 * np.ones((2,2)) , alpha=shade, color='gray') ax.plot_surface(X, Y, 0 * np.ones((2, 2)), alpha=shade, color='gray') X, Z = np.meshgrid([-2, 2], [0, 7]) ax.plot_surface(X, -0.5 * np.ones((2, 2)), Z, alpha=shade, color='gray') ax.plot_surface(X, 0.5 * np.ones((2, 2)), Z, alpha=shade, color='gray') Y, Z = np.meshgrid([-0.5, 0.5], [0, 7]) ax.plot_surface(-2 * np.ones((2, 2)), Y , Z, alpha=shade, color='gray') ax.plot_surface( 2 * np.ones((2, 2)), Y , Z, alpha=shade, color='gray') # block 2 X, Y = np.meshgrid([2, 4], [-1, 1]) ax.plot_surface(X, Y, 4 * np.ones((2,2)) , alpha=shade, color='gray') ax.plot_surface(X, Y, 0 * np.ones((2, 2)), alpha=shade, color='gray') X, Z = np.meshgrid([2, 4], [0, 4]) ax.plot_surface(X, -1 *
np.ones((2, 2))
numpy.ones
#!/usr/bin/env python from collections import namedtuple import matplotlib.pyplot as plt import numpy as np import scipy as sp from scipy import interpolate import cv2 as cv import spatialmath.base.argcheck as argcheck from machinevisiontoolbox.base import color, int_image, float_image, plot_histogram class ImageProcessingBaseMixin: """ Image processing basic operations on the Image class """ def int(self, intclass='uint8'): """ Convert image to integer type :param intclass: either 'uint8', or any integer class supported by np :type intclass: str :return: Image with integer pixel types :rtype: Image instance - ``IM.int()`` is a copy of image with pixels converted to unsigned 8-bit integer (uint8) elements in the range 0 to 255. - ``IM.int(intclass)`` as above but the output pixels are converted to the integer class ``intclass``. Example: .. runblock:: pycon >>> from machinevisiontoolbox import Image >>> im = Image('flowers1.png', dtype='float64') >>> print(im) >>> im_int = im.int() >>> print(im_int) .. note:: - Works for an image with arbitrary number of dimensions, eg. a color image or image sequence. - If the input image is floating point (single or double) the pixel values are scaled from an input range of [0,1] to a range spanning zero to the maximum positive value of the output integer class. - If the input image is an integer class then the pixels are cast to change type but not their value. :references: - Robotics, Vision & Control, Section 12.1, <NAME>, Springer 2011. """ out = [] for im in self: out.append(int_image(im.image, intclass)) return self.__class__(out) def float(self, floatclass='float32'): """ Convert image to float type :param floatclass: 'single', 'double', 'float32' [default], 'float64' :type floatclass: str :return: Image with floating point pixel types :rtype: Image instance - ``IM.float()`` is a copy of image with pixels converted to ``float32`` floating point values spanning the range 0 to 1. The input integer pixels are assumed to span the range 0 to the maximum value of their integer class. - ``IM.float(im, floatclass)`` as above but with floating-point pixel values belonging to the class ``floatclass``. Example: .. runblock:: pycon >>> im = Image('flowers1.png') >>> print(im) >>> im_float = im.float() >>> print(im_float) :references: - Robotics, Vision & Control, Section 12.1, <NAME>, Springer 2011. """ out = [] for im in self: out.append(float_image(im.image, floatclass)) return self.__class__(out) def mono(self, opt='r601'): """ Convert color image to monochrome :param opt: greyscale conversion option 'r601' [default] or 'r709' :type opt: string :return: Image with floating point pixel types :rtype: Image instance - ``IM.mono(im)`` is a greyscale equivalent of the color image ``im`` Example: .. runblock:: pycon >>> im = Image('flowers1.png') >>> print(im) >>> im_mono = im.mono() >>> print(im_mono) :references: - Robotics, Vision & Control, Section 10.1, <NAME>, Springer 2011. """ if not self.iscolor: return self out = [] for im in [img.bgr for img in self]: if opt == 'r601': new = 0.229 * im[:, :, 2] + 0.587 * im[:, :, 1] + \ 0.114 * im[:, :, 0] new = new.astype(im.dtype) elif opt == 'r709': new = 0.2126 * im[:, :, 0] + 0.7152 * im[:, :, 1] + \ 0.0722 * im[:, :, 2] new = new.astype(im.dtype) elif opt == 'value': # 'value' refers to the V in HSV space, not the CIE L* # the mean of the max and min of RGB values at each pixel mn = im[:, :, 2].min(axis=2) mx = im[:, :, 2].max(axis=2) # if np.issubdtype(im.dtype, np.float): # NOTE let's make a new predicate for Image if im.isfloat: new = 0.5 * (mn + mx) new = new.astype(im.dtype) else: z = (np.int32(mx) + np.int32(mn)) / 2 new = z.astype(im.dtype) else: raise TypeError('unknown type for opt') out.append(new) return self.__class__(out) def stretch(self, max=1, r=None): """ Image normalisation :param max: M pixels are mapped to the r 0 to M :type max: scalar integer or float :param r: r[0] is mapped to 0, r[1] is mapped to 1 (or max value) :type r: 2-tuple or numpy array (2,1) :return: Image with pixel values stretched to M across r :rtype: Image instance - ``IM.stretch()`` is a normalised image in which all pixel values lie in the r range of 0 to 1. That is, a linear mapping where the minimum value of ``im`` is mapped to 0 and the maximum value of ``im`` is mapped to 1. Example: .. runblock:: pycon .. note:: - For an integer image the result is a float image in the range 0 to max value :references: - Robotics, Vision & Control, Section 12.1, <NAME>, Springer 2011. """ # TODO make all infinity values = None? out = [] for im in [img.image for img in self]: if r is None: mn = np.min(im) mx = np.max(im) else: r = argcheck.getvector(r) mn = r[0] mx = r[1] zs = (im - mn) / (mx - mn) * max if r is not None: zs = np.maximum(0, np.minimum(max, zs)) out.append(zs) return self.__class__(out) def thresh(self, t=None, opt='binary'): """ Image threshold :param t: threshold :type t: scalar :param opt: threshold option (see below) :type opt: string :return imt: Image thresholded binary image :rtype imt: Image instance :return: threshold if opt is otsu or triangle :rtype: list of scalars - ``IM.thresh()`` uses Otsu's method for thresholding a greyscale image. - ``IM.thresh(t)`` as above but the threshold ``t`` is specified. - ``IM.thresh(t, opt)`` as above but the threshold option is specified. See opencv threshold types for threshold options https://docs.opencv.org/4.2.0/d7/d1b/group__imgproc__ misc.html#gaa9e58d2860d4afa658ef70a9b1115576 Example: .. runblock:: pycon :options: - 'binary' # TODO consider the LaTeX formatting of equations - 'binary_inv' - 'trunc' - 'tozero' - 'tozero_inv' - 'otsu' - 'triangle' .. note:: - Converts a color image to greyscale. - For a uint8 class image the slider range is 0 to 255. - For a floating point class image the slider range is 0 to 1.0 """ # dictionary of threshold options from OpenCV threshopt = { 'binary': cv.THRESH_BINARY, 'binary_inv': cv.THRESH_BINARY_INV, 'trunc': cv.THRESH_TRUNC, 'tozero': cv.THRESH_TOZERO, 'tozero_inv': cv.THRESH_TOZERO_INV, 'otsu': cv.THRESH_OTSU, 'triangle': cv.THRESH_TRIANGLE } if t is not None: if not argcheck.isscalar(t): raise ValueError(t, 't must be a scalar') else: # if no threshold is specified, we assume to use Otsu's method print('No threshold specified. Applying Otsu''s method.') opt = 'otsu' # ensure mono images if self.iscolor: imono = self.mono() else: imono = self out_t = [] out_imt = [] for im in [img.image for img in imono]: # for image int class, maxval = max of int class # for image float class, maxval = 1 if np.issubdtype(im.dtype, np.integer): maxval = np.iinfo(im.dtype).max else: # float image, [0, 1] range maxval = 1.0 threshvalue, imt = cv.threshold(im, t, maxval, threshopt[opt]) out_t.append(threshvalue) out_imt.append(imt) if opt == 'otsu' or opt == 'triangle': return self.__class__(out_imt), out_t else: return self.__class__(out_imt) def otsu(self, levels=256, valley=None): """ Otsu threshold selection :return t: Otsu's threshold :rtype t: float :return imt: Image thresholded to a binary image :rtype imt: Image instance - ``otsu(im)`` is an optimal threshold for binarizing an image with a bimodal intensity histogram. ``t`` is a scalar threshold that maximizes the variance between the classes of pixels below and above the thresold ``t``. Example:: .. runblock:: pycon .. note:: - Converts a color image to greyscale. :references: - A Threshold Selection Method from Gray-Level Histograms, N. Otsu. IEEE Trans. Systems, Man and Cybernetics Vol SMC-9(1), Jan 1979, pp 62-66. - An improved method for image thresholding on the valley-emphasis method. <NAME>, <NAME> etal. Signal and Info Proc. Assocn. Annual Summit and Conf (APSIPA). 2013. pp1-4 """ # mvt-mat has options on levels and valleys, which Opencv does not have # TODO best option is likely just to code the function itself, with # default option of simply calling OpenCV's Otsu implementation im = self.mono() if (valley is None): imt, t = im.thresh(opt='otsu') else: raise ValueError(valley, 'not implemented yet') # TODO implement otsu.m # TODO levels currently ignored return imt, t def nonzero(self): return np.nonzero(self.image) def meshgrid(self, step=1): """ Domain matrices for image :param a1: array input 1 :type a1: numpy array :param a2: array input 2 :type a2: numpy array :return u: domain of image, horizontal :rtype u: numpy array :return v: domain of image, vertical :rtype v: numpy array - ``IM.imeshgrid()`` are matrices that describe the domain of image ``im (h,w)`` and are each ``(h,w)``. These matrices are used for the evaluation of functions over the image. The element ``u(r,c) = c`` and ``v(r,c) = r``. - ``IM.imeshgrid(w, h)`` as above but the domain is ``(w,h)``. - ``IM.imeshgrid(s)`` as above but the domain is described by ``s`` which can be a scalar ``(s,s)`` or a 2-vector ``s=[w,h]``. Example: .. runblock:: pycon """ # TODO too complex, simplify # Use cases # image.meshgrid() spans image # image.meshgrid(step=N) spans image with step # if not (argcheck.isvector(a1) or isinstance(a1, np.ndarray) # or argcheck.isscalar(a1) or isinstance(a1, self.__class__)): # raise ValueError( # a1, 'a1 must be an Image, matrix, vector, or scalar') # if a2 is not None and (not (argcheck.isvector(a2) or # isinstance(a2, np.ndarray) or # argcheck.isscalar(a2) or # isinstance(a2, self.__class__))): # raise ValueError( # a2, 'a2 must be Image, matrix, vector, scalar or None') # if isinstance(a1, self.__class__): # a1 = a1.image # if isinstance(a2, self.__class__): # a2 = a2.image # if a2 is None: # if a1.ndim <= 1 and len(a1) == 1: # # if a1 is a single number # # we specify a size for a square output image # ai = np.arange(0, a1) # u, v = np.meshgrid(ai, ai) # elif a1.ndim <= 1 and len(a1) == 2: # # if a1 is a 2-vector # # we specify a size for a rectangular output image (w, h) # a10 = np.arange(0, a1[0]) # a11 = np.arange(0, a1[1]) # u, v = np.meshgrid(a10, a11) # elif (a1.ndim >= 2): # and (a1.shape[2] > 2): # u, v = np.meshgrid(np.arange(0, a1.shape[1]), # np.arange(0, a1.shape[0])) # else: # raise ValueError(a1, 'incorrect argument a1 shape') # else: # # we assume a1 and a2 are two scalars # u, v = np.meshgrid(np.arange(0, a1), np.arange(0, a2)) u = np.arange(0, self.width, step) v = np.arange(0, self.height, step) return np.meshgrid(v, u, indexing='ij') def hist(self, nbins=256, opt=None): """ Image histogram :param nbins: number of bins for histogram :type nbins: integer :param opt: histogram option :type opt: string :return hist: histogram h as a column vector, and corresponding bins x, cdf and normcdf :rtype hist: collections.namedtuple - ``IM.hist()`` is the histogram of intensities for image as a vector. For an image with multiple planes, the histogram of each plane is given in a separate column. Additionally, the cumulative histogram and normalized cumulative histogram, whose maximum value is one, are computed. - ``IM.hist(nbins)`` as above with the number of bins specified - ``IM.hist(opt)`` as above with histogram options specified :options: - 'sorted' histogram but with occurrence sorted in descending magnitude order. Bin coordinates X reflect this sorting. Example: .. runblock:: pycon .. note:: - The bins spans the greylevel range 0-255. - For a floating point image the histogram spans the greylevel range 0-1. - For floating point images all NaN and Inf values are first removed. - OpenCV CalcHist only works on floats up to 32 bit, images are automatically converted from float64 to float32 """ # check inputs optHist = ['sorted'] if opt is not None and opt not in optHist: raise ValueError(opt, 'opt is not a valid option') if self.isint: maxrange =
np.iinfo(self.dtype)
numpy.iinfo
def BSDriver(LoadCase): # BoundingSurface J2 with kinematic hardening # Written by <NAME>, Mar. 22 2019 # Copyright Arduino Computational Geomechanics Group # Ported into Python/Jupyter Notebook by <NAME>, Jul. 2019 # # # LoadCase: # 1 ... proportionally increasing strain # 2 ... cyclic strain # 3 ... proportionally increasing stress # 4 ... cyclic stress # # ====== LOADING CASES ================================================== import numpy as np from collections import namedtuple nPoints = 200 ## Switch for LoadCases: ## Pseudo-switch created by using python dictionary to hold LoadCase functions def case_one(): case_one.time = np.linspace(0,1,nPoints+1) case_one.strain = np.array([ 0.05, -0.015, -0.015, 0.000, 0.000, 0.000 ]).reshape(6,1) * case_one.time case_one.StressDriven = 0 return case_one def case_two(): nCycles = 3 omega = 0.15 case_two.time = np.linspace(0,nCycles*2*np.pi/omega,nCycles*nPoints+1); case_two.strain = np.array([ 0.00, -0.000, -0.000, 0.045, 0.000, 0.000 ]).reshape(6,1) * np.sin( omega*case_two.time ) case_two.StressDriven = 0 return case_two def case_three(): case_three.time = np.linspace(0,1,nPoints+1) case_three.stress = np.array([[0.100], [0.000], [0.000], [0.000], [0.000], [0.000]])*case_three.time + 0.0*np.array([1,1,1,0,0,0]).reshape(6,1)*np.ones( case_three.time.shape ) case_three.StressDriven = 1 return case_three def case_four(): nCycles = 3 omega = 0.15 case_four.time = np.linspace(0, nCycles*2*np.pi/omega, nCycles*nPoints+1) case_four.stress = np.array([[0.000], [0.000], [0.000], #.01, .03, -.01, .05, 0, -.02 [0.050], [0.000], [0.000]])*np.sin( omega*case_four.time ) + 0.0*np.array([1,1,1,0,0,0]).reshape(6,1)*np.ones( case_four.time.shape ) case_four.StressDriven = 1 return case_four case_switcher = { 1: case_one, 2: case_two, 3: case_three, 4: case_four } case = case_switcher.get(LoadCase, lambda: "Invalid LoadCase") case() #Runs the LoadCase function. Creates: case.time, case.strain | case.stress, case.StressDriven time, StressDriven = case.time, case.StressDriven if StressDriven: stress = case.stress strain = np.zeros((6,1)) #initialize empty 6x1 strain numpy array for stress-driven scenario else: strain = case.strain stress =
np.zeros((6,1))
numpy.zeros
'''Implements Neumann with the posibility to do batch learning''' import math import numpy as np from sklearn.base import BaseEstimator import torch.nn as nn import torch import torch.optim as optim from torch.optim.lr_scheduler import ReduceLROnPlateau from pytorchtools import EarlyStopping class Neumann(nn.Module): def __init__(self, n_features, depth, residual_connection, mlp_depth, init_type): super().__init__() self.depth = depth self.n_features = n_features self.residual_connection = residual_connection self.mlp_depth = mlp_depth self.relu = nn.ReLU() # Create the parameters of the network l_W = [torch.empty(n_features, n_features, dtype=torch.float) for _ in range(self.depth)] Wc = torch.empty(n_features, n_features, dtype=torch.float) beta = torch.empty(1*n_features, dtype=torch.float) mu = torch.empty(n_features, dtype=torch.float) b = torch.empty(1, dtype=torch.float) l_W_mlp = [torch.empty(n_features, 1*n_features, dtype=torch.float) for _ in range(mlp_depth)] l_b_mlp = [torch.empty(1*n_features, dtype=torch.float) for _ in range(mlp_depth)] # Initialize the parameters of the network if init_type == 'normal': for W in l_W: nn.init.xavier_normal_(W) nn.init.xavier_normal_(Wc) nn.init.normal_(beta) nn.init.normal_(mu) nn.init.normal_(b) for W in l_W_mlp: nn.init.xavier_normal_(W) for b_mlp in l_b_mlp: nn.init.normal_(b_mlp) elif init_type == 'uniform': bound = 1 / math.sqrt(n_features) for W in l_W: nn.init.kaiming_uniform_(W, a=math.sqrt(5)) nn.init.kaiming_uniform_(Wc, a=math.sqrt(5)) nn.init.uniform_(beta, -bound, bound) nn.init.uniform_(mu, -bound, bound) nn.init.normal_(b) for W in l_W_mlp: nn.init.kaiming_uniform_(W, a=math.sqrt(5)) for b_mlp in l_b_mlp: nn.init.uniform_(b_mlp, -bound, bound) # Make tensors learnable parameters self.l_W = [torch.nn.Parameter(W) for W in l_W] for i, W in enumerate(self.l_W): self.register_parameter('W_{}'.format(i), W) self.Wc = torch.nn.Parameter(Wc) self.beta = torch.nn.Parameter(beta) self.mu = torch.nn.Parameter(mu) self.b = torch.nn.Parameter(b) self.l_W_mlp = [torch.nn.Parameter(W) for W in l_W_mlp] for i, W in enumerate(self.l_W_mlp): self.register_parameter('W_mlp_{}'.format(i), W) self.l_b_mlp = [torch.nn.Parameter(b) for b in l_b_mlp] for i, b in enumerate(self.l_b_mlp): self.register_parameter('b_mlp_{}'.format(i), b) def forward(self, x, m, phase='train'): """ Parameters: ---------- x: tensor, shape (batch_size, n_features) The input data imputed by 0. m: tensor, shape (batch_size, n_features) The missingness indicator (0 if observed and 1 if missing). """ h0 = x + m*self.mu h = x - (1-m)*self.mu h_res = x - (1-m)*self.mu if len(self.l_W) > 0: S0 = self.l_W[0] h = torch.matmul(h, S0)*(1-m) for W in self.l_W[1:self.depth]: h = torch.matmul(h, W)*(1-m) if self.residual_connection: h += h_res h = torch.matmul(h, self.Wc)*m + h0 if self.mlp_depth > 0: for W, b in zip(self.l_W_mlp, self.l_b_mlp): h = torch.matmul(h, W) + b h = self.relu(h) y = torch.matmul(h, self.beta) y = y + self.b return y class Neumann_mlp(BaseEstimator): """The Neumann neural network Parameters ---------- depth: int The number of Neumann iterations. Note that the total depth of the Neumann network will be `depth`+1 because of W_{mix}. n_epochs: int The maximum number of epochs. batch_size: int lr: float The learning rate. early_stopping: boolean If True, early stopping is used based on the validaton set, with a patience of 15 epochs. residual_connection: boolean If True, the residual connection of the Neumann network are implemented. mlp_depth: int The depth of the MLP stacked on top of the Neuman iterations. init_type: str The type of initialisation for the parameters. Either 'normal' or 'uniform'. verbose: boolean """ def __init__(self, depth, n_epochs, batch_size, lr, early_stopping=False, residual_connection=False, mlp_depth=0, init_type='normal', verbose=False): self.depth = depth self.n_epochs = n_epochs self.batch_size = batch_size self.lr = lr self.early_stop = early_stopping self.residual_connection = residual_connection self.mlp_depth = mlp_depth self.init_type = init_type self.verbose = verbose self.r2_train = [] self.mse_train = [] self.r2_val = [] self.mse_val = [] def fit(self, X, y, X_val=None, y_val=None): M = np.isnan(X) X = np.nan_to_num(X) n_samples, n_features = X.shape if X_val is not None: M_val = np.isnan(X_val) X_val = np.nan_to_num(X_val) M = torch.as_tensor(M, dtype=torch.float) X = torch.as_tensor(X, dtype=torch.float) y = torch.as_tensor(y, dtype=torch.float) if X_val is not None: M_val = torch.as_tensor(M_val, dtype=torch.float) X_val = torch.as_tensor(X_val, dtype=torch.float) y_val = torch.as_tensor(y_val, dtype=torch.float) self.net = Neumann(n_features=n_features, depth=self.depth, residual_connection=self.residual_connection, mlp_depth=self.mlp_depth, init_type=self.init_type) self.optimizer = optim.SGD(self.net.parameters(), lr=self.lr) self.scheduler = ReduceLROnPlateau( self.optimizer, mode='min', factor=0.2, patience=2, threshold=1e-4) if self.early_stop and X_val is not None: early_stopping = EarlyStopping(verbose=self.verbose) running_loss = np.inf criterion = nn.MSELoss() # Train the network for i_epoch in range(self.n_epochs): if self.verbose: print("epoch nb {}".format(i_epoch)) # Shuffle tensors to have different batches at each epoch ind = torch.randperm(n_samples) X = X[ind] M = M[ind] y = y[ind] xx = torch.split(X, split_size_or_sections=self.batch_size, dim=0) mm = torch.split(M, split_size_or_sections=self.batch_size, dim=0) yy = torch.split(y, split_size_or_sections=self.batch_size, dim=0) self.scheduler.step(running_loss/len(xx)) param_group = self.optimizer.param_groups[0] lr = param_group['lr'] if self.verbose: print("Current learning rate is: {}".format(lr)) if lr < 5e-6: break running_loss = 0 for bx, bm, by in zip(xx, mm, yy): self.optimizer.zero_grad() y_hat = self.net(bx, bm) loss = criterion(y_hat, by) running_loss += loss.item() loss.backward() # Take gradient step self.optimizer.step() # Evaluate the train loss with torch.no_grad(): y_hat = self.net(X, M, phase='test') loss = criterion(y_hat, y) mse = loss.item() self.mse_train.append(mse) var = ((y - y.mean())**2).mean() r2 = 1 - mse/var self.r2_train.append(r2) if self.verbose: print("Train loss - r2: {}, mse: {}".format(r2, running_loss/len(xx))) # Evaluate the validation loss if X_val is not None: with torch.no_grad(): y_hat = self.net(X_val, M_val, phase='test') loss_val = criterion(y_hat, y_val) mse_val = loss_val.item() self.mse_val.append(mse_val) var = ((y_val - y_val.mean())**2).mean() r2_val = 1 - mse_val/var self.r2_val.append(r2_val) if self.verbose: print("Validation loss is: {}".format(r2_val)) if self.early_stop: early_stopping(mse_val, self.net) if early_stopping.early_stop: if self.verbose: print("Early stopping") break # load the last checkpoint with the best model if self.early_stop and early_stopping.early_stop: self.net.load_state_dict(early_stopping.checkpoint) def predict(self, X): M = np.isnan(X) X =
np.nan_to_num(X)
numpy.nan_to_num
import copy import itertools import logging import math import numpy as np from SS_dataset import SSIterator logger = logging.getLogger(__name__) def add_random_variables_to_batch(state, rng, batch, prev_batch, evaluate_mode): """ This is a helper function, which adds random variables to a batch. We do it this way, because we want to avoid Theano's random sampling both to speed up and to avoid known Theano issues with sampling inside scan loops. The random variable 'ran_var_gaussian_constutterance' is sampled from a standard Gaussian distribution, which remains constant during each utterance (i.e. between a pair of end-of-utterance tokens). The random variable 'ran_var_uniform_constutterance' is sampled from a uniform distribution [0, 1], which remains constant during each utterance (i.e. between a pair of end-of-utterance tokens). When not in evaluate mode, the random vector 'ran_decoder_drop_mask' is also sampled. This variable represents the input tokens which are replaced by unk when given to the decoder RNN. It is required for the noise addition trick used by Bowman et al. (2015). """ # If none return none if not batch: return batch # Variables to store random vector sampled at the beginning of each utterance Ran_Var_Gaussian_ConstUtterance = np.zeros((batch['x'].shape[0], batch['x'].shape[1], state['latent_gaussian_per_utterance_dim']), dtype='float32') Ran_Var_Uniform_ConstUtterance = np.zeros((batch['x'].shape[0], batch['x'].shape[1], state['latent_piecewise_per_utterance_dim']), dtype='float32') # Go through each sample, find end-of-utterance indices and sample random variables for idx in range(batch['x'].shape[1]): # Find end-of-utterance indices eos_indices =
np.where(batch['x'][:, idx] == state['eos_sym'])
numpy.where
from __future__ import division from misc import data, eps, A_to_au, fs_to_au, call_name import textwrap import numpy as np class State(object): """ Class for BO states :param integer ndim: Dimension of space :param integer nat: Number of atoms """ def __init__(self, ndim, nat): # Initialize variables self.energy = 0. self.energy_old = 0. self.force = np.zeros((nat, ndim)) self.coef = 0. + 0.j self.multiplicity = 1 class Molecule(object): """ Class for a molecule object including State objects :param string geometry: A string containing atomic positions and velocities :param integer ndim: Dimension of space :param integer nstates: Number of BO states :param boolean l_qmmm: Use the QM/MM scheme :param integer natoms_mm: Number of atoms in the MM region :param integer ndof: Degrees of freedom (if model is False, the molecular DoF is given.) :param string unit_pos: Unit of atomic positions :param string unit_vel: Unit of atomic velocities :param double charge: Total charge of the system :param boolean l_model: Is the system a model system? """ def __init__(self, geometry, ndim=3, nstates=3, l_qmmm=False, natoms_mm=None, ndof=None, \ unit_pos='angs', unit_vel='au', charge=0., l_model=False): # Save name of Molecule class self.mol_type = self.__class__.__name__ # Initialize input values self.ndim = ndim self.nst = nstates self.l_model = l_model # Initialize geometry self.pos = [] self.vel = [] self.mass = [] self.symbols = [] self.read_geometry(geometry, unit_pos, unit_vel) # Initialize QM/MM method self.l_qmmm = l_qmmm self.nat_mm = natoms_mm if (self.l_qmmm): if (self.nat_mm == None): raise ValueError (f"( {self.mol_type}.{call_name()} ) Number of atoms in MM region is essential for QMMM! {self.nat_mm}") self.nat_qm = self.nat - self.nat_mm else: if (self.nat_mm != None): raise ValueError (f"( {self.mol_type}.{call_name()} ) Number of atoms in MM region is not necessary! {self.nat_mm}") self.nat_qm = self.nat # Initialize system charge and number of electrons if (not self.l_model): self.charge = charge self.get_nr_electrons() else: self.charge = 0. self.nelec = 0 # Initialize degrees of freedom if (self.l_model): if (ndof == None): self.ndof = self.nat * self.ndim else: self.ndof = ndof else: if (ndof == None): if (self.nat == 1): raise ValueError (f"( {self.mol_type}.{call_name()} ) Too small number of atoms! {self.nat}") elif (self.nat == 2): # Diatomic molecules self.ndof = 1 else: # Non-linear molecules self.ndof = self.ndim * self.nat - self.ndim * (self.ndim + 1) / 2 else: self.ndof = ndof # Initialize BO states self.states = [] for ist in range(self.nst): self.states.append(State(self.ndim, self.nat)) # Initialize couplings self.nacme = np.zeros((self.nst, self.nst)) self.nacme_old = np.zeros((self.nst, self.nst)) self.socme = np.zeros((self.nst, self.nst), dtype=np.complex_) self.socme_old = np.zeros((self.nst, self.nst), dtype=np.complex_) # self.laser_coup_me = np.zeros((self.nst, self.nst)) # Initialize other properties self.nac = np.zeros((self.nst, self.nst, self.nat_qm, self.ndim)) self.nac_old = np.zeros((self.nst, self.nst, self.nat_qm, self.ndim)) self.rho = np.zeros((self.nst, self.nst), dtype=np.complex_) # self.laser_coup = np.zeros((self.nst, self.nst, self.nat_qm, self.ndim)) # self.laser_coup_old = np.zeros((self.nst, self.nst, self.nat_qm, self.ndim)) self.ekin = 0. self.ekin_qm = 0. self.epot = 0. self.etot = 0. self.l_nacme = False # Initialize point charges for QM/MM calculations if (self.l_qmmm): self.mm_charge = np.zeros(self.nat_mm) def read_geometry(self, geometry, unit_pos, unit_vel): """ Routine to read the geometry in extended xyz format.\n Example:\n\n geometry = '''\n 2\n Hydrogen\n H 0.0 0.0 0.0 0.0 0.0 0.0\n H 0.0 0.0 0.8 0.0 0.0 0.0\n '''\n self.read_geometry(geometry) :param string geometry: Cartesian coordinates for position and initial velocity in the extended xyz format :param string unit_pos: Unit of position (A = angstrom, au = atomic unit [bohr]) :param string unit_vel: Unit of velocity (au = atomic unit, A/ps = angstrom per ps, A/fs = angstromm per fs) """ f = geometry.split('\n') # Read the number of atoms l_read_nr_atoms = False count_line = 0 for line_number, line in enumerate(f): llength = len(line.split()) if (not l_read_nr_atoms and llength == 0): # Skip the blank lines continue elif (count_line == 0 and llength == 1): # Read the number of atoms l_read_nr_atoms = True self.nat = int(line.split()[0]) count_line += 1 elif (count_line == 1): # Skip the comment line count_line += 1 else: # Read the positions and velocities if (len(line.split()) == 0): break assert (len(line.split()) == (1 + 2 * self.ndim)) self.symbols.append(line.split()[0]) self.mass.append(data[line.split()[0]]) self.pos.append(list(map(float, line.split()[1:(self.ndim + 1)]))) self.vel.append(list(map(float, line.split()[(self.ndim + 1):]))) count_line += 1 assert (self.nat == count_line - 2) self.symbols = np.array(self.symbols) self.mass = np.array(self.mass) # Conversion unit if (unit_pos == 'au'): fac_pos = 1. elif (unit_pos == 'angs'): fac_pos = A_to_au else: raise ValueError (f"( {self.mol_type}.{call_name()} ) Invalid unit for position! {unit_pos}") self.pos = np.array(self.pos) * fac_pos if (unit_vel == 'au'): fac_vel = 1. elif (unit_vel == 'angs/ps'): fac_vel = A_to_au / (1000.0 * fs_to_au) elif (unit_vel == 'angs/fs'): fac_vel = A_to_au / fs_to_au else: raise ValueError (f"( {self.mol_type}.{call_name()} ) Invalid unit for velocity! {unit_vel}") self.vel = np.array(self.vel) * fac_vel def adjust_nac(self): """ Adjust phase of nonadiabatic couplings """ for ist in range(self.nst): for jst in range(ist, self.nst): ovlp = 0. snac_old = 0. snac = 0. snac_old = np.sum(self.nac_old[ist, jst] ** 2) snac = np.sum(self.nac[ist, jst] ** 2) snac_old = np.sqrt(snac_old) snac = np.sqrt(snac) if (np.sqrt(snac * snac_old) < eps): ovlp = 1. else: dot_nac = 0. dot_nac = np.sum(self.nac_old[ist, jst] * self.nac[ist, jst]) ovlp = dot_nac / snac / snac_old if (ovlp < 0.): self.nac[ist, jst] = - self.nac[ist, jst] self.nac[jst, ist] = - self.nac[jst, ist] def get_nacme(self): """ Get NACME from nonadiabatic couplings and laser couplings """ for ist in range(self.nst): for jst in range(ist + 1, self.nst): self.nacme[ist, jst] = np.sum(self.nac[ist, jst] * self.vel[0:self.nat_qm]) # self.laser_coup_me [ist, jst] = np.sum(self.laser_coup[ist, jst]) # self.nacme[ist, jst] += self.laser_coup_me [ist, jst] self.nacme[jst, ist] = - self.nacme[ist, jst] def update_kinetic(self): """ Get kinetic energy """ self.ekin = np.sum(0.5 * self.mass * np.sum(self.vel ** 2, axis=1)) if (self.l_qmmm): # Calculate the kinetic energy for QM atoms self.ekin_qm = np.sum(0.5 * self.mass[0:self.nat_qm] * np.sum(self.vel[0:self.nat_qm] ** 2, axis=1)) else: self.ekin_qm = self.ekin def reset_bo(self, calc_coupling): """ Reset BO energies, forces and nonadiabatic couplings :param boolean calc_coupling: Check whether the dynamics includes coupling calculation """ for states in self.states: states.energy = 0. states.force = np.zeros((self.nat, self.ndim)) if (calc_coupling): if (self.l_nacme): self.nacme = np.zeros((self.nst, self.nst)) # self.laser_coup_me = np.zeros((self.nst,self.nst)) else: self.nac = np.zeros((self.nst, self.nst, self.nat_qm, self.ndim)) # self.laser_coup = np.zeros((self.nst, self.nst, self.nat_qm, self.ndim)) def backup_bo(self): """ Backup BO energies and nonadiabatic couplings """ for states in self.states: states.energy_old = states.energy self.nac_old =
np.copy(self.nac)
numpy.copy
# Copyright (c) 2003-2015 by <NAME> # # TreeCorr is free software: redistribution and use in source and binary forms, # with or without modification, are permitted provided that the following # conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions, and the disclaimer given in the accompanying LICENSE # file. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions, and the disclaimer given in the documentation # and/or other materials provided with the distribution. from __future__ import print_function import numpy import treecorr import os import fitsio from test_helper import get_script_name def test_binnedcorr3(): import math # Test some basic properties of the base class def check_arrays(nnn): numpy.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) numpy.testing.assert_almost_equal(nnn.ubin_size * nnn.nubins, nnn.max_u-nnn.min_u) numpy.testing.assert_almost_equal(nnn.vbin_size * nnn.nvbins, nnn.max_v-nnn.min_v) #print('logr = ',nnn.logr1d) numpy.testing.assert_equal(nnn.logr1d.shape, (nnn.nbins,) ) numpy.testing.assert_almost_equal(nnn.logr1d[0], math.log(nnn.min_sep) + 0.5*nnn.bin_size) numpy.testing.assert_almost_equal(nnn.logr1d[-1], math.log(nnn.max_sep) - 0.5*nnn.bin_size) numpy.testing.assert_equal(nnn.logr.shape, (nnn.nbins, nnn.nubins, nnn.nvbins) ) numpy.testing.assert_almost_equal(nnn.logr[:,0,0], nnn.logr1d) numpy.testing.assert_almost_equal(nnn.logr[:,-1,-1], nnn.logr1d) assert len(nnn.logr) == nnn.nbins #print('u = ',nnn.u1d) numpy.testing.assert_equal(nnn.u1d.shape, (nnn.nubins,) ) numpy.testing.assert_almost_equal(nnn.u1d[0], nnn.min_u + 0.5*nnn.ubin_size) numpy.testing.assert_almost_equal(nnn.u1d[-1], nnn.max_u - 0.5*nnn.ubin_size) numpy.testing.assert_equal(nnn.u.shape, (nnn.nbins, nnn.nubins, nnn.nvbins) ) numpy.testing.assert_almost_equal(nnn.u[0,:,0], nnn.u1d) numpy.testing.assert_almost_equal(nnn.u[-1,:,-1], nnn.u1d) #print('v = ',nnn.v1d) numpy.testing.assert_equal(nnn.v1d.shape, (nnn.nvbins,) ) numpy.testing.assert_almost_equal(nnn.v1d[0], nnn.min_v + 0.5*nnn.vbin_size) numpy.testing.assert_almost_equal(nnn.v1d[-1], nnn.max_v - 0.5*nnn.vbin_size) numpy.testing.assert_equal(nnn.v.shape, (nnn.nbins, nnn.nubins, nnn.nvbins) ) numpy.testing.assert_almost_equal(nnn.v[0,0,:], nnn.v1d) numpy.testing.assert_almost_equal(nnn.v[-1,-1,:], nnn.v1d) def check_defaultuv(nnn): assert nnn.min_u == 0. assert nnn.max_u == 1. assert nnn.nubins == numpy.ceil(1./nnn.bin_size) assert nnn.min_v == -1. assert nnn.max_v == 1. assert nnn.nvbins == 2.*numpy.ceil(1./nnn.bin_size) # Check the different ways to set up the binning: # Omit bin_size nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify min, max, n for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, min_u=0.2, max_u=0.9, nubins=12, min_v=-0.2, max_v=0.2, nvbins=4) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 assert nnn.min_u == 0.2 assert nnn.max_u == 0.9 assert nnn.nubins == 12 assert nnn.min_v == -0.2 assert nnn.max_v == 0.2 assert nnn.nvbins == 4 check_arrays(nnn) # Omit min_sep nnn = treecorr.NNNCorrelation(max_sep=20, nbins=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify max, n, bs for u,v too. nnn = treecorr.NNNCorrelation(max_sep=20, nbins=20, bin_size=0.1, max_u=0.9, nubins=3, ubin_size=0.05, max_v=0.2, nvbins=4, vbin_size=0.05) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.max_sep == 20. assert nnn.nbins == 20 assert nnn.ubin_size == 0.05 assert nnn.max_u == 0.9 assert nnn.nubins == 3 assert nnn.vbin_size == 0.05 assert nnn.max_v == 0.2 assert nnn.nvbins == 4 check_arrays(nnn) # Omit max_sep nnn = treecorr.NNNCorrelation(min_sep=5, nbins=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.min_sep == 5. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # Specify min, n, bs for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, nbins=20, bin_size=0.1, min_u=0.7, nubins=4, ubin_size=0.05, min_v=-0.2, nvbins=4, vbin_size=0.05) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.bin_size == 0.1 assert nnn.nbins == 20 assert nnn.min_u == 0.7 assert nnn.ubin_size == 0.05 assert nnn.nubins == 4 assert nnn.min_v == -0.2 assert nnn.vbin_size == 0.05 assert nnn.nvbins == 4 check_arrays(nnn) # Omit nbins nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.bin_size == 0.1 assert nnn.min_sep == 5. assert nnn.max_sep >= 20. # Expanded a bit. assert nnn.max_sep < 20. * numpy.exp(nnn.bin_size) check_defaultuv(nnn) check_arrays(nnn) # Specify min, max, bs for u,v too. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=-0.2, max_v=0.2, vbin_size=0.07) #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) assert nnn.min_sep == 5. assert nnn.max_sep >= 20. assert nnn.max_sep < 20. * numpy.exp(nnn.bin_size) assert nnn.bin_size == 0.1 assert nnn.min_u <= 0.2 assert nnn.min_u >= 0.2 - nnn.ubin_size assert nnn.max_u == 0.9 assert nnn.ubin_size == 0.03 assert nnn.min_v <= -0.2 assert nnn.min_v >= -0.2 - nnn.vbin_size assert nnn.max_v >= 0.2 assert nnn.min_v <= 0.2 + nnn.vbin_size assert nnn.vbin_size == 0.07 check_arrays(nnn) # Check the use of sep_units # radians nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='radians') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) numpy.testing.assert_almost_equal(nnn.min_sep, 5.) numpy.testing.assert_almost_equal(nnn.max_sep, 20.) numpy.testing.assert_almost_equal(nnn._min_sep, 5.) numpy.testing.assert_almost_equal(nnn._max_sep, 20.) assert nnn.min_sep == 5. assert nnn.max_sep == 20. assert nnn.nbins == 20 check_defaultuv(nnn) check_arrays(nnn) # arcsec nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='arcsec') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) numpy.testing.assert_almost_equal(nnn.min_sep, 5.) numpy.testing.assert_almost_equal(nnn.max_sep, 20.) numpy.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/180/3600) numpy.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/180/3600) assert nnn.nbins == 20 numpy.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) # Note that logr is in the separation units, not radians. numpy.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) numpy.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # arcmin nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='arcmin') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) numpy.testing.assert_almost_equal(nnn.min_sep, 5.) numpy.testing.assert_almost_equal(nnn.max_sep, 20.) numpy.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/180/60) numpy.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/180/60) assert nnn.nbins == 20 numpy.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) numpy.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) numpy.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # degrees nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='degrees') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) numpy.testing.assert_almost_equal(nnn.min_sep, 5.) numpy.testing.assert_almost_equal(nnn.max_sep, 20.) numpy.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/180) numpy.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/180) assert nnn.nbins == 20 numpy.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) numpy.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) numpy.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # hours nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, nbins=20, sep_units='hours') #print(nnn.min_sep,nnn.max_sep,nnn.bin_size,nnn.nbins) #print(nnn.min_u,nnn.max_u,nnn.ubin_size,nnn.nubins) #print(nnn.min_v,nnn.max_v,nnn.vbin_size,nnn.nvbins) numpy.testing.assert_almost_equal(nnn.min_sep, 5.) numpy.testing.assert_almost_equal(nnn.max_sep, 20.) numpy.testing.assert_almost_equal(nnn._min_sep, 5. * math.pi/12) numpy.testing.assert_almost_equal(nnn._max_sep, 20. * math.pi/12) assert nnn.nbins == 20 numpy.testing.assert_almost_equal(nnn.bin_size * nnn.nbins, math.log(nnn.max_sep/nnn.min_sep)) numpy.testing.assert_almost_equal(nnn.logr[0], math.log(5) + 0.5*nnn.bin_size) numpy.testing.assert_almost_equal(nnn.logr[-1], math.log(20) - 0.5*nnn.bin_size) assert len(nnn.logr) == nnn.nbins check_defaultuv(nnn) # Check bin_slop # Start with default behavior nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=-0.2, max_v=0.2, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 1.0 assert nnn.bin_size == 0.1 assert nnn.ubin_size == 0.03 assert nnn.vbin_size == 0.07 numpy.testing.assert_almost_equal(nnn.b, 0.1) numpy.testing.assert_almost_equal(nnn.bu, 0.03) numpy.testing.assert_almost_equal(nnn.bv, 0.07) # Explicitly set bin_slop=1.0 does the same thing. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, bin_slop=1.0, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=-0.2, max_v=0.2, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 1.0 assert nnn.bin_size == 0.1 assert nnn.ubin_size == 0.03 assert nnn.vbin_size == 0.07 numpy.testing.assert_almost_equal(nnn.b, 0.1) numpy.testing.assert_almost_equal(nnn.bu, 0.03) numpy.testing.assert_almost_equal(nnn.bv, 0.07) # Use a smaller bin_slop nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, bin_slop=0.2, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=-0.2, max_v=0.2, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 0.2 assert nnn.bin_size == 0.1 assert nnn.ubin_size == 0.03 assert nnn.vbin_size == 0.07 numpy.testing.assert_almost_equal(nnn.b, 0.02) numpy.testing.assert_almost_equal(nnn.bu, 0.006) numpy.testing.assert_almost_equal(nnn.bv, 0.014) # Use bin_slop == 0 nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, bin_slop=0.0, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=-0.2, max_v=0.2, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 0.0 assert nnn.bin_size == 0.1 assert nnn.ubin_size == 0.03 assert nnn.vbin_size == 0.07 numpy.testing.assert_almost_equal(nnn.b, 0.0) numpy.testing.assert_almost_equal(nnn.bu, 0.0) numpy.testing.assert_almost_equal(nnn.bv, 0.0) # Bigger bin_slop nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.1, bin_slop=2.0, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=-0.2, max_v=0.2, vbin_size=0.07, verbose=0) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 2.0 assert nnn.bin_size == 0.1 assert nnn.ubin_size == 0.03 assert nnn.vbin_size == 0.07 numpy.testing.assert_almost_equal(nnn.b, 0.2) numpy.testing.assert_almost_equal(nnn.bu, 0.06) numpy.testing.assert_almost_equal(nnn.bv, 0.14) # With bin_size > 0.1, explicit bin_slop=1.0 is accepted. nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.4, bin_slop=1.0, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=-0.2, max_v=0.2, vbin_size=0.07, verbose=0) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_slop == 1.0 assert nnn.bin_size == 0.4 assert nnn.ubin_size == 0.03 assert nnn.vbin_size == 0.07 numpy.testing.assert_almost_equal(nnn.b, 0.4) numpy.testing.assert_almost_equal(nnn.bu, 0.03) numpy.testing.assert_almost_equal(nnn.bv, 0.07) # But implicit bin_slop is reduced so that b = 0.1 nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.4, min_u=0.2, max_u=0.9, ubin_size=0.03, min_v=-0.2, max_v=0.2, vbin_size=0.07) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_size == 0.4 assert nnn.ubin_size == 0.03 assert nnn.vbin_size == 0.07 numpy.testing.assert_almost_equal(nnn.b, 0.1) numpy.testing.assert_almost_equal(nnn.bu, 0.03) numpy.testing.assert_almost_equal(nnn.bv, 0.07) numpy.testing.assert_almost_equal(nnn.bin_slop, 0.25) # Separately for each of the three parameters nnn = treecorr.NNNCorrelation(min_sep=5, max_sep=20, bin_size=0.05, min_u=0.2, max_u=0.9, ubin_size=0.3, min_v=-0.2, max_v=0.2, vbin_size=0.17) #print(nnn.bin_size,nnn.bin_slop,nnn.b) #print(nnn.ubin_size,nnn.bu) #print(nnn.vbin_size,nnn.bv) assert nnn.bin_size == 0.05 assert nnn.ubin_size == 0.3 assert nnn.vbin_size == 0.17 numpy.testing.assert_almost_equal(nnn.b, 0.05) numpy.testing.assert_almost_equal(nnn.bu, 0.1) numpy.testing.assert_almost_equal(nnn.bv, 0.1) numpy.testing.assert_almost_equal(nnn.bin_slop, 1.0) # The stored bin_slop is just for lnr def is_ccw(x1,y1, x2,y2, x3,y3): # Calculate the cross product of 1->2 with 1->3 x2 -= x1 x3 -= x1 y2 -= y1 y3 -= y1 return x2*y3-x3*y2 > 0. def test_direct_count_auto(): # If the catalogs are small enough, we can do a direct count of the number of triangles # to see if comes out right. This should exactly match the treecorr code if bin_slop=0. ngal = 100 s = 10. numpy.random.seed(8675309) x = numpy.random.normal(0,s, (ngal,) ) y = numpy.random.normal(0,s, (ngal,) ) cat = treecorr.Catalog(x=x, y=y) min_sep = 1. max_sep = 50. nbins = 50 min_u = 0.13 max_u = 0.89 nubins = 10 min_v = -0.83 max_v = 0.59 nvbins = 20 ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0., verbose=1) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) log_min_sep = numpy.log(min_sep) log_max_sep = numpy.log(max_sep) true_ntri = numpy.zeros( (nbins, nubins, nvbins) ) bin_size = (log_max_sep - log_min_sep) / nbins ubin_size = (max_u-min_u) / nubins vbin_size = (max_v-min_v) / nvbins for i in range(ngal): for j in range(i+1,ngal): for k in range(j+1,ngal): dij = numpy.sqrt((x[i]-x[j])**2 + (y[i]-y[j])**2) dik = numpy.sqrt((x[i]-x[k])**2 + (y[i]-y[k])**2) djk = numpy.sqrt((x[j]-x[k])**2 + (y[j]-y[k])**2) if dij == 0.: continue if dik == 0.: continue if djk == 0.: continue ccw = True if dij < dik: if dik < djk: d3 = dij; d2 = dik; d1 = djk; ccw = is_ccw(x[i],y[i],x[j],y[j],x[k],y[k]) elif dij < djk: d3 = dij; d2 = djk; d1 = dik; ccw = is_ccw(x[j],y[j],x[i],y[i],x[k],y[k]) else: d3 = djk; d2 = dij; d1 = dik; ccw = is_ccw(x[j],y[j],x[k],y[k],x[i],y[i]) else: if dij < djk: d3 = dik; d2 = dij; d1 = djk; ccw = is_ccw(x[i],y[i],x[k],y[k],x[j],y[j]) elif dik < djk: d3 = dik; d2 = djk; d1 = dij; ccw = is_ccw(x[k],y[k],x[i],y[i],x[j],y[j]) else: d3 = djk; d2 = dik; d1 = dij; ccw = is_ccw(x[k],y[k],x[j],y[j],x[i],y[i]) r = d2 u = d3/d2 v = (d1-d2)/d3 if not ccw: v = -v kr = int(numpy.floor( (numpy.log(r)-log_min_sep) / bin_size )) ku = int(numpy.floor( (u-min_u) / ubin_size )) kv = int(numpy.floor( (v-min_v) / vbin_size )) if kr < 0: continue if kr >= nbins: continue if ku < 0: continue if ku >= nubins: continue if kv < 0: continue if kv >= nvbins: continue true_ntri[kr,ku,kv] += 1 #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # Repeat with binslop not precisely 0, since the code flow is different for bin_slop == 0. ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=1.e-16, verbose=1) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # And again with no top-level recursion ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=1.e-16, verbose=1, max_top=0) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # This should be equivalent to processing a cross correlation with each catalog being # the same thing. ddd.clear() ddd.process(cat,cat,cat) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) def test_direct_count_cross(): # If the catalogs are small enough, we can do a direct count of the number of triangles # to see if comes out right. This should exactly match the treecorr code if bin_slop=0. ngal = 100 s = 10. numpy.random.seed(8675309) x1 = numpy.random.normal(0,s, (ngal,) ) y1 = numpy.random.normal(0,s, (ngal,) ) cat1 = treecorr.Catalog(x=x1, y=y1) x2 = numpy.random.normal(0,s, (ngal,) ) y2 = numpy.random.normal(0,s, (ngal,) ) cat2 = treecorr.Catalog(x=x2, y=y2) x3 = numpy.random.normal(0,s, (ngal,) ) y3 = numpy.random.normal(0,s, (ngal,) ) cat3 = treecorr.Catalog(x=x3, y=y3) min_sep = 1. max_sep = 50. nbins = 50 min_u = 0.13 max_u = 0.89 nubins = 10 min_v = -0.83 max_v = 0.59 nvbins = 20 ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0., verbose=1) ddd.process(cat1, cat2, cat3) #print('ddd.ntri = ',ddd.ntri) log_min_sep = numpy.log(min_sep) log_max_sep = numpy.log(max_sep) true_ntri = numpy.zeros( (nbins, nubins, nvbins) ) bin_size = (log_max_sep - log_min_sep) / nbins ubin_size = (max_u-min_u) / nubins vbin_size = (max_v-min_v) / nvbins for i in range(ngal): for j in range(ngal): for k in range(ngal): d3 = numpy.sqrt((x1[i]-x2[j])**2 + (y1[i]-y2[j])**2) d2 = numpy.sqrt((x1[i]-x3[k])**2 + (y1[i]-y3[k])**2) d1 = numpy.sqrt((x2[j]-x3[k])**2 + (y2[j]-y3[k])**2) if d3 == 0.: continue if d2 == 0.: continue if d1 == 0.: continue if d1 < d2 or d2 < d3: continue; ccw = is_ccw(x1[i],y1[i],x2[j],y2[j],x3[k],y3[k]) r = d2 u = d3/d2 v = (d1-d2)/d3 if not ccw: v = -v kr = int(numpy.floor( (numpy.log(r)-log_min_sep) / bin_size )) ku = int(numpy.floor( (u-min_u) / ubin_size )) kv = int(numpy.floor( (v-min_v) / vbin_size )) if kr < 0: continue if kr >= nbins: continue if ku < 0: continue if ku >= nubins: continue if kv < 0: continue if kv >= nvbins: continue true_ntri[kr,ku,kv] += 1 #print('true_ntri = ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # Repeat with binslop not precisely 0, since the code flow is different for bin_slop == 0. ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=1.e-16, verbose=1) ddd.process(cat1, cat2, cat3) #print('binslop > 0: ddd.ntri = ',ddd.ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # And again with no top-level recursion ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=1.e-16, verbose=1, max_top=0) ddd.process(cat1, cat2, cat3) #print('max_top = 0: ddd.ntri = ',ddd.ntri) #print('true_ntri = ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) def test_direct_partial(): # Test the two ways to only use parts of a catalog: ngal = 200 s = 10. numpy.random.seed(8675309) x1 = numpy.random.normal(0,s, (ngal,) ) y1 = numpy.random.normal(0,s, (ngal,) ) cat1a = treecorr.Catalog(x=x1, y=y1, first_row=28, last_row=144) x2 = numpy.random.normal(0,s, (ngal,) ) y2 = numpy.random.normal(0,s, (ngal,) ) cat2a = treecorr.Catalog(x=x2, y=y2, first_row=48, last_row=129) x3 = numpy.random.normal(0,s, (ngal,) ) y3 = numpy.random.normal(0,s, (ngal,) ) cat3a = treecorr.Catalog(x=x3, y=y3, first_row=82, last_row=167) min_sep = 1. max_sep = 50. nbins = 50 min_u = 0.13 max_u = 0.89 nubins = 10 min_v = -0.83 max_v = 0.59 nvbins = 20 ddda = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0.) ddda.process(cat1a, cat2a, cat3a) #print('ddda.ntri = ',ddda.ntri) log_min_sep = numpy.log(min_sep) log_max_sep = numpy.log(max_sep) true_ntri = numpy.zeros( (nbins, nubins, nvbins) ) bin_size = (log_max_sep - log_min_sep) / nbins ubin_size = (max_u-min_u) / nubins vbin_size = (max_v-min_v) / nvbins for i in range(27,144): for j in range(47,129): for k in range(81,167): d3 = numpy.sqrt((x1[i]-x2[j])**2 + (y1[i]-y2[j])**2) d2 = numpy.sqrt((x1[i]-x3[k])**2 + (y1[i]-y3[k])**2) d1 = numpy.sqrt((x2[j]-x3[k])**2 + (y2[j]-y3[k])**2) if d3 == 0.: continue if d2 == 0.: continue if d1 == 0.: continue if d1 < d2 or d2 < d3: continue; ccw = is_ccw(x1[i],y1[i],x2[j],y2[j],x3[k],y3[k]) r = d2 u = d3/d2 v = (d1-d2)/d3 if not ccw: v = -v kr = int(numpy.floor( (numpy.log(r)-log_min_sep) / bin_size )) ku = int(numpy.floor( (u-min_u) / ubin_size )) kv = int(numpy.floor( (v-min_v) / vbin_size )) if kr < 0: continue if kr >= nbins: continue if ku < 0: continue if ku >= nubins: continue if kv < 0: continue if kv >= nvbins: continue true_ntri[kr,ku,kv] += 1 #print('true_ntri = ',true_ntri) #print('diff = ',ddda.ntri - true_ntri) numpy.testing.assert_array_equal(ddda.ntri, true_ntri) # Now check that we get the same thing with all the points, but with w=0 for the ones # we don't want. w1 = numpy.zeros(ngal) w1[27:144] = 1. w2 = numpy.zeros(ngal) w2[47:129] = 1. w3 = numpy.zeros(ngal) w3[81:167] = 1. cat1b = treecorr.Catalog(x=x1, y=y1, w=w1) cat2b = treecorr.Catalog(x=x2, y=y2, w=w2) cat3b = treecorr.Catalog(x=x3, y=y3, w=w3) dddb = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0.) dddb.process(cat1b, cat2b, cat3b) #print('dddb.ntri = ',dddb.ntri) #print('diff = ',dddb.ntri - true_ntri) numpy.testing.assert_array_equal(dddb.ntri, true_ntri) def is_ccw_3d(x1,y1,z1, x2,y2,z2, x3,y3,z3): # Calculate the cross product of 1->2 with 1->3 x2 -= x1 x3 -= x1 y2 -= y1 y3 -= y1 z2 -= z1 z3 -= z1 # The cross product: x = y2*z3-y3*z2 y = z2*x3-z3*x2 z = x2*y3-x3*y2 # ccw if the cross product is in the opposite direction of (x1,y1,z1) from (0,0,0) return x*x1 + y*y1 + z*z1 < 0. def test_direct_3d_auto(): # This is the same as the above test, but using the 3d correlations ngal = 100 s = 10. numpy.random.seed(8675309) x = numpy.random.normal(312, s, (ngal,) ) y = numpy.random.normal(728, s, (ngal,) ) z = numpy.random.normal(-932, s, (ngal,) ) r = numpy.sqrt( x*x + y*y + z*z ) dec = numpy.arcsin(z/r) ra = numpy.arctan2(y,x) cat = treecorr.Catalog(ra=ra, dec=dec, r=r, ra_units='rad', dec_units='rad') min_sep = 1. max_sep = 50. nbins = 50 min_u = 0.13 max_u = 0.89 nubins = 10 min_v = -0.83 max_v = 0.59 nvbins = 20 ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0., verbose=1) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) log_min_sep = numpy.log(min_sep) log_max_sep = numpy.log(max_sep) true_ntri = numpy.zeros( (nbins, nubins, nvbins) ) bin_size = (log_max_sep - log_min_sep) / nbins ubin_size = (max_u-min_u) / nubins vbin_size = (max_v-min_v) / nvbins for i in range(ngal): for j in range(i+1,ngal): for k in range(j+1,ngal): dij = numpy.sqrt((x[i]-x[j])**2 + (y[i]-y[j])**2 + (z[i]-z[j])**2) dik = numpy.sqrt((x[i]-x[k])**2 + (y[i]-y[k])**2 + (z[i]-z[k])**2) djk = numpy.sqrt((x[j]-x[k])**2 + (y[j]-y[k])**2 + (z[j]-z[k])**2) if dij == 0.: continue if dik == 0.: continue if djk == 0.: continue ccw = True if dij < dik: if dik < djk: d3 = dij; d2 = dik; d1 = djk; ccw = is_ccw_3d(x[i],y[i],z[i],x[j],y[j],z[j],x[k],y[k],z[k]) elif dij < djk: d3 = dij; d2 = djk; d1 = dik; ccw = is_ccw_3d(x[j],y[j],z[j],x[i],y[i],z[i],x[k],y[k],z[k]) else: d3 = djk; d2 = dij; d1 = dik; ccw = is_ccw_3d(x[j],y[j],z[j],x[k],y[k],z[k],x[i],y[i],z[i]) else: if dij < djk: d3 = dik; d2 = dij; d1 = djk; ccw = is_ccw_3d(x[i],y[i],z[i],x[k],y[k],z[k],x[j],y[j],z[j]) elif dik < djk: d3 = dik; d2 = djk; d1 = dij; ccw = is_ccw_3d(x[k],y[k],z[k],x[i],y[i],z[i],x[j],y[j],z[j]) else: d3 = djk; d2 = dik; d1 = dij; ccw = is_ccw_3d(x[k],y[k],z[k],x[j],y[j],z[j],x[i],y[i],z[i]) r = d2 u = d3/d2 v = (d1-d2)/d3 if not ccw: v = -v kr = int(numpy.floor( (numpy.log(r)-log_min_sep) / bin_size )) ku = int(numpy.floor( (u-min_u) / ubin_size )) kv = int(numpy.floor( (v-min_v) / vbin_size )) if kr < 0: continue if kr >= nbins: continue if ku < 0: continue if ku >= nubins: continue if kv < 0: continue if kv >= nvbins: continue true_ntri[kr,ku,kv] += 1 #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # Repeat with binslop not precisely 0, since the code flow is different for bin_slop == 0. ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=1.e-16, verbose=1) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # And again with no top-level recursion ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=1.e-16, verbose=1, max_top=0) ddd.process(cat) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # And compare to the cross correlation ddd.clear() ddd.process(cat,cat,cat) #print('ddd.ntri = ',ddd.ntri) #print('true_ntri => ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # Also compare to using x,y,z rather than ra,dec,r cat = treecorr.Catalog(x=x, y=y, z=z) ddd.process(cat) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) def test_direct_3d_cross(): # This is the same as the above test, but using the 3d correlations ngal = 100 s = 10. numpy.random.seed(8675309) x1 = numpy.random.normal(312, s, (ngal,) ) y1 = numpy.random.normal(728, s, (ngal,) ) z1 = numpy.random.normal(-932, s, (ngal,) ) r1 = numpy.sqrt( x1*x1 + y1*y1 + z1*z1 ) dec1 = numpy.arcsin(z1/r1) ra1 = numpy.arctan2(y1,x1) cat1 = treecorr.Catalog(ra=ra1, dec=dec1, r=r1, ra_units='rad', dec_units='rad') x2 = numpy.random.normal(312, s, (ngal,) ) y2 = numpy.random.normal(728, s, (ngal,) ) z2 = numpy.random.normal(-932, s, (ngal,) ) r2 = numpy.sqrt( x2*x2 + y2*y2 + z2*z2 ) dec2 = numpy.arcsin(z2/r2) ra2 = numpy.arctan2(y2,x2) cat2 = treecorr.Catalog(ra=ra2, dec=dec2, r=r2, ra_units='rad', dec_units='rad') x3 = numpy.random.normal(312, s, (ngal,) ) y3 = numpy.random.normal(728, s, (ngal,) ) z3 = numpy.random.normal(-932, s, (ngal,) ) r3 = numpy.sqrt( x3*x3 + y3*y3 + z3*z3 ) dec3 = numpy.arcsin(z3/r3) ra3 = numpy.arctan2(y3,x3) cat3 = treecorr.Catalog(ra=ra3, dec=dec3, r=r3, ra_units='rad', dec_units='rad') min_sep = 1. max_sep = 50. nbins = 50 min_u = 0.13 max_u = 0.89 nubins = 10 min_v = -0.83 max_v = 0.59 nvbins = 20 ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=0., verbose=1) ddd.process(cat1, cat2, cat3) #print('ddd.ntri = ',ddd.ntri) log_min_sep = numpy.log(min_sep) log_max_sep = numpy.log(max_sep) true_ntri = numpy.zeros( (nbins, nubins, nvbins) ) bin_size = (log_max_sep - log_min_sep) / nbins ubin_size = (max_u-min_u) / nubins vbin_size = (max_v-min_v) / nvbins for i in range(ngal): for j in range(ngal): for k in range(ngal): d1sq = (x2[j]-x3[k])**2 + (y2[j]-y3[k])**2 + (z2[j]-z3[k])**2 d2sq = (x1[i]-x3[k])**2 + (y1[i]-y3[k])**2 + (z1[i]-z3[k])**2 d3sq = (x1[i]-x2[j])**2 + (y1[i]-y2[j])**2 + (z1[i]-z2[j])**2 d1 = numpy.sqrt(d1sq) d2 = numpy.sqrt(d2sq) d3 = numpy.sqrt(d3sq) if d3 == 0.: continue if d2 == 0.: continue if d1 == 0.: continue if d1 < d2 or d2 < d3: continue; ccw = is_ccw_3d(x1[i],y1[i],z1[i],x2[j],y2[j],z2[j],x3[k],y3[k],z3[k]) r = d2 u = d3/d2 v = (d1-d2)/d3 if not ccw: v = -v kr = int(numpy.floor( (numpy.log(r)-log_min_sep) / bin_size )) ku = int(numpy.floor( (u-min_u) / ubin_size )) kv = int(numpy.floor( (v-min_v) / vbin_size )) if kr < 0: continue if kr >= nbins: continue if ku < 0: continue if ku >= nubins: continue if kv < 0: continue if kv >= nvbins: continue true_ntri[kr,ku,kv] += 1 #print('true_ntri = ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # Repeat with binslop not precisely 0, since the code flow is different for bin_slop == 0. ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=1.e-16, verbose=1) ddd.process(cat1, cat2, cat3) #print('binslop > 0: ddd.ntri = ',ddd.ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # And again with no top-level recursion ddd = treecorr.NNNCorrelation(min_sep=min_sep, max_sep=max_sep, nbins=nbins, min_u=min_u, max_u=max_u, nubins=nubins, min_v=min_v, max_v=max_v, nvbins=nvbins, bin_slop=1.e-16, verbose=1, max_top=0) ddd.process(cat1, cat2, cat3) #print('max_top = 0: ddd.ntri = ',ddd.ntri) #print('true_ntri = ',true_ntri) #print('diff = ',ddd.ntri - true_ntri) numpy.testing.assert_array_equal(ddd.ntri, true_ntri) # Also compare to using x,y,z rather than ra,dec,r cat1 = treecorr.Catalog(x=x1, y=y1, z=z1) cat2 = treecorr.Catalog(x=x2, y=y2, z=z2) cat3 = treecorr.Catalog(x=x3, y=y3, z=z3) ddd.process(cat1, cat2, cat3)
numpy.testing.assert_array_equal(ddd.ntri, true_ntri)
numpy.testing.assert_array_equal
# Copyright 2019, by the California Institute of Technology. # ALL RIGHTS RESERVED. United States Government Sponsorship acknowledged. # Any commercial use must be negotiated with the Office of Technology # Transfer at the California Institute of Technology. # # This software may be subject to U.S. export control laws. By accepting # this software, the user agrees to comply with all applicable U.S. export # laws and regulations. User has the responsibility to obtain export # licenses, or other export authority as may be required before exporting # such information to foreign countries or providing access to foreign # persons. """ ============== test_subset.py ============== Test the subsetter functionality. """ import json import operator import os import shutil import tempfile import unittest from os import listdir from os.path import dirname, join, realpath, isfile, basename import geopandas as gpd import importlib_metadata import netCDF4 as nc import numpy as np import pandas as pd import pytest import xarray as xr from jsonschema import validate from shapely.geometry import Point from podaac.subsetter import subset from podaac.subsetter.subset import SERVICE_NAME from podaac.subsetter import xarray_enhancements as xre class TestSubsetter(unittest.TestCase): """ Unit tests for the L2 subsetter. These tests are all related to the subsetting functionality itself, and should provide coverage on the following files: - podaac.subsetter.subset.py - podaac.subsetter.xarray_enhancements.py """ @classmethod def setUpClass(cls): cls.test_dir = dirname(realpath(__file__)) cls.test_data_dir = join(cls.test_dir, 'data') cls.subset_output_dir = tempfile.mkdtemp(dir=cls.test_data_dir) cls.test_files = [f for f in listdir(cls.test_data_dir) if isfile(join(cls.test_data_dir, f)) and f.endswith(".nc")] cls.history_json_schema = { "$schema": "https://json-schema.org/draft/2020-12/schema", "$id": "https://harmony.earthdata.nasa.gov/history.schema.json", "title": "Data Processing History", "description": "A history record of processing that produced a given data file. For more information, see: https://wiki.earthdata.nasa.gov/display/TRT/In-File+Provenance+Metadata+-+TRT-42", "type": ["array", "object"], "items": {"$ref": "#/definitions/history_record"}, "definitions": { "history_record": { "type": "object", "properties": { "date_time": { "description": "A Date/Time stamp in ISO-8601 format, including time-zone, GMT (or Z) preferred", "type": "string", "format": "date-time" }, "derived_from": { "description": "List of source data files used in the creation of this data file", "type": ["array", "string"], "items": {"type": "string"} }, "program": { "description": "The name of the program which generated this data file", "type": "string" }, "version": { "description": "The version identification of the program which generated this data file", "type": "string" }, "parameters": { "description": "The list of parameters to the program when generating this data file", "type": ["array", "string"], "items": {"type": "string"} }, "program_ref": { "description": "A URL reference that defines the program, e.g., a UMM-S reference URL", "type": "string" }, "$schema": { "description": "The URL to this schema", "type": "string" } }, "required": ["date_time", "program"], "additionalProperties": False } } } @classmethod def tearDownClass(cls): # Remove the temporary directories used to house subset data shutil.rmtree(cls.subset_output_dir) def test_subset_variables(self): """ Test that all variables present in the original NetCDF file are present after the subset takes place, and with the same attributes. """ bbox = np.array(((-180, 90), (-90, 90))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file) ) in_ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False) out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False) for in_var, out_var in zip(in_ds.data_vars.items(), out_ds.data_vars.items()): # compare names assert in_var[0] == out_var[0] # compare attributes np.testing.assert_equal(in_var[1].attrs, out_var[1].attrs) # compare type and dimension names assert in_var[1].dtype == out_var[1].dtype assert in_var[1].dims == out_var[1].dims in_ds.close() out_ds.close() def test_subset_bbox(self): """ Test that all data present is within the bounding box given, and that the correct bounding box is used. This test assumed that the scanline *is* being cut. """ # pylint: disable=too-many-locals bbox = np.array(((-180, 90), (-90, 90))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file) ) out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False, mask_and_scale=False) lat_var_name, lon_var_name = subset.get_coord_variable_names(out_ds) lat_var_name = lat_var_name[0] lon_var_name = lon_var_name[0] lon_bounds, lat_bounds = subset.convert_bbox(bbox, out_ds, lat_var_name, lon_var_name) lats = out_ds[lat_var_name].values lons = out_ds[lon_var_name].values np.warnings.filterwarnings('ignore') # Step 1: Get mask of values which aren't in the bounds. # For lon spatial condition, need to consider the # lon_min > lon_max case. If that's the case, should do # an 'or' instead. oper = operator.and_ if lon_bounds[0] < lon_bounds[1] else operator.or_ # In these two masks, True == valid and False == invalid lat_truth = np.ma.masked_where((lats >= lat_bounds[0]) & (lats <= lat_bounds[1]), lats).mask lon_truth = np.ma.masked_where(oper((lons >= lon_bounds[0]), (lons <= lon_bounds[1])), lons).mask # combine masks spatial_mask = np.bitwise_and(lat_truth, lon_truth) # Create a mask which represents the valid matrix bounds of # the spatial mask. This is used in the case where a var # has no _FillValue. if lon_truth.ndim == 1: bound_mask = spatial_mask else: rows = np.any(spatial_mask, axis=1) cols = np.any(spatial_mask, axis=0) bound_mask = np.array([[r & c for c in cols] for r in rows]) # If all the lat/lon values are valid, the file is valid and # there is no need to check individual variables. if np.all(spatial_mask): continue # Step 2: Get mask of values which are NaN or "_FillValue in # each variable. for _, var in out_ds.data_vars.items(): # remove dimension of '1' if necessary vals = np.squeeze(var.values) # Get the Fill Value fill_value = var.attrs.get('_FillValue') # If _FillValue isn't provided, check that all values # are in the valid matrix bounds go to the next variable if fill_value is None: combined_mask = np.ma.mask_or(spatial_mask, bound_mask) np.testing.assert_equal(bound_mask, combined_mask) continue # If the shapes of this var doesn't match the mask, # reshape the var so the comparison can be made. Take # the first index of the unknown dims. This makes # assumptions about the ordering of the dimensions. if vals.shape != out_ds[lat_var_name].shape and vals.shape: slice_list = [] for dim in var.dims: if dim in out_ds[lat_var_name].dims: slice_list.append(slice(None)) else: slice_list.append(slice(0, 1)) vals = np.squeeze(vals[tuple(slice_list)]) # In this mask, False == NaN and True = valid var_mask = np.invert(np.ma.masked_invalid(vals).mask) fill_mask = np.invert(np.ma.masked_values(vals, fill_value).mask) var_mask = np.bitwise_and(var_mask, fill_mask) # Step 3: Combine the spatial and var mask with 'or' combined_mask = np.ma.mask_or(var_mask, spatial_mask) # Step 4: compare the newly combined mask and the # spatial mask created from the lat/lon masks. They # should be equal, because the 'or' of the two masks # where out-of-bounds values are 'False' will leave # those values assuming there are only NaN values # in the data at those locations. np.testing.assert_equal(spatial_mask, combined_mask) out_ds.close() @pytest.mark.skip(reason="This is being tested currently. Temporarily skipped.") def test_subset_no_bbox(self): """ Test that the subsetted file is identical to the given file when a 'full' bounding box is given. """ bbox = np.array(((-180, 180), (-90, 90))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file) ) # pylint: disable=no-member in_nc = nc.Dataset(join(self.test_data_dir, file), 'r') out_nc = nc.Dataset(join(self.subset_output_dir, output_file), 'r') # Make sure the output dimensions match the input # dimensions, which means the full file was returned. for name, dimension in in_nc.dimensions.items(): assert dimension.size == out_nc.dimensions[name].size in_nc.close() out_nc.close() def test_subset_empty_bbox(self): """ Test that an empty file is returned when the bounding box contains no data. """ bbox = np.array(((120, 125), (-90, -85))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file) ) empty_dataset = xr.open_dataset( join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False, mask_and_scale=False ) # Ensure all variables are present but empty. for variable_name, variable in empty_dataset.data_vars.items(): assert not variable.data def test_bbox_conversion(self): """ Test that the bounding box conversion returns expected results. Expected results are hand-calculated. """ ds_180 = xr.open_dataset(join(self.test_data_dir, "MODIS_A-JPL-L2P-v2014.0.nc"), decode_times=False, decode_coords=False) ds_360 = xr.open_dataset(join( self.test_data_dir, "ascat_20150702_084200_metopa_45145_eps_o_250_2300_ovw.l2.nc"), decode_times=False, decode_coords=False) # Elements in each tuple are: # ds type, lon_range, expected_result test_bboxes = [ (ds_180, (-180, 180), (-180, 180)), (ds_360, (-180, 180), (0, 360)), (ds_180, (-180, 0), (-180, 0)), (ds_360, (-180, 0), (180, 360)), (ds_180, (-80, 80), (-80, 80)), (ds_360, (-80, 80), (280, 80)), (ds_180, (0, 180), (0, 180)), (ds_360, (0, 180), (0, 180)), (ds_180, (80, -80), (80, -80)), (ds_360, (80, -80), (80, 280)), (ds_180, (-80, -80), (-180, 180)), (ds_360, (-80, -80), (0, 360)) ] lat_var = 'lat' lon_var = 'lon' for test_bbox in test_bboxes: dataset = test_bbox[0] lon_range = test_bbox[1] expected_result = test_bbox[2] actual_result, _ = subset.convert_bbox(np.array([lon_range, [0, 0]]), dataset, lat_var, lon_var) np.testing.assert_equal(actual_result, expected_result) def compare_java(self, java_files, cut): """ Run the L2 subsetter and compare the result to the equivelant legacy (Java) subsetter result. Parameters ---------- java_files : list of strings List of paths to each subsetted Java file. cut : boolean True if the subsetter should return compact. """ bbox_map = [("ascat_20150702_084200", ((-180, 0), (-90, 0))), ("ascat_20150702_102400", ((-180, 0), (-90, 0))), ("MODIS_A-JPL", ((65.8, 86.35), (40.1, 50.15))), ("MODIS_T-JPL", ((-78.7, -60.7), (-54.8, -44))), ("VIIRS", ((-172.3, -126.95), (62.3, 70.65))), ("AMSR2-L2B_v08_r38622", ((-180, 0), (-90, 0)))] for file_str, bbox in bbox_map: java_file = [file for file in java_files if file_str in file][0] test_file = [file for file in self.test_files if file_str in file][0] output_file = "{}_{}".format(self._testMethodName, test_file) subset.subset( file_to_subset=join(self.test_data_dir, test_file), bbox=np.array(bbox), output_file=join(self.subset_output_dir, output_file), cut=cut ) j_ds = xr.open_dataset(join(self.test_data_dir, java_file), decode_times=False, decode_coords=False, mask_and_scale=False) py_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False, mask_and_scale=False) for var_name, var in j_ds.data_vars.items(): # Compare shape np.testing.assert_equal(var.shape, py_ds[var_name].shape) # Compare meta np.testing.assert_equal(var.attrs, py_ds[var_name].attrs) # Compare data np.testing.assert_equal(var.values, py_ds[var_name].values) # Compare meta. History will always be different, so remove # from the headers for comparison. del j_ds.attrs['history'] del py_ds.attrs['history'] del py_ds.attrs['history_json'] np.testing.assert_equal(j_ds.attrs, py_ds.attrs) def test_compare_java_compact(self): """ Tests that the results of the subsetting operation is equivalent to the Java subsetting result on the same bounding box. For simplicity the subsetted Java granules have been manually run and copied into this project. This test DOES cut the scanline. """ java_result_files = [join("java_results", "cut", f) for f in listdir(join(self.test_data_dir, "java_results", "cut")) if isfile(join(self.test_data_dir, "java_results", "cut", f)) and f.endswith(".nc")] self.compare_java(java_result_files, cut=True) def test_compare_java(self): """ Tests that the results of the subsetting operation is equivalent to the Java subsetting result on the same bounding box. For simplicity the subsetted Java granules have been manually run and copied into this project. This runs does NOT cut the scanline. """ java_result_files = [join("java_results", "uncut", f) for f in listdir(join(self.test_data_dir, "java_results", "uncut")) if isfile(join(self.test_data_dir, "java_results", "uncut", f)) and f.endswith(".nc")] self.compare_java(java_result_files, cut=False) def test_history_metadata_append(self): """ Tests that the history metadata header is appended to when it already exists. """ test_file = next(filter( lambda f: '20180101005944-REMSS-L2P_GHRSST-SSTsubskin-AMSR2-L2B_rt_r29918-v02.0-fv01.0.nc' in f , self.test_files)) output_file = "{}_{}".format(self._testMethodName, test_file) subset.subset( file_to_subset=join(self.test_data_dir, test_file), bbox=np.array(((-180, 180), (-90.0, 90))), output_file=join(self.subset_output_dir, output_file) ) in_nc = xr.open_dataset(join(self.test_data_dir, test_file)) out_nc = xr.open_dataset(join(self.subset_output_dir, output_file)) # Assert that the original granule contains history assert in_nc.attrs.get('history') is not None # Assert that input and output files have different history self.assertNotEqual(in_nc.attrs['history'], out_nc.attrs['history']) # Assert that last line of history was created by this service assert SERVICE_NAME in out_nc.attrs['history'].split('\n')[-1] # Assert that the old history is still in the subsetted granule assert in_nc.attrs['history'] in out_nc.attrs['history'] def test_history_metadata_create(self): """ Tests that the history metadata header is created when it does not exist. All test granules contain this header already, so for this test the header will be removed manually from a granule. """ test_file = next(filter( lambda f: '20180101005944-REMSS-L2P_GHRSST-SSTsubskin-AMSR2-L2B_rt_r29918-v02.0-fv01.0.nc' in f , self.test_files)) output_file = "{}_{}".format(self._testMethodName, test_file) # Remove the 'history' metadata from the granule in_nc = xr.open_dataset(join(self.test_data_dir, test_file)) del in_nc.attrs['history'] in_nc.to_netcdf(join(self.subset_output_dir, 'int_{}'.format(output_file)), 'w') subset.subset( file_to_subset=join(self.subset_output_dir, "int_{}".format(output_file)), bbox=np.array(((-180, 180), (-90.0, 90))), output_file=join(self.subset_output_dir, output_file) ) out_nc = xr.open_dataset(join(self.subset_output_dir, output_file)) # Assert that the input granule contains no history assert in_nc.attrs.get('history') is None # Assert that the history was created by this service assert SERVICE_NAME in out_nc.attrs['history'] # Assert that the history created by this service is the only # line present in the history. assert '\n' not in out_nc.attrs['history'] def test_specified_variables(self): """ Test that the variables which are specified when calling the subset operation are present in the resulting subsetted data file, and that the variables which are specified are not present. """ bbox = np.array(((-180, 90), (-90, 90))) for file in self.test_files: output_file = "{}_{}".format(self._testMethodName, file) in_ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False) included_variables = set([variable[0] for variable in in_ds.data_vars.items()][::2]) included_variables = list(included_variables) excluded_variables = list(set(variable[0] for variable in in_ds.data_vars.items()) - set(included_variables)) subset.subset( file_to_subset=join(self.test_data_dir, file), bbox=bbox, output_file=join(self.subset_output_dir, output_file), variables=included_variables ) # Get coord variables lat_var_names, lon_var_names = subset.get_coord_variable_names(in_ds) lat_var_name = lat_var_names[0] lon_var_name = lon_var_names[0] time_var_name = subset.get_time_variable_name(in_ds, in_ds[lat_var_name]) included_variables.append(lat_var_name) included_variables.append(lon_var_name) included_variables.append(time_var_name) included_variables.extend(in_ds.coords.keys()) if lat_var_name in excluded_variables: excluded_variables.remove(lat_var_name) if lon_var_name in excluded_variables: excluded_variables.remove(lon_var_name) if time_var_name in excluded_variables: excluded_variables.remove(time_var_name) out_ds = xr.open_dataset(join(self.subset_output_dir, output_file), decode_times=False, decode_coords=False) out_vars = [out_var for out_var in out_ds.data_vars.keys()] out_vars.extend(out_ds.coords.keys()) assert set(out_vars) == set(included_variables) assert set(out_vars).isdisjoint(excluded_variables) in_ds.close() out_ds.close() def test_calculate_chunks(self): """ Test that the calculate chunks function in the subset module correctly calculates and returns the chunks dims dictionary. """ rs = np.random.RandomState(0) dataset = xr.DataArray( rs.randn(2, 4000, 4001), dims=['x', 'y', 'z'] ).to_dataset(name='foo') chunk_dict = subset.calculate_chunks(dataset) assert chunk_dict.get('x') is None assert chunk_dict.get('y') is None assert chunk_dict.get('z') == 4000 def test_missing_coord_vars(self): """ As of right now, the subsetter expects the data to contain lat and lon variables. If not present, an error is thrown. """ file = 'MODIS_T-JPL-L2P-v2014.0.nc' ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False, mask_and_scale=False) # Manually remove var which will cause error when attempting # to subset. ds = ds.drop_vars(['lat']) output_file = '{}_{}'.format('missing_coords', file) ds.to_netcdf(join(self.subset_output_dir, output_file)) bbox = np.array(((-180, 180), (-90, 90))) with pytest.raises(ValueError): subset.subset( file_to_subset=join(self.subset_output_dir, output_file), bbox=bbox, output_file='' ) def test_data_1D(self): """ Test that subsetting a 1-D granule does not result in failure. """ merged_jason_filename = 'JA1_GPN_2PeP001_002_20020115_060706_20020115_070316.nc' output_file = "{}_{}".format(self._testMethodName, merged_jason_filename) subset.subset( file_to_subset=join(self.test_data_dir, merged_jason_filename), bbox=np.array(((-180, 0), (-90, 0))), output_file=join(self.subset_output_dir, output_file) ) xr.open_dataset(join(self.subset_output_dir, output_file)) def test_get_coord_variable_names(self): """ Test that the expected coord variable names are returned """ file = 'MODIS_T-JPL-L2P-v2014.0.nc' ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False, mask_and_scale=False) old_lat_var_name = 'lat' old_lon_var_name = 'lon' lat_var_name, lon_var_name = subset.get_coord_variable_names(ds) assert lat_var_name[0] == old_lat_var_name assert lon_var_name[0] == old_lon_var_name new_lat_var_name = 'latitude' new_lon_var_name = 'x' ds = ds.rename({old_lat_var_name: new_lat_var_name, old_lon_var_name: new_lon_var_name}) lat_var_name, lon_var_name = subset.get_coord_variable_names(ds) assert lat_var_name[0] == new_lat_var_name assert lon_var_name[0] == new_lon_var_name def test_cannot_get_coord_variable_names(self): """ Test that, when given a dataset with coord vars which are not expected, a ValueError is raised. """ file = 'MODIS_T-JPL-L2P-v2014.0.nc' ds = xr.open_dataset(join(self.test_data_dir, file), decode_times=False, decode_coords=False, mask_and_scale=False) old_lat_var_name = 'lat' new_lat_var_name = 'foo' ds = ds.rename({old_lat_var_name: new_lat_var_name}) # Remove 'coordinates' attribute for var_name, var in ds.items(): if 'coordinates' in var.attrs: del var.attrs['coordinates'] self.assertRaises(ValueError, subset.get_coord_variable_names, ds) def test_get_spatial_bounds(self): """ Test that the get_spatial_bounds function works as expected. The get_spatial_bounds function should return lat/lon min/max which is masked and scaled for both variables. The values should also be adjusted for -180,180/-90,90 coordinate types """ ascat_filename = 'ascat_20150702_084200_metopa_45145_eps_o_250_2300_ovw.l2.nc' ghrsst_filename = '20190927000500-JPL-L2P_GHRSST-SSTskin-MODIS_A-D-v02.0-fv01.0.nc' ascat_dataset = xr.open_dataset( join(self.test_data_dir, ascat_filename), decode_times=False, decode_coords=False, mask_and_scale=False ) ghrsst_dataset = xr.open_dataset( join(self.test_data_dir, ghrsst_filename), decode_times=False, decode_coords=False, mask_and_scale=False ) # ascat1 longitude is -0 360, ghrsst modis A is -180 180 # Both have metadata for valid_min # Manually calculated spatial bounds ascat_expected_lat_min = -89.4 ascat_expected_lat_max = 89.2 ascat_expected_lon_min = -180.0 ascat_expected_lon_max = 180.0 ghrsst_expected_lat_min = -77.2 ghrsst_expected_lat_max = -53.6 ghrsst_expected_lon_min = -170.5 ghrsst_expected_lon_max = -101.7 min_lon, max_lon, min_lat, max_lat = subset.get_spatial_bounds( dataset=ascat_dataset, lat_var_names=['lat'], lon_var_names=['lon'] ).flatten() assert np.isclose(min_lat, ascat_expected_lat_min) assert np.isclose(max_lat, ascat_expected_lat_max) assert np.isclose(min_lon, ascat_expected_lon_min) assert np.isclose(max_lon, ascat_expected_lon_max) # Remove the label from the dataset coordinate variables indicating the valid_min. del ascat_dataset['lat'].attrs['valid_min'] del ascat_dataset['lon'].attrs['valid_min'] min_lon, max_lon, min_lat, max_lat = subset.get_spatial_bounds( dataset=ascat_dataset, lat_var_names=['lat'], lon_var_names=['lon'] ).flatten() assert np.isclose(min_lat, ascat_expected_lat_min) assert np.isclose(max_lat, ascat_expected_lat_max) assert np.isclose(min_lon, ascat_expected_lon_min) assert np.isclose(max_lon, ascat_expected_lon_max) # Repeat test, but with GHRSST granule min_lon, max_lon, min_lat, max_lat = subset.get_spatial_bounds( dataset=ghrsst_dataset, lat_var_names=['lat'], lon_var_names=['lon'] ).flatten() assert np.isclose(min_lat, ghrsst_expected_lat_min) assert np.isclose(max_lat, ghrsst_expected_lat_max) assert np.isclose(min_lon, ghrsst_expected_lon_min) assert np.isclose(max_lon, ghrsst_expected_lon_max) # Remove the label from the dataset coordinate variables indicating the valid_min. del ghrsst_dataset['lat'].attrs['valid_min'] del ghrsst_dataset['lon'].attrs['valid_min'] min_lon, max_lon, min_lat, max_lat = subset.get_spatial_bounds( dataset=ghrsst_dataset, lat_var_names=['lat'], lon_var_names=['lon'] ).flatten() assert np.isclose(min_lat, ghrsst_expected_lat_min) assert np.isclose(max_lat, ghrsst_expected_lat_max) assert np.isclose(min_lon, ghrsst_expected_lon_min) assert np.isclose(max_lon, ghrsst_expected_lon_max) def test_shapefile_subset(self): """ Test that using a shapefile to subset data instead of a bbox works as expected """ shapefile = 'test.shp' ascat_filename = 'ascat_20150702_084200_metopa_45145_eps_o_250_2300_ovw.l2.nc' output_filename = f'{self._testMethodName}_{ascat_filename}' shapefile_file_path = join(self.test_data_dir, 'test_shapefile_subset', shapefile) ascat_file_path = join(self.test_data_dir, ascat_filename) output_file_path = join(self.subset_output_dir, output_filename) subset.subset( file_to_subset=ascat_file_path, bbox=None, output_file=output_file_path, shapefile=shapefile_file_path ) # Check that each point of data is within the shapefile shapefile_df = gpd.read_file(shapefile_file_path) with xr.open_dataset(output_file_path) as result_dataset: def in_shape(lon, lat): if np.isnan(lon) or np.isnan(lat): return point = Point(lon, lat) point_in_shapefile = shapefile_df.contains(point) assert point_in_shapefile[0] in_shape_vec =
np.vectorize(in_shape)
numpy.vectorize
import cPickle import numpy as np from matplotlib import pyplot as plt Results = cPickle.load(open("Results.p","rb")) rewards = {} for traj in Results: for ep in traj: ao, ac ,r = ep for key in r: if key not in rewards: rewards[key] = [np.sum(r[key])] else: rewards[key].append(
np.sum(r[key])
numpy.sum
import numpy as np import pandas as pd import tensorflow as tf import tensorflow_text as text import tensorflow_hub as hub from sklearn.metrics.pairwise import paired_cosine_distances from .base import Similarity def split_chunks(lst, n): """Yield successive n-sized chunks from lst.""" for i in range(0, len(lst), n): yield lst[i:i + n] class UniversalSentenceEncoderSimilarity(Similarity): BATCH_SIZE = 5 def __init__(self): self.model = hub.load('https://tfhub.dev/google/universal-sentence-encoder-multilingual/3') def score(self, dataset: pd.DataFrame) -> pd.DataFrame: sentences1 = dataset['ementa1'].tolist() sentences2 = dataset['ementa2'].tolist() sentences = list(set(sentences1 + sentences2)) embeddings = self.__embeddings(sentences) emb_dict = {sent: emb for sent, emb in zip(sentences, embeddings)} embeddings1 = [emb_dict[sent] for sent in sentences1] embeddings2 = [emb_dict[sent] for sent in sentences2] cosine_scores = 1 - paired_cosine_distances(embeddings1, embeddings2) dataset['score'] = cosine_scores return dataset def __embeddings(self, documents): chunks = split_chunks(documents, self.BATCH_SIZE) embeddings = None for chunk in chunks: documents_embed = self.model(chunk) documents_embed = documents_embed.numpy() if embeddings is None: embeddings = documents_embed else: embeddings =
np.concatenate((embeddings, documents_embed), axis=0)
numpy.concatenate
"""Figure plotting utilities for figures in Omholt and Kirkwood (2021).""" import os import numpy as np from matplotlib import pyplot as plt ROOT_DIR = os.path.dirname(os.path.abspath(__file__)) def plot_fig_1( t_m_captivity, t_m_wild, t_m_hyp_wt, captivity_mean, captivity_std, wild_mean, hyp_wt_mean, hyp_wt_std, ): captivity_x = np.arange(0, t_m_captivity) wild_x = np.arange(0, t_m_wild) fig, ax = plt.subplots(figsize=(6, 6)) ax.plot(captivity_x, captivity_mean, 'r-') ax.fill_between( range(t_m_captivity), captivity_mean - 3.0 * captivity_std, captivity_mean + 3.0 * captivity_std, color='pink', alpha=0.5, ) ax.plot(wild_x, wild_mean, 'b-') ax.fill_between( range(t_m_hyp_wt), hyp_wt_mean - 3.0 * hyp_wt_std, hyp_wt_mean + 3.0 * hyp_wt_std, color='lightblue', alpha=0.5, ) # Plotting wild data (extraction from Austad (1989)) X_C = np.genfromtxt(f'{ROOT_DIR}/data/austad_1989/captivity_x.txt') Y_C = np.genfromtxt(f'{ROOT_DIR}/data/austad_1989/captivity_y.txt') ax.plot(X_C, Y_C, 'ro', markersize=4) X_W = [0, 5 * 100 / 30, 10 * 100 / 30, 15 * 100 / 30, 20 * 100 / 30, 30 * 100 / 30] Y_W = [1.0, 0.5498, 0.268, 0.148, 0.05, 0.0] ax.plot(X_W, Y_W, 'bo', markersize=4) afont = {'fontname': 'Arial'} ax.set_xlabel('Time', fontsize=12, **afont) ax.set_ylabel('Cohort survivorship', fontsize=12, **afont) x_size = 10 plt.rc('xtick', labelsize=x_size) y_size = 10 plt.rc('ytick', labelsize=y_size) fig.tight_layout() figure = plt.gcf() figure.set_size_inches(3.42, 3.42) figure.savefig(f'{ROOT_DIR}/figures/PNAS_fig1_Frontinella.pdf', dpi=1200, bbox_inches='tight') def plot_fig_2(t_m, mean_diff, std_diff, repetition_count, save_pdf=True): C = np.arange(0, t_m, 1, dtype=int) fig1, ax = plt.subplots(figsize=(6, 6)) (l1,) = ax.plot(C, mean_diff[0]) ax.fill_between( range(t_m), mean_diff[0] - 3.0 * std_diff[0] / np.sqrt(repetition_count), mean_diff[0] + 3.0 * std_diff[0] / np.sqrt(repetition_count), alpha=0.5, ) (l2,) = ax.plot(C, mean_diff[1]) ax.fill_between( range(t_m), mean_diff[1] - 3.0 * std_diff[1] / np.sqrt(repetition_count), mean_diff[1] + 3.0 * std_diff[1] / np.sqrt(repetition_count), alpha=0.5, ) (l3,) = ax.plot(C, mean_diff[2]) ax.fill_between( range(t_m), mean_diff[2] - 3.0 * std_diff[2] / np.sqrt(repetition_count), mean_diff[2] + 3.0 * std_diff[2] / np.sqrt(repetition_count), alpha=0.5, ) (l4,) = ax.plot(C, mean_diff[3]) ax.fill_between( range(t_m), mean_diff[3] - 3.0 * std_diff[3] / np.sqrt(repetition_count), mean_diff[3] + 3.0 * std_diff[3] / np.sqrt(repetition_count), alpha=0.5, ) ax.legend( (l1, l2, l3, l4), ('$\epsilon$=0.01', '$\epsilon$=0.02', '$\epsilon$=0.03', '$\epsilon$=0.04'), ) afont = {'fontname': 'Arial'} ax.set_xlabel('Time', fontsize=12, **afont) ax.set_ylabel("# of mutant - wild type individuals", fontsize=12, **afont) x_size = 10 plt.rc('xtick', labelsize=x_size) y_size = 10 plt.rc('ytick', labelsize=y_size) fig1.tight_layout() figure = plt.gcf() figure.set_size_inches(3.42, 3.42) if save_pdf: plt.savefig(f'{ROOT_DIR}/figures/PNAS_fig2_Frontinella.pdf', dpi=1200, bbox_inches='tight') def plot_fig_3(fitness_stats_wt, fitness_stats_mut): r0_wt_mean = fitness_stats_wt['r0_mean'] r0_wt_sem = fitness_stats_wt['r0_sem'] r_wt_mean = fitness_stats_wt['r_mean'] r_wt_sem = fitness_stats_wt['r_sem'] r0_mut_mean = fitness_stats_mut['r0_mean'] r0_mut_sem = fitness_stats_mut['r0_sem'] r_mut_mean = fitness_stats_mut['r_mean'] r_mut_sem = fitness_stats_mut['r_sem'] y1_pos = np.array([0, 3, 6, 9]) y2_pos = np.array([1, 4, 7, 10]) y3_pos = np.array([2, 5, 8, 11]) y4_pos = np.array([12, 15, 18, 21]) y5_pos = np.array([13, 16, 19, 22]) y6_pos = np.array([14, 17, 20]) y7_pos = [11] dummy_R0 = np.zeros(4) dummy_r = np.zeros(3) fig, ax1 = plt.subplots(figsize=(6, 6)) ax1.bar( y1_pos, r0_wt_mean, width=1.0, yerr=r0_wt_sem, align='center', alpha=0.4, ecolor='black', capsize=3, color='C0', ) ax1.bar( y2_pos, r0_mut_mean, width=1.0, yerr=r0_mut_sem, align='center', alpha=0.8, ecolor='black', capsize=3, color='C0', ) ax1.bar( y3_pos, dummy_R0, width=0.3, color='w' ) # The width spec does not seem to work. width only refers to the relative width in the slot. ax1.set_ylabel('R0', fontsize=14) ax1.set_ylim(0.92 * r0_wt_mean[0], 1.005 * r0_wt_mean[0]) ax2 = ax1.twinx() ax2.bar( y4_pos, r_wt_mean, width=1.0, yerr=r_wt_sem, align='center', alpha=0.4, ecolor='black', capsize=3, color='C3', ) ax2.bar( y5_pos, r_mut_mean, width=1.0, yerr=r_mut_sem, align='center', alpha=0.8, ecolor='black', capsize=3, color='C3', ) ax2.bar(y6_pos, dummy_r, width=0.3, color='w') ax2.set_ylabel('r', fontsize=14) ax2.set_ylim(0.95 * r_wt_mean[0], 1.0045 * r_wt_mean[0]) ax2.set_xticks(y7_pos) xticks = ['wt($\epsilon$) vs mut($\epsilon$)'] ax1.set_xticklabels(xticks, fontsize=13) fig.tight_layout() figure = plt.gcf() figure.set_size_inches(3.42, 3.42) plt.savefig(f'{ROOT_DIR}/figures/PNAS_fig3_Frontinella.pdf', dpi=1200, bbox_inches='tight') def plot_fig_4( t_m_cap_f, t_m_cap_m, t_m_wild_f, t_m_wild_m, mean_cap_f, mean_cap_m, mean_wild_f, mean_wild_m, ): fig, ax = plt.subplots(figsize=(6, 6)) # Plotting captive females (extraction from Kawasaki et al (2008)) X_C_F = np.genfromtxt(f'{ROOT_DIR}/data/kawasaki_2008/captivity_females_x.txt') Y_C_F = np.genfromtxt(f'{ROOT_DIR}/data/kawasaki_2008/captivity_females_y.txt') ax.plot(X_C_F, Y_C_F, 'ro', markersize=4) C1 = np.arange(0, t_m_cap_f) ax.plot(C1, mean_cap_f, 'r-') # Plotting captive males (extraction from Kawasaki et al (2008)) X_C_M = np.genfromtxt(f'{ROOT_DIR}/data/kawasaki_2008/captivity_males_x.txt') Y_C_M = np.genfromtxt(f'{ROOT_DIR}/data/kawasaki_2008/captivity_males_y.txt') ax.plot(X_C_M, Y_C_M, 'bo', markersize=4) C2 = np.arange(0, t_m_cap_m) ax.plot(C2, mean_cap_m, 'b-') # Plotting wild females (extraction from Kawasaki et al (2008)) X_W_F = np.genfromtxt(f'{ROOT_DIR}/data/kawasaki_2008/wild_females_x.txt') Y_W_F = np.genfromtxt(f'{ROOT_DIR}/data/kawasaki_2008/wild_females_y.txt') ax.plot(X_W_F, Y_W_F, 'ro', markersize=4) C3 = np.arange(0, t_m_wild_f) ax.plot(C3, mean_wild_f, 'r-') # Plotting wild males (extraction from Kawasaki et al (2008)) X_W_M = np.genfromtxt(f'{ROOT_DIR}/data/kawasaki_2008/wild_males_x.txt') Y_W_M =
np.genfromtxt(f'{ROOT_DIR}/data/kawasaki_2008/wild_males_y.txt')
numpy.genfromtxt
# Licensed under a 3-clause BSD style license - see LICENSE.rst # -*- coding: utf-8 -*- """Test desimodel.focalplane. """ import unittest import numpy as np from ..focalplane import * from .. import io from astropy.table import Table class TestFocalplane(unittest.TestCase): """Test desimodel.focalplane. """ def test_random_offsets(self): """Test generating random positioner offsets. """ dx, dy = generate_random_centroid_offsets(1.0) self.assertEqual(dx.shape, dy.shape) dr = np.sqrt(dx**2 + dy**2) self.assertAlmostEqual(np.sqrt(np.average(dr**2)), 1.0) self.assertLess(np.max(dr), 7) def test_check_radec(self): """Test the RA, Dec bounds checking. """ F = FocalPlane() with self.assertRaises(ValueError): F._check_radec(365.0, 0.0) with self.assertRaises(ValueError): F._check_radec(0.0, 100.0) def test_set_tele_pointing(self): """Test setting the RA, Dec by hand. """ F = FocalPlane() self.assertEqual(F.ra, 0.0) self.assertEqual(F.dec, 0.0) F.set_tele_pointing(180.0, 45.0) self.assertEqual(F.ra, 180.0) self.assertEqual(F.dec, 45.0) def test_get_radius(self): """Tests converting x, y coordinates on the focal plane to a radius in degrees and mm """ ps = io.load_platescale() for i in np.linspace(0, len(ps)-1, 10).astype(int): degree = get_radius_deg(0, ps['radius'][i]) self.assertAlmostEqual(degree, ps['theta'][i]) radius = get_radius_mm(ps['theta'][i]) self.assertAlmostEqual(radius, ps['radius'][i]) #- Rotational invariance d1 = get_radius_deg(0, ps['radius'][10]) d2 = get_radius_deg(ps['radius'][10], 0) d3 = get_radius_deg(0, -ps['radius'][10]) d4 = get_radius_deg(-ps['radius'][10], 0) self.assertAlmostEqual(d1, d2) self.assertAlmostEqual(d1, d3) self.assertAlmostEqual(d1, d4) #- lists and arrays should also work degrees = get_radius_deg([0,0,0,0], ps['radius'][0:4]) self.assertTrue(np.allclose(degrees, ps['theta'][0:4])) radius = get_radius_mm(ps['theta'][100:110]) self.assertTrue(np.allclose(radius, ps['radius'][100:110])) def test_FocalPlane(self): n = 20 x, y = np.random.uniform(-100, 100, size=(2,n)) f = FocalPlane(ra=100, dec=20) ra, dec = f.xy2radec(x, y) xx, yy = f.radec2xy(ra, dec) self.assertLess(np.max(np.abs(xx-x)), 1e-4) self.assertLess(np.max(np.abs(yy-y)), 1e-4) def test_xy2qs(self): x, y = qs2xy(0.0, 100); self.assertAlmostEqual(y, 0.0) x, y = qs2xy(90.0, 100); self.assertAlmostEqual(x, 0.0) x, y = qs2xy(180.0, 100); self.assertAlmostEqual(y, 0.0) x, y = qs2xy(270.0, 100); self.assertAlmostEqual(x, 0.0) q, s = xy2qs(0.0, 100.0); self.assertAlmostEqual(q, 90.0) q, s = xy2qs(100.0, 0.0); self.assertAlmostEqual(q, 0.0) q, s = xy2qs(-100.0, 100.0); self.assertAlmostEqual(q, 135.0) n = 100 s = 410*np.sqrt(np.random.uniform(0, 1, size=n)) q = np.random.uniform(0, 360, size=n) x, y = qs2xy(q, s) qq, ss = xy2qs(x, y) xx, yy = qs2xy(qq, ss) self.assertLess(np.max(np.abs(xx-x)), 1e-4) self.assertLess(np.max(np.abs(yy-y)), 1e-4) self.assertLess(np.max(np.abs(ss-s)), 1e-4) dq = (qq-q) % 360 dq[dq>180] -= 360 self.assertLess(np.max(np.abs(dq)), 1e-4) def test_xy2radec_roundtrip(self): """Tests the consistency between the conversion functions radec2xy and xy2radec. Also tests the accuracy of the xy2radec on particular cases. """ n = 100 r = 410 * np.sqrt(np.random.uniform(0, 1, size=n)) theta = np.random.uniform(0, 2*np.pi, size=n) x = r*np.cos(theta) y = r*np.sin(theta) test_telra = [0.0, 0.0, 90.0, 30.0] test_teldec = [0.0, 90.0, 0.0, -30.0] test_telra = np.concatenate([test_telra, np.random.uniform(0, 360, size=5)]) test_teldec = np.concatenate([test_teldec, np.random.uniform(-90, 90, size=5)]) for telra, teldec in zip(test_telra, test_teldec): ra, dec = xy2radec(telra, teldec, x, y) xx, yy = radec2xy(telra, teldec, ra, dec) dx = xx-x dy = yy-y self.assertLess(np.max(np.abs(dx)), 1e-4) #- 0.1 um self.assertLess(np.max(np.abs(dy)), 1e-4) #- 0.1 um def test_xy2radec_orientation(self): """Test that +x = -RA and +y = +dec""" n = 5 x = np.linspace(-400, 400, n) y = np.zeros_like(x) ii = np.arange(n, dtype=int) for teldec in [-30, 0, 30]: ra, dec = xy2radec(0.0, teldec, x, y) self.assertTrue(np.all(np.argsort((ra+180) % 360) == ii[-1::-1])) ra, dec = xy2radec(359.9, teldec, x, y) self.assertTrue(np.all(np.argsort((ra+180) % 360) == ii[-1::-1])) ra, dec = xy2radec(30.0, teldec, x, y) self.assertTrue(np.all(np.argsort(ra) == ii[-1::-1])) y =
np.linspace(-400, 400, n)
numpy.linspace
#!/usr/bin/env python3 """ The plotting wrappers that add functionality to various `~matplotlib.axes.Axes` methods. "Wrapped" `~matplotlib.axes.Axes` methods accept the additional arguments documented in the wrapper function. """ # NOTE: Two possible workflows are 1) make horizontal functions use wrapped # vertical functions, then flip things around inside apply_cycle or by # creating undocumented 'plot', 'scatter', etc. methods in Axes that flip # arguments around by reading a 'orientation' key or 2) make separately # wrapped chains of horizontal functions and vertical functions whose 'extra' # wrappers jointly refer to a hidden helper function and create documented # 'plotx', 'scatterx', etc. that flip arguments around before sending to # superclass 'plot', 'scatter', etc. Opted for the latter approach. import functools import inspect import re import sys from numbers import Integral import matplotlib.artist as martist import matplotlib.axes as maxes import matplotlib.cm as mcm import matplotlib.collections as mcollections import matplotlib.colors as mcolors import matplotlib.container as mcontainer import matplotlib.contour as mcontour import matplotlib.font_manager as mfonts import matplotlib.legend as mlegend import matplotlib.lines as mlines import matplotlib.patches as mpatches import matplotlib.patheffects as mpatheffects import matplotlib.text as mtext import matplotlib.ticker as mticker import matplotlib.transforms as mtransforms import numpy as np import numpy.ma as ma from .. import colors as pcolors from .. import constructor from .. import ticker as pticker from ..config import rc from ..internals import ic # noqa: F401 from ..internals import ( _dummy_context, _getattr_flexible, _not_none, _pop_props, _state_context, docstring, warnings, ) from ..utils import edges, edges2d, to_rgb, to_xyz, units try: from cartopy.crs import PlateCarree except ModuleNotFoundError: PlateCarree = object __all__ = [ 'default_latlon', 'default_transform', 'standardize_1d', 'standardize_2d', 'indicate_error', 'apply_cmap', 'apply_cycle', 'colorbar_extras', 'legend_extras', 'text_extras', 'vlines_extras', 'hlines_extras', 'scatter_extras', 'scatterx_extras', 'bar_extras', 'barh_extras', 'fill_between_extras', 'fill_betweenx_extras', 'boxplot_extras', 'violinplot_extras', ] # Positional args that can be passed as out-of-order keywords. Used by standardize_1d # NOTE: The 'barh' interpretation represent a breaking change from default # (y, width, height, left) behavior. Want to have consistent interpretation # of vertical or horizontal bar 'width' with 'width' key or 3rd positional arg. # Interal hist() func uses positional arguments when calling bar() so this is fine. KEYWORD_TO_POSITIONAL_INSERT = { 'fill_between': ('x', 'y1', 'y2'), 'fill_betweenx': ('y', 'x1', 'x2'), 'vlines': ('x', 'ymin', 'ymax'), 'hlines': ('y', 'xmin', 'xmax'), 'bar': ('x', 'height'), 'barh': ('y', 'height'), 'parametric': ('x', 'y', 'values'), 'boxplot': ('positions',), # use as x-coordinates during wrapper processing 'violinplot': ('positions',), } KEYWORD_TO_POSITIONAL_APPEND = { 'bar': ('width', 'bottom'), 'barh': ('width', 'left'), } # Consistent keywords for cmap plots. Used by apply_cmap to pass correct plural # or singular form to matplotlib function. STYLE_ARGS_TRANSLATE = { 'contour': ('colors', 'linewidths', 'linestyles'), 'tricontour': ('colors', 'linewidths', 'linestyles'), 'pcolor': ('edgecolors', 'linewidth', 'linestyle'), 'pcolormesh': ('edgecolors', 'linewidth', 'linestyle'), 'pcolorfast': ('edgecolors', 'linewidth', 'linestyle'), 'tripcolor': ('edgecolors', 'linewidth', 'linestyle'), 'parametric': ('color', 'linewidth', 'linestyle'), 'hexbin': ('edgecolors', 'linewidths', 'linestyles'), 'hist2d': ('edgecolors', 'linewidths', 'linestyles'), 'barbs': ('barbcolor', 'linewidth', 'linestyle'), 'quiver': ('color', 'linewidth', 'linestyle'), # applied to arrow *outline* 'streamplot': ('color', 'linewidth', 'linestyle'), 'spy': ('color', 'linewidth', 'linestyle'), 'matshow': ('color', 'linewidth', 'linestyle'), } docstring.snippets['axes.autoformat'] = """ data : dict-like, optional A dict-like dataset container (e.g., `~pandas.DataFrame` or `~xarray.DataArray`). If passed, positional arguments must be valid `data` keys and the arrays used for plotting are retrieved with ``data[key]``. This is a native `matplotlib feature \ <https://matplotlib.org/stable/gallery/misc/keyword_plotting.html>`__ previously restricted to just `~matplotlib.axes.Axes.plot` and `~matplotlib.axes.Axes.scatter`. autoformat : bool, optional Whether *x* axis labels, *y* axis labels, axis formatters, axes titles, legend labels, and colorbar labels are automatically configured when a `~pandas.Series`, `~pandas.DataFrame` or `~xarray.DataArray` is passed to the plotting command. Default is :rc:`autoformat`. """ docstring.snippets['axes.cmap_norm'] = """ cmap : colormap spec, optional The colormap specifer, passed to the `~proplot.constructor.Colormap` constructor. cmap_kw : dict-like, optional Passed to `~proplot.constructor.Colormap`. norm : normalizer spec, optional The colormap normalizer, used to warp data before passing it to `~proplot.colors.DiscreteNorm`. This is passed to the `~proplot.constructor.Norm` constructor. norm_kw : dict-like, optional Passed to `~proplot.constructor.Norm`. extend : {{'neither', 'min', 'max', 'both'}}, optional Whether to assign unique colors to out-of-bounds data and draw "extensions" (triangles, by default) on the colorbar. """ docstring.snippets['axes.levels_values'] = """ N Shorthand for `levels`. levels : int or list of float, optional The number of level edges or a list of level edges. If the former, `locator` is used to generate this many level edges at "nice" intervals. If the latter, the levels should be monotonically increasing or decreasing (note that decreasing levels will only work with ``pcolor`` plots, not ``contour`` plots). Default is :rc:`image.levels`. values : int or list of float, optional The number of level centers or a list of level centers. If the former, `locator` is used to generate this many level centers at "nice" intervals. If the latter, levels are inferred using `~proplot.utils.edges`. This will override any `levels` input. discrete : bool, optional If ``False``, the `~proplot.colors.DiscreteNorm` is not applied to the colormap when ``levels=N`` or ``levels=array_of_values`` are not explicitly requested. Instead, the number of levels in the colormap will be roughly controlled by :rcraw:`image.lut`. This has a similar effect to using `levels=large_number` but it may improve rendering speed. By default, this is ``False`` only for `~matplotlib.axes.Axes.imshow`, `~matplotlib.axes.Axes.matshow`, `~matplotlib.axes.Axes.spy`, `~matplotlib.axes.Axes.hexbin`, and `~matplotlib.axes.Axes.hist2d` plots. """ docstring.snippets['axes.vmin_vmax'] = """ vmin, vmax : float, optional Used to determine level locations if `levels` or `values` is an integer. Actual levels may not fall exactly on `vmin` and `vmax`, but the minimum level will be no smaller than `vmin` and the maximum level will be no larger than `vmax`. If `vmin` or `vmax` are not provided, the minimum and maximum data values are used. """ docstring.snippets['axes.auto_levels'] = """ inbounds : bool, optional If ``True`` (the edefault), when automatically selecting levels in the presence of hard *x* and *y* axis limits (i.e., when `~matplotlib.axes.Axes.set_xlim` or `~matplotlib.axes.Axes.set_ylim` have been called previously), only the in-bounds data is sampled. Default is :rc:`image.inbounds`. locator : locator-spec, optional The locator used to determine level locations if `levels` or `values` is an integer and `vmin` and `vmax` were not provided. Passed to the `~proplot.constructor.Locator` constructor. Default is `~matplotlib.ticker.MaxNLocator` with ``levels`` integer levels. locator_kw : dict-like, optional Passed to `~proplot.constructor.Locator`. symmetric : bool, optional If ``True``, automatically generated levels are symmetric about zero. positive : bool, optional If ``True``, automatically generated levels are positive with a minimum at zero. negative : bool, optional If ``True``, automatically generated levels are negative with a maximum at zero. nozero : bool, optional If ``True``, ``0`` is removed from the level list. This is mainly useful for `~matplotlib.axes.Axes.contour` plots. """ _lines_docstring = """ Support overlaying and stacking successive columns of data and support different colors for "negative" and "positive" lines. Important --------- This function wraps `~matplotlib.axes.Axes.{prefix}lines`. Parameters ---------- *args : ({y}1,), ({x}, {y}1), or ({x}, {y}1, {y}2) The *{x}* and *{y}* coordinates. If `{x}` is not provided, it will be inferred from `{y}1`. If `{y}1` and `{y}2` are provided, this function will draw lines between these points. If `{y}1` or `{y}2` are 2D, this function is called with each column. The default value for `{y}2` is ``0``. stack, stacked : bool, optional Whether to "stack" successive columns of the `{y}1` array. If this is ``True`` and `{y}2` was provided, it will be ignored. negpos : bool, optional Whether to color lines greater than zero with `poscolor` and lines less than zero with `negcolor`. negcolor, poscolor : color-spec, optional Colors to use for the negative and positive lines. Ignored if `negpos` is ``False``. Defaults are :rc:`negcolor` and :rc:`poscolor`. color, colors : color-spec or list thereof, optional The line color(s). linestyle, linestyles : linestyle-spec or list thereof, optional The line style(s). lw, linewidth, linewidths : linewidth-spec or list thereof, optional The line width(s). See also -------- standardize_1d apply_cycle """ docstring.snippets['axes.vlines'] = _lines_docstring.format( x='x', y='y', prefix='v', orientation='vertical', ) docstring.snippets['axes.hlines'] = _lines_docstring.format( x='y', y='x', prefix='h', orientation='horizontal', ) _scatter_docstring = """ Support `apply_cmap` features and support style keywords that are consistent with `~{package}.axes.Axes.plot{suffix}` keywords. Important --------- This function wraps `~{package}.axes.Axes.scatter{suffix}`. Parameters ---------- *args : {y} or {x}, {y} The input *{x}* or *{x}* and *{y}* coordinates. If only *{y}* is provided, *{x}* will be inferred from *{y}*. s, size, markersize : float or list of float, optional The marker size(s). The units are optionally scaled by `smin` and `smax`. smin, smax : float, optional The minimum and maximum marker size in units ``points^2`` used to scale `s`. If not provided, the marker sizes are equivalent to the values in `s`. c, color, markercolor : color-spec or list thereof, or array, optional The marker fill color(s). If this is an array of scalar values, colors will be generated using the colormap `cmap` and normalizer `norm`. %(axes.vmin_vmax)s %(axes.cmap_norm)s %(axes.levels_values)s %(axes.auto_levels)s lw, linewidth, linewidths, markeredgewidth, markeredgewidths \ : float or list thereof, optional The marker edge width. edgecolors, markeredgecolor, markeredgecolors \ : color-spec or list thereof, optional The marker edge color. Other parameters ---------------- **kwargs Passed to `~{package}.axes.Axes.scatter{suffix}`. See also -------- {package}.axes.Axes.bar{suffix} standardize_1d indicate_error apply_cycle """ docstring.snippets['axes.scatter'] = docstring.add_snippets( _scatter_docstring.format(x='x', y='y', suffix='', package='matplotlib') ) docstring.snippets['axes.scatterx'] = docstring.add_snippets( _scatter_docstring.format(x='y', y='x', suffix='', package='proplot') ) _fill_between_docstring = """ Support overlaying and stacking successive columns of data support different colors for "negative" and "positive" regions. Important --------- This function wraps `~matplotlib.axes.Axes.fill_between{suffix}` and `~proplot.axes.Axes.area{suffix}`. Parameters ---------- *args : ({y}1,), ({x}, {y}1), or ({x}, {y}1, {y}2) The *{x}* and *{y}* coordinates. If `{x}` is not provided, it will be inferred from `{y}1`. If `{y}1` and `{y}2` are provided, this function will shade between these points. If `{y}1` or `{y}2` are 2D, this function is called with each column. The default value for `{y}2` is ``0``. stack, stacked : bool, optional Whether to "stack" successive columns of the `{y}1` array. If this is ``True`` and `{y}2` was provided, it will be ignored. negpos : bool, optional Whether to shade where ``{y}1 >= {y}2`` with `poscolor` and where ``{y}1 < {y}2`` with `negcolor`. For example, to shade positive values red and negative values blue, simply use ``ax.fill_between{suffix}({x}, {y}, negpos=True)``. negcolor, poscolor : color-spec, optional Colors to use for the negative and positive shaded regions. Ignored if `negpos` is ``False``. Defaults are :rc:`negcolor` and :rc:`poscolor`. where : ndarray, optional Boolean ndarray mask for points you want to shade. See `this example \ <https://matplotlib.org/stable/gallery/pyplots/whats_new_98_4_fill_between.html>`__. lw, linewidth : float, optional The edge width for the area patches. edgecolor : color-spec, optional The edge color for the area patches. Other parameters ---------------- **kwargs Passed to `~matplotlib.axes.Axes.fill_between`. See also -------- matplotlib.axes.Axes.fill_between{suffix} proplot.axes.Axes.area{suffix} standardize_1d apply_cycle """ docstring.snippets['axes.fill_between'] = _fill_between_docstring.format( x='x', y='y', suffix='', ) docstring.snippets['axes.fill_betweenx'] = _fill_between_docstring.format( x='y', y='x', suffix='x', ) _bar_docstring = """ Support grouping and stacking successive columns of data, specifying bar widths relative to coordinate spacing, and using different colors for "negative" and "positive" bar heights. Important --------- This function wraps `~matplotlib.axes.Axes.bar{suffix}`. Parameters ---------- {x}, height, width, {bottom} : float or list of float, optional The dimensions of the bars. If the *{x}* coordinates are not provided, they are set to ``np.arange(0, len(height))``. The units for width are *relative* by default. absolute_width : bool, optional Whether to make the units for width *absolute*. This restores the default matplotlib behavior. stack, stacked : bool, optional Whether to stack columns of the input array or plot the bars side-by-side in groups. negpos : bool, optional Whether to shade bars greater than zero with `poscolor` and bars less than zero with `negcolor`. negcolor, poscolor : color-spec, optional Colors to use for the negative and positive bars. Ignored if `negpos` is ``False``. Defaults are :rc:`negcolor` and :rc:`poscolor`. lw, linewidth : float, optional The edge width for the bar patches. edgecolor : color-spec, optional The edge color for the bar patches. Other parameters ---------------- **kwargs Passed to `~matplotlib.axes.Axes.bar{suffix}`. See also -------- matplotlib.axes.Axes.bar{suffix} standardize_1d indicate_error apply_cycle """ docstring.snippets['axes.bar'] = _bar_docstring.format( x='x', bottom='bottom', suffix='', ) docstring.snippets['axes.barh'] = _bar_docstring.format( x='y', bottom='left', suffix='h', ) def _load_objects(): """ Delay loading expensive modules. We just want to detect if *input arrays* belong to these types -- and if this is the case, it means the module has already been imported! So, we only try loading these classes within autoformat calls. This saves >~500ms of import time. """ global DataArray, DataFrame, Series, Index, ndarray ndarray = np.ndarray DataArray = getattr(sys.modules.get('xarray', None), 'DataArray', ndarray) DataFrame = getattr(sys.modules.get('pandas', None), 'DataFrame', ndarray) Series = getattr(sys.modules.get('pandas', None), 'Series', ndarray) Index = getattr(sys.modules.get('pandas', None), 'Index', ndarray) _load_objects() def _is_number(data): """ Test whether input is numeric array rather than datetime or strings. """ return len(data) and np.issubdtype(_to_ndarray(data).dtype, np.number) def _is_string(data): """ Test whether input is array of strings. """ return len(data) and isinstance(_to_ndarray(data).flat[0], str) def _to_arraylike(data): """ Convert list of lists to array-like type. """ _load_objects() if data is None: raise ValueError('Cannot convert None data.') return None if not isinstance(data, (ndarray, DataArray, DataFrame, Series, Index)): data = np.asarray(data) if not np.iterable(data): data = np.atleast_1d(data) return data def _to_ndarray(data): """ Convert arbitrary input to ndarray cleanly. Returns a masked array if input is a masked array. """ return np.atleast_1d(getattr(data, 'values', data)) def _mask_array(mask, *args): """ Apply the mask to the input arrays. Values matching ``False`` are set to `np.nan`. """ invalid = ~mask # True if invalid args_masked = [] for arg in args: if arg.size > 1 and arg.shape != invalid.shape: raise ValueError('Shape mismatch between mask and array.') arg_masked = arg.astype(np.float64) if arg.size == 1: pass elif invalid.size == 1: arg_masked = np.nan if invalid.item() else arg_masked elif arg.size > 1: arg_masked[invalid] = np.nan args_masked.append(arg_masked) return args_masked[0] if len(args_masked) == 1 else args_masked def default_latlon(self, *args, latlon=True, **kwargs): """ Make ``latlon=True`` the default for `~proplot.axes.BasemapAxes` plots. This means you no longer have to pass ``latlon=True`` if your data coordinates are longitude and latitude. Important --------- This function wraps {methods} for `~proplot.axes.BasemapAxes`. """ method = kwargs.pop('_method') return method(self, *args, latlon=latlon, **kwargs) def default_transform(self, *args, transform=None, **kwargs): """ Make ``transform=cartopy.crs.PlateCarree()`` the default for `~proplot.axes.CartopyAxes` plots. This means you no longer have to pass ``transform=cartopy.crs.PlateCarree()`` if your data coordinates are longitude and latitude. Important --------- This function wraps {methods} for `~proplot.axes.CartopyAxes`. """ # Apply default transform # TODO: Do some cartopy methods reset backgroundpatch or outlinepatch? # Deleted comment reported this issue method = kwargs.pop('_method') if transform is None: transform = PlateCarree() return method(self, *args, transform=transform, **kwargs) def _basemap_redirect(self, *args, **kwargs): """ Docorator that calls the basemap version of the function of the same name. This must be applied as the innermost decorator. """ method = kwargs.pop('_method') name = method.__name__ if getattr(self, 'name', None) == 'proplot_basemap': return getattr(self.projection, name)(*args, ax=self, **kwargs) else: return method(self, *args, **kwargs) def _basemap_norecurse(self, *args, called_from_basemap=False, **kwargs): """ Decorator to prevent recursion in basemap method overrides. See `this post https://stackoverflow.com/a/37675810/4970632`__. """ method = kwargs.pop('_method') name = method.__name__ if called_from_basemap: return getattr(maxes.Axes, name)(self, *args, **kwargs) else: return method(self, *args, called_from_basemap=True, **kwargs) def _get_data(data, *args): """ Try to convert positional `key` arguments to `data[key]`. If argument is string it could be a valid positional argument like `fmt` so do not raise error. """ args = list(args) for i, arg in enumerate(args): if isinstance(arg, str): try: array = data[arg] except KeyError: pass else: args[i] = array return args def _get_label(obj): """ Return a valid non-placeholder artist label from the artist or a tuple of artists destined for a legend. Prefer final artist (drawn last and on top). """ # NOTE: BarContainer and StemContainer are instances of tuple while not hasattr(obj, 'get_label') and isinstance(obj, tuple) and len(obj) > 1: obj = obj[-1] label = getattr(obj, 'get_label', lambda: None)() return label if label and label[:1] != '_' else None def _get_labels(data, axis=0, always=True): """ Return the array-like "labels" along axis `axis` from an array-like object. These might be an xarray `DataArray` or pandas `Index`. If `always` is ``False`` we return ``None`` for simple ndarray input. """ # NOTE: Previously inferred 'axis 1' metadata of 1D variable using the # data values metadata but that is incorrect. The paradigm for 1D plots # is we have row coordinates representing x, data values representing y, # and column coordinates representing individual series. if axis not in (0, 1, 2): raise ValueError(f'Invalid axis {axis}.') labels = None _load_objects() if isinstance(data, ndarray): if not always: pass elif axis < data.ndim: labels = np.arange(data.shape[axis]) else: # requesting 'axis 1' on a 1D array labels = np.array([0]) # Xarray object # NOTE: Even if coords not present .coords[dim] auto-generates indices elif isinstance(data, DataArray): if axis < data.ndim: labels = data.coords[data.dims[axis]] elif not always: pass else: labels = np.array([0]) # Pandas object elif isinstance(data, (DataFrame, Series, Index)): if axis == 0 and isinstance(data, (DataFrame, Series)): labels = data.index elif axis == 1 and isinstance(data, (DataFrame,)): labels = data.columns elif not always: pass else: # beyond dimensionality labels = np.array([0]) # Everything else # NOTE: We ensure data is at least 1D in _to_arraylike so this covers everything else: raise ValueError(f'Unrecognized array type {type(data)}.') return labels def _get_title(data, units=True): """ Return the "title" associated with an array-like object with metadata. This might be a pandas `DataFrame` `name` or a name constructed from xarray `DataArray` attributes. In the latter case we search for `long_name` and `standard_name`, preferring the former, and append `(units)` if `units` is ``True``. If no names are available but units are available we just use the units string. """ title = None _load_objects() if isinstance(data, ndarray): pass # Xarray object with possible long_name, standard_name, and units attributes. # Output depends on if units is True elif isinstance(data, DataArray): title = getattr(data, 'name', None) for key in ('standard_name', 'long_name'): title = data.attrs.get(key, title) if units: units = data.attrs.get('units', None) if title and units: title = f'{title} ({units})' elif units: title = units # Pandas object. Note DataFrame has no native name attribute but user can add one # See: https://github.com/pandas-dev/pandas/issues/447 elif isinstance(data, (DataFrame, Series, Index)): title = getattr(data, 'name', None) or None # Standardize result if title is not None: title = str(title).strip() return title def _parse_string_coords(*args, which='x', **kwargs): """ Convert string arrays and lists to index coordinates. """ # NOTE: Why FixedLocator and not IndexLocator? The latter requires plotting # lines or else error is raised... very strange. # NOTE: Why IndexFormatter and not FixedFormatter? The former ensures labels # correspond to indices while the latter can mysteriously truncate labels. res = [] for arg in args: arg = _to_arraylike(arg) if _is_string(arg) and arg.ndim > 1: raise ValueError('Non-1D string coordinate input is unsupported.') if not _is_string(arg): res.append(arg) continue idx = np.arange(len(arg)) kwargs.setdefault(which + 'locator', mticker.FixedLocator(idx)) kwargs.setdefault(which + 'formatter', pticker._IndexFormatter(_to_ndarray(arg))) # noqa: E501 kwargs.setdefault(which + 'minorlocator', mticker.NullLocator()) res.append(idx) return *res, kwargs def _auto_format_1d( self, x, *ys, name='plot', autoformat=False, label=None, values=None, labels=None, **kwargs ): """ Try to retrieve default coordinates from array-like objects and apply default formatting. Also update the keyword arguments. """ # Parse input projection = hasattr(self, 'projection') parametric = name in ('parametric',) scatter = name in ('scatter',) hist = name in ('hist',) box = name in ('boxplot', 'violinplot') pie = name in ('pie',) vert = kwargs.get('vert', True) and kwargs.get('orientation', None) != 'horizontal' vert = vert and name not in ('plotx', 'scatterx', 'fill_betweenx', 'barh') stem = name in ('stem',) nocycle = name in ('stem', 'hexbin', 'hist2d', 'parametric') labels = _not_none( label=label, values=values, labels=labels, colorbar_kw_values=kwargs.get('colorbar_kw', {}).pop('values', None), legend_kw_labels=kwargs.get('legend_kw', {}).pop('labels', None), ) # Retrieve the x coords # NOTE: Allow for "ragged array" input to boxplot and violinplot. # NOTE: Where columns represent distributions, like for box and violin plots or # where we use 'means' or 'medians', columns coords (axis 1) are 'x' coords. # Otherwise, columns represent e.g. lines, and row coords (axis 0) are 'x' coords dists = box or any(kwargs.get(s) for s in ('mean', 'means', 'median', 'medians')) ragged = any(getattr(y, 'dtype', None) == 'object' for y in ys) xaxis = 1 if dists and not ragged else 0 if x is None and not hist: x = _get_labels(ys[0], axis=xaxis) # infer from rows or columns # Default legend or colorbar labels and title. We want default legend # labels if this is an object with 'title' metadata and/or coords are string # WARNING: Confusing terminology differences here -- for box and violin plots # 'labels' refer to indices along x axis. Get interpreted that way down the line. if autoformat and not stem: # The inferred labels and title title = None if labels is not None: title = _get_title(labels) else: yaxis = xaxis if box or pie else xaxis + 1 labels = _get_labels(ys[0], axis=yaxis, always=False) title = _get_title(labels) # e.g. if labels is a Series if labels is None: pass elif not title and not any(isinstance(_, str) for _ in labels): labels = None # Apply the title if title: kwargs.setdefault('colorbar_kw', {}).setdefault('title', title) if not nocycle: kwargs.setdefault('legend_kw', {}).setdefault('title', title) # Apply the labels if labels is not None: if not nocycle: kwargs['labels'] = _to_ndarray(labels) elif parametric: values, colorbar_kw = _parse_string_coords(labels, which='') kwargs['values'] = _to_ndarray(values) kwargs.setdefault('colorbar_kw', {}).update(colorbar_kw) # The basic x and y settings if not projection: # Apply label # NOTE: Do not overwrite existing labels! sx, sy = 'xy' if vert else 'yx' sy = sx if hist else sy # histogram 'y' values end up along 'x' axis kw_format = {} if autoformat: # 'y' axis title = _get_title(ys[0]) if title and not getattr(self, f'get_{sy}label')(): kw_format[sy + 'label'] = title if autoformat and not hist: # 'x' axis title = _get_title(x) if title and not getattr(self, f'get_{sx}label')(): kw_format[sx + 'label'] = title # Handle string-type coordinates if not pie and not hist: x, kw_format = _parse_string_coords(x, which=sx, **kw_format) if not hist and not box and not pie: *ys, kw_format = _parse_string_coords(*ys, which=sy, **kw_format) if not hist and not scatter and not parametric and x.ndim == 1 and x.size > 1 and x[1] < x[0]: # noqa: E501 kw_format[sx + 'reverse'] = True # auto reverse # Appply if kw_format: self.format(**kw_format) # Finally strip metadata # WARNING: Most methods that accept 2D arrays use columns of data, but when # pandas DataFrame specifically is passed to hist, boxplot, or violinplot, rows # of data assumed! Converting to ndarray necessary. return _to_ndarray(x), *map(_to_ndarray, ys), kwargs def _basemap_1d(x, *ys, projection=None): """ Fix basemap geographic 1D data arrays. """ xmin, xmax = projection.lonmin, projection.lonmax x_orig, ys_orig = x, ys ys = [] for y_orig in ys_orig: x, y = _fix_span(*_fix_coords(x_orig, y_orig), xmin, xmax) ys.append(y) return x, *ys def _fix_coords(x, y): """ Ensure longitudes are monotonic and make `~numpy.ndarray` copies so the contents can be modified. Ignores 2D coordinate arrays. """ if x.ndim != 1 or all(x < x[0]): # skip 2D arrays and monotonic backwards data return x, y lon1 = x[0] filter_ = x < lon1 while filter_.sum(): filter_ = x < lon1 x[filter_] += 360 return x, y def _fix_span(x, y, xmin, xmax): """ Ensure data for basemap plots is restricted between the minimum and maximum longitude of the projection. Input is the ``x`` and ``y`` coordinates. The ``y`` coordinates are rolled along the rightmost axis. """ if x.ndim != 1: return x, y # Roll in same direction if some points on right-edge extend # more than 360 above min longitude; *they* should be on left side lonroll = np.where(x > xmin + 360)[0] # tuple of ids if lonroll.size: # non-empty roll = x.size - lonroll.min() x = np.roll(x, roll) y = np.roll(y, roll, axis=-1) x[:roll] -= 360 # make monotonic # Set NaN where data not in range xmin, xmax. Must be done # for regional smaller projections or get weird side-effects due # to having valid data way outside of the map boundaries y = y.copy() if x.size - 1 == y.shape[-1]: # test western/eastern grid cell edges y[..., (x[1:] < xmin) | (x[:-1] > xmax)] = np.nan elif x.size == y.shape[-1]: # test the centers and pad by one for safety where = np.where((x < xmin) | (x > xmax))[0] y[..., where[1:-1]] = np.nan return x, y @docstring.add_snippets def standardize_1d(self, *args, data=None, autoformat=None, **kwargs): """ Interpret positional arguments for all "1D" plotting commands so the syntax is consistent. The arguments are standardized as follows: * If a 2D array is passed, the corresponding plot command is called for each column of data (except for ``boxplot`` and ``violinplot``, in which case each column is interpreted as a distribution). * If *x* and *y* or *latitude* and *longitude* coordinates were not provided, and a `~pandas.DataFrame` or `~xarray.DataArray`, we try to infer them from the metadata. Otherwise, ``np.arange(0, data.shape[0])`` is used. Important --------- This function wraps {methods} Parameters ---------- %(axes.autoformat)s See also -------- apply_cycle indicate_error """ method = kwargs.pop('_method') name = method.__name__ bar = name in ('bar', 'barh') box = name in ('boxplot', 'violinplot') hist = name in ('hist',) parametric = name in ('parametric',) onecoord = name in ('hist',) twocoords = name in ('vlines', 'hlines', 'fill_between', 'fill_betweenx') allowempty = name in ('fill', 'plot', 'plotx',) autoformat = _not_none(autoformat, rc['autoformat']) # Find and translate input args args = list(args) keys = KEYWORD_TO_POSITIONAL_INSERT.get(name, {}) for idx, key in enumerate(keys): if key in kwargs: args.insert(idx, kwargs.pop(key)) if data is not None: args = _get_data(data, *args) if not args: if allowempty: return [] # match matplotlib behavior else: raise TypeError('Positional arguments are required.') # Translate between 'orientation' and 'vert' for flexibility # NOTE: Users should only pass these to hist, boxplot, or violinplot. To change # the bar plot orientation users should use 'bar' and 'barh'. Internally, # matplotlib has a single central bar function whose behavior is configured # by the 'orientation' key, so critical not to strip the argument here. vert = kwargs.pop('vert', None) orientation = kwargs.pop('orientation', None) if orientation is not None: vert = _not_none(vert=vert, orientation=(orientation == 'vertical')) if orientation not in (None, 'horizontal', 'vertical'): raise ValueError("Orientation must be either 'horizontal' or 'vertical'.") if vert is None: pass elif box: kwargs['vert'] = vert elif bar or hist: kwargs['orientation'] = 'vertical' if vert else 'horizontal' # used internally else: raise TypeError("Unexpected keyword argument(s) 'vert' and 'orientation'.") # Parse positional args if parametric and len(args) == 3: # allow positional values kwargs['values'] = args.pop(2) if parametric and 'c' in kwargs: # handle aliases kwargs['values'] = kwargs.pop('c') if onecoord or len(args) == 1: # allow hist() positional bins x, ys, args = None, args[:1], args[1:] elif twocoords: x, ys, args = args[0], args[1:3], args[3:] else: x, ys, args = args[0], args[1:2], args[2:] if x is not None: x = _to_arraylike(x) ys = tuple(map(_to_arraylike, ys)) # Append remaining positional args # NOTE: This is currently just used for bar and barh. More convenient to pass # 'width' as positional so that matplotlib native 'barh' sees it as 'height'. keys = KEYWORD_TO_POSITIONAL_APPEND.get(name, {}) for key in keys: if key in kwargs: args.append(kwargs.pop(key)) # Automatic formatting and coordinates # NOTE: For 'hist' the 'x' coordinate remains None then is ignored in apply_cycle. x, *ys, kwargs = _auto_format_1d( self, x, *ys, name=name, autoformat=autoformat, **kwargs ) # Ensure data is monotonic and falls within map bounds if getattr(self, 'name', None) == 'proplot_basemap' and kwargs.get('latlon', None): x, *ys = _basemap_1d(x, *ys, projection=self.projection) # Call function if box: kwargs.setdefault('positions', x) # *this* is how 'x' is passed to boxplot return method(self, x, *ys, *args, **kwargs) def _auto_format_2d(self, x, y, *zs, name=None, order='C', autoformat=False, **kwargs): """ Try to retrieve default coordinates from array-like objects and apply default formatting. Also apply optional transpose and update the keyword arguments. """ # Retrieve coordinates allow1d = name in ('barbs', 'quiver') # these also allow 1D data projection = hasattr(self, 'projection') if x is None and y is None: z = zs[0] if z.ndim == 1: x = _get_labels(z, axis=0) y = np.zeros(z.shape) # default barb() and quiver() behavior in matplotlib else: x = _get_labels(z, axis=1) y = _get_labels(z, axis=0) if order == 'F': x, y = y, x # Check coordinate and data shapes shapes = tuple(z.shape for z in zs) if any(len(_) != 2 and not (allow1d and len(_) == 1) for _ in shapes): raise ValueError(f'Data arrays must be 2d, but got shapes {shapes}.') shapes = set(shapes) if len(shapes) > 1: raise ValueError(f'Data arrays must have same shape, but got shapes {shapes}.') if any(_.ndim not in (1, 2) for _ in (x, y)): raise ValueError('x and y coordinates must be 1d or 2d.') if x.ndim != y.ndim: raise ValueError('x and y coordinates must have same dimensionality.') if order == 'F': # TODO: double check this x, y = x.T, y.T # in case they are 2-dimensional zs = tuple(z.T for z in zs) # The labels and XY axis settings if not projection: # Apply labels # NOTE: Do not overwrite existing labels! kw_format = {} if autoformat: for s, d in zip('xy', (x, y)): title = _get_title(d) if title and not getattr(self, f'get_{s}label')(): kw_format[s + 'label'] = title # Handle string-type coordinates x, kw_format = _parse_string_coords(x, which='x', **kw_format) y, kw_format = _parse_string_coords(y, which='y', **kw_format) for s, d in zip('xy', (x, y)): if d.size > 1 and d.ndim == 1 and _to_ndarray(d)[1] < _to_ndarray(d)[0]: kw_format[s + 'reverse'] = True # Apply formatting if kw_format: self.format(**kw_format) # Default colorbar label # WARNING: This will fail for any funcs wrapped by standardize_2d but not # wrapped by apply_cmap. So far there are none. if autoformat: kwargs.setdefault('colorbar_kw', {}) title = _get_title(zs[0]) if title and True: kwargs['colorbar_kw'].setdefault('label', title) # Finally strip metadata return _to_ndarray(x), _to_ndarray(y), *map(_to_ndarray, zs), kwargs def _add_poles(y, z): """ Add data points on the poles as the average of highest latitude data. """ # Get means with np.errstate(all='ignore'): p1 = z[0, :].mean() # pole 1, make sure is not 0D DataArray! p2 = z[-1, :].mean() # pole 2 if hasattr(p1, 'item'): p1 = np.asscalar(p1) # happens with DataArrays if hasattr(p2, 'item'): p2 = np.asscalar(p2) # Concatenate ps = (-90, 90) if (y[0] < y[-1]) else (90, -90) z1 = np.repeat(p1, z.shape[1])[None, :] z2 = np.repeat(p2, z.shape[1])[None, :] y = ma.concatenate((ps[:1], y, ps[1:])) z = ma.concatenate((z1, z, z2), axis=0) return y, z def _enforce_centers(x, y, z): """ Enforce that coordinates are centers. Convert from edges if possible. """ xlen, ylen = x.shape[-1], y.shape[0] if z.ndim == 2 and z.shape[1] == xlen - 1 and z.shape[0] == ylen - 1: # Get centers given edges if all(z.ndim == 1 and z.size > 1 and _is_number(z) for z in (x, y)): x = 0.5 * (x[1:] + x[:-1]) y = 0.5 * (y[1:] + y[:-1]) else: if ( x.ndim == 2 and x.shape[0] > 1 and x.shape[1] > 1 and _is_number(x) ): x = 0.25 * (x[:-1, :-1] + x[:-1, 1:] + x[1:, :-1] + x[1:, 1:]) if ( y.ndim == 2 and y.shape[0] > 1 and y.shape[1] > 1 and _is_number(y) ): y = 0.25 * (y[:-1, :-1] + y[:-1, 1:] + y[1:, :-1] + y[1:, 1:]) elif z.shape[-1] != xlen or z.shape[0] != ylen: # Helpful error message raise ValueError( f'Input shapes x {x.shape} and y {y.shape} ' f'must match z centers {z.shape} ' f'or z borders {tuple(i+1 for i in z.shape)}.' ) return x, y def _enforce_edges(x, y, z): """ Enforce that coordinates are edges. Convert from centers if possible. """ xlen, ylen = x.shape[-1], y.shape[0] if z.ndim == 2 and z.shape[1] == xlen and z.shape[0] == ylen: # Get edges given centers if all(z.ndim == 1 and z.size > 1 and _is_number(z) for z in (x, y)): x = edges(x) y = edges(y) else: if ( x.ndim == 2 and x.shape[0] > 1 and x.shape[1] > 1 and _is_number(x) ): x = edges2d(x) if ( y.ndim == 2 and y.shape[0] > 1 and y.shape[1] > 1 and _is_number(y) ): y = edges2d(y) elif z.shape[-1] != xlen - 1 or z.shape[0] != ylen - 1: # Helpful error message raise ValueError( f'Input shapes x {x.shape} and y {y.shape} must match ' f'array centers {z.shape} or ' f'array borders {tuple(i + 1 for i in z.shape)}.' ) return x, y def _cartopy_2d(x, y, *zs, globe=False): """ Fix cartopy 2D geographic data arrays. """ # Fix coordinates x, y = _fix_coords(x, y) # Fix data x_orig, y_orig, zs_orig = x, y, zs zs = [] for z_orig in zs_orig: # Bail for 2D coordinates if not globe or x_orig.ndim > 1 or y_orig.ndim > 1: zs.append(z_orig) continue # Fix holes over poles by *interpolating* there y, z = _add_poles(y_orig, z_orig) # Fix seams by ensuring circular coverage (cartopy can plot over map edges) if x_orig[0] % 360 != (x_orig[-1] + 360) % 360: x = ma.concatenate((x_orig, [x_orig[0] + 360])) z = ma.concatenate((z, z[:, :1]), axis=1) zs.append(z) return x, y, *zs def _basemap_2d(x, y, *zs, globe=False, projection=None): """ Fix basemap 2D geographic data arrays. """ # Fix coordinates x, y = _fix_coords(x, y) # Fix data xmin, xmax = projection.lonmin, projection.lonmax x_orig, y_orig, zs_orig = x, y, zs zs = [] for z_orig in zs_orig: # Ensure data is within map bounds x, z_orig = _fix_span(x_orig, z_orig, xmin, xmax) # Bail for 2D coordinates if not globe or x_orig.ndim > 1 or y_orig.ndim > 1: zs.append(z_orig) continue # Fix holes over poles by *interpolating* there y, z = _add_poles(y_orig, z_orig) # Fix seams at map boundary if x[0] == xmin and x.size - 1 == z.shape[1]: # scenario 1 # Edges (e.g. pcolor) fit perfectly against seams. Size is unchanged. pass elif x.size - 1 == z.shape[1]: # scenario 2 # Edges (e.g. pcolor) do not fit perfectly. Size augmented by 1. x = ma.append(xmin, x) x[-1] = xmin + 360 z = ma.concatenate((z[:, -1:], z), axis=1) elif x.size == z.shape[1]: # scenario 3 # Centers (e.g. contour) must be interpolated to edge. Size augmented by 2. xi = np.array([x[-1], x[0] + 360]) if xi[0] == xi[1]: # impossible to interpolate pass else: zq = ma.concatenate((z[:, -1:], z[:, :1]), axis=1) xq = xmin + 360 zq = (zq[:, :1] * (xi[1] - xq) + zq[:, 1:] * (xq - xi[0])) / (xi[1] - xi[0]) # noqa: E501 x = ma.concatenate(([xmin], x, [xmin + 360])) z = ma.concatenate((zq, z, zq), axis=1) else: raise ValueError('Unexpected shapes of coordinates or data arrays.') zs.append(z) # Convert coordinates if x.ndim == 1 and y.ndim == 1: x, y = np.meshgrid(x, y) x, y = projection(x, y) return x, y, *zs @docstring.add_snippets def standardize_2d( self, *args, data=None, autoformat=None, order='C', globe=False, **kwargs ): """ Interpret positional arguments for all "2D" plotting commands so the syntax is consistent. The arguments are standardized as follows: * If *x* and *y* or *latitude* and *longitude* coordinates were not provided, and a `~pandas.DataFrame` or `~xarray.DataArray` is passed, we try to infer them from the metadata. Otherwise, ``np.arange(0, data.shape[0])`` and ``np.arange(0, data.shape[1])`` are used. * For ``pcolor`` and ``pcolormesh``, coordinate *edges* are calculated if *centers* were provided. This uses the `~proplot.utils.edges` and `~propot.utils.edges2d` functions. For all other methods, coordinate *centers* are calculated if *edges* were provided. Important --------- This function wraps {methods} Parameters ---------- %(axes.autoformat)s order : {{'C', 'F'}}, optional If ``'C'``, arrays should be shaped ``(y, x)``. If ``'F'``, arrays should be shaped ``(x, y)``. Default is ``'C'``. globe : bool, optional Whether to ensure global coverage for `~proplot.axes.GeoAxes` plots. Default is ``False``. When set to ``True`` this does the following: #. Interpolates input data to the North and South poles by setting the data values at the poles to the mean from latitudes nearest each pole. #. Makes meridional coverage "circular", i.e. the last longitude coordinate equals the first longitude coordinate plus 360\N{DEGREE SIGN}. #. For `~proplot.axes.BasemapAxes`, 1D longitude vectors are also cycled to fit within the map edges. For example, if the projection central longitude is 90\N{DEGREE SIGN}, the data is shifted so that it spans -90\N{DEGREE SIGN} to 270\N{DEGREE SIGN}. See also -------- apply_cmap proplot.utils.edges proplot.utils.edges2d """ method = kwargs.pop('_method') name = method.__name__ pcolor = name in ('pcolor', 'pcolormesh', 'pcolorfast') allow1d = name in ('barbs', 'quiver') # these also allow 1D data autoformat = _not_none(autoformat, rc['autoformat']) # Find and translate input args if data is not None: args = _get_data(data, *args) if not args: raise TypeError('Positional arguments are required.') # Parse input args if len(args) > 2: x, y, *args = args else: x = y = None if x is not None: x = _to_arraylike(x) if y is not None: y = _to_arraylike(y) zs = tuple(map(_to_arraylike, args)) # Automatic formatting x, y, *zs, kwargs = _auto_format_2d( self, x, y, *zs, name=name, order=order, autoformat=autoformat, **kwargs ) # Standardize coordinates if pcolor: x, y = _enforce_edges(x, y, zs[0]) else: x, y = _enforce_centers(x, y, zs[0]) # Cartopy projection axes if ( not allow1d and getattr(self, 'name', None) == 'proplot_cartopy' and isinstance(kwargs.get('transform', None), PlateCarree) ): x, y, *zs = _cartopy_2d(x, y, *zs, globe=globe) # Basemap projection axes elif ( not allow1d and getattr(self, 'name', None) == 'proplot_basemap' and kwargs.get('latlon', None) ): x, y, *zs = _basemap_2d(x, y, *zs, globe=globe, projection=self.projection) kwargs['latlon'] = False # Call function return method(self, x, y, *zs, **kwargs) def _get_error_data( data, y, errdata=None, stds=None, pctiles=None, stds_default=None, pctiles_default=None, reduced=True, absolute=False, label=False, ): """ Return values that can be passed to the `~matplotlib.axes.Axes.errorbar` `xerr` and `yerr` keyword args. """ # Parse stds arguments # NOTE: Have to guard against "truth value of an array is ambiguous" errors if stds is True: stds = stds_default elif stds is False or stds is None: stds = None else: stds = np.atleast_1d(stds) if stds.size == 1: stds = sorted((-stds.item(), stds.item())) elif stds.size != 2: raise ValueError('Expected scalar or length-2 stdev specification.') # Parse pctiles arguments if pctiles is True: pctiles = pctiles_default elif pctiles is False or pctiles is None: pctiles = None else: pctiles = np.atleast_1d(pctiles) if pctiles.size == 1: delta = (100 - pctiles.item()) / 2.0 pctiles = sorted((delta, 100 - delta)) elif pctiles.size != 2: raise ValueError('Expected scalar or length-2 pctiles specification.') # Incompatible settings if stds is not None and pctiles is not None: warnings._warn_proplot( 'You passed both a standard deviation range and a percentile range for ' 'drawing error indicators. Using the former.' ) pctiles = None if not reduced and (stds is not None or pctiles is not None): raise ValueError( 'To automatically compute standard deviations or percentiles on columns ' 'of data you must pass means=True or medians=True.' ) if reduced and errdata is not None: stds = pctiles = None warnings._warn_proplot( 'You explicitly provided the error bounds but also requested ' 'automatically calculating means or medians on data columns. ' 'It may make more sense to use the "stds" or "pctiles" keyword args ' 'and have *proplot* calculate the error bounds.' ) # Compute error data in format that can be passed to maxes.Axes.errorbar() # NOTE: Include option to pass symmetric deviation from central points if errdata is not None: # Manual error data if y.ndim != 1: raise ValueError( 'errdata with 2D y coordinates is not yet supported.' ) label_default = 'uncertainty' err = _to_ndarray(errdata) if ( err.ndim not in (1, 2) or err.shape[-1] != y.size or err.ndim == 2 and err.shape[0] != 2 ): raise ValueError( f'errdata must have shape (2, {y.shape[-1]}), but got {err.shape}.' ) if err.ndim == 1: abserr = err err = np.empty((2, err.size)) err[0, :] = y - abserr # translated back to absolute deviations below err[1, :] = y + abserr elif stds is not None: # Standard deviations label_default = fr'{abs(stds[1])}$\sigma$ range' err = y + np.nanstd(data, axis=0)[None, :] * _to_ndarray(stds)[:, None] elif pctiles is not None: # Percentiles label_default = f'{pctiles[1] - pctiles[0]}% range' err = np.nanpercentile(data, pctiles, axis=0) else: raise ValueError('You must provide error bounds.') # Return label possibly if label is True: label = label_default elif not label: label = None # Make relative data for maxes.Axes.errorbar() ingestion if not absolute: err = err - y err[0, :] *= -1 # absolute deviations from central points # Return data with legend entry return err, label def indicate_error( self, *args, mean=None, means=None, median=None, medians=None, barstd=None, barstds=None, barpctile=None, barpctiles=None, bardata=None, boxstd=None, boxstds=None, boxpctile=None, boxpctiles=None, boxdata=None, shadestd=None, shadestds=None, shadepctile=None, shadepctiles=None, shadedata=None, fadestd=None, fadestds=None, fadepctile=None, fadepctiles=None, fadedata=None, boxmarker=None, boxmarkercolor='white', boxcolor=None, barcolor=None, shadecolor=None, fadecolor=None, shadelabel=False, fadelabel=False, shadealpha=0.4, fadealpha=0.2, boxlinewidth=None, boxlw=None, barlinewidth=None, barlw=None, capsize=None, boxzorder=2.5, barzorder=2.5, shadezorder=1.5, fadezorder=1.5, **kwargs ): """ Support on-the-fly error bars and error shading. Use the input error data or optionally interpret columns of data as distributions, pass the column means or medians to the relevant plotting command, and draw error indications from the specified standard deviation or percentile range. Important --------- This function wraps {methods} Parameters ---------- *args The input data. mean, means : bool, optional Whether to plot the means of each column in the input data. If no other arguments specified, this also sets ``barstd=True`` (and ``boxstd=True`` for violin plots). median, medians : bool, optional Whether to plot the medians of each column in the input data. If no other arguments specified, this also sets ``barstd=True`` (and ``boxstd=True`` for violin plots). barstd, barstds : float, (float, float), or bool, optional Standard deviation multiples for *thin error bars* with optional whiskers (i.e. caps). If scalar, then +/- that number is used. If ``True``, the default of +/-3 standard deviations is used. This argument is only valid if `means` or `medians` is ``True``. barpctile, barpctiles : float, (float, float) or bool, optional As with `barstd`, but instead using *percentiles* for the error bars. The percentiles are calculated with `numpy.percentile`. If scalar, that width surrounding the 50th percentile is used (e.g. ``90`` shows the 5th to 95th percentiles). If ``True``, the default percentile range of 0 to 100 is used. This argument is only valid if `means` or `medians` is ``True``. bardata : 2 x N array or 1D array, optional If shape is 2 x N these are the lower and upper bounds for the thin error bars. If array is 1D these are the absolute, symmetric deviations from the central points. This should be used if `means` and `medians` are both ``False`` (i.e. you did not provide dataset columns from which statistical properties can be calculated automatically). boxstd, boxstds, boxpctile, boxpctiles, boxdata : optional As with `barstd`, `barpctile`, and `bardata`, but for *thicker error bars* representing a smaller interval than the thin error bars. If `boxstds` is ``True``, the default standard deviation range of +/-1 is used. If `boxpctiles` is ``True``, the default percentile range of 25 to 75 is used (i.e. the interquartile range). When "boxes" and "bars" are combined, this has the effect of drawing miniature box-and-whisker plots. shadestd, shadestds, shadepctile, shadepctiles, shadedata : optional As with `barstd`, `barpctile`, and `bardata`, but using *shading* to indicate the error range. If `shadestds` is ``True``, the default standard deviation range of +/-2 is used. If `shadepctiles` is ``True``, the default percentile range of 10 to 90 is used. Shading is generally useful for `~matplotlib.axes.Axes.plot` plots. fadestd, fadestds, fadepctile, fadepctiles, fadedata : optional As with `shadestd`, `shadepctile`, and `shadedata`, but for an additional, more faded, *secondary* shaded region. If `fadestds` is ``True``, the default standard deviation range of +/-3 is used. If `fadepctiles` is ``True``, the default percentile range of 0 to 100 is used. barcolor, boxcolor, shadecolor, fadecolor : color-spec, optional Colors for the different error indicators. For error bars, the default is ``'k'``. For shading, the default behavior is to inherit color from the primary `~matplotlib.artist.Artist`. shadelabel, fadelabel : bool or str, optional Labels for the shaded regions to be used as separate legend entries. To toggle labels "on" and apply a *default* label, use e.g. ``shadelabel=True``. To apply a *custom* label, use e.g. ``shadelabel='label'``. Otherwise, the shading is drawn underneath the line and/or marker in the legend entry. barlinewidth, boxlinewidth, barlw, boxlw : float, optional Line widths for the thin and thick error bars, in points. The defaults are ``barlw=0.8`` and ``boxlw=4 * barlw``. boxmarker : bool, optional Whether to draw a small marker in the middle of the box denoting the mean or median position. Ignored if `boxes` is ``False``. boxmarkercolor : color-spec, optional Color for the `boxmarker` marker. Default is ``'w'``. capsize : float, optional The cap size for thin error bars in points. barzorder, boxzorder, shadezorder, fadezorder : float, optional The "zorder" for the thin error bars, thick error bars, and shading. Returns ------- h, err1, err2, ... The original plot object and the error bar or shading objects. """ method = kwargs.pop('_method') name = method.__name__ bar = name in ('bar',) flip = name in ('barh', 'plotx', 'scatterx') or kwargs.get('vert') is False plot = name in ('plot', 'scatter') violin = name in ('violinplot',) means = _not_none(mean=mean, means=means) medians = _not_none(median=median, medians=medians) barstds = _not_none(barstd=barstd, barstds=barstds) boxstds = _not_none(boxstd=boxstd, boxstds=boxstds) shadestds = _not_none(shadestd=shadestd, shadestds=shadestds) fadestds = _not_none(fadestd=fadestd, fadestds=fadestds) barpctiles = _not_none(barpctile=barpctile, barpctiles=barpctiles) boxpctiles = _not_none(boxpctile=boxpctile, boxpctiles=boxpctiles) shadepctiles = _not_none(shadepctile=shadepctile, shadepctiles=shadepctiles) fadepctiles = _not_none(fadepctile=fadepctile, fadepctiles=fadepctiles) bars = any(_ is not None for _ in (bardata, barstds, barpctiles)) boxes = any(_ is not None for _ in (boxdata, boxstds, boxpctiles)) shade = any(_ is not None for _ in (shadedata, shadestds, shadepctiles)) fade = any(_ is not None for _ in (fadedata, fadestds, fadepctiles)) if means and medians: warnings._warn_proplot('Cannot have both means=True and medians=True. Using former.') # noqa: E501 # Get means or medians while preserving metadata for autoformat # TODO: Permit 3D array with error dimension coming first # NOTE: Previously went to great pains to preserve metadata but now retrieval # of default legend handles moved to _auto_format_1d so can strip. x, y, *args = args data = y if means or medians: if data.ndim != 2: raise ValueError(f'Expected 2D array for means=True. Got {data.ndim}D.') if not any((bars, boxes, shade, fade)): bars = barstds = True if violin: boxes = boxstds = True if means: y = np.nanmean(data, axis=0) elif medians: y = np.nanpercentile(data, 50, axis=0) # Parse keyword args and apply defaults # NOTE: Should not use plot() 'linewidth' for bar elements # NOTE: violinplot_extras passes some invalid keyword args with expectation # that indicate_error pops them and uses them for error bars. getter = kwargs.pop if violin else kwargs.get if bar else lambda *args: None boxmarker = _not_none(boxmarker, True if violin else False) capsize = _not_none(capsize, 3.0) linewidth = _not_none(getter('linewidth', None), getter('lw', None), 1.0) barlinewidth = _not_none(barlinewidth=barlinewidth, barlw=barlw, default=linewidth) boxlinewidth = _not_none(boxlinewidth=boxlinewidth, boxlw=boxlw, default=4 * barlinewidth) # noqa: E501 edgecolor = _not_none(getter('edgecolor', None), 'k') barcolor = _not_none(barcolor, edgecolor) boxcolor = _not_none(boxcolor, barcolor) shadecolor_infer = shadecolor is None fadecolor_infer = fadecolor is None shadecolor = _not_none(shadecolor, kwargs.get('color'), kwargs.get('facecolor'), edgecolor) # noqa: E501 fadecolor = _not_none(fadecolor, shadecolor) # Draw dark and light shading getter = kwargs.pop if plot else kwargs.get eobjs = [] fill = self.fill_betweenx if flip else self.fill_between if fade: edata, label = _get_error_data( data, y, errdata=fadedata, stds=fadestds, pctiles=fadepctiles, stds_default=(-3, 3), pctiles_default=(0, 100), absolute=True, reduced=means or medians, label=fadelabel, ) eobj = fill( x, *edata, linewidth=0, label=label, color=fadecolor, alpha=fadealpha, zorder=fadezorder, ) eobjs.append(eobj) if shade: edata, label = _get_error_data( data, y, errdata=shadedata, stds=shadestds, pctiles=shadepctiles, stds_default=(-2, 2), pctiles_default=(10, 90), absolute=True, reduced=means or medians, label=shadelabel, ) eobj = fill( x, *edata, linewidth=0, label=label, color=shadecolor, alpha=shadealpha, zorder=shadezorder, ) eobjs.append(eobj) # Draw thin error bars and thick error boxes sy = 'x' if flip else 'y' # yerr ex, ey = (y, x) if flip else (x, y) if boxes: edata, _ = _get_error_data( data, y, errdata=boxdata, stds=boxstds, pctiles=boxpctiles, stds_default=(-1, 1), pctiles_default=(25, 75), reduced=means or medians, ) if boxmarker: self.scatter( ex, ey, s=boxlinewidth, marker='o', color=boxmarkercolor, zorder=5 ) eobj = self.errorbar( ex, ey, color=boxcolor, linewidth=boxlinewidth, linestyle='none', capsize=0, zorder=boxzorder, **{sy + 'err': edata} ) eobjs.append(eobj) if bars: # now impossible to make thin bar width different from cap width! edata, _ = _get_error_data( data, y, errdata=bardata, stds=barstds, pctiles=barpctiles, stds_default=(-3, 3), pctiles_default=(0, 100), reduced=means or medians, ) eobj = self.errorbar( ex, ey, color=barcolor, linewidth=barlinewidth, linestyle='none', markeredgecolor=barcolor, markeredgewidth=barlinewidth, capsize=capsize, zorder=barzorder, **{sy + 'err': edata} ) eobjs.append(eobj) # Call main function # NOTE: Provide error objects for inclusion in legend, but *only* provide # the shading. Never want legend entries for error bars. xy = (x, data) if violin else (x, y) kwargs.setdefault('_errobjs', eobjs[:int(shade + fade)]) res = obj = method(self, *xy, *args, **kwargs) # Apply inferrred colors to objects i = 0 if isinstance(res, tuple): # pull out patch from e.g. BarContainers obj = res[0] for b, infer in zip((fade, shade), (fadecolor_infer, shadecolor_infer)): if not b or not infer: continue if hasattr(obj, 'get_facecolor'): color = obj.get_facecolor() elif hasattr(obj, 'get_color'): color = obj.get_color() else: color = None if color is not None: eobjs[i].set_facecolor(color) i += 1 # Return objects # NOTE: For now 'errobjs' can only be returned with 1D y coordinates # NOTE: Avoid expanding matplolib collections that are list subclasses here if not eobjs: return res elif isinstance(res, tuple) and not isinstance(res, mcontainer.Container): return ((*res, *eobjs),) # for plot() else: return (res, *eobjs) def _apply_plot(self, *args, cmap=None, values=None, **kwargs): """ Apply horizontal or vertical lines. """ # Deprecated functionality if cmap is not None: warnings._warn_proplot( 'Drawing "parametric" plots with ax.plot(x, y, values=values, cmap=cmap) ' 'is deprecated and will be removed in the next major release. Please use ' 'ax.parametric(x, y, values, cmap=cmap) instead.' ) return self.parametric(*args, cmap=cmap, values=values, **kwargs) # Plot line(s) method = kwargs.pop('_method') name = method.__name__ sx = 'y' if 'x' in name else 'x' # i.e. plotx objs = [] args = list(args) while args: # Support e.g. x1, y1, fmt, x2, y2, fmt2 input # NOTE: Copied from _process_plot_var_args.__call__ to avoid relying # on public API. ProPlot already supports passing extra positional # arguments beyond x, y so can feed (x1, y1, fmt) through wrappers. # Instead represent (x2, y2, fmt, ...) as successive calls to plot(). iargs, args = args[:2], args[2:] if args and isinstance(args[0], str): iargs.append(args[0]) args = args[1:] # Call function iobjs = method(self, *iargs, values=values, **kwargs) # Add sticky edges # NOTE: Skip edges when error bars present or caps are flush against axes edge lines = all(isinstance(obj, mlines.Line2D) for obj in iobjs) if lines and not getattr(self, '_no_sticky_edges', False): for obj in iobjs: data = getattr(obj, 'get_' + sx + 'data')() if not data.size: continue convert = getattr(self, 'convert_' + sx + 'units') edges = getattr(obj.sticky_edges, sx) edges.append(convert(min(data))) edges.append(convert(max(data))) objs.extend(iobjs) return tuple(objs) def _plot_extras(self, *args, **kwargs): """ Pre-processing for `plot`. """ return _apply_plot(self, *args, **kwargs) def _plotx_extras(self, *args, **kwargs): """ Pre-processing for `plotx`. """ # NOTE: The 'horizontal' orientation will be inferred by downstream # wrappers using the function name. return _apply_plot(self, *args, **kwargs) def _stem_extras( self, *args, linefmt=None, basefmt=None, markerfmt=None, **kwargs ): """ Make `use_line_collection` the default to suppress warning message. """ # Set default colors # NOTE: 'fmt' strings can only be 2 to 3 characters and include color shorthands # like 'r' or cycle colors like 'C0'. Cannot use full color names. # NOTE: Matplotlib defaults try to make a 'reddish' color the base and 'bluish' # color the stems. To make this more robust we temporarily replace the cycler # with a negcolor/poscolor cycler. method = kwargs.pop('_method') fmts = (linefmt, basefmt, markerfmt) if not any(isinstance(_, str) and re.match(r'\AC[0-9]', _) for _ in fmts): cycle = constructor.Cycle((rc['negcolor'], rc['poscolor']), name='_neg_pos') context = rc.context({'axes.prop_cycle': cycle}) else: context = _dummy_context() # Add stem lines with bluish stem color and reddish base color with context: kwargs['linefmt'] = linefmt = _not_none(linefmt, 'C0-') kwargs['basefmt'] = _not_none(basefmt, 'C1-') kwargs['markerfmt'] = _not_none(markerfmt, linefmt[:-1] + 'o') kwargs.setdefault('use_line_collection', True) try: return method(self, *args, **kwargs) except TypeError: del kwargs['use_line_collection'] # older version return method(self, *args, **kwargs) def _parametric_extras(self, x, y, c=None, *, values=None, interp=0, **kwargs): """ Interpolate the array. """ # Parse input # NOTE: Critical to put this here instead of parametric() so that the # interpolated 'values' are used to select colormap levels in apply_cmap. method = kwargs.pop('_method') c = _not_none(c=c, values=values) if c is None: raise ValueError('Values must be provided.') c = _to_ndarray(c) ndim = tuple(_.ndim for _ in (x, y, c)) size = tuple(_.size for _ in (x, y, c)) if any(_ != 1 for _ in ndim): raise ValueError(f'Input coordinates must be 1D. Instead got dimensions {ndim}.') # noqa: E501 if any(_ != size[0] for _ in size): raise ValueError(f'Input coordinates must have identical size. Instead got sizes {size}.') # noqa: E501 # Interpolate values to allow for smooth gradations between values # (interp=False) or color switchover halfway between points # (interp=True). Then optionally interpolate the colormap values. # NOTE: The 'extras' wrapper handles input before ingestion by other wrapper # functions. *This* method is analogous to a native matplotlib method. if interp > 0: x_orig, y_orig, v_orig = x, y, c x, y, c = [], [], [] for j in range(x_orig.shape[0] - 1): idx = slice(None) if j + 1 < x_orig.shape[0] - 1: idx = slice(None, -1) x.extend(np.linspace(x_orig[j], x_orig[j + 1], interp + 2)[idx].flat) y.extend(np.linspace(y_orig[j], y_orig[j + 1], interp + 2)[idx].flat) c.extend(np.linspace(v_orig[j], v_orig[j + 1], interp + 2)[idx].flat) # noqa: E501 x, y, c = np.array(x), np.array(y), np.array(c) return method(self, x, y, values=c, **kwargs) def _check_negpos(name, **kwargs): """ Issue warnings if we are ignoring arguments for "negpos" pplt. """ for key, arg in kwargs.items(): if arg is None: continue warnings._warn_proplot( f'{name}() argument {key}={arg!r} is incompatible with ' 'negpos=True. Ignoring.' ) def _apply_lines( self, *args, stack=None, stacked=None, negpos=False, negcolor=None, poscolor=None, color=None, colors=None, linestyle=None, linestyles=None, lw=None, linewidth=None, linewidths=None, **kwargs ): """ Apply hlines or vlines command. Support default "minima" at zero. """ # Parse input arguments method = kwargs.pop('_method') name = method.__name__ stack = _not_none(stack=stack, stacked=stacked) colors = _not_none(color=color, colors=colors) linestyles = _not_none(linestyle=linestyle, linestyles=linestyles) linewidths = _not_none(lw=lw, linewidth=linewidth, linewidths=linewidths) args = list(args) if len(args) > 3: raise ValueError(f'Expected 1-3 positional args, got {len(args)}.') if len(args) == 3 and stack: warnings._warn_proplot( f'{name}() cannot have three positional arguments with stack=True. ' 'Ignoring second argument.' ) if len(args) == 2: # empty possible args.insert(1, np.array([0.0])) # default base # Support "negative" and "positive" lines x, y1, y2, *args = args # standardized if not negpos: # Plot basic lines kwargs['stack'] = stack if colors is not None: kwargs['colors'] = colors result = method(self, x, y1, y2, *args, **kwargs) objs = (result,) else: # Plot negative and positive colors _check_negpos(name, stack=stack, colors=colors) y1neg, y2neg = _mask_array(y2 < y1, y1, y2) color = _not_none(negcolor, rc['negcolor']) negobj = method(self, x, y1neg, y2neg, color=color, **kwargs) y1pos, y2pos = _mask_array(y2 >= y1, y1, y2) color = _not_none(poscolor, rc['poscolor']) posobj = method(self, x, y1pos, y2pos, color=color, **kwargs) objs = result = (negobj, posobj) # Apply formatting unavailable in matplotlib for obj in objs: if linewidths is not None: obj.set_linewidth(linewidths) # LineCollection setters if linestyles is not None: obj.set_linestyle(linestyles) return result @docstring.add_snippets def vlines_extras(self, *args, **kwargs): """ %(axes.vlines)s """ return _apply_lines(self, *args, **kwargs) @docstring.add_snippets def hlines_extras(self, *args, **kwargs): """ %(axes.hlines)s """ # NOTE: The 'horizontal' orientation will be inferred by downstream # wrappers using the function name. return _apply_lines(self, *args, **kwargs) def _apply_scatter( self, *args, vmin=None, vmax=None, smin=None, smax=None, cmap=None, cmap_kw=None, norm=None, norm_kw=None, extend='neither', levels=None, N=None, values=None, locator=None, locator_kw=None, discrete=None, symmetric=False, positive=False, negative=False, nozero=False, inbounds=None, **kwargs ): """ Apply scatter or scatterx markers. Permit up to 4 positional arguments including `s` and `c`. """ # Manage input arguments method = kwargs.pop('_method') props = _pop_props(kwargs, 'lines') c = props.pop('color', None) s = props.pop('markersize', None) args = list(args) if len(args) > 4: raise ValueError(f'Expected 1-4 positional arguments, got {len(args)}.') if len(args) == 4: c = _not_none(c_positional=args.pop(-1), c=c) if len(args) == 3: s = _not_none(s_positional=args.pop(-1), s=s) # Get colormap cmap_kw = cmap_kw or {} if cmap is not None: cmap_kw.setdefault('luminance', 90) # matches to_listed behavior cmap = constructor.Colormap(cmap, **cmap_kw) # Get normalizer and levels ticks = None carray = np.atleast_1d(c) discrete = _not_none( getattr(self, '_image_discrete', None), discrete, rc['image.discrete'], True ) if ( discrete and np.issubdtype(carray.dtype, np.number) and not (carray.ndim == 2 and carray.shape[1] in (3, 4)) ): carray = carray.ravel() levels = _not_none(levels=levels, N=N) norm, cmap, _, ticks = _build_discrete_norm( self, carray, # sample data for getting suitable levels levels=levels, values=values, cmap=cmap, norm=norm, norm_kw=norm_kw, extend=extend, vmin=vmin, vmax=vmax, locator=locator, locator_kw=locator_kw, symmetric=symmetric, positive=positive, negative=negative, nozero=nozero, inbounds=inbounds, ) # Fix 2D arguments but still support scatter(x_vector, y_2d) usage # NOTE: numpy.ravel() preserves masked arrays # NOTE: Since we are flattening vectors the coordinate metadata is meaningless, # so converting to ndarray and stripping metadata is no problem. if len(args) == 2 and all(_to_ndarray(arg).squeeze().ndim > 1 for arg in args): args = tuple(np.ravel(arg) for arg in args) # Scale s array if np.iterable(s) and (smin is not None or smax is not None): smin_true, smax_true = min(s), max(s) if smin is None: smin = smin_true if smax is None: smax = smax_true s = smin + (smax - smin) * (np.array(s) - smin_true) / (smax_true - smin_true) # Call function obj = objs = method(self, *args, c=c, s=s, cmap=cmap, norm=norm, **props, **kwargs) if not isinstance(objs, tuple): objs = (obj,) for iobj in objs: iobj._colorbar_extend = extend iobj._colorbar_ticks = ticks return obj @docstring.add_snippets def scatter_extras(self, *args, **kwargs): """ %(axes.scatter)s """ return _apply_scatter(self, *args, **kwargs) @docstring.add_snippets def scatterx_extras(self, *args, **kwargs): """ %(axes.scatterx)s """ # NOTE: The 'horizontal' orientation will be inferred by downstream # wrappers using the function name. return _apply_scatter(self, *args, **kwargs) def _apply_fill_between( self, *args, where=None, negpos=None, negcolor=None, poscolor=None, lw=None, linewidth=None, color=None, facecolor=None, stack=None, stacked=None, **kwargs ): """ Apply `fill_between` or `fill_betweenx` shading. Permit up to 4 positional arguments including `where`. """ # Parse input arguments method = kwargs.pop('_method') name = method.__name__ sx = 'y' if 'x' in name else 'x' # i.e. fill_betweenx sy = 'x' if sx == 'y' else 'y' stack = _not_none(stack=stack, stacked=stacked) color = _not_none(color=color, facecolor=facecolor) linewidth = _not_none(lw=lw, linewidth=linewidth, default=0) args = list(args) if len(args) > 4: raise ValueError(f'Expected 1-4 positional args, got {len(args)}.') if len(args) == 4: where = _not_none(where_positional=args.pop(3), where=where) if len(args) == 3 and stack: warnings._warn_proplot( f'{name}() cannot have three positional arguments with stack=True. ' 'Ignoring second argument.' ) if len(args) == 2: # empty possible args.insert(1, np.array([0.0])) # default base # Draw patches with default edge width zero x, y1, y2 = args kwargs['linewidth'] = linewidth if not negpos: # Plot basic patches kwargs.update({'where': where, 'stack': stack}) if color is not None: kwargs['color'] = color result = method(self, x, y1, y2, **kwargs) objs = (result,) else: # Plot negative and positive patches if y1.ndim > 1 or y2.ndim > 1: raise ValueError(f'{name}() arguments with negpos=True must be 1D.') kwargs.setdefault('interpolate', True) _check_negpos(name, where=where, stack=stack, color=color) color = _not_none(negcolor, rc['negcolor']) negobj = method(self, x, y1, y2, where=(y2 < y1), facecolor=color, **kwargs) color = _not_none(poscolor, rc['poscolor']) posobj = method(self, x, y1, y2, where=(y2 >= y1), facecolor=color, **kwargs) result = objs = (posobj, negobj) # may be tuple of tuples due to apply_cycle # Add sticky edges in x-direction, and sticky edges in y-direction # *only* if one of the y limits is scalar. This should satisfy most users. # NOTE: Could also retrieve data from PolyCollection but that's tricky. # NOTE: Standardize function guarantees ndarray input by now if not getattr(self, '_no_sticky_edges', False): xsides = (np.min(x), np.max(x)) ysides = [] for y in (y1, y2): if y.size == 1: ysides.append(y.item()) objs = tuple(obj for _ in objs for obj in (_ if isinstance(_, tuple) else (_,))) for obj in objs: for s, sides in zip((sx, sy), (xsides, ysides)): convert = getattr(self, 'convert_' + s + 'units') edges = getattr(obj.sticky_edges, s) edges.extend(convert(sides)) return result @docstring.add_snippets def fill_between_extras(self, *args, **kwargs): """ %(axes.fill_between)s """ return _apply_fill_between(self, *args, **kwargs) @docstring.add_snippets def fill_betweenx_extras(self, *args, **kwargs): """ %(axes.fill_betweenx)s """ # NOTE: The 'horizontal' orientation will be inferred by downstream # wrappers using the function name. return _apply_fill_between(self, *args, **kwargs) def _convert_bar_width(x, width=1, ncols=1): """ Convert bar plot widths from relative to coordinate spacing. Relative widths are much more convenient for users. """ # WARNING: This will fail for non-numeric non-datetime64 singleton # datatypes but this is good enough for vast majority of cases. x_test = np.atleast_1d(_to_ndarray(x)) if len(x_test) >= 2: x_step = x_test[1:] - x_test[:-1] x_step = np.concatenate((x_step, x_step[-1:])) elif x_test.dtype == np.datetime64: x_step = np.timedelta64(1, 'D') else: x_step = np.array(0.5) if np.issubdtype(x_test.dtype, np.datetime64): # Avoid integer timedelta truncation x_step = x_step.astype('timedelta64[ns]') return width * x_step / ncols def _apply_bar( self, *args, stack=None, stacked=None, lw=None, linewidth=None, color=None, facecolor=None, edgecolor='black', negpos=False, negcolor=None, poscolor=None, absolute_width=False, **kwargs ): """ Apply bar or barh command. Support default "minima" at zero. """ # Parse args # TODO: Stacked feature is implemented in `apply_cycle`, but makes more # sense do document here. Figure out way to move it here? method = kwargs.pop('_method') name = method.__name__ stack = _not_none(stack=stack, stacked=stacked) color = _not_none(color=color, facecolor=facecolor) linewidth = _not_none(lw=lw, linewidth=linewidth, default=rc['patch.linewidth']) kwargs.update({'linewidth': linewidth, 'edgecolor': edgecolor}) args = list(args) if len(args) > 4: raise ValueError(f'Expected 1-4 positional args, got {len(args)}.') if len(args) == 4 and stack: warnings._warn_proplot( f'{name}() cannot have four positional arguments with stack=True. ' 'Ignoring fourth argument.' # i.e. ignore default 'bottom' ) if len(args) == 2: args.append(np.array([0.8])) # default width if len(args) == 3: args.append(
np.array([0.0])
numpy.array
############################################################################### # ferre.py: module for interacting with <NAME>'s FERRE code ############################################################################### import os, os.path import copy import subprocess try: from StringIO import StringIO except ImportError: from io import StringIO import numpy from functools import wraps import tempfile import apogee.tools.path as appath from apogee.tools import paramIndx,_ELEM_SYMBOL from apogee.tools.read import modelspecOnApStarWavegrid import apogee.spec.window as apwindow import apogee.spec.cannon as cannon from apogee.modelspec import specFitInput, _chi2 try: import apogee.util.emcee except ImportError: pass def paramArrayInputDecorator(startIndx): """Decorator to parse spectral input parameters given as arrays, assumes the arguments are: something,somethingelse,teff,logg,metals,am,nm,cm,vmicro=, startindx is the index in arguments where the teff,logg,... sequence starts""" def wrapper(func): @wraps(func) def scalar_wrapper(*args,**kwargs): if numpy.array(args[startIndx]).shape == (): newargs= () for ii in range(startIndx): newargs= newargs+(args[ii],) for ii in range(6): newargs= newargs+(numpy.array([args[ii+startIndx]]),) for ii in range(len(args)-6-startIndx): newargs= newargs+(args[ii+startIndx+6],) args= newargs if not kwargs.get('vm',None) is None: kwargs['vm']=
numpy.array([kwargs['vm']])
numpy.array
import os import cv2 import numpy as np import pandas as pd from tqdm import tqdm from sklearn.model_selection import train_test_split ATTRS_FILE = "datasets/lfw_attributes.txt" # http://www.cs.columbia.edu/CAVE/databases/pubfig/download/lfw_attributes.txt IMAGES_DIR = "datasets/lfw-deepfunneled" # http://vis-www.cs.umass.edu/lfw/lfw-deepfunneled.tgz RAW_IMAGES_DIR = "datasets/lfw" # http://vis-www.cs.umass.edu/lfw/lfw.tgz def load_dataset(use_raw=False, dx=80, dy=80, dimx=45, dimy=45): """ Loads the `Labeled Faces in the Wild` dataset with train/test split and attributes into memory. Args: use_raw (bool, optional): Flag for using raw data or not. If unspecified, defaults to `False`. dx (int, optional): x co-ordinate to crop the images. If unspecified, defaults to 80. dy (int, optional): y co-ordinate to crop the images. If unspecified, defaults to 80. dimx (int, optional): Width dim of the images. If unspecified, defaults to 45. dimy (int, optional): Height dim of the images. If unspecified, defaults to 45. Returns: numpy.ndarray: Training data for the model. numpy.ndarray: Testing data for the model. list: Shape of images in the training set. pandas.DataFrame: Dataframe consisting of attribute data of people in the dataset. """ # read attrs df_attrs = pd.read_csv(ATTRS_FILE, sep='\t', skiprows=1) df_attrs.columns = list(df_attrs.columns)[1: ] + ["NaN"] df_attrs = df_attrs.drop("NaN", axis=1) imgs_with_attrs = set(map(tuple, df_attrs[["person", "imagenum"]].values)) # read photos X = [] photo_ids = [] image_dir = RAW_IMAGES_DIR if use_raw else IMAGES_DIR folders = os.listdir(image_dir) for folder in tqdm(folders, total=len(folders), desc='Preprocessing', leave=False): files = os.listdir(os.path.join(image_dir, folder)) for file in files: if not os.path.isfile(os.path.join(image_dir, folder, file)) or not file.endswith(".jpg"): continue # preprocess image img = cv2.imread(os.path.join(image_dir, folder, file)) img = img[dy:-dy, dx:-dx] img = cv2.resize(img, (dimx, dimy)) # parse person fname = os.path.split(file)[-1] fname_splitted = fname[:-4].replace('_', ' ').split() person_id = ' '.join(fname_splitted[:-1]) photo_number = int(fname_splitted[-1]) if (person_id, photo_number) in imgs_with_attrs: X.append(img) photo_ids.append({'person': person_id, 'imagenum': photo_number}) photo_ids = pd.DataFrame(photo_ids) X =
np.stack(X)
numpy.stack
import os import requests import numpy as np # Data retrieval fname = [] for j in range(3): fname.append('steinmetz_part%d.npz'%j) url = ["https://osf.io/agvxh/download"] url.append("https://osf.io/uv3mw/download") url.append("https://osf.io/ehmw2/download") for j in range(len(url)): if not os.path.isfile(fname[j]): try: r = requests.get(url[j]) except requests.ConnectionError: print("!!! Failed to download data !!!") else: if r.status_code != requests.codes.ok: print("!!! Failed to download data !!!") else: with open(fname[j], "wb") as fid: fid.write(r.content) # Data loading alldat =
np.array([])
numpy.array
import numpy as np import random from sklearn import mixture from sklearn import svm def createSyntheticDataSet(nbClasses, nbInst, dictionnary, dictionnaryProbability): varNorm = 0.1 listClass = [] for i in range(0, nbClasses): arr = np.zeros((1, nbClasses)) arr[0][i] = 1 listClass.append(arr) dataForLearnModel = np.zeros((0, nbClasses)) classToFit = np.zeros(0) for i in range(0, nbClasses): for j in range(0, 1000): point = listClass[i] + np.random.normal(0, varNorm, nbClasses) dataForLearnModel = np.append(dataForLearnModel, point, axis=0) classToFit = np.append(classToFit, i) # g = mixture.GMM(n_components=nbClasses) # g.fit(dataForLearnModel, classToFit) sequence =
np.zeros((0, nbClasses))
numpy.zeros
from keras.models import Sequential from keras.models import model_from_json from keras.preprocessing.image import load_img from keras.preprocessing.image import img_to_array from keras.utils import np_utils import keras import numpy as np import json model = None ## Loads model weights. with open('03.MNIST_cnn_model_LeNet5.config', 'r') as text_file: json_config = text_file.read() model = Sequential() model = model_from_json(json_config) model.load_weights('03.MNIST_cnn_model_LeNet5.weights') print(model.summary()) # Compile model. model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(), metrics=['accuracy']) ## Read image num_images = 30 test_images = np.array([]) for i in range(num_images): img = load_img('02-04.images/numbers_' + str(i) +'.jpg', color_mode='grayscale', target_size=(28, 28)) # img = img.resize((28, 28)) # Resize image. img_arr = np.expand_dims( (img_to_array(img)/255) , axis=0) if test_images.shape[0] == 0: test_images = img_arr else: test_images =
np.append(test_images, img_arr, axis=0)
numpy.append
"""Functions for plotting data.""" import scipy.interpolate import pandas as pd from pathlib import Path import numpy as np from datetime import date, datetime, timedelta from tempfile import NamedTemporaryFile import matplotlib.pyplot as plt from matplotlib.image import imread import matplotlib.ticker as ticker import matplotlib.pylab as pl import matplotlib.dates as mdates from .scores import * from .__init__ import figures_dir, data_dir import os def save_figures(name): global figures_dir figures_dir = Path(figures_dir) (figures_dir / name).parent.mkdir(parents=True, exist_ok=True) # Create all necessary parent dirs plt.savefig(figures_dir / (name + '.svg'), bbox_inches = 'tight', dpi=300) def plotdifferencescdfpdf(Scoreboard, model_target, quiet=False): model_targets = ['Case', 'Death'] if model_target not in model_targets: raise ValueError("Invalid sim type. Expected one of: %s" % model_targets) if model_target == 'Case': titlelabel= 'Weekly Incidental Cases' elif model_target == 'Death': titlelabel= 'Cumulative Deaths' plt.figure(figsize=(4, 2.5), dpi=180, facecolor='w', edgecolor='k') plt.hist(Scoreboard['prange']-Scoreboard['sumpdf'],bins=50) plt.xlabel("Difference between integrated pdf and given cdf") plt.title('US COVID-19 ' + titlelabel) if not quiet: print('===========================') print('Maximum % conversion error:') print(100*max(Scoreboard['prange']-Scoreboard['sumpdf'])) save_figures(model_target+'_diffcdfpdf') def plotUSCumDeaths(US_deaths) -> None: plt.figure(figsize=(4, 2.5), dpi=180, facecolor='w', edgecolor='k') plt.plot(US_deaths.DateObserved,US_deaths.Deaths) plt.xticks(rotation=45) plt.title('US Cumulative Deaths') plt.ylabel('Deaths') save_figures('USDeaths') def plotUSIncCases(US_cases) -> None: plt.figure(figsize=(4, 2.5), dpi=180, facecolor='w', edgecolor='k') plt.plot(US_cases.DateObserved,US_cases.Cases) plt.xticks(rotation=45) plt.title('US Weekly Incidental Cases') plt.ylabel('Cases') save_figures('USCases') def perdelta(start, end, delta): """Generate a list of datetimes in an interval for plotting purposes (date labeling) Args: start (date): Start date. end (date): End date. delta (date): Variable date as interval. Yields: Bunch of dates """ curr = start while curr < end: yield curr curr += delta def numberofteamsincovidhub(FirstForecasts, figures_dir)->None: fig = plt.figure(num=None, figsize=(6, 4), dpi=120, facecolor='w', edgecolor='k') FirstForecasts['forecast_date']= pd.to_datetime(FirstForecasts['forecast_date']) plt.plot(FirstForecasts['forecast_date'],FirstForecasts['cumnumteams']) plt.xticks(rotation=70) plt.ylabel('Total Number of Modeling Teams') plt.xlabel('First Date of Entry') plt.title('Number of Teams in Covid-19 Forecast Hub Increases') plt.fmt_xdata = mdates.DateFormatter('%m-%d') save_figures('numberofmodels') plt.show(fig) def plotallscoresdist(Scoreboard, model_target, figsize=(8, 6), interval='Weeks') -> None: assert interval in ('Weeks', 'Days') if interval == 'Weeks': delta = 'deltaW' else: delta = 'delta' model_targets = ['Case', 'Death'] if model_target not in model_targets: raise ValueError("Invalid sim type. Expected one of: %s" % model_targets) if model_target == 'Case': filelabel = 'INCCASE' titlelabel= 'Weekly Incidental Cases' elif model_target == 'Death': filelabel = 'CUMDEATH' titlelabel= 'Weekly Cumulative Deaths' minn = min(Scoreboard[delta]) maxx = max(Scoreboard[delta]) fig, ax = plt.subplots(2, 1, figsize=figsize, dpi=300, facecolor='w', edgecolor='k') Scoreboard.plot.scatter(x=delta, y='score', marker='.', ax=ax[0], color='k') ax[0].set_xlabel('N-%s Forward Forecast' % interval) ax[0].set_xticks(np.arange(minn, maxx+1, 5.0)) ax[0].xaxis.set_tick_params(rotation=90) ax[0].set_title(titlelabel + ' Forecasts') binwidth = 1 Scoreboard[delta].hist(bins=np.arange(minn, maxx + binwidth, binwidth), ax=ax[1]) ax[1].set_title(titlelabel + ' Forecasts') ax[1].set_xlabel('N-%s Forward Forecast' % interval) ax[1].set_ylabel('Number of forecasts made') ax[1].set_xticks(np.arange(minn, maxx+1, 5.0)) ax[1].xaxis.set_tick_params(rotation=90) ax[1].grid(b=None) plt.tight_layout() save_figures(filelabel+'_x-%s_Forward_Forecast_And_Hist' % interval) def plotlongitudinal(Actual, Scoreboard, scoretype, WeeksAhead, curmodlist) -> None: """Plots select model predictions against actual data longitudinally Args: Actual (pd.DataFrame): The actual data Scoreboard (pd.DataFrame): The scoreboard dataframe scoretype (str): "Cases" or "Deaths" WeeksAhead (int): Forecasts from how many weeks ahead curmodlist (list): List of name of the model whose forecast will be shown Returns: None """ Scoreboardx = Scoreboard[Scoreboard['deltaW']==WeeksAhead].copy() Scoreboardx.sort_values('target_end_date',inplace=True) Scoreboardx.reset_index(inplace=True) plt.figure(num=None, figsize=(6, 6), dpi=300, facecolor='w', edgecolor='k') models = Scoreboardx['model'].unique() colors = pl.cm.jet(np.linspace(0,1,len(curmodlist))) i = 0 for curmod in curmodlist: dates = Scoreboardx[Scoreboardx['model']==curmod].target_end_date PE = Scoreboardx[Scoreboardx['model']==curmod].PE CIlow = Scoreboardx[Scoreboardx['model']==curmod].CILO CIhi = Scoreboardx[Scoreboardx['model']==curmod].CIHI modcol = (colors[i].tolist()[0], colors[i].tolist()[1], colors[i].tolist()[2]) plt.plot(dates,PE,color=modcol,label=curmod) plt.fill_between(dates, CIlow, CIhi, color=modcol, alpha=.1) i = i+1 plt.plot(Actual['DateObserved'], Actual[scoretype],color='k', linewidth=3.0) plt.ylim([(Actual[scoretype].min())*0.6, (Actual[scoretype].max())*1.4]) plt.ylabel('US Cumulative '+scoretype) plt.xlabel('Date') plt.xticks(rotation=45) #plt.yticks(fontsize=13) plt.fmt_xdata = mdates.DateFormatter('%m-%d') plt.title(str(WeeksAhead)+'-week-ahead Forecasts') plt.legend(loc="upper left", labelspacing=.9) save_figures(scoretype+'_'+''.join(curmodlist)+'_'+str(WeeksAhead)+'wk') def plotlongitudinalUNWEIGHTED(Actual, Scoreboard, scoretype, numweeks, numweeks_start=1, max_weeks_ahead=8) -> None: """Plots select model predictions against actual data longitudinally Args: Actual (pd.DataFrame): The actual data Scoreboard (pd.DataFrame): The scoreboard dataframe scoretype (str): "Cases" or "Deaths" numweeks (int): number of weeks to plot Returns: None """ scoretypes = ['Cases', 'Deaths'] if scoretype not in scoretypes: raise ValueError("Invalid sim type. Expected one of: %s" % scoretypes) if scoretype == 'Cases': titlelabel= 'weekly incidental cases' elif scoretype == 'Deaths': titlelabel= 'weekly deaths' numweeks += 1 labelp = 'Average Unweighted Forecasts' colors = pl.cm.jet(np.linspace(0, 1, max_weeks_ahead)) plt.figure(num=None, figsize=(6, 4), dpi=80, facecolor='w', edgecolor='k') for weeks_ahead in range(numweeks_start, numweeks): Scoreboardx = Scoreboard[Scoreboard['deltaW']==weeks_ahead].copy() Scoreboardx.sort_values('target_end_date',inplace=True) Scoreboardx.reset_index(inplace=True) MerdfPRED = Scoreboardx.copy() MerdfPRED = (MerdfPRED.groupby(['target_end_date'], as_index=False)[['CILO','PE','CIHI']].agg(lambda x:
np.median(x)
numpy.median
# -*- coding: iso-8859-1 -*- """ Purpose of this code is to plot the figures from the Discussion section of our paper. """ ######################## ###Import useful libraries ######################## import numpy as np import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec import pdb import cookbook from matplotlib.pyplot import cm import cPickle as pickle ######################## ###Define useful constants, all in CGS (via http://www.astro.wisc.edu/~dolan/constants.html) ######################## #Unit conversions km2m=1.e3 #1 km in m km2cm=1.e5 #1 km in cm cm2km=1.e-5 #1 cm in km cm2inch=1./2.54 #1 cm in inches amu2g=1.66054e-24 #1 amu in g bar2atm=0.9869 #1 bar in atm Pascal2bar=1.e-5 #1 Pascal in bar Pa2bar=1.e-5 #1 Pascal in bar bar2Pa=1.e5 #1 bar in Pascal deg2rad=np.pi/180. bar2barye=1.e6 #1 Bar in Barye (the cgs unit of pressure) barye2bar=1.e-6 #1 Barye in Bar micron2m=1.e-6 #1 micron in m micron2cm=1.e-4 #1 micron in cm metricton2kg=1000. #1 metric ton in kg #Fundamental constants c=2.997924e10 #speed of light, cm/s h=6.6260755e-27 #planck constant, erg/s k=1.380658e-16 #boltzmann constant, erg/K sigma=5.67051e-5 #Stefan-Boltzmann constant, erg/(cm^2 K^4 s) R_earth=6371.*km2m#radius of earth in m R_sun=69.63e9 #radius of sun in cm AU=1.496e13#1AU in cm #Mean molecular masses m_co2=44.01*amu2g #co2, in g m_h2o=18.02*amu2g #h2o, in g #Mars parameters g=371. #surface gravity of Mars, cm/s**2, from: http://nssdc.gsfc.nasa.gov/planetary/factsheet/marsfact.html deg2rad=np.pi/180. #1 degree in radian ######################## ###Which plots to generate? ######################## plot_doses_pco2=True #plot the dependence of dose rate on pCO2 in a CO2-H2O atmosphere (fixed temperature) NOTE: may want to do for low-albedo. Both more physically plausible and avoids weird uptick effect plot_doses_clouds=True #plot the dependence of dose rate on CO2 cloud optical depth in a CO2-H2O atmosphere (fixed temperature) plot_doses_dust_pco2=True #plot the dependence of dose rate as a function of dust level for different pCO2 plot_doses_dust_clouds=True #plot the dependence of dose rate as a function of dust level for different cloud levels. plot_doses_pso2_pco2=True #plot the dependence of dose rate as a function of pSO2 for different pCO2 plot_doses_pso2_clouds=True #plot the dependence of dose rate as a function of dust level for different cloud levels. plot_doses_ph2s_pco2=True #plot the dependence of dose rate as a function of pH2S for different pCO2 plot_doses_ph2s_clouds=True #plot the dependence of dose rate as a function of pH2S for different pCO2 plot_reldoses_pso2=True #plot the ratio between the "bad" dose rate and the "good" dose rate as function of PSO2. Plot for 1) pCO2=0.02, cloud=1000 and 2) pCO2=2 bar, cloud=0. plot_reldoses_ph2s=True #plot the ratio between the "bad" dose rate and the "good" dose rate as function of PH2S. Plot for 1) pCO2=0.02, cloud=1000 and 2) pCO2=2 bar, cloud=0. plot_reldoses_dust=True #plot the ratio between the "bad" dose rate and the "good" dose rate as function of dust level. Plot for 1) pCO2=0.02, cloud=1000 and 2) pCO2=2 bar, cloud=0. ######################## ### ######################## if plot_reldoses_dust: """ The purpose of this script is to plot the relative dose rates of the "stressor" photoprocess compared to the "eustressor" photoprocess as a function of pH2S. We evaluate this for varying levels of atmospheric dust loading. We do this for two cases: 1) pCO2=2 bar, and 2) pCO2=0.02 bar and a tau=1000 cloud deck emplaced at 20.5 km. This is so we can separate out absorption amplification due to cloud decks (relatively flat) and due to Rayleigh scattering (not flat). #Conditions: T_0=250, A=desert, z=0, no TD XCs, DeltaScaling """ ######################## ###Read in doses ######################## ###Read in computed doses od_list=np.array(['dustod=0.1', 'dustod=1', 'dustod=10']) #list of dust optical depths (500 nm) od_axis=np.array([1.e-1, 1., 1.e1]) titles_list=np.array([r'pCO$_2$=2 bar, $\tau_{cloud}=0$',r'pCO$_2$=0.02 bar, $\tau_{cloud}=1000$ (unscaled)']) num_cases=len(titles_list) num_od=len(od_list) dose_100_165=np.zeros([num_od,num_cases]) #surface radiance integrated 100-165 nm dose_200_300=np.zeros([num_od,num_cases]) #surface radiance integrated 200-300 nm dose_ump_193=np.zeros([num_od,num_cases]) #dose rate for UMP glycosidic bond cleavage, assuming lambda0=193 dose_ump_230=np.zeros([num_od,num_cases]) #dose rate for UMP glycosidic bond cleavage, assuming lambda0=230 dose_ump_254=np.zeros([num_od,num_cases]) #dose rate for UMP glycosidic bond cleavage, assuming lambda0=254 dose_cucn3_254=np.zeros([num_od,num_cases]) #dose rate for solvated electron production from tricyanocuprate, assuming lambda0=254 dose_cucn3_300=np.zeros([num_od,num_cases]) #dose rate for solvated electron production from tricyanocuprate, assuming lambda0=300 for ind in range(0, num_od): od=od_list[ind] dose_100_165[ind,0],dose_200_300[ind,0],dose_ump_193[ind,0],dose_ump_230[ind,0],dose_ump_254[ind,0],dose_cucn3_254[ind,0],dose_cucn3_300[ind,0]=np.genfromtxt('./DoseRates/dose_rates_colddrymars_2bar_250K_z=0_A=desert_noTD_DS_'+od+'.dat', skip_header=1, skip_footer=0,usecols=(0,1,2,3,4,5,6), unpack=True) dose_100_165[ind,1],dose_200_300[ind,1],dose_ump_193[ind,1],dose_ump_230[ind,1],dose_ump_254[ind,1],dose_cucn3_254[ind,1],dose_cucn3_300[ind,1]=np.genfromtxt('./DoseRates/dose_rates_colddrymars_0.02bar_250K_z=0_A=desert_noTD_DS_'+od+'_co2cloudod=1000_z=20.5_reff=10.dat', skip_header=1, skip_footer=0,usecols=(0,1,2,3,4,5,6), unpack=True) ######################## ###Plot results ######################## fig, ax=plt.subplots(num_cases, figsize=(16.5*cm2inch,10.), sharex=True, sharey=False) markersizeval=3. colors=cm.rainbow(np.linspace(0,1,6)) for ind2 in range(0, num_cases): ax[ind2].set_title(titles_list[ind2]) ax[ind2].plot(od_axis, dose_ump_193[:,ind2]/dose_cucn3_254[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[0], label=r'UMP-193/CuCN3-254') ax[ind2].plot(od_axis, dose_ump_230[:,ind2]/dose_cucn3_254[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[1], label=r'UMP-230/CuCN3-254') ax[ind2].plot(od_axis, dose_ump_254[:,ind2]/dose_cucn3_254[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[2], label=r'UMP-254/CuCN3-254') ax[ind2].plot(od_axis, dose_ump_193[:,ind2]/dose_cucn3_300[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[3], label=r'UMP-193/CuCN3-300') ax[ind2].plot(od_axis, dose_ump_230[:,ind2]/dose_cucn3_300[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[4], label=r'UMP-230/CuCN3-300') ax[ind2].plot(od_axis, dose_ump_254[:,ind2]/dose_cucn3_300[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[5], label=r'UMP-254/CuCN3-300') #ax.set_ylim([1.e-2, 1.e4]) ax[ind2].set_yscale('log') ax[ind2].set_ylabel(r'$\bar{D}_{UMP-X}/\bar{D}_{CuCN3-Y}$') #ax.set_xlim([100, 500]) ax[num_cases-1].set_xscale('log') ax[num_cases-1].set_xlabel(r'$\tau_{d}$ (unscaled)', fontsize=12) plt.tight_layout(rect=(0,0,1., 0.9)) ax[0].legend(bbox_to_anchor=[0, 1.2, 1., 0.7], loc=3, ncol=2, mode='expand', borderaxespad=0., fontsize=10) plt.savefig('./Plots/discussion_doses_reldoses_dust.eps', orientation='portrait',papertype='letter', format='eps') plt.show() ######################## ### ######################## if plot_reldoses_ph2s: """ The purpose of this script is to plot the relative dose rates of the "stressor" photoprocess compared to the "eustressor" photoprocess as a function of pH2S. We evaluate this for pSO2=2e-9 -- 2e-4 bar. We do this for two cases: 1) pCO2=2 bar, and 2) pCO2=0.02 bar and a tau=1000 cloud deck emplaced at 20.5 km. This is so we can separate out absorption amplification due to cloud decks (relatively flat) and due to Rayleigh scattering (not flat). #Conditions: T_0=250, A=desert, z=0, no TD XCs, DeltaScaling """ ######################## ###Read in doses ######################## ###Read in computed doses nocloud_list=np.array(['2bar_250K_0so2_1ppbh2s', '2bar_250K_0so2_10ppbh2s','2bar_250K_0so2_100ppbh2s','2bar_250K_0so2_1ppmh2s', '2bar_250K_0so2_10ppmh2s', '2bar_250K_0so2_100ppmh2s']) #list of pH2S for pCO2=2 cloud_list=np.array(['0.02bar_250K_0so2_100ppbh2s','0.02bar_250K_0so2_1ppmh2s','0.02bar_250K_0so2_10ppmh2s', '0.02bar_250K_0so2_100ppmh2s', '0.02bar_250K_0so2_1000ppmh2s', '0.02bar_250K_0so2_10000ppmh2s']) #list of pH2S for pCO2=0.02 ph2s_axis=np.array([2.e-9, 2.e-8, 2.e-7, 2.e-6, 2.e-5, 2.e-4]) #pH2S in bar titles_list=np.array([r'pCO$_2$=2 bar, $\tau_{cloud}=0$',r'pCO$_2$=0.02 bar, $\tau_{cloud}=1000$ (unscaled)']) num_cases=len(titles_list) num_h2s=len(nocloud_list) dose_100_165=np.zeros([num_h2s,num_cases]) #surface radiance integrated 100-165 nm dose_200_300=np.zeros([num_h2s,num_cases]) #surface radiance integrated 200-300 nm dose_ump_193=np.zeros([num_h2s,num_cases]) #dose rate for UMP glycosidic bond cleavage, assuming lambda0=193 dose_ump_230=np.zeros([num_h2s,num_cases]) #dose rate for UMP glycosidic bond cleavage, assuming lambda0=230 dose_ump_254=np.zeros([num_h2s,num_cases]) #dose rate for UMP glycosidic bond cleavage, assuming lambda0=254 dose_cucn3_254=np.zeros([num_h2s,num_cases]) #dose rate for solvated electron production from tricyanocuprate, assuming lambda0=254 dose_cucn3_300=np.zeros([num_h2s,num_cases]) #dose rate for solvated electron production from tricyanocuprate, assuming lambda0=300 for ind in range(0, num_h2s): dose_100_165[ind,0],dose_200_300[ind,0],dose_ump_193[ind,0],dose_ump_230[ind,0],dose_ump_254[ind,0],dose_cucn3_254[ind,0],dose_cucn3_300[ind,0]=np.genfromtxt('./DoseRates/dose_rates_volcanicmars_'+nocloud_list[ind]+'_z=0_A=desert_noTD_noDS_noparticles.dat', skip_header=1, skip_footer=0,usecols=(0,1,2,3,4,5,6), unpack=True) dose_100_165[ind,1],dose_200_300[ind,1],dose_ump_193[ind,1],dose_ump_230[ind,1],dose_ump_254[ind,1],dose_cucn3_254[ind,1],dose_cucn3_300[ind,1]=np.genfromtxt('./DoseRates/dose_rates_volcanicmars_'+cloud_list[ind]+'_z=0_A=desert_noTD_DS_co2cloudod=1000_z=20.5_reff=10.dat', skip_header=1, skip_footer=0,usecols=(0,1,2,3,4,5,6), unpack=True) ######################## ###Plot results ######################## fig, ax=plt.subplots(num_cases, figsize=(16.5*cm2inch,10.), sharex=True, sharey=False) markersizeval=3. colors=cm.rainbow(np.linspace(0,1,6)) for ind2 in range(0, num_cases): ax[ind2].set_title(titles_list[ind2]) ax[ind2].plot(ph2s_axis, dose_ump_193[:,ind2]/dose_cucn3_254[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[0], label=r'UMP-193/CuCN3-254') ax[ind2].plot(ph2s_axis, dose_ump_230[:,ind2]/dose_cucn3_254[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[1], label=r'UMP-230/CuCN3-254') ax[ind2].plot(ph2s_axis, dose_ump_254[:,ind2]/dose_cucn3_254[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[2], label=r'UMP-254/CuCN3-254') ax[ind2].plot(ph2s_axis, dose_ump_193[:,ind2]/dose_cucn3_300[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[3], label=r'UMP-193/CuCN3-300') ax[ind2].plot(ph2s_axis, dose_ump_230[:,ind2]/dose_cucn3_300[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[4], label=r'UMP-230/CuCN3-300') ax[ind2].plot(ph2s_axis, dose_ump_254[:,ind2]/dose_cucn3_300[:,ind2], marker='s', markeredgewidth=0., markersize=markersizeval, linewidth=1, color=colors[5], label=r'UMP-254/CuCN3-300') #ax.set_ylim([1.e-2, 1.e4]) ax[ind2].set_yscale('log') ax[ind2].set_ylabel(r'$\bar{D}_{UMP-X}/\bar{D}_{CuCN3-Y}$') #ax.set_xlim([100, 500]) ax[num_cases-1].set_xscale('log') ax[num_cases-1].set_xlabel(r'pH$_2$S', fontsize=12) plt.tight_layout(rect=(0,0,1., 0.9)) ax[0].legend(bbox_to_anchor=[0, 1.2, 1., 0.7], loc=3, ncol=2, mode='expand', borderaxespad=0., fontsize=10) plt.savefig('./Plots/discussion_doses_reldoses_ph2s.eps', orientation='portrait',papertype='letter', format='eps') plt.show() ######################## ### ######################## if plot_reldoses_pso2: """ The purpose of this script is to plot the relative dose rates of the "stressor" photoprocess compared to the "eustressor" photoprocess as a function of pSO2. We evaluate this for pSO2=2e-9 -- 2e-5 bar. We do this for two cases: 1) pCO2=2 bar, and 2) pCO2=0.02 bar and a tau=1000 cloud deck emplaced at 20.5 km. This is so we can separate out absorption amplification due to cloud decks (relatively flat) and due to Rayleigh scattering (not flat). #Conditions: T_0=250, A=desert, z=0, no TD XCs, DeltaScaling """ ######################## ###Read in doses ######################## ###Read in computed doses nocloud_list=np.array(['2bar_250K_1ppbso2_0h2s','2bar_250K_10ppbso2_0h2s','2bar_250K_100ppbso2_0h2s', '2bar_250K_1ppmso2_0h2s', '2bar_250K_10ppmso2_0h2s']) #list of pSO2 for pCO2=2 cloud_list=np.array(['0.02bar_250K_100ppbso2_0h2s','0.02bar_250K_1ppmso2_0h2s','0.02bar_250K_10ppmso2_0h2s', '0.02bar_250K_100ppmso2_0h2s', '0.02bar_250K_1000ppmso2_0h2s']) #list of pSO2 for pCO2=0.02 pso2_axis=np.array([2.e-9, 2.e-8, 2.e-7, 2.e-6, 2.e-5]) #pSO2 in bar titles_list=np.array([r'pCO$_2$=2 bar, $\tau_{cloud}=0$',r'pCO$_2$=0.02 bar, $\tau_{cloud}=1000$ (unscaled)']) num_cases=len(titles_list) num_so2=len(nocloud_list) dose_100_165=np.zeros([num_so2,num_cases]) #surface radiance integrated 100-165 nm dose_200_300=np.zeros([num_so2,num_cases]) #surface radiance integrated 200-300 nm dose_ump_193=np.zeros([num_so2,num_cases]) #dose rate for UMP glycosidic bond cleavage, assuming lambda0=193 dose_ump_230=np.zeros([num_so2,num_cases]) #dose rate for UMP glycosidic bond cleavage, assuming lambda0=230 dose_ump_254=np.zeros([num_so2,num_cases]) #dose rate for UMP glycosidic bond cleavage, assuming lambda0=254 dose_cucn3_254=np.zeros([num_so2,num_cases]) #dose rate for solvated electron production from tricyanocuprate, assuming lambda0=254 dose_cucn3_300=np.zeros([num_so2,num_cases]) #dose rate for solvated electron production from tricyanocuprate, assuming lambda0=300 for ind in range(0, num_so2): dose_100_165[ind,0],dose_200_300[ind,0],dose_ump_193[ind,0],dose_ump_230[ind,0],dose_ump_254[ind,0],dose_cucn3_254[ind,0],dose_cucn3_300[ind,0]=np.genfromtxt('./DoseRates/dose_rates_volcanicmars_'+nocloud_list[ind]+'_z=0_A=desert_noTD_noDS_noparticles.dat', skip_header=1, skip_footer=0,usecols=(0,1,2,3,4,5,6), unpack=True) dose_100_165[ind,1],dose_200_300[ind,1],dose_ump_193[ind,1],dose_ump_230[ind,1],dose_ump_254[ind,1],dose_cucn3_254[ind,1],dose_cucn3_300[ind,1]=
np.genfromtxt('./DoseRates/dose_rates_volcanicmars_'+cloud_list[ind]+'_z=0_A=desert_noTD_DS_co2cloudod=1000_z=20.5_reff=10.dat', skip_header=1, skip_footer=0,usecols=(0,1,2,3,4,5,6), unpack=True)
numpy.genfromtxt
from copy import deepcopy from typing import Union import hypothesis.extra.numpy as hnp import hypothesis.strategies as st import numpy as np from hypothesis import given, assume from numpy.testing import assert_array_equal from mygrad import Tensor, astensor from mygrad.tensor_creation.funcs import ( arange, empty, empty_like, eye, full, full_like, geomspace, identity, linspace, logspace, ones, ones_like, zeros, zeros_like, ) from tests.custom_strategies import tensors def check_tensor_array(tensor, array, constant): assert isinstance(tensor, Tensor) assert_array_equal(tensor.data, array) assert tensor.dtype is array.dtype assert tensor.constant is constant @given(constant=st.booleans(), dtype=st.sampled_from((np.int32, np.float64))) def test_all_tensor_creation(constant, dtype): x = np.array([1, 2, 3]) e = empty((3, 2), dtype=dtype, constant=constant) assert e.shape == (3, 2) assert e.constant is constant e = empty_like(e, dtype=dtype, constant=constant) assert e.shape == (3, 2) assert e.constant is constant check_tensor_array( eye(3, dtype=dtype, constant=constant), np.eye(3, dtype=dtype), constant ) check_tensor_array( identity(3, dtype=dtype, constant=constant), np.identity(3, dtype=dtype), constant, ) check_tensor_array( ones((4, 5, 6), dtype=dtype, constant=constant), np.ones((4, 5, 6), dtype=dtype), constant, ) check_tensor_array( ones_like(x, dtype=dtype, constant=constant), np.ones_like(x, dtype=dtype), constant, ) check_tensor_array( ones_like(Tensor(x), dtype=dtype, constant=constant), np.ones_like(x, dtype=dtype), constant, ) check_tensor_array( zeros((4, 5, 6), dtype=dtype, constant=constant), np.zeros((4, 5, 6), dtype=dtype), constant, ) check_tensor_array( zeros_like(x, dtype=dtype, constant=constant), np.zeros_like(x, dtype=dtype), constant, ) check_tensor_array( zeros_like(Tensor(x), dtype=dtype, constant=constant), np.zeros_like(x, dtype=dtype), constant, ) check_tensor_array( full((4, 5, 6), 5.0, dtype=dtype, constant=constant), np.full((4, 5, 6), 5.0, dtype=dtype), constant, ) check_tensor_array( full_like(x, 5.0, dtype=dtype, constant=constant), np.full_like(x, 5.0, dtype=dtype), constant, ) check_tensor_array( full_like(Tensor(x), 5.0, dtype=dtype, constant=constant), np.full_like(x, 5.0, dtype=dtype), constant, ) check_tensor_array( arange(3, 7, dtype=dtype, constant=constant), np.arange(3, 7, dtype=dtype), constant, ) check_tensor_array( linspace(3, 7, dtype=dtype, constant=constant), np.linspace(3, 7, dtype=dtype), constant, ) check_tensor_array( logspace(3, 7, dtype=dtype, constant=constant), np.logspace(3, 7, dtype=dtype), constant, ) check_tensor_array( geomspace(3, 7, dtype=dtype, constant=constant), np.geomspace(3, 7, dtype=dtype), constant, ) @given( t=tensors(dtype=hnp.floating_dtypes(), include_grad=st.booleans()), in_graph=st.booleans(), ) def test_astensor_returns_tensor_reference_consistently(t: Tensor, in_graph: bool): if in_graph: t = +t assert astensor(t) is t assert astensor(t).grad is t.grad assert astensor(t).creator is t.creator assert astensor(t, dtype=t.dtype) is t assert astensor(t, constant=t.constant) is t assert astensor(t, dtype=t.dtype, constant=t.constant) is t @given( t=tensors(dtype=hnp.floating_dtypes(), include_grad=st.booleans()), in_graph=st.booleans(), ) def test_astensor_with_incompat_constant_still_passes_array_ref( t: Tensor, in_graph: bool ): if in_graph: t = +t t2 = astensor(t, constant=not t.constant) assert t2 is not t assert t2.data is t.data assert t2.creator is None t2 = astensor(t, dtype=t.dtype, constant=not t.constant) assert t2 is not t assert t2.data is t.data assert t2.creator is None @given( t=tensors(dtype=hnp.floating_dtypes(), include_grad=st.booleans()), in_graph=st.booleans(), dtype=st.none() | hnp.floating_dtypes(), constant=st.none() | st.booleans(), ) def test_astensor_doesnt_mutate_input_tensor( t: Tensor, in_graph: bool, dtype, constant: bool ): if in_graph: t = +t o_constant = t.constant o_creator = t.creator o_data = t.data.copy() o_grad = None if t.grad is None else t.grad.copy() astensor(t, dtype=dtype, constant=constant) assert t.constant is o_constant assert t.creator is o_creator assert_array_equal(t, o_data) if o_grad is not None: assert_array_equal(t.grad, o_grad) else: assert t.grad is None @given( a=hnp.arrays( shape=hnp.array_shapes(min_dims=0, min_side=0), dtype=hnp.integer_dtypes() | hnp.floating_dtypes(), ) | tensors(dtype=hnp.floating_dtypes(), include_grad=st.booleans()), as_list=st.booleans(), dtype=st.none() | hnp.floating_dtypes(), constant=st.none() | st.booleans(), ) def test_as_tensor(a: Union[np.ndarray, Tensor], as_list: bool, dtype, constant: bool): """Ensures `astensor` produces a tensor with the expected data, dtype, and constant, and that it doesn't mutate the input.""" assume(~np.any(
np.isnan(a)
numpy.isnan
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import sys from os.path import join, dirname sys.path.insert(0, join(dirname(__file__), '..')) import simulator simulator.load('/home/wang/CARLA_0.9.9.4') import carla sys.path.append('/home/wang/CARLA_0.9.9.4/PythonAPI/carla') from agents.navigation.basic_agent import BasicAgent from simulator import config, set_weather, add_vehicle from simulator.sensor_manager import SensorManager from utils.navigator_sim import get_random_destination, get_map, get_nav, replan, close2dest #from learning.models import GeneratorUNet from learning.path_model import Model_COS_Img from ff_collect_pm_data import sensor_dict from ff.collect_ipm import InversePerspectiveMapping from ff.carla_sensor import Sensor, CarlaSensorMaster import os import cv2 import time import copy import threading import random import argparse import numpy as np from PIL import Image, ImageDraw, ImageFont from datetime import datetime import torch from torch.autograd import grad import torchvision.transforms as transforms global_img = None global_pcd = None global_nav = None global_v0 = 0. global_vel = 0. global_plan_time = 0. global_trajectory = None start_control = False global_vehicle = None global_plan_map = None global_cost_map = None global_transform = None max_steer_angle = 0. draw_cost_map = None MAX_SPEED = 30 img_height = 128 img_width = 256 longitudinal_length = 25.0 # [m] random.seed(datetime.now()) torch.manual_seed(999) torch.cuda.manual_seed(999) device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') #generator = GeneratorUNet() #generator = generator.to(device) #generator.load_state_dict(torch.load('../ckpt/sim-obs/g.pth')) model = Model_COS_Img().to(device) model.load_state_dict(torch.load('result/saved_models/img-input-01/model_42000.pth')) model.eval() parser = argparse.ArgumentParser(description='Params') parser.add_argument('-d', '--data', type=int, default=1, help='data index') parser.add_argument('-n', '--num', type=int, default=100000, help='total number') parser.add_argument('--width', type=int, default=400, help='image width') parser.add_argument('--height', type=int, default=200, help='image height') parser.add_argument('--max_dist', type=float, default=20., help='max distance') parser.add_argument('--max_t', type=float, default=5., help='max time') parser.add_argument('--scale', type=float, default=25., help='longitudinal length') parser.add_argument('--dt', type=float, default=0.005, help='discretization minimum time interval') args = parser.parse_args() data_index = args.data save_path = '/media/wang/DATASET/CARLA/town01/'+str(data_index)+'/' img_transforms = [ transforms.Resize((200, 400)), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ] img_trans = transforms.Compose(img_transforms) cost_map_transforms_ = [ transforms.Resize((200, 400), Image.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.5), (0.5)) ] cost_map_trans = transforms.Compose(cost_map_transforms_) class Param(object): def __init__(self): self.longitudinal_length = longitudinal_length self.ksize = 21 param = Param() sensor = Sensor(sensor_dict['camera']['transform'], config['camera']) sensor_master = CarlaSensorMaster(sensor, sensor_dict['camera']['transform'], binded=True) inverse_perspective_mapping = InversePerspectiveMapping(param, sensor_master) def get_cost_map(img, point_cloud): img2 = np.zeros((args.height, args.width), np.uint8) img2.fill(255) pixs_per_meter = args.height/longitudinal_length u = (args.height-point_cloud[0]*pixs_per_meter).astype(int) v = (-point_cloud[1]*pixs_per_meter+args.width//2).astype(int) mask = np.where((u >= 0)&(u < args.height))[0] u = u[mask] v = v[mask] mask = np.where((v >= 0)&(v < args.width))[0] u = u[mask] v = v[mask] img2[u,v] = 0 kernel = np.ones((17,17),np.uint8) img2 = cv2.erode(img2,kernel,iterations = 1) img = cv2.addWeighted(img,0.7,img2,0.3,0) kernel_size = (17, 17) sigma = 21 img = cv2.GaussianBlur(img, kernel_size, sigma); return img def xy2uv(x, y): pixs_per_meter = args.height/args.scale u = (args.height-x*pixs_per_meter).astype(int) v = (y*pixs_per_meter+args.width//2).astype(int) return u, v def mkdir(path): os.makedirs(save_path+path, exist_ok=True) def image_callback(data): global global_img, global_plan_time, global_vehicle, global_plan_map,global_nav, global_transform, global_v0 global_plan_time = time.time() array = np.frombuffer(data.raw_data, dtype=np.dtype("uint8")) array = np.reshape(array, (data.height, data.width, 4)) # RGBA format global_img = array global_transform = global_vehicle.get_transform() try: global_nav = get_nav(global_vehicle, global_plan_map) v = global_vehicle.get_velocity() global_v0 = np.sqrt(v.x**2+v.y**2+v.z**2) except: pass def lidar_callback(data): global global_pcd lidar_data = np.frombuffer(data.raw_data, dtype=np.float32).reshape([-1, 3]) point_cloud = np.stack([-lidar_data[:,1], -lidar_data[:,0], -lidar_data[:,2]]) mask = np.where(point_cloud[2] > -2.3)[0] point_cloud = point_cloud[:, mask] global_pcd = point_cloud def get_control(x, y, vx, vy): global global_vel control = carla.VehicleControl() control.manual_gear_shift = True control.gear = 1 v_target = np.sqrt(vx**2+vy**2) yaw = np.arctan2(vy, vx) theta = np.arctan2(y, x) dist = np.sqrt(x**2+y**2) e = dist*np.sin(yaw-theta) K = 0.01 Ks = 10.0 Kv = 2.0 tan_input = K*e/(Ks + global_vel) yaw_target = yaw + np.tan(tan_input) control.throttle = np.clip(0.7 + Kv*(v_target-global_vel), 0., 1.) control.steer = np.clip(0.35*yaw_target, -1., 1.) return control def add_alpha_channel(img): b_channel, g_channel, r_channel = cv2.split(img) alpha_channel = np.ones(b_channel.shape, dtype=b_channel.dtype) * 255 alpha_channel[:, :int(b_channel.shape[0] / 2)] = 100 img_BGRA = cv2.merge((b_channel, g_channel, r_channel, alpha_channel)) return img_BGRA cnt = 0 def visualize(img): #print(costmap.shape, nav.shape, img.shape) global global_vel, cnt #costmap = cv2.cvtColor(costmap,cv2.COLOR_GRAY2RGB) text = "speed: "+str(round(3.6*global_vel, 1))+' km/h' cv2.putText(img, text, (20, 30), cv2.FONT_HERSHEY_PLAIN, 2.0, (255, 255, 255), 2) #nav = cv2.resize(nav, (240, 200), interpolation=cv2.INTER_CUBIC) #down_img = np.hstack([costmap, nav]) #down_img = add_alpha_channel(down_img) #show_img = np.vstack([img, down_img]) cv2.imshow('Result', img) #cv2.imwrite('result/images/nt-nv-dw/'+str(cnt)+'.png', show_img) cv2.waitKey(10) cnt += 1 def draw_traj(cost_map, output): cost_map = Image.fromarray(cost_map).convert("RGB") draw = ImageDraw.Draw(cost_map) result = output.data.cpu().numpy() x = args.max_dist*result[:,0] y = args.max_dist*result[:,1] u, v = xy2uv(x, y) for i in range(len(u)-1): draw.line((v[i], u[i], v[i+1], u[i+1]), 'red') draw.line((v[i]+1, u[i], v[i+1]+1, u[i+1]), 'red') draw.line((v[i]-1, u[i], v[i+1]-1, u[i+1]), 'red') return cost_map def get_traj(plan_time): global global_v0, draw_cost_map, global_img, global_nav #img = Image.fromarray(cv2.cvtColor(cost_map,cv2.COLOR_BGR2RGB)).convert('L') #trans_img = cost_map_trans(img) img = Image.fromarray(cv2.cvtColor(global_img,cv2.COLOR_BGR2RGB)).convert('RGB') nav = Image.fromarray(cv2.cvtColor(global_nav,cv2.COLOR_BGR2RGB)).convert('RGB') img = img_trans(img) nav = img_trans(nav) trans_img = torch.cat((img, nav), 0) t = torch.arange(0, 0.9, args.dt).unsqueeze(1).to(device) t.requires_grad = True img = trans_img.expand(len(t),6,args.height, args.width) img = img.to(device) img.requires_grad = True v_0 = torch.FloatTensor([global_v0]).expand(len(t),1) v_0 = v_0.to(device) output = model(img, t, v_0) vx = grad(output[:,0].sum(), t, create_graph=True)[0][:,0]*(args.max_dist/args.max_t) vy = grad(output[:,1].sum(), t, create_graph=True)[0][:,0]*(args.max_dist/args.max_t) ax = grad(vx.sum(), t, create_graph=True)[0][:,0]/args.max_t ay = grad(vy.sum(), t, create_graph=True)[0][:,0]/args.max_t x = output[:,0]*args.max_dist y = output[:,1]*args.max_dist # draw #draw_cost_map = draw_traj(cost_map, output) vx = vx.data.cpu().numpy() vy = vy.data.cpu().numpy() x = x.data.cpu().numpy() y = y.data.cpu().numpy() ax = ax.data.cpu().numpy() ay = ay.data.cpu().numpy() trajectory = {'time':plan_time, 'x':x, 'y':y, 'vx':vx, 'vy':vy, 'ax':ax, 'ay':ay} return trajectory def make_plan(): global global_img, global_nav, global_pcd, global_plan_time, global_trajectory,start_control, global_cost_map while True: plan_time = global_plan_time # 1. get cGAN result #result = get_cGAN_result(global_img, global_nav) # 2. inverse perspective mapping and get costmap #img = copy.deepcopy(global_img) #mask = np.where(result > 200) #img[mask[0],mask[1]] = (255, 0, 0, 255) #ipm_image = inverse_perspective_mapping.getIPM(result) #cost_map = get_cost_map(ipm_image, global_pcd) # 3. get trajectory trajectory = get_traj(plan_time) #time.sleep(0.5) global_trajectory = trajectory #global_cost_map = cost_map if not start_control: start_control = True def get_transform(transform, org_transform): x = transform.location.x y = transform.location.y yaw = transform.rotation.yaw x0 = org_transform.location.x y0 = org_transform.location.y yaw0 = org_transform.rotation.yaw dx = x - x0 dy = y - y0 dyaw = yaw - yaw0 return dx, dy, dyaw def get_new_control(x, y, vx, vy, ax, ay): global global_vel, max_steer_angle, global_a Kx = 0.1 Kv = 3.0 Ky = 1.2e-2 K_theta = 0.005 control = carla.VehicleControl() control.manual_gear_shift = True control.gear = 1 v_r = np.sqrt(vx**2+vy**2) yaw = np.arctan2(vy, vx) theta_e = yaw #k = (vx*ay-vy*ax)/(v_r**3) w_r = (vx*ay-vy*ax)/(v_r**2) theta = np.arctan2(y, x) dist = np.sqrt(x**2+y**2) y_e = dist*np.sin(yaw-theta) x_e = dist*np.cos(yaw-theta) v_e = v_r - global_vel #################################### #v = v_r*np.cos(theta_e) + Kx*x_e w = w_r + v_r*(Ky*y_e + K_theta*np.sin(theta_e)) steer_angle = np.arctan(w*2.405/global_vel) steer = steer_angle/max_steer_angle ##################################### throttle = Kx*x_e + Kv*v_e #throttle = 0.7 +(Kx*x_e + Kv*v_e)*0.06 #throttle = Kx*x_e + Kv*v_e + global_a control.brake = 0.0 if throttle > 0: control.throttle = np.clip(throttle, 0., 1.) else: control.brake = np.clip(-0.05*throttle, 0., 1.) control.steer =
np.clip(steer, -1., 1.)
numpy.clip
# -*- coding: utf-8 -*- from __future__ import division from __future__ import print_function from collections import deque import itertools import logging from multiprocessing import ( Manager, Process, ) import os import random import numpy as np import pytoml as toml import six from six.moves import input as raw_input from tqdm import tqdm from .config import CONFIG from . import preprocessing from .training import augment_subvolume_generator from .util import ( get_color_shader, Roundrobin, WrappedViewer, ) from .volumes import ( HDF5Volume, partition_volumes, SubvolumeBounds, ) from .regions import Region def generate_subvolume_bounds(filename, volumes, num_bounds, sparse=False, moves=None): if '{volume}' not in filename: raise ValueError('CSV filename must contain "{volume}" for volume name replacement.') if moves is None: moves = 5 else: moves = np.asarray(moves) subv_shape = CONFIG.model.input_fov_shape + CONFIG.model.move_step * 2 * moves if sparse: gen_kwargs = {'sparse_margin': subv_shape} else: gen_kwargs = {'shape': subv_shape} for k, v in six.iteritems(volumes): bounds = v.downsample(CONFIG.volume.resolution)\ .subvolume_bounds_generator(**gen_kwargs) bounds = itertools.islice(bounds, num_bounds) SubvolumeBounds.iterable_to_csv(bounds, filename.format(volume=k)) def fill_volume_with_model( model_file, volume, resume_prediction=None, checkpoint_filename=None, checkpoint_label_interval=20, seed_generator='sobel', background_label_id=0, bias=True, move_batch_size=1, max_moves=None, max_bodies=None, num_workers=CONFIG.training.num_gpus, worker_prequeue=1, filter_seeds_by_mask=True, reject_non_seed_components=True, reject_early_termination=False, remask_interval=None, shuffle_seeds=True): subvolume = volume.get_subvolume(SubvolumeBounds(start=np.zeros(3, dtype=np.int64), stop=volume.shape)) # Create an output label volume. if resume_prediction is None: prediction = np.full_like(subvolume.image, background_label_id, dtype=np.uint64) label_id = 0 else: if resume_prediction.shape != subvolume.image.shape: raise ValueError('Resume volume prediction is wrong shape.') prediction = resume_prediction prediction.flags.writeable = True label_id = prediction.max() # Create a conflict count volume that tracks locations where segmented # bodies overlap. For now the first body takes precedence in the # predicted labels. conflict_count = np.full_like(prediction, 0, dtype=np.uint32) def worker(worker_id, set_devices, model_file, image, seeds, results, lock, revoked): lock.acquire() import tensorflow as tf if set_devices: # Only make one GPU visible to Tensorflow so that it does not allocate # all available memory on all devices. # See: https://stackoverflow.com/questions/37893755 os.environ['CUDA_DEVICE_ORDER'] = 'PCI_BUS_ID' os.environ['CUDA_VISIBLE_DEVICES'] = str(worker_id) with tf.device('/gpu:0'): # Late import to avoid Keras import until TF bindings are set. from .network import load_model logging.debug('Worker %s: loading model', worker_id) model = load_model(model_file, CONFIG.network) lock.release() def is_revoked(test_seed): ret = False lock.acquire() if tuple(test_seed) in revoked: ret = True revoked.remove(tuple(test_seed)) lock.release() return ret while True: seed = seeds.get(True) if not isinstance(seed, np.ndarray): logging.debug('Worker %s: got DONE', worker_id) break if is_revoked(seed): results.put((seed, None)) continue def stopping_callback(region): stop = is_revoked(seed) if reject_non_seed_components and \ region.bias_against_merge and \ region.mask[tuple(region.seed_vox)] < 0.5: stop = True return stop logging.debug('Worker %s: got seed %s', worker_id, np.array_str(seed)) # Flood-fill and get resulting mask. # Allow reading outside the image volume bounds to allow segmentation # to fill all the way to the boundary. region = Region(image, seed_vox=seed, sparse_mask=True, block_padding='reflect') region.bias_against_merge = bias early_termination = False try: six.next(region.fill( model, move_batch_size=move_batch_size, max_moves=max_moves, progress=2 + worker_id, stopping_callback=stopping_callback, remask_interval=remask_interval)) except Region.EarlyFillTermination: early_termination = True except StopIteration: pass if reject_early_termination and early_termination: body = None else: body = region.to_body() logging.debug('Worker %s: seed %s filled', worker_id, np.array_str(seed)) results.put((seed, body)) # Generate seeds from volume. generator = preprocessing.SEED_GENERATORS[seed_generator] seeds = generator(subvolume.image, CONFIG.volume.resolution) if filter_seeds_by_mask and volume.mask_data is not None: seeds = [s for s in seeds if volume.mask_data[tuple(volume.world_coord_to_local(s))]] pbar = tqdm(desc='Seed queue', total=len(seeds), miniters=1, smoothing=0.0) label_pbar = tqdm(desc='Labeled vox', total=prediction.size, miniters=1, smoothing=0.0, position=1) num_seeds = len(seeds) if shuffle_seeds: random.shuffle(seeds) seeds = iter(seeds) manager = Manager() # Queue of seeds to be picked up by workers. seed_queue = manager.Queue() # Queue of results from workers. results_queue = manager.Queue() # Dequeue of seeds that were put in seed_queue but have not yet been # combined by the main process. dispatched_seeds = deque() # Seeds that were placed in seed_queue but subsequently covered by other # results before their results have been processed. This allows workers to # abort working on these seeds by checking this list. revoked_seeds = manager.list() # Results that have been received by the main process but have not yet # been combined because they were not received in the dispatch order. unordered_results = {} def queue_next_seed(): total = 0 for seed in seeds: if prediction[seed[0], seed[1], seed[2]] != background_label_id: # This seed has already been filled. total += 1 continue dispatched_seeds.append(seed) seed_queue.put(seed) break return total for _ in range(min(num_seeds, num_workers * worker_prequeue)): processed_seeds = queue_next_seed() pbar.update(processed_seeds) if 'CUDA_VISIBLE_DEVICES' in os.environ: set_devices = False num_workers = 1 logging.warn('Environment variable CUDA_VISIBLE_DEVICES is set, so only one worker can be used.\n' 'See https://github.com/aschampion/diluvian/issues/11') else: set_devices = True workers = [] loading_lock = manager.Lock() for worker_id in range(num_workers): w = Process(target=worker, args=(worker_id, set_devices, model_file, subvolume.image, seed_queue, results_queue, loading_lock, revoked_seeds)) w.start() workers.append(w) last_checkpoint_label = label_id # For each seed, create region, fill, threshold, and merge to output volume. while dispatched_seeds: processed_seeds = 1 expected_seed = dispatched_seeds.popleft() logging.debug('Expecting seed %s', np.array_str(expected_seed)) if tuple(expected_seed) in unordered_results: logging.debug('Expected seed %s is in old results', np.array_str(expected_seed)) seed = expected_seed body = unordered_results[tuple(seed)] del unordered_results[tuple(seed)] else: seed, body = results_queue.get(True) processed_seeds += queue_next_seed() while not np.array_equal(seed, expected_seed): logging.debug('Seed %s is early, stashing',
np.array_str(seed)
numpy.array_str
import os import cv2 import skimage import numpy as np import torch import torch.nn as nn import torchvision as tv import math import network # ---------------------------------------- # Network # ---------------------------------------- def create_generator(opt): # Initialize the network generator = network.KPN(opt.color, opt.burst_length, opt.blind_est, opt.kernel_size, opt.sep_conv, \ opt.channel_att, opt.spatial_att, opt.upMode, opt.core_bias) if opt.load_name == '': # Init the network network.weights_init(generator, init_type = opt.init_type, init_gain = opt.init_gain) print('Generator is created!') else: # Load a pre-trained network pretrained_net = torch.load(opt.load_name) load_dict(generator, pretrained_net) print('Generator is loaded!') return generator def load_dict(process_net, pretrained_net): # Get the dict from pre-trained network pretrained_dict = pretrained_net # Get the dict from processing network process_dict = process_net.state_dict() # Delete the extra keys of pretrained_dict that do not belong to process_dict pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in process_dict} # Update process_dict using pretrained_dict process_dict.update(pretrained_dict) # Load the updated dict to processing network process_net.load_state_dict(process_dict) return process_net # ---------------------------------------- # Validation and Sample at training # ---------------------------------------- def save_sample_png(sample_folder, sample_name, img_list, name_list, pixel_max_cnt = 255, height = -1, width = -1): # Save image one-by-one for i in range(len(img_list)): img = img_list[i] # Recover normalization img = img * 255.0 # Process img_copy and do not destroy the data of img #print(img.size()) img_copy = img.clone().data.permute(0, 2, 3, 1).cpu().numpy() img_copy = np.clip(img_copy, 0, pixel_max_cnt) img_copy = img_copy.astype(np.uint8)[0, :, :, :] img_copy = cv2.cvtColor(img_copy, cv2.COLOR_BGR2RGB) if (height != -1) and (width != -1): img_copy = cv2.resize(img_copy, (width, height)) # Save to certain path save_img_name = sample_name + '_' + name_list[i] + '.png' save_img_path = os.path.join(sample_folder, save_img_name) cv2.imwrite(save_img_path, img_copy) def save_sample_png_test(sample_folder, sample_name, img_list, name_list, pixel_max_cnt = 255): # Save image one-by-one for i in range(len(img_list)): img = img_list[i] # Recover normalization img = img * 255.0 # Process img_copy and do not destroy the data of img img_copy = img.clone().data.permute(0, 2, 3, 1).cpu().numpy() img_copy = np.clip(img_copy, 0, pixel_max_cnt) img_copy = img_copy.astype(np.uint8)[0, :, :, :] img_copy = img_copy.astype(np.float32) img_copy = cv2.cvtColor(img_copy, cv2.COLOR_BGR2RGB) # Save to certain path save_img_name = sample_name + '_' + name_list[i] + '.png' save_img_path = os.path.join(sample_folder, save_img_name) cv2.imwrite(save_img_path, img_copy) def recover_process(img, height = -1, width = -1): img = img * 255.0 img_copy = img.clone().data.permute(0, 2, 3, 1).cpu().numpy() img_copy = np.clip(img_copy, 0, 255) img_copy = img_copy.astype(np.uint8)[0, :, :, :] img_copy = img_copy.astype(np.float32) img_copy = cv2.cvtColor(img_copy, cv2.COLOR_BGR2RGB) if (height != -1) and (width != -1): img_copy = cv2.resize(img_copy, (width, height)) return img_copy def psnr(pred, target): #print(pred.shape) #print(target.shape) mse = np.mean( (pred - target) ** 2 ) if mse == 0: return 100 PIXEL_MAX = 255.0 return 20 * math.log10(PIXEL_MAX / math.sqrt(mse)) ''' def psnr(pred, target, pixel_max_cnt = 255): mse = torch.mul(target - pred, target - pred) rmse_avg = (torch.mean(mse).item()) ** 0.5 p = 20 * np.log10(pixel_max_cnt / rmse_avg) return p ''' def grey_psnr(pred, target, pixel_max_cnt = 255): pred = torch.sum(pred, dim = 0) target = torch.sum(target, dim = 0) mse = torch.mul(target - pred, target - pred) rmse_avg = (torch.mean(mse).item()) ** 0.5 p = 20 * np.log10(pixel_max_cnt * 3 / rmse_avg) return p def ssim(pred, target): pred = pred.clone().data.permute(0, 2, 3, 1).cpu().numpy() target = target.clone().data.permute(0, 2, 3, 1).cpu().numpy() target = target[0] pred = pred[0] ssim = skimage.measure.compare_ssim(target, pred, multichannel = True) return ssim # ---------------------------------------- # PATH processing # ---------------------------------------- def check_path(path): if not os.path.exists(path): os.makedirs(path) def savetxt(name, loss_log): np_loss_log = np.array(loss_log)
np.savetxt(name, np_loss_log)
numpy.savetxt
__Author__ = "<NAME>" __Email__ = "<EMAIL>" import csv import itertools import operator import numpy as np import nltk import sys from datetime import datetime import matplotlib.pyplot as plt import timeit import time from pyspark.sql import functions as F from pyspark.sql import SQLContext, Row, SparkSession from pyspark.sql.functions import udf,struct from pyspark import SparkContext, StorageLevel, SparkConf from pyspark.sql.types import IntegerType, TimestampType, StringType,DoubleType,StructType,StructField,DateType,DataType,BooleanType,LongType from utils.utils import * from model.rnn_numpy import RNNNumpy class CalcEngine(object): """ calculation engine to preprocess training data and train models in parallel by PySpark """ def __init__(self): self.vocabulary_size = 8000 self.unknown_token = "UNKNOWN_TOKEN" self.sentence_start_token = "SENTENCE_START" self.sentence_end_token = "SENTENCE_END" def preprocess(self,input_file): # Read the data by nltk package and append SENTENCE_START and SENTENCE_END tokens print("Reading CSV file...") with open(input_file, 'r') as f: reader = csv.reader(f, skipinitialspace=True) next(reader) # Split full comments into sentences sentences = itertools.chain(*[nltk.sent_tokenize(x[0].lower()) for x in reader]) # Append SENTENCE_START and SENTENCE_END sentences = ["%s %s %s" % (self.sentence_start_token, x, self.sentence_end_token) for x in sentences] print("Parsed %d sentences." % (len(sentences))) # Tokenize the sentences into words tokenized_sentences = [nltk.word_tokenize(sent) for sent in sentences] # Count the word frequencies word_freq = nltk.FreqDist(itertools.chain(*tokenized_sentences)) print("Found %d unique words tokens." % len(word_freq.items())) # Get the most common words and build index_to_word and word_to_index vectors vocab = word_freq.most_common(self.vocabulary_size-1) index_to_word = [x[0] for x in vocab] index_to_word.append(self.unknown_token) word_to_index = dict([(w,i) for i,w in enumerate(index_to_word)]) print("Using vocabulary size %d." % self.vocabulary_size) print("The least frequent word in our vocabulary is '%s' and appeared %d times." % (vocab[-1][0], vocab[-1][1])) # Replace all words not in our vocabulary with the unknown token for i, sent in enumerate(tokenized_sentences): tokenized_sentences[i] = [w if w in word_to_index else self.unknown_token for w in sent] print("\nExample sentence: '%s'" % sentences[0]) # Create the training data X_train = np.asarray([[word_to_index[w] for w in sent[:-1]] for sent in tokenized_sentences]) y_train = np.asarray([[word_to_index[w] for w in sent[1:]] for sent in tokenized_sentences]) print("\nExample sentence after Pre-processing: '%s'" % tokenized_sentences[0]) # Print an training data example # x_example, y_example = X_train[17], y_train[17] # print("x:\n%s\n%s" % (" ".join([index_to_word[x] for x in x_example]), x_example)) # print("\ny:\n%s\n%s" % (" ".join([index_to_word[x] for x in y_example]), y_example)) return [X_train,y_train] def distributed_training(self,X_train, y_train,vocabulary_size,num_core=4,rate=0.005): """ train rnn in parallel by Spark 2.2 :param X_train: input training set :param y_train: target in training set :param vocabulary_size: size of vocabulary only frequent words will be modelled :param num_core: number of core to run in parallel default is 4 for standalone PC. It needs to change for EMR clusters. :param rate: learng rate default at 0.005 :return: model parameters U,V,W matrix with minimum loss """ global spark_context learning_rate = [ rate*np.random.random() for i in range(num_core)] print(learning_rate) learning_rate_rdd = spark_context.parallelize(learning_rate) #run map-reduce to find model parameters with mininum loss in training data result = learning_rate_rdd.map(lambda rate:train_model(rate,vocabulary_size,X_train,y_train)).reduceByKey(min) return result def train_model(rate,vocabulary_size,X_train,y_train): """ work in Spark map-reduce framework :param rate: learning rate, different worker has different starting learning rate. I tried to find global optimal paramers by differing learning rate :param vocabulary_size: size of the vocabulary :param X_train: input of training set which is the same across workers :param y_train: target of training set which is the same across workers :return: locally optimized parameters in each worker """ model = RNNNumpy(vocabulary_size) loss = model.train_with_sgd(X_train, y_train, rate) return {loss[-1]:model.get_parameter()} def initialize_spark(): """ In Spark 2.2, Spark session is recommended(for Spark SQL dataframe operations). :return: """ global debug global spark_context global spark_session global sql_context global log4j_logger global logger spark_session = SparkSession \ .builder \ .appName("tnn-distributed-training") \ .getOrCreate() sql_context = SQLContext(spark_session.sparkContext) spark_context = spark_session.sparkContext log4j_logger = spark_context._jvm.org.apache.log4j logger = log4j_logger.LogManager.getLogger(__name__) log('SPARK INITIALIZED') def log(s): global log_enabled if log_enabled: logger.warn(s) # if __name__ == "__main__": #set global variables debug = False spark_context = None spark_session = None sql_context = None log4j_logger = None logger = None log_enabled = False #initialize Spark and calculation engine initialize_spark() my_engine = CalcEngine() X_train,y_train = my_engine.preprocess('data/reddit-comments-2015-08.csv') vocabulary_size=8000 #randomly set model parameters np.random.seed(10) model = RNNNumpy(vocabulary_size) o, s = model.forward_propagation(X_train[10]) print(o.shape) print(o) predictions = model.predict(X_train[10]) print(predictions.shape) print(predictions) # Limit to 1000 examples to save time print("Expected Loss for random predictions: %f" % np.log(vocabulary_size)) print("Actual loss: %f" % model.calculate_loss(X_train[:1000], y_train[:1000])) # To avoid performing millions of expensive calculations we use a smaller vocabulary size for checking. grad_check_vocab_size = 100 np.random.seed(10) model = RNNNumpy(grad_check_vocab_size, 10, bptt_truncate=1000) model.gradient_check([0,1,2,3], [1,2,3,4]) # how long will it take to run one single step of sgd np.random.seed(10) model = RNNNumpy(vocabulary_size) start_time = time.time() model.sgd_step(X_train[10], y_train[10], 0.005) end_time = time.time() print("it take {0} seconds to do one step sgd".format(end_time - start_time)) # Train on a small subset of the data to see what happens
np.random.seed(10)
numpy.random.seed
""" Defines objective-function objects """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import time as _time import numpy as _np from .verbosityprinter import VerbosityPrinter as _VerbosityPrinter from .. import optimize as _opt from ..tools import listtools as _lt class ObjectiveFunction(object): pass #NOTE on chi^2 expressions: #in general case: chi^2 = sum (p_i-f_i)^2/p_i (for i summed over outcomes) #in 2-outcome case: chi^2 = (p+ - f+)^2/p+ + (p- - f-)^2/p- # = (p - f)^2/p + (1-p - (1-f))^2/(1-p) # = (p - f)^2 * (1/p + 1/(1-p)) # = (p - f)^2 * ( ((1-p) + p)/(p*(1-p)) ) # = 1/(p*(1-p)) * (p - f)^2 class Chi2Function(ObjectiveFunction): def __init__(self, mdl, evTree, lookup, circuitsToUse, opLabelAliases, regularizeFactor, cptp_penalty_factor, spam_penalty_factor, cntVecMx, N, minProbClipForWeighting, probClipInterval, wrtBlkSize, gthrMem, check=False, check_jacobian=False, comm=None, profiler=None, verbosity=0): from ..tools import slicetools as _slct self.mdl = mdl self.evTree = evTree self.lookup = lookup self.circuitsToUse = circuitsToUse self.comm = comm self.profiler = profiler self.check = check self.check_jacobian = check_jacobian KM = evTree.num_final_elements() # shorthand for combined spam+circuit dimension vec_gs_len = mdl.num_params() self.printer = _VerbosityPrinter.build_printer(verbosity, comm) self.opBasis = mdl.basis #Compute "extra" (i.e. beyond the (circuit,spamlabel)) rows of jacobian self.ex = 0 if regularizeFactor != 0: self.ex = vec_gs_len else: if cptp_penalty_factor != 0: self.ex += _cptp_penalty_size(mdl) if spam_penalty_factor != 0: self.ex += _spam_penalty_size(mdl) self.KM = KM self.vec_gs_len = vec_gs_len self.regularizeFactor = regularizeFactor self.cptp_penalty_factor = cptp_penalty_factor self.spam_penalty_factor = spam_penalty_factor self.minProbClipForWeighting = minProbClipForWeighting self.probClipInterval = probClipInterval self.wrtBlkSize = wrtBlkSize self.gthrMem = gthrMem # Allocate peristent memory # (must be AFTER possible operation sequence permutation by # tree and initialization of dsCircuitsToUse) self.probs = _np.empty(KM, 'd') self.jac = _np.empty((KM + self.ex, vec_gs_len), 'd') #Detect omitted frequences (assumed to be 0) so we can compute chi2 correctly self.firsts = []; self.indicesOfCircuitsWithOmittedData = [] for i, c in enumerate(circuitsToUse): lklen = _slct.length(lookup[i]) if 0 < lklen < mdl.get_num_outcomes(c): self.firsts.append(_slct.as_array(lookup[i])[0]) self.indicesOfCircuitsWithOmittedData.append(i) if len(self.firsts) > 0: self.firsts = _np.array(self.firsts, 'i') self.indicesOfCircuitsWithOmittedData = _np.array(self.indicesOfCircuitsWithOmittedData, 'i') self.dprobs_omitted_rowsum = _np.empty((len(self.firsts), vec_gs_len), 'd') self.printer.log("SPARSE DATA: %d of %d rows have sparse data" % (len(self.firsts), len(circuitsToUse))) else: self.firsts = None # no omitted probs self.cntVecMx = cntVecMx self.N = N self.f = cntVecMx / N self.maxCircuitLength = max([len(x) for x in circuitsToUse]) if self.printer.verbosity < 4: # Fast versions of functions if regularizeFactor == 0 and cptp_penalty_factor == 0 and spam_penalty_factor == 0 \ and mdl.get_simtype() != "termgap": # Fast un-regularized version self.fn = self.simple_chi2 self.jfn = self.simple_jac elif regularizeFactor != 0: # Fast regularized version assert(cptp_penalty_factor == 0), "Cannot have regularizeFactor and cptp_penalty_factor != 0" assert(spam_penalty_factor == 0), "Cannot have regularizeFactor and spam_penalty_factor != 0" self.fn = self.regularized_chi2 self.jfn = self.regularized_jac elif mdl.get_simtype() == "termgap": assert(cptp_penalty_factor == 0), "Cannot have termgap_pentalty_factor and cptp_penalty_factor != 0" assert(spam_penalty_factor == 0), "Cannot have termgap_pentalty_factor and spam_penalty_factor != 0" self.fn = self.termgap_chi2 self.jfn = self.simple_jac else: # cptp_pentalty_factor != 0 and/or spam_pentalty_factor != 0 assert(regularizeFactor == 0), "Cannot have regularizeFactor and other penalty factors > 0" self.fn = self.penalized_chi2 self.jfn = self.penalized_jac else: # Verbose (DEBUG) version of objective_func if mdl.get_simtype() == "termgap": raise NotImplementedError("Still need to add termgap support to verbose chi2!") self.fn = self.verbose_chi2 self.jfn = self.verbose_jac def get_weights(self, p): cp = _np.clip(p, self.minProbClipForWeighting, 1 - self.minProbClipForWeighting) return _np.sqrt(self.N / cp) # nSpamLabels x nCircuits array (K x M) def get_dweights(self, p, wts): # derivative of weights w.r.t. p cp = _np.clip(p, self.minProbClipForWeighting, 1 - self.minProbClipForWeighting) dw = -0.5 * wts / cp # nSpamLabels x nCircuits array (K x M) dw[_np.logical_or(p < self.minProbClipForWeighting, p > (1 - self.minProbClipForWeighting))] = 0.0 return dw def update_v_for_omitted_probs(self, v, probs): # if i-th circuit has omitted probs, have sqrt( N*(p_i-f_i)^2/p_i + sum_k(N*p_k) ) # so we need to take sqrt( v_i^2 + N*sum_k(p_k) ) omitted_probs = 1.0 - _np.array([_np.sum(probs[self.lookup[i]]) for i in self.indicesOfCircuitsWithOmittedData]) clipped_oprobs = _np.clip(omitted_probs, self.minProbClipForWeighting, 1 - self.minProbClipForWeighting) v[self.firsts] = _np.sqrt(v[self.firsts]**2 + self.N[self.firsts] * omitted_probs**2 / clipped_oprobs) def update_dprobs_for_omitted_probs(self, dprobs, probs, weights, dprobs_omitted_rowsum): # with omitted terms, new_obj = sqrt( obj^2 + corr ) where corr = N*omitted_p^2/clipped_omitted_p # so then d(new_obj) = 1/(2*new_obj) *( 2*obj*dobj + dcorr )*domitted_p where dcorr = N when not clipped # and 2*N*omitted_p/clip_bound * domitted_p when clipped v = (probs - self.f) * weights omitted_probs = 1.0 - _np.array([_np.sum(probs[self.lookup[i]]) for i in self.indicesOfCircuitsWithOmittedData]) clipped_oprobs = _np.clip(omitted_probs, self.minProbClipForWeighting, 1 - self.minProbClipForWeighting) dprobs_factor_omitted = _np.where(omitted_probs == clipped_oprobs, self.N[self.firsts], 2 * self.N[self.firsts] * omitted_probs / clipped_oprobs) fullv = _np.sqrt(v[self.firsts]**2 + self.N[self.firsts] * omitted_probs**2 / clipped_oprobs) # avoid NaNs when both fullv and v[firsts] are zero - result should be *zero* in this case fullv[v[self.firsts] == 0.0] = 1.0 dprobs[self.firsts, :] = (0.5 / fullv[:, None]) * ( 2 * v[self.firsts, None] * dprobs[self.firsts, :] - dprobs_factor_omitted[:, None] * dprobs_omitted_rowsum) #Objective Function def simple_chi2(self, vectorGS): tm = _time.time() self.mdl.from_vector(vectorGS) self.mdl.bulk_fill_probs(self.probs, self.evTree, self.probClipInterval, self.check, self.comm) v = (self.probs - self.f) * self.get_weights(self.probs) # dims K x M (K = nSpamLabels, M = nCircuits) if self.firsts is not None: self.update_v_for_omitted_probs(v, self.probs) self.profiler.add_time("do_mc2gst: OBJECTIVE", tm) assert(v.shape == (self.KM,)) # reshape ensuring no copy is needed return v def termgap_chi2(self, vectorGS, oob_check=False): tm = _time.time() self.mdl.from_vector(vectorGS) self.mdl.bulk_fill_probs(self.probs, self.evTree, self.probClipInterval, self.check, self.comm) if oob_check: if not self.mdl.bulk_probs_paths_are_sufficient(self.evTree, self.probs, self.comm, memLimit=None, verbosity=1): raise ValueError("Out of bounds!") # signals LM optimizer v = (self.probs - self.f) * self.get_weights(self.probs) # dims K x M (K = nSpamLabels, M = nCircuits) if self.firsts is not None: self.update_v_for_omitted_probs(v, self.probs) self.profiler.add_time("do_mc2gst: OBJECTIVE", tm) assert(v.shape == (self.KM,)) # reshape ensuring no copy is needed return v def regularized_chi2(self, vectorGS): tm = _time.time() self.mdl.from_vector(vectorGS) self.mdl.bulk_fill_probs(self.probs, self.evTree, self.probClipInterval, self.check, self.comm) weights = self.get_weights(self.probs) v = (self.probs - self.f) * weights # dim KM (K = nSpamLabels, M = nCircuits) if self.firsts is not None: self.update_v_for_omitted_probs(v, self.probs) gsVecNorm = self.regularizeFactor * _np.array([max(0, absx - 1.0) for absx in map(abs, vectorGS)], 'd') self.profiler.add_time("do_mc2gst: OBJECTIVE", tm) return _np.concatenate((v.reshape([self.KM]), gsVecNorm)) def penalized_chi2(self, vectorGS): tm = _time.time() self.mdl.from_vector(vectorGS) self.mdl.bulk_fill_probs(self.probs, self.evTree, self.probClipInterval, self.check, self.comm) weights = self.get_weights(self.probs) v = (self.probs - self.f) * weights # dims K x M (K = nSpamLabels, M = nCircuits) if self.firsts is not None: self.update_v_for_omitted_probs(v, self.probs) if self.cptp_penalty_factor > 0: cpPenaltyVec = _cptp_penalty(self.mdl, self.cptp_penalty_factor, self.opBasis) else: cpPenaltyVec = [] # so concatenate ignores if self.spam_penalty_factor > 0: spamPenaltyVec = _spam_penalty(self.mdl, self.spam_penalty_factor, self.opBasis) else: spamPenaltyVec = [] # so concatenate ignores self.profiler.add_time("do_mc2gst: OBJECTIVE", tm) return _np.concatenate((v, cpPenaltyVec, spamPenaltyVec)) def verbose_chi2(self, vectorGS): tm = _time.time() self.mdl.from_vector(vectorGS) self.mdl.bulk_fill_probs(self.probs, self.evTree, self.probClipInterval, self.check, self.comm) weights = self.get_weights(self.probs) v = (self.probs - self.f) * weights if self.firsts is not None: self.update_v_for_omitted_probs(v, self.probs) chisq = _np.sum(v * v) nClipped = len((_np.logical_or(self.probs < self.minProbClipForWeighting, self.probs > (1 - self.minProbClipForWeighting))).nonzero()[0]) self.printer.log("MC2-OBJ: chi2=%g\n" % chisq + " p in (%g,%g)\n" % (_np.min(self.probs), _np.max(self.probs)) + " weights in (%g,%g)\n" % (_np.min(weights), _np.max(weights)) + " mdl in (%g,%g)\n" % (_np.min(vectorGS), _np.max(vectorGS)) + " maxLen = %d, nClipped=%d" % (self.maxCircuitLength, nClipped), 4) assert((self.cptp_penalty_factor == 0 and self.spam_penalty_factor == 0) or self.regularizeFactor == 0), \ "Cannot have regularizeFactor and other penalty factors != 0" if self.regularizeFactor != 0: gsVecNorm = self.regularizeFactor * _np.array([max(0, absx - 1.0) for absx in map(abs, vectorGS)], 'd') self.profiler.add_time("do_mc2gst: OBJECTIVE", tm) return _np.concatenate((v, gsVecNorm)) elif self.cptp_penalty_factor != 0 or self.spam_penalty_factor != 0: if self.cptp_penalty_factor != 0: cpPenaltyVec = _cptp_penalty(self.mdl, self.cptp_penalty_factor, self.opBasis) else: cpPenaltyVec = [] if self.spam_penalty_factor != 0: spamPenaltyVec = _spam_penalty(self.mdl, self.spam_penalty_factor, self.opBasis) else: spamPenaltyVec = [] self.profiler.add_time("do_mc2gst: OBJECTIVE", tm) return _np.concatenate((v, cpPenaltyVec, spamPenaltyVec)) else: self.profiler.add_time("do_mc2gst: OBJECTIVE", tm) assert(v.shape == (self.KM,)) return v # Jacobian function def simple_jac(self, vectorGS): tm = _time.time() dprobs = self.jac.view() # avoid mem copying: use jac mem for dprobs dprobs.shape = (self.KM, self.vec_gs_len) self.mdl.from_vector(vectorGS) self.mdl.bulk_fill_dprobs(dprobs, self.evTree, prMxToFill=self.probs, clipTo=self.probClipInterval, check=self.check, comm=self.comm, wrtBlockSize=self.wrtBlkSize, profiler=self.profiler, gatherMemLimit=self.gthrMem) #DEBUG TODO REMOVE - test dprobs to make sure they look right. #EPS = 1e-7 #db_probs = _np.empty(self.probs.shape, 'd') #db_probs2 = _np.empty(self.probs.shape, 'd') #db_dprobs = _np.empty(dprobs.shape, 'd') #self.mdl.bulk_fill_probs(db_probs, self.evTree, self.probClipInterval, self.check, self.comm) #for i in range(self.vec_gs_len): # vectorGS_eps = vectorGS.copy() # vectorGS_eps[i] += EPS # self.mdl.from_vector(vectorGS_eps) # self.mdl.bulk_fill_probs(db_probs2, self.evTree, self.probClipInterval, self.check, self.comm) # db_dprobs[:,i] = (db_probs2 - db_probs) / EPS #if _np.linalg.norm(dprobs - db_dprobs)/dprobs.size > 1e-6: # #assert(False), "STOP: %g" % (_np.linalg.norm(dprobs - db_dprobs)/db_dprobs.size) # print("DB: dprobs per el mismatch = ",_np.linalg.norm(dprobs - db_dprobs)/db_dprobs.size) #self.mdl.from_vector(vectorGS) #dprobs[:,:] = db_dprobs[:,:] if self.firsts is not None: for ii, i in enumerate(self.indicesOfCircuitsWithOmittedData): self.dprobs_omitted_rowsum[ii, :] = _np.sum(dprobs[self.lookup[i], :], axis=0) weights = self.get_weights(self.probs) dprobs *= (weights + (self.probs - self.f) * self.get_dweights(self.probs, weights))[:, None] # (KM,N) * (KM,1) (N = dim of vectorized model) # this multiply also computes jac, which is just dprobs # with a different shape (jac.shape == [KM,vec_gs_len]) if self.firsts is not None: self.update_dprobs_for_omitted_probs(dprobs, self.probs, weights, self.dprobs_omitted_rowsum) if self.check_jacobian: _opt.check_jac(lambda v: self.simple_chi2( v), vectorGS, self.jac, tol=1e-3, eps=1e-6, errType='abs') # TO FIX # dpr has shape == (nCircuits, nDerivCols), weights has shape == (nCircuits,) # return shape == (nCircuits, nDerivCols) where ret[i,j] = dP[i,j]*(weights+dweights*(p-f))[i] self.profiler.add_time("do_mc2gst: JACOBIAN", tm) return self.jac def regularized_jac(self, vectorGS): tm = _time.time() dprobs = self.jac[0:self.KM, :] # avoid mem copying: use jac mem for dprobs dprobs.shape = (self.KM, self.vec_gs_len) self.mdl.from_vector(vectorGS) self.mdl.bulk_fill_dprobs(dprobs, self.evTree, prMxToFill=self.probs, clipTo=self.probClipInterval, check=self.check, comm=self.comm, wrtBlockSize=self.wrtBlkSize, profiler=self.profiler, gatherMemLimit=self.gthrMem) if self.firsts is not None: for ii, i in enumerate(self.indicesOfCircuitsWithOmittedData): self.dprobs_omitted_rowsum[ii, :] = _np.sum(dprobs[self.lookup[i], :], axis=0) weights = self.get_weights(self.probs) dprobs *= (weights + (self.probs - self.f) * self.get_dweights(self.probs, weights))[:, None] # (KM,N) * (KM,1) (N = dim of vectorized model) # Note: this also computes jac[0:KM,:] if self.firsts is not None: self.update_dprobs_for_omitted_probs(dprobs, self.probs, weights, self.dprobs_omitted_rowsum) gsVecGrad = _np.diag([(self.regularizeFactor * _np.sign(x) if abs(x) > 1.0 else 0.0) for x in vectorGS]) # (N,N) self.jac[self.KM:, :] = gsVecGrad # jac.shape == (KM+N,N) if self.check_jacobian: _opt.check_jac(lambda v: self.regularized_chi2( v), vectorGS, self.jac, tol=1e-3, eps=1e-6, errType='abs') # dpr has shape == (nCircuits, nDerivCols), gsVecGrad has shape == (nDerivCols, nDerivCols) # return shape == (nCircuits+nDerivCols, nDerivCols) self.profiler.add_time("do_mc2gst: JACOBIAN", tm) return self.jac def penalized_jac(self, vectorGS): # Fast cptp-penalty version tm = _time.time() dprobs = self.jac[0:self.KM, :] # avoid mem copying: use jac mem for dprobs dprobs.shape = (self.KM, self.vec_gs_len) self.mdl.from_vector(vectorGS) self.mdl.bulk_fill_dprobs(dprobs, self.evTree, prMxToFill=self.probs, clipTo=self.probClipInterval, check=self.check, comm=self.comm, wrtBlockSize=self.wrtBlkSize, profiler=self.profiler, gatherMemLimit=self.gthrMem) if self.firsts is not None: for ii, i in enumerate(self.indicesOfCircuitsWithOmittedData): self.dprobs_omitted_rowsum[ii, :] = _np.sum(dprobs[self.lookup[i], :], axis=0) weights = self.get_weights(self.probs) dprobs *= (weights + (self.probs - self.f) * self.get_dweights(self.probs, weights))[:, None] # (KM,N) * (KM,1) (N = dim of vectorized model) # Note: this also computes jac[0:KM,:] if self.firsts is not None: self.update_dprobs_for_omitted_probs(dprobs, self.probs, weights, self.dprobs_omitted_rowsum) off = 0 if self.cptp_penalty_factor > 0: off += _cptp_penalty_jac_fill( self.jac[self.KM + off:, :], self.mdl, self.cptp_penalty_factor, self.opBasis) if self.spam_penalty_factor > 0: off += _spam_penalty_jac_fill( self.jac[self.KM + off:, :], self.mdl, self.spam_penalty_factor, self.opBasis) if self.check_jacobian: _opt.check_jac(lambda v: self.penalized_chi2( v), vectorGS, self.jac, tol=1e-3, eps=1e-6, errType='abs') self.profiler.add_time("do_mc2gst: JACOBIAN", tm) return self.jac def verbose_jac(self, vectorGS): tm = _time.time() dprobs = self.jac[0:self.KM, :] # avoid mem copying: use jac mem for dprobs dprobs.shape = (self.KM, self.vec_gs_len) self.mdl.from_vector(vectorGS) self.mdl.bulk_fill_dprobs(dprobs, self.evTree, prMxToFill=self.probs, clipTo=self.probClipInterval, check=self.check, comm=self.comm, wrtBlockSize=self.wrtBlkSize, profiler=self.profiler, gatherMemLimit=self.gthrMem) if self.firsts is not None: for ii, i in enumerate(self.indicesOfCircuitsWithOmittedData): self.dprobs_omitted_rowsum[ii, :] = _np.sum(dprobs[self.lookup[i], :], axis=0) weights = self.get_weights(self.probs) #Attempt to control leastsq by zeroing clipped weights -- this doesn't seem to help (nor should it) #weights[ _np.logical_or(pr < minProbClipForWeighting, pr > (1-minProbClipForWeighting)) ] = 0.0 dPr_prefactor = (weights + (self.probs - self.f) * self.get_dweights(self.probs, weights)) # (KM) dprobs *= dPr_prefactor[:, None] # (KM,N) * (KM,1) = (KM,N) (N = dim of vectorized model) if self.firsts is not None: self.update_dprobs_for_omitted_probs(dprobs, self.probs, weights, self.dprobs_omitted_rowsum) if self.regularizeFactor != 0: gsVecGrad = _np.diag([(self.regularizeFactor * _np.sign(x) if abs(x) > 1.0 else 0.0) for x in vectorGS]) self.jac[self.KM:, :] = gsVecGrad # jac.shape == (KM+N,N) else: off = 0 if self.cptp_penalty_factor != 0: off += _cptp_penalty_jac_fill(self.jac[self.KM + off:, :], self.mdl, self.cptp_penalty_factor, self.opBasis) if self.spam_penalty_factor != 0: off += _spam_penalty_jac_fill(self.jac[self.KM + off:, :], self.mdl, self.spam_penalty_factor, self.opBasis) # Zero-out insignificant entries in jacobian -- seemed to help some, but leaving this out, # thinking less complicated == better #absJac = _np.abs(jac); maxabs = _np.max(absJac) #jac[ absJac/maxabs < 5e-8 ] = 0.0 #Rescale jacobian so it's not too large -- an attempt to fix wild leastsq behavior but didn't help #if maxabs > 1e7: # print "Rescaling jacobian to 1e7 maxabs" # jac = (jac / maxabs) * 1e7 #U,s,V = _np.linalg.svd(jac) #print "DEBUG: s-vals of jac %s = " % (str(jac.shape)), s nClipped = len((_np.logical_or(self.probs < self.minProbClipForWeighting, self.probs > (1 - self.minProbClipForWeighting))).nonzero()[0]) self.printer.log("MC2-JAC: jac in (%g,%g)\n" % (_np.min(self.jac), _np.max(self.jac)) + " pr in (%g,%g)\n" % (
_np.min(self.probs)
numpy.min
import json import os import random from typing import Any, Union import numpy as np import tensorflow as tf from Configs.FasterRCNN_config import Param from Debugger import debug_print from NN_Components import Backbone, RPN, RoI from NN_Helper import NnDataGenerator, BboxTools os.environ['KMP_DUPLICATE_LIB_OK'] = 'True' # for mac os tensorflow setting class FasterRCNN(): def __init__(self): self.Backbone = Backbone(img_shape=Param.IMG_RESIZED_SHAPE, n_stage=Param.N_STAGE) self.IMG_SHAPE = Param.IMG_RESIZED_SHAPE # self.backbone_model.trainable= False # === RPN part === self.RPN = RPN(backbone_model=self.Backbone.backbone_model, lambda_factor=Param.LAMBDA_FACTOR, batch=Param.BATCH_RPN, lr=Param.LR) # === RoI part === self.RoI = RoI(backbone_model=self.Backbone.backbone_model, img_shape=self.IMG_SHAPE, n_output_classes=Param.N_OUT_CLASS, lr=Param.LR) self.RoI_header = self.RoI.RoI_header_model # === Data part === self.train_data_generator = NnDataGenerator( file=Param.DATA_JSON_FILE, imagefolder_path=Param.PATH_IMAGES, anchor_base_size=Param.BASE_SIZE, ratios=Param.RATIOS, scales=Param.SCALES, n_anchors=Param.N_ANCHORS, img_shape_resize=Param.IMG_RESIZED_SHAPE, n_stage=Param.N_STAGE, threshold_iou_rpn=Param.THRESHOLD_IOU_RPN, threshold_iou_roi=Param.THRESHOLD_IOU_RoI) self.cocotool = self.train_data_generator.dataset_coco self.anchor_candidate_generator = self.train_data_generator.gen_candidate_anchors self.anchor_candidates = self.anchor_candidate_generator.anchor_candidates def test_loss_function(self): inputs, anchor_targets, bbox_targets = self.train_data_generator.gen_train_data_rpn_all() print(inputs.shape, anchor_targets.shape, bbox_targets.shape) input1 = np.reshape(inputs[0, :, :, :], (1, 720, 1280, 3)) anchor1 = np.reshape(anchor_targets[0, :, :, :], (1, 23, 40, 9)) anchor2 = tf.convert_to_tensor(anchor1) anchor2 = tf.dtypes.cast(anchor2, tf.int32) anchor2 = tf.one_hot(anchor2, 2, axis=-1) print(anchor1) bbox1 = np.reshape(bbox_targets[0, :, :, :, :], (1, 23, 40, 9, 4)) loss = self.RPN._rpn_loss(anchor1, bbox1, anchor2, bbox1) print(loss) def faster_rcnn_output(self): # === prepare input images === image_ids = self.train_data_generator.dataset_coco.image_ids inputs, anchor_targets, bbox_reg_targets = self.train_data_generator.gen_train_data_rpn_one(image_ids[0]) print(inputs.shape, anchor_targets.shape, bbox_reg_targets.shape) image = np.reshape(inputs[0, :, :, :], (1, self.IMG_SHAPE[0], self.IMG_SHAPE[1], 3)) # === get proposed region boxes === rpn_anchor_pred, rpn_bbox_regression_pred = self.RPN.process_image(image) proposed_boxes = self.RPN._proposal_boxes(rpn_anchor_pred, rpn_bbox_regression_pred, self.anchor_candidates, self.anchor_candidate_generator.h, self.anchor_candidate_generator.w, self.anchor_candidate_generator.n_anchors, Param.ANCHOR_PROPOSAL_N, Param.ANCHOR_THRESHOLD ) # === processing boxes with RoI header === pred_class, pred_box_reg = self.RoI.process_image([image, proposed_boxes]) # === processing the results === pred_class_sparse = np.argmax(a=pred_class[:, :], axis=1) pred_class_sparse_value = np.max(a=pred_class[:, :], axis=1) print(pred_class, pred_box_reg) print(pred_class_sparse, pred_class_sparse_value) print(np.max(proposed_boxes), np.max(pred_box_reg)) final_box = BboxTools.bbox_reg2truebox(base_boxes=proposed_boxes, regs=pred_box_reg) final_box = BboxTools.clip_boxes(final_box, self.IMG_SHAPE) # === output to official coco bbox result json file === temp_output_to_file = [] for i in range(pred_class_sparse.shape[0]): temp_category = self.train_data_generator.dataset_coco.get_category_from_sparse(pred_class_sparse[i]) temp_output_to_file.append({ "image_id": f"{image_ids[0]}", "bbox": [final_box[i][0].item(), final_box[i][1].item(), final_box[i][2].item(), final_box[i][3].item()], "score": pred_class_sparse_value[i].item(), "category": f"{temp_category}" }) with open("results.pkl.bbox.json", "w") as f: json.dump(temp_output_to_file, f, indent=4) # print(final_box) print(final_box[pred_class_sparse_value > 0.9]) final_box = final_box[pred_class_sparse_value > 0.9] self.cocotool.draw_bboxes(original_image=image[0], bboxes=final_box.tolist(), show=True, save_file=True, path=Param.PATH_DEBUG_IMG, save_name='6PredRoISBoxes') # === Non maximum suppression === final_box_temp = np.array(final_box).astype(np.int) nms_boxes_list = [] while final_box_temp.shape[0] > 0: ious = self.nms_loop_np(final_box_temp) nms_boxes_list.append( final_box_temp[0, :]) # since it's sorted by the value, here we can pick the first one each time. final_box_temp = final_box_temp[ious < Param.RPN_NMS_THRESHOLD] debug_print('number of box after nms', len(nms_boxes_list)) self.cocotool.draw_bboxes(original_image=image[0], bboxes=nms_boxes_list, show=True, save_file=True, path=Param.PATH_DEBUG_IMG, save_name='7PredRoINMSBoxes') def test_proposal_visualization(self): # === Prediction part === image_ids = self.train_data_generator.dataset_coco.image_ids inputs, anchor_targets, bbox_reg_targets = self.train_data_generator.gen_train_data_rpn_one(image_ids[0]) print(inputs.shape, anchor_targets.shape, bbox_reg_targets.shape) input1 = np.reshape(inputs[0, :, :, :], (1, self.IMG_SHAPE[0], self.IMG_SHAPE[1], 3)) rpn_anchor_pred, rpn_bbox_regression_pred = self.RPN.process_image(input1) print(rpn_anchor_pred.shape, rpn_bbox_regression_pred.shape) # === Selection part === # top_values, top_indices = tf.math.top_k() rpn_anchor_pred = tf.slice(rpn_anchor_pred, [0, 0, 0, 0, 1], [1, self.anchor_candidate_generator.h, self.anchor_candidate_generator.w, self.anchor_candidate_generator.n_anchors, 1]) # second channel is foreground print(rpn_anchor_pred.shape, rpn_bbox_regression_pred.shape) # squeeze the pred of anchor and bbox_reg rpn_anchor_pred = tf.squeeze(rpn_anchor_pred) rpn_bbox_regression_pred = tf.squeeze(rpn_bbox_regression_pred) shape1 = tf.shape(rpn_anchor_pred) print(rpn_anchor_pred.shape, rpn_bbox_regression_pred.shape) # flatten the pred of anchor to get top N values and indices rpn_anchor_pred = tf.reshape(rpn_anchor_pred, (-1,)) n_anchor_proposal = Param.ANCHOR_PROPOSAL_N top_values, top_indices = tf.math.top_k(rpn_anchor_pred, n_anchor_proposal) # top_k has sort function. it's important here top_indices = tf.gather_nd(top_indices, tf.where(tf.greater(top_values, Param.ANCHOR_THRESHOLD))) top_values = tf.gather_nd(top_values, tf.where(tf.greater(top_values, Param.ANCHOR_THRESHOLD))) debug_print('top values', top_values) # test_indices = tf.where(tf.greater(tf.reshape(RPN_Anchor_Pred, (-1,)), 0.9)) # print(test_indices) top_indices = tf.reshape(top_indices, (-1, 1)) debug_print('top indices', top_indices) update_value = tf.math.add(top_values, 1) rpn_anchor_pred = tf.tensor_scatter_nd_update(rpn_anchor_pred, top_indices, update_value) rpn_anchor_pred = tf.reshape(rpn_anchor_pred, shape1) # --- find the base boxes --- anchor_pred_top_indices = tf.where(tf.greater(rpn_anchor_pred, 1)) debug_print('original_indices shape', anchor_pred_top_indices.shape) debug_print('original_indices', anchor_pred_top_indices) base_boxes = tf.gather_nd(self.anchor_candidates, anchor_pred_top_indices) debug_print('base_boxes shape', base_boxes.shape) debug_print('base_boxes', base_boxes) base_boxes = np.array(base_boxes) # --- find the bbox_regs --- # flatten the bbox_reg by last dim to use top_indices to get final_box_reg rpn_bbox_regression_pred_shape = tf.shape(rpn_bbox_regression_pred) rpn_bbox_regression_pred = tf.reshape(rpn_bbox_regression_pred, (-1, rpn_bbox_regression_pred_shape[-1])) debug_print('RPN_BBOX_Regression_Pred shape', rpn_bbox_regression_pred.shape) final_box_reg = tf.gather_nd(rpn_bbox_regression_pred, top_indices) debug_print('final box reg values', final_box_reg) # Convert to numpy to plot final_box_reg = np.array(final_box_reg) debug_print('final box reg shape', final_box_reg.shape) debug_print('max value of final box reg', np.max(final_box_reg)) final_box = BboxTools.bbox_reg2truebox(base_boxes=base_boxes, regs=final_box_reg) # === Non maximum suppression === final_box_temp = np.array(final_box).astype(np.int) nms_boxes_list = [] while final_box_temp.shape[0] > 0: ious = self.nms_loop_np(final_box_temp) nms_boxes_list.append( final_box_temp[0, :]) # since it's sorted by the value, here we can pick the first one each time. final_box_temp = final_box_temp[ious < Param.RPN_NMS_THRESHOLD] debug_print('number of box after nms', len(nms_boxes_list)) # Need to convert above instructions to tf operations # === visualization part === # clip the boxes to make sure they are legal boxes debug_print('max value of final box', np.max(final_box)) final_box = BboxTools.clip_boxes(final_box, self.IMG_SHAPE) original_boxes = self.cocotool.get_original_bboxes_list(image_id=self.cocotool.image_ids[0]) self.cocotool.draw_bboxes(original_image=input1[0], bboxes=original_boxes, show=True, save_file=True, path=Param.PATH_DEBUG_IMG, save_name='1GroundTruthBoxes') target_anchor_boxes, target_classes = self.train_data_generator.gen_target_anchor_bboxes_classes_for_debug( image_id=self.cocotool.image_ids[0]) self.cocotool.draw_bboxes(original_image=input1[0], bboxes=target_anchor_boxes, show=True, save_file=True, path=Param.PATH_DEBUG_IMG, save_name='2TrueAnchorBoxes') self.cocotool.draw_bboxes(original_image=input1[0], bboxes=base_boxes.tolist(), show=True, save_file=True, path=Param.PATH_DEBUG_IMG, save_name='3PredAnchorBoxes') self.cocotool.draw_bboxes(original_image=input1[0], bboxes=final_box.tolist(), show=True, save_file=True, path=Param.PATH_DEBUG_IMG, save_name='4PredRegBoxes') self.cocotool.draw_bboxes(original_image=input1[0], bboxes=nms_boxes_list, show=True, save_file=True, path=Param.PATH_DEBUG_IMG, save_name='5PredNMSBoxes') def test_total_visualization(self): # === prediction part === input_images, target_anchor_bboxes, target_classes = self.train_data_generator.gen_train_data_roi_one( self.train_data_generator.dataset_coco.image_ids[0], self.train_data_generator.gen_candidate_anchors.anchor_candidates_list) input_images, target_anchor_bboxes, target_classes = np.asarray(input_images).astype(np.float), np.asarray( target_anchor_bboxes), np.asarray(target_classes) # TODO:check tf.image.crop_and_resize input_images2 = input_images[:1].astype(np.float) print(input_images2.shape) target_anchor_bboxes2 = target_anchor_bboxes[:1].astype(np.float) print(target_anchor_bboxes2.shape) class_header, box_reg_header = self.RoI.process_image([input_images2, target_anchor_bboxes2]) print(class_header.shape, box_reg_header.shape) print(class_header) def nms_loop_np(self, boxes): # boxes : (N, 4), box_1target : (4,) # box axis format: (x1,y1,x2,y2) box_1target = np.ones(shape=boxes.shape) zeros = np.zeros(shape=boxes.shape) box_1target = box_1target * boxes[0, :] box_b_area = (box_1target[:, 2] - box_1target[:, 0] + 1) * (box_1target[:, 3] - box_1target[:, 1] + 1) # --- determine the (x, y)-coordinates of the intersection rectangle --- x_a = np.max(np.array([boxes[:, 0], box_1target[:, 0]]), axis=0) y_a = np.max(np.array([boxes[:, 1], box_1target[:, 1]]), axis=0) x_b = np.min(np.array([boxes[:, 2], box_1target[:, 2]]), axis=0) y_b = np.min(np.array([boxes[:, 3], box_1target[:, 3]]), axis=0) # --- compute the area of intersection rectangle --- inter_area = np.max(
np.array([zeros[:, 0], x_b - x_a + 1])
numpy.array
''' ############################ SAPHIRES utils ########################### Written by <NAME>, 2019 ####################################################################### This file is part of the SAPHIRES python package. SAPHIRES is free software: you can redistribute it and/or modify it under the terms of the MIT license. SAPHIRES is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. You should have received a copy of the MIT license with SAPHIRES. If not, see <http://opensource.org/licenses/MIT>. Module Description: A collection of utility functions used in the SAPHIRES package. The only function in here you are likely to use is prepare. The rest are called by other functions in the bf, xc, or io modules that are tailored for typical users. Functions are listed in alphabetical order. ''' # ---- Standard Library import sys import copy as copy import os from datetime import datetime # ---- # ---- Third Party import numpy as np from scipy import interpolate from scipy.ndimage.filters import gaussian_filter import matplotlib matplotlib.use('Qt5Agg') import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages import pickle as pkl import astropy.io.fits as pyfits from astropy.coordinates import SkyCoord, EarthLocation import astropy.units as u from astropy.time import Time from barycorrpy import utc_tdb from barycorrpy import get_BC_vel from astropy import constants as const # ---- # ---- Project from saphires.extras import bspline_acr as bspl # ---- py_version = sys.version_info.major if py_version == 3: nplts = 'U' #the numpy letter for a string p_input = input if py_version == 2: nplts = 'S' #the numpy letter for a string p_input = raw_input def air2vac(w_air): ''' Air to vacuum conversion formula derived by N. Piskunov IAU standard: http://www.astro.uu.se/valdwiki/Air-to-vacuum%20conversion Parameters ---------- w_air : array-like Array of air wavelengths assumed to be in Angstroms Returns ------- w_vac : array-like Array of vacuum wavelengths converted from w_air ''' s = 10**4/w_air n = (1 + 0.00008336624212083 + 0.02408926869968 / (130.1065924522 - s**2) + 0.0001599740894897 / (38.92568793293 - s**2)) w_vac = w_air*n return w_vac def apply_shift(t_f_names,t_spectra,rv_shift,shift_style='basic'): ''' A function to apply a velocity shift to an input spectrum. The shift is made to the 'nflux' and 'nwave' arrays. The convention may be a bit wierd, think of it like this: If there is a feature at +40 km/s and you want that feature to be at zero velocity, put in 40. Whatever velocity you put in will be put to zero. The shifted velocity is stored in the 'rv_shift' header for each dictionary spectrum. Multiple shifts are stored i.e. shifting by 40, and then 40 again will result in a 'rv_shift' value of 80. Parameters ---------- t_f_names: array-like Array of keywords for a science spectrum SAPHIRES dictionary. Output of one of the saphires.io read-in functions. t_spectra : python dictionary SAPHIRES dictionary for the science spectrum. rv_shift : float The velocity (in km/s) you want centered at zero. shift_style : str, optional Parameter defines how to shift is applied. Options are 'basic' and 'inter'. The defaul is 'basic'. - The 'basic' option adjusts the wavelength asignments with the standard RV shift. Pros, you don't interpolate the flux values; Cons, you change the wavelength spacing from being strictly linear. The Pros outweight the cons in most scenarios. - The 'inter' option leaves the wavelength gridpoints the same, but shifts the flux with an interpolation. Pros, you don't change the wavelength spacing; Cons, you interpolate the flux, before you interpolate it again in the prepare step. Interpolating flux is not the best thing to do, so the less times you do it the better. The only case I can think of where this method would be better is if your "order" spanned a huge wavelength range. Returns ------- spectra_out : python dictionary A python dictionary with the SAPHIRES architecture. The output dictionary will be a copy of t_specrta, but with updates to the following keywords. ['nwave'] - The shifted wavelength array ['nflux'] - The shifted flux array ['rv_shift'] - The value the spectrum was shifted in km/s ''' c = const.c.to('km/s').value spectra_out = copy.deepcopy(t_spectra) for i in range(t_f_names.size): if shift_style == 'inter': w_unshifted = spectra_out[t_f_names[i]]['nwave'] w_shifted = w_unshifted/(1-(-rv_shift/(c))) f_shifted_f = interpolate.interp1d(w_shifted,spectra_out[t_f_names[i]]['nflux']) shift_trim = ((w_unshifted>=np.min(w_shifted))&(w_unshifted<=np.max(w_shifted))) w_unshifted = w_unshifted[shift_trim] spectra_out[t_f_names[i]]['nwave'] = w_unshifted f_out=f_shifted_f(w_unshifted) spectra_out[t_f_names[i]]['nflux'] = f_out if shift_style == 'basic': w_unshifted = spectra_out[t_f_names[i]]['nwave'] w_shifted = w_unshifted/(1-(-rv_shift/(c))) spectra_out[t_f_names[i]]['nwave'] = w_shifted w_range = spectra_out[t_f_names[i]]['w_region'] if w_range != '*': w_split = np.empty(0) w_rc1 = w_range.split('-') for j in range(len(w_rc1)): for k in range(len(w_rc1[j].split(','))): w_split = np.append(w_split,np.float(w_rc1[j].split(',')[k])) w_split_shift = w_split/(1-(-rv_shift/(c))) w_range_shift = '' for j in range(w_split_shift.size): if (j/2.0 % 1) == 0: #even w_range_shift = w_range_shift + np.str(np.round(w_split_shift[j],2))+'-' if (j/2.0 % 1) != 0: #odd w_range_shift = w_range_shift + np.str(np.round(w_split_shift[j],2))+',' if w_range_shift[-1] == ',': w_range_shift = w_range_shift[:-1] spectra_out[t_f_names[i]]['w_region'] = w_range_shift spectra_out[t_f_names[i]]['rv_shift'] = spectra_out[t_f_names[i]]['rv_shift'] + rv_shift return spectra_out def bf_map(template,m): ''' Creates a two dimensional array from a template by shifting one unit of the wavelength (velocity) array m/2 times to the right and m/2 to the left. This array, also known as the design matrix (des), is then input to bf_solve. Template is the resampled flux array in log(lambda) space. Parameters ---------- template : array-like The logarithmic wavelengthed spectral template. Must have an even numbered length. m : int The number of steps to shift the template. Must be odd Returns ------- t : array-like The design matrix ''' t=0 n=template.size if (n % 2) != 0: print('Input array must be even') return if (m % 2) != 1: print('Input m must be odd') return t=np.zeros([n-m+1,m]) for j in range(m): for i in range(m//2,n-m//2): t[i-m//2,j]=template[i-j+m//2] return t def bf_singleplot(t_f_names,t_spectra,for_plotting,f_trim=20): ''' A function to make a mega plot of all the spectra in a target dictionary. Parameters ---------- t_f_names : array-like Array of keywords for a science spectrum SAPHIRES dictionary. Output of one of the saphires.io read-in functions. t_spectra : python dictionary SAPHIRES dictionary for the science spectrum. Output of one of the saphires.io read-in functions. for_plotting : python dictionary A dictionary with all of the things you need to plot the fit profiles from saphires.bf.analysis. f_trim : int The amount of points to trim from the edges of the BF before the fit is made. The edges are usually noisey. Units are in wavelength spacings. The default is 20. Returns ------- None ''' pp=PdfPages(t_f_names[0].split('[')[0].split('.')[0]+'_allplots.pdf') for i in range(t_f_names.size): w1=t_spectra[t_f_names[i]]['vwave'] target=t_spectra[t_f_names[i]]['vflux'] template=t_spectra[t_f_names[i]]['vflux_temp'] vel=t_spectra[t_f_names[i]]['vel'] temp_name=t_spectra[t_f_names[i]]['temp_name'] bf_sols=t_spectra[t_f_names[i]]['bf'] bf_smooth = for_plotting[t_f_names[i]][0] func = for_plotting[t_f_names[i]][1] gs_fit = for_plotting[t_f_names[i]][2] m=vel.size fig,ax=plt.subplots(2,sharex=True) ax[0].set_title('Template',fontsize=8) ax[0].set_ylabel('Normalized Flux') ax[0].plot(w1,template) ax[1].set_title('Target',fontsize=8) ax[1].set_ylabel('Normalized Flux') ax[1].plot(w1,target) ax[1].set_xlabel(r'$\rm{\lambda}$ ($\rm{\AA}$)') plt.tight_layout(pad=0.4) pp.savefig() plt.close() fig,ax=plt.subplots(1) ax.plot(vel,bf_smooth,color='lightgrey',lw=4,ls='-') ax.set_ylabel('Broadening Function') ax.set_xlabel('Radial Velocity (km/s)') if gs_fit.size == 10: ax.plot(vel[f_trim:-f_trim],gaussian_off(vel[f_trim:-f_trim], gs_fit[0],gs_fit[1], gs_fit[2],gs_fit[9]), lw=2,ls='--',color='b', label='Amp1: '+np.str(np.round(gs_fit[0]*gs_fit[2]*np.sqrt(2.0*np.pi),3))) ax.plot(vel[f_trim:-f_trim],gaussian_off(vel[f_trim:-f_trim], gs_fit[3],gs_fit[4], gs_fit[5],gs_fit[9]), lw=2,ls='--',color='r', label='Amp2: '+np.str(np.round(gs_fit[3]*gs_fit[5]*np.sqrt(2.0*np.pi),3))) ax.plot(vel[f_trim:-f_trim],gaussian_off(vel[f_trim:-f_trim], gs_fit[6],gs_fit[7], gs_fit[8],gs_fit[9]), lw=2,ls='--',color='g', label='Amp3: '+np.str(np.round(gs_fit[6]*gs_fit[8]*np.sqrt(2.0*np.pi),3))) ax.legend() if gs_fit.size == 7: #if func == gauss_rot_off: # ax.plot(vel[f_trim:-f_trim],gaussian_off(vel[f_trim:-f_trim], # gs_fit[0],gs_fit[1], # gs_fit[2],gs_fit[6]), # lw=2,ls='--',color='b', # label='Amp1: '+np.str(np.round(gs_fit[0]*gs_fit[2]*np.sqrt(2.0*np.pi),3))) # # ax.plot(vel[f_trim:-f_trim],rot_pro(vel[f_trim:-f_trim], # gs_fit[3],gs_fit[4], # gs_fit[5],gs_fit[6]), # lw=2,ls='--',color='r', # label='Amp2: '+np.str(np.round(gs_fit[3],3))) if func == d_gaussian_off: ax.plot(vel[f_trim:-f_trim],gaussian_off(vel[f_trim:-f_trim], gs_fit[0],gs_fit[1], gs_fit[2],gs_fit[6]), lw=2,ls='--',color='b', label='Amp1: '+np.str(np.round(gs_fit[0]*gs_fit[2]*np.sqrt(2.0*np.pi),3))) ax.plot(vel[f_trim:-f_trim],gaussian_off(vel[f_trim:-f_trim], gs_fit[3],gs_fit[4], gs_fit[5],gs_fit[6]), lw=2,ls='--',color='r', label='Amp2: '+np.str(np.round(gs_fit[3]*gs_fit[5]*np.sqrt(2.0*np.pi),3))) ax.legend() ax.plot(vel[f_trim:-f_trim],func(vel[f_trim:-f_trim],*gs_fit), lw=1,ls='-',color='k') plt.tight_layout(pad=0.4) pp.savefig() plt.close() pp.close() return def bf_solve(des,u,ww,vt,target,m): ''' Takes in the design matrix, the output of saphires.utils.bf_map, and creates an array of broadening functions where each row is for a different order of the solution. The last index out the output (m-1) is the full solution. All of them here for completeness, but in practice, the full solution with gaussian smoothing is used to derive RVs and flux ratios. Parameters ---------- des : arraly-like Design Matrix computed by saphires.utils.bf_map u : array-like One of the outputs of the design matrix's singular value decomposition ww : array-like One of the outputs of the design matrix's singular value decomposition vt : array-like One of the outputs of the design matrix's singular value decomposition target : array-like The target spectrum the corresponds to the template spectrum that was used to make the design matrix. m : int Number of pixel shifts to compute Returns ------- b_sols : array-like Matrix of BF solutions for different orders. The last order if the one to use. sig : array-like Uncertainty array for each order. ''' #turning ww into a matrix ww_mat=np.zeros([m,m]) for i in range(m): ww_mat[i,i]=ww[i] #turning ww into its inverse (same as the transpose in this case) matrix. ww1=np.zeros([m,m]) for i in range(m): ww1[i,i]=1.0/ww[i] #just making sure all the math went okay. if np.allclose(des, np.dot(np.dot(u,ww_mat),vt)) == False: print('Something went wrong with the matrix math in bf_sols') return #trimming target spectrum to have the right length target_trim=target[m//2:target.size-m//2] #computing the broadening function b_sols=np.zeros([m,m]) for i in range(m): wk=np.zeros([m,m]) wb=ww[0:i] for j in range(wb.size): wk[j,j]=1.0/wb[j] b_sols[i,:] = np.dot(np.dot(np.transpose(vt), wk), np.dot(np.transpose(u),target_trim)) #computing the error of the fit between the two. sig=np.zeros(m) pred=np.dot(des,np.transpose(b_sols)) for i in range(m): sig[i]=np.sqrt(np.sum((pred[:,i]-target_trim)**2)/m) return b_sols,sig def bf_text_output(ofname,target,template,gs_fit,rchis,rv_weight,fit_int): ''' A function to output the results of saphires.bf.analysis to a text file. Parameters ---------- ofname : str The name of the output file. target : str The name of the target spectrum. template : str The name of the template spectrum. gs_fit : array-like An array of the profile fit parameters from saphire.bf.analysis. rchis : float The reduced chi square of the saphires.bf.analysis fit with the data. fit_int : array-like Array of profile integrals from the saphires.bf.analysis fit. Returns ------- None ''' if os.path.exists('./'+ofname) == False: f=open(ofname,'w') f.write('#Column Details\n') f.write('#System Time\n') f.write('#Fit Parameters - For each profile fit, the following:') f.write('# - Amp, RV (km/s), Sigma, Integral\n') f.write('#Reduced Chi Squared of Fit\n') f.write('#Target File Name\n') f.write('#Template File Name\n') else: f=open(ofname,'a') f.write(str(datetime.now())[0:-5]+'\t') if gs_fit.size==10: peak_ind=np.argsort([gs_fit[0],gs_fit[3],gs_fit[6]])[::-1]*3+1 f.write(np.str(np.round(gs_fit[peak_ind[0]-1],4))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[0]],4))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[0]+1],4))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[0]-1]* gs_fit[peak_ind[0]+1]*np.sqrt(2*np.pi),2))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[1]-1],4))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[1]],4))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[1]+1],4))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[1]-1]* gs_fit[peak_ind[1]+1]*np.sqrt(2*np.pi),2))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[2]-1],4))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[2]],4))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[2]+1],4))+'\t') f.write(np.str(np.round(gs_fit[peak_ind[2]-1]* gs_fit[peak_ind[2]+1]*np.sqrt(2*np.pi),2))+'\t') if gs_fit.size==7: if fit_int[0]>fit_int[1]: f.write(np.str(np.round(gs_fit[0],4))+'\t') f.write(np.str(np.round(gs_fit[1],4))+'\t') f.write(np.str(np.round(gs_fit[2],4))+'\t') f.write(np.str(np.round(fit_int[0],2))+'\t') f.write(np.str(np.round(gs_fit[3],4))+'\t') f.write(np.str(np.round(gs_fit[4],4))+'\t') f.write(np.str(np.round(gs_fit[5],4))+'\t') f.write(np.str(np.round(fit_int[1],2))+'\t') else: f.write(np.str(np.round(gs_fit[3],4))+'\t') f.write(np.str(np.round(gs_fit[4],4))+'\t') f.write(np.str(np.round(gs_fit[5],4))+'\t') f.write(np.str(np.round(fit_int[1],2))+'\t') f.write(np.str(np.round(gs_fit[0],4))+'\t') f.write(np.str(np.round(gs_fit[1],4))+'\t') f.write(np.str(np.round(gs_fit[2],4))+'\t') f.write(np.str(np.round(fit_int[0],2))+'\t') if gs_fit.size==4: f.write(np.str(np.round(gs_fit[0],4))+'\t') f.write(np.str(np.round(gs_fit[1],4))+'\t') f.write(np.str(np.round(gs_fit[2],4))+'\t') f.write(np.str(np.round(gs_fit[0]*gs_fit[2]*np.sqrt(2*np.pi),2))+'\t') f.write(np.str(np.round(rchis,3))+'\t') f.write(np.str(np.round(rv_weight,3))+'\t') f.write(target+'\t') f.write(template+'\n') f.close() return def brvc(dateobs,exptime,observat,ra,dec,rv=0.0,print_out=False,epoch=2000, pmra=0,pmdec=0,px=0,query=False): ''' observat options: - salt - (e.g. HRS) - eso22 - (e.g. FEROS) - vlt82 - (e.g. UVES) - mcd27 - (e.g. IGRINS) - lco_nres_lsc1 - (e.g. NRES at La Silla) - lco_nres_cpt1 - (e.g. NRES at SAAO) - tlv - (e.g. LCO NRES at Wise Observatory in Tel Aviv) - eso36 - (e.g. HARPS) - geminiS - (e.g. IGRINS South) - wiyn - (e.g. HYDRA) - dct - (e.g. IGRINS at DCT) - hires - (Keck Hi-Res) - smarts15 - (e.g. CHIRON) returns brv,bjd,bvcorr ''' c = const.c.to('km/s').value from astroquery.vizier import Vizier edr3 = Vizier(columns=["*","+_r","_RAJ2000","_DEJ2000","Epoch","Plx"],catalog=['I/350/gaiaedr3']) #from astroquery.gaia import Gaia if isinstance(observat,str): if isinstance(dateobs,str): n_sites = 1 observat = [observat] dateobs = [dateobs] exptime = [exptime] rv = [rv] else: n_sites = dateobs.size observat = [observat]*dateobs.size else: n_sites = len(observat) brv = np.zeros(n_sites) bvcorr = np.zeros(n_sites) bjd = np.zeros(n_sites) #longitudes should be in degrees EAST! #Most are not unless they have a comment below them. for i in range(n_sites): if observat[i] == 'keck': alt = 4145 lat = 19.82636 lon = -155.47501 #https://latitude.to/articles-by-country/us/united-states/7854/w-m-keck-observatory#:~:text=GPS%20coordinates%20of%20W.%20M.%20Keck,Latitude%3A%2019.8264%20Longitude%3A%20%2D155.4750 if observat[i] == 'gemini_south': alt = 2750 lat = -30.24074167 lon = -70.736683 #http://www.ctio.noao.edu/noao/content/coordinates-observatories-cerro-tololo-and-cerro-pachon if observat[i] == 'salt': alt = 1798 lat = -32.3794 lon = 20.810694 #http://www.sal.wisc.edu/~ebb/pfis/observer/intro.html if observat[i] == 'eso22': alt = 2335 lat = -29.25428972 lon = 289.26540472 if observat[i] == 'eso36': alt = 2400 lat = -29.2584 lon = 289.2655 if observat[i] == 'vlt82': alt = 2635 lat = -24.622997508 lon = 289.59750161 if observat[i] == 'mcdonald': alt = 2075 lat = 30.6716667 lon = -104.0216667 #https://idlastro.gsfc.nasa.gov/ftp/pro/astro/observatory.pro if observat[i] == 'wiyn': alt = 2120 lat = 31.95222 lon = -111.60000 if observat[i] == 'dct': alt = 2360 lat = 34.744444 lon = -111.42194 if observat[i] == 'smarts15': alt = 2252.2 lat = -30.169661 lon = -70.806789 #http://www.ctio.noao.edu/noao/content/coordinates-observatories-cerro-tololo-and-cerro-pachon if observat[i] == 'lsc': alt = 2201 lat = -30.1673305556 lon = -70.8046611111 #From a header (CTIO - LCO) if observat[i] == 'cpt': alt = 1760.0 lat = -32.34734167 lon = 20.81003889 #From a header (SAAO - LCO) if observat[i] == 'tlv': alt = 861.4 lat = 30.595833 lon = 34.763333 #From a header (WISE, Isreal - LCO) if observat[i] == 'elp': alt = 2030.000 lat = 30.6798330 lon = -104.0151730 #From a header (McDonald - LCO) if observat[i] == 'coj': alt = 1168.000 lat = -31.2729330 lon = 149.0706470 #From a header (Siding Springs Observatory - LCO) if isinstance(ra,str): ra,dec = saph.utils.sex2dd(ra,dec) if query == True: coord = SkyCoord(ra=ra*u.degree, dec=dec*u.degree, frame='icrs') result = edr3.query_region(coord,radius='0d0m3s') #Pgaia = Gaia.cone_search_async(coord, 3.0*u.arcsec) if len(result) == 0: print('No match found, using provided/default values.') else: dec = result['I/350/gaiaedr3']['DE_ICRS'][0] ra = result['I/350/gaiaedr3']['RA_ICRS'][0] epoch = result['I/350/gaiaedr3']['Epoch'][0] pmra = result['I/350/gaiaedr3']["pmRA"][0] pmdec = result['I/350/gaiaedr3']["pmDE"][0] px = result['I/350/gaiaedr3']["Plx"][0] if isinstance(dateobs[i],str): utc = Time(dateobs[i],format='isot',scale='utc') if isinstance(dateobs[i],float): utc = Time(dateobs[i],format='jd',scale='utc') utc_middle = utc + (exptime[i]/2.0)*u.second if observat in EarthLocation.get_site_names(): bjd_info = utc_tdb.JDUTC_to_BJDTDB(JDUTC = utc_middle, obsname=observat, dec=dec, ra=ra, epoch=epoch, pmra=pmra, pmdec=pmdec, px=px) bvcorr_info = get_BC_vel(JDUTC = utc_middle, ra=ra, dec=dec, epoch=epoch, pmra=pmra, pmdec=pmdec, px=px, obsname=observat) else: bjd_info = utc_tdb.JDUTC_to_BJDTDB(JDUTC = utc_middle, alt = alt, lat=lat, longi=lon, dec=dec, ra=ra, epoch=epoch, pmra=pmra, pmdec=pmdec, px=px) bvcorr_info = get_BC_vel(JDUTC = utc_middle, ra=ra, dec=dec, epoch=epoch, pmra=pmra, pmdec=pmdec, px=px, lat=lat, longi=lon, alt=alt) bjd[i] = bjd_info[0][0] bvcorr[i] = bvcorr_info[0][0]/1000.0 if type(rv) == float: brv[i] = rv + bvcorr[i] + (rv * bvcorr[i] / (c)) else: brv[i] = rv[i] + bvcorr[i] + (rv[i] * bvcorr[i] / (c)) if print_out == True: print('BJD: ',bjd) print('BRVC: ',bvcorr) print('BRV: ',brv) return brv,bjd,bvcorr def cont_norm(w,f,w_width=200.0,maxiter=15,lower=0.3,upper=2.0,nord=3): ''' Continuum normalizes a spectrum Uses the bspline_acr package which was adapted from IDL by <NAME>. Note: In the SAPHIRES architecture, this has to be done before the spectrum is inverted, which happens automatically in the saphires.io read in functions. That is why the option to continuum normalize is available in those functions, and should be done there. Parameters ---------- w : array-like Wavelength array of the spectrum to be normalized. Assumed to be angstroms, but doesn't really matter. f : array-like Flux array of the spectrum to be normalized. Assumes linear flux units. w_width : number Width is the spline fitting window. This is useful for long, stitched spectra where is doesn't makse sense to try and normalize the entire thing in one shot. The defaults is 200 A, which seems to work reasonably well. Assumes angstroms but will naturally be on the same scale as the wavelength array, w. maxiter : int Number of interations. The default is 15. lower : float Lower limit in units of sigmas for including data in the spline interpolation. The default is 0.3. upper : float Upper limit in units of sigma for including data in the spline interpolation. The default is 2.0. nord : int Order of the spline. The defatul is 3. Returns ------- f_norm : array-like Continuum normalized flux array ''' norm_space = w_width #/(w[1]-w[0]) #x = np.arange(f.size,dtype=float) spl = bspl.iterfit(w, f, maxiter = maxiter, lower = lower, upper = upper, bkspace = norm_space, nord = nord )[0] cont = spl.value(w)[0] f_norm = f/cont return f_norm def dd2sex(ra,dec,results=False): ''' Convert ra and dec in decimal degrees format to sexigesimal format. Parameters: ----------- ra : ndarray Array or single value of RA in decimal degrees. dec : ndarray Array or single value of Dec in decimal degrees. Results : bool If True, the decimal degree RA and Dec results are printed. Returns: -------- raho : ndarray Array of RA hours. ramo : ndarray Array of RA minutes. raso : ndarray Array of RA seconds. decdo : ndarray Array of Dec degree placeholders in sexigesimal format. decmo : ndarray Array of Dec minutes. decso : ndarray Array of Dec seconds. Output: ------- Prints results to terminal if results == True. Version History: ---------------- 2015-05-15 - Start ''' rah=(np.array([ra])/360.0*24.0) raho=np.array(rah,dtype=np.int) ramo=np.array(((rah-raho)*60.0),dtype=np.int) raso=((rah-raho)*60.0-ramo)*60.0 dec=np.array([dec]) dec_sign = np.sign(dec) decdo=np.array(dec,dtype=np.int) decmo=np.array(np.abs(dec-decdo)*60,dtype=np.int) decso=(np.abs(dec-decdo)*60-decmo)*60.0 if results == True: for i in range(rah.size): print(np.str(raho[i])+':'+np.str(ramo[i])+':'+ \ (str.format('{0:2.6f}',raso[i])).zfill(7)+', '+ \ np.str(decdo[i])+':'+np.str(decmo[i])+':'+ \ (str.format('{0:2.6f}',decso[i])).zfill(7)) return raho,ramo,raso,dec_sign,decdo,decmo,decso def d_gaussian_off(x,A1,x01,sig1,A2,x02,sig2,o): ''' A double gaussian function with a constant vetical offset. Parameters ---------- x : array-like Array of x values over which the Gaussian profile will be computed. A1 : float Amplitude of the first Gaussian profile. x01 : float Center of the first Gaussian profile. sig1 : float Standard deviation (sigma) of the first Gaussian profile. A2 : float Amplitude of the second Gaussian profile. x02 : float Center of the second Gaussian profile. sig2 : float Standard deviation (sigma) of the second Gaussian profile. o : float Vertical offset of the Gaussian mixture. Returns ------- profile : array-like The Gaussian mixture specified over the input x array. Array has the same length as x. ''' return (A1*np.e**(-(x-x01)**2/(2.0*sig1**2))+ A2*np.e**(-(x-x02)**2/(2.0*sig2**2))+o) def EWM(x,xerr,wstd=False): ''' A function to return the error weighted mean of an array and the error on the error weighted mean. Parameters ---------- x : array like An array of values you want the error weighted mean of. xerr : array like Array of associated one-sigma errors. wstd : bool Option to return the error weighted standard deviation. If True, three values are returned. The default is False. Returns ------- xmean : float The error weighted mean xmeanerr : float The error on the error weighted mean. This number will only make sense if the input xerr is a 1-sigma uncertainty. xmeanstd : conditional output, float Error weighted standard deviation, only output if wstd=True Outputs ------- None Version History --------------- 2016-12-06 - Start ''' weight = 1.0 / xerr**2 xmean=np.sum(x/xerr**2)/np.sum(weight) xmeanerr=1.0/np.sqrt(np.sum(weight)) xwstd = np.sqrt(np.sum(weight*(x - xmean)**2) / ((np.sum(weight)*(x.size-1)) / x.size)) if wstd == True: return xmean,xmeanerr,xwstd else: return xmean,xmeanerr def gaussian_off(x,A,x0,sig,o): ''' A simple gaussian function with a constant vetical offset. This Gaussian is not normalized in the typical sense. Parameters ---------- x : array-like Array of x values over which the Gaussian profile will be computed. A : float Amplitude of the Gaussian profile. x0 : float Center of the Gaussian profile. sig : float Standard deviation (sigma) of the Gaussian profile. o : float Vertical offset of the Gaussian profile. Returns ------- profile : array-like The Gaussian profile specified over the input x array. Array has the same length as x. ''' return A*np.e**(-(x-x0)**2/(2.0*sig**2))+o def lco2u(lco_fits,pkl_out,v2a=False): ''' A function to read in the fits output from the standard LCO/NRES pipeline and turn it into a pkl file that matching the SAPHIRES architecture. Parameters ---------- lco_fits : str The name of a single LCO fits file pkl_out : str The name of the output pickle file v2a: Option to convert the wavelength convention to air from the provided vacuum values. Returns ------- None ''' hdu = pyfits.open(lco_fits) flux = hdu[3].data for i in range(flux.shape[0]): flux[i] = flux[i]+np.abs(np.min(flux[i])) w_vac = hdu[6].data*10 if v2a == True: w_out = vac2air(w_vac) else: w_out = w_vac dict = {'wav':w_out, 'flux':flux} pkl.dump(dict,open(pkl_out,'wb')) print("LCO pickle written out to "+pkl_out) return def make_rot_pro_ip(R,e=0.75): ''' A function to make a specific rotationally broadened fitting function with a specific limb-darkening parameter that is convolved with the instrumental profile that corresponds to a given spectral resolution. The output profile is uses the linear limb darkening law from Gray 2005 Parameters ---------- R : float The resolution that corresponds to the spectrograph's instrumental profile. e : float Linear limb darkening parameter. Default is 0.75, appropriate for a low-mass star. Returns ------- rot_pro_ip : function A function that returns the line profile for a rotationally broadened star with the limb darkening parameter given by the make function and that have been convolved with the instrumental profile specified by the spectral resolution by the make function above. Parameters ---------- x : array-like X array values, should be provided in velocity in km/s, over which the smooth rotationally broadened profile will be computed. A : float Amplitude of the smoothed rotationally broadened profile. Equal to the profile's integral. rv : float RV center of the profile. rvw : float The vsini of the profile. o : float The vertical offset of the profile. Returns ------- prof_conv : array-like The smoothed rotationally broadened profile specified by the paramteres above, over the input x array. Array has the same length as x. ''' c = const.c.to('km/s').value FWHM = (c)/R sig = FWHM/(2.0*np.sqrt(2.0*np.log(2.0))) def rot_pro_ip(x,A,rv,rvw,o): ''' A thorough descrition of this function is provieded in the main function. Rotational line broadening function. To produce an actual line profile, you have to convolve this function with an acutal spectrum. In this form it can be fit directly to a the Broadening Fucntion. This is in velocity so if you're going to convolve this with a spectrum make sure to take the appropriate cautions. ''' c1 = (2*(1-e))/(np.pi*rvw*(1-e/3.0)) c2 = e/(2*rvw*(1-e/3.0)) prof=A*(c1*np.sqrt(1-((x-rv)/rvw)**2)+c2*(1-((x-rv)/rvw)**2))+o prof[np.isnan(prof)] = o v_spacing = x[1]-x[0] smooth_sigma = sig/v_spacing prof_conv=gaussian_filter(prof,sigma=smooth_sigma) return prof_conv return rot_pro_ip def make_rot_pro_qip(R,a=0.3,b=0.4): ''' A function to make a specific rotationally broadened fitting function with a specific limb-darkening parameter that is convolved with the instrumental profile that corresponds to a given spectral resolution. The output profile is uses the linear limb darkening law from Gray 2005 Parameters ---------- R : float The resolution that corresponds to the spectrograph's instrumental profile. e : float Linear limb darkening parameter. Default is 0.75, appropriate for a low-mass star. Returns ------- rot_pro_ip : function A function that returns the line profile for a rotationally broadened star with the limb darkening parameter given by the make function and that have been convolved with the instrumental profile specified by the spectral resolution by the make function above. Parameters ---------- x : array-like X array values, should be provided in velocity in km/s, over which the smooth rotationally broadened profile will be computed. A : float Amplitude of the smoothed rotationally broadened profile. Equal to the profile's integral. rv : float RV center of the profile. rvw : float The vsini of the profile. o : float The vertical offset of the profile. Returns ------- prof_conv : array-like The smoothed rotationally broadened profile specified by the paramteres above, over the input x array. Array has the same length as x. ''' c = const.c.to('km/s').value FWHM = (c)/R sig = FWHM/(2.0*np.sqrt(2.0*np.log(2.0))) def rot_pro_qip(x,A,rv,rvw,o): ''' A thorough descrition of this function is provieded in the main function. Rotational line broadening function. To produce an actual line profile, you have to convolve this function with an acutal spectrum. In this form it can be fit directly to a the Broadening Fucntion. This is in velocity so if you're going to convolve this with a spectrum make sure to take the appropriate cautions. ''' prof = A*((2.0*(1-a-b)*np.sqrt(1-((x-rv)/rvw)**2) + np.pi*((a/2.0) + 2.0*b)*(1-((x-rv)/rvw)**2) - (4.0/3.0)*b*(1-((x-rv)/rvw)**2)**(3.0/2.0)) / (np.pi*(1-(a/3.0)-(b/6.0)))) + o prof[np.isnan(prof)] = o v_spacing = x[1]-x[0] smooth_sigma = sig/v_spacing prof_conv=gaussian_filter(prof,sigma=smooth_sigma) return prof_conv return rot_pro_qip def order_stitch(t_f_names,spectra,n_comb,print_orders=True): ''' A function to stitch together certain parts a specified number of orders throughout a dictionary. e.g. an 8 order spectrum, with a specified number of orders to combine set to 2, will stich together 1-2, 3-4, 5-6, and 7-8, and result in a dictionary with 4 stitched orders. If the number of combined orders does not divide evenly, the remaining orders will be appended to the last stitched order. ''' n_orders = t_f_names[t_f_names!='Combined'].size n_orders_out = np.int(n_orders/np.float(n_comb)) spectra_out = {} t_f_names_out = np.zeros(n_orders_out,dtype=nplts+'1000') for i in range(n_orders_out): w_all = np.empty(0) flux_all = np.empty(0) for j in range(n_comb): w_all = np.append(w_all,spectra[t_f_names[i*n_comb+j]]['nwave']) flux_all = np.append(flux_all,spectra[t_f_names[i*n_comb+j]]['nflux']) if j == 0: w_range_all = spectra[t_f_names[i*n_comb+j]]['w_region']+',' if ((j > 0) & (j<n_comb-1)): w_range_all = w_range_all+spectra[t_f_names[i*n_comb+j]]['w_region']+',' if j == n_comb-1: w_range_all = w_range_all+spectra[t_f_names[i*n_comb+j]]['w_region'] if i == n_orders_out-1: leftover = n_orders - (i*n_comb+n_comb) for j in range(leftover): w_all = np.append(w_all,spectra[t_f_names[i*n_comb+n_comb+j]]['nwave']) flux_all = np.append(flux_all,spectra[t_f_names[i*n_comb+n_comb+j]]['nflux']) if j == 0: w_range_all = w_range_all+','+spectra[t_f_names[i*n_comb+n_comb+j]]['w_region']+',' if ((j > 0) & (j < leftover-1)): w_range_all = w_range_all+spectra[t_f_names[i*n_comb+n_comb+j]]['w_region']+',' if j == leftover-1: w_range_all = w_range_all+spectra[t_f_names[i*n_comb+n_comb+j]]['w_region'] if w_range_all[-1] == ',': w_range_all = w_range_all[:-1] flux_all = flux_all[np.argsort(w_all)] w_all = w_all[np.argsort(w_all)] w_min=np.int(np.min(w_all)) w_max=np.int(np.max(w_all)) t_dw = np.median(w_all - np.roll(w_all,1)) t_f_names_out[i] = ('R'+np.str(i)+'['+np.str(i)+']['+np.str(w_min)+'-'+np.str(w_max)+']') if print_orders == True: print(t_f_names_out[i],w_range_all) spectra_out[t_f_names_out[i]] = {'nflux': flux_all, 'nwave': w_all, 'ndw': np.median(np.abs(w_all - np.roll(w_all,1))), 'wav_cent': np.mean(w_all), 'w_region': w_range_all, 'rv_shift': spectra[t_f_names[0]]['rv_shift'], 'order_flag': 1} return t_f_names_out,spectra_out def prepare(t_f_names,t_spectra,temp_spec,oversample=1, quiet=False,trap_apod=0,cr_trim=-0.1,trim_style='clip', vel_spacing='uniform'): ''' A function to prepare a target spectral dictionary with a template spectral dictionary for use with SAPHIRES analysis tools. The preparation ammounts to resampling the wavelength array to logarithmic spacing, which corresponds to linear velocity spacing. Linear velocity spacing is required for use TODCOR or compute a broadening function oversample - A key parameter of this function is "oversample". It sets the logarithmic spacing of the wavelength resampling (and the corresponding velocity 'resolution' of the broadening function). Generally, a higher oversampling will produce better results, but it very quickly becomes expensive for two reasons. One, your arrays become longer, and two, you have to increase the m value (a proxy for the velocity regime probed) to cover the same velocity range. A low oversample value can be problematic if the intrinsitic width of your tempate and target lines are the same. In this case, the broadening function should be a delta function. The height/width of this function will depened on the location of velocity grid points in the BF in an undersampled case. This makes measurements of the RV and especially flux ratios problematic. If you're unsure what value to use, look at the BF with low smoothing (i.e. high R). If the curves are jagged and look undersampled, increase the oversample parameter. Parameters ---------- t_f_names: array-like Array of keywords for a science spectrum SAPHIRES dictionary. Output of one of the saphires.io read-in functions. t_spectra : python dictionary SAPHIRES dictionary for the science spectrum. Output of one of the saphires.io read-in functions. temp_spec : python dictionary SAPHIRES dictionary for the template spectrum. Output of one of the saphires.io read-in functions. oversample : float Factor by which the velocity resolution is oversampled. This parameter has an extended discussion above. The default value is 1. quiet : bool Specifies whether messaged are printed to the teminal. Specifically, if the science and template spectrum do not overlap, this function will print and error. The default value is False. trap_apod : float Option to apodize (i.e. taper) the resampled flux array to zero near the edges. A value of 0.1 will taper 10% of the array length on each end of the array. Some previous studies that use broaden fuctions in the literarure use this, claiming it reduced noise in the sidebands. I havent found this to be the case, but the functionallity exisits nonetheless. The detault value is 0, i.e. no apodization. cr_trim : float This parameter sets the value below which emission features are removed. Emission is this case is negative becuase the spectra are inverted. The value must be negative. Points below this value are linearly interpolated over. The defulat value is -0.1. If you don't want to clip anything, set this paramter to -np.inf. trim_style : str, options: 'clip', 'lin', 'spl' If a wavelength region file is input in the 'spectra_list' parameter, this parameter describes how gaps are dealt with. - If 'clip', unused regions will be left as gaps. - If 'lin', unused regions will be linearly interpolated over. - If 'spl', unused regions will be interpolated over with a cubic spline. You probably don't want to use this one. vel_spacing : str; 'orders' or 'uniform', or float Parameter that determines how the velocity width of the resampled array is set. If 'orders', the velocity width will be set by the smallest velocity separation between the native input science and template wavelength arrays on an order by order basis. If 'uniform', every order will have the same velocity spacing. This is useful if you want to combine BFs for instance. The end result will generally be slightly oversampled, but other than taking a bit longer, to process, it should not have any adverse effects. If this parameter is a float, the velocity spacing will be set to that value, assuming it is in km/s. You can get wierd results if you put in a value that doesn't make sense, so I recommend the orders or uniform setting. This option is available for more advanced use cases that may only relevant if you are using TODCOR. See documentation there for a relevant example. The oversample parameter is ignored when this parameter is set to a float. Returns ------- spectra : dictionary A python dictionary with the SAPHIRES architecture. The output dictionary will have 5 new keywords as a result of this function. ['vflux'] - resampled flux array (inverted) ['vwave'] - resampled wavelength array ['vflux_temp'] - resampled template flux array (inverted) ['vel'] - velocity array to be used with the BF or CCF ['temp_name'] - template name ['vel_spacing'] - the velocity spacing that corresponds to the resampled wavelength array It also updates the values for the following keyword under the right conditions: ['order_flag'] - order flag will be updated to 0 if the order has no overlap with the template. This tells other functions to ignore this order. ''' ######################################### #This part "prepares" the spectra c = const.c.to('km/s').value spectra = copy.deepcopy(t_spectra) max_w_orders = np.zeros(t_f_names.size) min_w_orders = np.zeros(t_f_names.size) min_dw_orders = np.zeros(t_f_names.size) for i in range(t_f_names.size): w_tar = spectra[t_f_names[i]]['nwave'] flux_tar = spectra[t_f_names[i]]['nflux'] w_range = spectra[t_f_names[i]]['w_region'] w_temp = temp_spec['nwave'] flux_temp = temp_spec['nflux'] temp_trim = temp_spec['w_region'] w_tar,flux_tar = spec_trim(w_tar,flux_tar,w_range,temp_trim,trim_style=trim_style) w_temp,flux_temp = spec_trim(w_temp,flux_temp,w_range,temp_trim,trim_style=trim_style) if w_tar.size == 0: min_w_orders[i] = np.nan max_w_orders[i] = np.nan min_dw_orders[i] = np.nan else: min_w_orders[i] = np.max([np.min(w_tar),np.min(w_temp)]) max_w_orders[i] = np.min([np.max(w_tar),np.max(w_temp)]) min_dw_orders[i]=np.min([temp_spec['ndw'],spectra[t_f_names[i]]['ndw']]) min_dw = np.nanmin(min_dw_orders) min_w = np.nanmin(min_w_orders) max_w = np.nanmax(max_w_orders) if vel_spacing == 'uniform': r = np.min(min_dw/max_w/oversample) #velocity spacing in km/s stepV=r*c if ((type(vel_spacing) == float) or (type(vel_spacing) == 'numpy.float64')): stepV = vel_spacing r = stepV / (c) min_dw = r * max_w for i in range(t_f_names.size): spectra[t_f_names[i]]['temp_name'] = temp_spec['temp_name'] w_range = spectra[t_f_names[i]]['w_region'] w_tar = spectra[t_f_names[i]]['nwave'] flux_tar = spectra[t_f_names[i]]['nflux'] temp_trim = temp_spec['w_region'] w_temp = temp_spec['nwave'] flux_temp = temp_spec['nflux'] #This gets rid of large emission lines and CRs by interpolating over them. if np.min(flux_tar) < cr_trim: f_tar = interpolate.interp1d(w_tar[flux_tar > cr_trim],flux_tar[flux_tar > cr_trim]) w_tar = w_tar[(w_tar >= np.min(w_tar[flux_tar > cr_trim]))& (w_tar <= np.max(w_tar[flux_tar > cr_trim]))] flux_tar = f_tar(w_tar) if np.min(flux_temp) < cr_trim: f_temp = interpolate.interp1d(w_temp[flux_temp > cr_trim],flux_temp[flux_temp > cr_trim]) w_temp = w_temp[(w_temp >= np.min(w_temp[flux_temp > cr_trim]))& (w_temp <= np.max(w_temp[flux_temp > cr_trim]))] flux_temp = f_temp(w_temp) w_tar,flux_tar = spec_trim(w_tar,flux_tar,w_range,temp_trim,trim_style=trim_style) if w_tar.size == 0: if quiet==False: print(t_f_names[i],w_range) print("No overlap between target and template.") print(' ') spectra[t_f_names[i]]['vwave'] = 0.0 spectra[t_f_names[i]]['order_flag'] = 0 continue f_tar = interpolate.interp1d(w_tar,flux_tar) f_temp = interpolate.interp1d(w_temp,flux_temp) min_w = np.max([np.min(w_tar),np.min(w_temp)]) max_w = np.min([np.max(w_tar),np.max(w_temp)]) if vel_spacing == 'orders': #Using the wavelength spacing of the most densely sampled spectrum min_dw=np.min([temp_spec['ndw'],spectra[t_f_names[i]]['ndw']]) #inverse of the spectral resolution r = min_dw/max_w/oversample #velocity spacing in km/s stepV = r * c #the largest array length between target and spectrum #conditional below makes sure it is even max_size = np.int(np.log(max_w/(min_w+1))/np.log(1+r)) if (max_size/2.0 % 1) != 0: max_size=max_size-1 #log wavelength spacing, linear velocity spacing w1t=(min_w+1)*(1+r)**np.arange(max_size) w1t_temp = copy.deepcopy(w1t) t_rflux = f_tar(w1t) temp_rflux = f_temp(w1t) w1t,t_rflux = spec_trim(w1t,t_rflux,w_range,temp_trim,trim_style=trim_style) w1t_temp,temp_rflux = spec_trim(w1t_temp,temp_rflux,w_range,temp_trim,trim_style=trim_style) if (w1t.size/2.0 % 1) != 0: w1t=w1t[0:-1] t_rflux = t_rflux[0:-1] temp_rflux = temp_rflux[0:-1] if trap_apod > 0: trap_apod_fun = np.ones(w1t.size) slope = 1.0/np.int(w1t.size*trap_apod) y_int = slope*w1t.size trap_apod_fun[:np.int(w1t.size*trap_apod)] = slope*np.arange(np.int(w1t.size*trap_apod),dtype=float) trap_apod_fun[-np.int(w1t.size*trap_apod)-1:] = -slope*(np.arange(np.int(w1t.size*trap_apod+1),dtype=float)+(w1t.size*(1-trap_apod))) + y_int temp_rflux = temp_rflux * trap_apod_fun t_rflux = t_rflux * trap_apod_fun spectra[t_f_names[i]]['vflux'] = t_rflux spectra[t_f_names[i]]['vwave'] = w1t spectra[t_f_names[i]]['vflux_temp'] = temp_rflux spectra[t_f_names[i]]['vel_spacing'] = stepV spectra[t_f_names[i]]['w_region_temp'] = temp_spec['w_region'] return spectra def RChiS(x,y,yerr,func,params): ''' A function to compute the Reduced Chi Square between some data and a model. Parameters ---------- x : array-like Array of x values for data. y : array-like Array of y values for data. yerr : array-like Array of 1-sigma uncertainties for y vaules. func : function Function being compared to the data. params : array-like List of parameter values for the function above. Returns ------- rchis : float The reduced chi square between the data and model. ''' rchis=np.sum((y-func(x,*params))**2 / yerr**2 )/(x.size-params.size) return rchis def region_select_pkl(target,template=None,tar_stretch=True, temp_stretch=True,reverse=False,dk_wav='wav',dk_flux='flux', tell_file=None,jump_to=0,reg_file=None): ''' An interactive function to plot target and template spectra that allowing you to select useful regions with which to compute the broadening functions, ccfs, ect. This funciton is meant for specrta in a pickled dictionary. For this function to work properly the template and target spectrum have to have the same format, i.e. the same number of orders and roughly the same wavelength coverage. If a template spectrum is not specified, it will plot the target twice, where it can be nice to have one strethed and on not. Functionality: The function brings up an interactive figure with the target on top and the template on bottom. hitting the 'm' key will mark wavelengths dotted red lines. The 'b' key will mark the start of a region with a solid black line and then the end of the region with a dashed black line. Regions should always go from small wavelengths to larger wavelengths, and regions should always close (.i.e., end with a dashed line). Hitting the return key over the terminal will advance to the next order and it will print the region(s) you've created to the terminal screen that are in the format that the saphires.io.read functions use. The regions from the previous order will show up as dotted black lines allowing you to create regions that do not overlap. Parameters ---------- target : str File name for a pickled dictionary that has wavelength and flux arrays for the target spectrum with the header keywords defined in the dk_wav and dk_flux arguments. template : str, None File name for a pickled dictionary that has wavelength and flux arrays for the target spectrum with the header keywords defined in the dk_wav and dk_flux arguments. If None, the target spectrum will be plotted in both panels. tar_stretch : bool Option to window y-axis of the target spectrum plot on the median with 50% above and below. This is useful for echelle data with noisey edges. The default is True. temp_stretch ; bool Option to window y-axis of the template spectrum plot on the median with 50% above and below. This is useful for echelle data with noisey edges.The default is True. reverse : bool This function works best when the orders are ordered with ascending wavelength coverage. If this is not the case, this option will flip them. The default is False, i.e., no flip in the order. dk_wav : str Dictionary keyword for the wavelength array. Default is 'wav' dk_flux : str Dictionary keyword for the flux array. Default is 'flux' tell_file : optional keyword, None or str Name of file containing the location of telluric lines to be plotted as vertical lines. This is useful when selecting regions free to telluric contamination. File must be a tab/space separated ascii text file with the following format: w_low w_high depth(compated the conintuum) w_central This is modeled after the MAKEE telluric template here: https://www2.keck.hawaii.edu/inst/common/makeewww/Atmosphere/atmabs.txt but just a heads up, these are in vaccum. If None, this option is ignored. The default is None. jump_to : int Starting order. Useful when you want to pick up somewhere. Default is 0. reg_file : optional keyword, None or str The name of a region file you want to overplay on the target and template spectra. The start of a regions will be a solid veritcal grey line. The end will be a dahsed vertical grey line. The region file has the same formatting requirements as the io.read functions. The default is None. Returns ------- None ''' l_range = [] def press_key(event): if event.key == 'b': l_range.append(np.round(event.xdata,2)) if (len(l_range)/2.0 % 1) != 0: ax[0].axvline(event.xdata,ls='-',color='k') ax[1].axvline(event.xdata,ls='-',color='k') else: ax[0].axvline(event.xdata,ls='--',color='k') ax[1].axvline(event.xdata,ls='--',color='k') plt.draw() return l_range if event.key == 'm': ax[0].axvline(event.xdata,ls=':',color='r') ax[1].axvline(event.xdata,ls=':',color='r') plt.draw() return #------ Reading in telluric file -------------- if tell_file != None: wl,wh,r,w_tell = np.loadtxt(tell_file,unpack=True) #------ Reading in region file -------------- if reg_file != None: name,reg_order,w_string = np.loadtxt(reg_file,unpack=True,dtype=nplts+'100,i,'+nplts+'1000') #----- Reading in and Formatiing --------------- if template == None: template = copy.deepcopy(target) if py_version == 2: tar = pkl.load(open(target,'rb')) temp = pkl.load(open(template,'rb')) if py_version == 3: tar = pkl.load(open(target,'rb'),encoding='latin') temp = pkl.load(open(template,'rb'),encoding='latin') keys = list(tar.keys()) if dk_wav not in keys: print("The wavelength array dictionary keyword specified, '"+dk_wav+"'") print("was not found.") return 0,0 if dk_flux not in keys: print("The flux array dictionary keyword specified, '"+dk_flux+"'") print("was not found.") return 0,0 if (tar[dk_wav].ndim == 1): order = 1 if (tar[dk_wav].ndim > 1): order=tar[dk_wav].shape[0] if reverse == False: i = 0 + jump_to if reverse == True: i = order - jump_to - 1 #------------------------------------------------- plt.ion() i = 0 + jump_to while i < order: if order > 1: if reverse == True: i_ind = order-1-i if reverse == False: i_ind = i flux = tar[dk_flux][i_ind] w = tar[dk_wav][i_ind] t_flux = temp[dk_flux][i_ind] t_w = temp[dk_wav][i_ind] else: i_ind = i flux = tar[dk_flux] w = tar[dk_wav] t_flux = temp[dk_flux] t_w = temp[dk_wav] #target w = w[~np.isnan(flux)] flux = flux[~np.isnan(flux)] w = w[np.isfinite(flux)] flux = flux[np.isfinite(flux)] #template t_w = t_w[~np.isnan(t_flux)] t_flux = t_flux[~np.isnan(t_flux)] t_w = t_w[np.isfinite(t_flux)] t_flux = t_flux[np.isfinite(t_flux)] #if ((w.size > 0) & (t_w.size > 0)): fig,ax=plt.subplots(2,sharex=True,figsize=(14.25,7.5)) ax[0].set_title('Target - '+np.str(i_ind)) ax[0].plot(w,flux) if len(l_range) > 0: for j in range(len(l_range)): ax[0].axvline(l_range[j],ls=':',color='red') ax[0].set_ylabel('Flux') ax[0].set_xlim(np.min(w),np.max(w)) if tell_file != None: for j in range(w_tell.size): if ((w_tell[j] > np.min(w)) & (w_tell[j] < np.max(w))) == True: r_alpha = 1.0-r[j] ax[0].axvline(w_tell[j],ls='--',color='blue',alpha=r_alpha) ax[0].axvline(wl[j],ls=':',color='blue',alpha=r_alpha) ax[0].axvline(wh[j],ls=':',color='blue',alpha=r_alpha) ax[1].axvline(w_tell[j],ls='--',color='blue',alpha=r_alpha) ax[1].axvline(wl[j],ls=':',color='blue',alpha=r_alpha) ax[1].axvline(wh[j],ls=':',color='blue',alpha=r_alpha) if reg_file != None: if i_ind in reg_order: reg_ind = np.where(reg_order == i_ind)[0][0] n_regions=len(str(w_string[reg_ind]).split('-'))-1 for j in range(n_regions): w_reg_start = np.float(w_string[reg_ind].split(',')[j].split('-')[0]) w_reg_end = np.float(w_string[reg_ind].split(',')[j].split('-')[1]) ax[0].axvline(w_reg_start,ls='-',color='grey') ax[0].axvline(w_reg_end,ls='--',color='grey') ax[1].axvline(w_reg_start,ls='-',color='grey') ax[1].axvline(w_reg_end,ls='--',color='grey') if tar_stretch == True: ax[0].axis([np.min(w),np.max(w), np.median(flux)-np.median(flux)*0.5, np.median(flux)+np.median(flux)*0.5]) ax[0].grid(b=True,which='both',axis='both') ax[1].set_title('Template - '+np.str(i_ind)) ax[1].plot(t_w,t_flux) if len(l_range) > 0: for j in range(len(l_range)): ax[1].axvline(l_range[j],ls=':',color='red') ax[1].set_ylabel('Flux') ax[1].set_xlabel('Wavelength') if ((t_flux.size > 0)&(temp_stretch==True)): ax[1].axis([np.min(t_w),np.max(t_w), np.median(t_flux)-np.median(t_flux)*0.5, np.median(t_flux)+np.median(t_flux)*0.5]) ax[1].grid(b=True,which='both',axis='both') plt.tight_layout() l_range = [] cid = fig.canvas.mpl_connect('key_press_event',press_key) wait = p_input('') if wait != 'r': i = i+1 if len(l_range) > 0: out_range='' for j in range(len(l_range)): if j < len(l_range)-1: if (j/2.0 % 1) != 0: out_range=out_range+str(l_range[j])+',' if (j/2.0 % 1) == 0: out_range=out_range+str(l_range[j])+'-' if j == len(l_range)-1: out_range=out_range+str(l_range[j]) print(target,i_ind,out_range) if (len(l_range) == 0) & (reg_file != None): if i_ind in reg_order: i_reg = np.where(reg_order == i_ind)[0][0] print(target,i_ind,w_string[i_reg]) fig.canvas.mpl_disconnect(cid) plt.cla() plt.close() return def region_select_vars(w,f,tar_stretch=True,reverse=False,tell_file=None, jump_to=0): ''' An interactive function to plot spectra that allowing you to select useful regions with which to compute the broadening functions, ccfs, ect. Functionality: The function brings up an interactive figure with spectra. Hitting the 'm' key will mark wavelengths with dotted red lines. The 'b' key will mark the start of a region with a solid black line and then the end of the region with a dashed black line. Regions should always go from small wavelengths to larger wavelengths, and regions should always close (.i.e., end with a dashed line). Hitting the return key over the terminal will advance to the next order and it will print the region(s) you've created to the terminal screen that are in the format that the saphires.io.read_vars function can use. The regions from the previous order will show up as dotted black lines allowing you to create regions that do not overlap. Parameters ---------- w : array-like Wavelength array assumed to be in Angstroms. tar_stretch : bool Option to window y-axis of the spectrum plot on the median with 50% above and below. This is useful for echelle data with noisey edges. The default is True. reverse : bool This function works best when the orders are ordered with ascending wavelength coverage. If this is not the case, this option will flip them. The default is False, i.e., no flip in the order. tell_file : optional keyword, None or str Name of file containing the location of telluric lines to be plotted as vertical lines. This is useful when selecting regions free to telluric contamination. File must be a tab/space separated ascii text file with the following format: w_low w_high depth(compated the conintuum) w_central This is modeled after the MAKEE telluric template here: https://www2.keck.hawaii.edu/inst/common/makeewww/Atmosphere/atmabs.txt but just a heads up, these are in vaccum. If None, this option is ignored. The default is None. jump_to : int Starting order. Useful when you want to pick up somewhere. Default is 0. Returns ------- None ''' l_range = [] def press_key(event): if event.key == 'b': l_range.append(np.round(event.xdata,2)) if (len(l_range)/2.0 % 1) != 0: ax[0].axvline(event.xdata,ls='-',color='k') ax[1].axvline(event.xdata,ls='-',color='k') else: ax[0].axvline(event.xdata,ls='--',color='k') ax[1].axvline(event.xdata,ls='--',color='k') plt.draw() return l_range if event.key == 'm': ax[0].axvline(event.xdata,ls=':',color='r') ax[1].axvline(event.xdata,ls=':',color='r') plt.draw() return #------ Reading in telluric file -------------- if tell_file != None: wl,wh,r,w_tell = np.loadtxt(tell_file,unpack=True) #----- Reading in and Formatiing --------------- if (w.ndim == 1): order = 1 if (w.ndim > 1): order=w.shape[0] #------------------------------------------------- plt.ion() i = 0 + jump_to while i < order: if order > 1: if reverse == True: i_ind = order-1-i if reverse == False: i_ind = i flux_plot = f[i_ind] w_plot = w[i_ind] else: i_ind = i flux_plot = f w_plot = w #target w_plot = w_plot[~np.isnan(flux_plot)] flux_plot = flux_plot[~np.isnan(flux_plot)] w_plot = w_plot[np.isfinite(flux_plot)] flux_plot = flux_plot[np.isfinite(flux_plot)] fig,ax=plt.subplots(2,sharex=True,figsize=(14.25,7.5)) ax[0].set_title('Target - '+np.str(i_ind)) ax[0].plot(w_plot,flux_plot) if len(l_range) > 0: for j in range(len(l_range)): ax[0].axvline(l_range[j],ls=':',color='red') ax[0].set_ylabel('Flux') ax[0].set_xlim(np.min(w),np.max(w)) if tell_file != None: for j in range(w_tell.size): if ((w_tell[j] > np.min(w)) & (w_tell[j] < np.max(w))) == True: r_alpha = 1.0-r[j] ax[0].axvline(w_tell[j],ls='--',color='blue',alpha=r_alpha) ax[0].axvline(wl[j],ls=':',color='blue',alpha=r_alpha) ax[0].axvline(wh[j],ls=':',color='blue',alpha=r_alpha) ax[1].axvline(w_tell[j],ls='--',color='blue',alpha=r_alpha) ax[1].axvline(wl[j],ls=':',color='blue',alpha=r_alpha) ax[1].axvline(wh[j],ls=':',color='blue',alpha=r_alpha) if tar_stretch == True: ax[0].axis([np.min(w_plot),np.max(w_plot), np.median(flux_plot)-np.median(flux_plot)*0.5, np.median(flux_plot)+np.median(flux_plot)*0.5]) ax[0].grid(b=True,which='both',axis='both') ax[1].plot(w_plot,flux_plot) if len(l_range) > 0: for j in range(len(l_range)): ax[1].axvline(l_range[j],ls=':',color='red') ax[1].set_ylabel('Flux') ax[1].set_xlabel('Wavelength') ax[1].grid(b=True,which='both',axis='both') plt.tight_layout() l_range = [] cid = fig.canvas.mpl_connect('key_press_event',press_key) wait = p_input('') if wait != 'r': i = i+1 if len(l_range) > 0: out_range='' for j in range(len(l_range)): if j < len(l_range)-1: if (j/2.0 % 1) != 0: out_range=out_range+str(l_range[j])+',' if (j/2.0 % 1) == 0: out_range=out_range+str(l_range[j])+'-' if j == len(l_range)-1: out_range=out_range+str(l_range[j]) print(i_ind,out_range) fig.canvas.mpl_disconnect(cid) plt.cla() plt.close() plt.ioff() return def region_select_ms(target,template=None,tar_stretch=True, temp_stretch=True,reverse=False,t_order=0,temp_order=0, header_wave=False,w_mult=1,igrins_default=False, tell_file=None,jump_to=0,reg_file=None): ''' An interactive function to plot target and template spectra that allowing you to select useful regions with which to compute the broadening functions, ccfs, ect. This funciton is meant for multi-order specrta in a fits file. For this function to work properly the template and target spectrum have to have the same format, i.e. the same number of orders and roughly the same wavelength coverage. If a template spectrum is not specified, it will plot the target twice, where it can be nice to have one strethed and on not. Functionality: The function brings up an interactive figure with the target on top and the template on bottom. hitting the 'm' key will mark wavelengths dotted red lines. The 'b' key will mark the start of a region with a solid black line and then the end of the region with a dashed black line. Regions should always go from small wavelengths to larger wavelengths, and regions should always close (.i.e., end with a dashed line). Hitting the return key over the terminal will advance to the next order and it will print the region(s) you've created to the terminal screen that are in the format that the saphires.io.read functions use (you may have to delete commas and parenthesis depending on whether you are running this command in python 2 or 3). The regions from the previous order will show up as dotted black lines allowing you to create regions that do not overlap. Parameters ---------- target : str File name for a pickled dictionary that has wavelength and flux arrays for the target spectrum with the header keywords defined in the dk_wav and dk_flux arguments. template : str, None File name for a pickled dictionary that has wavelength and flux arrays for the target spectrum with the header keywords defined in the dk_wav and dk_flux arguments. If None, the target spectrum will be plotted in both panels. tar_stretch : bool Option to window y-axis of the target spectrum plot on the median with 50% above and below. This is useful for echelle data with noisey edges. The default is True. temp_stretch ; bool Option to window y-axis of the template spectrum plot on the median with 50% above and below. This is useful for echelle data with noisey edges.The default is True. reverse : bool This function works best when the orders are ordered with ascending wavelength coverage. If this is not the case, this option will flip them. The default is False, i.e., no flip in the order. t_order : int The order of the target spectrum. Some multi-order spectra come in multi-extension fits files (e.g. IGRINS). This parameter defines that extension. The default is 0. temp_order : int The order of the template spectrum. Some multi-order spectra come in multi-extension fits files (e.g. IGRINS). This parameter defines that extension. The default is 0. header_wave : bool or 'Single' Whether to assign the wavelength array from the header keywords or from a separate fits extension. If True, it uses the header keywords, assumiing they are linearly spaced. If False, it looks in the second fits extension, i.e. hdu[1].data If header_wave is set to 'Single', it treats each fits extension like single order fits file that could be read in with saph.io.read_fits. This feature is useful for SALT/HRS specrtra reduced with the MIDAS pipeline. w_mult : float Value to multiply the wavelength array. This is used to convert the input wavelength array to Angstroms if it is not already. The default is 1, assuming the wavelength array is alreay in Angstroms. igrins_default : bool The option to override all of the input arguments to parameters that are tailored to IGRINS data. Keyword arguments will be set to: t_order = 0 temp_order = 3 temp_stretch = False header_wave = True w_mult = 10**4 reverse = True tell_file : optional keyword, None or str Name of file containing the location of telluric lines to be plotted as vertical lines. This is useful when selecting regions free to telluric contamination. File must be a tab/space separated ascii text file with the following format: w_low w_high depth(compated the conintuum) w_central This is modeled after the MAKEE telluric template here: https://www2.keck.hawaii.edu/inst/common/makeewww/Atmosphere/atmabs.txt but just a heads up, these are in vaccum. If None, this option is ignored. The default is None. jump_to : int Starting order. Useful when you want to pick up somewhere. Default is 0. reg_file : optional keyword, None or str The name of a region file you want to overplay on the target and template spectra. The start of a regions will be a solid veritcal grey line. The end will be a dahsed vertical grey line. The region file has the same formatting requirements as the io.read functions. The default is None. Returns ------- None ''' l_range = [] def press_key(event): if event.key == 'b': l_range.append(np.round(event.xdata,2)) if (len(l_range)/2.0 % 1) != 0: ax[0].axvline(event.xdata,ls='-',color='k') ax[1].axvline(event.xdata,ls='-',color='k') else: ax[0].axvline(event.xdata,ls='--',color='k') ax[1].axvline(event.xdata,ls='--',color='k') plt.draw() return l_range if event.key == 'm': ax[0].axvline(event.xdata,ls=':',color='r') ax[1].axvline(event.xdata,ls=':',color='r') plt.draw() return if igrins_default == True: t_order = 0 temp_order = 3 temp_stretch = False header_wave = False w_mult = 10**4 reverse = True #------ Reading in telluric file -------------- if tell_file != None: wl,wh,r,w_tell = np.loadtxt(tell_file,unpack=True) #------ Reading in region file -------------- if reg_file != None: name,reg_order,w_string = np.loadtxt(reg_file,unpack=True,dtype=nplts+'100,i,'+nplts+'1000') if (name.size == 1): name=np.array([name]) reg_order=np.array([reg_order]) w_string=np.array([w_string]) #----- Reading in and Formatiing --------------- if template == None: template = copy.deepcopy(target) hdulist = pyfits.open(target) t_hdulist = pyfits.open(template) if header_wave != 'Single': order = hdulist[t_order].data.shape[0] else: order = len(hdulist) plt.ion() if reverse == False: i = 0 + jump_to if reverse == True: i = order - jump_to - 1 while i < order: if reverse == True: i_ind = order-1-i if reverse == False: i_ind = i #---- Read in the Target ----- if header_wave == 'Single': flux=hdulist[i_ind].data w0=np.float(hdulist[i_ind].header['CRVAL1']) dw=np.float(hdulist[i_ind].header['CDELT1']) if 'LTV1' in hdulist[i_ind].header: shift=np.float(hdulist[i_ind].header['LTV1']) w0=w0-shift*dw w0=w0 * w_mult dw=dw * w_mult w=np.arange(flux.size)*dw+w0 if header_wave == False: flux = hdulist[t_order].data[i_ind] w = hdulist[1].data[i_ind]*w_mult dw=(np.max(w) - np.min(w))/np.float(w.size) if header_wave == True: flux = hdulist[order].data[i_ind] #Pulls out all headers that have the WAT2 keywords header_keys=np.array(hdulist[t_order].header.keys(),dtype=str) header_test=np.array([header_keys[d][0:4]=='WAT2' \ for d in range(header_keys.size)]) w_sol_inds=np.where(header_test==True)[0] #The loop below puts all the header extensions into one string w_sol_str='' for j in range(w_sol_inds.size): if len(hdulist[t_order].header[w_sol_inds[j]]) == 68: w_sol_str=w_sol_str+hdulist[t_order].header[w_sol_inds[j]] if len(hdulist[t_order].header[w_sol_inds[j]]) == 67: w_sol_str=w_sol_str+hdulist[t_order].header[w_sol_inds[j]]+' ' if len(hdulist[t_order].header[w_sol_inds[j]]) == 66: w_sol_str=w_sol_str+hdulist[t_order].header[w_sol_inds[j]]+' ' if len(hdulist[t_order].header[w_sol_inds[j]]) < 66: w_sol_str=w_sol_str+hdulist[t_order].header[w_sol_inds[j]] # normalized the formatting w_sol_str=w_sol_str.replace(' ',' ').replace(' ',' ').replace(' ',' ') # removed wavelength solution preamble w_sol_str=w_sol_str[16:] #Check that the wavelength solution is linear. w_parameters = len(w_sol_str.split(' = ')[1].split(' ')) if w_parameters > 11: print('Your header wavelength solution is not linear') print('Non-linear wavelength solutions are not currently supported') print('Aborting...') return w_type = np.float(w_sol_str.split('spec')[1:][order[i]].split(' ')[3]) if w_type != 0: print('Your header wavelength solution is not linear') print('Non-linear wavelength solutions are not currently supported') print('Aborting...') return w0 = np.float(w_sol_str.split('spec')[1:][order[i]].split(' ')[5]) dw = np.float(w_sol_str.split('spec')[1:][order[i]].split(' ')[6]) z = np.float(w_sol_str.split('spec')[1:][order[i]].split(' ')[7]) w = ((np.arange(flux.size)*dw+w0)/(1+z))*w_mult #---- Read in the Template ----- if header_wave == 'Single': t_flux=t_hdulist[i_ind].data t_w0=np.float(t_hdulist[i_ind].header['CRVAL1']) t_dw=np.float(t_hdulist[i_ind].header['CDELT1']) if 'LTV1' in t_hdulist[i_ind].header: t_shift=np.float(t_hdulist[i_ind].header['LTV1']) t_w0=t_w0-t_shift*t_dw t_w0=t_w0 * w_mult t_dw=t_dw * w_mult t_w=np.arange(t_flux.size)*t_dw+t_w0 if header_wave == False: t_flux = t_hdulist[temp_order].data[i_ind] t_w = t_hdulist[1].data[i_ind]*w_mult t_dw=(np.max(t_w) - np.min(t_w))/np.float(t_w.size) if header_wave == True: t_flux = t_hdulist[temp_order].data[i_ind] #Pulls out all headers that have the WAT2 keywords header_keys=np.array(t_hdulist[temp_order].header.keys(),dtype=str) header_test=np.array([header_keys[d][0:4]=='WAT2' \ for d in range(header_keys.size)]) w_sol_inds=np.where(header_test==True)[0] #The loop below puts all the header extensions into one string w_sol_str='' for j in range(w_sol_inds.size): if len(t_hdulist[temp_order].header[w_sol_inds[j]]) == 68: w_sol_str=w_sol_str+t_hdulist[temp_order].header[w_sol_inds[j]] if len(t_hdulist[temp_order].header[w_sol_inds[j]]) == 67: w_sol_str=w_sol_str+t_hdulist[temp_order].header[w_sol_inds[j]]+' ' if len(t_hdulist[temp_order].header[w_sol_inds[j]]) == 66: w_sol_str=w_sol_str+t_hdulist[temp_order].header[w_sol_inds[j]]+' ' if len(t_hdulist[temp_order].header[w_sol_inds[j]]) < 66: w_sol_str=w_sol_str+t_hdulist[temp_order].header[w_sol_inds[j]] # normalized the formatting w_sol_str=w_sol_str.replace(' ',' ').replace(' ',' ').replace(' ',' ') # removed wavelength solution preamble w_sol_str=w_sol_str[16:] #Check that the wavelength solution is linear. w_parameters = len(w_sol_str.split(' = ')[1].split(' ')) if w_parameters > 11: print('Your header wavelength solution is not linear') print('Non-linear wavelength solutions are not currently supported') print('Aborting...') return w_type = np.float(w_sol_str.split('spec')[1:][order[i]].split(' ')[3]) if w_type != 0: print('Your header wavelength solution is not linear') print('Non-linear wavelength solutions are not currently supported') print('Aborting...') return t_w0 = np.float(w_sol_str.split('spec')[1:][order[i]].split(' ')[5]) t_dw = np.float(w_sol_str.split('spec')[1:][order[i]].split(' ')[6]) z = np.float(w_sol_str.split('spec')[1:][order[i]].split(' ')[7]) t_w = ((np.arange(t_flux.size)*t_dw+t_w0)/(1+z))*w_mult #target w = w[~np.isnan(flux)] flux = flux[~np.isnan(flux)] w = w[np.isfinite(flux)] flux = flux[np.isfinite(flux)] #template t_w = t_w[~np.isnan(t_flux)] t_flux = t_flux[~np.isnan(t_flux)] t_w = t_w[np.isfinite(t_flux)] t_flux = t_flux[np.isfinite(t_flux)] #--------Interactive Plotting -------- fig,ax=plt.subplots(2,sharex=True,figsize=(14.25,7.5)) if ((w.size > 0) &(t_w.size > 0)): ax[0].set_title('Target - '+np.str(i_ind)) ax[0].plot(w,flux) if len(l_range) > 0: for j in range(len(l_range)): ax[0].axvline(l_range[j],ls=':',color='red') ax[0].set_ylabel('Flux') ax[0].set_xlim(np.min(w),np.max(w)) if tell_file != None: for j in range(w_tell.size): if ((w_tell[j] >
np.min(w)
numpy.min
import argparse from collections import Counter import numpy as np import os from tqdm import tqdm, trange from collections import defaultdict import pickle import torch import uuid from prob_cbr.data.data_utils import load_data_from_triples, get_unique_entities_from_triples, \ read_graph_from_triples, get_entities_group_by_relation_from_triples, get_inv_relation, create_adj_list_from_triples from prob_cbr.data.stream_utils import KBStream from prob_cbr.data.get_paths import get_paths from prob_cbr.clustering.grinch_with_deletes import GrinchWithDeletes from typing import * import logging import json import sys import wandb import copy logger = logging.getLogger('main') logger.setLevel(logging.INFO) ch = logging.StreamHandler() ch.setLevel(logging.INFO) formatter = logging.Formatter("[%(asctime)s \t %(message)s]", "%Y-%m-%d %H:%M:%S") ch.setFormatter(formatter) logger.addHandler(ch) class ProbCBR(object): def __init__(self, args, train_map, eval_map, entity_vocab, rev_entity_vocab, rel_vocab, rev_rel_vocab, eval_vocab, eval_rev_vocab, all_paths, rel_ent_map): self.args = args self.eval_map = eval_map self.train_map = train_map self.all_zero_ctr = [] self.all_num_ret_nn = [] self.entity_vocab, self.rev_entity_vocab, self.rel_vocab, self.rev_rel_vocab = entity_vocab, rev_entity_vocab, rel_vocab, rev_rel_vocab self.eval_vocab, self.eval_rev_vocab = eval_vocab, eval_rev_vocab self.all_paths = all_paths self.rel_ent_map = rel_ent_map self.num_non_executable_programs = [] self.query_c = None self.nearest_neighbor_1_hop = None def set_nearest_neighbor_1_hop(self, nearest_neighbor_1_hop): self.nearest_neighbor_1_hop = nearest_neighbor_1_hop @staticmethod def calc_sim(adj_mat: Type[torch.Tensor], query_entities: Type[torch.LongTensor]) -> Type[torch.LongTensor]: """ :param adj_mat: N X R :param query_entities: b is a batch of indices of query entities :return: """ query_entities_vec = torch.index_select(adj_mat, dim=0, index=query_entities) sim = torch.matmul(query_entities_vec, torch.t(adj_mat)) return sim def get_nearest_neighbor_inner_product(self, e1: str, r: str, k: Optional[int] = 5) -> Union[List[str], None]: try: nearest_entities = [self.rev_entity_vocab[e] for e in self.nearest_neighbor_1_hop[self.eval_vocab[e1]].tolist()] # remove e1 from the set of k-nearest neighbors if it is there. nearest_entities = [nn for nn in nearest_entities if nn != e1] # making sure, that the similar entities also have the query relation ctr = 0 temp = [] for nn in nearest_entities: if ctr == k: break if len(self.train_map[nn, r]) > 0: temp.append(nn) ctr += 1 nearest_entities = temp except KeyError: return None return nearest_entities def get_nearest_neighbor_naive(self, e1: str, r: str, k: Optional[int] = 5) -> List[str]: """ Return entities which have the query relation :param e1: :param r: :param k: :return: """ entities_with_r = self.rel_ent_map[r] # choose randomly from this set # pick (k+1), if e1 is there then remove it otherwise return first k nearest_entities = np.random.choice(entities_with_r, k + 1) if e1 in nearest_entities: nearest_entities = [i for i in nearest_entities if i != e1] else: nearest_entities = nearest_entities[:k] return nearest_entities def get_programs(self, e: str, ans: str, all_paths_around_e: List[List[str]]): """ Given an entity and answer, get all paths which end at that ans node in the subgraph surrounding e """ all_programs = [] for path in all_paths_around_e: for l, (r, e_dash) in enumerate(path): if e_dash == ans: # get the path till this point all_programs.append([x for (x, _) in path[:l + 1]]) # we only need to keep the relations return all_programs def get_programs_from_nearest_neighbors(self, e1: str, r: str, nn_func: Callable, num_nn: Optional[int] = 5): all_programs = [] nearest_entities = nn_func(e1, r, k=num_nn) if nearest_entities is None: self.all_num_ret_nn.append(0) return None self.all_num_ret_nn.append(len(nearest_entities)) zero_ctr = 0 for e in nearest_entities: if len(self.train_map[(e, r)]) > 0: paths_e = self.all_paths[e] # get the collected 3 hop paths around e nn_answers = self.train_map[(e, r)] for nn_ans in nn_answers: all_programs += self.get_programs(e, nn_ans, paths_e) elif len(self.train_map[(e, r)]) == 0: zero_ctr += 1 self.all_zero_ctr.append(zero_ctr) return all_programs def rank_programs(self, list_programs: List[str], r: str) -> List[str]: """ Rank programs. """ # sort it by the path score unique_programs = set() for p in list_programs: unique_programs.add(tuple(p)) # now get the score of each path path_and_scores = [] for p in unique_programs: try: path_and_scores.append((p, self.args.path_prior_map_per_relation[self.query_c][r][p] * self.args.precision_map[self.query_c][r][p])) except KeyError: # TODO: Fix key error if len(p) == 1 and p[0] == r: continue # ignore query relation else: # use the fall back score try: c = 0 score = self.args.path_prior_map_per_relation_fallback[c][r][p] * \ self.args.precision_map_fallback[c][r][p] path_and_scores.append((p, score)) except KeyError: # still a path or rel is missing. path_and_scores.append((p, 0)) # sort wrt counts sorted_programs = [k for k, v in sorted(path_and_scores, key=lambda item: -item[1])] return sorted_programs def execute_one_program(self, e: str, path: List[str], depth: int, max_branch: int): """ starts from an entity and executes the path by doing depth first search. If there are multiple edges with the same label, we consider max_branch number. """ if depth == len(path): # reached end, return node return [e] next_rel = path[depth] next_entities = self.train_map[(e, path[depth])] if len(next_entities) == 0: # edge not present return [] if len(next_entities) > max_branch: # select max_branch random entities next_entities = np.random.choice(next_entities, max_branch, replace=False).tolist() answers = [] for e_next in next_entities: answers += self.execute_one_program(e_next, path, depth + 1, max_branch) return answers def execute_programs(self, e: str, r: str, path_list: List[List[str]], max_branch: Optional[int] = 1000) -> List[ str]: def _fall_back(r, p): """ When a cluster does not have a query relation (because it was not seen during counting) or if a path is not found, then fall back to no cluster statistics :param r: :param p: :return: """ score = 0 c = 0 # one cluster for all entity try: score = self.args.path_prior_map_per_relation_fallback[c][r][p] * \ self.args.precision_map_fallback[c][r][p] except KeyError: # either the path or relation is missing from the fall back map as well score = 0 return score all_answers = [] not_executed_paths = [] execution_fail_counter = 0 executed_path_counter = 0 for path in path_list: if executed_path_counter == self.args.max_num_programs: break ans = self.execute_one_program(e, path, depth=0, max_branch=max_branch) temp = [] for a in ans: path = tuple(path) if self.args.use_path_counts: try: if path in self.args.path_prior_map_per_relation[self.query_c][r] and path in \ self.args.precision_map[self.query_c][r]: temp.append((a, self.args.path_prior_map_per_relation[self.query_c][r][path] * self.args.precision_map[self.query_c][r][path], path)) else: # logger.info("This path was not there in the cluster for the relation.") score = _fall_back(r, path) temp.append((a, score, path)) except KeyError: # logger.info("Looks like the relation was not found in the cluster, have to fall back") # fallback to the global scores score = _fall_back(r, path) temp.append((a, score, path)) else: temp.append((a, 1, path)) ans = temp if ans == []: not_executed_paths.append(path) execution_fail_counter += 1 else: executed_path_counter += 1 all_answers += ans # if len(all_answers) == 0: # all_answers = set(ans) # else: # all_answers = all_answers.intersection(set(ans)) self.num_non_executable_programs.append(execution_fail_counter) return all_answers, not_executed_paths def rank_answers(self, list_answers: List[str]) -> List[str]: """ Different ways to re-rank answers """ count_map = {} uniq_entities = set() for e, e_score, path in list_answers: if e not in count_map: count_map[e] = {} if path not in count_map: count_map[e][path] = e_score # just count once for a path type. uniq_entities.add(e) score_map = defaultdict(int) for e, path_scores_map in count_map.items(): sum_path_score = 0 for p, p_score in path_scores_map.items(): sum_path_score += p_score score_map[e] = sum_path_score sorted_entities_by_val = sorted(score_map.items(), key=lambda kv: -kv[1]) return sorted_entities_by_val @staticmethod def get_rank_in_list(e, predicted_answers): rank = 0 for i, e_to_check in enumerate(predicted_answers): if e == e_to_check: return i + 1 return -1 def get_hits(self, list_answers: List[str], gold_answers: List[str], query: Tuple[str, str]) -> Tuple[ float, float, float, float]: hits_1 = 0.0 hits_3 = 0.0 hits_5 = 0.0 hits_10 = 0.0 rr = 0.0 (e1, r) = query all_gold_answers = self.args.all_kg_map[(e1, r)] for gold_answer in gold_answers: # remove all other gold answers from prediction filtered_answers = [] for pred in list_answers: if pred in all_gold_answers and pred != gold_answer: continue else: filtered_answers.append(pred) rank = ProbCBR.get_rank_in_list(gold_answer, filtered_answers) if rank > 0: if rank <= 10: hits_10 += 1 if rank <= 5: hits_5 += 1 if rank <= 3: hits_3 += 1 if rank <= 1: hits_1 += 1 rr += 1.0 / rank return hits_10, hits_5, hits_3, hits_1, rr @staticmethod def get_accuracy(gold_answers: List[str], list_answers: List[str]) -> List[float]: all_acc = [] for gold_ans in gold_answers: if gold_ans in list_answers: all_acc.append(1.0) else: all_acc.append(0.0) return all_acc def do_symbolic_case_based_reasoning(self): num_programs = [] num_answers = [] all_acc = [] non_zero_ctr = 0 hits_10, hits_5, hits_3, hits_1, mrr = 0.0, 0.0, 0.0, 0.0, 0.0 per_relation_scores = {} # map of performance per relation per_relation_query_count = {} total_examples = 0 learnt_programs = defaultdict(lambda: defaultdict(int)) # for each query relation, a map of programs to count for _, ((e1, r), e2_list) in enumerate(tqdm((self.eval_map.items()))): # if e2_list is in train list then remove them # Normally, this shouldnt happen at all, but this happens for Nell-995. orig_train_e2_list = self.train_map[(e1, r)] temp_train_e2_list = [] for e2 in orig_train_e2_list: if e2 in e2_list: continue temp_train_e2_list.append(e2) self.train_map[(e1, r)] = temp_train_e2_list # also remove (e2, r^-1, e1) r_inv = get_inv_relation(r, self.args.dataset_name) temp_map = {} # map from (e2, r_inv) -> outgoing nodes for e2 in e2_list: temp_map[(e2, r_inv)] = self.train_map[e2, r_inv] temp_list = [] for e1_dash in self.train_map[e2, r_inv]: if e1_dash == e1: continue else: temp_list.append(e1_dash) self.train_map[e2, r_inv] = temp_list total_examples += len(e2_list) if e1 not in self.entity_vocab: all_acc += [0.0] * len(e2_list) # put it back self.train_map[(e1, r)] = orig_train_e2_list for e2 in e2_list: self.train_map[(e2, r_inv)] = temp_map[(e2, r_inv)] continue self.query_c = self.args.cluster_assignments[self.entity_vocab[e1]] all_programs = self.get_programs_from_nearest_neighbors(e1, r, self.get_nearest_neighbor_inner_product, num_nn=self.args.k_adj) if all_programs is None or len(all_programs) == 0: all_acc += [0.0] * len(e2_list) # put it back self.train_map[(e1, r)] = orig_train_e2_list for e2 in e2_list: self.train_map[(e2, r_inv)] = temp_map[(e2, r_inv)] continue for p in all_programs: if p[0] == r: continue if r not in learnt_programs: learnt_programs[r] = {} p = tuple(p) if p not in learnt_programs[r]: learnt_programs[r][p] = 0 learnt_programs[r][p] += 1 # filter the program if it is equal to the query relation temp = [] for p in all_programs: if len(p) == 1 and p[0] == r: continue temp.append(p) all_programs = temp if len(all_programs) > 0: non_zero_ctr += len(e2_list) all_uniq_programs = self.rank_programs(all_programs, r) num_programs.append(len(all_uniq_programs)) # Now execute the program answers, not_executed_programs = self.execute_programs(e1, r, all_uniq_programs) # if len(not_executed_programs) > 0: # import pdb # pdb.set_trace() answers = self.rank_answers(answers) if len(answers) > 0: acc = self.get_accuracy(e2_list, [k[0] for k in answers]) _10, _5, _3, _1, rr = self.get_hits([k[0] for k in answers], e2_list, query=(e1, r)) hits_10 += _10 hits_5 += _5 hits_3 += _3 hits_1 += _1 mrr += rr if self.args.output_per_relation_scores: if r not in per_relation_scores: per_relation_scores[r] = {"hits_1": 0, "hits_3": 0, "hits_5": 0, "hits_10": 0, "mrr": 0} per_relation_query_count[r] = 0 per_relation_scores[r]["hits_1"] += _1 per_relation_scores[r]["hits_3"] += _3 per_relation_scores[r]["hits_5"] += _5 per_relation_scores[r]["hits_10"] += _10 per_relation_scores[r]["mrr"] += rr per_relation_query_count[r] += len(e2_list) else: acc = [0.0] * len(e2_list) all_acc += acc num_answers.append(len(answers)) # put it back self.train_map[(e1, r)] = orig_train_e2_list for e2 in e2_list: self.train_map[(e2, r_inv)] = temp_map[(e2, r_inv)] if self.args.output_per_relation_scores: for r, r_scores in per_relation_scores.items(): r_scores["hits_1"] /= per_relation_query_count[r] r_scores["hits_3"] /= per_relation_query_count[r] r_scores["hits_5"] /= per_relation_query_count[r] r_scores["hits_10"] /= per_relation_query_count[r] r_scores["mrr"] /= per_relation_query_count[r] out_file_name = os.path.join(self.args.output_dir, "per_relation_scores.json") fout = open(out_file_name, "w") logger.info("Writing per-relation scores to {}".format(out_file_name)) fout.write(json.dumps(per_relation_scores, sort_keys=True, indent=4)) fout.close() logger.info( "Out of {} queries, atleast one program was returned for {} queries".format(total_examples, non_zero_ctr)) logger.info("Avg number of programs {:3.2f}".format(np.mean(num_programs))) logger.info("Avg number of answers after executing the programs: {}".format(np.mean(num_answers))) logger.info("Accuracy (Loose): {}".format(np.mean(all_acc))) logger.info("Hits@1 {}".format(hits_1 / total_examples)) logger.info("Hits@3 {}".format(hits_3 / total_examples)) logger.info("Hits@5 {}".format(hits_5 / total_examples)) logger.info("Hits@10 {}".format(hits_10 / total_examples)) logger.info("MRR {}".format(mrr / total_examples)) logger.info("Avg number of nn, that do not have the query relation: {}".format( np.mean(self.all_zero_ctr))) logger.info("Avg num of returned nearest neighbors: {:2.4f}".format(np.mean(self.all_num_ret_nn))) logger.info("Avg number of programs that do not execute per query: {:2.4f}".format( np.mean(self.num_non_executable_programs))) if self.args.print_paths: for k, v in learnt_programs.items(): logger.info("query: {}".format(k)) logger.info("=====" * 2) for rel, _ in learnt_programs[k].items(): logger.info((rel, learnt_programs[k][rel])) logger.info("=====" * 2) if self.args.use_wandb: # Log all metrics wandb.log({'hits_1': hits_1 / total_examples, 'hits_3': hits_3 / total_examples, 'hits_5': hits_5 / total_examples, 'hits_10': hits_10 / total_examples, 'mrr': mrr / total_examples, 'total_examples': total_examples, 'non_zero_ctr': non_zero_ctr, 'all_zero_ctr': self.all_zero_ctr, 'avg_num_nn': np.mean(self.all_num_ret_nn), 'avg_num_prog': np.mean(num_programs), 'avg_num_ans': np.mean(num_answers), 'avg_num_failed_prog': np.mean(self.num_non_executable_programs), 'acc_loose': np.mean(all_acc)}) def calc_precision_map(self): """ Calculates precision of each path wrt a query relation, i.e. ratio of how many times, a path was successful when executed to how many times the path was executed. Note: In the current implementation, we compute precisions for the paths stored in the path_prior_map :return: """ logger.info("Calculating precision map") success_map, total_map = {}, {} # map from query r to a dict of path and ratio of success success_map_fallback, total_map_fallback = {0: {}}, {0: {}} # not sure why I am getting RuntimeError: dictionary changed size during iteration. train_map_list = [((e1, r), e2_list) for ((e1, r), e2_list) in self.train_map.items()] for ((e1, r), e2_list) in tqdm(train_map_list): c = self.args.cluster_assignments[self.entity_vocab[e1]] if c not in success_map: success_map[c] = {} if c not in total_map: total_map[c] = {} if r not in success_map[c]: success_map[c][r] = {} if r not in total_map[c]: total_map[c][r] = {} if r not in success_map_fallback[0]: success_map_fallback[0][r] = {} if r not in total_map_fallback[0]: total_map_fallback[0][r] = {} paths_for_this_relation = self.args.path_prior_map_per_relation[c][r] for p_ctr, (path, _) in enumerate(paths_for_this_relation.items()): ans = self.execute_one_program(e1, path, depth=0, max_branch=100) if len(ans) == 0: continue # execute the path get answer if path not in success_map[c][r]: success_map[c][r][path] = 0 if path not in total_map[c][r]: total_map[c][r][path] = 0 if path not in success_map_fallback[0][r]: success_map_fallback[0][r][path] = 0 if path not in total_map_fallback[0][r]: total_map_fallback[0][r][path] = 0 for a in ans: if a in e2_list: success_map[c][r][path] += 1 success_map_fallback[0][r][path] += 1 total_map[c][r][path] += 1 total_map_fallback[0][r][path] += 1 precision_map = {} for c, _ in success_map.items(): for r, _ in success_map[c].items(): if c not in precision_map: precision_map[c] = {} if r not in precision_map[c]: precision_map[c][r] = {} for path, s_c in success_map[c][r].items(): precision_map[c][r][path] = s_c / total_map[c][r][path] precision_map_fallback = {0: {}} for r, _ in success_map_fallback[0].items(): if r not in precision_map_fallback[0]: precision_map_fallback[0][r] = {} for path, s_c in success_map_fallback[0][r].items(): precision_map_fallback[0][r][path] = s_c / total_map_fallback[0][r][path] return precision_map, precision_map_fallback def calc_per_entity_precision_components(self, per_entity_path_prior_count, entity_set=None): """ Calculates precision of each path wrt a query relation, i.e. ratio of how many times, a path was successful when executed to how many times the path was executed. Note: In the current implementation, we compute precisions for the paths stored in the path_prior_map :return: """ logger.info("Calculating precision map at entity level") success_map, total_map = {}, {} # map from query r to a dict of path and ratio of success if entity_set is None: entity_set = set(self.entity_vocab.keys()) # # not sure why I am getting RuntimeError: dictionary changed size during iteration. train_map_list = [((e1, r), e2_list) for ((e1, r), e2_list) in self.train_map.items()] for ((e1, r), e2_list) in tqdm(train_map_list): if len(e2_list) == 0: del self.train_map[(e1, r)] continue if e1 not in entity_set: continue if e1 not in success_map: success_map[e1] = {} if e1 not in total_map: total_map[e1] = {} if r not in success_map[e1]: success_map[e1][r] = {} if r not in total_map[e1]: total_map[e1][r] = {} paths_for_this_relation = per_entity_path_prior_count[e1][r] for p_ctr, (path, _) in enumerate(paths_for_this_relation.items()): ans = self.execute_one_program(e1, path, depth=0, max_branch=100) if len(ans) == 0: continue # execute the path get answer if path not in success_map[e1][r]: success_map[e1][r][path] = 0 if path not in total_map[e1][r]: total_map[e1][r][path] = 0 for a in ans: if a in e2_list: success_map[e1][r][path] += 1 total_map[e1][r][path] += 1 return success_map, total_map def get_precision_map_entity2cluster(self, per_entity_success_map, per_entity_total_map, cluster_assignments, path_prior_map_per_relation): """ Calculates precision of each path wrt a query relation, i.e. ratio of how many times, a path was successful when executed to how many times the path was executed. Note: In the current implementation, we compute precisions for the paths stored in the path_prior_map :return: """ logger.info("Calculating precision map for cluster from entity level map") success_map, total_map = {}, {} # map from query r to a dict of path and ratio of success train_map_list = [((e1, r), e2_list) for ((e1, r), e2_list) in self.train_map.items()] _skip_ctr = 0 for ((e1, r), e2_list) in tqdm(train_map_list): if len(e2_list) == 0: del self.train_map[(e1, r)] continue c = cluster_assignments[self.entity_vocab[e1]] if c not in path_prior_map_per_relation or r not in path_prior_map_per_relation[c]: _skip_ctr += 1 continue if c not in success_map: success_map[c] = {} if c not in total_map: total_map[c] = {} if r not in success_map[c]: success_map[c][r] = {} if r not in total_map[c]: total_map[c][r] = {} paths_for_this_relation = path_prior_map_per_relation[c][r] for p_ctr, (path, _) in enumerate(paths_for_this_relation.items()): if e1 in per_entity_success_map and r in per_entity_success_map[e1] and \ path in per_entity_success_map[e1][r]: if path not in success_map[c][r]: success_map[c][r][path] = 0 if path not in total_map[c][r]: total_map[c][r][path] = 0 success_map[c][r][path] += per_entity_success_map[e1][r][path] total_map[c][r][path] += per_entity_total_map[e1][r][path] else: ans = self.execute_one_program(e1, path, depth=0, max_branch=100) if len(ans) == 0: continue # execute the path get answer if path not in success_map[c][r]: success_map[c][r][path] = 0 if path not in total_map[c][r]: total_map[c][r][path] = 0 if e1 not in per_entity_success_map: per_entity_success_map[e1] = {} if r not in per_entity_success_map[e1]: per_entity_success_map[e1][r] = {} if path not in per_entity_success_map[e1][r]: per_entity_success_map[e1][r][path] = 0 if e1 not in per_entity_total_map: per_entity_total_map[e1] = {} if r not in per_entity_total_map[e1]: per_entity_total_map[e1][r] = {} if path not in per_entity_total_map[e1][r]: per_entity_total_map[e1][r][path] = 0 for a in ans: if a in e2_list: per_entity_success_map[e1][r][path] += 1 success_map[c][r][path] += 1 per_entity_total_map[e1][r][path] += 1 total_map[c][r][path] += 1 logger.info(f'[get_precision_map_entity2cluster] {_skip_ctr} skips') precision_map = {} for c, _ in success_map.items(): for r, _ in success_map[c].items(): if c not in precision_map: precision_map[c] = {} if r not in precision_map[c]: precision_map[c][r] = {} for path, s_c in success_map[c][r].items(): precision_map[c][r][path] = s_c / total_map[c][r][path] return precision_map, success_map, total_map def update_precision_map_entity2cluster(self, per_entity_success_map, per_entity_total_map, per_entity_success_map_updates, per_entity_total_map_updates, per_cluster_success_map, per_cluster_total_map, per_cluster_success_map_fallback, per_cluster_total_map_fallback, cluster_adds, cluster_dels, path_prior_map_per_relation, path_prior_map_per_relation_fallback): logger.info("Updating prior map for cluster from entity level map") # e2old_cluster = dict([(e, c) for c, elist in cluster_dels.items() for e in elist]) e2new_cluster = dict([(e, c) for c, elist in cluster_adds.items() for e in elist]) # First delete from old cluster for c_old, elist in cluster_dels.items(): for e1 in elist: c_new = e2new_cluster.get(e1, -1) assert c_new != -1 if e1 not in per_entity_success_map: assert e1 not in per_entity_total_map else: for r, path_counts in per_entity_success_map[e1].items(): for path, p_c in path_counts.items(): if r in per_cluster_success_map[c_old] and path in per_cluster_success_map[c_old][r]: per_cluster_success_map[c_old][r][path] -= p_c per_cluster_total_map[c_old][r][path] -= per_entity_total_map[e1][r][path] assert per_cluster_success_map[c_old][r][path] >= 0 assert per_cluster_total_map[c_old][r][path] >= 0 per_cluster_success_map_fallback[0][r][path] -= p_c per_cluster_total_map_fallback[0][r][path] -= per_entity_total_map[e1][r][path] assert per_cluster_success_map_fallback[0][r][path] >= 0 assert per_cluster_total_map_fallback[0][r][path] >= 0 train_map_list = [((e1, r), e2_list) for ((e1, r), e2_list) in self.train_map.items()] per_entity_success_map.update(per_entity_success_map_updates) per_entity_total_map.update(per_entity_total_map_updates) exec_ctr_k, reuse_ctr_k = 0, 0 exec_ctr_f, reuse_ctr_f = 0, 0 for ((e1, r), e2_list) in tqdm(train_map_list): if len(e2_list) == 0: del self.train_map[(e1, r)] continue c_new = e2new_cluster.get(e1, -1) if c_new == -1: continue # Add to new cluster if c_new not in per_cluster_success_map: per_cluster_success_map[c_new] = {} if c_new not in per_cluster_total_map: per_cluster_total_map[c_new] = {} if r not in per_cluster_success_map[c_new]: per_cluster_success_map[c_new][r] = {} if r not in per_cluster_total_map[c_new]: per_cluster_total_map[c_new][r] = {} if r not in per_cluster_success_map_fallback[0]: per_cluster_success_map_fallback[0][r] = {} if r not in per_cluster_total_map_fallback[0]: per_cluster_total_map_fallback[0][r] = {} paths_for_this_relation = path_prior_map_per_relation[c_new][r] for p_ctr, (path, _) in enumerate(paths_for_this_relation.items()): if e1 in per_entity_success_map and r in per_entity_success_map[e1] and \ path in per_entity_success_map[e1][r]: if path not in per_cluster_success_map[c_new][r]: per_cluster_success_map[c_new][r][path] = 0 if path not in per_cluster_total_map[c_new][r]: per_cluster_total_map[c_new][r][path] = 0 per_cluster_success_map[c_new][r][path] += per_entity_success_map[e1][r][path] per_cluster_total_map[c_new][r][path] += per_entity_total_map[e1][r][path] reuse_ctr_k += 1 else: ans = self.execute_one_program(e1, path, depth=0, max_branch=100) exec_ctr_k += 1 if len(ans) == 0: continue # execute the path get answer if path not in per_cluster_success_map[c_new][r]: per_cluster_success_map[c_new][r][path] = 0 if path not in per_cluster_total_map[c_new][r]: per_cluster_total_map[c_new][r][path] = 0 if e1 not in per_entity_success_map: per_entity_success_map[e1] = {} if r not in per_entity_success_map[e1]: per_entity_success_map[e1][r] = {} if path not in per_entity_success_map[e1][r]: per_entity_success_map[e1][r][path] = 0 if e1 not in per_entity_total_map: per_entity_total_map[e1] = {} if r not in per_entity_total_map[e1]: per_entity_total_map[e1][r] = {} if path not in per_entity_total_map[e1][r]: per_entity_total_map[e1][r][path] = 0 for a in ans: if a in e2_list: per_entity_success_map[e1][r][path] += 1 per_cluster_success_map[c_new][r][path] += 1 per_entity_total_map[e1][r][path] += 1 per_cluster_total_map[c_new][r][path] += 1 paths_for_this_relation = path_prior_map_per_relation_fallback[0][r] for p_ctr, (path, _) in enumerate(paths_for_this_relation.items()): if e1 in per_entity_success_map and r in per_entity_success_map[e1] and \ path in per_entity_success_map[e1][r]: if path not in per_cluster_success_map_fallback[0][r]: per_cluster_success_map_fallback[0][r][path] = 0 if path not in per_cluster_total_map_fallback[0][r]: per_cluster_total_map_fallback[0][r][path] = 0 per_cluster_success_map_fallback[0][r][path] += per_entity_success_map[e1][r][path] per_cluster_total_map_fallback[0][r][path] += per_entity_total_map[e1][r][path] reuse_ctr_f += 1 else: ans = self.execute_one_program(e1, path, depth=0, max_branch=100) exec_ctr_f += 1 if len(ans) == 0: continue # execute the path get answer if path not in per_cluster_success_map_fallback[0][r]: per_cluster_success_map_fallback[0][r][path] = 0 if path not in per_cluster_total_map_fallback[0][r]: per_cluster_total_map_fallback[0][r][path] = 0 if e1 not in per_entity_success_map: per_entity_success_map[e1] = {} if r not in per_entity_success_map[e1]: per_entity_success_map[e1][r] = {} if path not in per_entity_success_map[e1][r]: per_entity_success_map[e1][r][path] = 0 if e1 not in per_entity_total_map: per_entity_total_map[e1] = {} if r not in per_entity_total_map[e1]: per_entity_total_map[e1][r] = {} if path not in per_entity_total_map[e1][r]: per_entity_total_map[e1][r][path] = 0 for a in ans: if a in e2_list: per_entity_success_map[e1][r][path] += 1 per_cluster_success_map_fallback[0][r][path] += 1 per_entity_total_map[e1][r][path] += 1 per_cluster_total_map_fallback[0][r][path] += 1 logging.info( f"Update for cluster map required {exec_ctr_k} executions and {reuse_ctr_k} reuses of per_entity maps") logging.info( f"Update for fallback map required {exec_ctr_f} executions and {reuse_ctr_f} reuses of per_entity maps") precision_map = {} for c, _ in per_cluster_success_map.items(): for r, _ in per_cluster_success_map[c].items(): if c not in precision_map: precision_map[c] = {} if r not in precision_map[c]: precision_map[c][r] = {} for path, s_c in per_cluster_success_map[c][r].items(): if per_cluster_total_map[c][r][path] == 0: precision_map[c][r][path] = 0 else: precision_map[c][r][path] = s_c / per_cluster_total_map[c][r][path] precision_map_fallback = {0: {}} for r, _ in per_cluster_success_map_fallback[0].items(): if r not in precision_map_fallback[0]: precision_map_fallback[0][r] = {} for path, s_c in per_cluster_success_map_fallback[0][r].items(): if per_cluster_total_map_fallback[0][r][path] == 0: precision_map_fallback[0][r][path] = 0 else: precision_map_fallback[0][r][path] = s_c / per_cluster_total_map_fallback[0][r][path] return precision_map, precision_map_fallback def calc_prior_path_prob(self): """ Calculate how probable a path is given a query relation, i.e P(path|query rel) For each entity in the graph, count paths that exists for each relation in the random subgraph. :return: """ logger.info("Calculating prior map") programs_map = {} programs_map_fallback = {0: {}} unique_cluster_ids = set() # have to do this since the assigned cluster ids doesnt seems to be contiguous or start from 0 or end at K-1 for c in self.args.cluster_assignments: unique_cluster_ids.add(c) for c in unique_cluster_ids: for _, ((e1, r), e2_list) in enumerate(tqdm((self.train_map.items()))): if self.args.cluster_assignments[self.entity_vocab[e1]] != c: # if this entity does not belong to this cluster, don't consider. continue if c not in programs_map: programs_map[c] = {} if r not in programs_map[c]: programs_map[c][r] = {} if r not in programs_map_fallback[0]: programs_map_fallback[0][r] = {} all_paths_around_e1 = self.all_paths[e1] nn_answers = e2_list for nn_ans in nn_answers: programs = self.get_programs(e1, nn_ans, all_paths_around_e1) for p in programs: p = tuple(p) if len(p) == 1: if p[0] == r: # don't store query relation continue if p not in programs_map[c][r]: programs_map[c][r][p] = 0 if p not in programs_map_fallback[0][r]: programs_map_fallback[0][r][p] = 0 programs_map[c][r][p] += 1 programs_map_fallback[0][r][p] += 1 for c, _ in programs_map.items(): for r, path_counts in programs_map[c].items(): sum_path_counts = 0 for p, p_c in path_counts.items(): sum_path_counts += p_c for p, p_c in path_counts.items(): programs_map[c][r][p] = p_c / sum_path_counts for r, path_counts in programs_map_fallback[0].items(): sum_path_counts = 0 for p, p_c in path_counts.items(): sum_path_counts += p_c for p, p_c in path_counts.items(): programs_map_fallback[0][r][p] = p_c / sum_path_counts return programs_map, programs_map_fallback def calc_per_entity_prior_path_count(self, entity_set=None): """ Calculate how probable a path is given a query relation, i.e P(path|query rel) For each entity in the graph, count paths that exists for each relation in the random subgraph. :return: """ logger.info("Calculating prior map at entity level") per_entity_prior_map = {} if entity_set is None: entity_set = set(self.entity_vocab.keys()) train_map_list = [((e1, r), e2_list) for ((e1, r), e2_list) in self.train_map.items()] for _, ((e1, r), e2_list) in enumerate(tqdm(train_map_list)): if e1 not in entity_set: continue if e1 not in per_entity_prior_map: per_entity_prior_map[e1] = {} if r not in per_entity_prior_map[e1]: per_entity_prior_map[e1][r] = {} all_paths_around_e1 = self.all_paths[e1] nn_answers = e2_list for nn_ans in nn_answers: programs = self.get_programs(e1, nn_ans, all_paths_around_e1) for p in programs: p = tuple(p) if len(p) == 1: if p[0] == r: # don't store query relation continue if p not in per_entity_prior_map[e1][r]: per_entity_prior_map[e1][r][p] = 0 per_entity_prior_map[e1][r][p] += 1 # Note the prior is un-normalized return per_entity_prior_map def get_prior_path_count_entity2cluster(self, per_entity_prior_map, cluster_assignments): """ Calculate how probable a path is given a query relation, i.e P(path|query rel) For each entity in the graph, count paths that exists for each relation in the random subgraph. :return: """ logger.info("Calculating prior map for cluster from entity level map") path_prior_map = {} path_prior_map_fallback = {0: {}} for e1, _ in per_entity_prior_map.items(): c = cluster_assignments[self.entity_vocab[e1]] if c not in path_prior_map: path_prior_map[c] = {} for r, path_counts in per_entity_prior_map[e1].items(): if r not in path_prior_map[c]: path_prior_map[c][r] = {} if r not in path_prior_map_fallback[0]: path_prior_map_fallback[0][r] = {} for p, p_c in path_counts.items(): if p not in path_prior_map[c][r]: path_prior_map[c][r][p] = 0 if p not in path_prior_map_fallback[0][r]: path_prior_map_fallback[0][r][p] = 0 path_prior_map[c][r][p] += p_c path_prior_map_fallback[0][r][p] += p_c path_prior_map_normed = {} for c, _ in path_prior_map.items(): for r, path_counts in path_prior_map[c].items(): sum_path_counts = 0 for p, p_c in path_counts.items(): sum_path_counts += p_c if c not in path_prior_map_normed: path_prior_map_normed[c] = {} if r not in path_prior_map_normed[c]: path_prior_map_normed[c][r] = {} for p, p_c in path_counts.items(): path_prior_map_normed[c][r][p] = p_c / sum_path_counts path_prior_map_normed_fallback = {0: {}} for r, path_counts in path_prior_map_fallback[0].items(): if r not in path_prior_map_normed_fallback[0]: path_prior_map_normed_fallback[0][r] = {} sum_path_counts = 0 for p, p_c in path_counts.items(): sum_path_counts += p_c for p, p_c in path_counts.items(): path_prior_map_fallback[0][r][p] = p_c / sum_path_counts return path_prior_map_normed, path_prior_map_normed_fallback, path_prior_map, path_prior_map_fallback def update_prior_path_count_entity2cluster(self, per_entity_prior_counts, per_entity_prior_path_count_updates, path_prior_map, path_prior_map_fallback, cluster_adds, cluster_dels): logger.info("Updating prior map for cluster from entity level map") # For points moving out of a cluster, delete their contribution to prior map of old cluster skip_counter = 0 for c, e_changes in cluster_dels.items(): if c not in path_prior_map: logger.debug(f"Unusual condition: Cluster {c} in cluster_dels but not in path_prior_map") continue for e1 in e_changes: if e1 not in per_entity_prior_counts: skip_counter += 1 continue for r, path_counts in per_entity_prior_counts[e1].items(): for p, p_c in path_counts.items(): path_prior_map[c][r][p] -= p_c assert path_prior_map[c][r][p] >= 0 assert path_prior_map_fallback[0][r][p] >= 0 if path_prior_map[c][r][p] == 0: del path_prior_map[c][r][p] if path_prior_map_fallback[0][r][p] == 0: del path_prior_map_fallback[0][r][p] logging.info(f"Skipped {skip_counter} deletes") # For points moving into a cluster, add their contribution to prior map of new cluster skip_counter = 0 for c, e_changes in cluster_adds.items(): if c not in path_prior_map: path_prior_map[c] = {} for e1 in e_changes: if e1 in per_entity_prior_path_count_updates: # Use new counts: Either bcoz new entity or neighborhood changed e_count_map = per_entity_prior_path_count_updates[e1] elif e1 not in per_entity_prior_counts: skip_counter += 1 continue else: # Use old counts e_count_map = per_entity_prior_counts[e1] for r, path_counts in e_count_map.items(): if r not in path_prior_map[c]: path_prior_map[c][r] = {} if r not in path_prior_map_fallback[0]: path_prior_map_fallback[0][r] = {} for p, p_c in path_counts.items(): if p not in path_prior_map[c][r]: path_prior_map[c][r][p] = 0 if p not in path_prior_map_fallback[0][r]: path_prior_map_fallback[0][r][p] = 0 path_prior_map[c][r][p] += p_c path_prior_map_fallback[0][r][p] += p_c logging.info(f"Skipped {skip_counter} additions") path_prior_map_normed = {} for c, _ in path_prior_map.items(): for r, path_counts in path_prior_map[c].items(): sum_path_counts = 0 for p, p_c in path_counts.items(): sum_path_counts += p_c if c not in path_prior_map_normed: path_prior_map_normed[c] = {} if r not in path_prior_map_normed[c]: path_prior_map_normed[c][r] = {} for p, p_c in path_counts.items(): path_prior_map_normed[c][r][p] = p_c / sum_path_counts path_prior_map_normed_fallback = {0: {}} for r, path_counts in path_prior_map_fallback[0].items(): if r not in path_prior_map_normed_fallback[0]: path_prior_map_normed_fallback[0][r] = {} sum_path_counts = 0 for p, p_c in path_counts.items(): sum_path_counts += p_c for p, p_c in path_counts.items(): path_prior_map_fallback[0][r][p] = p_c / sum_path_counts return path_prior_map_normed, path_prior_map_normed_fallback, path_prior_map, path_prior_map_fallback def main_step(args, entity_vocab, rev_entity_vocab, rel_vocab, rev_rel_vocab, adj_mat, train_map, dev_map, dev_entities, new_dev_map, new_dev_entities, test_map, test_entities, new_test_map, new_test_entities, all_paths, rel_ent_map): # Lets put adj_mat to GPU adj_mat = torch.from_numpy(adj_mat) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logger.info(f'Using device: {device.__str__()}') adj_mat = adj_mat.to(device) ###################################### # Perform evaluation on full dev set # ###################################### if not args.only_test: logger.info("Begin evaluation on full dev set ...") eval_map = dev_map # get the unique entities in eval set, so that we can calculate similarity in advance. eval_entities = dev_entities eval_vocab, eval_rev_vocab = {}, {} query_ind = [] e_ctr = 0 for e in eval_entities: try: query_ind.append(entity_vocab[e]) except KeyError: continue eval_vocab[e] = e_ctr eval_rev_vocab[e_ctr] = e e_ctr += 1 prob_cbr_agent = ProbCBR(args, train_map, eval_map, entity_vocab, rev_entity_vocab, rel_vocab, rev_rel_vocab, eval_vocab, eval_rev_vocab, all_paths, rel_ent_map) query_ind = torch.LongTensor(query_ind).to(device) # Calculate similarity sim = prob_cbr_agent.calc_sim(adj_mat, query_ind) # n X N (n== size of dev_entities, N: size of all entities) nearest_neighbor_1_hop = np.argsort(-sim.cpu(), axis=-1) prob_cbr_agent.set_nearest_neighbor_1_hop(nearest_neighbor_1_hop) prob_cbr_agent.do_symbolic_case_based_reasoning() ###################################### # Perform evaluation on new dev set # ###################################### if not args.only_test and new_dev_map is not None: logger.info("Begin evaluation on new dev set ...") eval_map = new_dev_map # get the unique entities in eval set, so that we can calculate similarity in advance. eval_entities = new_dev_entities eval_vocab, eval_rev_vocab = {}, {} query_ind = [] e_ctr = 0 for e in eval_entities: try: query_ind.append(entity_vocab[e]) except KeyError: continue eval_vocab[e] = e_ctr eval_rev_vocab[e_ctr] = e e_ctr += 1 prob_cbr_agent = ProbCBR(args, train_map, eval_map, entity_vocab, rev_entity_vocab, rel_vocab, rev_rel_vocab, eval_vocab, eval_rev_vocab, all_paths, rel_ent_map) query_ind = torch.LongTensor(query_ind).to(device) # Calculate similarity sim = prob_cbr_agent.calc_sim(adj_mat, query_ind) # n X N (n== size of dev_entities, N: size of all entities) nearest_neighbor_1_hop = np.argsort(-sim.cpu(), axis=-1) prob_cbr_agent.set_nearest_neighbor_1_hop(nearest_neighbor_1_hop) prob_cbr_agent.do_symbolic_case_based_reasoning() ####################################### # Perform evaluation on full test set # ####################################### if args.test: logger.info("Begin evaluation on full test set ...") eval_map = test_map # get the unique entities in eval set, so that we can calculate similarity in advance. eval_entities = test_entities eval_vocab, eval_rev_vocab = {}, {} query_ind = [] e_ctr = 0 for e in eval_entities: try: query_ind.append(entity_vocab[e]) except KeyError: continue eval_vocab[e] = e_ctr eval_rev_vocab[e_ctr] = e e_ctr += 1 prob_cbr_agent = ProbCBR(args, train_map, eval_map, entity_vocab, rev_entity_vocab, rel_vocab, rev_rel_vocab, eval_vocab, eval_rev_vocab, all_paths, rel_ent_map) query_ind = torch.LongTensor(query_ind).to(device) # Calculate similarity sim = prob_cbr_agent.calc_sim(adj_mat, query_ind) # n X N (n== size of dev_entities, N: size of all entities) nearest_neighbor_1_hop = np.argsort(-sim.cpu(), axis=-1) prob_cbr_agent.set_nearest_neighbor_1_hop(nearest_neighbor_1_hop) prob_cbr_agent.do_symbolic_case_based_reasoning() ###################################### # Perform evaluation on new test set # ###################################### if args.test and new_test_map is not None: logger.info("Begin evaluation on new test set ...") eval_map = new_test_map # get the unique entities in eval set, so that we can calculate similarity in advance. eval_entities = new_test_entities eval_vocab, eval_rev_vocab = {}, {} query_ind = [] e_ctr = 0 for e in eval_entities: try: query_ind.append(entity_vocab[e]) except KeyError: continue eval_vocab[e] = e_ctr eval_rev_vocab[e_ctr] = e e_ctr += 1 prob_cbr_agent = ProbCBR(args, train_map, eval_map, entity_vocab, rev_entity_vocab, rel_vocab, rev_rel_vocab, eval_vocab, eval_rev_vocab, all_paths, rel_ent_map) query_ind = torch.LongTensor(query_ind).to(device) # Calculate similarity sim = prob_cbr_agent.calc_sim(adj_mat, query_ind) # n X N (n== size of dev_entities, N: size of all entities) nearest_neighbor_1_hop = np.argsort(-sim.cpu(), axis=-1) prob_cbr_agent.set_nearest_neighbor_1_hop(nearest_neighbor_1_hop) prob_cbr_agent.do_symbolic_case_based_reasoning() class CBRWrapper: def __init__(self, args, total_n_entity, total_n_relation): self.args = args # Create GRINCH clustering object self.clustering_model = GrinchWithDeletes(np.zeros((total_n_entity, total_n_relation))) self.seen_entities = set() self.entity_representation = np.zeros((total_n_entity, total_n_relation)) self.all_paths = {} self.per_entity_prior_path_count = {} self.per_cluster_path_prior_count, self.per_cluster_path_prior_count_fallback = {}, {} self.per_entity_prec_success_counts, self.per_entity_prec_total_counts = {}, {} self.per_entity_prec_success_counts_fallback, self.per_entity_prec_total_counts_fallback = {}, {} self.per_cluster_prec_success_counts, self.per_cluster_prec_total_counts = {}, {} self.per_cluster_prec_success_counts_fallback, self.per_cluster_prec_total_counts_fallback = {}, {} self.per_cluster_precision_map, self.fallback_precision_map = {}, {} self.cluster_assignments = np.zeros(total_n_entity) def process_seed_kb(self, entity_vocab, rev_entity_vocab, rel_vocab, rev_rel_vocab, known_true_triples, train_triples, valid_triples, test_triples): if self.args.just_preprocess and not (self.args.process_num == -1 or self.args.process_num == 0): # Important for later batches self.seen_entities = set(entity_vocab.keys()) return self.args.output_dir = os.path.join(self.args.expt_dir, "outputs", self.args.dataset_name, self.args.name_of_run, 'stream_step_0') if not os.path.exists(self.args.output_dir): os.makedirs(self.args.output_dir) logger.info(f"Output directory: {self.args.output_dir}") # 1. Load all maps logger.info("Loading train map") train_map = load_data_from_triples(train_triples) rel_ent_map = get_entities_group_by_relation_from_triples(train_triples) logger.info("Loading dev map") dev_map = load_data_from_triples(valid_triples) dev_entities = get_unique_entities_from_triples(valid_triples) logger.info("Loading test map") test_map = load_data_from_triples(test_triples) test_entities = get_unique_entities_from_triples(test_triples) logger.info("Loading combined train/dev/test map for filtered eval") all_kg_map = load_data_from_triples(known_true_triples) self.args.all_kg_map = all_kg_map logger.info("Dumping vocabs") with open(os.path.join(self.args.output_dir, "entity_vocab.pkl"), "wb") as fout: pickle.dump(entity_vocab, fout) with open(os.path.join(self.args.output_dir, "rel_vocab.pkl"), "wb") as fout: pickle.dump(rel_vocab, fout) # 2. Sample subgraph around entities logger.info("Load train adacency map") train_adj_map = create_adj_list_from_triples(train_triples) if self.args.warm_start: logger.info("[WARM_START] Load paths around graph entities") with open(os.path.join(self.args.output_dir, f'paths_{self.args.num_paths_to_collect}.pkl'), "rb") as fin: self.all_paths = pickle.load(fin) else: logger.info("Sample paths around graph entities") for ctr, e1 in enumerate(tqdm(entity_vocab.keys())): self.all_paths[e1] = get_paths(self.args, train_adj_map, e1, max_len=3) with open(os.path.join(self.args.output_dir, f'paths_{self.args.num_paths_to_collect}.pkl'), "wb") as fout: pickle.dump(self.all_paths, fout) self.args.all_paths = self.all_paths # 3. Obtain entity cluster assignments # Calculate adjacency matrix logger.info("Calculate adjacency matrix") adj_mat = read_graph_from_triples(train_triples, entity_vocab, rel_vocab) adj_mat = np.sqrt(adj_mat) l2norm = np.linalg.norm(adj_mat, axis=-1) l2norm = np.clip(l2norm, np.finfo(np.float).eps, None) adj_mat = adj_mat / l2norm.reshape(l2norm.shape[0], 1) self.seen_entities.update(entity_vocab.keys()) self.entity_representation[:len(entity_vocab), :len(rel_vocab)] = adj_mat if not self.args.just_preprocess: logger.info("Cluster entities") for i in trange(adj_mat.shape[0]): # first arg is point id, second argument is the point vector. # if you leave second argument blank, it will take vector from points # passed in at constructor self.clustering_model.insert(i=i, i_vec=self.entity_representation[i]) cluster_assignments = self.clustering_model.flat_clustering(threshold=self.args.cluster_threshold).astype( int) assert np.all(cluster_assignments[:len(entity_vocab)] != -1) and \ np.all(cluster_assignments[len(entity_vocab):] == -1) self.args.cluster_assignments = cluster_assignments[:len(entity_vocab)] self.cluster_assignments = cluster_assignments[:len(entity_vocab)].copy() cluster_population = Counter(self.args.cluster_assignments) logger.info(f"Found {len(cluster_population)} flat clusters") logger.info(f"Cluster stats :: Most common: {cluster_population.most_common(5)}") logger.info(f"Cluster stats :: Avg Size: {np.mean(list(cluster_population.values()))}") logger.info(f"Cluster stats :: Min Size: {np.min(list(cluster_population.values()))}") logger.info("Dumping cluster assignments") with open(os.path.join(self.args.output_dir, "cluster_assignments.pkl"), "wb") as fout: pickle.dump(self.cluster_assignments, fout) # 4. Create solver prob_cbr_agent = ProbCBR(args, train_map, {}, entity_vocab, rev_entity_vocab, rel_vocab, rev_rel_vocab, {}, {}, self.args.all_paths, rel_ent_map) # 5. Compute path prior map if self.args.warm_start: logger.info("[WARM_START] Load per entity prior map") with open(os.path.join(self.args.output_dir, f'per_entity_prior_path_count.pkl'), "rb") as fin: self.per_entity_prior_path_count = pickle.load(fin) else: self.per_entity_prior_path_count = prob_cbr_agent.calc_per_entity_prior_path_count() with open(os.path.join(self.args.output_dir, 'per_entity_prior_path_count.pkl'), "wb") as fout: pickle.dump(self.per_entity_prior_path_count, fout) if not self.args.just_preprocess: self.args.path_prior_map_per_relation, self.args.path_prior_map_per_relation_fallback, \ self.per_cluster_path_prior_count, self.per_cluster_path_prior_count_fallback = \ prob_cbr_agent.get_prior_path_count_entity2cluster(self.per_entity_prior_path_count, self.args.cluster_assignments) dir_name = os.path.join(self.args.output_dir, "t_{}".format(self.args.cluster_threshold)) if not os.path.exists(dir_name): os.makedirs(dir_name) logger.info("Dumping path prior map at {}".format(dir_name)) with open(os.path.join(dir_name, "path_prior_map.pkl"), "wb") as fout: pickle.dump(self.args.path_prior_map_per_relation, fout) dir_name = os.path.join(self.args.output_dir, "K_1") if not os.path.exists(dir_name): os.makedirs(dir_name) logger.info("Dumping fallback path prior map at {}".format(dir_name)) with open(os.path.join(dir_name, "path_prior_map.pkl"), "wb") as fout: pickle.dump(self.args.path_prior_map_per_relation_fallback, fout) # 6. Compute path precision map if self.args.warm_start: logger.info("[WARM_START] Load per entity precision count maps") with open(os.path.join(self.args.output_dir, f'per_entity_prec_success_counts.pkl'), "rb") as fin: self.per_entity_prec_success_counts = pickle.load(fin) with open(os.path.join(self.args.output_dir, f'per_entity_prec_total_counts.pkl'), "rb") as fin: self.per_entity_prec_total_counts = pickle.load(fin) else: self.per_entity_prec_success_counts, self.per_entity_prec_total_counts = \ prob_cbr_agent.calc_per_entity_precision_components(self.per_entity_prior_path_count) with open(os.path.join(self.args.output_dir, f'per_entity_prec_success_counts.pkl'), "wb") as fout: pickle.dump(self.per_entity_prec_success_counts, fout) with open(os.path.join(self.args.output_dir, f'per_entity_prec_total_counts.pkl'), "wb") as fout: pickle.dump(self.per_entity_prec_total_counts, fout) if not self.args.just_preprocess: self.args.precision_map, self.per_cluster_prec_success_counts, self.per_cluster_prec_total_counts = \ prob_cbr_agent.get_precision_map_entity2cluster(self.per_entity_prec_success_counts, self.per_entity_prec_total_counts, self.args.cluster_assignments, self.args.path_prior_map_per_relation) self.per_cluster_precision_map = self.args.precision_map self.per_entity_prec_success_counts_fallback, self.per_entity_prec_total_counts_fallback = \ copy.deepcopy(self.per_entity_prec_success_counts), copy.deepcopy(self.per_entity_prec_total_counts) self.args.precision_map_fallback, self.per_cluster_prec_success_counts_fallback, \ self.per_cluster_prec_total_counts_fallback = \ prob_cbr_agent.get_precision_map_entity2cluster(self.per_entity_prec_success_counts_fallback, self.per_entity_prec_total_counts_fallback,
np.zeros_like(self.args.cluster_assignments)
numpy.zeros_like
# -*- coding: utf-8 -*- # Copyright 2018 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Tests of EntropyBottleneck class.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function # Dependency imports import numpy as np import tensorflow as tf from tensorflow.python.platform import test import tensorflow_compression as tfc class EntropyBottleneckTest(test.TestCase): def test_noise(self): # Tests that the noise added is uniform noise between -0.5 and 0.5. inputs = tf.placeholder(tf.float32, (None, 1)) layer = tfc.EntropyBottleneck() noisy, _ = layer(inputs, training=True) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) values = np.linspace(-50, 50, 100)[:, None] noisy, = sess.run([noisy], {inputs: values}) self.assertFalse(np.allclose(values, noisy, rtol=0, atol=.49)) self.assertAllClose(values, noisy, rtol=0, atol=.5) def test_quantization(self): # Tests that inputs are quantized to full integer values, even after # quantiles have been updated. inputs = tf.placeholder(tf.float32, (None, 1)) layer = tfc.EntropyBottleneck(optimize_integer_offset=False) quantized, _ = layer(inputs, training=False) opt = tf.train.GradientDescentOptimizer(learning_rate=1) self.assertTrue(len(layer.losses) == 1) step = opt.minimize(layer.losses[0]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(step) values = np.linspace(-50, 50, 100)[:, None] quantized, = sess.run([quantized], {inputs: values}) self.assertAllClose(np.around(values), quantized, rtol=0, atol=1e-6) def test_quantization_optimized_offset(self): # Tests that inputs are not quantized to full integer values after quantiles # have been updated. However, the difference between input and output should # be between -0.5 and 0.5, and the offset must be consistent. inputs = tf.placeholder(tf.float32, (None, 1)) layer = tfc.EntropyBottleneck(optimize_integer_offset=True) quantized, _ = layer(inputs, training=False) opt = tf.train.GradientDescentOptimizer(learning_rate=1) self.assertTrue(len(layer.losses) == 1) step = opt.minimize(layer.losses[0]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(step) values = np.linspace(-50, 50, 100)[:, None] quantized, = sess.run([quantized], {inputs: values}) self.assertAllClose(values, quantized, rtol=0, atol=.5) diff = np.ravel(np.around(values) - quantized) % 1 self.assertAllClose(diff, np.full_like(diff, diff[0]), rtol=0, atol=5e-6) self.assertNotEqual(diff[0], 0) def test_codec(self): # Tests that inputs are compressed and decompressed correctly, and quantized # to full integer values, even after quantiles have been updated. inputs = tf.placeholder(tf.float32, (1, None, 1)) layer = tfc.EntropyBottleneck( data_format="channels_last", init_scale=60, optimize_integer_offset=False) bitstrings = layer.compress(inputs) decoded = layer.decompress(bitstrings, tf.shape(inputs)[1:]) opt = tf.train.GradientDescentOptimizer(learning_rate=1) self.assertTrue(len(layer.losses) == 1) step = opt.minimize(layer.losses[0]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(step) self.assertTrue(len(layer.updates) == 1) sess.run(layer.updates[0]) values = np.linspace(-50, 50, 100)[None, :, None] decoded, = sess.run([decoded], {inputs: values}) self.assertAllClose(np.around(values), decoded, rtol=0, atol=1e-6) def test_codec_optimized_offset(self): # Tests that inputs are compressed and decompressed correctly, and not # quantized to full integer values after quantiles have been updated. # However, the difference between input and output should be between -0.5 # and 0.5, and the offset must be consistent. inputs = tf.placeholder(tf.float32, (1, None, 1)) layer = tfc.EntropyBottleneck( data_format="channels_last", init_scale=60, optimize_integer_offset=True) bitstrings = layer.compress(inputs) decoded = layer.decompress(bitstrings, tf.shape(inputs)[1:]) opt = tf.train.GradientDescentOptimizer(learning_rate=1) self.assertTrue(len(layer.losses) == 1) step = opt.minimize(layer.losses[0]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) sess.run(step) self.assertTrue(len(layer.updates) == 1) sess.run(layer.updates[0]) values = np.linspace(-50, 50, 100)[None, :, None] decoded, = sess.run([decoded], {inputs: values}) self.assertAllClose(values, decoded, rtol=0, atol=.5) diff = np.ravel(np.around(values) - decoded) % 1 self.assertAllClose(diff, np.full_like(diff, diff[0]), rtol=0, atol=5e-6) self.assertNotEqual(diff[0], 0) def test_codec_clipping(self): # Tests that inputs are compressed and decompressed correctly, and clipped # to the expected range. inputs = tf.placeholder(tf.float32, (1, None, 1)) layer = tfc.EntropyBottleneck( data_format="channels_last", init_scale=40) bitstrings = layer.compress(inputs) decoded = layer.decompress(bitstrings, tf.shape(inputs)[1:]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) self.assertTrue(len(layer.updates) == 1) sess.run(layer.updates[0]) values = np.linspace(-50, 50, 100)[None, :, None] decoded, = sess.run([decoded], {inputs: values}) expected = np.clip(np.around(values), -40, 40) self.assertAllClose(expected, decoded, rtol=0, atol=1e-6) def test_channels_last(self): # Test the layer with more than one channel and multiple input dimensions, # with the channels in the last dimension. inputs = tf.placeholder(tf.float32, (None, None, None, 2)) layer = tfc.EntropyBottleneck( data_format="channels_last", init_scale=50) noisy, _ = layer(inputs, training=True) quantized, _ = layer(inputs, training=False) bitstrings = layer.compress(inputs) decoded = layer.decompress(bitstrings, tf.shape(inputs)[1:]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) self.assertTrue(len(layer.updates) == 1) sess.run(layer.updates[0]) values = 5 * np.random.normal(size=(7, 5, 3, 2)) noisy, quantized, decoded = sess.run( [noisy, quantized, decoded], {inputs: values}) self.assertAllClose(values, noisy, rtol=0, atol=.5) self.assertAllClose(values, quantized, rtol=0, atol=.5) self.assertAllClose(values, decoded, rtol=0, atol=.5) def test_channels_first(self): # Test the layer with more than one channel and multiple input dimensions, # with the channel dimension right after the batch dimension. inputs = tf.placeholder(tf.float32, (None, 3, None, None)) layer = tfc.EntropyBottleneck( data_format="channels_first", init_scale=50) noisy, _ = layer(inputs, training=True) quantized, _ = layer(inputs, training=False) bitstrings = layer.compress(inputs) decoded = layer.decompress(bitstrings, tf.shape(inputs)[1:]) with self.test_session() as sess: sess.run(tf.global_variables_initializer()) self.assertTrue(len(layer.updates) == 1) sess.run(layer.updates[0]) values = 5 *
np.random.normal(size=(2, 3, 5, 7))
numpy.random.normal
import gc from logging import warning from time import sleep, perf_counter from typing import Optional, Union, Dict, List, Tuple, Callable import numpy as np import pandas as pd from numpy import ndarray from rdkit.Chem import AddHs, CanonSmiles, MolToSmiles, MolFromSmiles, MolFromInchi, Kekulize, SanitizeMol from rdkit.Chem.rdchem import Mol, RWMol from sklearn.base import BaseEstimator from .AbstractModel import AbstractModel from .BaseCreator import getRadicalsByBondIdx, getBondIndex, getBondIndexByAtom from .Creator import DataGenerator from .Dataset import FeatureData, allocateFeatureLocation from .DatasetAPI import DatasetTransmitterWrapper from .Preprocessing import inputFullCheck, inputCheckRange, inputCheckIterableInRange, MeasureExecutionTime, FixPath, \ ReadFile, ExportFile, SortWithIdx, ArraySorting, EvaluateInputPosition, GetIndexOnArrangedData, ArrayEqual from .coreConfig import getPrebuiltInfoLabels BASE_TEMPLATE = Optional[ndarray] INPUT_FOR_DATABASE = Union[BASE_TEMPLATE, pd.DataFrame] ITERABLE_TEMPLATE = Union[INPUT_FOR_DATABASE, List, Tuple] SINGLE_INPUT_TEMPLATE = Union[BASE_TEMPLATE, str] MULTI_INPUT_TEMPLATE = Union[BASE_TEMPLATE, List[str]] MULTI_COLUMNS = Union[List, Tuple] def _FixData_(database: INPUT_FOR_DATABASE) -> ndarray: if not isinstance(database, ndarray): database: ndarray = np.asarray(database) if database.ndim != 2: database: ndarray = np.atleast_2d(database) return database def _tuneFinalDataset_(InfoData: ndarray, FalseLine: List[int], TrueReference: Optional[ndarray] = None) \ -> Tuple[ndarray, Optional[ndarray]]: inputFullCheck(value=FalseLine, name='FalseLine', dtype='List') if len(FalseLine) != 0: FalseLine.sort() warning(f" These are the error lines needed to be removed: {FalseLine}") InfoData: ndarray = np.delete(InfoData, obj=FalseLine, axis=0) if TrueReference is not None: TrueReference: ndarray = np.delete(TrueReference, obj=FalseLine, axis=0) return InfoData, TrueReference class PredictModel(DatasetTransmitterWrapper): """ A Python Implementation of AIP-BDET model (Bit2Edge framework): This class used to make prediction as well as some modifier for data visualization - AIP-BDET is a low-cost and multi-purpose deep-learning tool that can predict Bond Dissociation Energy with superior accuracy with powerful classification strength & interpretability on ordinary atoms (C, H, O, N). - AIP-BDET is constructed based on the inspiration of feedforward network architecture and graph neural network in chemistry using hashed bit-type molecular fingerprints """ _SavedPredLabels: List[str] = ["Reference", "AIP-BDET: Prediction", "AIP-BDET: Error"] @MeasureExecutionTime def __init__(self, DatasetObject: FeatureData, GeneratorObject: DataGenerator, TrainedModelMode: Optional[int] = 1, InputKey: Optional[int] = None, dataType: np.dtype=np.uint8, TrainedModelInputFileName: str = None, CFile: str = None, SFile: str = None, dataConfiguration: str = None, gpu_memory: bool = False): print("-" * 33, "INITIALIZATION", "-" * 33) from .config import MODEL_INIT, updateDataConfig # [1.0]: Main Attribute for Data if not isinstance(DatasetObject, FeatureData) or DatasetObject is None: InputKey: int = MODEL_INIT[TrainedModelMode][0] if InputKey is None else InputKey self._dataset: FeatureData = FeatureData(InputKey=InputKey, trainable=False, retraining=False, dataType=dataType) else: if DatasetObject.isTrainable(): raise TypeError("This dataset is invalid") self._dataset: FeatureData = DatasetObject super(PredictModel, self).__init__(dataset=DatasetObject, priority_key="Test") if not isinstance(GeneratorObject, DataGenerator) or GeneratorObject is None: self._generator: DataGenerator = \ DataGenerator(DatasetObject=self.getDataset(), priorityKey=self.getKey(), boostMode=True, simplifySmilesEnvironment=True, showInvalidStereochemistry=False, environmentCatching=False) else: if GeneratorObject.getDataset() is not self._dataset: raise TypeError("This generator is invalid is invalid") self._generator: DataGenerator = GeneratorObject self._PrebuiltInfoLabels: List[str] = getPrebuiltInfoLabels() self._dataset.setRequestLabels(value=self._PrebuiltInfoLabels, request="Info") # [1.1]: Cache Attribute self._mol, self._radical, self._bondIndex, self._bondType = self._dataset.getPropertiesRespectToColumn() self.dataType: np.dtype = self._dataset.dataType # [1.2]: Main Attribute for Model if True: # Re-initialize Hyper-parameter TrainedModel: str = MODEL_INIT[TrainedModelMode][1] if TrainedModelInputFileName is None else TrainedModelInputFileName CColPath: str = MODEL_INIT[TrainedModelMode][2] if CFile is None else CFile SColPath: str = MODEL_INIT[TrainedModelMode][3] if SFile is None else SFile if TrainedModel is not None and isinstance(TrainedModel, str): TrainedModel: str = FixPath(FileName=TrainedModel, extension=".h5") dataConfiguration: str = MODEL_INIT[TrainedModelMode][4] if dataConfiguration is None else dataConfiguration if dataConfiguration is not None: updateDataConfig(dataConfiguration) if gpu_memory: from tensorflow import config dev = config.list_physical_devices('GPU') config.experimental.set_memory_growth(dev[0], True) pass self._dataset.setTrainedSavedLabels(CTrainedLabelsDirectory=CColPath, STrainedLabelsDirectory=SColPath) self._generator.setBondTypeForInferenceOrFineTuning(bondTypeSaved=self._getBondTypeSaved_()) # print(TrainedModel) self.TF_model: AbstractModel = AbstractModel(DatasetObject=self._dataset, model=TrainedModel, sparseMode=False) # [2]: Model Calculation self._MolArray: List[str] = [] self._RecordedMolArray: Optional[ndarray] = None self.y_pred: BASE_TEMPLATE = None self.InterOutput: BASE_TEMPLATE = None self.BuiltDataFrame: Optional[pd.DataFrame] = None self.DensityDataFrame: Optional[pd.DataFrame] = None # [3]: Status Attribute self._inplace: bool = True # In-place Standardization self._isStandardized: bool = False # Prevent Multiple Standardization self._timer: Dict[str, Union[int, float]] = {'add': 0, 'create': 0, 'process': 0, 'predictMethod': 0, 'predictFunction': 0, 'visualize': 0} # [0]: Indirect/Hidden Method: ----------------------------------------------------------------------------------- # [0.1]: Preprocessing - Timer: ---------------------------------------------------------------------------------- def _resetTime_(self) -> None: self._timer: Dict[str, Union[int, float]] = {'add': 0, 'create': 0, 'process': 0, 'predictMethod': 0, 'predictFunction': 0, 'visualize': 0} def _getFullTime_(self) -> float: return self._timer['add'] + self._getProcessTime_() + self._timer['visualize'] def _getProcessTime_(self) -> float: return self._timer['create'] + self._timer['process'] + self._timer['predictMethod'] def exportProcessTime(self) -> pd.DataFrame: """ Return a DataFrame that recorded execution time """ index = ["#1: Adding Data", "#2: Create Data", "#3: Process Data", "#4: Prediction Method", "#5: Prediction Speed", "#6: Visualization Speed", "#7: Total Time"] column = ["Full Timing (secs)", "Timing per Unit (ms/bond)"] numsSamples: int = self._dataset.getRequestData(requests=("Train", "Info")).shape[0] value = [[self._timer['add'], 1e3 * self._timer['add'] / numsSamples], [self._timer["create"], 1e3 * self._timer["create"] / numsSamples], [self._timer["process"], 1e3 * self._timer["process"] / numsSamples], [self._timer["predictMethod"], 1e3 * self._timer["predictMethod"] / numsSamples], [self._timer["predictFunction"], 1e3 * self._timer["predictFunction"] / numsSamples], [self._timer["visualize"], 1e3 * self._timer["visualize"] / numsSamples], [self._getFullTime_(), 1e3 * self._getFullTime_() / numsSamples]] x = pd.DataFrame(data=value, index=index, columns=column, dtype=np.float32) x.index.name = "Method" print(x) return x # [1]: Rarely-Called Method: ------------------------------------------------------------------------------------- def summary(self) -> None: self.TF_model.summary() def getFlops(self, batch_size: Optional[int] = None, specific: bool = False) -> int: return self.TF_model.getFlops(batch_size=batch_size, specific=specific) @MeasureExecutionTime def getFingerprintData(self, CFileName: str = None, SFileName: str = None) -> None: """ Implementation of retrieving the fingerprint database :param CFileName: Directory of fingerprint from the C-Model :type CFileName: str :param SFileName: Directory of fingerprint in the S-Model :type SFileName: str :return: None """ if CFileName is None and SFileName is None: warning("CFileName / CFileName must not be None (NoneType Object)") if CFileName is not None: inputFullCheck(value=CFileName, name="CFileName", dtype='str') data, labels = self.getDataLabels(request="CData") if data is not None: ExportFile(DataFrame=pd.DataFrame(data=data, columns=labels, index=None, dtype=self.dataType), FilePath=CFileName) else: warning("No data can be found") if SFileName is not None: if self._dataset.getIsSharedInput(): warning("Your CModel's Input = SModel's Input. Thus, we don't export your file here") return None inputFullCheck(value=SFileName, name="SFileName", dtype='str') data, labels = self.getDataLabels(request="SData") if data is not None: ExportFile(DataFrame=pd.DataFrame(data=data, columns=labels, index=None, dtype=self.dataType), FilePath=SFileName) else: warning("No data can be found") return None @MeasureExecutionTime def searchEnvironment(self, OutputFileName: str, MoleculeSearch: bool = False) -> pd.DataFrame: """ Implementation whether that searching environments were in the training set with 3 inputs. However, this function don't allow to see whether reaction is trained as it will cost O(3 * N * K) time-complexity where as k is the number of row in the new-input, N is the number of reaction learned in the training set. :param OutputFileName: The directory of the file :type OutputFileName: str :param MoleculeSearch: Whether the molecule is in the consideration :type MoleculeSearch: bool :return: pd.DataFrame """ # Hyper-parameter Verification if True: if not self.isDataAvailable(request="Env"): raise ValueError("There are no data available to check the function") inputFullCheck(value=OutputFileName, name='OutputFileName', dtype='str') inputFullCheck(value=MoleculeSearch, name='MoleculeSearch', dtype='bool') from .config import TRAINED_PATH from typing import Set print("-" * 80) print("The object is now searching whether those environments were in the training set with 3 inputs") # [1]: Initialize Data numsInput: int = self._dataset.getNumsInput() notations: Tuple[str, ...] = self._dataset.getFingerprintNotation() useCols: List[int] = [len(self._PrebuiltInfoLabels) + i for i in range(numsInput)] SearchEnvLabels: List[str] = [] for idx, notation in enumerate(notations): SearchEnvLabels.append(f"{notation}: Environment") SearchEnvLabels.append(f"{notation}: Available") if MoleculeSearch: SearchEnvLabels.append(self._PrebuiltInfoLabels[0]) SearchEnvLabels.append(f"Mol: Available") useCols.append(self._mol) TrainedData: ndarray = ReadFile(FilePath=TRAINED_PATH, header=0, get_values=True, usecols=useCols, get_columns=False) useCols: List[int] = [i for i in range(len(SearchEnvLabels) // 2)] EnvData: ndarray = self.getData(request="Env") SearchResult: ndarray = np.zeros(shape=(EnvData.shape[0], len(SearchEnvLabels)), dtype=np.object_) SearchResult[:, [2 * i for i in range(numsInput)]] = EnvData[:, :numsInput] if MoleculeSearch: SearchResult[:, 2 * useCols[-1]] = self.getData(request="Info")[:, self._mol] # [2]: Evaluate Environment Array for col in range(0, SearchResult.shape[1] // 2): UniqueTrainedMatrix: Set = set(np.unique(TrainedData[:, col], axis=None).tolist()) CurrentEnvData: List[str] = SearchResult[:, 2 * col].tolist() SearchResult[:, 2 * col + 1] = [bool(CurrentEnvData[row] in UniqueTrainedMatrix) for row in range(0, SearchResult.shape[0])] DataFrame = pd.DataFrame(data=SearchResult, columns=SearchEnvLabels, index=None) ExportFile(DataFrame=DataFrame, FilePath=OutputFileName) return DataFrame # [2]: Informational Method: ------------------------------------------------------------------------------------- def BuildFullInfoData(self, InfoData: bool = True, EnvironmentData: bool = True, TargetData: bool = True) -> pd.DataFrame: return self._dataset.buildInformationDataFrame(request=self.getKey(), InfoData=InfoData, EnvironmentData=EnvironmentData, TargetData=TargetData) def ExportInfoDataToCsv(self, Storage: str, FileName: str, InfoData: bool = True, EnvironmentData: bool = True, TargetData: bool = True) -> None: if Storage != '': Storage = FixPath(FileName=Storage, extension='/') ExportFile(DataFrame=self.BuildFullInfoData(InfoData=InfoData, EnvironmentData=EnvironmentData, TargetData=TargetData), FilePath=FixPath(FileName=f"{Storage}{FileName}", extension=".csv")) return None # [2]: Adding Data: ---------------------------------------------------------------------------------------------- # [2.0]: Adding Data: -------------------------------------------------------------------------------------------- def _refreshAttribute_(self): self._dataset.cleanAttribute() self._dataset.setRequestLabels(value=self._PrebuiltInfoLabels, request="Info") self._generator.refreshAttribute() self.ConvertedSmiles: ndarray = np.array([[None, None]], dtype=np.object_) self.y_pred, self.InterOutput, self.BuiltDataFrame, self.DensityDataFrame = None, None, None, None self._isStandardized: bool = False # Prevent Multiple Standardization self._resetTime_() gc.collect() def _startNewProcess_(self) -> float: self._refreshAttribute_() return perf_counter() def _readCsvFile_(self, path: str, Molecule: int = 0, Radicals: Optional[Union[List[int], Tuple[int, ...]]] = None, BondIndex: Optional[int] = None, BondType: Optional[int] = None, Target: Optional[int] = None, sorting: bool = False, ascending: bool = True) -> ndarray: inputFullCheck(value=sorting, name='sorting', dtype='bool') inputFullCheck(value=ascending, name='ascending', dtype='List-bool-Tuple', delimiter='-') useCols: List[int] = allocateFeatureLocation(MoleculeCol=Molecule, RadicalCols=Radicals, BondIdxCol=BondIndex, BondTypeCol=BondType, TargetCol=Target) if sorting: DataFrame: pd.DataFrame = ReadFile(FilePath=path, header=0, usecols=useCols, get_values=False, get_columns=False) if BondIndex is not None: modified_ascending: List[bool] = [ascending, ascending] if isinstance(ascending, bool) else ascending DataFrame.sort_values(by=[DataFrame.columns[self._mol], DataFrame.columns[self._bondIndex]], ascending=modified_ascending, inplace=True) else: DataFrame.sort_values(by=DataFrame.columns[self._mol], ascending=ascending, inplace=True) return DataFrame.values return ReadFile(FilePath=path, header=0, usecols=useCols, get_values=True, get_columns=False) def _displayAfterReadCsv_(self) -> None: gc.collect() print(f'Adding Time: {self._timer["add"]:.6f}s') return None # [3.1]: Single-Adding Method: --------------------------------------------------------------------------------- def addMolArray(self, MolArray: Union[List[str], Tuple[str, ...]], mode: str = "SMILES", **kwargs: bool) -> None: """ Implementation of Reading Molecule by either Smiles or InChi Key :param MolArray: Array of Molecules by String :type MolArray: List[str] or Tuple[str, ...] :param mode: either to be InChi or Smiles :type mode: List[str] or Tuple[str, ...] :return: None """ if True: request: Tuple[str, ...] = ("SMILES", "InChi") if mode not in request: raise TypeError("The mode is in-valid, which should be either 'SMILES' or 'InChi'.") request_index: int = request.index(mode) inputFullCheck(value=MolArray, name="Array of Molecules", dtype='List-Tuple', delimiter='-') if 'canonicalize' not in kwargs: kwargs['canonicalize']: bool = False if 'useChiral' not in kwargs: kwargs['useChiral']: bool = False if request_index == 0 and kwargs['canonicalize']: warning(' Your input SMILES will all be re-canonicalize to avoid shifting of bond index') def SmilesToMol(smiles: str, chiral: bool = kwargs['useChiral']): return str(CanonSmiles(smiles, useChiral=chiral)) def InchiToMol(inchi: str): return MolToSmiles(MolFromInchi(inchi)) _FunctionWrapper_: Callable = SmilesToMol if request_index == 0 else InchiToMol pass # [1]: Initialization print("-", self.addMolArray, "-" * 30) max_size: int = len(MolArray) self._RecordedMolArray = np.zeros(shape=(len(MolArray), 2), dtype=np.object_) FalseLine: Dict[str, List[Union[int, str]]] = {'Index': [], 'Mol': []} # [2]: Testing Smiles timer: float = self._startNewProcess_() for line in range(max_size): try: self._RecordedMolArray[line, :] = [MolArray[line], _FunctionWrapper_(MolArray[line])] except (ValueError, TypeError): FalseLine['Index'].append(line) FalseLine['Mol'].append(MolArray[line]) warning(f" Input #{line} - Molecule: {MolArray[line]} is invalid") if FalseLine['Index']: print(f"Totally, these {mode} will be deleted: {FalseLine['Mol']}") self._RecordedMolArray = np.delete(self._RecordedMolArray, obj=FalseLine['Index'], axis=0) self._MolArray = self._RecordedMolArray[:, 1].tolist() if request_index == 1 or kwargs['canonicalize'] \ else self._RecordedMolArray[:, 0].tolist() self._timer['add'] = perf_counter() - timer def addMol(self, mol: str, mode: str = "SMILES", **kwargs: bool) -> None: if mode not in ["SMILES", "InChi"]: raise TypeError("The mode is in-valid, which should be either 'SMILES' or 'InChi'.") inputFullCheck(value=mol, name="Molecule", dtype='str') return self.addMolArray(MolArray=[mol], mode=mode, **kwargs) def addMolFile(self, FilePath: str, mode: str = "SMILES", MoleculeCol: int = 0, sorting: bool = False, ascending: bool = True, **kwargs: bool) -> None: if mode not in ["SMILES", "InChi"]: raise TypeError("The mode is in-valid, which should be either 'SMILES' or 'InChi'.") database: ndarray = self._readCsvFile_(path=FilePath, Molecule=MoleculeCol, sorting=sorting, ascending=ascending) self.addMolArray(MolArray=database.tolist(), mode=mode, **kwargs) return self._displayAfterReadCsv_() def createInformation(self, verbose: bool = False, useAtoms: Optional[Union[List[str], str]] = None, useBonds: Optional[Union[List[str], str]] = None, useDoubleTriple: bool = False) -> None: """ Implementation of converting SMILES into pre-defined data :param verbose: Tracking progress :type verbose: bool :param useAtoms: Specify atom in the considered domain :type useAtoms: str or List[str] or Tuple[str] :param useBonds: Specify bond in the considered domain :type useBonds: str or List[str] or Tuple[str] :param useDoubleTriple: Whether to use double bond and triple bond into consideration. However, since trained model has been trained only by non-ring single bond, setting to True is dangerous (default as False). :type useDoubleTriple: bool :return: None """ # Hyper-parameter Verification if True: if len(self._MolArray) == 0: warning(" NotImplementedError: This function cannot be executed") return None if self.isDataAvailable(request="Info"): warning(" NotImplementedError: InfoData has been initialized.") return None if useAtoms is not None: if isinstance(useAtoms, str): useAtoms = [useAtoms] elif isinstance(useAtoms, (List, Tuple)): useAtoms = list(sorted(set(useAtoms))) else: raise TypeError("useAtoms must be either string, or List, or Tuple, or None") for idx, value in enumerate(useAtoms): if not isinstance(value, str): raise TypeError(f"useAtoms[{idx}] ({value}) must be a string") if not value.isalpha(): raise TypeError(f"useAtoms[{idx}] ({value}) contains character only") useAtoms[idx] = "".join(value.split()) # Remove all space if useBonds is not None: if isinstance(useBonds, str): useBonds = [useBonds] elif isinstance(useBonds, (List, Tuple)): useBonds = sorted(list(set(useBonds))) else: raise TypeError("useBonds must be either string, or List, or Tuple, or None") false_bond: List[str] = [] new_bonds: List[str] = [] for idx, value in enumerate(useBonds): if not isinstance(value, str): raise TypeError(f"useBonds[{idx}] ({value}) must be a string") for character in ["0", "1", "2", "3", "4", "5", "6", "7", "8", "9"]: if value.find(character) != -1: raise TypeError(f"useBonds[{idx}] ({value}) contains character only") useBonds[idx] = "".join(value.split()) # Remove all space useBonds[idx] = value.replace("-", "-") # Converting all False Bond useBonds[idx] = value.replace("#", "-") # Converting all False Bond connection = value.find('-') r_connection = value.rfind('-') if connection == -1 or connection != r_connection: warning(f"useBonds[{idx}] ({value}) is in-valid") false_bond.append(value) continue new_bonds.append(f'{value[(connection + 1):]}-{value[0:connection]}') useBonds = sorted(list(set(useBonds + new_bonds))) if false_bond: print("False Bond has been added:", false_bond) from .Preprocessing import BinarySearch for value in false_bond: del useBonds[BinarySearch(array_1d=useBonds, value=value, getIndex=True)] inputFullCheck(value=verbose, name="verbose", dtype='bool') inputFullCheck(value=useDoubleTriple, name="useDoubleTriple", dtype='bool') # [1]: Initialization print("-" * 30, self.createInformation, "-" * 30) start: float = perf_counter() MolArrayWithHs: List[Mol] = [None] * len(self._MolArray) BondCountWithHs: List[int] = [0] * len(self._MolArray) for idx, smiles in enumerate(self._MolArray): MolArrayWithHs[idx] = AddHs(MolFromSmiles(smiles)) BondCountWithHs[idx] = MolArrayWithHs[idx].GetNumBonds() initTime: float = perf_counter() - start InfoData: ndarray = np.zeros(shape=(sum(BondCountWithHs), len(self._PrebuiltInfoLabels)), dtype=np.object_) FalseLine: List[int] = [] currentLine: int = 0 cleaningRequestLoop: int = 1000 # For every 100 bonds pass, garbage will be activated # [2]: Acquire true information for idx, mol in enumerate(MolArrayWithHs): if currentLine % cleaningRequestLoop == 0: gc.collect() if verbose: print('Molecule:',self._MolArray[idx]) Kekulize(mol, clearAromaticFlags=True) for bond in mol.GetBonds(): # [2.1]: Bond Validation if bond.IsInRing() or (not useDoubleTriple and str(bond.GetBondType()) != 'SINGLE'): FalseLine.append(currentLine) currentLine += 1 continue # [2.2]: Separate Bond & Re-Validation TempMol = RWMol(mol) BeginAtom, EndAtom = bond.GetBeginAtom(), bond.GetEndAtom() atomType: List[str] = list(sorted([BeginAtom.GetSymbol(), EndAtom.GetSymbol()])) bondType = f'{atomType[0]}-{atomType[1]}' if useAtoms is not None: if atomType[0] not in useAtoms and atomType[1] not in useAtoms: FalseLine.append(currentLine) currentLine += 1 continue if useBonds is not None: if bondType not in useBonds: FalseLine.append(currentLine) currentLine += 1 continue TempMol.RemoveBond(BeginAtom.GetIdx(), EndAtom.GetIdx()) TempMol.GetAtomWithIdx(BeginAtom.GetIdx()).SetNoImplicit(True) TempMol.GetAtomWithIdx(EndAtom.GetIdx()).SetNoImplicit(True) SanitizeMol(TempMol) # Call SanitizeMol to update radicals (Used when kekulize before) # Convert the two molecules into a SMILES string FragA, FragB = sorted(MolToSmiles(TempMol).split('.')) FragA = MolToSmiles(MolFromSmiles(MolToSmiles(MolFromSmiles(FragA)))) FragB = MolToSmiles(MolFromSmiles(MolToSmiles(MolFromSmiles(FragB)))) InfoData[currentLine, :] = [self._MolArray[idx], FragA, FragB, bond.GetIdx(), bondType] currentLine += 1 del TempMol if FalseLine: FalseLine.sort() InfoData: ndarray = np.delete(InfoData, obj=FalseLine, axis=0) self.setData(value=InfoData, request='Info') self._timer['add'] += perf_counter() - start self._MolArray: List[str] = [] self._RecordedMolArray: Optional[ndarray] = None print(f'Executing Time: {self._timer["add"]:.6f} (s) with Initialization Time: {initTime:.6f} (s)') def preprocess(self, showConnection: bool = True, removeIdenticalRadicals: bool = True, removeTwoSameFragments: bool = True) -> None: """ Implementation of converting self.infoData for adaptation :param showConnection: Whether to make a duplication of A -> B + C to be A -> C + B :type showConnection: bool :param removeIdenticalRadicals: Whether to remove identical molecule in the close-range searching domain :type removeIdenticalRadicals: bool :param removeTwoSameFragments: Attach to showConnection. If True, when B == C, that reaction would be removed :type removeTwoSameFragments: bool :return: None """ # Hyper-parameter Verification inputFullCheck(value=showConnection, name="showConnection", dtype='bool') inputFullCheck(value=removeIdenticalRadicals, name="removeIdenticalRadicals", dtype='bool') if not showConnection and not removeIdenticalRadicals: warning(" No execution is implemented") return None inputFullCheck(value=removeTwoSameFragments, name="removeTwoSameFragments", dtype='bool') print("-" * 35, self.preprocess, "-" * 35) timer: float = perf_counter() InfoData: ndarray = self.getData(request="Info") if self.isTargetReferenceAvailable() \ else np.concatenate((self.getData(request="Info"), self.getTargetReference()), axis=1) if removeIdenticalRadicals: from .Preprocessing import RemoveRepeatedRadicals InfoData: ndarray = RemoveRepeatedRadicals(database=InfoData, RadicalCols=self._radical, MoleculeCol=self._mol, RemoveConnection=False) if showConnection: from .Preprocessing import DuplicateRadical InfoData: ndarray = DuplicateRadical(database=InfoData, RadicalCols=self._radical, RemoveTwoSameFragments=removeTwoSameFragments) if self.isTargetReferenceAvailable(): self.setTargetReference(value=InfoData[:, InfoData.shape[1] - 1:].copy()) self.setData(value=InfoData[:, InfoData.shape[1] - 1:].copy(), request="Info") else: self.setData(value=InfoData, request="Info") self._timer['add'] += perf_counter() - timer gc.collect() return None def addDefinedArray(self, database: ndarray, MoleculeCol: int = 0, RadicalCols: MULTI_COLUMNS = (1, 2), BondIdxCol: int = 3, BondTypeCol: int = 4, TargetCol: int = None, isZeroIndex: bool = True, sorting: bool = False) -> None: """ Implementation of Reading Molecule with Complete Information :param database: The array of database :type database: ndarray :param MoleculeCol: The position of molecule in database :type MoleculeCol: int :param RadicalCols: The position of radical columns in database :type RadicalCols: List[int] or Tuple[int] :param BondIdxCol: The position of bond index in database :type BondIdxCol: int :param BondTypeCol: The position of bond InputKey in database :type BondTypeCol: int :param TargetCol: The position of bond dissociation energy in database :type TargetCol: int or None :param isZeroIndex: Whether to guarantee if all the index is starting from zero. If False, all the bond index will be decrease by one (1) :type isZeroIndex: bool :param sorting: Whether to implement sorting. Sorting will boost up time-complexity from O(N*K) into O(N + NlogN) with k is the number of bonds and N is the number of row :type sorting: bool :return: None """ # Hyper-parameter Verification if True: database: ndarray = _FixData_(database=database) maxSize: int = database.shape[1] EvaluateInputPosition(maxSize=maxSize, MoleculeCol=MoleculeCol, RadicalCols=RadicalCols, BondIdxCol=BondIdxCol, BondTypeCol=BondTypeCol, TargetCol=TargetCol) column: List[int] = allocateFeatureLocation(MoleculeCol=MoleculeCol, RadicalCols=RadicalCols, BondIdxCol=BondIdxCol, BondTypeCol=BondTypeCol) inputFullCheck(value=isZeroIndex, name='isZeroIndex', dtype='bool') inputFullCheck(value=sorting, name='sorting', dtype='bool') print("-" * 31, self.addDefinedArray, "-" * 32) timer: float = self._startNewProcess_() if not isZeroIndex: database[:, BondIdxCol] = np.array(database[:, BondIdxCol], dtype=np.uint16) - 1 if sorting: database = SortWithIdx(database=database, IndexCol=MoleculeCol, SortCol=BondIdxCol, IndexSorting=sorting) self.setData(value=np.array(database[:, column], dtype=np.object_), request="Info") if TargetCol is not None: self.setData(value=np.array(database[:, TargetCol:TargetCol + 1], dtype=np.float32), request="Target") self._timer['add']: float = perf_counter() - timer def addDefinedFile(self, FilePath: str, MoleculeCol: int = 0, RadicalCols: MULTI_COLUMNS = (1, 2), BondIdxCol: int = 3, BondTypeCol: int = 4, TargetCol: int = None, isZeroIndex: bool = True, sorting: bool = False, ascending: bool = True) -> None: database: ndarray = self._readCsvFile_(path=FilePath, Molecule=MoleculeCol, Radicals=RadicalCols, BondIndex=BondIdxCol, BondType=BondTypeCol, Target=TargetCol, sorting=sorting, ascending=ascending) self.addDefinedArray(database=database, MoleculeCol=MoleculeCol, RadicalCols=RadicalCols, BondIdxCol=BondIdxCol, BondTypeCol=BondTypeCol, TargetCol=TargetCol, isZeroIndex=isZeroIndex, sorting=False) return self._displayAfterReadCsv_() # [3.2]: Multi-Adding Method: ---------------------------------------------------------------------------------- def addArray_BondIndex(self, database: ndarray, MoleculeCol: int, BondIdxCol: int, TargetCol: int = None, isZeroIndex: bool = True, simplifyHydro: bool = True, doubleTriple: bool = False, sorting: bool = False, ascending: bool = True) -> None: """ Implementation of Reading Molecule by SMILES and Bond Index :param database: The array of database :type database: ndarray or pd.DataFrame :param MoleculeCol: The position of molecule in database :type MoleculeCol: int :param BondIdxCol: The position of bond index in database :type BondIdxCol: int :param TargetCol: The position of bond dissociation energy in database :type TargetCol: int or None :param isZeroIndex: Whether to guarantee if all the index is starting from zero. If False, all the bond index will be decrease by one (1) :type isZeroIndex: bool :param sorting: Whether to implement sorting. Sorting will boost up time-complexity from O(N*K) into O(N + NlogN) with k is the number of bonds and N is the number of row :type sorting: bool :param ascending: Whether to sort ascending sorting :type ascending: bool :param simplifyHydro: Whether to not include normal Hydro in the SMILES (Default to be True) :type simplifyHydro: bool :param doubleTriple: Whether to allow double bonds - triple bonds into breakable mode (default to be False) :type doubleTriple: bool :return: None """ # Hyper-parameter Verification if True: database: ndarray = _FixData_(database=database) maxSize: int = database.shape[1] EvaluateInputPosition(maxSize=maxSize, MoleculeCol=MoleculeCol, BondIdxCol=BondIdxCol, TargetCol=TargetCol) label: List[int] = allocateFeatureLocation(MoleculeCol=MoleculeCol, RadicalCols=None, BondIdxCol=BondIdxCol, BondTypeCol=None, TargetCol=None) inputFullCheck(value=isZeroIndex, name="isZeroIndex", dtype='bool') inputFullCheck(value=sorting, name="sorting", dtype='bool') inputFullCheck(value=simplifyHydro, name="simplifyHydro", dtype='bool') inputFullCheck(value=doubleTriple, name="doubleTriple", dtype='bool') print("-" * 30, self.addArray_BondIndex, "-" * 30) # [1]: Initialization timer: float = self._startNewProcess_() if sorting: inputFullCheck(value=ascending, name="ascending", dtype='bool') database = SortWithIdx(database=database, IndexCol=MoleculeCol, SortCol=BondIdxCol, IndexSorting=sorting, IndexReverse=not ascending) InfoData: ndarray = np.zeros(shape=(database.shape[0], len(self._PrebuiltInfoLabels)), dtype=np.object_) InfoData[:, [self._mol, self._bondIndex]] = database[:, label] if not isZeroIndex: InfoData[:, self._bondIndex] -= 1 IndexData: List[Tuple[int, str]] = GetIndexOnArrangedData(database=InfoData, column=self._mol, get_last=True) FalseLine: List[int] = [] AddLine: Tuple[int, ...] = (self._radical[0], self._radical[1], self._bondType) # [2]: Retrieving radicals and bond type for molSet in range(0, len(IndexData) - 1): begin, end = IndexData[molSet][0], IndexData[molSet + 1][0] try: mol: Mol = AddHs(MolFromSmiles(str(InfoData[begin, self._mol]))) except (ValueError, TypeError, RuntimeError): warning(f" At row #[{begin},{end - 1}]: Molecule: {InfoData[begin, self._mol]} (False Molecule)") for line in range(begin, end): FalseLine.append(line) continue InfoData[begin:end, AddLine], Error = \ getRadicalsByBondIdx(ParentMol=mol, bondIdx=InfoData[begin:end, self._bondIndex], simplifyHydro=simplifyHydro, reverse=False, doubleTriple=doubleTriple) if len(Error[0]) == 0: continue for idx, value in enumerate(Error[0]): FalseLine.append(begin + value) warning(f" False Bond Index (={InfoData[begin + value, self._bondIndex]} at row #{begin + value}: " f"Molecule: {InfoData[begin, self._mol]}") if TargetCol is not None: TrueReference: ndarray = np.array(database[:, TargetCol:TargetCol + 1], dtype=np.float32) InfoData, TrueReference = _tuneFinalDataset_(InfoData=InfoData, FalseLine=FalseLine, TrueReference=TrueReference) else: InfoData, TrueReference = _tuneFinalDataset_(InfoData=InfoData, FalseLine=FalseLine, TrueReference=None) self.setData(value=InfoData, request='Info') self.setTargetReference(value=TrueReference) self._timer['add'] = perf_counter() - timer def addFile_BondIndex(self, FilePath: str, MoleculeCol: int, BondIdxCol: int, TargetCol: int = None, isZeroIndex: bool = True, simplifyHydro: bool = True, doubleTriple: bool = False, sorting: bool = False, ascending: bool = True) -> None: database: ndarray = self._readCsvFile_(path=FilePath, Molecule=MoleculeCol, BondIndex=BondIdxCol, Target=TargetCol, sorting=sorting, ascending=ascending) self.addArray_BondIndex(database=database, MoleculeCol=self._mol, BondIdxCol=self._bondIndex, TargetCol=TargetCol, isZeroIndex=isZeroIndex, simplifyHydro=simplifyHydro, doubleTriple=doubleTriple, sorting=False, ascending=ascending) return self._displayAfterReadCsv_() def addArray_AtomIndex(self, database: INPUT_FOR_DATABASE, MoleculeCol: int, AtomCols: MULTI_COLUMNS, TargetCol: int = None, isZeroIndex: Union[bool, List[bool], Tuple[bool, ...]] = True, simplifyHydro: bool = True, doubleTriple: bool = False, sorting: bool = False, ascending: bool = True) -> None: """ Implementation of Reading Molecule by SMILES and Atomic Index :param database: The array of database :type database: ndarray or pd.DataFrame :param MoleculeCol: The position of molecule in database :type MoleculeCol: int :param AtomCols: The position of atom columns in database :type AtomCols: List[int] or Tuple[int] :param TargetCol: The position of bond dissociation energy in database :type TargetCol: int or None :param isZeroIndex: Whether to guarantee if all the index is starting from zero. If False, all the bond index will be decrease by one (1) :type isZeroIndex: bool :param simplifyHydro: Whether to not include normal Hydro in the SMILES (Default to be True) :type simplifyHydro: bool :param doubleTriple: Whether to allow double bonds - triple bonds into breakable mode (default to be False) :type doubleTriple: bool :param sorting: Whether to implement sorting. Sorting will boost up time-complexity from O(N*K) into O(N + NlogN) with k is the number of bonds and N is the number of row :type sorting: bool :param ascending: Whether to sort ascending sorting :type ascending: bool :return: None """ # Hyper-parameter Verification if True: database: ndarray = _FixData_(database=database) maxSize: int = database.shape[1] EvaluateInputPosition(maxSize=maxSize, MoleculeCol=MoleculeCol, AtomCols=AtomCols, TargetCol=TargetCol) inputFullCheck(value=isZeroIndex, name='isZeroIndex', dtype='List-bool-Tuple', delimiter='-') if isinstance(isZeroIndex, bool): modified_isZeroIndex: Tuple[bool, bool] = (isZeroIndex, isZeroIndex) else: if len(isZeroIndex) != 2: raise TypeError('isZeroIndex must have two boolean inputs') inputFullCheck(value=isZeroIndex[0], name='isZeroIndex[0]', dtype='bool') inputFullCheck(value=isZeroIndex[1], name='isZeroIndex[1]', dtype='bool') modified_isZeroIndex: Tuple[bool, bool] = isZeroIndex inputFullCheck(value=sorting, name='sorting', dtype='bool') inputFullCheck(value=simplifyHydro, name='simplifyHydro', dtype='bool') inputFullCheck(value=doubleTriple, name='doubleTriple', dtype='bool') warning(f" This method is not robust, please re-use {self.addArray_Radicals} to validate your bond index") # [1]: Initialization print("-" * 30, self.addArray_AtomIndex, "-" * 30) timer: float = self._startNewProcess_() if sorting: inputFullCheck(value=ascending, name='ascending', dtype='bool') database = ArraySorting(database=database, column=MoleculeCol, reverse=not ascending) InfoData: ndarray = np.zeros(shape=(database.shape[0], len(self._PrebuiltInfoLabels)), dtype=np.object_) InfoData[:, self._mol] = database[:, MoleculeCol] for index in range(0, len(AtomCols)): if not modified_isZeroIndex[index]: database[:, AtomCols[index]] = np.array(database[:, AtomCols[index]], dtype=np.uint16) - 1 FalseLine: List[int] = [] IndexData: List[Tuple[int, str]] = GetIndexOnArrangedData(database=database, column=self._mol, get_last=True) AddLine: Tuple[int, ...] = (self._radical[0], self._radical[1], self._bondType) # [2]: Retrieving radicals for molSet in range(0, len(IndexData) - 1): begin, end = IndexData[molSet][0], IndexData[molSet + 1][0] try: mol: Mol = AddHs(MolFromSmiles(str(InfoData[begin, self._mol]))) except (ValueError, TypeError, RuntimeError): warning(f" At row #[{begin},{end - 1}]: Molecule: {InfoData[begin, self._mol]} (False Molecule)") for line in range(begin, end): FalseLine.append(line) continue BondIndex, Error = getBondIndexByAtom(ParentMol=mol, atomicIndex=database[begin:end, AtomCols]) if len(Error[0]) != 0: for idx, value in enumerate(Error[0]): FalseLine.append(begin + value) warning(f" False Atomic Index {Error[1][idx]} at row {begin + value} with " f"molecule: {InfoData[begin, self._mol]}") InfoData[begin:end, AddLine], NewError = \ getRadicalsByBondIdx(ParentMol=mol, bondIdx=BondIndex, simplifyHydro=simplifyHydro, reverse=False, doubleTriple=doubleTriple) InfoData[begin:end, self._bondIndex] = BondIndex if len(NewError[0]) == 0: continue for idx, value in enumerate(NewError[0]): FalseLine.append(begin + value) warning(f" False Bond Index (={InfoData[begin + value, self._bondIndex]} at row #{begin + value}: " f"Molecule: {InfoData[begin, self._mol]}") if TargetCol is not None: TrueReference: ndarray = np.array(database[:, TargetCol:TargetCol + 1], dtype=np.float32) InfoData, TrueReference = _tuneFinalDataset_(InfoData=InfoData, FalseLine=FalseLine, TrueReference=TrueReference) if sorting: total: ndarray = SortWithIdx(database=np.concatenate(arrays=(InfoData, TrueReference), axis=1), IndexCol=self._mol, SortCol=self._bondIndex, IndexSorting=sorting, IndexReverse=not ascending) TrueReference = total[:, total.shape[1] - 1:].copy() InfoData = np.delete(arr=total, obj=[total.shape[1] - 1], axis=1) del total else: InfoData, TrueReference = _tuneFinalDataset_(InfoData=InfoData, FalseLine=FalseLine, TrueReference=None) if sorting: InfoData = SortWithIdx(database=InfoData, IndexCol=self._mol, SortCol=self._bondIndex, IndexSorting=sorting, IndexReverse=not ascending) self.setData(value=InfoData, request='Info') self.setTargetReference(value=TrueReference) self._timer['add'] = perf_counter() - timer def addFile_AtomIndex(self, FilePath: str, MoleculeCol: int, AtomCols: MULTI_COLUMNS, TargetCol: int = None, isZeroIndex: Union[bool, List, Tuple] = True, simplifyHydro: bool = True, doubleTriple: bool = False, sorting: bool = False, ascending: bool = True) -> None: database: ndarray = self._readCsvFile_(path=FilePath, Molecule=MoleculeCol, Radicals=AtomCols, Target=TargetCol, sorting=sorting, ascending=ascending) self.addArray_AtomIndex(database=database, MoleculeCol=self._mol, AtomCols=self._radical, TargetCol=TargetCol, isZeroIndex=isZeroIndex, simplifyHydro=simplifyHydro, doubleTriple=doubleTriple, sorting=sorting, ascending=ascending) return self._displayAfterReadCsv_() def addArray_Radicals(self, database: INPUT_FOR_DATABASE, MoleculeCol: int, RadicalCols: MULTI_COLUMNS, TargetCol: int = None, sorting: bool = False, rematch: bool = True, ascending: bool = True) -> None: """ Implementation of Reading Molecule by SMILES and Radicals :param database: The array of database :type database: ndarray or pd.DataFrame :param MoleculeCol: The position of molecule in database :type MoleculeCol: int :param RadicalCols: The position of radical columns in database :type RadicalCols: List[int] or Tuple[int] :param TargetCol: The position of bond dissociation energy in database :type TargetCol: int or None :param rematch: Whether to guarantee if the two radicals is accurate (default to be True). :type rematch: bool :param sorting: Whether to implement sorting. Sorting will boost up time-complexity from O(N*K) into O(N + NlogN) with k is the number of bonds and N is the number of row :type sorting: bool :param ascending: Whether to sort ascending sorting :type ascending: bool :return: None """ # Hyper-parameter Verification if True: database: ndarray = _FixData_(database=database) maxSize: int = database.shape[1] EvaluateInputPosition(maxSize=maxSize, MoleculeCol=MoleculeCol, RadicalCols=RadicalCols, TargetCol=TargetCol) label: List[int] = allocateFeatureLocation(MoleculeCol=MoleculeCol, RadicalCols=RadicalCols, BondIdxCol=None, BondTypeCol=None, TargetCol=None) inputFullCheck(value=rematch, name='rematch', dtype='bool') inputFullCheck(value=sorting, name='sorting', dtype='bool') # [1]: Initialization print("-" * 30, self.addArray_Radicals, "-" * 30) timer: float = self._startNewProcess_() if sorting: inputFullCheck(value=ascending, name='ascending', dtype='bool') database = ArraySorting(database=database, column=MoleculeCol, reverse=not ascending) InfoData: ndarray = np.zeros(shape=(database.shape[0], len(self._PrebuiltInfoLabels)), dtype=np.object_) InfoData[:, [self._mol, self._radical[0], self._radical[1]]] = database[:, label] # [2]: Retrieving radicals IndexData: List[Tuple[int, str]] = GetIndexOnArrangedData(database=database, column=MoleculeCol, get_last=True) ReversedRadicalCols: Tuple[int, int] = (RadicalCols[1], RadicalCols[0]) ReversedLocation: List[int] = [0, 2, 1, 3, 4] FalseLine: List[int] = [] AddLine: List[int] = [self._bondIndex, self._bondType] for row in range(0, len(IndexData) - 1): begin, end = IndexData[row][0], IndexData[row + 1][0] try: mol: Mol = AddHs(MolFromSmiles(str(InfoData[begin, self._mol]))) except (RuntimeError, ValueError, TypeError): warning(f" At row #[{begin},{end - 1}]: Molecule: {InfoData[begin, self._mol]} (False Molecule)") for line in range(begin, end): FalseLine.append(line) continue gc.collect() for current in range(begin, end): try: FragX = AddHs(MolFromSmiles(str(InfoData[current, self._radical[0]]))) FragY = AddHs(MolFromSmiles(str(InfoData[current, self._radical[1]]))) except (RuntimeError, ValueError, TypeError): warning(f" At row #{current}: Two Fragments are incorrect: " f"{InfoData[current, self._radical[0]]} <-> {InfoData[current, self._radical[1]]}") FalseLine.append(current) continue if current != begin: if ArrayEqual(database[current, RadicalCols], database[current - 1, RadicalCols]): InfoData[current, self._bondIndex:] = InfoData[current - 1, self._bondIndex:] elif ArrayEqual(database[begin, RadicalCols], database[current - 1, ReversedRadicalCols]): InfoData[current, self._radical[0]:] = InfoData[begin - 1, ReversedLocation] BondIndex: int = getBondIndex(ParentMol=mol, FragMolX=FragX, FragMolY=FragY, current=0, maxBonds=int(mol.GetNumBonds()), rematch=rematch) if BondIndex == -1: warning(f'At row {current}: Remove ChiralTag Specification.') x, y, z = \ str(CanonSmiles(str(database[begin, MoleculeCol]), useChiral=False)), \ str(CanonSmiles(str(database[current, RadicalCols[0]]), useChiral=False)), \ str(CanonSmiles(str(database[current, RadicalCols[1]]), useChiral=False)) mol, FragX, FragY = AddHs(MolFromSmiles(x)), AddHs(MolFromSmiles(y)), AddHs(MolFromSmiles(z)) BondIndex: int = getBondIndex(ParentMol=mol, FragMolX=FragX, FragMolY=FragY, current=0, maxBonds=int(mol.GetNumBonds()), rematch=rematch) if BondIndex == -1: warning(f" No bond was found at molecule {InfoData[begin, self._mol]} with this fragments: " f" {InfoData[current, self._radical[0]]} <-> {InfoData[current, self._radical[1]]}") FalseLine.append(current) continue bond = mol.GetBondWithIdx(BondIndex) atomType = sorted([bond.GetBeginAtom().GetSymbol(), bond.GetEndAtom().GetSymbol()]) InfoData[row, AddLine] = [BondIndex, f'{atomType[0]}-{atomType[1]}'] if TargetCol is not None: TrueReference: ndarray = np.array(database[:, TargetCol:TargetCol + 1], dtype=np.float32) InfoData, TrueReference = _tuneFinalDataset_(InfoData=InfoData, FalseLine=FalseLine, TrueReference=TrueReference) if sorting: total = SortWithIdx(database=np.concatenate(arrays=(InfoData, TrueReference), axis=1), IndexCol=self._mol, SortCol=self._bondIndex, IndexSorting=sorting, IndexReverse=not ascending) TrueReference = total[:, total.shape[1] - 1:].copy() InfoData = np.delete(arr=total, obj=[total.shape[1] - 1], axis=1) del total else: InfoData, TrueReference = _tuneFinalDataset_(InfoData=InfoData, FalseLine=FalseLine, TrueReference=None) if sorting: InfoData = SortWithIdx(database=InfoData, IndexCol=self._mol, SortCol=self._bondIndex, IndexSorting=sorting, IndexReverse=not ascending) self.setData(value=InfoData, request='Info') self.setTargetReference(value=TrueReference) self._timer['add'] = perf_counter() - timer def addFile_Radicals(self, FilePath: str, MoleculeCol: int, RadicalCols: MULTI_COLUMNS, TargetCol: int = None, sorting: bool = False, rematch: bool = True, ascending: bool = True) -> None: database: ndarray = self._readCsvFile_(path=FilePath, Molecule=MoleculeCol, Radicals=RadicalCols, Target=TargetCol, sorting=sorting, ascending=ascending) self.addArray_Radicals(database=database, MoleculeCol=self._mol, RadicalCols=self._radical, TargetCol=TargetCol, sorting=False, rematch=rematch, ascending=ascending) return self._displayAfterReadCsv_() # [4]: Prediction Data: ------------------------------------------------------------------------------------------ def createData(self, cleanMemoryLoop: int = 1000, activateBondTypeData: bool = True, activateExtraData: bool = True, activateFingerprintData: bool = True, activateSpecificFingerprint: Tuple[bool, ...] = (True, True)) -> None: """ Implementation of create data and features :param cleanMemoryLoop: Tracking progress (default to be 1000) :type cleanMemoryLoop: int or bool :param activateBondTypeData: Whether the bond type identifier was marked. :type activateBondTypeData: bool :param activateExtraData: Whether the extra identifier (no bond type) was marked. :type activateExtraData: bool :param activateFingerprintData: Whether the fingerprint identifier (no bond type) was marked. :type activateFingerprintData: bool :param activateSpecificFingerprint: Whether to activate/deactivate at some specific locations :type activateSpecificFingerprint: Tuple[bool, bool] :return: None """ # Hyper-parameter Verification if True: if not self.isDataAvailable(request='Info'): if self._MolArray is not None: warning(' No data available. Please use function: create_information') self.createInformation() else: raise TypeError("No data available. Need to reconsider your code") else: if self.isTargetReferenceAvailable(): if self.getData(request='Info').shape[0] != self.getTargetReference().shape[0]: raise ValueError("Error Source Code: The number of observations is not compatible.") if self._dataset.getInputKey() == 1: warning(" We are assuming you try to predict with pre-defined environment. However, the result proposed" " later is not accurately robust. \nMAE and RMSE would probably be extra 10% - 20% higher, as" "stereochemistry in this case will be denoted as zero as well as some cis-trans encoding.") warning(" This implementation is only works if that molecule is extremely small such as CH4 or C2H6.") self._generator.refreshAttribute() # [1]: Generate Features print("-" * 80) print('The trained model is trying to create data and features. Please wait for a sec ...') timer: float = perf_counter() self._generator.activate(FingerprintData=activateFingerprintData, ExtraData=activateExtraData, BondTypeData=activateBondTypeData, SpecificFingerprint=activateSpecificFingerprint) self._generator.createData(cleaningLoopMemory=cleanMemoryLoop, DataCleaning=False) self._timer["create"] = perf_counter() - timer print(f'Executing Time for Data Creation Time: {self._timer["create"]:.6f}s') # [2]: Pre-processing data timer: float = perf_counter() self._dataset.testPrep(UnlockKey=self.getKey()) self._timer["process"] = perf_counter() - timer print(f'Executing Time for Processing Time: {self._timer["process"]:.6f}s') gc.collect() def _getLabelsOfLastLayer_(self) -> List[str]: return self.TF_model.getLabelsOfLastLayer() def _verifyPredict_(self, standardize: bool, getLastLayer: bool, force: bool, Sfs: int) -> None: if not (self.isDataAvailable(request="Info") and self.isDataAvailable(request="CData") and self.isDataAvailable(request="SData")): raise ValueError("No pre-defined value or information was found") inputFullCheck(value=standardize, name="standardize", dtype='bool') if not self._dataset.getIsContainedFragmentedRadicals() and standardize: warning("The following input key does not allow standardization, thus disabling the standardization.") standardize = False inputFullCheck(value=getLastLayer, name="getLastLayer", dtype='bool') if self.getData(request='CData').shape[0] > int(3e5) and getLastLayer: warning(' Your data file contained too many samples it is hard to acquire all of those data.') sleep(1e-4) if self._isStandardized and standardize: warning(" Your current database has been standardized once. Please be careful.") inputFullCheck(value=force, name="force", dtype='bool') inputCheckRange(value=Sfs, name="Sfs", maxValue=64, minValue=0) def _predictFirstTime_(self, force: bool, standardize: bool, get_last_layer: bool): CData, SData = self.getData(request="CData"), self.getData(request="SData") if force or (not force and self.y_pred is None): self.y_pred = self.TF_model.predict(CData=CData, SData=SData, reverse=False) else: warning(" We already have the prediction. Disable prediction") sleep(1e-4) if standardize: print("However, standardization can also be allowed") if not get_last_layer: return None if force or (not force and self.InterOutput is None): print("AIP-BDET is retrieved the last layer value: ...") self.InterOutput = self.TF_model.getLastLayerInput(CData=CData, SData=SData, reverse=False) else: warning(" We already have the result at the final layer. Disable prediction") sleep(1e-4) if standardize: print("However, standardization can also be allowed") return None def _standardize(self, get_last_layer: bool) -> None: """ Implementation of standardizing prediction: A -> B + C will be equal as A --> C + B :param get_last_layer: Whether to retrieve the last training layer (attached to self.predict()) :type get_last_layer: bool :return: None """ start: float = perf_counter() CData, SData, TargetReference = self.getFeatures() self.y_pred /= 2 self.y_pred += self.TF_model.predict(CData=CData, SData=SData, reverse=True) / 2 if get_last_layer: print("AIP-BDET is retrieved the last layer value: ...") self.InterOutput /= 2 self.InterOutput += self.TF_model.getLastLayerInput(CData=CData, SData=SData, reverse=True) / 2 gc.collect() exec_time: float = perf_counter() - start self._timer["predictFunction"] += exec_time self._timer["predictMethod"] += exec_time def _exportPrediction_(self, output: str, getLastLayer: bool, convertKJ_eV: int, sorting: bool, bde_sorting: bool, ascending: bool, Sfs: Optional[int], display: bool) -> None: if True: inputFullCheck(value=output, name="output", dtype='str-None', delimiter='-') inputFullCheck(value=bde_sorting, name="bde_sorting", dtype='bool') inputFullCheck(value=sorting, name="molecule_sorting", dtype='bool') inputCheckRange(value=Sfs, name="Sfs", maxValue=64, minValue=0) inputCheckRange(value=convertKJ_eV, name="Sfs", maxValue=4, minValue=0) print("Result Converting: ...") # [0]: Preparation if convertKJ_eV == 1: self.y_pred *= 4.184 elif convertKJ_eV == 2: self.y_pred *= 4.1868 elif convertKJ_eV == 3: # self.y_pred *= 1 / 23.0605476253 self.y_pred *= 1 / 23.0605 # [1]: Sort position: Calculate position needed for sorting BDE only InfoData, EnvData, TargetData = self.getInformationData() InfoLabels, EnvLabels, TargetLabels = self.getInformationLabels() max_uint8: int = np.iinfo(np.uint8).max self.BuiltDataFrame: pd.DataFrame = pd.DataFrame(data=InfoData, index=None, columns=InfoLabels) SortingPosition: int = InfoData.shape[1] + 1 maxValue = np.uint8 if self.BuiltDataFrame[InfoLabels[self._bondIndex]].max() < max_uint8 else np.uint16 self.BuiltDataFrame[InfoLabels[self._bondIndex]] = \ self.BuiltDataFrame[InfoLabels[self._bondIndex]].astype(maxValue) if EnvData is not None: for idx, sorting_label in enumerate(EnvLabels): self.BuiltDataFrame[sorting_label] = EnvData[:, idx] SortingPosition += EnvData.shape[1] maxValue = np.uint8 if self.BuiltDataFrame[EnvLabels[-1]].max() < max_uint8 else np.uint16 self.BuiltDataFrame[EnvLabels[-1]] = self.BuiltDataFrame[EnvLabels[-1]].astype(maxValue) # [2]: Generate DataFrame if self.isTargetReferenceAvailable(): target: ndarray = self.getTargetReference().astype(np.float32) self.BuiltDataFrame[self._SavedPredLabels[0]] = target if Sfs is None else target.round(Sfs) self.BuiltDataFrame[self._SavedPredLabels[1]] = self.y_pred if Sfs is None else self.y_pred.round(Sfs) self.BuiltDataFrame[self._SavedPredLabels[2]] = np.absolute(target - self.y_pred) else: self.BuiltDataFrame[self._SavedPredLabels[1]] = self.y_pred if Sfs is None else self.y_pred.round(Sfs) if getLastLayer: self.BuiltDataFrame[self._getLabelsOfLastLayer_()] = \ self.InterOutput if Sfs is None else self.InterOutput.astype(np.float32) # [2.x]: Extra Work in needed if sorting: sorting_label = [InfoLabels[self._mol], self.BuiltDataFrame.columns[SortingPosition]] \ if bde_sorting else [InfoLabels[self._mol], InfoLabels[self._bondIndex]] ascend: List[bool] = [ascending] * len(sorting_label) if bde_sorting: ascend[0] = input("Do you want the molecule to be sorted ascending (Yes/No)").lower()[0] in ('y', 't') self.BuiltDataFrame.sort_values(sorting_label, inplace=True, kind='mergesort', ascending=ascend) if output is not None: ExportFile(DataFrame=self.BuiltDataFrame, FilePath=output) if self.y_pred.shape[0] <= 125 and display: from sys import maxsize pd.set_option('display.max_rows', None) pd.set_option('display.max_columns', None) np.set_printoptions(threshold=maxsize) print(self.BuiltDataFrame[self._PrebuiltInfoLabels + [self._SavedPredLabels[1]]]) return None def _displayPredictionTiming_(self, build_dataframe: bool) -> None: print('-' * 80) print('The AIP-BDET has finished prediction. Please give us some credit') size: int = self.getData(request="Info").shape[0] convertToBondTime: Callable = lambda t: 1e3 * t / size speed: str = '-~-~-> Speed' print(f'Adding Dataset: {self._timer["add"]:.6f} (s) ' f'{speed}: {convertToBondTime(self._timer["add"]):.6f} (ms/bond)') print(f'Create Features: {self._timer["create"]:.6f} (s) ' f'{speed}: {convertToBondTime(self._timer["create"]):.6f} ms / bond') print(f'Proceed Dataset: {self._timer["process"]:.6f} (s) ' f'{speed}: {convertToBondTime(self._timer["process"]):.6f} ms / bond') print(f'Prediction Time Only: {self._timer["predictFunction"]:.6f} (s) ' f'{speed}: {convertToBondTime(self._timer["predictFunction"]):.6f} (ms/bond)') if build_dataframe: timing: float = self._timer["predictMethod"] - self._timer["predictFunction"] print(f'Constructing DataFrame: {timing:.6f} (s) {speed}: {convertToBondTime(timing):.6f} (ms/bond)') print(f'Full Process: {self._getProcessTime_() :.6f} (s) ' f'{speed}: {convertToBondTime(self._getProcessTime_()):.6f} ms / bond') return None def predict(self, output: str = None, display: bool = True, standardize: bool = False, getLastLayer: bool = False, force: bool = False, Sfs: int = 6, bde_sorting: bool = False, sorting: bool = False, ascending: bool = True, convertKJ_eV: bool = 0, build_dataframe: bool = True) -> Optional[pd.DataFrame]: """ Implementation of predicting values :param output: Directory of output :type output: str :param display: Whether to show all prediction in DataFrame (only active if less than 125 prediction rows) :type display: bool :param standardize: Whether to standardize all prediction (BDE) :type standardize: bool :param bde_sorting: Whether to sort BDE by molecule :type bde_sorting: bool :param sorting: Whether to sort by molecule along with index :type sorting: bool :param ascending: Allow to reverse prediction :type ascending: bool :param force: Force the result to be updated :type force: bool :param getLastLayer: Whether to retrieve last layer :type getLastLayer: bool :param Sfs: Number of integer for rounding calculation :type Sfs: int :param convertKJ_eV: The mode for conversion to other unit :type convertKJ_eV: int :param build_dataframe: Whether to export dataframe :type build_dataframe: bool :param warningSamples: Give warning when meet large file :type warningSamples: int :return: pd.DataFrame """ # [0]: Hyper-parameter Verification self._verifyPredict_(standardize=standardize, getLastLayer=getLastLayer, force=force, Sfs=Sfs) # [1]: Predict target print("-" * 30, self.predict, "-" * 30) print('AIP-BDET is predicting data. Please wait for a secs ...') start: float = perf_counter() self._predictFirstTime_(force=force, standardize=standardize, get_last_layer=getLastLayer) if not self._dataset.getIsContainedFragmentedRadicals(): warning(f" There are no benefits or performance gained from standardization " f"if not contained radical fragments. Thus, disable standardization") standardize: bool = False # [2]: Standardize target if standardize: print("AIP-BDET is standardizing: ...") self._isStandardized: bool = True self._standardize(get_last_layer=getLastLayer) self._timer["predictFunction"]: float = perf_counter() - start if build_dataframe: self._exportPrediction_(output=output, getLastLayer=getLastLayer, convertKJ_eV=convertKJ_eV, sorting=sorting, bde_sorting=bde_sorting, ascending=ascending, Sfs=Sfs, display=display) self._timer["predictMethod"] = perf_counter() - start self._displayPredictionTiming_(build_dataframe=build_dataframe) return self.BuiltDataFrame # [5]: Other Methods ---------------------------------------------------------------------------------------------- # [5.1]: Density Estimation & Visualization ----------------------------------------------------------------------- def _getCurrentCPosition_(self): return self._dataset.getCurrentCLabelsInfo()[0], self._dataset.getCurrentCLabelsInfo()[1] def _getCurrentSPosition_(self): return self._dataset.getCurrentSLabelsInfo()[0], self._dataset.getCurrentSLabelsInfo()[1] def _getSavedCPosition_(self): return self._dataset.SavedCLabelsInfo[0], self._dataset.SavedCLabelsInfo[1] def _getSavedSPosition_(self): return self._dataset.SavedSLabelsInfo[0], self._dataset.SavedSLabelsInfo[1] def _getExtraSaved_(self) -> Union[ndarray, List[str]]: return self._dataset.getSavedCRemainderLabels()[0] def _getBondTypeSaved_(self) -> Union[ndarray, List[str]]: return self._dataset.getSavedCRemainderLabels()[1] def _verifyLastVisualizer_(self, mode: str, marker_trace: Optional[str]) -> Tuple[ndarray, str, str]: # [1]: Data Checker if self.InterOutput is None or self.y_pred is None: warning('No data is available. We are using available data. Last layer is applied') self.predict(standardize=True, getLastLayer=True, force=False, build_dataframe=True) # [2]: Hyper-parameter Verification if marker_trace is not None: inputFullCheck(value=marker_trace, name='marker_trace', dtype='str') if marker_trace.lower() not in ['random', 'circle', 'circle-open', 'square', 'square-open', 'diamond', 'diamond-open', 'cross', 'x']: link: str = "https://plotly.com/python/reference/scattergl/#scattergl-marker-symbol" warning(f" See all plotly markers at here: {link}. Switch back to default (='circle'") marker_trace: str = "circle" else: marker_trace: str = "circle" inputFullCheck(value=mode, name='mode', dtype='str') if mode not in ['pred', 'true', 'error', 'abs_error']: raise TypeError("Your mode should be one of these values: " "['pred', 'true', 'error', 'abs_error']") if mode == 'true': if self.getTargetReference() is None: raise ValueError("No comparing reference in this mode") target, associated_labels = self.getTargetReference(), self._SavedPredLabels[0] elif mode == 'pred': if self.y_pred is None: raise ValueError("No prediction in this mode") target, associated_labels = self.y_pred, self._SavedPredLabels[1] else: if self.getTargetReference() is None or self.y_pred is None: raise ValueError("No error could be found in this mode") associated_labels = self._SavedPredLabels[2] target: ndarray = self.getTargetReference() - self.y_pred if mode == 'abs_error': target = np.absolute(target) return target, associated_labels, marker_trace def getLastLayerDataframeForVisualize(self, mode: str): # [1]: Update the result target, targetLabel, marker_trace = self._verifyLastVisualizer_(mode=mode, marker_trace=None) datatype = np.object_ # [2]: Initialize data self._timer["visualize"] = perf_counter() print("-" * 35, self.visualize, "-" * 35) print('[1]: Generate Features for Visualization') WeightsMultiplier = bool(input("Allowing multiply your last layer result (Y/N): ").lower()[0] == 'y') data: ndarray = self._ConcatenateData_(features=self.InterOutput, target=target) if WeightsMultiplier and self._getLabelsOfLastLayer_() is not None: weight: ndarray = self.TF_model.get_layer(name=self.TF_model.getLastLayerName()).get_weights()[0] for col in range(data.shape[1] - 2): data[:, col + 1:col + 2] *= weight[col, 0] elif WeightsMultiplier: warning(" Unable to find the label") if data.shape[1] - 2 not in [2, 3]: warning(" Bit2Edge structure may not be incompatible for all methods.") df_col = self._labelsForVisualization_(visualizerMode='last', n_components=data.shape[1] - 2, targetLabel=targetLabel) DF: pd.DataFrame = pd.DataFrame(data=data, index=None, columns=df_col) DF[df_col[-1]], DF[df_col[0]] = DF[df_col[-1]].astype(datatype), DF[df_col[0]].astype(str) gc.collect() print(DF.head(5)) return DF def visualizeLastLayer(self, mode: str = 'true', marker_trace: str = "circle", dropBonds: Optional[List[str]] = None) -> pd.DataFrame: # [1]: Update the result target, targetLabel, marker_trace = self._verifyLastVisualizer_(mode=mode, marker_trace=marker_trace) # [2]: Initialize data self._timer["visualize"] = perf_counter() print("-" * 35, self.visualize, "-" * 35) print('[1]: Generate Features for Visualization') data: ndarray = self._ConcatenateData_(features=self.InterOutput, target=target, dropBonds=dropBonds) # WeightsMultiplier = bool(input("Allowing multiply your last layer result (Y/N): ").lower()[0] == 'y') WeightsMultiplier = False if WeightsMultiplier: weight: ndarray = self.TF_model.get_layer(name=self.TF_model.getLastLayerName()).get_weights()[0] for col in range(data.shape[1] - 2): data[:, col + 1:col + 2] *= weight[col, 0] if data.shape[1] - 2 not in [2, 3]: warning(" Bit2Edge structure may not be incompatible for all methods.") COLS: List[str] = self._labelsForVisualization_(visualizerMode='last', n_components=data.shape[1] - 2, targetLabel=targetLabel) DF: pd.DataFrame = pd.DataFrame(data=data, index=None, columns=COLS) DF[COLS[-1]], DF[COLS[0]] = DF[COLS[-1]].astype(np.object_), DF[COLS[0]].astype(str) print(DF.head(5), '\nShape: ', DF.shape) gc.collect() print('[2]: Start to Visualize') import plotly import plotly.io as pio pio.renderers.default = "browser" import plotly.express as px from .config import VISUALIZE print("PLOTLY Version:", plotly.__version__) print(f"PLOTLY is drawing via the selection key (last)") figure = px.scatter_3d(data_frame=DF, x=COLS[1], y=COLS[2], z=COLS[3], opacity=VISUALIZE['opacity'], color=COLS[0 - int(self.InterOutput.shape[1] == 3)], symbol=COLS[0]) print('[2.9]: Finish the figure. Preparing to upload.') if marker_trace.lower() != "random": figure.update_traces(marker_symbol=marker_trace) # figure.write_html('resources/Figure.html', auto_open=True) figure.show() self._timer["visualize"] = perf_counter() - self._timer["visualize"] print(f'Executing Times for Data Visualization: {self._timer["visualize"]:.6f}s') return DF def visualize(self, visualizerMode: str = 'last', decomposeMethod: str = 'UMAP', n_components: int = 2, mode: int = 0, marker_trace: str = "circle", CModel: bool = True, n_jobs: int = -1, *args, **kwargs) -> pd.DataFrame: """ Implementation of data visualization :param visualizerMode: The data used for visualization. If 'last', retrieve last_layer. If "fingerprints", dimensionality reduction analysis is applied on connection data or significant data. If "single", DRA on specific fingerprint set; If "meaning", DRA on product and reactant, If "density", apply dataframe from self.estimate_density :type visualizerMode: str :param decomposeMethod: The dimensionality reduction method (Default to be UMAP) :type decomposeMethod: str :param n_components: Number of components needs to be dimensionality reduction :type n_components: str :param mode: The coloring mode :type mode: int :param marker_trace: The code for representation (default by "circle") :type marker_trace: str :param CModel: If "C": connection fingerprint. If "S" the significant fingerprint :type CModel: str :param n_jobs: Whether to use joblib parallelism in sklearn :type n_jobs: int :return: """ # Hyper-parameter Verification if True: inputFullCheck(value=mode, name='mode', dtype='int') inputFullCheck(value=marker_trace, name='marker_trace', dtype='str') inputFullCheck(value=visualizerMode, name="visualizerMode", dtype='str') if marker_trace.lower() not in ['random', 'circle', 'circle-open', 'square', 'square-open', 'diamond', 'diamond-open', 'cross', 'x']: link: str = "https://plotly.com/python/reference/scattergl/#scattergl-marker-symbol" warning(f" See all plotly markers at here: {link}. Switch back to default (='circle'") marker_trace: str = "circle" visualizerMode: str = visualizerMode.lower() x = ("last", 'full-fingerprint', 'single', 'reaction', 'density', 'sparsity', 'full-struct') if visualizerMode not in x: raise ValueError(f"Un-identified method. Please choose again: {x}") if visualizerMode == "last": if self.InterOutput is None or self.y_pred is None: warning('No data is available. We are using available data. Last layer is applied') self.predict(standardize=True, getLastLayer=True, force=False, build_dataframe=True) if len(self._getLabelsOfLastLayer_()) == 2: while mode not in (0, 1, 5): mode: int = int(input("Re-choose your mode of these values (0, 1, 5): ")) else: if self.y_pred is None: warning('No data is available. We are using available data. Last layer is not applied') self.predict(standardize=True, getLastLayer=False, force=False, build_dataframe=True) if self.BuiltDataFrame is None: self._exportPrediction_(getLastLayer=self.InterOutput is not None) inputCheckRange(value=mode, name="mode", minValue=0, maxValue=5, rightBound=True) datatype = np.object_ if mode == 0: if self.getTargetReference() is None: raise ValueError("No comparing reference in this mode") target, associated_labels = self.getTargetReference(), self._SavedPredLabels[0] elif mode == 1: if self.y_pred is None: raise ValueError("No prediction in this mode") target, associated_labels = self.y_pred, self._SavedPredLabels[1] elif mode == 2: if self.getTargetReference() is None or self.y_pred is None: raise ValueError("No error could be found in this mode") target, associated_labels = self.getTargetReference() - self.y_pred, self._SavedPredLabels[2] elif mode == 3: if self.getTargetReference() is None or self.y_pred is None: raise ValueError("No absolute error could be found in this mode") target, associated_labels = np.absolute(self.getTargetReference() - self.y_pred), \ self._SavedPredLabels[2] elif mode == 4: target, associated_labels = self.getData(request="Info")[:, self._bondIndex], \ self._PrebuiltInfoLabels[self._bondIndex] else: print("Notation:", self._dataset.getFingerprintNotation()) print("Extra Features:", self._getExtraSaved_()) associated_labels: str = input(f"Choose your coloring labels in your feature: ") try: datatype = self.dataType label, feature = self.getDataLabels(request="CData" if CModel else "SData") if not isinstance(label, List): label: List = label.tolist() location: int = label.index(associated_labels) target = feature[:, location:location + 1] except (IndexError, TypeError, ValueError): raise ValueError("No compatible labels found") inputFullCheck(value=decomposeMethod, name="decomposeMethod", dtype='str') decomposeMethod: str = decomposeMethod.lower() inputCheckRange(value=n_components, name="n_components", maxValue=4, minValue=2) inputFullCheck(value=CModel, name="CModel", dtype='bool') inputFullCheck(value=n_jobs, name="n_jobs", dtype='int') import plotly.express as px from .config import VISUALIZE print("-" * 35, self.visualize, "-" * 35) self._timer["visualize"] = perf_counter() print('[0]: Choose the data for visualization') # Intention: At the end, we would have this 2D-array: # 1st Column: Bond Type, 2 -> 4 || 5: Updated n_components, Last Column: Target & Target Col print('[1]: Generate Features for Visualization') data: Optional[ndarray] = None if visualizerMode == 'last': # WeightsMultiplier = bool(input("Allowing multiply your last layer result (Y/N): ").lower()[0] == 'y') n_components, data = self._visualizeLastLayerMode_(target=target, WeightsMultiplication=False) else: dra_time: float = perf_counter() if visualizerMode in ['full-fingerprint']: n_components, data = \ self._visualizeFullFingerprintsMode_(target, CModel, decomposeMethod, n_components, n_jobs, *args, **kwargs) elif visualizerMode in ['single']: n_components, data = self._visualizeSingleMode_(target, CModel, decomposeMethod, n_jobs, *args, **kwargs) elif visualizerMode in ['reaction']: n_components, data = self._visualizeReactionMode_(target, CModel, decomposeMethod, n_jobs, *args, **kwargs) elif visualizerMode in ["density", "sparsity"]: n_components, data = self._visualizeSparseDenseMode_(target=target, CModel=CModel, densityMode=visualizerMode == "density") elif visualizerMode in ['full-struct']: n_components, data = \ self._visualizeFullInputMode_(target, CModel, decomposeMethod, n_components, n_jobs, *args, **kwargs) print(f'Dimensionality Reduction Time: {perf_counter() - dra_time:.6f}s') print('[2]: Start to Visualize') df_col = self._labelsForVisualization_(visualizerMode=visualizerMode, n_components=n_components, targetLabel=associated_labels) if len(df_col) != data.shape[1]: raise ValueError("Input Error or Source Code Error: Incompatible Function Called") DataFrame: pd.DataFrame = pd.DataFrame(data=data, index=None, columns=df_col) DataFrame[df_col[-1]] = DataFrame[df_col[-1]].astype(datatype) DataFrame[df_col[0]] = DataFrame[df_col[0]].astype(str) print(f"PLOTLY is drawing via the selection key ({visualizerMode})") print(DataFrame.head(5)) if n_components == 2: figure = px.scatter_3d(DataFrame, x=df_col[1], y=df_col[2], z=df_col[3], opacity=VISUALIZE['opacity'], color=df_col[0], symbol=associated_labels) else: figure = px.scatter_3d(DataFrame, x=df_col[1], y=df_col[2], z=df_col[3], opacity=VISUALIZE['opacity'], color=associated_labels, symbol=associated_labels) if marker_trace.lower() != "random": figure.update_traces(marker_symbol=marker_trace) figure.show() self._timer["visualize"] = perf_counter() - self._timer["visualize"] print(f'Executing Times for Data Visualization: {self._timer["visualize"]:.6f}s') return DataFrame def _buildVisualizer_(self, decomposeMethod: str = 'UMAP', components: int = 2, n_jobs: int = -1, *args, **kwargs) -> BaseEstimator: from .config import VISUALIZE from sklearn.decomposition import (NMF, PCA, DictionaryLearning, FactorAnalysis, IncrementalPCA, KernelPCA, LatentDirichletAllocation, MiniBatchDictionaryLearning, MiniBatchSparsePCA, SparsePCA, TruncatedSVD) from sklearn.manifold import TSNE, SpectralEmbedding, Isomap, LocallyLinearEmbedding, MDS from umap import UMAP bondTypeSaved = self._getBondTypeSaved_() if decomposeMethod == 'pca': dra = PCA(n_components=components, *args, **kwargs) elif decomposeMethod == 'k-pca' or decomposeMethod == 'kpca': dra = KernelPCA(n_components=components, *args, **kwargs) elif decomposeMethod == 's-pca' or decomposeMethod == 'spca': dra = SparsePCA(n_components=components, verbose=1, *args, **kwargs) elif decomposeMethod == 'mini s-pca' or decomposeMethod == 'mini spca': dra = MiniBatchSparsePCA(n_components=components, n_jobs=n_jobs, *args, **kwargs) elif decomposeMethod == 'i-pca' or decomposeMethod == 'ipca': dra = IncrementalPCA(n_components=components) elif decomposeMethod == 't-svd' or decomposeMethod == 'tsvd': dra = TruncatedSVD(n_components=components) elif decomposeMethod == 'lda': dra = LatentDirichletAllocation(components=components, n_jobs=n_jobs, *args, **kwargs) elif decomposeMethod == 'fa': dra = FactorAnalysis(components=components, *args, **kwargs) elif decomposeMethod == 'mini dict-learn': dra = MiniBatchDictionaryLearning(components=components, n_jobs=n_jobs, *args, **kwargs) elif decomposeMethod == 'dict-learn': dra = DictionaryLearning(components=components, n_jobs=n_jobs, *args, **kwargs) elif decomposeMethod == 'nmf': dra = NMF(components=components, *args, **kwargs) elif decomposeMethod == 'spectralEmbedding': dra = SpectralEmbedding(n_neighbors=len(bondTypeSaved) * VISUALIZE["neighbors_coef"], n_components=components, n_jobs=n_jobs, *args, **kwargs) elif decomposeMethod == 'localEmbedding': dra = LocallyLinearEmbedding(n_neighbors=len(bondTypeSaved) * VISUALIZE["neighbors_coef"], n_components=components, max_iter=250, n_jobs=n_jobs, *args, **kwargs) elif decomposeMethod == 'isomap': dra = Isomap(n_neighbors=len(bondTypeSaved) * VISUALIZE["neighbors_coef"], n_components=components, n_jobs=n_jobs, *args, **kwargs) elif decomposeMethod == 'mds': dra = MDS(n_neighbors=len(bondTypeSaved) * VISUALIZE["neighbors_coef"], n_components=components, verbose=1, n_jobs=n_jobs, *args, **kwargs) elif decomposeMethod == 't-sne' or decomposeMethod == 'tsne': dra = TSNE(n_components=components, perplexity=VISUALIZE["tsne_perplexity"], learning_rate=VISUALIZE["learning_rate"], n_jobs=n_jobs, *args, **kwargs) else: print("Default to Uniform Manifold Approximation and Projection (UMAP)") dra = UMAP(n_neighbors=len(bondTypeSaved) * VISUALIZE["neighbors_coef"], n_components=components, min_dist=VISUALIZE["min_dist"], learning_rate=VISUALIZE["learning_rate"], *args, **kwargs) print(dra) return dra def _labelsForVisualization_(self, visualizerMode: str, n_components: int, targetLabel: str) -> List[str]: labels: List[str] = [str(self.getLabels(request="Info")[self._bondType])] if visualizerMode in ["last"]: labels.extend(self._getLabelsOfLastLayer_()) elif n_components == 3: labels.extend([f"{unit}-axis" for unit in ["X", "Y", "Z"]]) else: labels.extend([f"{unit}-axis" for unit in ["X", "Y"]]) labels.append(targetLabel) return labels def _ConcatenateData_(self, features: ndarray, target: ndarray, dropBonds: Optional[List[str]] = None) -> ndarray: result: ndarray = np.concatenate((self.getData(request="Info")[:, self._bondType:self._bondType + 1], features, target), axis=1) if dropBonds is None: return result if len(dropBonds) >= 4: # Hash for faster search dropBonds = set(dropBonds) deleteLine: List[int] = [] bondType = result[:, 0].tolist() for idx, value in enumerate(bondType): if value in dropBonds: deleteLine.append(idx) return np.delete(result, obj=deleteLine, axis=0) def _visualizeLastLayerMode_(self, target: ndarray, WeightsMultiplication: bool = False) -> Tuple[int, ndarray]: print('[1]: Loading Last Layer') data = self._ConcatenateData_(features=self.InterOutput, target=target) if WeightsMultiplication and self._getLabelsOfLastLayer_() is not None: weight: ndarray = self.TF_model.get_layer(name=self.TF_model.getLastLayerName()).get_weights()[0] for col in range(data.shape[1] - 2): data[:, col + 1:col + 2] *= weight[col, 0] if data.shape[1] - 2 not in [2, 3]: warning(" Bit2Edge structure may not be incompatible for all methods.") return data.shape[1] - 2, data def _visualizeFullFingerprintsMode_(self, target: ndarray, CModel: bool, decomposeMethod: str = 'UMAP', components: int = 2, n_jobs: int = -1, *args, **kwargs) -> Tuple[int, ndarray]: print("[#1]: Loading Connection // Significant Fingerprints") model = self._buildVisualizer_(decomposeMethod, components, n_jobs, *args, **kwargs) if CModel: feature: ndarray = self.getData(request='CData')[:, :self._getCurrentCPosition_()[1][-1]] else: feature: ndarray = self.getData(request='SData')[:, :self._getCurrentSPosition_()[1][-1]] return components, self._ConcatenateData_(features=model.fit_transform(feature), target=target) def _visualizeSingleMode_(self, target: ndarray, CModel: bool, decomposeMethod: str = 'UMAP', n_jobs: int = -1, *args, **kwargs) -> Tuple[int, ndarray]: print("[#1]: Loading Connection // Significant Fingerprints") if CModel: input_: ndarray = self.getData(request='CData') Starting, Ending = self._getCurrentCPosition_() else: input_: ndarray = self.getData(request='SData') Starting, Ending = self._getCurrentSPosition_() X, Y, Z = input_[:, Starting[0]:Ending[-3]], input_[:, Starting[-2]:Ending[-2]], \ input_[:, Starting[-1]:Ending[-1]] array: ndarray = np.zeros(shape=(input_.shape[0], 3), dtype=np.float32) for idx, feature in enumerate([X, Y, Z]): model = self._buildVisualizer_(decomposeMethod, 1, n_jobs, *args, **kwargs) array[:, idx:idx + 1] = model.fit_transform(feature) return 3, self._ConcatenateData_(features=array, target=target) def _visualizeReactionMode_(self, target: ndarray, CModel: bool, decomposeMethod: str = 'UMAP', n_jobs: int = -1, *args, **kwargs) -> Tuple[int, ndarray]: print("[#1]: Loading Connection // Significant Fingerprints") if CModel: input_: ndarray = self.getData(request='CData') Starting, Ending = self._getCurrentCPosition_() else: input_: ndarray = self.getData(request='SData') Starting, Ending = self._getCurrentSPosition_() outer: ndarray = input_[:, Starting[0]:Ending[-3]] key = input("Do you want to build summation operation (True/False): ") if key.lower() in ["true", 't', 'yes', 'y']: inner: ndarray = np.add(input_[:, Starting[-2]:Ending[-2]], input_[:, Starting[-1]:Ending[-1]]) gc.collect() else: inner: ndarray = input_[:, Starting[-2]:Ending[-1]] array: ndarray = np.zeros(shape=(input_.shape[0], 2), dtype=np.float32) for idx, feature in enumerate((outer, inner)): model = self._buildVisualizer_(decomposeMethod, 1, n_jobs, *args, **kwargs) array[:, idx:idx + 1] = model.fit_transform(feature) return 2, self._ConcatenateData_(features=array, target=target) def _visualizeSparseDenseMode_(self, target: ndarray, CModel: bool, densityMode: bool) -> Tuple[int, ndarray]: print("[#1]: Loading Connection // Significant Density") if self.BuiltDataFrame is None: self.estimateDensity(output=None, sparsity=not densityMode, percentage=False, useMean=False) else: warning(" The density has been saved. Thus it would be used for visualizing instead of re-creating.") print("Dimensionality Reduction Analysis Mode: " "\nSingle: Decompose everything environment into one value" "\nReaction: Decompose everything environment into one value, except radical environments" "\nFull-Fingerprint: Decompose all fingerprints features into 2-value vectors at both models." "\nFull-Struct: Decompose full vectors into 2-value vectors") answer: str = input("Choose your dimensionality reduction analysis method: ").lower() while answer not in ["single", "reaction", "full-fingerprint", "full-struct"]: answer: str = input("Choose your dimensionality reduction analysis method: ").lower() columns = self.BuiltDataFrame.columns Starting: int = 0 if CModel else len(columns) // 2 Ending: int = len(columns) // 2 if CModel else len(columns) size: int = self.getData(request="Info").shape[0] if answer == "single" or answer == "reaction": array: ndarray = np.zeros(shape=(size, 3 if answer == 'single' else 2), dtype=np.float32) if self._dataset.getNumsInput() == 3: array[:, 0] = self.BuiltDataFrame[columns[Starting]].values else: warning("Single matrix addition with four input may not result in robust representation") array[:, 0] = (self.BuiltDataFrame[columns[Starting]].values + self.BuiltDataFrame[columns[Starting + 1]].values) / 2 if answer == 'single': array[:, 1] = self.BuiltDataFrame[columns[Ending - 4]].values array[:, 2] = self.BuiltDataFrame[columns[Ending - 3]].values else: array[:, 1] = (self.BuiltDataFrame[columns[Ending - 4]].values + self.BuiltDataFrame[columns[Ending - 3]].values) / 2 return array.shape[1], self._ConcatenateData_(features=array, target=target) array: ndarray = np.zeros(shape=(size, 2), dtype=np.float32) array[:, 0] = self.BuiltDataFrame[columns[len(columns) // 2 - 1]].values if answer == "full-fingerprint": CFullSize, CExtraSize = self.getData("CData").shape[1], self._dataset.getCurrentCLabelsInfo()[2] CFpSize = CFullSize - CExtraSize CDensityExtra = self.BuiltDataFrame[columns[len(columns) // 2 - 2]].values array[:, 0] = (array[:, 0] * CFullSize - CDensityExtra * CExtraSize) / CFpSize if self._dataset.getIsSharedInput(): array[:, 1] = array[:, 0] else: SFullSize, SExtraSize = self.getData("SData").shape[1], self._dataset.getCurrentSLabelsInfo()[2] SFpSize = SFullSize - SExtraSize SDensityExtra = self.BuiltDataFrame[columns[len(columns) - 2]].values array[:, 1] = (array[:, 1] * SFullSize - SDensityExtra * SExtraSize) / SFpSize return array.shape[1], self._ConcatenateData_(features=array, target=target) def _visualizeFullInputMode_(self, target: ndarray, CModel: bool, decomposeMethod: str = 'UMAP', components: int = 2, n_jobs: int = -1, *args, **kwargs) -> Tuple[int, ndarray]: print("[#1]: Loading Connection // Significant Matrix") model = self._buildVisualizer_(decomposeMethod, components, n_jobs, *args, **kwargs) data: ndarray = model.fit_transform(self.getData("CData") if CModel else self.getData("SData")) return components, self._ConcatenateData_(features=data, target=target) @MeasureExecutionTime def estimateDensity(self, output: str = None, sparsity: bool = False, percentage: bool = False, dataType=np.float32, useMean: bool = False) -> pd.DataFrame: """ Implementation of estimate data density :param output: The directory of file :type output: str :param sparsity: Whether to reverse density into sparsity :type sparsity: bool :param percentage: Whether to switch calculation into percentage mode (multiply with 100) :type percentage: bool :param useMean: Choosing the method to compute. If False, it calculate the density (!= 0) to calculate :type useMean: bool or None :param dataType: numpy datatype :type dataType: bool :return: """ # Hyper-parameter Verification if True: if not (self.isDataAvailable(request="CData") and self.isDataAvailable(request="SData")): raise ValueError("No pre-defined value or information was found") inputFullCheck(value=output, name="output", dtype='str-None', delimiter='-') inputFullCheck(value=sparsity, name="sparsity", dtype='bool') inputFullCheck(value=percentage, name="percentage", dtype='bool') inputFullCheck(value=useMean, name="useMean", dtype='bool') def MeanMethod(arr) -> ndarray: return
np.mean(arr, axis=1, dtype=dataType)
numpy.mean
from copy import deepcopy from scipy.sparse import diags import numpy as np from time import time from yaglm.linalg_utils import leading_sval, euclid_norm # TODO: handle matrix shaped parameters # TODO: allow A1 and or A2 to be None for the identity # TODO: allow g1 and or g2 to be None for zero def solve(g1, g2, A1, A2, primal_init=None, dual_init=None, D_mat='diag', rho=1, rho_update=True, atol=1e-4, rtol=1e-4, eta=2, mu=10, max_iter=1000, tracking_level=0 ): """ Uses ADMM algorithm described in Section 2.4 of (Zhu, 2017) to solve a problem of the form min_theta g1(A_1 theta) + g2(A_2 theta) We only need assume g1 and g2 have easy to evaluate proximal operators. Parameters ---------- g1, g2: yaglm.opt.base.Func The two functions that make up the obejctive. Both must implement conj_prox which evaluates the proxial operator of the conjugate funtion, which is easily obtained from the proximal operator of the original function via Moreau's identity. A1, A2: array-like The two matrices in the objective function. Both matrices must have same number of columns, d. primal_init: None, array-like shape (d, ) Optinal initialization for primal variable. dual_init: None, list list of of array-like. Optional initialization for the dual variables. The first list is the dual variables; the second list is the dual_bar variables. The first dual variable has shape (n_row(A_2), ) and the second has shape (n_row(A_2), ). D_mat: str, yaglm.addm.addm.DMatrix The D matrix. If str, must be one of ['prop_id', 'diag']. If 'prop_id' then D will be ||A||_op * I_d. If 'diag', then D will be the diagonal matrix whose ith element is given by sum_{j=1}^d |A^TA|_{ij}. rho: float The ADMM penalty parameter. rho_update: bool Whether or not to adpatively update the rho parameter. atol, rtol: float The absolute and relative stopping criteria. eta: float Amount to increase/decrease rho by. mu: float Parameter for deciding whether or not to increase rho. See (15) from (Zhu, 2017). max_iter: int Maximum number of iterations. tracking_level: int How much data to track. Output ------ solution, admm_data, opt_info solution: array-like The solution. admm_data: dict Data related to ADMM e.g. the dual variables. opt_info: dict Opimization tracking data e.g. the dual/primal residual history. References ---------- <NAME>., 2017. An augmented ADMM algorithm with application to the generalized lasso problem. Journal of Computational and Graphical Statistics, 26(1), pp.195-204. """ start_time = time() # shape data n_row_1 = A1.shape[0] n_row_2 = A2.shape[0] d = A1.shape[1] assert A2.shape[1] == d ######################## # initialize variables # ######################## # primal = np.zeros(d) # dual_1 = np.zeros(n_row_1) # dual_1_bar = np.zeros(n_row_1) # dual_2 = np.zeros(n_row_2) # dual_2_bar = np.zeros(n_row_2) if primal_init is None: primal = np.zeros(d) else: primal = deepcopy(primal_init) # dual variables if dual_init is not None: dual_1, dual_2 = dual_init[0] dual_1_bar, dual_2_bar = dual_init[1] else: # technically this initializes from 0 and takes one ADMM step dual_1 = g1.prox(rho * A1 @ primal, step=rho) dual_2 = g2.prox(rho * A2 @ primal, step=rho) dual_1_bar = 2 * dual_1 dual_2_bar = 2 * dual_2 # make sure we have correct shapes assert dual_1.shape[0] == n_row_1 assert dual_2.shape[0] == n_row_2 dual_cat = np.concatenate([dual_1, dual_2]) dual_cat_prev = deepcopy(dual_cat) ################################# # setup D matrix and A matrices # ################################# if D_mat == 'prop_id': D_mat = DMatrixPropId() elif D_mat == 'diag': D_mat = DMatrixDiag() D_mat.setup(A1=A1, A2=A2) # Other setup # TODO: represent this lazily to avoid copying # A = np.vstack([A1, A2]) A_mat = AMat(A1=A1, A2=A2) ########################## # setup history tracking # ########################## history = {} if tracking_level >= 1: history['primal_resid'] = [] history['dual_resid'] = [] history['rho'] = [rho] history['primal_tol'] = [] history['dual_tol'] = [] if tracking_level >= 2: history['primal'] = [primal] for it in range(int(max_iter)): # primal update primal_new = primal - \ (1 / rho) * D_mat.inv_prod(A1.T @ dual_1_bar + A2.T @ dual_2_bar) # update dual variables dual_1_new = g1.conj_prox(rho * (A1 @ primal_new) + dual_1, step=rho) dual_2_new = g2.conj_prox(rho * (A2 @ primal_new) + dual_2, step=rho) dual_1_bar_new = 2 * dual_1_new - dual_1 dual_2_bar_new = 2 * dual_2_new - dual_2 # check stopping dual_cat_new = np.concatenate([dual_1_new, dual_2_new]) primal_resid_norm = euclid_norm(dual_cat_new - dual_cat) / rho dual_resid = rho * A_mat.AtA_prod(primal_new - primal) + \ A_mat.At_prod(2 * dual_cat - dual_cat_prev - dual_cat_new) dual_resid_norm = euclid_norm(dual_resid) # check stopping criteria # TODO: the relative part is not quite right, but I can't quite tell what it should be from the paper. Probably need to stare at it longer primal_tol = np.sqrt(A_mat.shape[0]) * atol + \ rtol * euclid_norm(A_mat.A_prod(primal)) dual_tol = np.sqrt(A_mat.shape[1]) * atol + \ rtol * euclid_norm(A_mat.At_prod(dual_cat)) # possibly track history if tracking_level >= 1: history['primal_resid'].append(primal_resid_norm) history['dual_resid'].append(dual_resid_norm) history['rho'].append(rho) # TODO: do we want to track these? history['primal_tol'].append(primal_tol) history['dual_tol'].append(dual_tol) if tracking_level >= 2: history['primal'].append(primal_new) if primal_resid_norm <= primal_tol and dual_resid_norm <= dual_tol: break # update variables if not stopping primal = primal_new dual_1 = dual_1_new dual_2 = dual_2_new dual_cat_prev = deepcopy(dual_cat) dual_cat = dual_cat_new dual_1_bar = dual_1_bar_new dual_2_bar = dual_2_bar_new # update rho # TODO: dont do every iteration if rho_update: primal_ratio = (primal_resid_norm / primal_tol) dual_ratio = (dual_resid_norm / dual_tol) if primal_ratio >= mu * dual_ratio: rho *= eta elif dual_ratio >= mu * primal_ratio: rho /= eta ################# # Format output # ################# # optimizaton data opt_info = {'iter': it, 'runtime': time() - start_time, 'history': history } # other data admm_data = {'dual_vars': [[dual_1_new, dual_2_new], [dual_1_bar_new, dual_2_bar_new]], 'rho': rho, 'D_mat': D_mat } return primal_new, admm_data, opt_info def solve_path(prob_data_iter, **kws): """ An iterator that computes the solution path over a sequence of problems using warm starts. Parameters ---------- prob_data_iter: iterator Iterator yielding the sequence of problems to solve. Each element should be the tuple (g1, g2, A1, A2). **kws: Keyword arguments to yaglm.opt.zhu_admm.solve Output ------ soln, opt_data, admm_data """ for (g1, g2, A1, A2) in prob_data_iter: soln, opt_data, admm_data = solve(g1=g1, g2=g2, A1=A1, A2=A2, **kws) yield soln, opt_data, admm_data kws['dual_init'] = admm_data['dual_vars'] kws['rho'] = admm_data['rho'] kws['D_mat'] = admm_data['D_mat'] kws['primal_init'] = soln class DMatrix: def setup(self, A1, A2): """ Sets up the D matrix from the A1, A2 matrices. Parameters ---------- A1, A2: array-like The two matrices in the objective function. Output ------ self """ pass def inv_prod(self, v): """ Computes the product D_mat^{-1} @ v Parameters ---------- v: array-like, shape (d, ) The vector to mulitply by. Output ------ D^{-1} v """ pass class DMatrixPropId(DMatrix): """ Represents the matrix ||A||_op^2 * I_d """ def setup(self, A1, A2): """ Sets up the D matrix from the A1, A2 matrices. Parameters ---------- A1, A2: array-like The two matrices in the objective function. Output ------ self """ AtA = A1.T @ A1 + A2.T @ A2 self.sval_sq = leading_sval(AtA) ** 2 # self.val = leading_sval(A1) + leading_sval(A2) def inv_prod(self, v): """ Computes the product D_mat^{-1} @ v Parameters ---------- v: array-like, shape (d, ) The vector to mulitply by. Output ------ D^{-1} v """ return v / self.sval_sq class DMatrixDiag(DMatrix): """ Represents the diagonal matrix whose diagonal elements are given by sum_{j=1}^d |A^TA|_{ij}. """ def setup(self, A1, A2): """ Sets up the D matrix from the A1, A2 matrices. Parameters ---------- A1, A2: array-like The two matrices in the objective function. Output ------ self """ AtA = A1.T @ A1 + A2.T @ A2 row_sums = abs(AtA).sum(axis=1) row_sums = np.array(row_sums).reshape(-1) # annoying issue with sparse matrices self.diag_mat_inv = diags(1 / row_sums) def inv_prod(self, v): """ Computes the product D_mat^{-1} @ v Parameters ---------- v: array-like, shape (d, ) The vector to mulitply by. Output ------ D^{-1} v """ return self.diag_mat_inv @ v class DMatrixAtA(DMatrix): """ D = A.T @ A """ def setup(self, A1, A2): """ Sets up the D matrix from the A1, A2 matrices. Parameters ---------- A1, A2: array-like The two matrices in the objective function. Output ------ self """ A = np.vstack([A1, A2]) self.AtA_inv =
np.linalg.pinv(A.T @ A)
numpy.linalg.pinv
import random import numpy as np from random import randrange, gauss import note_seq from note_seq.sequences_lib import ( stretch_note_sequence, transpose_note_sequence, NegativeTimeError ) def train_test_split(dataset, split=0.90): train = list() train_size = split * len(dataset) dataset_copy = list(dataset) while len(train) < train_size: index = randrange(len(dataset_copy)) train.append(dataset_copy.pop(index)) return train, dataset_copy def load_seq_files(files): res = [] for fname in files: with open(fname, 'rb') as f: ns = note_seq.NoteSequence() ns.ParseFromString(f.read()) res.append(ns) return res class Data: def __init__(self, sequences, midi_encoder, token_eos, pad_token): self.token_eos = token_eos self.pad_token = pad_token self.sequences = sequences self.midi_encoder = midi_encoder def __len__(self): return sum(len(s) for s in self.sequences.values()) def batch(self, batch_size, length, mode='train'): batch_data = [ self._get_seq(seq, length, mode) for seq in random.sample(self.sequences[mode], k=batch_size) ] return np.array(batch_data) # batch_size, seq_len def slide_seq2seq_batch(self, batch_size, length, mode='train'): data = self.batch(batch_size, length + 1, mode) assert(data.shape == (batch_size, length + 1)) x = data[:, :-1] y = data[:, 1:] return x, y def augment(self, ns): stretch_factor = gauss(1.0, 0.5) velocity_factor = gauss(1.0, 0.2) transpose = randrange(-5, 7) ns = stretch_note_sequence(ns, stretch_factor) for note in ns.notes: note.velocity = max(1, min(127, int(note.velocity * velocity_factor))) return transpose_note_sequence(ns, transpose, in_place=True)[0] def _get_seq(self, ns, max_length, mode): if mode == 'train': try: data = self.midi_encoder.encode_note_sequence(self.augment(ns)) except NegativeTimeError: data = self.midi_encoder.encode_note_sequence(ns) else: data = self.midi_encoder.encode_note_sequence(ns) if len(data) > max_length: start = random.randrange(0, len(data) - max_length) data = data[start:start + max_length] elif len(data) < max_length: data =
np.append(data, self.token_eos)
numpy.append
""" Implementation of a class for the analysis of hyperfine structure spectra. .. moduleauthor:: <NAME> <<EMAIL>> .. moduleauthor:: <NAME> <<EMAIL>> """ import copy from fractions import Fraction import lmfit as lm from satlas.models.basemodel import BaseModel, SATLASParameters from satlas.models.summodel import SumModel from satlas.loglikelihood import poisson_llh from satlas.utilities import poisson_interval import satlas.profiles as p import matplotlib.pyplot as plt import numpy as np import pandas as pd import scipy.optimize as optimize from sympy.physics.wigner import wigner_6j, wigner_3j W6J = wigner_6j W3J = wigner_3j __all__ = ['HFSModel'] class HFSModel(BaseModel): r"""Constructs a HFS spectrum, consisting of different peaks described by a certain profile. The number of peaks is governed by the nuclear spin and the atomic spins of the levels.""" __shapes__ = {'gaussian': p.Gaussian, 'lorentzian': p.Lorentzian, 'crystalball': p.Crystalball, 'voigt': p.Voigt, 'pseudovoigt': p.PseudoVoigt, 'asymmlorentzian': p.AsymmLorentzian} def __init__(self, I, J, ABC, centroid, fwhm=[50.0, 50.0], scale=1.0, background_params=[0.001], shape='voigt', use_racah=False, use_saturation=False, saturation=0.001, shared_fwhm=True, sidepeak_params={'N': 0, 'Poisson': 0.68, 'Offset': 0}, crystalballparams={'Taillocation': 1, 'Tailamplitude': 1}, pseudovoigtparams={'Eta': 0.5, 'A': 0}, asymmetryparams={'a': 0}): """Builds the HFS with the given atomic and nuclear information. Parameters ---------- I: float The nuclear spin. J: list of 2 floats The spins of the fine structure levels. ABC: list of 6 floats The hyperfine structure constants A, B and C for ground- and excited fine level. The list should be given as [A :sub:`lower`, A :sub:`upper`, B :sub:`lower`, B :sub:`upper`, C :sub:`upper`, C :sub:`lower`]. centroid: float Centroid of the spectrum. Other parameters ---------------- fwhm: float or list of 2 floats, optional Depending on the used shape, the FWHM is defined by one or two floats. Defaults to [50.0, 50.0] scale: float, optional Sets the strength of the spectrum, defaults to 1.0. Comparable to the amplitude of the spectrum. background_params: list of float, optional Sets the coefficients of the polynomial background to the given values. Order of polynomial is equal to the number of parameters given minus one. Highest order coefficient is the first element, etc. shape : string, optional Sets the transition shape. String is converted to lowercase. For possible values, see *HFSModel__shapes__*.keys()`. Defaults to Voigt if an incorrect value is supplied. use_racah: boolean, optional If True, fixes the relative peak intensities to the Racah intensities. Otherwise, gives them equal intensities and allows them to vary during fitting. use_saturation: boolean, optional If True, uses the saturation parameter to calculate relative intensities. saturation: float, optional If different than 0, calculate the saturation effect on the intensity of transition intensity. This is done by an exponential transition between Racah intensities and the saturated intensities. shared_fwhm: boolean, optional If True, the same FWHM is used for all peaks. Otherwise, give them all the same initial FWHM and let them vary during the fitting. sidepeak_params: dict A dictionary with the following keys and values: n: int Sets the number of sidepeaks that are present in the spectrum. Defaults to 0. poisson: float Sets the relative intensity of the first side peak. The intensity of the other sidepeaks is calculated from the Poisson-factor. offset: float Sets the distance (in MHz) of each sidepeak in the spectrum. crystalballparams: dict A dictionary with the following keys and values: tailamp: float Sets the relative amplitude of the tail for the Crystalball shape function. tailloc: float Sets the location of the tail for the Crystalball shape function. pseudovoigtparams: dict A dictionary with the following keys and values: Eta: float between 0 and 1 Describes the mixing percentage of the Gaussian and Lorentzian shapes A: float Describes the asymmetry of the peak. Note ---- The list of parameter keys is: * *FWHM* (only for profiles with one float for the FWHM) * *FWHMG* (only for profiles with two floats for the FWHM) * *FWHML* (only for profiles with two floats for the FWHM) * *Al* * *Au* * *Bl* * *Bu* * *Cl* * *Cu* * *Centroid* * *Background* * *Poisson* (only if the attribute *n* is greater than 0) * *Offset* (only if the attribute *n* is greater than 0) * *Amp* (with the correct labeling of the transition) * *scale*""" super(HFSModel, self).__init__() shape = shape.lower() if shape not in self.__shapes__: print("""Given profile shape not yet supported. Defaulting to Voigt lineshape.""") shape = 'voigt' fwhm = [50.0, 50.0] self.I_value = {0.0: ((False, 0), (False, 0), (False, 0), (False, 0), (False, 0), (False, 0)), 0.5: ((True, 1), (True, 1), (False, 0), (False, 0), (False, 0), (False, 0)), 1.0: ((True, 1), (True, 1), (True, 1), (True, 1), (False, 0), (False, 0)) } self.J_lower_value = {0.0: ((False, 0), (False, 0), (False, 0)), 0.5: ((True, 1), (False, 0), (False, 0)), 1.0: ((True, 1), (True, 1), (False, 0)) } self.J_upper_value = {0.0: ((False, 0), (False, 0), (False, 0)), 0.5: ((True, 1), (False, 0), (False, 0)), 1.0: ((True, 1), (True, 1), (False, 0)) } self.shape = shape self._use_racah = use_racah self._use_saturation = use_saturation self.shared_fwhm = shared_fwhm self.I = I self.J = J self._calculate_F_levels() self._calculate_energy_coefficients() self._calculate_transitions() self._vary = {} self._constraints = {} self.ratioA = (None, 'lower') self.ratioB = (None, 'lower') self.ratioC = (None, 'lower') self._roi = (-np.inf, np.inf) self._populateparams(ABC, centroid, fwhm, scale, saturation, background_params, sidepeak_params, crystalballparams, pseudovoigtparams, asymmetryparams) @property def locations(self): """Contains the locations of the peaks.""" return self._locations @locations.setter def locations(self, locations): self._locations = np.array(locations) for p, l in zip(self.parts, locations): p.mu = l @property def use_racah(self): """Boolean to set the behaviour to Racah intensities (True) or to individual amplitudes (False).""" return self._use_racah @use_racah.setter def use_racah(self, value): self._use_racah = value self.params['Scale'].vary = self._use_racah or self._use_saturation for label in self.ftof: self.params['Amp' + label].vary = not (self._use_racah or self._use_saturation) @property def use_saturation(self): """Boolean to set the behaviour to the saturation model (True) or not (False).""" return self._use_saturation @use_saturation.setter def use_saturation(self, value): self._use_saturation = value self.params['Saturation'].vary = value self.params['Scale'].vary = self._use_racah or self._use_saturation for label in self.ftof: self.params['Amp' + label].vary = not (self._use_racah or self._use_saturation) @property def params(self): """Instance of lmfit.Parameters object characterizing the shape of the HFS.""" return self._parameters @params.setter def params(self, params): p = params.copy() p._prefix = self._prefix self._parameters = self._check_variation(p) # self._parameters.pretty_print() # print(self._prefix) # When changing the parameters, the energies and # the locations have to be recalculated self._calculate_energies() self._calculate_transition_locations() if not self.use_racah and not self.use_saturation: # When not using set amplitudes, they need # to be changed after every iteration self._set_amplitudes() elif self.use_saturation: self._set_transitional_amplitudes() else: pass # Finally, the fwhm of each peak needs to be set self._set_fwhm() if self.shape.lower() == 'crystalball': for part in self.parts: part.alpha = self.params['Taillocation'].value part.n = self.params['Tailamplitude'].value if self.shape.lower() == 'pseudovoigt': for label, part in zip(self.ftof, self.parts): if self.shared_fwhm: part.n = self.params['Eta'].value part.a = self.params['Asym'].value else: part.n = self.params['Eta'+label].value part.a = self.params['Asym'+label].value elif self.shape.lower() == 'asymmlorentzian': for label, part in zip(self.ftof, self.parts): if self.shared_fwhm: part.asymm = self.params['Asym'].value else: part.asymm = self.params['Asym'+label].value def _set_transitional_amplitudes(self): values = self._calculate_transitional_intensities(self.params['Saturation'].value) for p, l, v in zip(self.parts, self.ftof, values): self.params['Amp' + l].value = v p.amp = v @property def ftof(self): """List of transition labels, of the form *Flow__Fhigh* (half-integers have an underscore instead of a division sign), same ordering as given by the attribute :attr:`.locations`.""" return self._ftof @ftof.setter def ftof(self, value): self._ftof = value def _calculate_energies(self): r"""The hyperfine addition to a central frequency (attribute *centroid*) for a specific level is calculated. The formula comes from :cite:`Schwartz1955` and in a simplified form, reads .. math:: C_F &= F(F+1) - I(I+1) - J(J+1) D_F &= \frac{3 C_F (C_F + 1) - 4 I (I + 1) J (J + 1)}{2 I (2 I - 1) J (2 J - 1)} E_F &= \frac{10 (\frac{C_F}{2})^3 + 20(\frac{C_F}{2})^2 + C_F(-3I(I + 1)J(J + 1) + I(I + 1) + J(J + 1) + 3) - 5I(I + 1)J(J + 1)}{I(I - 1)(2I - 1)J(J - 1)(2J - 1)} E &= centroid + \frac{A C_F}{2} + \frac{B D_F}{4} + C E_F A, B and C are the dipole, quadrupole and octupole hyperfine parameters. Octupole contributions are calculated when both the nuclear and electronic spin is greater than 1, quadrupole contributions when they are greater than 1/2, and dipole contributions when they are greater than 0. Parameters ---------- level: int, 0 or 1 Integer referring to the lower (0) level, or the upper (1) level. F: integer or half-integer F-quantum number for which the hyperfine-corrected energy has to be calculated. Returns ------- energy: float Energy in MHz.""" A = np.append(np.ones(self.num_lower) * self.params['Al'].value, np.ones(self.num_upper) * self.params['Au'].value) B = np.append(np.ones(self.num_lower) * self.params['Bl'].value, np.ones(self.num_upper) * self.params['Bu'].value) C = np.append(np.ones(self.num_lower) * self.params['Cl'].value, np.ones(self.num_upper) * self.params['Cu'].value) centr = np.append(np.zeros(self.num_lower), np.ones(self.num_upper) * self.params['Centroid'].value) self.energies = centr + self.C * A + self.D * B + self.E * C def _calculate_transition_locations(self): self.locations = [self.energies[ind_high] - self.energies[ind_low] for (ind_low, ind_high) in self.transition_indices] def _set_amplitudes(self): for p, label in zip(self.parts, self.ftof): p.amp = self.params['Amp' + label].value def _set_fwhm(self): if self.shape.lower() == 'voigt': fwhm = [[self.params['FWHMG'].value, self.params['FWHML'].value] for _ in self.ftof] if self.shared_fwhm else [[self.params['FWHMG' + label].value, self.params['FWHML' + label].value] for label in self.ftof] else: fwhm = [self.params['FWHM'].value for _ in self.ftof] if self.shared_fwhm else [self.params['FWHM' + label].value for label in self.ftof] for p, f in zip(self.parts, fwhm): p.fwhm = f #################################### # INITIALIZATION METHODS # #################################### def _populateparams(self, ABC, centroid, fwhm, scale, saturation, background_params, sidepeak_params, crystalballparams, pseudovoigtparams, asymmetryparams): # Prepares the params attribute with the initial values par = SATLASParameters() if not self.shape.lower() == 'voigt': if self.shared_fwhm: par.add('FWHM', value=fwhm, vary=True, min=0) if self.shape.lower() == 'pseudovoigt': Eta = pseudovoigtparams['Eta'] A = pseudovoigtparams['A'] par.add('Eta', value=Eta, vary=True, min=0, max=1) par.add('Asym', value=A, vary=True) if self.shape.lower() == 'asymmlorentzian': par.add('Asym', value=asymmetryparams['a'], vary=True) else: fwhm = [fwhm for _ in range(len(self.ftof))] for label, val in zip(self.ftof, fwhm): par.add('FWHM' + label, value=val, vary=True, min=0) if self.shape.lower() == 'pseudovoigt': Eta = pseudovoigtparams['Eta'] A = pseudovoigtparams['A'] par.add('Eta' + label, value=Eta, vary=True, min=0, max=1) par.add('Asym' + label, value=A, vary=True) if self.shape.lower() == 'asymmlorentzian': par.add('Asym' + label, value=asymmetryparams['a'], vary=True) else: if self.shared_fwhm: par.add('FWHMG', value=fwhm[0], vary=True, min=1) par.add('FWHML', value=fwhm[1], vary=True, min=1) val = 0.5346 * fwhm[1] + np.sqrt(0.2166 * fwhm[1] ** 2 + fwhm[0] ** 2) par.add('TotalFWHM', value=val, vary=False, expr='0.5346*FWHML+(0.2166*FWHML**2+FWHMG**2)**0.5') else: fwhm = np.array(fwhm) fwhm = np.array([[fwhm[0], fwhm[1]] for _ in range(len(self.ftof))]) for label, val in zip(self.ftof, fwhm): par.add('FWHMG' + label, value=val[0], vary=True, min=0) par.add('FWHML' + label, value=val[1], vary=True, min=0) val = 0.5346 * val[1] + np.sqrt(0.2166 * val[1] ** 2 + val[0] ** 2) par.add('TotalFWHM' + label, value=val, vary=False, expr='0.5346*FWHML' + label + '+(0.2166*FWHML' + label + '**2+FWHMG' + label + '**2)**0.5') if self.shape.lower() == 'crystalball': taillocation = crystalballparams['Taillocation'] tailamplitude = crystalballparams['Tailamplitude'] par.add('Taillocation', value=taillocation, vary=True) par.add('Tailamplitude', value=tailamplitude, vary=True) for part in self.parts: part.alpha = taillocation part.n = tailamplitude par.add('Scale', value=scale, vary=self.use_racah or self.use_saturation, min=0) par.add('Saturation', value=saturation * self.use_saturation, vary=self.use_saturation, min=0) amps = self._calculate_transitional_intensities(saturation) for label, amp in zip(self.ftof, amps): label = 'Amp' + label par.add(label, value=amp, vary=not (self.use_racah or self.use_saturation), min=0) par.add('Al', value=ABC[0], vary=True) par.add('Au', value=ABC[1], vary=True) par.add('Bl', value=ABC[2], vary=True) par.add('Bu', value=ABC[3], vary=True) par.add('Cl', value=ABC[4], vary=True) par.add('Cu', value=ABC[5], vary=True) ratios = (self.ratioA, self.ratioB, self.ratioC) labels = (('Al', 'Au'), ('Bl', 'Bu'), ('Cl', 'Cu')) for r, (l, u) in zip(ratios, labels): if r[0] is not None: if r[1].lower() == 'lower': fixed, free = l, u else: fixed, free = u, l par[fixed].expr = str(r[0]) + '*' + free par[fixed].vary = False par.add('Centroid', value=centroid, vary=True) for i, val in enumerate(reversed(background_params)): par.add('Background' + str(i), value=background_params[i], vary=True) self.background_degree = i n, poisson, offset = sidepeak_params['N'], sidepeak_params['Poisson'], sidepeak_params['Offset'] par.add('N', value=n, vary=False) if n > 0: par.add('Poisson', value=poisson, vary=True, min=0, max=1) par.add('Offset', value=offset, vary=False, min=None, max=None) self.params = self._check_variation(par) def _set_ratios(self, par): # Process the set ratio's for the hyperfine parameters. ratios = (self.ratioA, self.ratioB, self.ratioC) labels = (('Al', 'Au'), ('Bl', 'Bu'), ('Cl', 'Cu')) for r, (l, u) in zip(ratios, labels): if r[0] is not None: if r[1].lower() == 'lower': fixed, free = l, u else: fixed, free = u, l par[fixed].expr = str(r[0]) + '*' + free par[fixed].vary = False par[free].vary = True return par def _check_variation(self, par): par = super(HFSModel, self)._check_variation(par) # Make sure the variations in the params are set correctly. for key in self._vary.keys(): if key in par.keys(): par[key].vary = self._vary[key] par['N'].vary = False if self.I in self.I_value: Al, Au, Bl, Bu, Cl, Cu = self.I_value[self.I] if not Al[0]: par['Al'].vary, par['Al'].value = Al if not Au[0]: par['Au'].vary, par['Au'].value = Au if not Bl[0]: par['Bl'].vary, par['Bl'].value = Bl if not Bu[0]: par['Bu'].vary, par['Bu'].value = Bu if not Cl[0]: par['Cl'].vary, par['Cl'].value = Cl if not Cu[0]: par['Cu'].vary, par['Cu'].value = Cu if self.J[0] in self.J_lower_value: Al, Bl, Cl = self.J_lower_value[self.J[0]] if not Al[0]: par['Al'].vary, par['Al'].value = Al if not Bl[0]: par['Bl'].vary, par['Bl'].value = Bl if not Cl[0]: par['Cl'].vary, par['Cl'].value = Cl if self.J[self.num_lower] in self.J_upper_value: Au, Bu, Cu = self.J_upper_value[self.J[self.num_lower]] if not Au[0]: par['Au'].vary, par['Au'].value = Au if not Bu[0]: par['Bu'].vary, par['Bu'].value = Bu if not Cu[0]: par['Cu'].vary, par['Cu'].value = Cu for key in self._constraints.keys(): for bound in self._constraints[key]: if bound.lower() == 'min': par[key].min = self._constraints[key][bound] elif bound.lower() == 'max': par[key].max = self._constraints[key][bound] else: pass return par def _calculate_F_levels(self): F1 = np.arange(abs(self.I - self.J[0]), self.I+self.J[0]+1, 1) self.num_lower = len(F1) F2 = np.arange(abs(self.I - self.J[1]), self.I+self.J[1]+1, 1) self.num_upper = len(F2) F = np.append(F1, F2) self.J = np.append(np.ones(len(F1)) * self.J[0], np.ones(len(F2)) * self.J[1]) self.F = F def _calculate_transitions(self): f_f = [] indices = [] amps = [] sat_amp = [] for i, F1 in enumerate(self.F[:self.num_lower]): for j, F2 in enumerate(self.F[self.num_lower:]): if abs(F2 - F1) <= 1 and not F2 == F1 == 0.0: sat_amp.append(2*F1+1) j += self.num_lower intensity = self._calculate_racah_intensity(self.J[i], self.J[j], self.F[i], self.F[j]) if intensity > 0: amps.append(intensity) indices.append([i, j]) s = '' temp = Fraction(F1).limit_denominator() if temp.denominator == 1: s += str(temp.numerator) else: s += str(temp.numerator) + '_' + str(temp.denominator) s += '__' temp = Fraction(F2).limit_denominator() if temp.denominator == 1: s += str(temp.numerator) else: s += str(temp.numerator) + '_' + str(temp.denominator) f_f.append(s) self.ftof = f_f # Stores the labels of all transitions, in order self.transition_indices = indices # Stores the indices in the F and energy arrays for the transition self.racah_amplitudes = np.array(amps) # Sets the initial amplitudes to the Racah intensities self.racah_amplitudes = self.racah_amplitudes / self.racah_amplitudes.max() self.saturated_amplitudes = np.array(sat_amp) self.saturated_amplitudes = self.saturated_amplitudes / self.saturated_amplitudes.max() self.parts = tuple(self.__shapes__[self.shape](amp=a) for a in self.racah_amplitudes) def _calculate_transitional_intensities(self, s): if s <= 0: return self.racah_amplitudes else: sat = self.saturated_amplitudes rac = self.racah_amplitudes transitional = -sat*np.expm1(-rac * s / sat) return transitional / transitional.max() def _calculate_racah_intensity(self, J1, J2, F1, F2, order=1.0): return float((2 * F1 + 1) * (2 * F2 + 1) * \ W6J(J2, F2, self.I, F1, J1, order) ** 2) # DO NOT REMOVE CAST TO FLOAT!!! def _calculate_energy_coefficients(self): # Since I, J and F do not change, these factors can be calculated once # and then stored. I, J, F = self.I, self.J, self.F C = (F*(F+1) - I*(I+1) - J*(J + 1)) * (J/J) if I > 0 else 0 * J #*(J/J) is a dirty trick to avoid checking for J=0 D = (3*C*(C+1) - 4*I*(I+1)*J*(J+1)) / (2*I*(2*I-1)*J*(2*J-1)) E = (10*(0.5*C)**3 + 20*(0.5*C)**2 + C*(-3*I*(I+1)*J*(J+1) + I*(I+1) + J*(J+1) + 3) - 5*I*(I+1)*J*(J+1)) / (I*(I-1)*(2*I-1)*J*(J-1)*(2*J-1)) C = np.where(np.isfinite(C), 0.5 * C, 0) D = np.where(np.isfinite(D), 0.25 * D, 0) E = np.where(np.isfinite(E), E, 0) self.C, self.D, self.E = C, D, E ########################## # USER METHODS # ########################## def fix_ratio(self, value, target='upper', parameter='A'): """Fixes the ratio for a given hyperfine parameter to the given value. Parameters ---------- value: float Value to which the ratio is set target: {'upper', 'lower'} Sets the target level. If 'upper', the upper parameter is calculated as lower * ratio, 'lower' calculates the lower parameter as upper * ratio. parameter: {'A', 'B', 'C'} Selects which hyperfine parameter to set the ratio for.""" if target.lower() not in ['lower', 'upper']: raise KeyError("Target must be 'lower' or 'upper'.") if parameter.lower() not in ['a', 'b', 'c']: raise KeyError("Parameter must be 'A', 'B' or 'C'.") if parameter.lower() == 'a': self.ratioA = (value, target) if parameter.lower() == 'b': self.ratioB = (value, target) if parameter.lower() == 'c': self.ratioC = (value, target) self.params = self._set_ratios(self.params) ########################### # MAGIC METHODS # ########################### def __call__(self, x): """Get the response for frequency *x* (in MHz) of the spectrum. Parameters ---------- x : float or array_like Frequency in MHz Returns ------- float or NumPy array Response of the spectrum for each value of *x*.""" if self.params['N'].value > 0: s = np.zeros(x.shape) for i in range(self.params['N'].value + 1): s += (self.params['Poisson'].value ** i) * (sum([prof(x - i * self.params['Offset'].value) for prof in self.parts])) / np.math.factorial(i) s *= self.params['Scale'].value else: s = self.params['Scale'].value * sum([prof(x) for prof in self.parts]) # background_params = [self.params[par_name].value for par_name in self.params if par_name.startswith('Background')] background_params = [self.params['Background' + str(int(deg))].value for deg in reversed(list(range(self.background_degree + 1)))] return s + np.polyval(background_params, x) ############################### # PLOTTING ROUTINES # ############################### def plot(self, x=None, y=None, yerr=None, no_of_points=10**3, ax=None, show=True, plot_kws={}): """Plot the hfs, possibly on top of experimental data. Parameters ---------- x: array Experimental x-data. If None, a suitable region around the peaks is chosen to plot the hfs. y: array Experimental y-data. yerr: array or dict('high': array, 'low': array) Experimental errors on y. no_of_points: int Number of points to use for the plot of the hfs if experimental data is given. ax: matplotlib axes object If provided, plots on this axis. show: boolean If True, the plot will be shown at the end. plot_kws: dictionary A dictionary possibly containing the following entries: legend: string, optional If given, an entry in the legend will be made for the spectrum. data_legend: string, optional If given, an entry in the legend will be made for the experimental data. xlabel: string, optional If given, sets the xlabel to this string. Defaults to 'Frequency (MHz)'. ylabel: string, optional If given, sets the ylabel to this string. Defaults to 'Counts'. model: boolean, optional If given, the region around the fitted line will be shaded, with the luminosity indicating the pmf of the Poisson distribution characterized by the value of the fit. Note that the argument *yerr* is ignored if *model* is True. normalized: boolean, optional If True, the data and fit are plotted normalized such that the highest data point is one. background: boolean, optional If True, the background is used, otherwise the pure spectrum is plotted. Returns ------- fig, ax: matplotlib figure and axis Figure and axis used for the plotting.""" kws = copy.deepcopy(plot_kws) legend = kws.pop('legend', None,) data_legend = kws.pop('data_legend', None) xlabel = kws.pop('xlabel', 'Frequency (MHz)') ylabel = kws.pop('ylabel', 'Counts',) indicate = kws.pop('indicate', False) model = kws.pop('model', False) colormap = kws.pop('colormap', 'bone_r',) normalized = kws.pop('normalized', False) distance = kws.pop('distance', 4) background = kws.pop('background', True) if ax is None: fig, ax = plt.subplots(1, 1) else: fig = ax.get_figure() toReturn = fig, ax color_points = next(ax._get_lines.prop_cycler)['color'] color_lines = next(ax._get_lines.prop_cycler)['color'] if x is None: ranges = [] fwhm = self.parts[0].fwhm for pos in self.locations: r = np.linspace(pos - distance * fwhm, pos + distance * fwhm, 2 * 10**2*0+50) ranges.append(r) superx = np.sort(np.concatenate(ranges)) else: superx = np.linspace(x.min(), x.max(), int(no_of_points)) if 'sigma_x' in self.params: xerr = self.params['sigma_x'].value else: xerr = 0 if normalized: norm = np.max(y) y,yerr = y/norm,yerr/norm else: norm = 1 if x is not None and y is not None: if not model: try: ax.errorbar(x, y, yerr=[yerr['low'], yerr['high']], xerr=xerr, fmt='o', label=data_legend, color=color_points) except: ax.errorbar(x, y, yerr=yerr, fmt='o', label=data_legend, color=color_points) else: ax.plot(x, y, 'o', color=color_points) if model: superx = np.linspace(superx.min(), superx.max(), len(superx)) range = (self.locations.min(), self.locations.max()) if range[0] == range[1]: max_counts = self(range[0]) else: max_counts = np.ceil(-optimize.brute(lambda x: -self(x), (range,), full_output=True, Ns=1000, finish=optimize.fmin)[1]) min_counts = [self.params[par_name].value for par_name in self.params if par_name.startswith('Background')][-1] min_counts = np.floor(max(0, min_counts - 3 * min_counts ** 0.5)) y = np.arange(min_counts, max_counts + 3 * max_counts ** 0.5 + 1) x, y = np.meshgrid(superx, y) from scipy import stats z = stats.poisson(self(x)).pmf(y) z = z / z.sum(axis=0) ax.imshow(z, extent=(x.min(), x.max(), y.min(), y.max()), cmap=plt.get_cmap(colormap)) line, = ax.plot(superx, self(superx) / norm, label=legend, lw=0.5, color=color_lines) else: if background: y = self(superx) else: background_params = [self.params[par_name].value for par_name in self.params if par_name.startswith('Background')] y = self(superx) - np.polyval(background_params, superx) line, = ax.plot(superx, y, label=legend, color=color_lines) ax.set_xlim(superx.min(), superx.max()) ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if show: plt.show() return toReturn def plot_spectroscopic(self, **kwargs): """Plots the hfs on top of experimental data with errorbar given by the square root of the data. Parameters ---------- x: array Experimental x-data. If None, a suitable region around the peaks is chosen to plot the hfs. y: array Experimental y-data. yerr: array or dict('high': array, 'low': array) Experimental errors on y. no_of_points: int Number of points to use for the plot of the hfs if experimental data is given. ax: matplotlib axes object If provided, plots on this axis. show: boolean If True, the plot will be shown at the end. legend: string, optional If given, an entry in the legend will be made for the spectrum. data_legend: string, optional If given, an entry in the legend will be made for the experimental data. Returns ------- fig, ax: matplotlib figure and axis Figure and axis used for the plotting.""" y = kwargs.get('y', None) if y is not None: ylow, yhigh = poisson_interval(y) yerr = {'low': y - ylow, 'high': yhigh - y} else: yerr = None kwargs['yerr'] = yerr return self.plot(**kwargs) def plot_scheme(self, show=True, upper_color='#D55E00', lower_color='#009E73', arrow_color='#0072B2', distance=5, spectrum=False): """Create a figure where both the splitting of the upper and lower state is drawn, and the hfs associated with this. Parameters ---------- show: boolean, optional If True, immediately shows the figure. Defaults to True. upper_color: matplotlib color definition Sets the color of the upper state. Defaults to red. lower_color: matplotlib color definition Sets the color of the lower state. Defaults to black. arrow_color: matplotlib color definition Sets the color of the arrows indicating the transitions. Defaults to blue. Returns ------- tuple Tuple containing the figure and both axes, also in a tuple.""" from fractions import Fraction from matplotlib import lines length_plot = 0.4 fig = plt.figure(frameon=False) ax = fig.add_axes([0.5, 0, length_plot, 0.5], axisbg=[1, 1, 1, 0]) self.plot(ax=ax, show=False, plot_kws={'distance': distance}) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) locations = self.locations plotrange = ax.get_xlim() distances = (locations - plotrange[0]) / (plotrange[1] - plotrange[0]) * length_plot height = self(locations) plotrange = ax.get_ylim() if not spectrum: plt.close(fig) fig = plt.figure(frameon=False) lower_state_height = 0.1 else: lower_state_height = 0.525 upper_state_height = 0.95 height = (height - plotrange[0]) / (plotrange[1] - plotrange[0]) / 2 A = np.append(np.ones(self.num_lower) * self.params['Al'].value, np.ones(self.num_upper) * self.params['Au'].value) B = np.append(np.ones(self.num_lower) * self.params['Bl'].value, np.ones(self.num_upper) * self.params['Bu'].value) C = np.append(np.ones(self.num_lower) * self.params['Cl'].value, np.ones(self.num_upper) * self.params['Cu'].value) energies = self.C * A + self.D * B + self.E * C energy_range = (upper_state_height - lower_state_height) / 2 - 0.025 energies_upper = energies[self.num_lower:] energies_upper_norm = np.abs(energies_upper.max()) if not energies_upper.max()==0 else 1 energies_upper_norm = np.ptp(energies_upper) energies_upper = energies_upper / energies_upper_norm * energy_range energies_lower = energies[:self.num_lower] energies_lower_norm = np.abs(energies_lower.max()) if not energies_lower.max()==0 else 1 energies_lower_norm =
np.ptp(energies_lower)
numpy.ptp
import numpy as np from sklearn.covariance import LedoitWolf, OAS import sys def simulateLogNormal(data, covtype='Estimate', nsamples=2000, **kwargs): """ :param data: :param covtype: Type of covariance matrix estimator. Allowed types are: - Estimate (default): - Diagonal: - Shrinkage OAS: :param int nsamples: Number of simulated samples to draw :return: simulated data and empirical covariance est """ try: # Offset data to make sure there are no 0 values for log transform offset = np.min(data) + 1 offdata = data + offset # log on the offsetted data logdata = np.log(offdata) # Get the means meanslog = np.mean(logdata, axis=0) # Specify covariance # Regular covariance estimator if covtype == "Estimate": covlog = np.cov(logdata, rowvar=0) # Shrinkage covariance estimator, using LedoitWolf elif covtype == "ShrinkageLedoitWolf": scov = LedoitWolf() scov.fit(logdata) covlog = scov.covariance_ elif covtype == "ShrinkageOAS": scov = OAS() scov.fit(logdata) covlog = scov.covariance_ # Diagonal covariance matrix (no between variable correlation) elif covtype == "Diagonal": covlogdata = np.var(logdata, axis=0) #get variance of log data by each column covlog = np.diag(covlogdata) #generate a matrix with diagonal of variance of log Data else: raise ValueError('Unknown Covariance type') simData = np.random.multivariate_normal(meanslog, covlog, nsamples) simData = np.exp(simData) simData -= offset ##Set to 0 negative values simData[
np.where(simData < 0)
numpy.where
import numpy as np from numpy.testing import assert_array_almost_equal from oasislmf.pytools.fm.common import fm_profile_dtype from oasislmf.pytools.fm.policy_extras import calc, UnknownCalcrule def test_calcrule_1(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 1, 15, 0, 0, 10, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 0., 5., 15., 25., 30., 30.]) deductible_expected = np.array([5., 15., 20., 20., 20., 20., 20.]) over_limit_expected = np.array([5., 5., 5., 5., 5., 10., 20.]) under_limit_expected = np.array([5., 15., 20., 15., 5., 0., 0.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_2(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 2, 15, 0, 0, 10, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 0., 0., 2.5, 7.5, 12.5, 15.]) deductible_expected = np.array([5., 5., 5., 5., 5., 5., 5]) over_limit_expected = np.array([5., 5., 5., 5., 5., 5., 5]) under_limit_expected = np.array([5., 5., 5., 5., 5., 5., 5]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_3(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 3, 15, 0, 0, 10, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 0., 20., 30., 30., 30., 30.]) deductible_expected = np.array([5., 15., 5., 5., 5., 5., 5.]) over_limit_expected = np.array([5., 5., 5., 5., 15., 25., 35.]) under_limit_expected = np.array([5., 15., 5., 0., 0., 0., 0.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_5(): # ded + limit > 1 loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 5, 0.25, 0, 0, 10, 0.8, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 7.5, 15., 22.5, 30., 37.5, 45.]) deductible_expected = np.array([5., 7.5, 10., 12.5, 15., 17.5, 20.]) over_limit_expected = np.array([5., 5., 5., 5., 5., 5., 5.]) under_limit_expected = np.array([0., 0.5, 1., 1.5, 2., 2.5, 3.]) # ded + limit < 1 assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 5, 0.25, 0, 0, 10, 0.5, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 5., 10., 15., 20., 25., 30.]) deductible_expected = np.array([5., 7.5, 10., 12.5, 15., 17.5, 20.]) over_limit_expected = np.array([5., 7.5, 10., 12.5, 15., 17.5, 20.]) under_limit_expected = np.array([0., 0., 0., 0., 0., 0., 0.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_7(): loss_in = np.array([20., 20., 20., 20., 20., 20., 1., 20, 60]) deductible = np.array([0., 0., 0., 30., 30., 30., 16., 10, 10]) over_limit = np.array([0., 3., 10., 10., 10., 0., 0., 10, 10]) under_limit = np.array([0., 10., 10., 0., 5., 15., 0., 10, 10]) loss_out = np.empty_like(loss_in) policy = np.array([(0, 7, 5, 10, 20, 0, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([10., 13., 20., 20., 25., 30., 0., 15., 30]) deductible_expected = np.array([10., 10., 10., 20., 20., 20., 17., 15., 15]) over_limit_expected = np.array([0., 0., 5., 20., 15., 0., 0., 10., 35]) under_limit_expected = np.array([5., 12., 10., 0., 0., 0., 1., 15., 0.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_8(): loss_in = np.array([20., 20., 20., 20., 20., 20., 1., 20, 60]) deductible = np.array([0., 0., 0., 30., 30., 30., 16., 10, 10]) over_limit = np.array([0., 3., 10., 10., 10., 0., 0., 10, 10]) under_limit = np.array([0., 10., 10., 0., 5., 15., 0., 10, 10]) loss_out = np.empty_like(loss_in) policy = np.array([(0, 8, 5, 10, 20, 0, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([10., 13., 20., 15., 15., 15., 0., 15., 30]) deductible_expected = np.array([10., 10., 10., 35., 35., 35., 17., 15., 15]) over_limit_expected = np.array([0., 0., 5., 10., 10., 0., 0., 10., 35]) under_limit_expected = np.array([5., 12., 10., 5., 10., 15., 1., 15., 0.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_10(): loss_in = np.array([20., 20., 20., 20., 20., 20., 1., 20, 60]) deductible = np.array([0., 0., 0., 30., 30., 30., 16., 10, 10]) over_limit = np.array([0., 3., 10., 10., 10., 0., 0., 10, 10]) under_limit = np.array([0., 10., 10., 0., 5., 15., 0., 10, 10]) loss_out = np.empty_like(loss_in) policy = np.array([(0, 10, 5, 10, 20, 0, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([15., 15., 15., 20., 25., 30., 0., 15., 55]) deductible_expected = np.array([5., 5., 5., 20., 20., 20., 17., 15., 15]) over_limit_expected = np.array([0., 3., 10., 20., 15., 0., 0., 10., 10]) under_limit_expected = np.array([5., 15., 15., 0., 0., 5., 1., 15., 15.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_11(): loss_in = np.array([20., 20., 20., 20., 20., 20., 1., 20, 60]) deductible = np.array([0., 0., 0., 30., 30., 30., 16., 10, 10]) over_limit = np.array([0., 3., 10., 10., 10., 0., 0., 10, 10]) under_limit = np.array([0., 10., 10., 0., 5., 15., 0., 10, 10]) loss_out = np.empty_like(loss_in) policy = np.array([(0, 11, 5, 10, 20, 0, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([10., 13., 20., 15., 15., 15., 0., 15., 55]) deductible_expected = np.array([10., 10., 10., 35., 35., 35., 17., 15., 15]) over_limit_expected = np.array([0., 0., 5., 10., 10., 0., 0., 10., 10]) under_limit_expected = np.array([5., 12., 10., 5., 10., 20., 1., 15., 15.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_12(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 12, 15, 0, 0, 10, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 0., 5., 15., 25., 35., 45.]) deductible_expected = np.array([5., 15., 20., 20., 20., 20., 20.]) over_limit_expected = np.array([5., 5., 5., 5., 5., 5., 5.]) under_limit_expected = np.array([5., 15., 20., 20., 20., 20., 20.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_13(): loss_in = np.array([20., 20., 20., 20., 20., 20., 1., 20, 60]) deductible = np.array([0., 0., 0., 30., 30., 30., 16., 10, 10]) over_limit = np.array([0., 3., 10., 10., 10., 0., 0., 10, 10]) under_limit = np.array([0., 10., 10., 0., 5., 15., 0., 10, 10]) loss_out = np.empty_like(loss_in) policy = np.array([(0, 13, 5, 10, 20, 0, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([10., 13., 20., 20., 25., 30., 0., 15., 55]) deductible_expected = np.array([10., 10., 10., 20., 20., 20., 17., 15., 15]) over_limit_expected = np.array([0., 0., 5., 20., 15., 0., 0., 10., 10]) under_limit_expected = np.array([5., 12., 10., 0., 0., 5., 1., 15., 15.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_14(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 14, 15, 0, 0, 10, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 10., 20., 30., 30., 30., 30.]) deductible_expected = np.array([5., 5., 5., 5., 5., 5., 5.]) over_limit_expected = np.array([5., 5., 5., 5., 15., 25., 35.]) under_limit_expected = np.array([5., 5., 5., 0., 0., 0., 0.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_15(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 15, 15, 0, 0, 10, 0.6, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 0., 5., 15., 24., 30., 36.]) deductible_expected = np.array([5., 15., 20., 20., 20., 20., 20.]) over_limit_expected = np.array([5., 5., 5., 5., 6., 10., 14.]) under_limit_expected = np.array([5., 15., 17.5, 7.5, 0., 0., 0.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected, decimal=4) def test_calcrule_16(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 16, 1/4, 0, 0, 10, 0.6, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 7.5, 15., 22.5, 30., 37.5, 45.]) deductible_expected = np.array([5., 7.5, 10., 12.5, 15., 17.5, 20.]) over_limit_expected = np.array([5., 5., 5., 5., 5., 5., 5.]) under_limit_expected = np.array([5., 7.5, 10., 12.5, 15., 17.5, 20.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected, decimal=4) def test_calcrule_17(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 17, 1/4, 0, 0, 10, 25, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 0, 2.5, 6.25, 10., 12.5, 12.5]) deductible_expected = np.array([5., 5., 5., 5., 5., 5., 5.]) over_limit_expected = np.array([5., 5., 5., 5., 5., 5., 5.]) under_limit_expected = np.array([5., 5., 5., 5., 5., 5., 5.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_19(): loss_in = np.array([20., 20., 20., 20., 20., 20., 1., 20, 60]) deductible = np.array([0., 0., 0., 30., 30., 30., 16., 10, 10]) over_limit = np.array([0., 3., 10., 10., 10., 0., 0., 10, 10]) under_limit = np.array([0., 10., 10., 0., 5., 15., 0., 10, 10]) loss_out = np.empty_like(loss_in) policy = np.array([(0, 19, 1/4, 10, 20, 0, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([10., 13., 20., 20., 25., 30., 0.75, 15., 50]) deductible_expected = np.array([10., 10., 10., 20., 20., 20., 16.25, 15., 20]) over_limit_expected = np.array([0., 0., 0.25, 20., 15., 0., 0., 10., 10]) under_limit_expected = np.array([9.75, 16.75, 10., 0., 0., 5., 0.25, 15., 20.]) assert_array_almost_equal(loss_out, loss_expected) assert_array_almost_equal(deductible, deductible_expected) assert_array_almost_equal(over_limit, over_limit_expected) assert_array_almost_equal(under_limit, under_limit_expected) def test_calcrule_20(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit = np.ones_like(loss_in) * 5 loss_out = np.empty_like(loss_in) policy = np.array([(0, 20, 25, 0, 0, 10, 30, 0.5, 0, 0)], dtype=fm_profile_dtype)[0] calc(policy, loss_out, loss_in, deductible, over_limit, under_limit, None) loss_expected = np.array([0., 10., 20., 0., 0., 0., 0.]) assert_array_almost_equal(loss_out, loss_expected) def test_calcrule_22(): loss_in = np.array([0., 10., 20., 30., 40., 50., 60.]) deductible = np.ones_like(loss_in) * 5 over_limit = np.ones_like(loss_in) * 5 under_limit =
np.ones_like(loss_in)
numpy.ones_like
import numpy as np import scipy.misc as misc import cPickle as pickle import wget import glob import os import tarfile from ..utils import misc as umisc def extract_patches(impath, step=2): """ Get grayscale image patches. """ img = misc.imread(impath, flatten=True).astype(np.float32) h, w = img.shape patches = [] for i in range(0, h-7, step): for j in range(0, w-7, step): patch = np.reshape(img[i:i+8, j:j+8], (64,)) + np.random.rand(64) patches.append(patch) return np.array(patches) def process_images(imdir, extension='.jpg'): """ Extract all patches from images in a directory. """ impaths = glob.glob(os.path.join(imdir, '*'+extension)) im_patches = [extract_patches(ip) for ip in impaths] return np.concatenate(im_patches, 0) def make_dataset(bsds_imdir, save_path): # Load patches, rescale, demean, drop last pixel print('Loading training data...') train_patches = process_images(os.path.join(bsds_imdir, 'train'))/256.0 train_patches = train_patches - np.mean(train_patches, 1, keepdims=True) train_patches = train_patches[:, :-1].astype(np.float32) print('Loading testing data...') test_patches = process_images(os.path.join(bsds_imdir, 'test'))/256.0 test_patches = test_patches -
np.mean(test_patches, 1, keepdims=True)
numpy.mean
# -*- coding: utf-8 -*- import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt import numpy import pandas as pd import datetime import csv from dateutil import parser import os import csv from ChefsHatGym.KEF import DataSetManager from ChefsHatGym.KEF.DataSetManager import actionFinish, actionPass, actionDiscard, actionDeal from matplotlib.collections import PolyCollection statisticsGame = { "GameDuration": "gameDuration", "NumberGames":"numberGames", "NumberRounds": "numberRounds", "PlayerScore": "averagePoints", "AgregatedScore": "agregatedScore", } statisticsPreGame = { "Personality": "personality", "Competitiveness": "competitiveness", "Experience": "experience" } statisticsAfterGame = { "Personality": "personality" } statisticsIntegrated = { "Similarity": "similarity" } """Plots per game""" def plotPlayedTime(playedTimes, saveDirectory): fig, ax = plt.subplots() plt.grid() playedTimes = numpy.array(playedTimes) ax.set_xlabel('Players') ax.set_ylabel('Seconds') ax.bar(range(1, len(playedTimes)+1),playedTimes) plt.title('Game duration per participant') averagePlayedTime = playedTimes.mean() averageLabel = str("{:10.2f}".format(averagePlayedTime)) ax.axhline(averagePlayedTime, color='red', linewidth=2, label='Avg: ' + str(averageLabel) + " s") plt.legend() plt.savefig(saveDirectory + "/Game_PlayedTime.png") plt.clf() def plotNumberGames(numberGames, saveDirectory): fig, ax = plt.subplots() plt.grid() numberGames = numpy.array(numberGames) ax.set_xlabel('Players') ax.set_ylabel('# Games') plt.title('Games per participant') ax.bar(range(1, len(numberGames)+1),numberGames) averageGames = numberGames.mean() averageLabel = str("{:10.2f}".format(averageGames)) ax.axhline(averageGames, color='red', linewidth=2, label='Avg: ' + str(averageLabel) + " games") plt.legend() plt.savefig(saveDirectory + "/Game_NumberGames.png") plt.clf() def plotNumberRounds(numberRounds, saveDirectory): fig, ax = plt.subplots() plt.grid() numberRounds = numpy.array(numberRounds) ax.set_xlabel('Players') ax.set_ylabel('# Pizzas') plt.title('Rounds per participant') ax.bar(range(1, len(numberRounds)+1),numberRounds) averageGames = numberRounds.mean() averageLabel = str("{:10.2f}".format(averageGames)) ax.axhline(averageGames, color='red', linewidth=2, label='Avg: ' + str(averageLabel) + " pizzas") plt.legend() plt.savefig(saveDirectory + "/Game_NumberPizzas.png") plt.clf() def plotPlayerScore(playerScore, saveDirectory): fig, ax = plt.subplots() plt.grid() playerScore = numpy.array(playerScore) ax.set_xlabel('Players') ax.set_ylabel('Score') plt.title('Score per participant') ax.bar(range(1, len(playerScore)+1),playerScore) averageGames = playerScore.mean() averageLabel = str("{:10.2f}".format(averageGames)) ax.axhline(averageGames, color='red', linewidth=2, label='Avg: ' + str(averageLabel) + " points") plt.legend() plt.savefig(saveDirectory + "/Game_Score.png") plt.clf() def plotAgregatedScore(thisGameAgregatedScore, saveDirectory): fig, ax = plt.subplots() plt.grid() agregatedScore = numpy.array(thisGameAgregatedScore) # print ("agregated:" + str(thisGameAgregatedScore)) ax.set_xlabel('Players') ax.set_ylabel('Agregated Score') plt.title('Aggregated score per participant') ax.bar(range(1, len(agregatedScore)+1),agregatedScore) averageGames = agregatedScore.mean() averageLabel = str("{:10.2f}".format(averageGames)) ax.axhline(averageGames, color='red', linewidth=2, label='Avg: ' + str(averageLabel) + " points") plt.legend() plt.savefig(saveDirectory + "/Game_ScoreAgregated.png") plt.clf() """Plots pre-game""" def plotPersonalitiesPreGame(agencies,competences,communnions,saveDirectory): plt.grid() examples = range(1, len(agencies)+1) agencies = numpy.array(agencies) competences = numpy.array(competences) communnions = numpy.array(communnions) width = 0.5 p1 = plt.bar(examples, agencies, width, yerr=competences.std()) p2 = plt.bar(examples, competences, width, bottom=agencies, yerr=competences.std()) p3 = plt.bar(examples, communnions, width, bottom=agencies+competences, yerr=communnions.std()) plt.title('Personalities per participant') # plt.legend((p1[0], p2[0],), ('Agency', 'Competence')) plt.legend((p1[0], p2[0], p3[0]), ('Agency', 'Competence', "Communnion")) plt.xlabel('Players') plt.ylabel('Value') # plt.legend() plt.savefig(saveDirectory + "/Player_Personalities.png") plt.clf() def plotCompetitiveness(competitiveness, saveDirectory): fig, ax = plt.subplots() plt.grid() competitiveness = numpy.array(competitiveness) ax.set_xlabel('Players') ax.set_ylabel('Rating') ax.bar(range(1, len(competitiveness)+1),competitiveness) plt.title('Competitiveness per participant') averagePlayedTime = competitiveness.mean() averageLabel = str("{:10.2f}".format(averagePlayedTime)) ax.axhline(averagePlayedTime, color='red', linewidth=2, label='Avg: ' + str(averageLabel) + " s") plt.legend() plt.savefig(saveDirectory + "/Player_Competitiveness.png") plt.clf() def plotExperience(experience, saveDirectory): fig, ax = plt.subplots() plt.grid() experience = numpy.array(experience) ax.set_xlabel('Players') ax.set_ylabel('Rating') ax.bar(range(1, len(experience)+1),experience) plt.title('Experience per participant') averagePlayedTime = experience.mean() averageLabel = str("{:10.2f}".format(averagePlayedTime)) ax.axhline(averagePlayedTime, color='red', linewidth=2, label='Avg: ' + str(averageLabel) + " s") plt.legend() plt.savefig(saveDirectory + "/Player_Experiences.png") plt.clf() """Plots after-game""" def plotPersonalitiesAfterGame(agencies,competences,communnions,saveDirectory): finalAgency = [] finalCompetence = [] finaoComunion = [] agencies = numpy.array(agencies) finalAgency.append(numpy.array(agencies[0]).mean()) finalAgency.append(numpy.array(agencies[1]).mean()) finalAgency.append(numpy.array(agencies[2]).mean()) finalCompetence.append(numpy.array(competences[0]).mean()) finalCompetence.append(numpy.array(competences[1]).mean()) finalCompetence.append(numpy.array(competences[2]).mean()) finaoComunion.append(numpy.array(communnions[0]).mean()) finaoComunion.append(numpy.array(communnions[1]).mean()) finaoComunion.append(numpy.array(communnions[2]).mean()) plt.grid() examples = range(1, len(finalAgency)+1) agencies = numpy.array(finalAgency) competences = numpy.array(finalCompetence) communnions = numpy.array(finaoComunion) width = 0.5 # print ("Agencies:" +str(agencies)) p1 = plt.bar(examples, agencies, width, yerr=competences.std()) p2 = plt.bar(examples, competences, width, bottom=agencies, yerr=competences.std()) p3 = plt.bar(examples, communnions, width, bottom=agencies+competences, yerr=communnions.std()) plt.xticks(examples, ('PPO', 'Random', "DQL")) plt.title('Personalities per Agent') # plt.legend((p1[0], p2[0],), ('Agency', 'Competence')) plt.legend((p1[0], p2[0], p3[0]), ('Agency', 'Competence', "Communnion")) plt.xlabel('Agents') plt.ylabel('Value') # plt.legend() plt.savefig(saveDirectory + "/Agents_Personalities.png") plt.clf() """Plots Integrated""" def plotSimilaritiesIntegrated(agenciesAgent, competencesAgent, communnionsAgent,agenciesPlayer, competencesPlayer, communnionsPlayer, saveDirectory): finalAgency = [] finalCompetence = [] finaoComunion = [] agencies = numpy.array(agenciesAgent) finalAgency.append(numpy.array(agencies[0]).mean()) finalAgency.append(numpy.array(agencies[1]).mean()) finalAgency.append(numpy.array(agencies[2]).mean()) finalCompetence.append(numpy.array(competencesAgent[0]).mean()) finalCompetence.append(numpy.array(competencesAgent[1]).mean()) finalCompetence.append(numpy.array(competencesAgent[2]).mean()) finaoComunion.append(numpy.array(communnionsAgent[0]).mean()) finaoComunion.append(numpy.array(communnionsAgent[1]).mean()) finaoComunion.append(numpy.array(communnionsAgent[2]).mean()) finalDistancesAvery = [] finalDistancesBeck = [] finalDistancesCass = [] for p in range(len(agenciesPlayer)): print ("p:"+str(p) + " - " + str(len(agenciesPlayer))) playerPoint = numpy.array([agenciesPlayer[p], competencesPlayer[p], communnionsPlayer[p]]) averyPoint = numpy.array([finalAgency[0], finalCompetence[0], finaoComunion[0]]) beckPoint =
numpy.array([finalAgency[1], finalCompetence[1], finaoComunion[1]])
numpy.array
import itertools from functools import partial import numpy as np import pandas as pd import matplotlib as mpl import matplotlib.pyplot as plt from matplotlib.colors import rgb2hex, to_rgb, to_rgba import pytest from pytest import approx import numpy.testing as npt from distutils.version import LooseVersion from numpy.testing import ( assert_array_equal, assert_array_less, ) from .. import categorical as cat from .. import palettes from .._core import categorical_order from ..categorical import ( _CategoricalPlotterNew, Beeswarm, catplot, stripplot, swarmplot, ) from ..palettes import color_palette from ..utils import _normal_quantile_func, _draw_figure from .._testing import assert_plots_equal PLOT_FUNCS = [ catplot, stripplot, swarmplot, ] class TestCategoricalPlotterNew: @pytest.mark.parametrize( "func,kwargs", itertools.product( PLOT_FUNCS, [ {"x": "x", "y": "a"}, {"x": "a", "y": "y"}, {"x": "y"}, {"y": "x"}, ], ), ) def test_axis_labels(self, long_df, func, kwargs): func(data=long_df, **kwargs) ax = plt.gca() for axis in "xy": val = kwargs.get(axis, "") label_func = getattr(ax, f"get_{axis}label") assert label_func() == val @pytest.mark.parametrize("func", PLOT_FUNCS) def test_empty(self, func): func() ax = plt.gca() assert not ax.collections assert not ax.patches assert not ax.lines func(x=[], y=[]) ax = plt.gca() assert not ax.collections assert not ax.patches assert not ax.lines def test_redundant_hue_backcompat(self, long_df): p = _CategoricalPlotterNew( data=long_df, variables={"x": "s", "y": "y"}, ) color = None palette = dict(zip(long_df["s"].unique(), color_palette())) hue_order = None palette, _ = p._hue_backcompat(color, palette, hue_order, force_hue=True) assert p.variables["hue"] == "s" assert_array_equal(p.plot_data["hue"], p.plot_data["x"]) assert all(isinstance(k, str) for k in palette) class CategoricalFixture: """Test boxplot (also base class for things like violinplots).""" rs = np.random.RandomState(30) n_total = 60 x = rs.randn(int(n_total / 3), 3) x_df = pd.DataFrame(x, columns=pd.Series(list("XYZ"), name="big")) y = pd.Series(rs.randn(n_total), name="y_data") y_perm = y.reindex(rs.choice(y.index, y.size, replace=False)) g = pd.Series(np.repeat(list("abc"), int(n_total / 3)), name="small") h = pd.Series(np.tile(list("mn"), int(n_total / 2)), name="medium") u = pd.Series(np.tile(list("jkh"), int(n_total / 3))) df = pd.DataFrame(dict(y=y, g=g, h=h, u=u)) x_df["W"] = g class TestCategoricalPlotter(CategoricalFixture): def test_wide_df_data(self): p = cat._CategoricalPlotter() # Test basic wide DataFrame p.establish_variables(data=self.x_df) # Check data attribute for x, y, in zip(p.plot_data, self.x_df[["X", "Y", "Z"]].values.T): npt.assert_array_equal(x, y) # Check semantic attributes assert p.orient == "v" assert p.plot_hues is None assert p.group_label == "big" assert p.value_label is None # Test wide dataframe with forced horizontal orientation p.establish_variables(data=self.x_df, orient="horiz") assert p.orient == "h" # Test exception by trying to hue-group with a wide dataframe with pytest.raises(ValueError): p.establish_variables(hue="d", data=self.x_df) def test_1d_input_data(self): p = cat._CategoricalPlotter() # Test basic vector data x_1d_array = self.x.ravel() p.establish_variables(data=x_1d_array) assert len(p.plot_data) == 1 assert len(p.plot_data[0]) == self.n_total assert p.group_label is None assert p.value_label is None # Test basic vector data in list form x_1d_list = x_1d_array.tolist() p.establish_variables(data=x_1d_list) assert len(p.plot_data) == 1 assert len(p.plot_data[0]) == self.n_total assert p.group_label is None assert p.value_label is None # Test an object array that looks 1D but isn't x_notreally_1d = np.array([self.x.ravel(), self.x.ravel()[:int(self.n_total / 2)]], dtype=object) p.establish_variables(data=x_notreally_1d) assert len(p.plot_data) == 2 assert len(p.plot_data[0]) == self.n_total assert len(p.plot_data[1]) == self.n_total / 2 assert p.group_label is None assert p.value_label is None def test_2d_input_data(self): p = cat._CategoricalPlotter() x = self.x[:, 0] # Test vector data that looks 2D but doesn't really have columns p.establish_variables(data=x[:, np.newaxis]) assert len(p.plot_data) == 1 assert len(p.plot_data[0]) == self.x.shape[0] assert p.group_label is None assert p.value_label is None # Test vector data that looks 2D but doesn't really have rows p.establish_variables(data=x[np.newaxis, :]) assert len(p.plot_data) == 1 assert len(p.plot_data[0]) == self.x.shape[0] assert p.group_label is None assert p.value_label is None def test_3d_input_data(self): p = cat._CategoricalPlotter() # Test that passing actually 3D data raises x = np.zeros((5, 5, 5)) with pytest.raises(ValueError): p.establish_variables(data=x) def test_list_of_array_input_data(self): p = cat._CategoricalPlotter() # Test 2D input in list form x_list = self.x.T.tolist() p.establish_variables(data=x_list) assert len(p.plot_data) == 3 lengths = [len(v_i) for v_i in p.plot_data] assert lengths == [self.n_total / 3] * 3 assert p.group_label is None assert p.value_label is None def test_wide_array_input_data(self): p = cat._CategoricalPlotter() # Test 2D input in array form p.establish_variables(data=self.x) assert np.shape(p.plot_data) == (3, self.n_total / 3) npt.assert_array_equal(p.plot_data, self.x.T) assert p.group_label is None assert p.value_label is None def test_single_long_direct_inputs(self): p = cat._CategoricalPlotter() # Test passing a series to the x variable p.establish_variables(x=self.y) npt.assert_equal(p.plot_data, [self.y]) assert p.orient == "h" assert p.value_label == "y_data" assert p.group_label is None # Test passing a series to the y variable p.establish_variables(y=self.y) npt.assert_equal(p.plot_data, [self.y]) assert p.orient == "v" assert p.value_label == "y_data" assert p.group_label is None # Test passing an array to the y variable p.establish_variables(y=self.y.values) npt.assert_equal(p.plot_data, [self.y]) assert p.orient == "v" assert p.group_label is None assert p.value_label is None # Test array and series with non-default index x = pd.Series([1, 1, 1, 1], index=[0, 2, 4, 6]) y = np.array([1, 2, 3, 4]) p.establish_variables(x, y) assert len(p.plot_data[0]) == 4 def test_single_long_indirect_inputs(self): p = cat._CategoricalPlotter() # Test referencing a DataFrame series in the x variable p.establish_variables(x="y", data=self.df) npt.assert_equal(p.plot_data, [self.y]) assert p.orient == "h" assert p.value_label == "y" assert p.group_label is None # Test referencing a DataFrame series in the y variable p.establish_variables(y="y", data=self.df) npt.assert_equal(p.plot_data, [self.y]) assert p.orient == "v" assert p.value_label == "y" assert p.group_label is None def test_longform_groupby(self): p = cat._CategoricalPlotter() # Test a vertically oriented grouped and nested plot p.establish_variables("g", "y", hue="h", data=self.df) assert len(p.plot_data) == 3 assert len(p.plot_hues) == 3 assert p.orient == "v" assert p.value_label == "y" assert p.group_label == "g" assert p.hue_title == "h" for group, vals in zip(["a", "b", "c"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) for group, hues in zip(["a", "b", "c"], p.plot_hues): npt.assert_array_equal(hues, self.h[self.g == group]) # Test a grouped and nested plot with direct array value data p.establish_variables("g", self.y.values, "h", self.df) assert p.value_label is None assert p.group_label == "g" for group, vals in zip(["a", "b", "c"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) # Test a grouped and nested plot with direct array hue data p.establish_variables("g", "y", self.h.values, self.df) for group, hues in zip(["a", "b", "c"], p.plot_hues): npt.assert_array_equal(hues, self.h[self.g == group]) # Test categorical grouping data df = self.df.copy() df.g = df.g.astype("category") # Test that horizontal orientation is automatically detected p.establish_variables("y", "g", hue="h", data=df) assert len(p.plot_data) == 3 assert len(p.plot_hues) == 3 assert p.orient == "h" assert p.value_label == "y" assert p.group_label == "g" assert p.hue_title == "h" for group, vals in zip(["a", "b", "c"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) for group, hues in zip(["a", "b", "c"], p.plot_hues): npt.assert_array_equal(hues, self.h[self.g == group]) # Test grouped data that matches on index p1 = cat._CategoricalPlotter() p1.establish_variables(self.g, self.y, hue=self.h) p2 = cat._CategoricalPlotter() p2.establish_variables(self.g, self.y[::-1], self.h) for i, (d1, d2) in enumerate(zip(p1.plot_data, p2.plot_data)): assert np.array_equal(d1.sort_index(), d2.sort_index()) def test_input_validation(self): p = cat._CategoricalPlotter() kws = dict(x="g", y="y", hue="h", units="u", data=self.df) for var in ["x", "y", "hue", "units"]: input_kws = kws.copy() input_kws[var] = "bad_input" with pytest.raises(ValueError): p.establish_variables(**input_kws) def test_order(self): p = cat._CategoricalPlotter() # Test inferred order from a wide dataframe input p.establish_variables(data=self.x_df) assert p.group_names == ["X", "Y", "Z"] # Test specified order with a wide dataframe input p.establish_variables(data=self.x_df, order=["Y", "Z", "X"]) assert p.group_names == ["Y", "Z", "X"] for group, vals in zip(["Y", "Z", "X"], p.plot_data): npt.assert_array_equal(vals, self.x_df[group]) with pytest.raises(ValueError): p.establish_variables(data=self.x, order=[1, 2, 0]) # Test inferred order from a grouped longform input p.establish_variables("g", "y", data=self.df) assert p.group_names == ["a", "b", "c"] # Test specified order from a grouped longform input p.establish_variables("g", "y", data=self.df, order=["b", "a", "c"]) assert p.group_names == ["b", "a", "c"] for group, vals in zip(["b", "a", "c"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) # Test inferred order from a grouped input with categorical groups df = self.df.copy() df.g = df.g.astype("category") df.g = df.g.cat.reorder_categories(["c", "b", "a"]) p.establish_variables("g", "y", data=df) assert p.group_names == ["c", "b", "a"] for group, vals in zip(["c", "b", "a"], p.plot_data): npt.assert_array_equal(vals, self.y[self.g == group]) df.g = (df.g.cat.add_categories("d") .cat.reorder_categories(["c", "b", "d", "a"])) p.establish_variables("g", "y", data=df) assert p.group_names == ["c", "b", "d", "a"] def test_hue_order(self): p = cat._CategoricalPlotter() # Test inferred hue order p.establish_variables("g", "y", hue="h", data=self.df) assert p.hue_names == ["m", "n"] # Test specified hue order p.establish_variables("g", "y", hue="h", data=self.df, hue_order=["n", "m"]) assert p.hue_names == ["n", "m"] # Test inferred hue order from a categorical hue input df = self.df.copy() df.h = df.h.astype("category") df.h = df.h.cat.reorder_categories(["n", "m"]) p.establish_variables("g", "y", hue="h", data=df) assert p.hue_names == ["n", "m"] df.h = (df.h.cat.add_categories("o") .cat.reorder_categories(["o", "m", "n"])) p.establish_variables("g", "y", hue="h", data=df) assert p.hue_names == ["o", "m", "n"] def test_plot_units(self): p = cat._CategoricalPlotter() p.establish_variables("g", "y", hue="h", data=self.df) assert p.plot_units is None p.establish_variables("g", "y", hue="h", data=self.df, units="u") for group, units in zip(["a", "b", "c"], p.plot_units): npt.assert_array_equal(units, self.u[self.g == group]) def test_default_palettes(self): p = cat._CategoricalPlotter() # Test palette mapping the x position p.establish_variables("g", "y", data=self.df) p.establish_colors(None, None, 1) assert p.colors == palettes.color_palette(n_colors=3) # Test palette mapping the hue position p.establish_variables("g", "y", hue="h", data=self.df) p.establish_colors(None, None, 1) assert p.colors == palettes.color_palette(n_colors=2) def test_default_palette_with_many_levels(self): with palettes.color_palette(["blue", "red"], 2): p = cat._CategoricalPlotter() p.establish_variables("g", "y", data=self.df) p.establish_colors(None, None, 1) npt.assert_array_equal(p.colors, palettes.husl_palette(3, l=.7)) # noqa def test_specific_color(self): p = cat._CategoricalPlotter() # Test the same color for each x position p.establish_variables("g", "y", data=self.df) p.establish_colors("blue", None, 1) blue_rgb = mpl.colors.colorConverter.to_rgb("blue") assert p.colors == [blue_rgb] * 3 # Test a color-based blend for the hue mapping p.establish_variables("g", "y", hue="h", data=self.df) p.establish_colors("#ff0022", None, 1) rgba_array = np.array(palettes.light_palette("#ff0022", 2)) npt.assert_array_almost_equal(p.colors, rgba_array[:, :3]) def test_specific_palette(self): p = cat._CategoricalPlotter() # Test palette mapping the x position p.establish_variables("g", "y", data=self.df) p.establish_colors(None, "dark", 1) assert p.colors == palettes.color_palette("dark", 3) # Test that non-None `color` and `hue` raises an error p.establish_variables("g", "y", hue="h", data=self.df) p.establish_colors(None, "muted", 1) assert p.colors == palettes.color_palette("muted", 2) # Test that specified palette overrides specified color p = cat._CategoricalPlotter() p.establish_variables("g", "y", data=self.df) p.establish_colors("blue", "deep", 1) assert p.colors == palettes.color_palette("deep", 3) def test_dict_as_palette(self): p = cat._CategoricalPlotter() p.establish_variables("g", "y", hue="h", data=self.df) pal = {"m": (0, 0, 1), "n": (1, 0, 0)} p.establish_colors(None, pal, 1) assert p.colors == [(0, 0, 1), (1, 0, 0)] def test_palette_desaturation(self): p = cat._CategoricalPlotter() p.establish_variables("g", "y", data=self.df) p.establish_colors((0, 0, 1), None, .5) assert p.colors == [(.25, .25, .75)] * 3 p.establish_colors(None, [(0, 0, 1), (1, 0, 0), "w"], .5) assert p.colors == [(.25, .25, .75), (.75, .25, .25), (1, 1, 1)] class TestCategoricalStatPlotter(CategoricalFixture): def test_no_bootstrappig(self): p = cat._CategoricalStatPlotter() p.establish_variables("g", "y", data=self.df) p.estimate_statistic(np.mean, None, 100, None) npt.assert_array_equal(p.confint, np.array([])) p.establish_variables("g", "y", hue="h", data=self.df) p.estimate_statistic(np.mean, None, 100, None) npt.assert_array_equal(p.confint, np.array([[], [], []])) def test_single_layer_stats(self): p = cat._CategoricalStatPlotter() g = pd.Series(np.repeat(list("abc"), 100)) y = pd.Series(np.random.RandomState(0).randn(300)) p.establish_variables(g, y) p.estimate_statistic(np.mean, 95, 10000, None) assert p.statistic.shape == (3,) assert p.confint.shape == (3, 2) npt.assert_array_almost_equal(p.statistic, y.groupby(g).mean()) for ci, (_, grp_y) in zip(p.confint, y.groupby(g)): sem = grp_y.std() / np.sqrt(len(grp_y)) mean = grp_y.mean() half_ci = _normal_quantile_func(.975) * sem ci_want = mean - half_ci, mean + half_ci npt.assert_array_almost_equal(ci_want, ci, 2) def test_single_layer_stats_with_units(self): p = cat._CategoricalStatPlotter() g = pd.Series(np.repeat(list("abc"), 90)) y = pd.Series(np.random.RandomState(0).randn(270)) u = pd.Series(np.repeat(np.tile(list("xyz"), 30), 3)) y[u == "x"] -= 3 y[u == "y"] += 3 p.establish_variables(g, y) p.estimate_statistic(np.mean, 95, 10000, None) stat1, ci1 = p.statistic, p.confint p.establish_variables(g, y, units=u) p.estimate_statistic(np.mean, 95, 10000, None) stat2, ci2 = p.statistic, p.confint npt.assert_array_equal(stat1, stat2) ci1_size = ci1[:, 1] - ci1[:, 0] ci2_size = ci2[:, 1] - ci2[:, 0] npt.assert_array_less(ci1_size, ci2_size) def test_single_layer_stats_with_missing_data(self): p = cat._CategoricalStatPlotter() g = pd.Series(np.repeat(list("abc"), 100)) y = pd.Series(np.random.RandomState(0).randn(300)) p.establish_variables(g, y, order=list("abdc")) p.estimate_statistic(np.mean, 95, 10000, None) assert p.statistic.shape == (4,) assert p.confint.shape == (4, 2) rows = g == "b" mean = y[rows].mean() sem = y[rows].std() / np.sqrt(rows.sum()) half_ci = _normal_quantile_func(.975) * sem ci = mean - half_ci, mean + half_ci npt.assert_almost_equal(p.statistic[1], mean) npt.assert_array_almost_equal(p.confint[1], ci, 2) npt.assert_equal(p.statistic[2], np.nan) npt.assert_array_equal(p.confint[2], (np.nan, np.nan)) def test_nested_stats(self): p = cat._CategoricalStatPlotter() g = pd.Series(np.repeat(list("abc"), 100)) h = pd.Series(np.tile(list("xy"), 150)) y = pd.Series(np.random.RandomState(0).randn(300)) p.establish_variables(g, y, h) p.estimate_statistic(np.mean, 95, 50000, None) assert p.statistic.shape == (3, 2) assert p.confint.shape == (3, 2, 2) npt.assert_array_almost_equal(p.statistic, y.groupby([g, h]).mean().unstack()) for ci_g, (_, grp_y) in zip(p.confint, y.groupby(g)): for ci, hue_y in zip(ci_g, [grp_y[::2], grp_y[1::2]]): sem = hue_y.std() / np.sqrt(len(hue_y)) mean = hue_y.mean() half_ci = _normal_quantile_func(.975) * sem ci_want = mean - half_ci, mean + half_ci npt.assert_array_almost_equal(ci_want, ci, 2) def test_bootstrap_seed(self): p = cat._CategoricalStatPlotter() g = pd.Series(np.repeat(list("abc"), 100)) h = pd.Series(np.tile(list("xy"), 150)) y = pd.Series(np.random.RandomState(0).randn(300)) p.establish_variables(g, y, h) p.estimate_statistic(np.mean, 95, 1000, 0) confint_1 = p.confint p.estimate_statistic(np.mean, 95, 1000, 0) confint_2 = p.confint npt.assert_array_equal(confint_1, confint_2) def test_nested_stats_with_units(self): p = cat._CategoricalStatPlotter() g = pd.Series(np.repeat(list("abc"), 90)) h = pd.Series(np.tile(list("xy"), 135)) u = pd.Series(np.repeat(list("ijkijk"), 45)) y = pd.Series(np.random.RandomState(0).randn(270)) y[u == "i"] -= 3 y[u == "k"] += 3 p.establish_variables(g, y, h) p.estimate_statistic(np.mean, 95, 10000, None) stat1, ci1 = p.statistic, p.confint p.establish_variables(g, y, h, units=u) p.estimate_statistic(np.mean, 95, 10000, None) stat2, ci2 = p.statistic, p.confint npt.assert_array_equal(stat1, stat2) ci1_size = ci1[:, 0, 1] - ci1[:, 0, 0] ci2_size = ci2[:, 0, 1] - ci2[:, 0, 0] npt.assert_array_less(ci1_size, ci2_size) def test_nested_stats_with_missing_data(self): p = cat._CategoricalStatPlotter() g = pd.Series(np.repeat(list("abc"), 100)) y = pd.Series(np.random.RandomState(0).randn(300)) h = pd.Series(np.tile(list("xy"), 150)) p.establish_variables(g, y, h, order=list("abdc"), hue_order=list("zyx")) p.estimate_statistic(np.mean, 95, 50000, None) assert p.statistic.shape == (4, 3) assert p.confint.shape == (4, 3, 2) rows = (g == "b") & (h == "x") mean = y[rows].mean() sem = y[rows].std() / np.sqrt(rows.sum()) half_ci = _normal_quantile_func(.975) * sem ci = mean - half_ci, mean + half_ci npt.assert_almost_equal(p.statistic[1, 2], mean) npt.assert_array_almost_equal(p.confint[1, 2], ci, 2) npt.assert_array_equal(p.statistic[:, 0], [np.nan] * 4) npt.assert_array_equal(p.statistic[2], [np.nan] * 3) npt.assert_array_equal(p.confint[:, 0], np.zeros((4, 2)) * np.nan) npt.assert_array_equal(p.confint[2], np.zeros((3, 2)) * np.nan) def test_sd_error_bars(self): p = cat._CategoricalStatPlotter() g = pd.Series(np.repeat(list("abc"), 100)) y = pd.Series(np.random.RandomState(0).randn(300)) p.establish_variables(g, y) p.estimate_statistic(np.mean, "sd", None, None) assert p.statistic.shape == (3,) assert p.confint.shape == (3, 2) npt.assert_array_almost_equal(p.statistic, y.groupby(g).mean()) for ci, (_, grp_y) in zip(p.confint, y.groupby(g)): mean = grp_y.mean() half_ci = np.std(grp_y) ci_want = mean - half_ci, mean + half_ci npt.assert_array_almost_equal(ci_want, ci, 2) def test_nested_sd_error_bars(self): p = cat._CategoricalStatPlotter() g = pd.Series(np.repeat(list("abc"), 100)) h = pd.Series(np.tile(list("xy"), 150)) y = pd.Series(np.random.RandomState(0).randn(300)) p.establish_variables(g, y, h) p.estimate_statistic(np.mean, "sd", None, None) assert p.statistic.shape == (3, 2) assert p.confint.shape == (3, 2, 2) npt.assert_array_almost_equal(p.statistic, y.groupby([g, h]).mean().unstack()) for ci_g, (_, grp_y) in zip(p.confint, y.groupby(g)): for ci, hue_y in zip(ci_g, [grp_y[::2], grp_y[1::2]]): mean = hue_y.mean() half_ci = np.std(hue_y) ci_want = mean - half_ci, mean + half_ci npt.assert_array_almost_equal(ci_want, ci, 2) def test_draw_cis(self): p = cat._CategoricalStatPlotter() # Test vertical CIs p.orient = "v" f, ax = plt.subplots() at_group = [0, 1] confints = [(.5, 1.5), (.25, .8)] colors = [".2", ".3"] p.draw_confints(ax, at_group, confints, colors) lines = ax.lines for line, at, ci, c in zip(lines, at_group, confints, colors): x, y = line.get_xydata().T npt.assert_array_equal(x, [at, at]) npt.assert_array_equal(y, ci) assert line.get_color() == c plt.close("all") # Test horizontal CIs p.orient = "h" f, ax = plt.subplots() p.draw_confints(ax, at_group, confints, colors) lines = ax.lines for line, at, ci, c in zip(lines, at_group, confints, colors): x, y = line.get_xydata().T npt.assert_array_equal(x, ci) npt.assert_array_equal(y, [at, at]) assert line.get_color() == c plt.close("all") # Test vertical CIs with endcaps p.orient = "v" f, ax = plt.subplots() p.draw_confints(ax, at_group, confints, colors, capsize=0.3) capline = ax.lines[len(ax.lines) - 1] caplinestart = capline.get_xdata()[0] caplineend = capline.get_xdata()[1] caplinelength = abs(caplineend - caplinestart) assert caplinelength == approx(0.3) assert len(ax.lines) == 6 plt.close("all") # Test horizontal CIs with endcaps p.orient = "h" f, ax = plt.subplots() p.draw_confints(ax, at_group, confints, colors, capsize=0.3) capline = ax.lines[len(ax.lines) - 1] caplinestart = capline.get_ydata()[0] caplineend = capline.get_ydata()[1] caplinelength = abs(caplineend - caplinestart) assert caplinelength == approx(0.3) assert len(ax.lines) == 6 # Test extra keyword arguments f, ax = plt.subplots() p.draw_confints(ax, at_group, confints, colors, lw=4) line = ax.lines[0] assert line.get_linewidth() == 4 plt.close("all") # Test errwidth is set appropriately f, ax = plt.subplots() p.draw_confints(ax, at_group, confints, colors, errwidth=2) capline = ax.lines[len(ax.lines) - 1] assert capline._linewidth == 2 assert len(ax.lines) == 2 plt.close("all") class TestBoxPlotter(CategoricalFixture): default_kws = dict(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=.75, width=.8, dodge=True, fliersize=5, linewidth=None) def test_nested_width(self): kws = self.default_kws.copy() p = cat._BoxPlotter(**kws) p.establish_variables("g", "y", hue="h", data=self.df) assert p.nested_width == .4 * .98 kws = self.default_kws.copy() kws["width"] = .6 p = cat._BoxPlotter(**kws) p.establish_variables("g", "y", hue="h", data=self.df) assert p.nested_width == .3 * .98 kws = self.default_kws.copy() kws["dodge"] = False p = cat._BoxPlotter(**kws) p.establish_variables("g", "y", hue="h", data=self.df) assert p.nested_width == .8 def test_hue_offsets(self): p = cat._BoxPlotter(**self.default_kws) p.establish_variables("g", "y", hue="h", data=self.df) npt.assert_array_equal(p.hue_offsets, [-.2, .2]) kws = self.default_kws.copy() kws["width"] = .6 p = cat._BoxPlotter(**kws) p.establish_variables("g", "y", hue="h", data=self.df) npt.assert_array_equal(p.hue_offsets, [-.15, .15]) p = cat._BoxPlotter(**kws) p.establish_variables("h", "y", "g", data=self.df) npt.assert_array_almost_equal(p.hue_offsets, [-.2, 0, .2]) def test_axes_data(self): ax = cat.boxplot(x="g", y="y", data=self.df) assert len(ax.artists) == 3 plt.close("all") ax = cat.boxplot(x="g", y="y", hue="h", data=self.df) assert len(ax.artists) == 6 plt.close("all") def test_box_colors(self): ax = cat.boxplot(x="g", y="y", data=self.df, saturation=1) pal = palettes.color_palette(n_colors=3) for patch, color in zip(ax.artists, pal): assert patch.get_facecolor()[:3] == color plt.close("all") ax = cat.boxplot(x="g", y="y", hue="h", data=self.df, saturation=1) pal = palettes.color_palette(n_colors=2) for patch, color in zip(ax.artists, pal * 2): assert patch.get_facecolor()[:3] == color plt.close("all") def test_draw_missing_boxes(self): ax = cat.boxplot(x="g", y="y", data=self.df, order=["a", "b", "c", "d"]) assert len(ax.artists) == 3 def test_missing_data(self): x = ["a", "a", "b", "b", "c", "c", "d", "d"] h = ["x", "y", "x", "y", "x", "y", "x", "y"] y = self.rs.randn(8) y[-2:] = np.nan ax = cat.boxplot(x=x, y=y) assert len(ax.artists) == 3 plt.close("all") y[-1] = 0 ax = cat.boxplot(x=x, y=y, hue=h) assert len(ax.artists) == 7 plt.close("all") def test_unaligned_index(self): f, (ax1, ax2) = plt.subplots(2) cat.boxplot(x=self.g, y=self.y, ax=ax1) cat.boxplot(x=self.g, y=self.y_perm, ax=ax2) for l1, l2 in zip(ax1.lines, ax2.lines): assert np.array_equal(l1.get_xydata(), l2.get_xydata()) f, (ax1, ax2) = plt.subplots(2) hue_order = self.h.unique() cat.boxplot(x=self.g, y=self.y, hue=self.h, hue_order=hue_order, ax=ax1) cat.boxplot(x=self.g, y=self.y_perm, hue=self.h, hue_order=hue_order, ax=ax2) for l1, l2 in zip(ax1.lines, ax2.lines): assert np.array_equal(l1.get_xydata(), l2.get_xydata()) def test_boxplots(self): # Smoke test the high level boxplot options cat.boxplot(x="y", data=self.df) plt.close("all") cat.boxplot(y="y", data=self.df) plt.close("all") cat.boxplot(x="g", y="y", data=self.df) plt.close("all") cat.boxplot(x="y", y="g", data=self.df, orient="h") plt.close("all") cat.boxplot(x="g", y="y", hue="h", data=self.df) plt.close("all") cat.boxplot(x="g", y="y", hue="h", order=list("nabc"), data=self.df) plt.close("all") cat.boxplot(x="g", y="y", hue="h", hue_order=list("omn"), data=self.df) plt.close("all") cat.boxplot(x="y", y="g", hue="h", data=self.df, orient="h") plt.close("all") def test_axes_annotation(self): ax = cat.boxplot(x="g", y="y", data=self.df) assert ax.get_xlabel() == "g" assert ax.get_ylabel() == "y" assert ax.get_xlim() == (-.5, 2.5) npt.assert_array_equal(ax.get_xticks(), [0, 1, 2]) npt.assert_array_equal([l.get_text() for l in ax.get_xticklabels()], ["a", "b", "c"]) plt.close("all") ax = cat.boxplot(x="g", y="y", hue="h", data=self.df) assert ax.get_xlabel() == "g" assert ax.get_ylabel() == "y" npt.assert_array_equal(ax.get_xticks(), [0, 1, 2]) npt.assert_array_equal([l.get_text() for l in ax.get_xticklabels()], ["a", "b", "c"]) npt.assert_array_equal([l.get_text() for l in ax.legend_.get_texts()], ["m", "n"]) plt.close("all") ax = cat.boxplot(x="y", y="g", data=self.df, orient="h") assert ax.get_xlabel() == "y" assert ax.get_ylabel() == "g" assert ax.get_ylim() == (2.5, -.5) npt.assert_array_equal(ax.get_yticks(), [0, 1, 2]) npt.assert_array_equal([l.get_text() for l in ax.get_yticklabels()], ["a", "b", "c"]) plt.close("all") class TestViolinPlotter(CategoricalFixture): default_kws = dict(x=None, y=None, hue=None, data=None, order=None, hue_order=None, bw="scott", cut=2, scale="area", scale_hue=True, gridsize=100, width=.8, inner="box", split=False, dodge=True, orient=None, linewidth=None, color=None, palette=None, saturation=.75) def test_split_error(self): kws = self.default_kws.copy() kws.update(dict(x="h", y="y", hue="g", data=self.df, split=True)) with pytest.raises(ValueError): cat._ViolinPlotter(**kws) def test_no_observations(self): p = cat._ViolinPlotter(**self.default_kws) x = ["a", "a", "b"] y = self.rs.randn(3) y[-1] = np.nan p.establish_variables(x, y) p.estimate_densities("scott", 2, "area", True, 20) assert len(p.support[0]) == 20 assert len(p.support[1]) == 0 assert len(p.density[0]) == 20 assert len(p.density[1]) == 1 assert p.density[1].item() == 1 p.estimate_densities("scott", 2, "count", True, 20) assert p.density[1].item() == 0 x = ["a"] * 4 + ["b"] * 2 y = self.rs.randn(6) h = ["m", "n"] * 2 + ["m"] * 2 p.establish_variables(x, y, hue=h) p.estimate_densities("scott", 2, "area", True, 20) assert len(p.support[1][0]) == 20 assert len(p.support[1][1]) == 0 assert len(p.density[1][0]) == 20 assert len(p.density[1][1]) == 1 assert p.density[1][1].item() == 1 p.estimate_densities("scott", 2, "count", False, 20) assert p.density[1][1].item() == 0 def test_single_observation(self): p = cat._ViolinPlotter(**self.default_kws) x = ["a", "a", "b"] y = self.rs.randn(3) p.establish_variables(x, y) p.estimate_densities("scott", 2, "area", True, 20) assert len(p.support[0]) == 20 assert len(p.support[1]) == 1 assert len(p.density[0]) == 20 assert len(p.density[1]) == 1 assert p.density[1].item() == 1 p.estimate_densities("scott", 2, "count", True, 20) assert p.density[1].item() == .5 x = ["b"] * 4 + ["a"] * 3 y = self.rs.randn(7) h = (["m", "n"] * 4)[:-1] p.establish_variables(x, y, hue=h) p.estimate_densities("scott", 2, "area", True, 20) assert len(p.support[1][0]) == 20 assert len(p.support[1][1]) == 1 assert len(p.density[1][0]) == 20 assert len(p.density[1][1]) == 1 assert p.density[1][1].item() == 1 p.estimate_densities("scott", 2, "count", False, 20) assert p.density[1][1].item() == .5 def test_dwidth(self): kws = self.default_kws.copy() kws.update(dict(x="g", y="y", data=self.df)) p = cat._ViolinPlotter(**kws) assert p.dwidth == .4 kws.update(dict(width=.4)) p = cat._ViolinPlotter(**kws) assert p.dwidth == .2 kws.update(dict(hue="h", width=.8)) p = cat._ViolinPlotter(**kws) assert p.dwidth == .2 kws.update(dict(split=True)) p = cat._ViolinPlotter(**kws) assert p.dwidth == .4 def test_scale_area(self): kws = self.default_kws.copy() kws["scale"] = "area" p = cat._ViolinPlotter(**kws) # Test single layer of grouping p.hue_names = None density = [self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)] max_before = np.array([d.max() for d in density]) p.scale_area(density, max_before, False) max_after = np.array([d.max() for d in density]) assert max_after[0] == 1 before_ratio = max_before[1] / max_before[0] after_ratio = max_after[1] / max_after[0] assert before_ratio == after_ratio # Test nested grouping scaling across all densities p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)], [self.rs.uniform(0, .1, 50), self.rs.uniform(0, .02, 50)]] max_before = np.array([[r.max() for r in row] for row in density]) p.scale_area(density, max_before, False) max_after = np.array([[r.max() for r in row] for row in density]) assert max_after[0, 0] == 1 before_ratio = max_before[1, 1] / max_before[0, 0] after_ratio = max_after[1, 1] / max_after[0, 0] assert before_ratio == after_ratio # Test nested grouping scaling within hue p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)], [self.rs.uniform(0, .1, 50), self.rs.uniform(0, .02, 50)]] max_before = np.array([[r.max() for r in row] for row in density]) p.scale_area(density, max_before, True) max_after = np.array([[r.max() for r in row] for row in density]) assert max_after[0, 0] == 1 assert max_after[1, 0] == 1 before_ratio = max_before[1, 1] / max_before[1, 0] after_ratio = max_after[1, 1] / max_after[1, 0] assert before_ratio == after_ratio def test_scale_width(self): kws = self.default_kws.copy() kws["scale"] = "width" p = cat._ViolinPlotter(**kws) # Test single layer of grouping p.hue_names = None density = [self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)] p.scale_width(density) max_after = np.array([d.max() for d in density]) npt.assert_array_equal(max_after, [1, 1]) # Test nested grouping p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 50), self.rs.uniform(0, .2, 50)], [self.rs.uniform(0, .1, 50), self.rs.uniform(0, .02, 50)]] p.scale_width(density) max_after = np.array([[r.max() for r in row] for row in density]) npt.assert_array_equal(max_after, [[1, 1], [1, 1]]) def test_scale_count(self): kws = self.default_kws.copy() kws["scale"] = "count" p = cat._ViolinPlotter(**kws) # Test single layer of grouping p.hue_names = None density = [self.rs.uniform(0, .8, 20), self.rs.uniform(0, .2, 40)] counts = np.array([20, 40]) p.scale_count(density, counts, False) max_after = np.array([d.max() for d in density]) npt.assert_array_equal(max_after, [.5, 1]) # Test nested grouping scaling across all densities p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 5), self.rs.uniform(0, .2, 40)], [self.rs.uniform(0, .1, 100), self.rs.uniform(0, .02, 50)]] counts = np.array([[5, 40], [100, 50]]) p.scale_count(density, counts, False) max_after = np.array([[r.max() for r in row] for row in density]) npt.assert_array_equal(max_after, [[.05, .4], [1, .5]]) # Test nested grouping scaling within hue p.hue_names = ["foo", "bar"] density = [[self.rs.uniform(0, .8, 5), self.rs.uniform(0, .2, 40)], [self.rs.uniform(0, .1, 100), self.rs.uniform(0, .02, 50)]] counts = np.array([[5, 40], [100, 50]]) p.scale_count(density, counts, True) max_after = np.array([[r.max() for r in row] for row in density]) npt.assert_array_equal(max_after, [[.125, 1], [1, .5]]) def test_bad_scale(self): kws = self.default_kws.copy() kws["scale"] = "not_a_scale_type" with pytest.raises(ValueError): cat._ViolinPlotter(**kws) def test_kde_fit(self): p = cat._ViolinPlotter(**self.default_kws) data = self.y data_std = data.std(ddof=1) # Test reference rule bandwidth kde, bw = p.fit_kde(data, "scott") assert kde.factor == kde.scotts_factor() assert bw == kde.scotts_factor() * data_std # Test numeric scale factor kde, bw = p.fit_kde(self.y, .2) assert kde.factor == .2 assert bw == .2 * data_std def test_draw_to_density(self): p = cat._ViolinPlotter(**self.default_kws) # p.dwidth will be 1 for easier testing p.width = 2 # Test verical plots support = np.array([.2, .6]) density = np.array([.1, .4]) # Test full vertical plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .5, support, density, False) x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.99 * -.4, .99 * .4]) npt.assert_array_equal(y, [.5, .5]) plt.close("all") # Test left vertical plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .5, support, density, "left") x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.99 * -.4, 0]) npt.assert_array_equal(y, [.5, .5]) plt.close("all") # Test right vertical plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .5, support, density, "right") x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [0, .99 * .4]) npt.assert_array_equal(y, [.5, .5]) plt.close("all") # Switch orientation to test horizontal plots p.orient = "h" support = np.array([.2, .5]) density = np.array([.3, .7]) # Test full horizontal plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .6, support, density, False) x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.6, .6]) npt.assert_array_equal(y, [.99 * -.7, .99 * .7]) plt.close("all") # Test left horizontal plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .6, support, density, "left") x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.6, .6]) npt.assert_array_equal(y, [.99 * -.7, 0]) plt.close("all") # Test right horizontal plot _, ax = plt.subplots() p.draw_to_density(ax, 0, .6, support, density, "right") x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [.6, .6]) npt.assert_array_equal(y, [0, .99 * .7]) plt.close("all") def test_draw_single_observations(self): p = cat._ViolinPlotter(**self.default_kws) p.width = 2 # Test vertical plot _, ax = plt.subplots() p.draw_single_observation(ax, 1, 1.5, 1) x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [0, 2]) npt.assert_array_equal(y, [1.5, 1.5]) plt.close("all") # Test horizontal plot p.orient = "h" _, ax = plt.subplots() p.draw_single_observation(ax, 2, 2.2, .5) x, y = ax.lines[0].get_xydata().T npt.assert_array_equal(x, [2.2, 2.2]) npt.assert_array_equal(y, [1.5, 2.5]) plt.close("all") def test_draw_box_lines(self): # Test vertical plot kws = self.default_kws.copy() kws.update(dict(y="y", data=self.df, inner=None)) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_box_lines(ax, self.y, p.support[0], p.density[0], 0) assert len(ax.lines) == 2 q25, q50, q75 = np.percentile(self.y, [25, 50, 75]) _, y = ax.lines[1].get_xydata().T npt.assert_array_equal(y, [q25, q75]) _, y = ax.collections[0].get_offsets().T assert y == q50 plt.close("all") # Test horizontal plot kws = self.default_kws.copy() kws.update(dict(x="y", data=self.df, inner=None)) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_box_lines(ax, self.y, p.support[0], p.density[0], 0) assert len(ax.lines) == 2 q25, q50, q75 = np.percentile(self.y, [25, 50, 75]) x, _ = ax.lines[1].get_xydata().T npt.assert_array_equal(x, [q25, q75]) x, _ = ax.collections[0].get_offsets().T assert x == q50 plt.close("all") def test_draw_quartiles(self): kws = self.default_kws.copy() kws.update(dict(y="y", data=self.df, inner=None)) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_quartiles(ax, self.y, p.support[0], p.density[0], 0) for val, line in zip(np.percentile(self.y, [25, 50, 75]), ax.lines): _, y = line.get_xydata().T npt.assert_array_equal(y, [val, val]) def test_draw_points(self): p = cat._ViolinPlotter(**self.default_kws) # Test vertical plot _, ax = plt.subplots() p.draw_points(ax, self.y, 0) x, y = ax.collections[0].get_offsets().T npt.assert_array_equal(x, np.zeros_like(self.y)) npt.assert_array_equal(y, self.y) plt.close("all") # Test horizontal plot p.orient = "h" _, ax = plt.subplots() p.draw_points(ax, self.y, 0) x, y = ax.collections[0].get_offsets().T npt.assert_array_equal(x, self.y) npt.assert_array_equal(y, np.zeros_like(self.y)) plt.close("all") def test_draw_sticks(self): kws = self.default_kws.copy() kws.update(dict(y="y", data=self.df, inner=None)) p = cat._ViolinPlotter(**kws) # Test vertical plot _, ax = plt.subplots() p.draw_stick_lines(ax, self.y, p.support[0], p.density[0], 0) for val, line in zip(self.y, ax.lines): _, y = line.get_xydata().T npt.assert_array_equal(y, [val, val]) plt.close("all") # Test horizontal plot p.orient = "h" _, ax = plt.subplots() p.draw_stick_lines(ax, self.y, p.support[0], p.density[0], 0) for val, line in zip(self.y, ax.lines): x, _ = line.get_xydata().T npt.assert_array_equal(x, [val, val]) plt.close("all") def test_validate_inner(self): kws = self.default_kws.copy() kws.update(dict(inner="bad_inner")) with pytest.raises(ValueError): cat._ViolinPlotter(**kws) def test_draw_violinplots(self): kws = self.default_kws.copy() # Test single vertical violin kws.update(dict(y="y", data=self.df, inner=None, saturation=1, color=(1, 0, 0, 1))) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 1 npt.assert_array_equal(ax.collections[0].get_facecolors(), [(1, 0, 0, 1)]) plt.close("all") # Test single horizontal violin kws.update(dict(x="y", y=None, color=(0, 1, 0, 1))) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 1 npt.assert_array_equal(ax.collections[0].get_facecolors(), [(0, 1, 0, 1)]) plt.close("all") # Test multiple vertical violins kws.update(dict(x="g", y="y", color=None,)) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 3 for violin, color in zip(ax.collections, palettes.color_palette()): npt.assert_array_equal(violin.get_facecolors()[0, :-1], color) plt.close("all") # Test multiple violins with hue nesting kws.update(dict(hue="h")) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 6 for violin, color in zip(ax.collections, palettes.color_palette(n_colors=2) * 3): npt.assert_array_equal(violin.get_facecolors()[0, :-1], color) plt.close("all") # Test multiple split violins kws.update(dict(split=True, palette="muted")) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 6 for violin, color in zip(ax.collections, palettes.color_palette("muted", n_colors=2) * 3): npt.assert_array_equal(violin.get_facecolors()[0, :-1], color) plt.close("all") def test_draw_violinplots_no_observations(self): kws = self.default_kws.copy() kws["inner"] = None # Test single layer of grouping x = ["a", "a", "b"] y = self.rs.randn(3) y[-1] = np.nan kws.update(x=x, y=y) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 1 assert len(ax.lines) == 0 plt.close("all") # Test nested hue grouping x = ["a"] * 4 + ["b"] * 2 y = self.rs.randn(6) h = ["m", "n"] * 2 + ["m"] * 2 kws.update(x=x, y=y, hue=h) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 3 assert len(ax.lines) == 0 plt.close("all") def test_draw_violinplots_single_observations(self): kws = self.default_kws.copy() kws["inner"] = None # Test single layer of grouping x = ["a", "a", "b"] y = self.rs.randn(3) kws.update(x=x, y=y) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 1 assert len(ax.lines) == 1 plt.close("all") # Test nested hue grouping x = ["b"] * 4 + ["a"] * 3 y = self.rs.randn(7) h = (["m", "n"] * 4)[:-1] kws.update(x=x, y=y, hue=h) p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 3 assert len(ax.lines) == 1 plt.close("all") # Test nested hue grouping with split kws["split"] = True p = cat._ViolinPlotter(**kws) _, ax = plt.subplots() p.draw_violins(ax) assert len(ax.collections) == 3 assert len(ax.lines) == 1 plt.close("all") def test_violinplots(self): # Smoke test the high level violinplot options cat.violinplot(x="y", data=self.df) plt.close("all") cat.violinplot(y="y", data=self.df) plt.close("all") cat.violinplot(x="g", y="y", data=self.df) plt.close("all") cat.violinplot(x="y", y="g", data=self.df, orient="h") plt.close("all") cat.violinplot(x="g", y="y", hue="h", data=self.df) plt.close("all") order = list("nabc") cat.violinplot(x="g", y="y", hue="h", order=order, data=self.df) plt.close("all") order = list("omn") cat.violinplot(x="g", y="y", hue="h", hue_order=order, data=self.df) plt.close("all") cat.violinplot(x="y", y="g", hue="h", data=self.df, orient="h") plt.close("all") for inner in ["box", "quart", "point", "stick", None]: cat.violinplot(x="g", y="y", data=self.df, inner=inner) plt.close("all") cat.violinplot(x="g", y="y", hue="h", data=self.df, inner=inner) plt.close("all") cat.violinplot(x="g", y="y", hue="h", data=self.df, inner=inner, split=True) plt.close("all") # ==================================================================================== # ==================================================================================== class SharedAxesLevelTests: def test_color(self, long_df): ax = plt.figure().subplots() self.func(data=long_df, x="a", y="y", ax=ax) assert self.get_last_color(ax) == to_rgba("C0") ax = plt.figure().subplots() self.func(data=long_df, x="a", y="y", ax=ax) self.func(data=long_df, x="a", y="y", ax=ax) assert self.get_last_color(ax) == to_rgba("C1") ax = plt.figure().subplots() self.func(data=long_df, x="a", y="y", color="C2", ax=ax) assert self.get_last_color(ax) == to_rgba("C2") ax = plt.figure().subplots() self.func(data=long_df, x="a", y="y", color="C3", ax=ax) assert self.get_last_color(ax) == to_rgba("C3") class SharedScatterTests(SharedAxesLevelTests): """Tests functionality common to stripplot and swarmplot.""" def get_last_color(self, ax): colors = ax.collections[-1].get_facecolors() unique_colors = np.unique(colors, axis=0) assert len(unique_colors) == 1 return to_rgba(unique_colors.squeeze()) # ------------------------------------------------------------------------------ def test_color(self, long_df): super().test_color(long_df) ax = plt.figure().subplots() self.func(data=long_df, x="a", y="y", facecolor="C4", ax=ax) assert self.get_last_color(ax) == to_rgba("C4") if LooseVersion(mpl.__version__) >= "3.1.0": # https://github.com/matplotlib/matplotlib/pull/12851 ax = plt.figure().subplots() self.func(data=long_df, x="a", y="y", fc="C5", ax=ax) assert self.get_last_color(ax) == to_rgba("C5") def test_supplied_color_array(self, long_df): cmap = mpl.cm.get_cmap("Blues") norm = mpl.colors.Normalize() colors = cmap(norm(long_df["y"].to_numpy())) keys = ["c", "facecolor", "facecolors"] if LooseVersion(mpl.__version__) >= "3.1.0": # https://github.com/matplotlib/matplotlib/pull/12851 keys.append("fc") for key in keys: ax = plt.figure().subplots() self.func(x=long_df["y"], **{key: colors}) _draw_figure(ax.figure) assert_array_equal(ax.collections[0].get_facecolors(), colors) ax = plt.figure().subplots() self.func(x=long_df["y"], c=long_df["y"], cmap=cmap) _draw_figure(ax.figure) assert_array_equal(ax.collections[0].get_facecolors(), colors) @pytest.mark.parametrize( "orient,data_type", itertools.product(["h", "v"], ["dataframe", "dict"]), ) def test_wide(self, wide_df, orient, data_type): if data_type == "dict": wide_df = {k: v.to_numpy() for k, v in wide_df.items()} ax = self.func(data=wide_df, orient=orient) _draw_figure(ax.figure) palette = color_palette() cat_idx = 0 if orient == "v" else 1 val_idx = int(not cat_idx) axis_objs = ax.xaxis, ax.yaxis cat_axis = axis_objs[cat_idx] for i, label in enumerate(cat_axis.get_majorticklabels()): key = label.get_text() points = ax.collections[i] point_pos = points.get_offsets().T val_pos = point_pos[val_idx] cat_pos = point_pos[cat_idx] assert_array_equal(cat_pos.round(), i) assert_array_equal(val_pos, wide_df[key]) for point_color in points.get_facecolors(): assert tuple(point_color) == to_rgba(palette[i]) @pytest.mark.parametrize("orient", ["h", "v"]) def test_flat(self, flat_series, orient): ax = self.func(data=flat_series, orient=orient) _draw_figure(ax.figure) cat_idx = 0 if orient == "v" else 1 val_idx = int(not cat_idx) axis_objs = ax.xaxis, ax.yaxis cat_axis = axis_objs[cat_idx] for i, label in enumerate(cat_axis.get_majorticklabels()): points = ax.collections[i] point_pos = points.get_offsets().T val_pos = point_pos[val_idx] cat_pos = point_pos[cat_idx] key = int(label.get_text()) # because fixture has integer index assert_array_equal(val_pos, flat_series[key]) assert_array_equal(cat_pos, i) @pytest.mark.parametrize( "variables,orient", [ # Order matters for assigning to x/y ({"cat": "a", "val": "y", "hue": None}, None), ({"val": "y", "cat": "a", "hue": None}, None), ({"cat": "a", "val": "y", "hue": "a"}, None), ({"val": "y", "cat": "a", "hue": "a"}, None), ({"cat": "a", "val": "y", "hue": "b"}, None), ({"val": "y", "cat": "a", "hue": "x"}, None), ({"cat": "s", "val": "y", "hue": None}, None), ({"val": "y", "cat": "s", "hue": None}, "h"), ({"cat": "a", "val": "b", "hue": None}, None), ({"val": "a", "cat": "b", "hue": None}, "h"), ({"cat": "a", "val": "t", "hue": None}, None), ({"val": "t", "cat": "a", "hue": None}, None), ({"cat": "d", "val": "y", "hue": None}, None), ({"val": "y", "cat": "d", "hue": None}, None), ({"cat": "a_cat", "val": "y", "hue": None}, None), ({"val": "y", "cat": "s_cat", "hue": None}, None), ], ) def test_positions(self, long_df, variables, orient): cat_var = variables["cat"] val_var = variables["val"] hue_var = variables["hue"] var_names = list(variables.values()) x_var, y_var, *_ = var_names ax = self.func( data=long_df, x=x_var, y=y_var, hue=hue_var, orient=orient, ) _draw_figure(ax.figure) cat_idx = var_names.index(cat_var) val_idx = var_names.index(val_var) axis_objs = ax.xaxis, ax.yaxis cat_axis = axis_objs[cat_idx] val_axis = axis_objs[val_idx] cat_data = long_df[cat_var] cat_levels = categorical_order(cat_data) for i, label in enumerate(cat_levels): vals = long_df.loc[cat_data == label, val_var] points = ax.collections[i].get_offsets().T cat_pos = points[var_names.index(cat_var)] val_pos = points[var_names.index(val_var)] assert_array_equal(val_pos, val_axis.convert_units(vals)) assert_array_equal(cat_pos.round(), i) assert 0 <= np.ptp(cat_pos) <= .8 label = pd.Index([label]).astype(str)[0] assert cat_axis.get_majorticklabels()[i].get_text() == label @pytest.mark.parametrize( "variables", [ # Order matters for assigning to x/y {"cat": "a", "val": "y", "hue": "b"}, {"val": "y", "cat": "a", "hue": "c"}, {"cat": "a", "val": "y", "hue": "f"}, ], ) def test_positions_dodged(self, long_df, variables): cat_var = variables["cat"] val_var = variables["val"] hue_var = variables["hue"] var_names = list(variables.values()) x_var, y_var, *_ = var_names ax = self.func( data=long_df, x=x_var, y=y_var, hue=hue_var, dodge=True, ) cat_vals = categorical_order(long_df[cat_var]) hue_vals = categorical_order(long_df[hue_var]) n_hue = len(hue_vals) offsets = np.linspace(0, .8, n_hue + 1)[:-1] offsets -= offsets.mean() nest_width = .8 / n_hue for i, cat_val in enumerate(cat_vals): for j, hue_val in enumerate(hue_vals): rows = (long_df[cat_var] == cat_val) & (long_df[hue_var] == hue_val) vals = long_df.loc[rows, val_var] points = ax.collections[n_hue * i + j].get_offsets().T cat_pos = points[var_names.index(cat_var)] val_pos = points[var_names.index(val_var)] if pd.api.types.is_datetime64_any_dtype(vals): vals = mpl.dates.date2num(vals) assert_array_equal(val_pos, vals) assert_array_equal(cat_pos.round(), i) assert_array_equal((cat_pos - (i + offsets[j])).round() / nest_width, 0) assert 0 <= np.ptp(cat_pos) <= nest_width @pytest.mark.parametrize("cat_var", ["a", "s", "d"]) def test_positions_unfixed(self, long_df, cat_var): long_df = long_df.sort_values(cat_var) kws = dict(size=.001) if "stripplot" in str(self.func): # can't use __name__ with partial kws["jitter"] = False ax = self.func(data=long_df, x=cat_var, y="y", fixed_scale=False, **kws) for i, (cat_level, cat_data) in enumerate(long_df.groupby(cat_var)): points = ax.collections[i].get_offsets().T cat_pos = points[0] val_pos = points[1] assert_array_equal(val_pos, cat_data["y"]) comp_level = np.squeeze(ax.xaxis.convert_units(cat_level)).item() assert_array_equal(cat_pos.round(), comp_level) @pytest.mark.parametrize( "x_type,order", [ (str, None), (str, ["a", "b", "c"]), (str, ["c", "a"]), (str, ["a", "b", "c", "d"]), (int, None), (int, [3, 1, 2]), (int, [3, 1]), (int, [1, 2, 3, 4]), (int, ["3", "1", "2"]), ] ) def test_order(self, x_type, order): if x_type is str: x = ["b", "a", "c"] else: x = [2, 1, 3] y = [1, 2, 3] ax = self.func(x=x, y=y, order=order) _draw_figure(ax.figure) if order is None: order = x if x_type is int: order = np.sort(order) assert len(ax.collections) == len(order) tick_labels = ax.xaxis.get_majorticklabels() assert ax.get_xlim()[1] == (len(order) - .5) for i, points in enumerate(ax.collections): cat = order[i] assert tick_labels[i].get_text() == str(cat) positions = points.get_offsets() if x_type(cat) in x: val = y[x.index(x_type(cat))] assert positions[0, 1] == val else: assert not positions.size @pytest.mark.parametrize("hue_var", ["a", "b"]) def test_hue_categorical(self, long_df, hue_var): cat_var = "b" hue_levels = categorical_order(long_df[hue_var]) cat_levels = categorical_order(long_df[cat_var]) pal_name = "muted" palette = dict(zip(hue_levels, color_palette(pal_name))) ax = self.func(data=long_df, x=cat_var, y="y", hue=hue_var, palette=pal_name) for i, level in enumerate(cat_levels): sub_df = long_df[long_df[cat_var] == level] point_hues = sub_df[hue_var] points = ax.collections[i] point_colors = points.get_facecolors() assert len(point_hues) == len(point_colors) for hue, color in zip(point_hues, point_colors): assert tuple(color) == to_rgba(palette[hue]) @pytest.mark.parametrize("hue_var", ["a", "b"]) def test_hue_dodged(self, long_df, hue_var): ax = self.func(data=long_df, x="y", y="a", hue=hue_var, dodge=True) colors = color_palette(n_colors=long_df[hue_var].nunique()) collections = iter(ax.collections) # Slightly awkward logic to handle challenges of how the artists work. # e.g. there are empty scatter collections but the because facecolors # for the empty collections will return the default scatter color while colors: points = next(collections) if points.get_offsets().any(): face_color = tuple(points.get_facecolors()[0]) expected_color = to_rgba(colors.pop(0)) assert face_color == expected_color @pytest.mark.parametrize( "val_var,val_col,hue_col", itertools.product(["x", "y"], ["b", "y", "t"], [None, "a"]), ) def test_single(self, long_df, val_var, val_col, hue_col): var_kws = {val_var: val_col, "hue": hue_col} ax = self.func(data=long_df, **var_kws) _draw_figure(ax.figure) axis_vars = ["x", "y"] val_idx = axis_vars.index(val_var) cat_idx = int(not val_idx) cat_var = axis_vars[cat_idx] cat_axis = getattr(ax, f"{cat_var}axis") val_axis = getattr(ax, f"{val_var}axis") points = ax.collections[0] point_pos = points.get_offsets().T cat_pos = point_pos[cat_idx] val_pos = point_pos[val_idx] assert_array_equal(cat_pos.round(), 0) assert cat_pos.max() <= .4 assert cat_pos.min() >= -.4 num_vals = val_axis.convert_units(long_df[val_col]) assert_array_equal(val_pos, num_vals) if hue_col is not None: palette = dict(zip( categorical_order(long_df[hue_col]), color_palette() )) facecolors = points.get_facecolors() for i, color in enumerate(facecolors): if hue_col is None: assert tuple(color) == to_rgba("C0") else: hue_level = long_df.loc[i, hue_col] expected_color = palette[hue_level] assert tuple(color) == to_rgba(expected_color) ticklabels = cat_axis.get_majorticklabels() assert len(ticklabels) == 1 assert not ticklabels[0].get_text() def test_attributes(self, long_df): kwargs = dict( size=2, linewidth=1, edgecolor="C2", ) ax = self.func(x=long_df["y"], **kwargs) points, = ax.collections assert points.get_sizes().item() == kwargs["size"] ** 2 assert points.get_linewidths().item() == kwargs["linewidth"] assert tuple(points.get_edgecolors().squeeze()) == to_rgba(kwargs["edgecolor"]) def test_three_points(self): x = np.arange(3) ax = self.func(x=x) for point_color in ax.collections[0].get_facecolor(): assert tuple(point_color) == to_rgba("C0") def test_palette_from_color_deprecation(self, long_df): color = (.9, .4, .5) hex_color = mpl.colors.to_hex(color) hue_var = "a" n_hue = long_df[hue_var].nunique() palette = color_palette(f"dark:{hex_color}", n_hue) with pytest.warns(FutureWarning, match="Setting a gradient palette"): ax = self.func(data=long_df, x="z", hue=hue_var, color=color) points = ax.collections[0] for point_color in points.get_facecolors(): assert to_rgb(point_color) in palette def test_log_scale(self): x = [1, 10, 100, 1000] ax = plt.figure().subplots() ax.set_xscale("log") self.func(x=x) vals = ax.collections[0].get_offsets()[:, 0] assert_array_equal(x, vals) y = [1, 2, 3, 4] ax = plt.figure().subplots() ax.set_xscale("log") self.func(x=x, y=y, fixed_scale=False) for i, point in enumerate(ax.collections): val = point.get_offsets()[0, 0] assert val == pytest.approx(x[i]) x = y = np.ones(100) # Following test fails on pinned (but not latest) matplotlib. # (Even though visual output is ok -- so it's not an actual bug). # I'm not exactly sure why, so this version check is approximate # and should be revisited on a version bump. if LooseVersion(mpl.__version__) < "3.1": pytest.xfail() ax = plt.figure().subplots() ax.set_yscale("log") self.func(x=x, y=y, orient="h", fixed_scale=False) cat_points = ax.collections[0].get_offsets().copy()[:, 1] assert np.ptp(np.log10(cat_points)) <= .8 @pytest.mark.parametrize( "kwargs", [ dict(data="wide"), dict(data="wide", orient="h"), dict(data="long", x="x", color="C3"), dict(data="long", y="y", hue="a", jitter=False), # TODO XXX full numeric hue legend crashes pinned mpl, disabling for now # dict(data="long", x="a", y="y", hue="z", edgecolor="w", linewidth=.5), # dict(data="long", x="a_cat", y="y", hue="z"), dict(data="long", x="y", y="s", hue="c", orient="h", dodge=True), dict(data="long", x="s", y="y", hue="c", fixed_scale=False), ] ) def test_vs_catplot(self, long_df, wide_df, kwargs): kwargs = kwargs.copy() if kwargs["data"] == "long": kwargs["data"] = long_df elif kwargs["data"] == "wide": kwargs["data"] = wide_df try: name = self.func.__name__[:-4] except AttributeError: name = self.func.func.__name__[:-4] if name == "swarm": kwargs.pop("jitter", None) np.random.seed(0) # for jitter ax = self.func(**kwargs) np.random.seed(0) g = catplot(**kwargs, kind=name) assert_plots_equal(ax, g.ax) class TestStripPlot(SharedScatterTests): func = staticmethod(stripplot) def test_jitter_unfixed(self, long_df): ax1, ax2 = plt.figure().subplots(2) kws = dict(data=long_df, x="y", orient="h", fixed_scale=False) np.random.seed(0) stripplot(**kws, y="s", ax=ax1) np.random.seed(0) stripplot(**kws, y=long_df["s"] * 2, ax=ax2) p1 = ax1.collections[0].get_offsets()[1] p2 = ax2.collections[0].get_offsets()[1] assert p2.std() > p1.std() @pytest.mark.parametrize( "orient,jitter", itertools.product(["v", "h"], [True, .1]), ) def test_jitter(self, long_df, orient, jitter): cat_var, val_var = "a", "y" if orient == "v": x_var, y_var = cat_var, val_var cat_idx, val_idx = 0, 1 else: x_var, y_var = val_var, cat_var cat_idx, val_idx = 1, 0 cat_vals = categorical_order(long_df[cat_var]) ax = stripplot( data=long_df, x=x_var, y=y_var, jitter=jitter, ) if jitter is True: jitter_range = .4 else: jitter_range = 2 * jitter for i, level in enumerate(cat_vals): vals = long_df.loc[long_df[cat_var] == level, val_var] points = ax.collections[i].get_offsets().T cat_points = points[cat_idx] val_points = points[val_idx] assert_array_equal(val_points, vals) assert np.std(cat_points) > 0 assert np.ptp(cat_points) <= jitter_range class TestSwarmPlot(SharedScatterTests): func = staticmethod(partial(swarmplot, warn_thresh=1)) class TestBarPlotter(CategoricalFixture): default_kws = dict( x=None, y=None, hue=None, data=None, estimator=np.mean, ci=95, n_boot=100, units=None, seed=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=.75, errcolor=".26", errwidth=None, capsize=None, dodge=True ) def test_nested_width(self): kws = self.default_kws.copy() p = cat._BarPlotter(**kws) p.establish_variables("g", "y", hue="h", data=self.df) assert p.nested_width == .8 / 2 p = cat._BarPlotter(**kws) p.establish_variables("h", "y", "g", data=self.df) assert p.nested_width == .8 / 3 kws["dodge"] = False p = cat._BarPlotter(**kws) p.establish_variables("h", "y", "g", data=self.df) assert p.nested_width == .8 def test_draw_vertical_bars(self): kws = self.default_kws.copy() kws.update(x="g", y="y", data=self.df) p = cat._BarPlotter(**kws) f, ax = plt.subplots() p.draw_bars(ax, {}) assert len(ax.patches) == len(p.plot_data) assert len(ax.lines) == len(p.plot_data) for bar, color in zip(ax.patches, p.colors): assert bar.get_facecolor()[:-1] == color positions = np.arange(len(p.plot_data)) - p.width / 2 for bar, pos, stat in zip(ax.patches, positions, p.statistic): assert bar.get_x() == pos assert bar.get_width() == p.width assert bar.get_y() == 0 assert bar.get_height() == stat def test_draw_horizontal_bars(self): kws = self.default_kws.copy() kws.update(x="y", y="g", orient="h", data=self.df) p = cat._BarPlotter(**kws) f, ax = plt.subplots() p.draw_bars(ax, {}) assert len(ax.patches) == len(p.plot_data) assert len(ax.lines) == len(p.plot_data) for bar, color in zip(ax.patches, p.colors): assert bar.get_facecolor()[:-1] == color positions = np.arange(len(p.plot_data)) - p.width / 2 for bar, pos, stat in zip(ax.patches, positions, p.statistic): assert bar.get_y() == pos assert bar.get_height() == p.width assert bar.get_x() == 0 assert bar.get_width() == stat def test_draw_nested_vertical_bars(self): kws = self.default_kws.copy() kws.update(x="g", y="y", hue="h", data=self.df) p = cat._BarPlotter(**kws) f, ax = plt.subplots() p.draw_bars(ax, {}) n_groups, n_hues = len(p.plot_data), len(p.hue_names) assert len(ax.patches) == n_groups * n_hues assert len(ax.lines) == n_groups * n_hues for bar in ax.patches[:n_groups]: assert bar.get_facecolor()[:-1] == p.colors[0] for bar in ax.patches[n_groups:]: assert bar.get_facecolor()[:-1] == p.colors[1] positions = np.arange(len(p.plot_data)) for bar, pos in zip(ax.patches[:n_groups], positions): assert bar.get_x() == approx(pos - p.width / 2) assert bar.get_width() == approx(p.nested_width) for bar, stat in zip(ax.patches, p.statistic.T.flat): assert bar.get_y() == approx(0) assert bar.get_height() == approx(stat) def test_draw_nested_horizontal_bars(self): kws = self.default_kws.copy() kws.update(x="y", y="g", hue="h", orient="h", data=self.df) p = cat._BarPlotter(**kws) f, ax = plt.subplots() p.draw_bars(ax, {}) n_groups, n_hues = len(p.plot_data), len(p.hue_names) assert len(ax.patches) == n_groups * n_hues assert len(ax.lines) == n_groups * n_hues for bar in ax.patches[:n_groups]: assert bar.get_facecolor()[:-1] == p.colors[0] for bar in ax.patches[n_groups:]: assert bar.get_facecolor()[:-1] == p.colors[1] positions = np.arange(len(p.plot_data)) for bar, pos in zip(ax.patches[:n_groups], positions): assert bar.get_y() == approx(pos - p.width / 2) assert bar.get_height() == approx(p.nested_width) for bar, stat in zip(ax.patches, p.statistic.T.flat): assert bar.get_x() == approx(0) assert bar.get_width() == approx(stat) def test_draw_missing_bars(self): kws = self.default_kws.copy() order = list("abcd") kws.update(x="g", y="y", order=order, data=self.df) p = cat._BarPlotter(**kws) f, ax = plt.subplots() p.draw_bars(ax, {}) assert len(ax.patches) == len(order) assert len(ax.lines) == len(order) plt.close("all") hue_order = list("mno") kws.update(x="g", y="y", hue="h", hue_order=hue_order, data=self.df) p = cat._BarPlotter(**kws) f, ax = plt.subplots() p.draw_bars(ax, {}) assert len(ax.patches) == len(p.plot_data) * len(hue_order) assert len(ax.lines) == len(p.plot_data) * len(hue_order) plt.close("all") def test_unaligned_index(self): f, (ax1, ax2) = plt.subplots(2) cat.barplot(x=self.g, y=self.y, ci="sd", ax=ax1) cat.barplot(x=self.g, y=self.y_perm, ci="sd", ax=ax2) for l1, l2 in zip(ax1.lines, ax2.lines): assert approx(l1.get_xydata()) == l2.get_xydata() for p1, p2 in zip(ax1.patches, ax2.patches): assert approx(p1.get_xy()) == p2.get_xy() assert approx(p1.get_height()) == p2.get_height() assert approx(p1.get_width()) == p2.get_width() f, (ax1, ax2) = plt.subplots(2) hue_order = self.h.unique() cat.barplot(x=self.g, y=self.y, hue=self.h, hue_order=hue_order, ci="sd", ax=ax1) cat.barplot(x=self.g, y=self.y_perm, hue=self.h, hue_order=hue_order, ci="sd", ax=ax2) for l1, l2 in zip(ax1.lines, ax2.lines): assert approx(l1.get_xydata()) == l2.get_xydata() for p1, p2 in zip(ax1.patches, ax2.patches): assert approx(p1.get_xy()) == p2.get_xy() assert approx(p1.get_height()) == p2.get_height() assert approx(p1.get_width()) == p2.get_width() def test_barplot_colors(self): # Test unnested palette colors kws = self.default_kws.copy() kws.update(x="g", y="y", data=self.df, saturation=1, palette="muted") p = cat._BarPlotter(**kws) f, ax = plt.subplots() p.draw_bars(ax, {}) palette = palettes.color_palette("muted", len(self.g.unique())) for patch, pal_color in zip(ax.patches, palette): assert patch.get_facecolor()[:-1] == pal_color plt.close("all") # Test single color color = (.2, .2, .3, 1) kws = self.default_kws.copy() kws.update(x="g", y="y", data=self.df, saturation=1, color=color) p = cat._BarPlotter(**kws) f, ax = plt.subplots() p.draw_bars(ax, {}) for patch in ax.patches: assert patch.get_facecolor() == color plt.close("all") # Test nested palette colors kws = self.default_kws.copy() kws.update(x="g", y="y", hue="h", data=self.df, saturation=1, palette="Set2") p = cat._BarPlotter(**kws) f, ax = plt.subplots() p.draw_bars(ax, {}) palette = palettes.color_palette("Set2", len(self.h.unique())) for patch in ax.patches[:len(self.g.unique())]: assert patch.get_facecolor()[:-1] == palette[0] for patch in ax.patches[len(self.g.unique()):]: assert patch.get_facecolor()[:-1] == palette[1] plt.close("all") def test_simple_barplots(self): ax = cat.barplot(x="g", y="y", data=self.df) assert len(ax.patches) == len(self.g.unique()) assert ax.get_xlabel() == "g" assert ax.get_ylabel() == "y" plt.close("all") ax = cat.barplot(x="y", y="g", orient="h", data=self.df) assert len(ax.patches) == len(self.g.unique()) assert ax.get_xlabel() == "y" assert ax.get_ylabel() == "g" plt.close("all") ax = cat.barplot(x="g", y="y", hue="h", data=self.df) assert len(ax.patches) == len(self.g.unique()) * len(self.h.unique()) assert ax.get_xlabel() == "g" assert ax.get_ylabel() == "y" plt.close("all") ax = cat.barplot(x="y", y="g", hue="h", orient="h", data=self.df) assert len(ax.patches) == len(self.g.unique()) * len(self.h.unique()) assert ax.get_xlabel() == "y" assert ax.get_ylabel() == "g" plt.close("all") class TestPointPlotter(CategoricalFixture): default_kws = dict( x=None, y=None, hue=None, data=None, estimator=np.mean, ci=95, n_boot=100, units=None, seed=None, order=None, hue_order=None, markers="o", linestyles="-", dodge=0, join=True, scale=1, orient=None, color=None, palette=None, ) def test_different_defualt_colors(self): kws = self.default_kws.copy() kws.update(dict(x="g", y="y", data=self.df)) p = cat._PointPlotter(**kws) color = palettes.color_palette()[0] npt.assert_array_equal(p.colors, [color, color, color]) def test_hue_offsets(self): kws = self.default_kws.copy() kws.update(dict(x="g", y="y", hue="h", data=self.df)) p = cat._PointPlotter(**kws) npt.assert_array_equal(p.hue_offsets, [0, 0]) kws.update(dict(dodge=.5)) p = cat._PointPlotter(**kws) npt.assert_array_equal(p.hue_offsets, [-.25, .25]) kws.update(dict(x="h", hue="g", dodge=0)) p = cat._PointPlotter(**kws) npt.assert_array_equal(p.hue_offsets, [0, 0, 0]) kws.update(dict(dodge=.3)) p = cat._PointPlotter(**kws) npt.assert_array_equal(p.hue_offsets, [-.15, 0, .15]) def test_draw_vertical_points(self): kws = self.default_kws.copy() kws.update(x="g", y="y", data=self.df) p = cat._PointPlotter(**kws) f, ax = plt.subplots() p.draw_points(ax) assert len(ax.collections) == 1 assert len(ax.lines) == len(p.plot_data) + 1 points = ax.collections[0] assert len(points.get_offsets()) == len(p.plot_data) x, y = points.get_offsets().T npt.assert_array_equal(x, np.arange(len(p.plot_data))) npt.assert_array_equal(y, p.statistic) for got_color, want_color in zip(points.get_facecolors(), p.colors): npt.assert_array_equal(got_color[:-1], want_color) def test_draw_horizontal_points(self): kws = self.default_kws.copy() kws.update(x="y", y="g", orient="h", data=self.df) p = cat._PointPlotter(**kws) f, ax = plt.subplots() p.draw_points(ax) assert len(ax.collections) == 1 assert len(ax.lines) == len(p.plot_data) + 1 points = ax.collections[0] assert len(points.get_offsets()) == len(p.plot_data) x, y = points.get_offsets().T npt.assert_array_equal(x, p.statistic) npt.assert_array_equal(y, np.arange(len(p.plot_data))) for got_color, want_color in zip(points.get_facecolors(), p.colors): npt.assert_array_equal(got_color[:-1], want_color) def test_draw_vertical_nested_points(self): kws = self.default_kws.copy() kws.update(x="g", y="y", hue="h", data=self.df) p = cat._PointPlotter(**kws) f, ax = plt.subplots() p.draw_points(ax) assert len(ax.collections) == 2 assert len(ax.lines) == len(p.plot_data) * len(p.hue_names) + len(p.hue_names) for points, numbers, color in zip(ax.collections, p.statistic.T, p.colors): assert len(points.get_offsets()) == len(p.plot_data) x, y = points.get_offsets().T npt.assert_array_equal(x, np.arange(len(p.plot_data))) npt.assert_array_equal(y, numbers) for got_color in points.get_facecolors(): npt.assert_array_equal(got_color[:-1], color) def test_draw_horizontal_nested_points(self): kws = self.default_kws.copy() kws.update(x="y", y="g", hue="h", orient="h", data=self.df) p = cat._PointPlotter(**kws) f, ax = plt.subplots() p.draw_points(ax) assert len(ax.collections) == 2 assert len(ax.lines) == len(p.plot_data) * len(p.hue_names) + len(p.hue_names) for points, numbers, color in zip(ax.collections, p.statistic.T, p.colors): assert len(points.get_offsets()) == len(p.plot_data) x, y = points.get_offsets().T npt.assert_array_equal(x, numbers) npt.assert_array_equal(y, np.arange(len(p.plot_data))) for got_color in points.get_facecolors(): npt.assert_array_equal(got_color[:-1], color) def test_draw_missing_points(self): kws = self.default_kws.copy() df = self.df.copy() kws.update(x="g", y="y", hue="h", hue_order=["x", "y"], data=df) p = cat._PointPlotter(**kws) f, ax = plt.subplots() p.draw_points(ax) df.loc[df["h"] == "m", "y"] = np.nan kws.update(x="g", y="y", hue="h", data=df) p = cat._PointPlotter(**kws) f, ax = plt.subplots() p.draw_points(ax) def test_unaligned_index(self): f, (ax1, ax2) = plt.subplots(2) cat.pointplot(x=self.g, y=self.y, ci="sd", ax=ax1) cat.pointplot(x=self.g, y=self.y_perm, ci="sd", ax=ax2) for l1, l2 in zip(ax1.lines, ax2.lines): assert approx(l1.get_xydata()) == l2.get_xydata() for p1, p2 in zip(ax1.collections, ax2.collections): assert approx(p1.get_offsets()) == p2.get_offsets() f, (ax1, ax2) = plt.subplots(2) hue_order = self.h.unique() cat.pointplot(x=self.g, y=self.y, hue=self.h, hue_order=hue_order, ci="sd", ax=ax1) cat.pointplot(x=self.g, y=self.y_perm, hue=self.h, hue_order=hue_order, ci="sd", ax=ax2) for l1, l2 in zip(ax1.lines, ax2.lines): assert approx(l1.get_xydata()) == l2.get_xydata() for p1, p2 in zip(ax1.collections, ax2.collections): assert approx(p1.get_offsets()) == p2.get_offsets() def test_pointplot_colors(self): # Test a single-color unnested plot color = (.2, .2, .3, 1) kws = self.default_kws.copy() kws.update(x="g", y="y", data=self.df, color=color) p = cat._PointPlotter(**kws) f, ax = plt.subplots() p.draw_points(ax) for line in ax.lines: assert line.get_color() == color[:-1] for got_color in ax.collections[0].get_facecolors(): npt.assert_array_equal(rgb2hex(got_color), rgb2hex(color)) plt.close("all") # Test a multi-color unnested plot palette = palettes.color_palette("Set1", 3) kws.update(x="g", y="y", data=self.df, palette="Set1") p = cat._PointPlotter(**kws) assert not p.join f, ax = plt.subplots() p.draw_points(ax) for line, pal_color in zip(ax.lines, palette): npt.assert_array_equal(line.get_color(), pal_color) for point_color, pal_color in zip(ax.collections[0].get_facecolors(), palette): npt.assert_array_equal(rgb2hex(point_color), rgb2hex(pal_color)) plt.close("all") # Test a multi-colored nested plot palette = palettes.color_palette("dark", 2) kws.update(x="g", y="y", hue="h", data=self.df, palette="dark") p = cat._PointPlotter(**kws) f, ax = plt.subplots() p.draw_points(ax) for line in ax.lines[:(len(p.plot_data) + 1)]: assert line.get_color() == palette[0] for line in ax.lines[(len(p.plot_data) + 1):]: assert line.get_color() == palette[1] for i, pal_color in enumerate(palette): for point_color in ax.collections[i].get_facecolors(): npt.assert_array_equal(point_color[:-1], pal_color) plt.close("all") def test_simple_pointplots(self): ax = cat.pointplot(x="g", y="y", data=self.df) assert len(ax.collections) == 1 assert len(ax.lines) == len(self.g.unique()) + 1 assert ax.get_xlabel() == "g" assert ax.get_ylabel() == "y" plt.close("all") ax = cat.pointplot(x="y", y="g", orient="h", data=self.df) assert len(ax.collections) == 1 assert len(ax.lines) == len(self.g.unique()) + 1 assert ax.get_xlabel() == "y" assert ax.get_ylabel() == "g" plt.close("all") ax = cat.pointplot(x="g", y="y", hue="h", data=self.df) assert len(ax.collections) == len(self.h.unique()) assert len(ax.lines) == ( len(self.g.unique()) * len(self.h.unique()) + len(self.h.unique()) ) assert ax.get_xlabel() == "g" assert ax.get_ylabel() == "y" plt.close("all") ax = cat.pointplot(x="y", y="g", hue="h", orient="h", data=self.df) assert len(ax.collections) == len(self.h.unique()) assert len(ax.lines) == ( len(self.g.unique()) * len(self.h.unique()) + len(self.h.unique()) ) assert ax.get_xlabel() == "y" assert ax.get_ylabel() == "g" plt.close("all") class TestCountPlot(CategoricalFixture): def test_plot_elements(self): ax = cat.countplot(x="g", data=self.df) assert len(ax.patches) == self.g.unique().size for p in ax.patches: assert p.get_y() == 0 assert p.get_height() == self.g.size / self.g.unique().size plt.close("all") ax = cat.countplot(y="g", data=self.df) assert len(ax.patches) == self.g.unique().size for p in ax.patches: assert p.get_x() == 0 assert p.get_width() == self.g.size / self.g.unique().size plt.close("all") ax = cat.countplot(x="g", hue="h", data=self.df) assert len(ax.patches) == self.g.unique().size * self.h.unique().size plt.close("all") ax = cat.countplot(y="g", hue="h", data=self.df) assert len(ax.patches) == self.g.unique().size * self.h.unique().size plt.close("all") def test_input_error(self): with pytest.raises(ValueError): cat.countplot(x="g", y="h", data=self.df) class TestCatPlot(CategoricalFixture): def test_facet_organization(self): g = cat.catplot(x="g", y="y", data=self.df) assert g.axes.shape == (1, 1) g = cat.catplot(x="g", y="y", col="h", data=self.df) assert g.axes.shape == (1, 2) g = cat.catplot(x="g", y="y", row="h", data=self.df) assert g.axes.shape == (2, 1) g = cat.catplot(x="g", y="y", col="u", row="h", data=self.df) assert g.axes.shape == (2, 3) def test_plot_elements(self): g = cat.catplot(x="g", y="y", data=self.df, kind="point") assert len(g.ax.collections) == 1 want_lines = self.g.unique().size + 1 assert len(g.ax.lines) == want_lines g = cat.catplot(x="g", y="y", hue="h", data=self.df, kind="point") want_collections = self.h.unique().size assert len(g.ax.collections) == want_collections want_lines = (self.g.unique().size + 1) * self.h.unique().size assert len(g.ax.lines) == want_lines g = cat.catplot(x="g", y="y", data=self.df, kind="bar") want_elements = self.g.unique().size assert len(g.ax.patches) == want_elements assert len(g.ax.lines) == want_elements g = cat.catplot(x="g", y="y", hue="h", data=self.df, kind="bar") want_elements = self.g.unique().size * self.h.unique().size assert len(g.ax.patches) == want_elements assert len(g.ax.lines) == want_elements g = cat.catplot(x="g", data=self.df, kind="count") want_elements = self.g.unique().size assert len(g.ax.patches) == want_elements assert len(g.ax.lines) == 0 g = cat.catplot(x="g", hue="h", data=self.df, kind="count") want_elements = self.g.unique().size * self.h.unique().size assert len(g.ax.patches) == want_elements assert len(g.ax.lines) == 0 g = cat.catplot(x="g", y="y", data=self.df, kind="box") want_artists = self.g.unique().size assert len(g.ax.artists) == want_artists g = cat.catplot(x="g", y="y", hue="h", data=self.df, kind="box") want_artists = self.g.unique().size * self.h.unique().size assert len(g.ax.artists) == want_artists g = cat.catplot(x="g", y="y", data=self.df, kind="violin", inner=None) want_elements = self.g.unique().size assert len(g.ax.collections) == want_elements g = cat.catplot(x="g", y="y", hue="h", data=self.df, kind="violin", inner=None) want_elements = self.g.unique().size * self.h.unique().size assert len(g.ax.collections) == want_elements g = cat.catplot(x="g", y="y", data=self.df, kind="strip") want_elements = self.g.unique().size assert len(g.ax.collections) == want_elements g = cat.catplot(x="g", y="y", hue="h", data=self.df, kind="strip") want_elements = self.g.unique().size + self.h.unique().size assert len(g.ax.collections) == want_elements def test_bad_plot_kind_error(self): with pytest.raises(ValueError): cat.catplot(x="g", y="y", data=self.df, kind="not_a_kind") def test_count_x_and_y(self): with pytest.raises(ValueError): cat.catplot(x="g", y="y", data=self.df, kind="count") def test_plot_colors(self): ax = cat.barplot(x="g", y="y", data=self.df) g = cat.catplot(x="g", y="y", data=self.df, kind="bar") for p1, p2 in zip(ax.patches, g.ax.patches): assert p1.get_facecolor() == p2.get_facecolor() plt.close("all") ax = cat.barplot(x="g", y="y", data=self.df, color="purple") g = cat.catplot(x="g", y="y", data=self.df, kind="bar", color="purple") for p1, p2 in zip(ax.patches, g.ax.patches): assert p1.get_facecolor() == p2.get_facecolor() plt.close("all") ax = cat.barplot(x="g", y="y", data=self.df, palette="Set2") g = cat.catplot(x="g", y="y", data=self.df, kind="bar", palette="Set2") for p1, p2 in zip(ax.patches, g.ax.patches): assert p1.get_facecolor() == p2.get_facecolor() plt.close("all") ax = cat.pointplot(x="g", y="y", data=self.df) g = cat.catplot(x="g", y="y", data=self.df) for l1, l2 in zip(ax.lines, g.ax.lines): assert l1.get_color() == l2.get_color() plt.close("all") ax = cat.pointplot(x="g", y="y", data=self.df, color="purple") g = cat.catplot(x="g", y="y", data=self.df, color="purple") for l1, l2 in zip(ax.lines, g.ax.lines): assert l1.get_color() == l2.get_color() plt.close("all") ax = cat.pointplot(x="g", y="y", data=self.df, palette="Set2") g = cat.catplot(x="g", y="y", data=self.df, palette="Set2") for l1, l2 in zip(ax.lines, g.ax.lines): assert l1.get_color() == l2.get_color() plt.close("all") def test_ax_kwarg_removal(self): f, ax = plt.subplots() with pytest.warns(UserWarning, match="catplot is a figure-level"): g = cat.catplot(x="g", y="y", data=self.df, ax=ax) assert len(ax.collections) == 0 assert len(g.ax.collections) > 0 def test_factorplot(self): with pytest.warns(UserWarning): g = cat.factorplot(x="g", y="y", data=self.df) assert len(g.ax.collections) == 1 want_lines = self.g.unique().size + 1 assert len(g.ax.lines) == want_lines def test_share_xy(self): # Test default behavior works g = cat.catplot(x="g", y="y", col="g", data=self.df, sharex=True) for ax in g.axes.flat: assert len(ax.collections) == len(self.df.g.unique()) g = cat.catplot(x="y", y="g", col="g", data=self.df, sharey=True) for ax in g.axes.flat: assert len(ax.collections) == len(self.df.g.unique()) # Test unsharing workscol with pytest.warns(UserWarning): g = cat.catplot( x="g", y="y", col="g", data=self.df, sharex=False, kind="bar", ) for ax in g.axes.flat: assert len(ax.patches) == 1 with pytest.warns(UserWarning): g = cat.catplot( x="y", y="g", col="g", data=self.df, sharey=False, kind="bar", ) for ax in g.axes.flat: assert len(ax.patches) == 1 # Make sure no warning is raised if color is provided on unshared plot with pytest.warns(None) as record: g = cat.catplot( x="g", y="y", col="g", data=self.df, sharex=False, color="b" ) assert not len(record) for ax in g.axes.flat: assert ax.get_xlim() == (-.5, .5) with pytest.warns(None) as record: g = cat.catplot( x="y", y="g", col="g", data=self.df, sharey=False, color="r" ) assert not len(record) for ax in g.axes.flat: assert ax.get_ylim() == (.5, -.5) # Make sure order is used if given, regardless of sharex value order = self.df.g.unique() g = cat.catplot(x="g", y="y", col="g", data=self.df, sharex=False, order=order) for ax in g.axes.flat: assert len(ax.collections) == len(self.df.g.unique()) g = cat.catplot(x="y", y="g", col="g", data=self.df, sharey=False, order=order) for ax in g.axes.flat: assert len(ax.collections) == len(self.df.g.unique()) @pytest.mark.parametrize("var", ["col", "row"]) def test_array_faceter(self, long_df, var): g1 = catplot(data=long_df, x="y", **{var: "a"}) g2 = catplot(data=long_df, x="y", **{var: long_df["a"].to_numpy()}) for ax1, ax2 in zip(g1.axes.flat, g2.axes.flat): assert_plots_equal(ax1, ax2) class TestBoxenPlotter(CategoricalFixture): default_kws = dict(x=None, y=None, hue=None, data=None, order=None, hue_order=None, orient=None, color=None, palette=None, saturation=.75, width=.8, dodge=True, k_depth='tukey', linewidth=None, scale='exponential', outlier_prop=0.007, trust_alpha=0.05, showfliers=True) def ispatch(self, c): return isinstance(c, mpl.collections.PatchCollection) def ispath(self, c): return isinstance(c, mpl.collections.PathCollection) def edge_calc(self, n, data): q = np.asanyarray([0.5 ** n, 1 - 0.5 ** n]) * 100 q = list(np.unique(q)) return np.percentile(data, q) def test_box_ends_finite(self): p = cat._LVPlotter(**self.default_kws) p.establish_variables("g", "y", data=self.df) box_ends = [] k_vals = [] for s in p.plot_data: b, k = p._lv_box_ends(s) box_ends.append(b) k_vals.append(k) # Check that all the box ends are finite and are within # the bounds of the data b_e = map(lambda a: np.all(np.isfinite(a)), box_ends) assert np.sum(list(b_e)) == len(box_ends) def within(t): a, d = t return ((np.ravel(a) <= d.max()) & (np.ravel(a) >= d.min())).all() b_w = map(within, zip(box_ends, p.plot_data)) assert np.sum(list(b_w)) == len(box_ends) k_f = map(lambda k: (k > 0.) & np.isfinite(k), k_vals) assert np.sum(list(k_f)) == len(k_vals) def test_box_ends_correct_tukey(self): n = 100 linear_data = np.arange(n) expected_k = max(int(np.log2(n)) - 3, 1) expected_edges = [self.edge_calc(i, linear_data) for i in range(expected_k + 1, 1, -1)] p = cat._LVPlotter(**self.default_kws) calc_edges, calc_k = p._lv_box_ends(linear_data) npt.assert_array_equal(expected_edges, calc_edges) assert expected_k == calc_k def test_box_ends_correct_proportion(self): n = 100 linear_data = np.arange(n) expected_k = int(np.log2(n)) - int(np.log2(n * 0.007)) + 1 expected_edges = [self.edge_calc(i, linear_data) for i in range(expected_k + 1, 1, -1)] kws = self.default_kws.copy() kws["k_depth"] = "proportion" p = cat._LVPlotter(**kws) calc_edges, calc_k = p._lv_box_ends(linear_data) npt.assert_array_equal(expected_edges, calc_edges) assert expected_k == calc_k @pytest.mark.parametrize( "n,exp_k", [(491, 6), (492, 7), (983, 7), (984, 8), (1966, 8), (1967, 9)], ) def test_box_ends_correct_trustworthy(self, n, exp_k): linear_data = np.arange(n) kws = self.default_kws.copy() kws["k_depth"] = "trustworthy" p = cat._LVPlotter(**kws) _, calc_k = p._lv_box_ends(linear_data) assert exp_k == calc_k def test_outliers(self): n = 100 outlier_data = np.append(np.arange(n - 1), 2 * n) expected_k = max(int(np.log2(n)) - 3, 1) expected_edges = [self.edge_calc(i, outlier_data) for i in range(expected_k + 1, 1, -1)] p = cat._LVPlotter(**self.default_kws) calc_edges, calc_k = p._lv_box_ends(outlier_data) npt.assert_array_equal(calc_edges, expected_edges) assert calc_k == expected_k out_calc = p._lv_outliers(outlier_data, calc_k) out_exp = p._lv_outliers(outlier_data, expected_k) npt.assert_equal(out_calc, out_exp) def test_showfliers(self): ax = cat.boxenplot(x="g", y="y", data=self.df, k_depth="proportion", showfliers=True) ax_collections = list(filter(self.ispath, ax.collections)) for c in ax_collections: assert len(c.get_offsets()) == 2 # Test that all data points are in the plot assert ax.get_ylim()[0] < self.df["y"].min() assert ax.get_ylim()[1] > self.df["y"].max() plt.close("all") ax = cat.boxenplot(x="g", y="y", data=self.df, showfliers=False) assert len(list(filter(self.ispath, ax.collections))) == 0 plt.close("all") def test_invalid_depths(self): kws = self.default_kws.copy() # Make sure illegal depth raises kws["k_depth"] = "nosuchdepth" with pytest.raises(ValueError): cat._LVPlotter(**kws) # Make sure illegal outlier_prop raises kws["k_depth"] = "proportion" for p in (-13, 37): kws["outlier_prop"] = p with pytest.raises(ValueError): cat._LVPlotter(**kws) kws["k_depth"] = "trustworthy" for alpha in (-13, 37): kws["trust_alpha"] = alpha with pytest.raises(ValueError): cat._LVPlotter(**kws) @pytest.mark.parametrize("power", [1, 3, 7, 11, 13, 17]) def test_valid_depths(self, power): x = np.random.standard_t(10, 2 ** power) valid_depths = ["proportion", "tukey", "trustworthy", "full"] kws = self.default_kws.copy() for depth in valid_depths + [4]: kws["k_depth"] = depth box_ends, k = cat._LVPlotter(**kws)._lv_box_ends(x) if depth == "full": assert k == int(np.log2(len(x))) + 1 def test_valid_scales(self): valid_scales = ["linear", "exponential", "area"] kws = self.default_kws.copy() for scale in valid_scales + ["unknown_scale"]: kws["scale"] = scale if scale not in valid_scales: with pytest.raises(ValueError): cat._LVPlotter(**kws) else: cat._LVPlotter(**kws) def test_hue_offsets(self): p = cat._LVPlotter(**self.default_kws) p.establish_variables("g", "y", hue="h", data=self.df) npt.assert_array_equal(p.hue_offsets, [-.2, .2]) kws = self.default_kws.copy() kws["width"] = .6 p = cat._LVPlotter(**kws) p.establish_variables("g", "y", hue="h", data=self.df)
npt.assert_array_equal(p.hue_offsets, [-.15, .15])
numpy.testing.assert_array_equal
#!/usr/bin/env python """ Utilities for manipulating coordinates or list of coordinates, under periodic boundary conditions or otherwise. Many of these are heavily vectorized in numpy for performance. """ from __future__ import division __author__ = "<NAME>" __copyright__ = "Copyright 2011, The Materials Project" __version__ = "1.0" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __date__ = "Nov 27, 2011" import numpy as np import math from monty.dev import deprecated from pymatgen.core.lattice import Lattice def find_in_coord_list(coord_list, coord, atol=1e-8): """ Find the indices of matches of a particular coord in a coord_list. Args: coord_list: List of coords to test coord: Specific coordinates atol: Absolute tolerance. Defaults to 1e-8. Accepts both scalar and array. Returns: Indices of matches, e.g., [0, 1, 2, 3]. Empty list if not found. """ if len(coord_list) == 0: return [] diff = np.array(coord_list) - np.array(coord)[None, :] return np.where(np.all(np.abs(diff) < atol, axis=1))[0] def in_coord_list(coord_list, coord, atol=1e-8): """ Tests if a particular coord is within a coord_list. Args: coord_list: List of coords to test coord: Specific coordinates atol: Absolute tolerance. Defaults to 1e-8. Accepts both scalar and array. Returns: True if coord is in the coord list. """ return len(find_in_coord_list(coord_list, coord, atol=atol)) > 0 def is_coord_subset(subset, superset, atol=1e-8): """ Tests if all coords in subset are contained in superset. Doesn't use periodic boundary conditions Args: subset, superset: List of coords Returns: True if all of subset is in superset. """ c1 = np.array(subset) c2 = np.array(superset) is_close = np.all(np.abs(c1[:, None, :] - c2[None, :, :]) < atol, axis=-1) any_close = np.any(is_close, axis=-1) return np.all(any_close) def coord_list_mapping(subset, superset): """ Gives the index mapping from a subset to a superset. Subset and superset cannot contain duplicate rows Args: subset, superset: List of coords Returns: list of indices such that superset[indices] = subset """ c1 = np.array(subset) c2 = np.array(superset) inds = np.where(np.all(np.isclose(c1[:, None, :], c2[None, :, :]), axis=2))[1] result = c2[inds] if not np.allclose(c1, result): if not is_coord_subset(subset, superset): raise ValueError("subset is not a subset of superset") if not result.shape == c1.shape: raise ValueError("Something wrong with the inputs, likely duplicates " "in superset") return inds def coord_list_mapping_pbc(subset, superset, atol=1e-8): """ Gives the index mapping from a subset to a superset. Subset and superset cannot contain duplicate rows Args: subset, superset: List of frac_coords Returns: list of indices such that superset[indices] = subset """ c1 = np.array(subset) c2 = np.array(superset) diff = c1[:, None, :] - c2[None, :, :] diff -= np.round(diff) inds = np.where(np.all(np.abs(diff) < atol, axis = 2))[1] #verify result (its easier to check validity of the result than #the validity of inputs) test = c2[inds] - c1 test -= np.round(test) if not np.allclose(test, 0): if not is_coord_subset_pbc(subset, superset): raise ValueError("subset is not a subset of superset") if not test.shape == c1.shape: raise ValueError("Something wrong with the inputs, likely duplicates " "in superset") return inds def get_linear_interpolated_value(x_values, y_values, x): """ Returns an interpolated value by linear interpolation between two values. This method is written to avoid dependency on scipy, which causes issues on threading servers. Args: x_values: Sequence of x values. y_values: Corresponding sequence of y values x: Get value at particular x Returns: Value at x. """ a = np.array(sorted(zip(x_values, y_values), key=lambda d: d[0])) ind = np.where(a[:, 0] >= x)[0] if len(ind) == 0 or ind[0] == 0: raise ValueError("x is out of range of provided x_values") i = ind[0] x1, x2 = a[i - 1][0], a[i][0] y1, y2 = a[i - 1][1], a[i][1] return y1 + (y2 - y1) / (x2 - x1) * (x - x1) def all_distances(coords1, coords2): """ Returns the distances between two lists of coordinates Args: coords1: First set of cartesian coordinates. coords2: Second set of cartesian coordinates. Returns: 2d array of cartesian distances. E.g the distance between coords1[i] and coords2[j] is distances[i,j] """ c1 = np.array(coords1) c2 = np.array(coords2) z = (c1[:, None, :] - c2[None, :, :]) ** 2 return np.sum(z, axis=-1) ** 0.5 def pbc_diff(fcoords1, fcoords2): """ Returns the 'fractional distance' between two coordinates taking into account periodic boundary conditions. Args: fcoords1: First set of fractional coordinates. e.g., [0.5, 0.6, 0.7] or [[1.1, 1.2, 4.3], [0.5, 0.6, 0.7]]. It can be a single coord or any array of coords. fcoords2: Second set of fractional coordinates. Returns: Fractional distance. Each coordinate must have the property that abs(a) <= 0.5. Examples: pbc_diff([0.1, 0.1, 0.1], [0.3, 0.5, 0.9]) = [-0.2, -0.4, 0.2] pbc_diff([0.9, 0.1, 1.01], [0.3, 0.5, 0.9]) = [-0.4, -0.4, 0.11] """ fdist = np.subtract(fcoords1, fcoords2) return fdist - np.round(fdist) @deprecated(Lattice.get_all_distances) def pbc_all_distances(lattice, fcoords1, fcoords2): """ Returns the distances between two lists of coordinates taking into account periodic boundary conditions and the lattice. Note that this computes an MxN array of distances (i.e. the distance between each point in fcoords1 and every coordinate in fcoords2). This is different functionality from pbc_diff. Args: lattice: lattice to use fcoords1: First set of fractional coordinates. e.g., [0.5, 0.6, 0.7] or [[1.1, 1.2, 4.3], [0.5, 0.6, 0.7]]. It can be a single coord or any array of coords. fcoords2: Second set of fractional coordinates. Returns: 2d array of cartesian distances. E.g the distance between fcoords1[i] and fcoords2[j] is distances[i,j] """ return lattice.get_all_distances(fcoords1, fcoords2) def pbc_shortest_vectors(lattice, fcoords1, fcoords2): """ Returns the shortest vectors between two lists of coordinates taking into account periodic boundary conditions and the lattice. Args: lattice: lattice to use fcoords1: First set of fractional coordinates. e.g., [0.5, 0.6, 0.7] or [[1.1, 1.2, 4.3], [0.5, 0.6, 0.7]]. It can be a single coord or any array of coords. fcoords2: Second set of fractional coordinates. Returns: array of displacement vectors from fcoords1 to fcoords2 first index is fcoords1 index, second is fcoords2 index """ #ensure correct shape fcoords1, fcoords2 = np.atleast_2d(fcoords1, fcoords2) #ensure that all points are in the unit cell fcoords1 = np.mod(fcoords1, 1) fcoords2 = np.mod(fcoords2, 1) #create images, 2d array of all length 3 combinations of [-1,0,1] r = np.arange(-1, 2) arange = r[:, None] * np.array([1, 0, 0])[None, :] brange = r[:, None] * np.array([0, 1, 0])[None, :] crange = r[:, None] * np.array([0, 0, 1])[None, :] images = arange[:, None, None] + brange[None, :, None] + \ crange[None, None, :] images = images.reshape((27, 3)) #create images of f2 shifted_f2 = fcoords2[:, None, :] + images[None, :, :] cart_f1 = lattice.get_cartesian_coords(fcoords1) cart_f2 = lattice.get_cartesian_coords(shifted_f2) #all vectors from f1 to f2 vectors = cart_f2[None, :, :, :] - cart_f1[:, None, None, :] d_2 =
np.sum(vectors ** 2, axis=3)
numpy.sum
# Import GUI specific items from PyQt5 import QtGui, QtWidgets, QtCore from PyQt5.QtWidgets import QGraphicsView import sys import traceback import os import numpy as np import cv2 from qimage2ndarray import array2qimage from lib.tkmask import generate_tk_defects_layer from lib.annotmask import get_sqround_mask # New mask generation facility (original mask needed) # Specific UI features from PyQt5.QtWidgets import QSplashScreen, QMessageBox, QGraphicsScene, QFileDialog, QTableWidgetItem from PyQt5.QtGui import QPixmap, QImage, QColor, QIcon from PyQt5.QtCore import Qt, QRectF, QSize from ui import datmant_ui, color_specs_ui import configparser import time import datetime import subprocess import pandas as pd # Overall constants PUBLISHER = "AlphaControlLab" APP_TITLE = "DATM Annotation Tool" APP_VERSION = "1.00.2-beta" # Some configs BRUSH_DIAMETER_MIN = 40 BRUSH_DIAMETER_MAX = 100 BRUSH_DIAMETER_DEFAULT = 40 # Colors MARK_COLOR_MASK = QColor(255,0,0,99) MARK_COLOR_DEFECT_DEFAULT = QColor(0, 0, 255, 99) HELPER_COLOR = QColor(0,0,0,99) # Some paths COLOR_DEF_PATH = "defs/color_defs.csv" # Color definitions window class DATMantGUIColorSpec(QtWidgets.QMainWindow): def __init__(self, parent=None): super(DATMantGUIColorSpec, self).__init__(parent) self.ui = color_specs_ui.Ui_ColorSpecsUI() self.ui.setupUi(self) # Main UI class with all methods class DATMantGUI(QtWidgets.QMainWindow, datmant_ui.Ui_DATMantMainWindow): # Applications states in status bar APP_STATUS_STATES = {"ready": "Ready.", "loading": "Loading image...", "exporting_layers": "Exporting layers...", "no_images": "No images or unexpected folder structure."} # Annotation modes ANNOTATION_MODE_MARKING_DEFECTS = 0 ANNOTATION_MODE_MARKING_MASK = 1 ANNOTATION_MODES_BUTTON_TEXT = {ANNOTATION_MODE_MARKING_DEFECTS: "Mode [Marking defects]", ANNOTATION_MODE_MARKING_MASK: "Mode [Marking mask]"} ANNOTATION_MODES_BUTTON_COLORS = {ANNOTATION_MODE_MARKING_DEFECTS: "blue", ANNOTATION_MODE_MARKING_MASK: "red"} # Mask file extension. If it changes in the future, it is easier to swap it here MASK_FILE_EXTENSION_PATTERN = ".mask.png" # Config file config_path = None # Path to config file config_data = None # The actual configuration CONFIG_NAME = "datmant_config.ini" # Name of the config file has_image = None img_shape = None # Flag which tells whether images were found in CWD dir_has_images = False # Drawing mode annotation_mode = ANNOTATION_MODE_MARKING_DEFECTS # Annotator annotator = None # Brush brush = None brush_diameter = BRUSH_DIAMETER_DEFAULT # Color definitions cspec = None # For TK tk_colors = None current_paint = None # Paint of the brush # Color conversion dicts d_rgb2gray = None d_gray2rgb = None # Immutable items current_image = None # Original image current_mask = None # Original mask current_helper = None # Helper mask current_tk = None # Defects mareked by TK # User-updatable items current_defects = None # Defects mask current_updated_mask = None # Updated mask # Image name current_img = None current_img_as_listed = None # Internal vars initializing = False app = None def __init__(self, parent=None): self.initializing = True # Setting up the base UI super(DATMantGUI, self).__init__(parent) self.setupUi(self) from ui_lib.QtImageAnnotator import QtImageAnnotator self.annotator = QtImageAnnotator() # Need to synchronize brush sizes with the annotator self.annotator.MIN_BRUSH_DIAMETER = BRUSH_DIAMETER_MIN self.annotator.MAX_BRUSH_DIAMETER = BRUSH_DIAMETER_MAX self.annotator.brush_diameter = BRUSH_DIAMETER_DEFAULT self.figThinFigure.addWidget(self.annotator) # Config file storage: config file stored in user directory self.config_path = self.fix_path(os.path.expanduser("~")) + "." + PUBLISHER + os.sep # Get color specifications and populate the corresponding combobox self.read_defect_color_defs() self.add_colors_to_list() # Assign necessary dicts in the annotator component if self.d_rgb2gray is not None and self.d_gray2rgb is not None: self.annotator.d_rgb2gray = self.d_rgb2gray self.annotator.d_gray2rgb = self.d_gray2rgb else: raise RuntimeError("Failed to load the color conversion schemes. Annotations cannot be saved.") # Set up second window self.color_ui = DATMantGUIColorSpec(self) # Update button states self.update_button_states() # Initialize everything self.initialize_brush_slider() # Log this anyway self.log("Application started") # Style the mode button properly self.annotation_mode_default() # Initialization completed self.initializing = False # Set up the status bar self.status_bar_message("ready") # Set up those UI elements that depend on config def UI_config(self): # Check whether log should be shown or not self.check_show_log() # TODO: TEMP: For buttons, use .clicked.connect(self.*), for menu actions .triggered.connect(self.*), # TODO: TEMP: for checkboxes use .stateChanged, and for spinners .valueChanged self.actionLog.triggered.connect(self.update_show_log) self.actionColor_definitions.triggered.connect(self.open_color_definition_help) self.actionProcess_original_mask.triggered.connect(self.process_mask) self.actionSave_current_annotations.triggered.connect(self.save_masks) # Reload AI-generated mask, if present in the directory self.actionAIMask.triggered.connect(self.load_AI_mask) # Button assignment self.annotator.mouseWheelRotated.connect(self.accept_brush_diameter_change) self.btnClear.clicked.connect(self.clear_all_annotations) self.btnBrowseImageDir.clicked.connect(self.browse_image_directory) self.btnBrowseShp.clicked.connect(self.browse_shp_dir) self.btnPrev.clicked.connect(self.load_prev_image) self.btnNext.clicked.connect(self.load_next_image) self.btnMode.clicked.connect(self.annotation_mode_switch) # Selecting new image from list # NB! We depend on this firing on index change, so we remove manual load_image elsewhere self.connect_image_load_on_list_index_change(True) # Try to load an image now that everything is initialized self.load_image() def open_color_definition_help(self): if not self.cspec: self.log("Cannot show color specifications as none are loaded") return # Assuming colors specs were updated, set up the table t = self.color_ui.ui.tabColorSpecs t.setRowCount(len(self.cspec)) t.setColumnCount(3) t.setColumnWidth(0, 150) t.setColumnWidth(1, 150) t.setColumnWidth(2, 150) t.setHorizontalHeaderLabels(["Colors (TK)", "Colors (DATM)", "Grayscale mask mapping"]) # Go through the color specifications and set them appropriately row = 0 for col in self.cspec: tk = col["COLOR_HEXRGB_TK"] nus = col["COLOR_NAME_EN"] net = col["COLOR_NAME_ET"] dt = col["COLOR_HEXRGB_DATMANT"] gr = col["COLOR_GSCALE_MAPPING"] # Text t.setItem(row, 0, QTableWidgetItem(net)) t.setItem(row, 1, QTableWidgetItem(nus)) t.setItem(row, 2, QTableWidgetItem(str(gr))) # Background and foreground t.item(row, 0).setBackground(QColor(tk)) t.item(row, 0).setForeground(self.get_best_fg_for_bg(QColor(tk))) t.item(row, 1).setBackground(QColor(dt)) t.item(row, 1).setForeground(self.get_best_fg_for_bg(QColor(dt))) t.item(row, 2).setBackground(QColor(gr, gr, gr)) t.item(row, 2).setForeground(self.get_best_fg_for_bg(QColor(gr, gr, gr))) row += 1 self.color_ui.show() def connect_image_load_on_list_index_change(self, state): if state: self.lstImages.currentIndexChanged.connect(self.load_image) else: self.lstImages.disconnect() def initialize_brush_slider(self): self.sldBrushDiameter.setMinimum(BRUSH_DIAMETER_MIN) self.sldBrushDiameter.setMaximum(BRUSH_DIAMETER_MAX) self.sldBrushDiameter.setValue(BRUSH_DIAMETER_DEFAULT) self.sldBrushDiameter.valueChanged.connect(self.brush_slider_update) self.brush_slider_update() def brush_slider_update(self): new_diameter = self.sldBrushDiameter.value() self.txtBrushDiameter.setText(str(new_diameter)) self.brush_diameter = new_diameter self.update_annotator() def accept_brush_diameter_change(self, change): # Need to disconnect slider while changing value self.sldBrushDiameter.valueChanged.disconnect() new_diameter = int(self.sldBrushDiameter.value()+change) new_diameter = BRUSH_DIAMETER_MIN if new_diameter < BRUSH_DIAMETER_MIN else new_diameter new_diameter = BRUSH_DIAMETER_MAX if new_diameter > BRUSH_DIAMETER_MAX else new_diameter self.sldBrushDiameter.setValue(new_diameter) self.txtBrushDiameter.setText(str(new_diameter)) # Reconnect to slider move interrupt self.sldBrushDiameter.valueChanged.connect(self.brush_slider_update) # Clear currently used paint completely def clear_all_annotations(self): img_new = np.zeros(self.img_shape, dtype=np.uint8) if self.annotation_mode is self.ANNOTATION_MODE_MARKING_DEFECTS: self.current_defects = img_new elif self.annotation_mode is self.ANNOTATION_MODE_MARKING_MASK: self.current_updated_mask = 255-img_new self.update_annotator_view() self.annotator.setFocus() def update_annotator(self): if self.annotator is not None: self.annotator.brush_diameter = self.brush_diameter self.annotator.update_brush_diameter(0) self.annotator.brush_fill_color = self.current_paint def update_mask_from_current_mode(self): the_mask = self.get_updated_mask() if self.annotation_mode is self.ANNOTATION_MODE_MARKING_DEFECTS: self.current_defects = the_mask else: self.current_updated_mask = the_mask # Change annotation mode def annotation_mode_switch(self): # Save the mask self.update_mask_from_current_mode() # Update the UI self.annotation_mode += 1 if self.annotation_mode > 1: self.annotation_mode = 0 self.current_paint = [MARK_COLOR_DEFECT_DEFAULT, MARK_COLOR_MASK][self.annotation_mode] if self.annotation_mode == self.ANNOTATION_MODE_MARKING_DEFECTS: # TODO: this should be optimized self.change_brush_color() self.lstDefectsAndColors.setEnabled(True) else: self.lstDefectsAndColors.setEnabled(False) self.update_annotator() self.btnMode.setText(self.ANNOTATION_MODES_BUTTON_TEXT[self.annotation_mode]) self.btnMode.setStyleSheet("QPushButton {font-weight: bold; color: " + self.ANNOTATION_MODES_BUTTON_COLORS[self.annotation_mode] + "}") # Update the view self.update_annotator_view() self.annotator.setFocus() # Set default annotation mode def annotation_mode_default(self): self.annotation_mode = self.ANNOTATION_MODE_MARKING_DEFECTS self.current_paint = [MARK_COLOR_DEFECT_DEFAULT, MARK_COLOR_MASK][self.annotation_mode] if self.annotation_mode == self.ANNOTATION_MODE_MARKING_DEFECTS: self.change_brush_color() self.lstDefectsAndColors.setEnabled(True) else: self.lstDefectsAndColors.setEnabled(False) self.update_annotator() self.btnMode.setText(self.ANNOTATION_MODES_BUTTON_TEXT[self.annotation_mode]) self.btnMode.setStyleSheet("QPushButton {font-weight: bold; color: " + self.ANNOTATION_MODES_BUTTON_COLORS[self.annotation_mode] + "}") # Helper for QMessageBox def show_info_box(self, title, text, box_icon=QMessageBox.Information): msg = QMessageBox() msg.setIcon(box_icon) msg.setText(text) msg.setWindowTitle(title) msg.setModal(True) msg.setStandardButtons(QMessageBox.Ok) msg.exec() # Get both masks as separate numpy arrays def get_updated_mask(self): if self.annotator._overlayHandle is not None: # Depending on the mode, fill the mask appropriately # Marking defects if self.annotation_mode is self.ANNOTATION_MODE_MARKING_DEFECTS: self.status_bar_message("exporting_layers") self.log("Exporting color layers...") the_new_mask = self.annotator.export_rgb2gray_mask() # Easy, as this is implemented in annotator self.status_bar_message("ready") # Or updating the road edge mask else: mask = self.annotator.export_ndarray_noalpha() the_new_mask = 255 * np.ones(self.img_shape, dtype=np.uint8) # NB! This approach beats np.where: it is 4.3 times faster! reds, greens, blues = mask[:, :, 0], mask[:, :, 1], mask[:, :, 2] # Set the mask according to the painted road mask m1 = list(MARK_COLOR_MASK.getRgb())[:-1] the_new_mask[(reds == m1[0]) & (greens == m1[1]) & (blues == m1[2])] = 0 return the_new_mask def update_annotator_view(self): # If there is no image, there's nothing to clear if self.current_image is None: return if self.annotation_mode is self.ANNOTATION_MODE_MARKING_DEFECTS: h, w = self.current_image.rect().height(), self.current_image.rect().width() helper = np.zeros((h,w,4), dtype=np.uint8) helper[self.current_helper == 0] = list(HELPER_COLOR.getRgb()) self.annotator.clearAndSetImageAndMask(self.current_image, self.current_defects, array2qimage(helper), aux_helper=(array2qimage(self.current_tk) if self.current_tk is not None else None), process_gray2rgb=True, direct_mask_paint=True) else: # Remember, the mask must be inverted here, but saved properly h, w = self.current_image.rect().height(), self.current_image.rect().width() mask = 255 *
np.zeros((h, w, 4), dtype=np.uint8)
numpy.zeros
""" color.py ------------- Hold and deal with visual information about meshes. There are lots of ways to encode visual information, and the goal of this architecture is to make it possible to define one, and then transparently get the others. The two general categories are: 1) colors, defined for a face, vertex, or material 2) textures, defined as an image and UV coordinates for each vertex This module only implements diffuse colors at the moment. Goals ---------- 1) If nothing is defined sane defaults should be returned 2) If a user alters or sets a value, that is considered user data and should be saved and treated as such. 3) Only one 'mode' of visual (vertex or face) is allowed at a time and setting or altering a value should automatically change the mode. """ import numpy as np import copy import colorsys from .. import util from .. import caching from .. import grouping class ColorVisuals(object): """ Store color information about a mesh. """ def __init__(self, mesh=None, face_colors=None, vertex_colors=None): """ Store color information about a mesh. Parameters ---------- mesh : Trimesh Object that these visual properties are associated with face_ colors : (n,3|4) or (3,) or (4,) uint8 Colors per-face vertex_colors : (n,3|4) or (3,) or (4,) uint8 Colors per-vertex """ self.mesh = mesh self._data = caching.DataStore() self._cache = caching.Cache(id_function=self.crc) self.defaults = { 'material_diffuse': np.array([102, 102, 102, 255], dtype=np.uint8), 'material_ambient': np.array([64, 64, 64, 255], dtype=np.uint8), 'material_specular': np.array([197, 197, 197, 255], dtype=np.uint8), 'material_shine': 77.0} if face_colors is not None: self.face_colors = face_colors if vertex_colors is not None: self.vertex_colors = vertex_colors @caching.cache_decorator def transparency(self): """ Does the current object contain any transparency. Returns ---------- transparency: bool, does the current visual contain transparency """ if 'vertex_colors' in self._data: a_min = self._data['vertex_colors'][:, 3].min() elif 'face_colors' in self._data: a_min = self._data['face_colors'][:, 3].min() else: return False return bool(a_min < 255) @property def defined(self): """ Are any colors defined for the current mesh. Returns --------- defined: bool, are colors defined or not. """ return self.kind is not None @property def kind(self): """ What color mode has been set. Returns ---------- mode: 'face', 'vertex', or None """ self._verify_crc() if 'vertex_colors' in self._data: mode = 'vertex' elif 'face_colors' in self._data: mode = 'face' else: mode = None return mode def crc(self): """ A checksum for the current visual object and its parent mesh. Returns ---------- crc: int, checksum of data in visual object and its parent mesh """ # will make sure everything has been transferred # to datastore that needs to be before returning crc result = self._data.fast_hash() if hasattr(self.mesh, 'crc'): # bitwise xor combines hashes better than a sum result ^= self.mesh.crc() return result def copy(self): """ Return a copy of the current ColorVisuals object. Returns ---------- copied : ColorVisuals Contains the same information as self """ copied = ColorVisuals() copied._data.data = copy.deepcopy(self._data.data) return copied @property def face_colors(self): """ Colors defined for each face of a mesh. If no colors are defined, defaults are returned. Returns ---------- colors: (len(mesh.faces), 4) uint8, RGBA color for each face """ return self._get_colors(name='face') @face_colors.setter def face_colors(self, values): """ Set the colors for each face of a mesh. This will apply these colors and delete any previously specified color information. Parameters ------------ colors: (len(mesh.faces), 3), set each face to the specified color (len(mesh.faces), 4), set each face to the specified color (3,) int, set the whole mesh this color (4,) int, set the whole mesh this color """ if values is None: if 'face_colors' in self._data: self._data.data.pop('face_colors') return colors = to_rgba(values) if (self.mesh is not None and colors.shape == (4,)): count = len(self.mesh.faces) colors = np.tile(colors, (count, 1)) # if we set any color information, clear the others self._data.clear() self._data['face_colors'] = colors self._cache.verify() @property def vertex_colors(self): """ Return the colors for each vertex of a mesh Returns ------------ colors: (len(mesh.vertices), 4) uint8, color for each vertex """ return self._get_colors(name='vertex') @vertex_colors.setter def vertex_colors(self, values): """ Set the colors for each vertex of a mesh This will apply these colors and delete any previously specified color information. Parameters ------------ colors: (len(mesh.vertices), 3), set each face to the color (len(mesh.vertices), 4), set each face to the color (3,) int, set the whole mesh this color (4,) int, set the whole mesh this color """ if values is None: if 'vertex_colors' in self._data: self._data.data.pop('vertex_colors') return # make sure passed values are numpy array values = np.asanyarray(values) # Ensure the color shape is sane if (self.mesh is not None and not (values.shape == (len(self.mesh.vertices), 3) or values.shape == (len(self.mesh.vertices), 4) or values.shape == (3,) or values.shape == (4,))): return colors = to_rgba(values) if (self.mesh is not None and colors.shape == (4,)): count = len(self.mesh.vertices) colors = np.tile(colors, (count, 1)) # if we set any color information, clear the others self._data.clear() self._data['vertex_colors'] = colors self._cache.verify() def _get_colors(self, name): """ A magical function which maintains the sanity of vertex and face colors. * If colors have been explicitly stored or changed, they are considered user data, stored in self._data (DataStore), and are returned immediately when requested. * If colors have never been set, a (count,4) tiled copy of the default diffuse color will be stored in the cache ** the CRC on creation for these cached default colors will also be stored ** if the cached color array is altered (different CRC than when it was created) we consider that now to be user data and the array is moved from the cache to the DataStore. Parameters ----------- name: str, 'face', or 'vertex' Returns ----------- colors: (count, 4) uint8, RGBA colors """ count = None try: if name == 'face': count = len(self.mesh.faces) elif name == 'vertex': count = len(self.mesh.vertices) except BaseException: pass # the face or vertex colors key_colors = str(name) + '_colors' # the initial crc of the key_crc = key_colors + '_crc' if key_colors in self._data: # if a user has explicitly stored or changed the color it # will be in data return self._data[key_colors] elif key_colors in self._cache: # if the colors have been autogenerated already they # will be in the cache colors = self._cache[key_colors] # if the cached colors have been changed since creation we move # them to data if colors.crc() != self._cache[key_crc]: # call the setter on the property using exec # this avoids having to pass a setter to this function if name == 'face': self.face_colors = colors elif name == 'vertex': self.vertex_colors = colors else: raise ValueError('unsupported name!!!') self._cache.verify() else: # colors have never been accessed if self.kind is None: # no colors are defined, so create a (count, 4) tiled # copy of the default color colors = np.tile(self.defaults['material_diffuse'], (count, 1)) elif (self.kind == 'vertex' and name == 'face'): colors = vertex_to_face_color( vertex_colors=self.vertex_colors, faces=self.mesh.faces) elif (self.kind == 'face' and name == 'vertex'): colors = face_to_vertex_color( mesh=self.mesh, face_colors=self.face_colors) else: raise ValueError('self.kind not accepted values!!') if (count is not None and colors.shape != (count, 4)): raise ValueError('face colors incorrect shape!') # subclass the array to track for changes using a CRC colors = caching.tracked_array(colors) # put the generated colors and their initial checksum into cache self._cache[key_colors] = colors self._cache[key_crc] = colors.crc() return colors def _verify_crc(self): """ Verify the checksums of cached face and vertex color, to verify that a user hasn't altered them since they were generated from defaults. If the colors have been altered since creation, move them into the DataStore at self._data since the user action has made them user data. """ if not hasattr(self, '_cache') or len(self._cache) == 0: return for name in ['face', 'vertex']: # the face or vertex colors key_colors = str(name) + '_colors' # the initial crc of the key_crc = key_colors + '_crc' if key_colors not in self._cache: continue colors = self._cache[key_colors] # if the cached colors have been changed since creation # move them to data if colors.crc() != self._cache[key_crc]: if name == 'face': self.face_colors = colors elif name == 'vertex': self.vertex_colors = colors else: raise ValueError('unsupported name!!!') self._cache.verify() def update_vertices(self, mask): """ Apply a mask to remove or duplicate vertex properties. """ self._update_key(mask, 'vertex_colors') def update_faces(self, mask): """ Apply a mask to remove or duplicate face properties """ self._update_key(mask, 'face_colors') def face_subset(self, face_index): """ Given a mask of face indices, return a sliced version. Parameters ---------- face_index: (n,) int, mask for faces (n,) bool, mask for faces Returns ---------- visual: ColorVisuals object containing a subset of faces. """ if self.defined: result = ColorVisuals( face_colors=self.face_colors[face_index]) else: result = ColorVisuals() return result @property def main_color(self): """ What is the most commonly occurring color. Returns ------------ color: (4,) uint8, most common color """ if self.kind is None: return DEFAULT_COLOR elif self.kind == 'face': colors = self.face_colors elif self.kind == 'vertex': colors = self.vertex_colors else: raise ValueError('color kind incorrect!') # find the unique colors unique, inverse = grouping.unique_rows(colors) # the most commonly occurring color, or mode # this will be an index of inverse, not colors mode_index = np.bincount(inverse).argmax() color = colors[unique[mode_index]] return color def concatenate(self, other, *args): """ Concatenate two or more ColorVisuals objects into a single object. Parameters ----------- other : ColorVisuals Object to append *args: ColorVisuals objects Returns ----------- result: ColorVisuals object containing information from current object and others in the order it was passed. """ # avoid a circular import from . import objects result = objects.concatenate(self, other, *args) return result def __add__(self, other): """ Concatenate two ColorVisuals objects into a single object. Parameters ----------- other: ColorVisuals object Returns ----------- result: ColorVisuals object containing information from current object and other in the order (self, other) """ return self.concatenate(other) def _update_key(self, mask, key): """ Mask the value contained in the DataStore at a specified key. Parameters ----------- mask: (n,) int (n,) bool key: hashable object, in self._data """ mask = np.asanyarray(mask) if key in self._data: self._data[key] = self._data[key][mask] def to_rgba(colors, dtype=np.uint8): """ Convert a single or multiple RGB colors to RGBA colors. Parameters ---------- colors : (n, 3) or (n, 4) array RGB or RGBA colors Returns ---------- colors : (n, 4) list of RGBA colors (4,) single RGBA color """ if colors is None or not util.is_sequence(colors): return DEFAULT_COLOR # colors as numpy array colors = np.asanyarray(colors) # integer value for opaque alpha given our datatype opaque = np.iinfo(dtype).max if (colors.dtype.kind == 'f' and colors.max() < (1.0 + 1e-8)): colors = (colors * opaque).round().astype(dtype) elif (colors.max() <= opaque): colors = colors.astype(dtype) else: raise ValueError('colors non- convertible!') if util.is_shape(colors, (-1, 3)): # add an opaque alpha for RGB colors colors = np.column_stack(( colors, opaque * np.ones(len(colors)))).astype(dtype) elif util.is_shape(colors, (3,)): # if passed a single RGB color add an alpha colors = np.append(colors, opaque) if not (util.is_shape(colors, (4,)) or util.is_shape(colors, (-1, 4))): raise ValueError('Colors not of appropriate shape!') return colors def to_float(colors): """ Convert integer colors to 0.0 - 1.0 floating point colors Parameters ------------- colors : (n, d) int Integer colors Returns ------------- as_float : (n, d) float Float colors 0.0 - 1.0 """ # colors as numpy array colors = np.asanyarray(colors) if colors.dtype.kind == 'f': return colors elif colors.dtype.kind in 'iu': # integer value for opaque alpha given our datatype opaque = np.iinfo(colors.dtype).max return colors.astype(np.float64) / opaque else: raise ValueError('only works on int or float colors!') def hex_to_rgba(color): """ Turn a string hex color to a (4,) RGBA color. Parameters ----------- color: str, hex color Returns ----------- rgba: (4,) np.uint8, RGBA color """ value = str(color).lstrip('#').strip() if len(value) == 6: rgb = [int(value[i:i + 2], 16) for i in (0, 2, 4)] rgba = np.append(rgb, 255).astype(np.uint8) else: raise ValueError('Only RGB supported') return rgba def random_color(dtype=np.uint8): """ Return a random RGB color using datatype specified. Parameters ---------- dtype: numpy dtype of result Returns ---------- color: (4,) dtype, random color that looks OK """ hue = np.random.random() + .61803 hue %= 1.0 color = np.array(colorsys.hsv_to_rgb(hue, .99, .99)) if np.dtype(dtype).kind in 'iu': max_value = (2**(np.dtype(dtype).itemsize * 8)) - 1 color *= max_value color = np.append(color, max_value).astype(dtype) return color def vertex_to_face_color(vertex_colors, faces): """ Convert a list of vertex colors to face colors. Parameters ---------- vertex_colors: (n,(3,4)), colors faces: (m,3) int, face indexes Returns ----------- face_colors: (m,4) colors """ vertex_colors = to_rgba(vertex_colors) face_colors = vertex_colors[faces].mean(axis=1) return face_colors.astype(np.uint8) def face_to_vertex_color( mesh, face_colors, dtype=np.uint8): """ Convert face colors into vertex colors. Parameters ----------- mesh : trimesh.Trimesh object face_colors: (n, (3,4)) int, face colors dtype: data type of output Returns ----------- vertex_colors: (m,4) dtype, colors for each vertex """ rgba = to_rgba(face_colors) vertex = mesh.faces_sparse.dot(rgba.astype(np.float64)) vertex = (vertex / mesh.vertex_degree.reshape( (-1, 1))).astype(dtype) assert vertex.shape == (len(mesh.vertices), 4) return vertex def colors_to_materials(colors, count=None): """ Convert a list of colors into a list of unique materials and material indexes. Parameters ----------- colors : (n, 3) or (n, 4) float RGB or RGBA colors count : int Number of entities to apply color to Returns ----------- diffuse : (m, 4) int Colors index : (count,) int Index of each color """ # convert RGB to RGBA rgba = to_rgba(colors) # if we were only passed a single color if util.is_shape(rgba, (4,)) and count is not None: diffuse = rgba.reshape((-1, 4)) index = np.zeros(count, dtype=np.int) elif util.is_shape(rgba, (-1, 4)): # we were passed multiple colors # find the unique colors in the list to save as materials unique, index = grouping.unique_rows(rgba) diffuse = rgba[unique] else: raise ValueError('Colors not convertible!') return diffuse, index def linear_color_map(values, color_range=None): """ Linearly interpolate between two colors. If colors are not specified the function will interpolate between 0.0 values as red and 1.0 as green. Parameters -------------- values : (n, ) float Values to interpolate color_range : None, or (2, 4) uint8 What colors should extrema be set to Returns --------------- colors : (n, 4) uint8 RGBA colors for interpolated values """ if color_range is None: color_range = np.array([[255, 0, 0, 255], [0, 255, 0, 255]], dtype=np.uint8) else: color_range = np.asanyarray(color_range, dtype=np.uint8) if color_range.shape != (2, 4): raise ValueError('color_range must be RGBA (2, 4)') # float 1D array clamped to 0.0 - 1.0 values = np.clip(np.asanyarray( values, dtype=np.float64).ravel(), 0.0, 1.0).reshape((-1, 1)) # the stacked component colors color = [np.ones((len(values), 4)) * c for c in color_range.astype(np.float64)] # interpolated colors colors = (color[1] * values) + (color[0] * (1.0 - values)) # rounded and set to correct data type colors = np.round(colors).astype(np.uint8) return colors def interpolate(values, color_map=None, dtype=np.uint8): """ Given a 1D list of values, return interpolated colors for the range. Parameters --------------- values : (n, ) float Values to be interpolated over color_map : None, or str Key to a colormap contained in: matplotlib.pyplot.colormaps() e.g: 'viridis' Returns ------------- interpolated : (n, 4) dtype Interpolated RGBA colors """ # get a color interpolation function if color_map is None: cmap = linear_color_map else: from matplotlib.pyplot import get_cmap cmap = get_cmap(color_map) # make input always float values = np.asanyarray(values, dtype=np.float64).ravel() # scale values to 0.0 - 1.0 and get colors colors = cmap((values - values.min()) / values.ptp()) # convert to 0-255 RGBA rgba = to_rgba(colors, dtype=dtype) return rgba def uv_to_color(uv, image): """ Get the color in a texture image. Parameters ------------- uv : (n, 2) float UV coordinates on texture image image : PIL.Image Texture image Returns ---------- colors : (n, 4) float RGBA color at each of the UV coordinates """ if image is None or uv is None: return None # UV coordinates should be (n, 2) float uv = np.asanyarray(uv, dtype=np.float64) # get texture image pixel positions of UV coordinates x = (uv[:, 0] * (image.width - 1)) y = ((1 - uv[:, 1]) * (image.height - 1)) # convert to int and wrap to image # size in the manner of GL_REPEAT x = x.round().astype(np.int64) % image.width y = y.round().astype(np.int64) % image.height # access colors from pixel locations # make sure image is RGBA before getting values colors = np.asanyarray(image.convert('RGBA'))[y, x] # conversion to RGBA should have corrected shape assert colors.ndim == 2 and colors.shape[1] == 4 return colors DEFAULT_COLOR =
np.array([102, 102, 102, 255], dtype=np.uint8)
numpy.array
"""Calculate halo concentration from mass and redshift. """ from __future__ import absolute_import, division, print_function import numpy as np from scipy import integrate from astropy.cosmology import Planck13 as cosmo # default cosmological parameters h = cosmo.h Om_M = cosmo.Om0 Om_L = 1. - Om_M def _check_inputs(z, m): """Check inputs are arrays of same length or array and a scalar.""" try: nz = len(z) z = np.array(z) except TypeError: z = np.array([z]) nz = len(z) try: nm = len(m) m =
np.array(m)
numpy.array
# -*- coding: utf-8 -*- import numbers import operator import typing import unittest import numpy as np import torch from torch import nn from torch.nn.utils import rnn __author__ = "<NAME>" __copyright__ = ( "Copyright (c) 2018 <NAME>\n" "\n" "Permission is hereby granted, free of charge, to any person obtaining a copy\n" "of this software and associated documentation files (the \"Software\"), to deal\n" "in the Software without restriction, including without limitation the rights\n" "to use, copy, modify, merge, publish, distribute, sublicense, and/or sell\n" "copies of the Software, and to permit persons to whom the Software is\n" "furnished to do so, subject to the following conditions:\n" "\n" "The above copyright notice and this permission notice shall be included in all\n" "copies or substantial portions of the Software.\n" "\n" "THE SOFTWARE IS PROVIDED \"AS IS\", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR\n" "IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,\n" "FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE\n" "AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER\n" "LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,\n" "OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n" "SOFTWARE." ) __license__ = "MIT License" __version__ = "2018.1" __date__ = "Aug 18, 2018" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __status__ = "Development" class TorchTestCase(unittest.TestCase): """This class extends ``unittest.TestCase`` such that some of the available assertions support instances of various PyTorch classes. ``TorchTestCase`` provides the following PyTorch-specific functionality: * ``assertEqual`` supports all kinds of PyTorch tensors as well as instances of ``torch.nn.Parameter`` and ``torch.nn.utils.rnn.PackedSequence``. * ``assertGreater``, ``assertGreaterEqual``, ``assertLess``, and ``assertLessEqual`` support all kinds of PyTorch tensors except ``CharTensor``s as well as instances of ``torch.nn.Parameter``. Furthermore, these assertions allow for comparing tensors to numbers. Notice, however, that neither of the mentioned assertions performs any kind of type check in the sense that it is possible to compare a ``FloatTensor`` with a ``Parameter``, for example. """ ORDER_ASSERTION_TYPES = [ torch.ByteTensor, torch.cuda.ByteTensor, torch.ShortTensor, torch.cuda.ShortTensor, torch.IntTensor, torch.cuda.IntTensor, torch.LongTensor, torch.cuda.LongTensor, torch.HalfTensor, torch.cuda.HalfTensor, torch.FloatTensor, torch.cuda.FloatTensor, torch.DoubleTensor, torch.cuda.DoubleTensor, torch.Tensor # this is an alias for the default tensor type torch.FloatTensor ] """list[type]: A list of all types of PyTorch tensors that are supported by order assertions, like lower-than.""" TENSOR_TYPES = [ torch.ByteTensor, torch.cuda.ByteTensor, torch.CharTensor, torch.cuda.CharTensor, torch.ShortTensor, torch.cuda.ShortTensor, torch.IntTensor, torch.cuda.IntTensor, torch.LongTensor, torch.cuda.LongTensor, torch.HalfTensor, torch.cuda.HalfTensor, torch.FloatTensor, torch.cuda.FloatTensor, torch.DoubleTensor, torch.cuda.DoubleTensor, torch.Tensor # this is an alias for the default tensor type torch.FloatTensor ] """list[type]: A list of all different types of PyTorch tensors.""" # CONSTRUCTOR #################################################################################################### def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) self._eps = 0.0 # the element-wise absolute tolerance that is enforced in equality assertions # add equality functions for tensors for t in self.TENSOR_TYPES: self.addTypeEqualityFunc(t, self.assert_tensor_equal) # add equality function for parameters self.addTypeEqualityFunc(nn.Parameter, self.assert_parameter_equal) # add equality function for packed sequences self.addTypeEqualityFunc(torch.nn.utils.rnn.PackedSequence, self.assert_packed_sequence_equal) # PROPERTIES ##################################################################################################### @property def eps(self) -> float: """float: The element-wise absolute tolerance that is enforced in equality assertions. The tolerance value for equality assertions between two tensors is interpreted as the maximum element-wise absolute difference that the compared tensors may exhibit. Notice that a specified tolerance is enforced for comparisons of **two tensors** only, and only for **equality assertions**. """ return self._eps @eps.setter def eps(self, eps: numbers.Real) -> None: # sanitize the provided arg if not isinstance(eps, numbers.Real): raise TypeError("<eps> has to be a real number, but is of type {}!".format(type(eps))) eps = float(eps) if eps < 0: raise ValueError("<eps> has to be non-negative, but was specified as {}!".format(eps)) # update eps value self._eps = eps # METHODS ######################################################################################################## def _fail_with_message(self, msg: typing.Union[str, None], standard_msg: str) -> None: """A convenience method that first formats the message to display with ``_formatMessage``, and then invokes ``fail``. Args: msg (str or None): The explicit user-defined message. standard_msg (str): The standard message created by some assertion method. """ self.fail(self._formatMessage(msg, standard_msg)) @classmethod def _prepare_tensor_order_comparison(cls, first, second) -> typing.Tuple[typing.Any, typing.Any]: """This method prepares tensors for subsequent order comparisons. The preparation includes the following steps: 1. check that both args are either a tensor or a number, 2. check that at least one of them is a tensor, 3. if both args are tensors, then check whether they have the same shape, and 4. turn any provided number into an according tensor of appropriate shape. Notice that order comparison support all kinds of PyTorch tensors except ``CharTensor``s, which is why this method raises a ``TypeError`` if a ``CharTensor`` is provided. Args: first: The first tensor or number to prepare. second: The second tensor or number to prepare. Returns: tuple: The method simply returns the prepared args in the same order that they were provided. Raises: TypeError: If any of ``first`` or ``second`` is neither a supported kind of tensor nor a number, or if both args are numbers. ValueErrors: If ``first`` and ``second`` are tensors of different shape. """ # ensure that both args are either a tensor or a number if type(first) not in cls.ORDER_ASSERTION_TYPES and not isinstance(first, numbers.Real): raise TypeError("The first argument is neither a supported type of tensor nor a number!") if type(second) not in cls.ORDER_ASSERTION_TYPES and not isinstance(second, numbers.Real): raise TypeError("The second argument is neither a supported type of tensor nor a number!") # if both args are tensor then check whether they have the same shape if ( type(first) in cls.ORDER_ASSERTION_TYPES and type(second) in cls.ORDER_ASSERTION_TYPES and first.shape != second.shape ): raise ValueError("The arguments must not be tensors of different shapes!") # turn first argument into tensor if it is a number if isinstance(first, numbers.Real): first = float(first) if isinstance(second, numbers.Real): raise TypeError("At least one the arguments has to be a tensor!") else: first = torch.ones(second.shape) * first # turn second argument into tensor if it is a number if isinstance(second, numbers.Real): second = float(second) if isinstance(first, numbers.Real): raise TypeError("At least one the arguments has to be a tensor!") else: second = torch.ones(first.shape) * second return first, second def _tensor_aware_assertion( self, tensor_assertion: typing.Callable, default_assertion: typing.Callable, first, second, msg: typing.Optional[str] ) -> None: """Invokes either a tensor-specific version of an assertion or the original implementation provided by ``unittest.TestCase``. This method assumes that a function that implements some assertion has to be invoked as some-assertion(first, second, msg=msg) If either ``first`` or ``second`` is a PyTorch Tensor, then we invoke ``tensor_assertion``, and otherwise we use ``default_assertion``. Args: tensor_assertion (callable): The tensor-specific implementation of an assertion. default_assertion (callable): The default implementation of the same assertion. first: The first arg to pass to the assertion method. second: The second arg to pass to the assertion method. msg (str): Passed to the assertion method as keyword arg ``msg``. """ # check whether any of the args is a tensor/variable/parameter # if yes -> call tensor-specific assertion check all_tensor_types = self.TENSOR_TYPES + [nn.Parameter] if type(first) in all_tensor_types or type(second) in all_tensor_types: # turn parameters into tensors if isinstance(first, nn.Parameter): first = first.data if isinstance(second, nn.Parameter): second = second.data # invoke assertion check for tensors tensor_assertion(first, second, msg=msg) # call original method for checking the assertion else: default_assertion(first, second, msg=msg) @staticmethod def _tensor_comparison( first, second, comp_op: typing.Callable ) -> typing.Optional[typing.List[typing.Tuple[int, ...]]]: """Compares two PyTorch tensors element-wisely by means of the provided comparison operator. The provided tensors may be of any, possibly different types of PyTorch tensors except ``CharTensor``. They do have to be of equal shape, though. Notice further that this method expects actual tensors as opposed to PyTorch ``Parameter``s. Args: first: The first PyTorch tensor to compare. second: The second PyTorch tensor to compare. comp_op: The comparison operator to use. Returns: ``None``, if the comparison evaluates to ``True`` for all coordinates, and a list of positions, i.e., tuples of ``int`` values, where it does not, otherwise. """ # turn both tensors into numpy arrays first = first.cpu().numpy() second = second.cpu().numpy() # compare both args comp = comp_op(first, second) # if comparison yields true for each entry -> nothing else to do if comp.all(): return None # retrieve all coordinates where the comparison evaluated to False index_lists = [list(l) for l in np.where(
np.invert(comp)
numpy.invert
# Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Functions for downloading and reading MNIST data.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import PIL.Image as Image import random import numpy as np def get_dir_list(path, _except=None): return [os.path.join(path, x) for x in os.listdir(path) if os.path.isdir(os.path.join(path, x)) and x != _except] def get_file_list(path, _except=None, sort=False): if sort: return sorted( [os.path.join(path, x) for x in os.listdir(path) if os.path.isfile(os.path.join(path, x)) and x != _except]) else: return [os.path.join(path, x) for x in os.listdir(path) if os.path.isfile(os.path.join(path, x)) and x != _except] class dataReader(): def __init__(self, filename, batch_size=16, num_frames_per_clip=16): self.start_pos = 0 self.batch_size = batch_size self.num_frames_per_clip = num_frames_per_clip self.clips = [] self.labels = [] with open(filename, 'r') as fr: for line in fr: line = line.strip().split('\t') clip = line[0] label = int(line[1]) if (len(get_file_list(clip)) < num_frames_per_clip): continue self.clips.append(clip) self.labels.append(label) self.size = len(self.clips) self.idx = range(self.size) random.shuffle(self.idx) self.finished = False def get_frames_data(self, clip): ret = [] candidates = get_file_list(clip, sort=True) length = len(candidates) s_index = random.randint(0, length - self.num_frames_per_clip) for idx in range(s_index, s_index + self.num_frames_per_clip): img = Image.open(candidates[idx]) ret.append(np.array(img)) return ret def get_next_batch(self): data = [] labels = [] for i in range(self.batch_size): if(self.start_pos>=self.size): self.start_pos = 0 random.shuffle(self.idx) self.finished = True clip = self.clips[self.idx[self.start_pos ]] label = self.labels[self.idx[self.start_pos ]] data.append(self.get_frames_data(clip)) labels.append(label) self.start_pos+=1 data =
np.array(data)
numpy.array
""" Plots: plot_MAP_rv plot_quicklooklc plot_fitted_zoom plot_raw_zoom plot_fitindiv plot_phasefold plot_scene plot_hr plot_lithium plot_rotation plot_fpscenarios plot_grounddepth plot_full_kinematics (plot_positions) (plot_velocities) groundphot: plot_groundscene shift_img_plot plot_pixel_lc vis_photutils_lcs stackviz_blend_check convenience: hist2d plot_contour_2d_samples """ import os, corner, pickle from datetime import datetime from glob import glob import numpy as np, matplotlib.pyplot as plt, pandas as pd, pymc3 as pm from numpy import array as nparr from scipy.interpolate import interp1d from itertools import product from collections import deque from aesthetic.plot import savefig, format_ax from aesthetic.plot import set_style import billy.plotting as bp from timmy.paths import DATADIR, RESULTSDIR from timmy.convenience import ( get_tessphot, get_clean_tessphot, detrend_tessphot, get_model_transit, get_model_transit_quad, _get_fitted_data_dict, _get_fitted_data_dict_alltransit, _get_fitted_data_dict_allindivtransit ) from astrobase.lcmath import ( phase_magseries, phase_magseries_with_errs, phase_bin_magseries, phase_bin_magseries_with_errs, sigclip_magseries, find_lc_timegroups, phase_magseries_with_errs, time_bin_magseries ) from astrobase import periodbase from astrobase.plotbase import skyview_stamp from astropy.stats import LombScargle from astropy import units as u, constants as const from astropy.io import fits from astropy.time import Time from astropy.wcs import WCS from astroquery.mast import Catalogs import astropy.visualization as vis import matplotlib as mpl from matplotlib import patches from scipy.ndimage import gaussian_filter import logging from matplotlib.ticker import MaxNLocator, NullLocator from matplotlib.colors import LinearSegmentedColormap, colorConverter from matplotlib.ticker import ScalarFormatter import matplotlib.ticker as ticker import matplotlib.transforms as transforms import matplotlib.patheffects as path_effects ################################################## # wrappers to generic plots implemented in billy # ################################################## def plot_test_data(x_obs, y_obs, y_mod, modelid, outdir): bp.plot_test_data(x_obs, y_obs, y_mod, modelid, outdir) def plot_MAP_data(x_obs, y_obs, y_MAP, outpath): bp.plot_MAP_data(x_obs, y_obs, y_MAP, outpath, ms=1) def plot_sampleplot(m, outpath, N_samples=100): bp.plot_sampleplot(m, outpath, N_samples=N_samples, ms=1, malpha=0.1) def plot_traceplot(m, outpath): bp.plot_traceplot(m, outpath) def plot_cornerplot(true_d, m, outpath): bp.plot_cornerplot(true_d, m, outpath) def plot_MAP_rv(x_obs, y_obs, y_MAP, y_err, telcolors, x_pred, y_pred, map_estimate, outpath): # # rv vs time # plt.close('all') plt.figure(figsize=(14, 4)) plt.plot(x_pred, y_pred, "k", lw=0.5) plt.errorbar(x_obs, y_MAP, yerr=y_err, fmt=",k") plt.scatter(x_obs, y_MAP, c=telcolors, s=8, zorder=100) plt.xlim(x_pred.min(), x_pred.max()) plt.xlabel("BJD") plt.ylabel("radial velocity [m/s]") _ = plt.title("MAP model") fig = plt.gcf() savefig(fig, outpath, writepdf=0, dpi=300) outpath = outpath.replace('.png', '_phasefold.png') # # rv vs phase # plt.close('all') obs_d = phase_magseries_with_errs( x_obs, y_MAP, y_err, map_estimate['period'], map_estimate['t0'], wrap=False, sort=False ) pred_d = phase_magseries( x_pred, y_pred, map_estimate['period'], map_estimate['t0'], wrap=False, sort=True ) plt.plot( pred_d['phase'], pred_d['mags'], "k", lw=0.5 ) plt.errorbar( obs_d['phase'], obs_d['mags'], yerr=obs_d['errs'], fmt=",k" ) plt.scatter( obs_d['phase'], obs_d['mags'], c=telcolors, s=8, zorder=100 ) plt.xlabel("phase") plt.ylabel("radial velocity [m/s]") _ = plt.title("MAP model. P={:.5f}, t0={:.5f}". format(map_estimate['period'], map_estimate['t0']), fontsize='small') fig = plt.gcf() savefig(fig, outpath, writepdf=0, dpi=300) ############### # convenience # ############### def hist2d(x, y, bins=20, range=None, weights=None, levels=None, smooth=None, ax=None, color=None, quiet=False, plot_datapoints=False, plot_density=False, plot_contours=True, no_fill_contours=False, fill_contours=True, contour_kwargs=None, contourf_kwargs=None, data_kwargs=None, pcolor_kwargs=None, **kwargs): """ Plot a 2-D histogram of samples. (Function stolen from corner.py -- Foreman-Mackey, (2016), corner.py: Scatterplot matrices in Python, Journal of Open Source Software, 1(2), 24, doi:10.21105/joss.00024.) Parameters ---------- x : array_like[nsamples,] The samples. y : array_like[nsamples,] The samples. quiet : bool If true, suppress warnings for small datasets. levels : array_like The contour levels to draw. ax : matplotlib.Axes A axes instance on which to add the 2-D histogram. plot_datapoints : bool Draw the individual data points. plot_density : bool Draw the density colormap. plot_contours : bool Draw the contours. no_fill_contours : bool Add no filling at all to the contours (unlike setting ``fill_contours=False``, which still adds a white fill at the densest points). fill_contours : bool Fill the contours. contour_kwargs : dict Any additional keyword arguments to pass to the `contour` method. contourf_kwargs : dict Any additional keyword arguments to pass to the `contourf` method. data_kwargs : dict Any additional keyword arguments to pass to the `plot` method when adding the individual data points. pcolor_kwargs : dict Any additional keyword arguments to pass to the `pcolor` method when adding the density colormap. """ if ax is None: ax = plt.gca() # Set the default range based on the data range if not provided. if range is None: if "extent" in kwargs: logging.warn("Deprecated keyword argument 'extent'. " "Use 'range' instead.") range = kwargs["extent"] else: range = [[x.min(), x.max()], [y.min(), y.max()]] # Set up the default plotting arguments. if color is None: color = "k" # Choose the default "sigma" contour levels. if levels is None: levels = 1.0 - np.exp(-0.5 * np.arange(1.0, 3.1, 1.0) ** 2) # levels = 1.0 - np.exp(-0.5 * np.arange(0.5, 2.1, 0.5) ** 2) # This is the color map for the density plot, over-plotted to indicate the # density of the points near the center. density_cmap = LinearSegmentedColormap.from_list( "density_cmap", [color, (1, 1, 1, 0)]) # This color map is used to hide the points at the high density areas. white_cmap = LinearSegmentedColormap.from_list( "white_cmap", [(1, 1, 1), (1, 1, 1)], N=2) # This "color map" is the list of colors for the contour levels if the # contours are filled. # rgba_color = colorConverter.to_rgba(color) rgba_color = [0.0, 0.0, 0.0, 0.7] contour_cmap = [list(rgba_color) for l in levels] + [rgba_color] for i, l in enumerate(levels): contour_cmap[i][-1] *= float(i) / (len(levels)+1) # We'll make the 2D histogram to directly estimate the density. try: H, X, Y = np.histogram2d(x.flatten(), y.flatten(), bins=bins, range=list(map(np.sort, range)), weights=weights) except ValueError: raise ValueError("It looks like at least one of your sample columns " "have no dynamic range. You could try using the " "'range' argument.") if smooth is not None: if gaussian_filter is None: raise ImportError("Please install scipy for smoothing") H = gaussian_filter(H, smooth) if plot_contours or plot_density: # Compute the density levels. Hflat = H.flatten() inds = np.argsort(Hflat)[::-1] Hflat = Hflat[inds] sm = np.cumsum(Hflat) sm /= sm[-1] V = np.empty(len(levels)) for i, v0 in enumerate(levels): try: V[i] = Hflat[sm <= v0][-1] except: V[i] = Hflat[0] V.sort() m = np.diff(V) == 0 if np.any(m) and not quiet: logging.warning("Too few points to create valid contours") while np.any(m): V[np.where(m)[0][0]] *= 1.0 - 1e-4 m = np.diff(V) == 0 V.sort() # Compute the bin centers. X1, Y1 = 0.5 * (X[1:] + X[:-1]), 0.5 * (Y[1:] + Y[:-1]) # Extend the array for the sake of the contours at the plot edges. H2 = H.min() + np.zeros((H.shape[0] + 4, H.shape[1] + 4)) H2[2:-2, 2:-2] = H H2[2:-2, 1] = H[:, 0] H2[2:-2, -2] = H[:, -1] H2[1, 2:-2] = H[0] H2[-2, 2:-2] = H[-1] H2[1, 1] = H[0, 0] H2[1, -2] = H[0, -1] H2[-2, 1] = H[-1, 0] H2[-2, -2] = H[-1, -1] X2 = np.concatenate([ X1[0] + np.array([-2, -1]) * np.diff(X1[:2]), X1, X1[-1] + np.array([1, 2]) * np.diff(X1[-2:]), ]) Y2 = np.concatenate([ Y1[0] + np.array([-2, -1]) * np.diff(Y1[:2]), Y1, Y1[-1] + np.array([1, 2]) * np.diff(Y1[-2:]), ]) if plot_datapoints: if data_kwargs is None: data_kwargs = dict() data_kwargs["color"] = data_kwargs.get("color", color) data_kwargs["ms"] = data_kwargs.get("ms", 2.0) data_kwargs["mec"] = data_kwargs.get("mec", "none") data_kwargs["alpha"] = data_kwargs.get("alpha", 0.1) ax.plot(x, y, "o", zorder=-1, rasterized=True, **data_kwargs) # Plot the base fill to hide the densest data points. if (plot_contours or plot_density) and not no_fill_contours: ax.contourf(X2, Y2, H2.T, [V.min(), H.max()], cmap=white_cmap, antialiased=False) if plot_contours and fill_contours: if contourf_kwargs is None: contourf_kwargs = dict() contourf_kwargs["colors"] = contourf_kwargs.get("colors", contour_cmap) contourf_kwargs["antialiased"] = contourf_kwargs.get("antialiased", False) ax.contourf(X2, Y2, H2.T, np.concatenate([[0], V, [H.max()*(1+1e-4)]]), **contourf_kwargs) # Plot the density map. This can't be plotted at the same time as the # contour fills. elif plot_density: if pcolor_kwargs is None: pcolor_kwargs = dict() ax.pcolor(X, Y, H.max() - H.T, cmap=density_cmap, **pcolor_kwargs) # Plot the contour edge colors. if plot_contours: cs = ax.contour(X2, Y2, H2.T, V, colors='k', linewidths=1, zorder=3) if kwargs['return_3sigma']: # index of 3 sigma line is, in this case, 0! and it's the vertices # along that contour that we often care about p = cs.collections[0].get_paths()[0] v = p.vertices x_3sig = v[:,0] y_3sig = v[:,1] ax.set_xlim(range[0]) ax.set_ylim(range[1]) if not kwargs['return_3sigma']: return ax else: return ax, x_3sig, y_3sig def plot_contour_2d_samples(xsample, ysample, xgrid, ygrid, outpath, xlabel='logper', ylabel='logk', return_3sigma=True, smooth=None): fig, ax = plt.subplots(figsize=(4,3)) # smooth of 1.0 was ok bins = (xgrid, ygrid) ax, x_3sig, y_3sig = hist2d( xsample, ysample, bins=bins, range=None, weights=None, levels=None, smooth=smooth, ax=ax, color=None, quiet=False, plot_datapoints=False, plot_density=False, plot_contours=True, no_fill_contours=False, fill_contours=True, contour_kwargs=None, contourf_kwargs=None, data_kwargs=None, pcolor_kwargs=None, return_3sigma=return_3sigma ) ax.plot(x_3sig, y_3sig, color='C0', zorder=5, lw=1) ax.set_xscale('linear') ax.set_yscale('linear') ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) fig.tight_layout(h_pad=0, w_pad=0) format_ax(ax) savefig(fig, outpath) if return_3sigma: return x_3sig, y_3sig ################## # timmy-specific # ################## def plot_splitsignal_map(m, outpath): """ y_obs + y_MAP + y_rot + y_orb things at rotation frequency things at orbital frequency """ plt.close('all') # 8.5x11 is letter paper. x10 allows space for caption. fig, axs = plt.subplots(nrows=4, figsize=(8.5, 10), sharex=True) axs[0].set_ylabel('Raw flux', fontsize='x-large') axs[0].plot(m.x_obs, m.y_obs, ".k", ms=4, label="data", zorder=2, rasterized=True) axs[0].plot(m.x_obs, m.map_estimate['mu_model'], lw=0.5, label='MAP', color='C0', alpha=1, zorder=1) y_tra = m.map_estimate['mu_transit'] y_gprot = m.map_estimate['mu_gprot'] axs[1].set_ylabel('Transit', fontsize='x-large') axs[1].plot(m.x_obs, m.y_obs-y_gprot, ".k", ms=4, label="data-rot", zorder=2, rasterized=True) axs[1].plot(m.x_obs, m.map_estimate['mu_model']-y_gprot, lw=0.5, label='model-rot', color='C0', alpha=1, zorder=1) axs[2].set_ylabel('Rotation', fontsize='x-large') axs[2].plot(m.x_obs, m.y_obs-y_tra, ".k", ms=4, label="data-transit", zorder=2, rasterized=True) axs[2].plot(m.x_obs, m.map_estimate['mu_model']-y_tra, lw=0.5, label='model-transit', color='C0', alpha=1, zorder=1) axs[3].set_ylabel('Residual', fontsize='x-large') axs[3].plot(m.x_obs, m.y_obs-m.map_estimate['mu_model'], ".k", ms=4, label="data", zorder=2, rasterized=True) axs[3].plot(m.x_obs, m.map_estimate['mu_model']-m.map_estimate['mu_model'], lw=0.5, label='model', color='C0', alpha=1, zorder=1) axs[-1].set_xlabel("Time [days]", fontsize='x-large') for a in axs: format_ax(a) # a.set_ylim((-.075, .075)) # if part == 'i': # a.set_xlim((0, 9)) # else: # a.set_xlim((10, 20.3)) # props = dict(boxstyle='square', facecolor='white', alpha=0.9, pad=0.15, # linewidth=0) # if part == 'i': # axs[3].text(0.97, 0.03, 'Orbit 19', ha='right', va='bottom', # transform=axs[3].transAxes, bbox=props, zorder=3, # fontsize='x-large') # else: # axs[3].text(0.97, 0.03, 'Orbit 20', ha='right', va='bottom', # transform=axs[3].transAxes, bbox=props, zorder=3, # fontsize='x-large') fig.tight_layout(h_pad=0., w_pad=0.) if not os.path.exists(outpath) or m.OVERWRITE: savefig(fig, outpath, writepdf=1, dpi=300) ydict = { 'x_obs': m.x_obs, 'y_obs': m.y_obs, 'y_resid': m.y_obs-m.map_estimate['mu_model'], 'y_mod_tra': y_tra, 'y_mod_gprot': y_gprot, 'y_mod': m.map_estimate['mu_model'], 'y_err': m.y_err } return ydict def plot_quicklooklc(outdir, yval='PDCSAP_FLUX', provenance='spoc', overwrite=0): outpath = os.path.join( outdir, 'quicklooklc_{}_{}.png'.format(provenance, yval) ) if os.path.exists(outpath) and not overwrite: print('found {} and no overwrite'.format(outpath)) return # NOTE: I checked that pre-quality cuts etc, there weren't extra transits # sitting in the SPOC data. time, flux, flux_err = get_clean_tessphot(provenance, yval, binsize=None, maskflares=0) from wotan import flatten # flat_flux, trend_flux = flatten(time, flux, method='pspline', # break_tolerance=0.4, return_trend=True) flat_flux, trend_flux = flatten(time, flux, method='hspline', window_length=0.3, break_tolerance=0.4, return_trend=True) # flat_flux, trend_flux = flatten(time, flux, method='biweight', # window_length=0.3, edge_cutoff=0.5, # break_tolerance=0.4, return_trend=True, # cval=2.0) _plot_quicklooklc(outpath, time, flux, flux_err, flat_flux, trend_flux, showvlines=0, provenance=provenance) def _plot_quicklooklc(outpath, time, flux, flux_err, flat_flux, trend_flux, showvlines=0, figsize=(25,8), provenance=None, timepad=1, titlestr=None, ylim=None): t0 = 1574.2738 per = 8.32467 epochs = np.arange(-100,100,1) tra_times = t0 + per*epochs plt.close('all') f,axs = plt.subplots(figsize=figsize, nrows=2, sharex=True) xmin, xmax = np.nanmin(time)-timepad, np.nanmax(time)+timepad s = 1.5 if provenance == 'spoc' else 2.5*10 axs[0].scatter(time, flux, c='k', zorder=3, s=s, rasterized=True, linewidths=0) axs[0].plot(time, trend_flux, c='C0', zorder=4, rasterized=True, lw=1) axs[1].scatter(time, flat_flux, c='k', zorder=3, s=s, rasterized=True, linewidths=0) axs[1].plot(time, trend_flux-trend_flux, c='C0', zorder=4, rasterized=True, lw=1) ymin, ymax = np.nanmin(flux), np.nanmax(flux) axs[0].set_ylim((ymin, ymax)) axs[1].set_ylim(( np.nanmean(flat_flux) - 6*np.nanstd(flat_flux), np.nanmean(flat_flux) + 4*np.nanstd(flat_flux) )) axs[0].set_ylabel('raw') axs[1].set_ylabel('detrended') axs[1].set_xlabel('BJDTDB') if isinstance(titlestr, str): axs[0].set_title(titlestr) for ax in axs: if showvlines and provenance == 'spoc': ymin, ymax = ax.get_ylim() ax.vlines( tra_times, ymin, ymax, colors='C1', alpha=0.5, linestyles='--', zorder=-2, linewidths=0.5 ) ax.set_ylim((ymin, ymax)) if 'Evans' in provenance: period = 8.3248972 t0 = 2457000 + 1574.2738304 tdur = 1.91/24 if showvlines and provenance == 'Evans_2020-04-01': tra_ix = 44 if showvlines and provenance == 'Evans_2020-04-26': tra_ix = 47 if showvlines and provenance == 'Evans_2020-05-21': tra_ix = 50 if 'Evans' in provenance: ymin, ymax = ax.get_ylim() ax.vlines( [t0 + period*tra_ix - tdur/2, t0 + period*tra_ix + tdur/2], ymin, ymax, colors='C1', alpha=0.5, linestyles='--', zorder=-2, linewidths=0.5 ) ax.set_ylim((ymin, ymax)) ax.set_xlim((xmin, xmax)) format_ax(ax) if isinstance(ylim, tuple): axs[1].set_ylim(ylim) f.tight_layout(h_pad=0., w_pad=0.) savefig(f, outpath, writepdf=0, dpi=300) def plot_raw_zoom(outdir, yval='PDCSAP_FLUX', provenance='spoc', overwrite=0, detrend=0): outpath = os.path.join( outdir, 'raw_zoom_{}_{}.png'.format(provenance, yval) ) if detrend: outpath = os.path.join( outdir, 'raw_zoom_{}_{}_detrended.png'.format(provenance, yval) ) if os.path.exists(outpath) and not overwrite: print('found {} and no overwrite'.format(outpath)) return time, flux, flux_err = get_clean_tessphot(provenance, yval, binsize=None, maskflares=0) flat_flux, trend_flux = detrend_tessphot(time, flux, flux_err) if detrend: flux = flat_flux t_offset = np.nanmin(time) time -= t_offset FLARETIMES = [ (4.60, 4.63), (37.533, 37.62) ] flaresel = np.zeros_like(time).astype(bool) for ft in FLARETIMES: flaresel |= ( (time > min(ft)) & (time < max(ft)) ) t0 = 1574.2738 - t_offset per = 8.32467 epochs = np.arange(-100,100,1) tra_times = t0 + per*epochs plt.close('all') ########################################## # figsize=(8.5, 10) full page... 10 leaves space. fig = plt.figure(figsize=(8.5, 5)) ax0 = plt.subplot2grid(shape=(2,5), loc=(0,0), colspan=5) ax1 = plt.subplot2grid((2,5), (1,0), colspan=1) ax2 = plt.subplot2grid((2,5), (1,1), colspan=1) ax3 = plt.subplot2grid((2,5), (1,2), colspan=1) ax4 = plt.subplot2grid((2,5), (1,3), colspan=1) ax5 = plt.subplot2grid((2,5), (1,4), colspan=1) all_axs = [ax0,ax1,ax2,ax3,ax4,ax5] tra_axs = [ax1,ax2,ax3,ax4,ax5] tra_ixs = [0,2,3,4,5] # main lightcurve yval = (flux - np.nanmedian(flux))*1e3 ax0.scatter(time, yval, c='k', zorder=3, s=0.75, rasterized=True, linewidths=0) ax0.scatter(time[flaresel], yval[flaresel], c='r', zorder=3, s=1, rasterized=True, linewidths=0) ax0.set_ylim((-20, 20)) # omitting like 1 upper point from the big flare at time 38 ymin, ymax = ax0.get_ylim() ax0.vlines( tra_times, ymin, ymax, colors='C1', alpha=0.5, linestyles='--', zorder=-2, linewidths=0.5 ) ax0.set_ylim((ymin, ymax)) ax0.set_xlim((np.nanmin(time)-1, np.nanmax(time)+1)) # zoom-in of raw transits for ax, tra_ix in zip(tra_axs, tra_ixs): mid_time = t0 + per*tra_ix tdur = 2/24. # roughly, in units of days n = 3.5 start_time = mid_time - n*tdur end_time = mid_time + n*tdur s = (time > start_time) & (time < end_time) ax.scatter(time[s], (flux[s] - np.nanmedian(flux[s]))*1e3, c='k', zorder=3, s=7, rasterized=False, linewidths=0) _flaresel = np.zeros_like(time[s]).astype(bool) for ft in FLARETIMES: _flaresel |= ( (time[s] > min(ft)) & (time[s] < max(ft)) ) if np.any(_flaresel): ax.scatter(time[s][_flaresel], (flux[s] - np.nanmedian(flux[s]))[_flaresel]*1e3, c='r', zorder=3, s=8, rasterized=False, linewidths=0) ax.set_xlim((start_time, end_time)) ax.set_ylim((-8, 8)) ymin, ymax = ax.get_ylim() ax.vlines( mid_time, ymin, ymax, colors='C1', alpha=0.5, linestyles='--', zorder=-2, linewidths=0.5 ) ax.set_ylim((ymin, ymax)) if tra_ix > 0: # hide the ytick labels labels = [item.get_text() for item in ax.get_yticklabels()] empty_string_labels = ['']*len(labels) ax.set_yticklabels(empty_string_labels) for ax in all_axs: format_ax(ax) fig.text(0.5,-0.01, 'Time [days]', ha='center', fontsize='x-large') fig.text(-0.01,0.5, 'Relative flux [ppt]', va='center', rotation=90, fontsize='x-large') fig.tight_layout(h_pad=0.2, w_pad=-0.5) savefig(fig, outpath, writepdf=1, dpi=300) def plot_phasefold(m, summdf, outpath, overwrite=0, show_samples=0, modelid=None, inppt=0, showerror=1): set_style() if modelid is None: d, params, paramd = _get_fitted_data_dict(m, summdf) _d = d elif 'alltransit' in modelid: d = _get_fitted_data_dict_alltransit(m, summdf) _d = d['tess'] elif modelid in ['allindivtransit', 'tessindivtransit']: d = _get_fitted_data_dict_allindivtransit( m, summdf, bestfitmeans='median' ) if modelid == 'tessindivtransit': _d = d['tess'] elif modelid == 'allindivtransit': _d = d['all'] P_orb = summdf.loc['period', 'median'] t0_orb = summdf.loc['t0', 'median'] # phase and bin them. binsize = 5e-4 if modelid == 'allindivtransit': orb_d = phase_magseries_with_errs( _d['x_obs'], _d['y_obs'], _d['y_err'], P_orb, t0_orb, wrap=True, sort=True ) orb_bd = phase_bin_magseries_with_errs( orb_d['phase'], orb_d['mags'], orb_d['errs'], binsize=binsize, minbinelems=3, weights=1/(orb_d['errs']**2) ) elif modelid == 'tessindivtransit': orb_d = phase_magseries( _d['x_obs'], _d['y_obs'], P_orb, t0_orb, wrap=True, sort=True ) orb_bd = phase_bin_magseries( orb_d['phase'], orb_d['mags'], binsize=binsize, minbinelems=3 ) mod_d = phase_magseries( _d['x_obs'], _d['y_mod'], P_orb, t0_orb, wrap=True, sort=True ) resid_bd = phase_bin_magseries( mod_d['phase'], orb_d['mags'] - mod_d['mags'], binsize=binsize, minbinelems=3 ) # get the samples. shape: N_samples x N_time if show_samples: np.random.seed(42) N_samples = 20 sample_df = pm.trace_to_dataframe(m.trace, var_names=params) sample_params = sample_df.sample(n=N_samples, replace=False) y_mod_samples = [] for ix, p in sample_params.iterrows(): print(ix) paramd = dict(p) y_mod_samples.append(get_model_transit(paramd, d['x_obs'])) y_mod_samples = np.vstack(y_mod_samples) mod_ds = {} for i in range(N_samples): mod_ds[i] = phase_magseries( d['x_obs'], y_mod_samples[i, :], P_orb, t0_orb, wrap=True, sort=True ) # make tha plot plt.close('all') fig, (a0, a1) = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(4, 3), gridspec_kw= {'height_ratios':[3, 2]}) if not inppt: a0.scatter(orb_d['phase']*P_orb*24, orb_d['mags'], color='gray', s=2, alpha=0.8, zorder=4, linewidths=0, rasterized=True) a0.scatter(orb_bd['binnedphases']*P_orb*24, orb_bd['binnedmags'], color='black', s=8, alpha=1, zorder=5, linewidths=0) a0.plot(mod_d['phase']*P_orb*24, mod_d['mags'], color='darkgray', alpha=0.8, rasterized=False, lw=1, zorder=1) a1.scatter(orb_d['phase']*P_orb*24, orb_d['mags']-mod_d['mags'], color='gray', s=2, alpha=0.8, zorder=4, linewidths=0, rasterized=True) a1.scatter(resid_bd['binnedphases']*P_orb*24, resid_bd['binnedmags'], color='black', s=8, alpha=1, zorder=5, linewidths=0) a1.plot(mod_d['phase']*P_orb*24, mod_d['mags']-mod_d['mags'], color='darkgray', alpha=0.8, rasterized=False, lw=1, zorder=1) else: ydiff = 0 if modelid in ['allindivtransit', 'tessindivtransit'] else 1 a0.scatter(orb_d['phase']*P_orb*24, 1e3*(orb_d['mags']-ydiff), color='darkgray', s=7, alpha=0.5, zorder=4, linewidths=0, rasterized=True) a0.scatter(orb_bd['binnedphases']*P_orb*24, 1e3*(orb_bd['binnedmags']-ydiff), color='black', s=18, alpha=1, zorder=5, linewidths=0) a0.plot(mod_d['phase']*P_orb*24, 1e3*(mod_d['mags']-ydiff), color='gray', alpha=0.8, rasterized=False, lw=1, zorder=1) a1.scatter(orb_d['phase']*P_orb*24, 1e3*(orb_d['mags']-mod_d['mags']), color='darkgray', s=7, alpha=0.5, zorder=4, linewidths=0, rasterized=True) a1.scatter(resid_bd['binnedphases']*P_orb*24, 1e3*resid_bd['binnedmags'], color='black', s=18, alpha=1, zorder=5, linewidths=0) a1.plot(mod_d['phase']*P_orb*24, 1e3*(mod_d['mags']-mod_d['mags']), color='gray', alpha=0.8, rasterized=False, lw=1, zorder=1) if show_samples: # NOTE: this comes out looking "bad" because if you phase up a model # with a different period to the data, it will produce odd # aliases/spikes. xvals, yvals = [], [] for i in range(N_samples): xvals.append(mod_ds[i]['phase']*P_orb*24) yvals.append(mod_ds[i]['mags']) a0.plot(mod_ds[i]['phase']*P_orb*24, mod_ds[i]['mags'], color='C1', alpha=0.2, rasterized=True, lw=0.2, zorder=-2) a1.plot(mod_ds[i]['phase']*P_orb*24, mod_ds[i]['mags']-mod_d['mags'], color='C1', alpha=0.2, rasterized=True, lw=0.2, zorder=-2) # # N_samples x N_times # from scipy.ndimage import gaussian_filter1d # xvals, yvals = nparr(xvals), nparr(yvals) # model_phase = xvals.mean(axis=0) # g_std = 100 # n_std = 2 # mean = gaussian_filter1d(yvals.mean(axis=0), g_std) # diff = gaussian_filter1d(n_std*yvals.std(axis=0), g_std) # model_flux_lower = mean - diff # model_flux_upper = mean + diff # ax.plot(model_phase, model_flux_lower, color='C1', # alpha=0.8, lw=0.5, zorder=3) # ax.plot(model_phase, model_flux_upper, color='C1', alpha=0.8, # lw=0.5, zorder=3) # ax.fill_between(model_phase, model_flux_lower, model_flux_upper, # color='C1', alpha=0.5, zorder=3, linewidth=0) if not inppt: a0.set_ylabel('Relative flux', fontsize='small') else: a0.set_ylabel('Relative flux [ppt]', fontsize='small') a1.set_ylabel('Residual [ppt]', fontsize='small') a1.set_xlabel('Hours from mid-transit', fontsize='small') if not inppt: a0.set_ylim((0.9925, 1.005)) yv = orb_d['mags']-mod_d['mags'] if inppt: yv = 1e3*(orb_d['mags']-mod_d['mags']) a1.set_ylim((np.nanmedian(yv)-3.2*np.nanstd(yv), np.nanmedian(yv)+3.2*np.nanstd(yv) )) for a in (a0, a1): a.set_xlim((-0.011*P_orb*24, 0.011*P_orb*24)) # a.set_xlim((-0.02*P_orb*24, 0.02*P_orb*24)) format_ax(a) if inppt: a0.set_ylim((-6.9, 4.1)) for a in (a0, a1): xval = np.arange(-2,3,1) a.set_xticks(xval) yval = np.arange(-5,5,2.5) a0.set_yticks(yval) if showerror: trans = transforms.blended_transform_factory( a0.transAxes, a0.transData) if inppt: method1 = False if method1: _e = 1e3*np.median(_d['y_err']) # bin to roughly 5e-4 * 8.3 * 24 * 60 ~= 6 minute intervals bintime = binsize*P_orb*24*60 sampletime = 2 # minutes errorfactor = (sampletime/bintime)**(1/2) yerr = errorfactor*_e print(f'{_e:.2f}, {errorfactor*_e:.2f}') else: yerr = np.nanstd(1e3*resid_bd['binnedmags']) a0.errorbar( 0.85, -5, yerr=yerr, fmt='none', ecolor='black', alpha=1, elinewidth=1, capsize=2, transform=trans, zorder=12 ) else: raise NotImplementedError fig.tight_layout() savefig(fig, outpath, writepdf=1, dpi=300) def plot_scene(c_obj, img_wcs, img, outpath, Tmag_cutoff=17, showcolorbar=0, ap_mask=0, bkgd_mask=0, ticid=None, showdss=1): plt.close('all') # # wcs information parsing # follow Clara Brasseur's https://github.com/ceb8/tessworkshop_wcs_hack # (this is from the CDIPS vetting reports...) # radius = 6.0*u.arcminute nbhr_stars = Catalogs.query_region( "{} {}".format(float(c_obj.ra.value), float(c_obj.dec.value)), catalog="TIC", radius=radius ) try: px,py = img_wcs.all_world2pix( nbhr_stars[nbhr_stars['Tmag'] < Tmag_cutoff]['ra'], nbhr_stars[nbhr_stars['Tmag'] < Tmag_cutoff]['dec'], 0 ) except Exception as e: print('ERR! wcs all_world2pix got {}'.format(repr(e))) raise(e) ticids = nbhr_stars[nbhr_stars['Tmag'] < Tmag_cutoff]['ID'] tmags = nbhr_stars[nbhr_stars['Tmag'] < Tmag_cutoff]['Tmag'] sel = (px > 0) & (px < 10) & (py > 0) & (py < 10) if isinstance(ticid, str): sel &= (ticids != ticid) px,py = px[sel], py[sel] ticids, tmags = ticids[sel], tmags[sel] ra, dec = float(c_obj.ra.value), float(c_obj.dec.value) target_x, target_y = img_wcs.all_world2pix(ra,dec,0) # geometry: there are TWO coordinate axes. (x,y) and (ra,dec). To get their # relative orientations, the WCS and ignoring curvature will usually work. shiftra_x, shiftra_y = img_wcs.all_world2pix(ra+1e-4,dec,0) shiftdec_x, shiftdec_y = img_wcs.all_world2pix(ra,dec+1e-4,0) ########### # get DSS # ########### ra = c_obj.ra.value dec = c_obj.dec.value sizepix = 220 try: dss, dss_hdr = skyview_stamp(ra, dec, survey='DSS2 Red', scaling='Linear', convolvewith=None, sizepix=sizepix, flip=False, cachedir='~/.astrobase/stamp-cache', verbose=True, savewcsheader=True) except (OSError, IndexError, TypeError) as e: print('downloaded FITS appears to be corrupt, retrying...') try: dss, dss_hdr = skyview_stamp(ra, dec, survey='DSS2 Red', scaling='Linear', convolvewith=None, sizepix=sizepix, flip=False, cachedir='~/.astrobase/stamp-cache', verbose=True, savewcsheader=True, forcefetch=True) except Exception as e: print('failed to get DSS stamp ra {} dec {}, error was {}'. format(ra, dec, repr(e))) return None, None ########################################## plt.close('all') if showdss: fig = plt.figure(figsize=(4,9)) # ax0: TESS # ax1: DSS ax0 = plt.subplot2grid((2, 1), (0, 0), projection=img_wcs) ax1 = plt.subplot2grid((2, 1), (1, 0), projection=WCS(dss_hdr)) else: fig = plt.figure(figsize=(4,4)) ax0 = plt.subplot2grid((1, 1), (0, 0), projection=img_wcs) ########################################## # # ax0: img # #interval = vis.PercentileInterval(99.99) interval = vis.AsymmetricPercentileInterval(5,99) vmin,vmax = interval.get_limits(img) norm = vis.ImageNormalize( vmin=vmin, vmax=vmax, stretch=vis.LogStretch(1000)) cset0 = ax0.imshow(img, cmap=plt.cm.gray_r, origin='lower', zorder=1, norm=norm) if isinstance(ap_mask, np.ndarray): for x,y in product(range(10),range(10)): if ap_mask[y,x]: ax0.add_patch( patches.Rectangle( (x-.5, y-.5), 1, 1, hatch='//', fill=False, snap=False, linewidth=0., zorder=2, alpha=1, rasterized=True, color='white' ) ) if isinstance(bkgd_mask, np.ndarray): for x,y in product(range(10),range(10)): if bkgd_mask[y,x]: ax0.add_patch( patches.Rectangle( (x-.5, y-.5), 1, 1, hatch='x', fill=False, snap=False, linewidth=0., zorder=2, alpha=0.7, rasterized=True ) ) ax0.scatter(px, py, marker='o', c='white', s=1.5*5e4/(tmags**3), rasterized=False, zorder=6, linewidths=0.5, edgecolors='k') ax0.plot(target_x, target_y, mew=0.5, zorder=5, markerfacecolor='yellow', markersize=18, marker='*', color='k', lw=0) t = ax0.text(4.0, 5.2, 'A', fontsize=20, color='k', zorder=6) t.set_path_effects([path_effects.Stroke(linewidth=2.5, foreground='white'), path_effects.Normal()]) t = ax0.text(4.6, 3.8, 'B', fontsize=20, color='k', zorder=6) t.set_path_effects([path_effects.Stroke(linewidth=2.5, foreground='white'), path_effects.Normal()]) if showdss: ax0.set_title('TESS', fontsize='xx-large') if showcolorbar: cb0 = fig.colorbar(cset0, ax=ax0, extend='neither', fraction=0.046, pad=0.04) if showdss: # # ax1: DSS # cset1 = ax1.imshow(dss, origin='lower', cmap=plt.cm.gray_r) ax1.grid(ls='--', alpha=0.5) ax1.set_title('DSS2 Red', fontsize='xx-large') if showcolorbar: cb1 = fig.colorbar(cset1, ax=ax1, extend='neither', fraction=0.046, pad=0.04) # # DSS is ~1 arcsecond per pixel. overplot apertures on axes 6,7 # for ix, radius_px in enumerate([21,21*1.5,21*2.25]): # circle = plt.Circle((sizepix/2, sizepix/2), radius_px, # color='C{}'.format(ix), fill=False, zorder=5+ix) # ax1.add_artist(circle) # # ITNERMEDIATE SINCE TESS IMAGES NOW PLOTTED # for ax in [ax0]: lon = ax.coords[0] lat = ax.coords[1] lat.set_major_formatter('dd:mm:ss') lon.set_major_formatter('hh:mm:ss') lat.set_ticks(spacing=60*u.arcsec) lon.set_ticks(spacing=120*u.arcsec) lon.set_ticks_visible(False) lat.set_ticks_visible(False) lon.set_ticklabel_visible(False) lat.set_ticklabel_visible(False) invert_x, invert_y = False, False if shiftra_x - target_x > 0: # want RA to increase to the left (almost E) ax.invert_xaxis() invert_x = True if shiftdec_y - target_y < 0: # want DEC to increase up (almost N) ax.invert_yaxis() invert_y = True compass(ax, 0.84, 0.03, 0.12, invert_x=invert_x, invert_y=invert_y) ax.grid(ls='--', alpha=0.5) if showdss: axlist = [ax0,ax1] else: axlist = [ax0] for ax in axlist: ax.set_xlabel(r'$\alpha_{2000}$', fontsize='large') ax.set_ylabel(r'$\delta_{2000}$', fontsize='large') if showcolorbar: fig.tight_layout(h_pad=-8, w_pad=-8) else: fig.tight_layout(h_pad=1, w_pad=1) savefig(fig, outpath, dpi=300) def compass(ax, x, y, size, invert_x=False, invert_y=False): """Add a compass to indicate the north and east directions. Parameters ---------- x, y : float Position of compass vertex in axes coordinates. size : float Size of compass in axes coordinates. """ xy = x, y scale = ax.wcs.pixel_scale_matrix scale /= np.sqrt(np.abs(np.linalg.det(scale))) for n, label, ha, va in zip( scale, 'EN', ['right', 'center'], ['center', 'bottom'] ): if invert_x: n[0] *= -1 if invert_y: n[1] *= -1 ax.annotate(label, xy, xy + size * n, ax.transAxes, ax.transAxes, ha='center', va='center', arrowprops=dict(arrowstyle='<-', shrinkA=0.0, shrinkB=0.0)) def plot_hr(outdir, isochrone=None, do_cmd=0, color0='phot_bp_mean_mag'): set_style() # from cdips.tests.test_nbhd_plot pklpath = '/Users/luke/Dropbox/proj/timmy/results/cluster_membership/nbhd_info_5251470948229949568.pkl' info = pickle.load(open(pklpath, 'rb')) (targetname, groupname, group_df_dr2, target_df, nbhd_df, cutoff_probability, pmdec_min, pmdec_max, pmra_min, pmra_max, group_in_k13, group_in_cg18, group_in_kc19, group_in_k18 ) = info if isochrone in ['mist', 'parsec']: if isochrone == 'mist': from timmy.read_mist_model import ISOCMD isocmdpath = os.path.join(DATADIR, 'cluster', 'MIST_isochrones_age7pt60206_Av0pt217_FeH0', 'MIST_iso_5f04eb2b54f51.iso.cmd') # relevant params: star_mass log_g log_L log_Teff Gaia_RP_DR2Rev # Gaia_BP_DR2Rev Gaia_G_DR2Rev isocmd = ISOCMD(isocmdpath) # 10, 20, 30, 40 Myr. assert len(isocmd.isocmds) == 4 elif isochrone == 'parsec': isopath = os.path.join(DATADIR, 'cluster', 'PARSEC_isochrones', 'output799447099984.dat') iso_df = pd.read_csv(isopath, delim_whitespace=True) ########## plt.close('all') f, ax = plt.subplots(figsize=(4,3)) if not do_cmd: nbhd_yval = np.array(nbhd_df['phot_g_mean_mag'] + 5*np.log10(nbhd_df['parallax']/1e3) + 5) else: nbhd_yval = np.array(nbhd_df['phot_g_mean_mag']) ax.scatter( nbhd_df[color0]-nbhd_df['phot_rp_mean_mag'], nbhd_yval, c='gray', alpha=1., zorder=2, s=5, rasterized=True, linewidths=0, label='Neighborhood', marker='.' ) if not do_cmd: yval = group_df_dr2['phot_g_mean_mag'] + 5*np.log10(group_df_dr2['parallax']/1e3) + 5 if isochrone == 'mist': mediancorr = ( np.nanmedian(5*np.log10(group_df_dr2['parallax']/1e3)) + 5 + 5.9 ) elif isochrone == 'parsec': mediancorr = ( np.nanmedian(5*np.log10(group_df_dr2['parallax']/1e3)) + 5 + 5.6 ) else: yval = group_df_dr2['phot_g_mean_mag'] ax.scatter( group_df_dr2[color0]-group_df_dr2['phot_rp_mean_mag'], yval, c='k', alpha=1., zorder=3, s=5, rasterized=True, linewidths=0, label='Members'# 'CG18 P>0.1' ) if not do_cmd: target_yval = np.array(target_df['phot_g_mean_mag'] + 5*np.log10(target_df['parallax']/1e3) + 5) else: target_yval = np.array(target_df['phot_g_mean_mag']) if do_cmd: mfc = 'k' m = 'X' ms = 6 lw = 0 mec = 'white' else: mfc = 'yellow' m = '*' ms = 14 lw = 0 mec = 'k' ax.plot( target_df[color0]-target_df['phot_rp_mean_mag'], target_yval, alpha=1, mew=0.5, zorder=8, label='TOI 837', markerfacecolor=mfc, markersize=ms, marker=m, color='black', lw=lw, mec=mec ) if isochrone: if isochrone == 'mist': if not do_cmd: print(f'{mediancorr:.2f}') ages = [10, 20, 30, 40] N_ages = len(ages) colors = plt.cm.cool(np.linspace(0,1,N_ages))[::-1] for i, (a, c) in enumerate(zip(ages, colors)): mstar = isocmd.isocmds[i]['star_mass'] sel = (mstar < 7) if not do_cmd: _yval = isocmd.isocmds[i]['Gaia_G_DR2Rev'][sel] + mediancorr else: corr = 5.75 _yval = isocmd.isocmds[i]['Gaia_G_DR2Rev'][sel] + corr if color0 == 'phot_bp_mean_mag': _c0 = 'Gaia_BP_DR2Rev' elif color0 == 'phot_g_mean_mag': _c0 = 'Gaia_G_DR2Rev' else: raise NotImplementedError ax.plot( isocmd.isocmds[i][_c0][sel]-isocmd.isocmds[i]['Gaia_RP_DR2Rev'][sel], _yval, c=c, alpha=1., zorder=4, label=f'{a} Myr', lw=0.5 ) if i == 3 and do_cmd: sel = (mstar < 1.15) & (mstar > 1.08) print(mstar[sel]) teff = 10**isocmd.isocmds[i]['log_Teff'] print(teff[sel]) logg = isocmd.isocmds[i]['log_g'] print(logg[sel]) rstar = ((( (10**logg)*u.cm/(u.s*u.s)) / (const.G*mstar*u.Msun))**(-1/2)).to(u.Rsun) print(rstar[sel]) rho = (mstar*u.Msun/(4/3*np.pi*rstar**3)).cgs print(rho[sel]) _yval = isocmd.isocmds[i]['Gaia_G_DR2Rev'][sel] + corr ax.scatter( isocmd.isocmds[i][_c0][sel]-isocmd.isocmds[i]['Gaia_RP_DR2Rev'][sel], _yval, c=c, alpha=1., zorder=10, s=0.5, marker=".", linewidths=0 ) elif isochrone == 'parsec': if not do_cmd: print(f'{mediancorr:.2f}') ages = [10, 20, 30, 40] logages = [7, 7.30103, 7.47712, 7.60206] N_ages = len(ages) colors = plt.cm.cool(np.linspace(0,1,N_ages))[::-1] for i, (a, la, c) in enumerate(zip(ages, logages, colors)): sel = (np.abs(iso_df.logAge - la) < 0.01) & (iso_df.Mass < 7) if not do_cmd: _yval = iso_df[sel]['Gmag'] + mediancorr else: corr = 5.65 _yval = iso_df[sel]['Gmag'] + corr if color0 == 'phot_bp_mean_mag': _c0 = 'G_BPmag' elif color0 == 'phot_g_mean_mag': _c0 = 'Gmag' else: raise NotImplementedError ax.plot( iso_df[sel][_c0]-iso_df[sel]['G_RPmag'], _yval, c=c, alpha=1., zorder=4, label=f'{a} Myr', lw=0.5 ) if i == 3 and do_cmd: sel = ( (np.abs(iso_df.logAge - la) < 0.01) & (iso_df.Mass < 1.1) & (iso_df.Mass > 0.95) ) mstar = np.array(iso_df.Mass) print(42*'#') print(f'{_c0} - Rp') print(mstar[sel]) teff = np.array(10**iso_df['logTe']) print(teff[sel]) logg = np.array(iso_df['logg']) print(logg[sel]) rstar = ((( (10**logg)*u.cm/(u.s*u.s)) / (const.G*mstar*u.Msun))**(-1/2)).to(u.Rsun) print(rstar[sel]) rho = (mstar*u.Msun/(4/3*np.pi*rstar**3)).cgs print(rho[sel]) _yval = iso_df[sel]['Gmag'] + corr ax.scatter( iso_df[sel][_c0]-iso_df[sel]['G_RPmag'], _yval, c='red', alpha=1., zorder=10, s=2, marker=".", linewidths=0 ) ax.legend(loc='upper right', handletextpad=0.1, fontsize='x-small', framealpha=0.7) #if not do_cmd: # ax.legend(loc='best', handletextpad=0.1, fontsize='x-small', framealpha=0.7) #else: # ax.legend(loc='upper right', handletextpad=0.1, fontsize='x-small', framealpha=0.7) if not do_cmd: ax.set_ylabel('Absolute G [mag]', fontsize='large') else: ax.set_ylabel('G [mag]', fontsize='large') if color0 == 'phot_bp_mean_mag': ax.set_xlabel('Bp - Rp [mag]', fontsize='large') elif color0 == 'phot_g_mean_mag': ax.set_xlabel('G - Rp [mag]', fontsize='large') else: raise NotImplementedError ylim = ax.get_ylim() ax.set_ylim((max(ylim),min(ylim))) format_ax(ax) if not isochrone: s = '' else: s = '_'+isochrone c0s = '_Bp_m_Rp' if color0 == 'phot_bp_mean_mag' else '_G_m_Rp' if not do_cmd: outpath = os.path.join(outdir, f'hr{s}{c0s}.png') else: outpath = os.path.join(outdir, f'cmd{s}{c0s}.png') savefig(f, outpath, dpi=400) def plot_positions(outdir): # from cdips.tests.test_nbhd_plot pklpath = '/Users/luke/Dropbox/proj/timmy/results/cluster_membership/nbhd_info_5251470948229949568.pkl' info = pickle.load(open(pklpath, 'rb')) (targetname, groupname, group_df_dr2, target_df, nbhd_df, cutoff_probability, pmdec_min, pmdec_max, pmra_min, pmra_max, group_in_k13, group_in_cg18, group_in_kc19, group_in_k18 ) = info ########## plt.close('all') # ra vs ra # dec vs ra --- dec vs dec # parallax vs ra --- parallax vs dec --- parallax vs parallax f, axs = plt.subplots(figsize=(4,4), nrows=2, ncols=2) ax_ixs = [(0,0),(1,0),(1,1)] xy_tups = [('ra', 'dec'), ('ra', 'parallax'), ('dec', 'parallax')] ldict = { 'ra': r'$\alpha$ [deg]', 'dec': r'$\delta$ [deg]', 'parallax': r'$\pi$ [mas]' } for ax_ix, xy_tup in zip(ax_ixs, xy_tups): i, j = ax_ix[0], ax_ix[1] xv, yv = xy_tup[0], xy_tup[1] axs[i,j].scatter( nbhd_df[xv], nbhd_df[yv], c='gray', alpha=0.9, zorder=2, s=5, rasterized=True, linewidths=0, label='Neighborhood', marker='.' ) axs[i,j].scatter( group_df_dr2[xv], group_df_dr2[yv], c='k', alpha=0.9, zorder=3, s=5, rasterized=True, linewidths=0, label='Members' ) axs[i,j].plot( target_df[xv], target_df[yv], alpha=1, mew=0.5, zorder=8, label='TOI 837', markerfacecolor='yellow', markersize=9, marker='*', color='black', lw=0 ) axs[0,0].set_ylabel(ldict['dec']) axs[1,0].set_xlabel(ldict['ra']) axs[1,0].set_ylabel(ldict['parallax']) axs[1,1].set_xlabel(ldict['dec']) axs[0,1].set_axis_off() # ax.legend(loc='best', handletextpad=0.1, fontsize='x-small', framealpha=0.7) for ax in axs.flatten(): format_ax(ax) outpath = os.path.join(outdir, 'positions.png') savefig(f, outpath) def plot_velocities(outdir): # from cdips.tests.test_nbhd_plot pklpath = '/Users/luke/Dropbox/proj/timmy/results/cluster_membership/nbhd_info_5251470948229949568.pkl' info = pickle.load(open(pklpath, 'rb')) (targetname, groupname, group_df_dr2, target_df, nbhd_df, cutoff_probability, pmdec_min, pmdec_max, pmra_min, pmra_max, group_in_k13, group_in_cg18, group_in_kc19, group_in_k18 ) = info ########## plt.close('all') f, axs = plt.subplots(figsize=(4,4), nrows=2, ncols=2) ax_ixs = [(0,0),(1,0),(1,1)] xy_tups = [('pmra', 'pmdec'), ('pmra', 'radial_velocity'), ('pmdec', 'radial_velocity')] ldict = { 'pmra': r'$\mu_{{\alpha}} \cos\delta$ [mas/yr]', 'pmdec': r'$\mu_{{\delta}}$ [mas/yr]', 'radial_velocity': 'RV [km/s]' } for ax_ix, xy_tup in zip(ax_ixs, xy_tups): i, j = ax_ix[0], ax_ix[1] xv, yv = xy_tup[0], xy_tup[1] axs[i,j].scatter( nbhd_df[xv], nbhd_df[yv], c='gray', alpha=0.9, zorder=2, s=5, rasterized=True, linewidths=0, label='Neighborhood', marker='.' ) axs[i,j].scatter( group_df_dr2[xv], group_df_dr2[yv], c='k', alpha=0.9, zorder=3, s=5, rasterized=True, linewidths=0, label='Members' ) axs[i,j].plot( target_df[xv], target_df[yv], alpha=1, mew=0.5, zorder=8, label='TOI 837', markerfacecolor='yellow', markersize=9, marker='*', color='black', lw=0 ) axs[0,0].set_ylabel(ldict['pmdec']) axs[1,0].set_xlabel(ldict['pmra']) axs[1,0].set_ylabel(ldict['radial_velocity']) axs[1,1].set_xlabel(ldict['pmdec']) axs[0,1].set_axis_off() # ax.legend(loc='best', handletextpad=0.1, fontsize='x-small', framealpha=0.7) for ax in axs.flatten(): format_ax(ax) outpath = os.path.join(outdir, 'velocities.png') savefig(f, outpath) def plot_full_kinematics(outdir): set_style() # from cdips.tests.test_nbhd_plot pklpath = '/Users/luke/Dropbox/proj/timmy/results/cluster_membership/nbhd_info_5251470948229949568.pkl' info = pickle.load(open(pklpath, 'rb')) (targetname, groupname, group_df_dr2, target_df, nbhd_df, cutoff_probability, pmdec_min, pmdec_max, pmra_min, pmra_max, group_in_k13, group_in_cg18, group_in_kc19, group_in_k18 ) = info ########## plt.close('all') params = ['ra', 'dec', 'parallax', 'pmra', 'pmdec', 'radial_velocity'] nparams = len(params) qlimd = { 'ra': 0, 'dec': 0, 'parallax': 0, 'pmra': 1, 'pmdec': 1, 'radial_velocity': 1 } # whether to limit axis by quantile ldict = { 'ra': r'$\alpha$ [deg]', 'dec': r'$\delta$ [deg]', 'parallax': r'$\pi$ [mas]', 'pmra': r'$\mu_{{\alpha}} \cos\delta$ [mas/yr]', 'pmdec': r'$\mu_{{\delta}}$ [mas/yr]', 'radial_velocity': 'RV [km/s]' } f, axs = plt.subplots(figsize=(6,6), nrows=nparams-1, ncols=nparams-1) for i in range(nparams): for j in range(nparams): print(i,j) if j == nparams-1 or i == nparams-1: continue if j>i: axs[i,j].set_axis_off() continue xv = params[j] yv = params[i+1] print(i,j,xv,yv) axs[i,j].scatter( nbhd_df[xv], nbhd_df[yv], c='gray', alpha=0.9, zorder=2, s=5, rasterized=True, linewidths=0, label='Neighborhood', marker='.' ) axs[i,j].scatter( group_df_dr2[xv], group_df_dr2[yv], c='k', alpha=0.9, zorder=3, s=5, rasterized=True, linewidths=0, label='Members' ) axs[i,j].plot( target_df[xv], target_df[yv], alpha=1, mew=0.5, zorder=8, label='TOI 837', markerfacecolor='yellow', markersize=14, marker='*', color='black', lw=0 ) # set the axis limits as needed if qlimd[xv]: xlim = (np.nanpercentile(nbhd_df[xv], 25), np.nanpercentile(nbhd_df[xv], 75)) axs[i,j].set_xlim(xlim) if qlimd[yv]: ylim = (np.nanpercentile(nbhd_df[yv], 25), np.nanpercentile(nbhd_df[yv], 75)) axs[i,j].set_ylim(ylim) # fix labels if j == 0 : axs[i,j].set_ylabel(ldict[yv]) if not i == nparams - 2: # hide xtick labels labels = [item.get_text() for item in axs[i,j].get_xticklabels()] empty_string_labels = ['']*len(labels) axs[i,j].set_xticklabels(empty_string_labels) if i == nparams - 2: axs[i,j].set_xlabel(ldict[xv]) if not j == 0: # hide ytick labels labels = [item.get_text() for item in axs[i,j].get_yticklabels()] empty_string_labels = ['']*len(labels) axs[i,j].set_yticklabels(empty_string_labels) if (not (j == 0)) and (not (i == nparams - 2)): # hide ytick labels labels = [item.get_text() for item in axs[i,j].get_yticklabels()] empty_string_labels = ['']*len(labels) axs[i,j].set_yticklabels(empty_string_labels) # hide xtick labels labels = [item.get_text() for item in axs[i,j].get_xticklabels()] empty_string_labels = ['']*len(labels) axs[i,j].set_xticklabels(empty_string_labels) # axs[2,2].legend(loc='best', handletextpad=0.1, fontsize='medium', framealpha=0.7) # leg = axs[2,2].legend(bbox_to_anchor=(0.8,0.8), loc="upper right", # handletextpad=0.1, fontsize='medium', # bbox_transform=f.transFigure) for ax in axs.flatten(): format_ax(ax) f.tight_layout(h_pad=0.1, w_pad=0.1) outpath = os.path.join(outdir, 'full_kinematics.png') savefig(f, outpath) def plot_groundscene(c_obj, img_wcs, img, outpath, Tmag_cutoff=17, showcolorbar=0, ticid=None, xlim=None, ylim=None, ap_mask=0, customap=0): plt.close('all') # standard tick formatting fails for these images. mpl.rcParams['xtick.direction'] = 'in' mpl.rcParams['ytick.direction'] = 'in' # # wcs information parsing # follow Clara Brasseur's https://github.com/ceb8/tessworkshop_wcs_hack # (this is from the CDIPS vetting reports...) # radius = 6.0*u.arcminute nbhr_stars = Catalogs.query_region( "{} {}".format(float(c_obj.ra.value), float(c_obj.dec.value)), catalog="TIC", radius=radius ) try: px,py = img_wcs.all_world2pix( nbhr_stars[nbhr_stars['Tmag'] < Tmag_cutoff]['ra'], nbhr_stars[nbhr_stars['Tmag'] < Tmag_cutoff]['dec'], 0 ) except Exception as e: print('ERR! wcs all_world2pix got {}'.format(repr(e))) raise(e) ticids = nbhr_stars[nbhr_stars['Tmag'] < Tmag_cutoff]['ID'] tmags = nbhr_stars[nbhr_stars['Tmag'] < Tmag_cutoff]['Tmag'] sel = (px > 0) & (px < img.shape[1]) & (py > 0) & (py < img.shape[0]) if isinstance(ticid, str): sel &= (ticids != ticid) px,py = px[sel], py[sel] ticids, tmags = ticids[sel], tmags[sel] ra, dec = float(c_obj.ra.value), float(c_obj.dec.value) target_x, target_y = img_wcs.all_world2pix(ra,dec,0) # geometry: there are TWO coordinate axes. (x,y) and (ra,dec). To get their # relative orientations, the WCS and ignoring curvature will usually work. shiftra_x, shiftra_y = img_wcs.all_world2pix(ra+1e-4,dec,0) shiftdec_x, shiftdec_y = img_wcs.all_world2pix(ra,dec+1e-4,0) ########################################## plt.close('all') fig = plt.figure(figsize=(5,5)) # ax: whatever the groundbased image was ax = plt.subplot2grid((1, 1), (0, 0), projection=img_wcs) ########################################## # # ax0: img # #interval = vis.PercentileInterval(99.99) #interval = vis.AsymmetricPercentileInterval(1,99.9) vmin,vmax = 10, int(1e4) norm = vis.ImageNormalize( vmin=vmin, vmax=vmax, stretch=vis.LogStretch(1000)) cset0 = ax.imshow(img, cmap=plt.cm.gray, origin='lower', zorder=1, norm=norm) if isinstance(ap_mask, np.ndarray): for x,y in product(range(10),range(10)): if ap_mask[y,x]: ax.add_patch( patches.Rectangle( (x-.5, y-.5), 1, 1, hatch='//', fill=False, snap=False, linewidth=0., zorder=2, alpha=0.7, rasterized=True ) ) ax.scatter(px, py, marker='o', c='C1', s=2e4/(tmags**3), rasterized=True, zorder=6, linewidths=0.8) # ax0.scatter(px, py, marker='x', c='C1', s=20, rasterized=True, # zorder=6, linewidths=0.8) ax.plot(target_x, target_y, mew=0.5, zorder=5, markerfacecolor='yellow', markersize=10, marker='*', color='k', lw=0) if customap: datestr = [e for e in outpath.split('/') if '2020' in e][0] tdir = ( '/Users/luke/Dropbox/proj/timmy/results/groundphot/{}/photutils_apphot/'. format(datestr) ) inpath = os.path.join( tdir, os.path.basename(outpath).replace( 'groundscene.png', 'customtable.fits') ) chdul = fits.open(inpath) d = chdul[1].data chdul.close() xc, yc = d['xcenter'], d['ycenter'] colors = ['C{}'.format(ix) for ix in range(len(xc))] for _x, _y, _c in zip(xc, yc, colors): ax.scatter(_x, _y, marker='x', c=_c, s=20, rasterized=True, zorder=6, linewidths=0.8) ax.set_title('El Sauce 36cm', fontsize='xx-large') if showcolorbar: cb0 = fig.colorbar(cset0, ax=ax, extend='neither', fraction=0.046, pad=0.04) # # fix the axes # ax.grid(ls='--', alpha=0.5) if shiftra_x - target_x > 0: # want RA to increase to the left (almost E) ax.invert_xaxis() if shiftdec_y - target_y < 0: # want DEC to increase up (almost N) ax.invert_yaxis() if xlim is not None: ax.set_xlim(xlim) if ylim is not None: ax.set_ylim(ylim) format_ax(ax) ax.set_xlabel(r'$\alpha_{2000}$') ax.set_ylabel(r'$\delta_{2000}$') if showcolorbar: fig.tight_layout(h_pad=-8, w_pad=-8) else: fig.tight_layout(h_pad=1, w_pad=1) savefig(fig, outpath, writepdf=0, dpi=300) def shift_img_plot(img, shift_img, xlim, ylim, outpath, x0, y0, target_x, target_y, titlestr0, titlestr1, showcolorbar=1): vmin,vmax = 10, int(1e4) norm = vis.ImageNormalize( vmin=vmin, vmax=vmax, stretch=vis.LogStretch(1000)) fig, axs = plt.subplots(nrows=2,ncols=1) axs[0].imshow(img, cmap=plt.cm.gray, origin='lower', norm=norm) axs[0].set_title(titlestr0) axs[0].plot(target_x, target_y, mew=0.5, zorder=5, markerfacecolor='yellow', markersize=3, marker='*', color='k', lw=0) cset = axs[1].imshow(shift_img, cmap=plt.cm.gray, origin='lower', norm=norm) axs[1].set_title(titlestr1) axs[1].plot(x0, y0, mew=0.5, zorder=5, markerfacecolor='yellow', markersize=3, marker='*', color='k', lw=0) for ax in axs: if xlim is not None: ax.set_xlim(xlim) if ylim is not None: ax.set_ylim(ylim) format_ax(ax) if showcolorbar: raise NotImplementedError cb0 = fig.colorbar(cset, ax=axs[1], extend='neither', fraction=0.046, pad=0.04) fig.tight_layout() savefig(fig, outpath, writepdf=0, dpi=300) def plot_pixel_lc(times, img_cube, outpath, showvlines=0): # 20x20 around target pixel nrows, ncols = 20, 20 fig, axs = plt.subplots(figsize=(20,20), nrows=nrows, ncols=ncols, sharex=True) x0, y0 = 768, 512 # in array coordinates xmin, xmax = x0-10, x0+10 # note: xmin/xmax in mpl coordinates (not ndarray coordinates) ymin, ymax = y0-10, y0+10 # note: ymin/ymax in mpl coordinates (not ndarray coordinates) props = dict(boxstyle='square', facecolor='white', alpha=0.9, pad=0.15, linewidth=0) time_offset = np.nanmin(times) times -= time_offset N_trim = 47 # per <NAME> reduction notes if '2020-04-01' not in outpath: raise NotImplementedError( 'pixel LCs are deprecated. only 2020-04-01 was implemented' ) for ax_i, data_i in enumerate(range(xmin, xmax)): for ax_j, data_j in enumerate(list(range(ymin, ymax))[::-1]): # note: y reverse is the same as "origin = lower" print(ax_i, ax_j, data_i, data_j) axs[ax_j,ax_i].scatter( times[N_trim:], img_cube[N_trim:, data_j, data_i], c='k', zorder=3, s=2, rasterized=True, linewidths=0 ) tstr = ( '{:.1f}\n{} {}'.format( np.nanpercentile( img_cube[N_trim:, data_j, data_i], 99), data_i, data_j) ) axs[ax_j,ax_i].text(0.97, 0.03, tstr, ha='right', va='bottom', transform=axs[ax_j,ax_i].transAxes, bbox=props, zorder=-1, fontsize='xx-small') if showvlines: ylim = axs[ax_j,ax_i].get_ylim() axs[ax_j,ax_i].vlines( [2458940.537 - time_offset, 2458940.617 - time_offset], min(ylim), max(ylim), colors='C1', alpha=0.5, linestyles='--', zorder=-2, linewidths=1 ) axs[ax_j,ax_i].set_ylim(ylim) # hide ytick labels labels = [item.get_text() for item in axs[ax_j,ax_i].get_yticklabels()] empty_string_labels = ['']*len(labels) axs[ax_j,ax_i].set_yticklabels(empty_string_labels) format_ax(axs[ax_j,ax_i]) fig.tight_layout(h_pad=0, w_pad=0) savefig(fig, outpath, writepdf=0, dpi=300) def vis_photutils_lcs(datestr, ap, overwrite=1): outpath = os.path.join( RESULTSDIR, 'groundphot', datestr, 'vis_photutils_lcs', 'vis_photutils_lcs_{}.png'.format(ap) ) if os.path.exists(outpath) and not overwrite: print('found {} and no overwrite'.format(outpath)) return lcdir = '/Users/luke/Dropbox/proj/timmy/results/groundphot/{}/vis_photutils_lcs'.format(datestr) lcpaths = glob(os.path.join(lcdir, 'TIC*csv')) lcs = [pd.read_csv(l) for l in lcpaths] target_ticid = '460205581' # TOI 837 target_lc = pd.read_csv(glob(os.path.join( lcdir, 'TIC*{}*csv'.format(target_ticid)))[0] ) if datestr == '2020-04-01': N_trim = 47 # drop the first 47 points due to clouds elif datestr == '2020-04-26': N_trim = 0 elif datestr == '2020-05-21': N_trim = 0 else: raise NotImplementedError('pls manually set N_trim') time = target_lc['BJD_TDB'][N_trim:] flux = target_lc[ap][N_trim:] mean_flux = np.nanmean(flux) flux /= mean_flux print(42*'-') print(target_ticid, target_lc.id.iloc[0], mean_flux) comp_mean_fluxs = nparr([np.nanmean(lc[ap][N_trim:]) for lc in lcs]) comp_inds = np.argsort(np.abs(mean_flux - comp_mean_fluxs)) # the maximum number of comparison stars is say, 10. N_comp_max = 10 # # finally, make the plot # plt.close('all') fig, ax = plt.subplots(figsize=(8,8)) ax.scatter(time, flux, c='k', zorder=3, s=3, rasterized=True, linewidths=0) tstr = 'TIC{}'.format(target_ticid) props = dict(boxstyle='square', facecolor='white', alpha=0.5, pad=0.15, linewidth=0) ax.text(np.nanpercentile(time, 97), np.nanpercentile(flux, 3), tstr, ha='right', va='top', bbox=props, zorder=-1, fontsize='small') offset = 0.3 outdf = pd.DataFrame({}) for ix, comp_ind in enumerate(comp_inds[1:N_comp_max+1]): lc = lcs[comp_ind] time = lc['BJD_TDB'][N_trim:] flux = lc[ap][N_trim:] mean_flux = np.nanmean(flux) flux /= mean_flux print(lc['ticid'].iloc[0], lc.id.iloc[0], mean_flux) color = 'C{}'.format(ix) ax.scatter(time, flux+offset, s=3, rasterized=True, linewidths=0, c=color) tstr = 'TIC{}'.format(lc['ticid'].iloc[0]) ax.text(np.nanpercentile(time, 97), np.nanpercentile(flux+offset, 50), tstr, ha='right', va='top', bbox=props, zorder=-1, fontsize='small', color=color) offset += 0.3 t = lc['ticid'].iloc[0] outdf['time_{}'.format(t)] = time outdf['flux_{}'.format(t)] = flux outdf['absflux_{}'.format(t)] = flux*mean_flux outcsvpath = os.path.join( RESULTSDIR, 'groundphot', datestr, 'vis_photutils_lcs', 'vis_photutils_lcs_compstars_{}.csv'.format(ap) ) outdf.to_csv(outcsvpath, index=False) print('made {}'.format(outcsvpath)) format_ax(ax) fig.tight_layout() savefig(fig, outpath, writepdf=0, dpi=300) def stackviz_blend_check(datestr, apn, soln=0, overwrite=1, adaptiveoffset=1, N_comp=5): if soln == 1: raise NotImplementedError('gotta implement image+aperture inset axes') if adaptiveoffset: outdir = os.path.join( RESULTSDIR, 'groundphot', datestr, f'stackviz_blend_check_adaptiveoffset_Ncomp{N_comp}' ) else: outdir = os.path.join( RESULTSDIR, 'groundphot', datestr, f'stackviz_blend_check_noadaptiveoffset_Ncomp{N_comp}' ) if not os.path.exists(outdir): os.mkdir(outdir) outpath = os.path.join(outdir, 'stackviz_blend_check_{}.png'.format(apn)) if os.path.exists(outpath) and not overwrite: print('found {} and no overwrite'.format(outpath)) return lcdir = f'/Users/luke/Dropbox/proj/timmy/results/groundphot/{datestr}/compstar_detrend_Ncomp{N_comp}' lcpaths = np.sort(glob(os.path.join( lcdir, 'toi837_detrended*_sum_{}_*.csv'.format(apn)))) assert len(lcpaths) == 13 origlcdir = f'/Users/luke/Dropbox/proj/timmy/results/groundphot/{datestr}/vis_photutils_lcs' lcs = [pd.read_csv(l) for l in lcpaths] N_lcs = len(lcpaths) # # make the plot # plt.close('all') fig, ax = plt.subplots(figsize=(8,N_lcs)) offset = 0 props = dict(boxstyle='square', facecolor='white', alpha=0.5, pad=0.15, linewidth=0) for ix, lc in enumerate(lcs): time = nparr(lc['time']) flux = nparr(lc['flat_flux']) _id = str(ix+1).zfill(4) origpath = os.path.join( origlcdir, 'CUSTOM{}_photutils_groundlc.csv'.format(_id) ) odf = pd.read_csv(origpath) ra, dec = np.mean(odf['sky_center.ra']), np.mean(odf['sky_center.dec']) print(_id, ra, dec) color = 'C{}'.format(ix) ax.scatter(time, flux+offset, s=3, rasterized=True, linewidths=0, c=color) tstr = '{}: {:.4f} {:.4f}'.format(_id, ra, dec) txt_x, txt_y = ( np.nanpercentile(time, 97), np.nanpercentile(flux+offset, 1) ) if adaptiveoffset: ax.text(txt_x, txt_y, tstr, ha='right', va='bottom', bbox=props, zorder=-1, fontsize='small', color=color) else: ax.text(txt_x, max(txt_y, 0.9), tstr, ha='right', va='bottom', bbox=props, zorder=-1, fontsize='small', color=color) if adaptiveoffset: if int(apn) <= 1: offset += 0.30 elif int(apn) == 2: offset += 0.10 elif int(apn) == 3: offset += 0.05 elif int(apn) == 4: offset += 0.035 else: offset += 0.02 else: offset += 0.10 if not adaptiveoffset: ax.set_ylim((0.9, 2.3)) format_ax(ax) fig.tight_layout() savefig(fig, outpath, writepdf=0, dpi=300) def plot_fitted_zoom(m, summdf, outpath, overwrite=1, modelid=None): yval = "PDCSAP_FLUX" provenance = 'spoc' detrend = 1 if os.path.exists(outpath) and not overwrite: print('found {} and no overwrite'.format(outpath)) return if modelid is None: d, params, _ = _get_fitted_data_dict(m, summdf) _d = d elif 'alltransit' in modelid: d = _get_fitted_data_dict_alltransit(m, summdf) _d = d['tess'] time, flux, flux_err = _d['x_obs'], _d['y_obs'], _d['y_err'] t_offset = np.nanmin(time) time -= t_offset t0 = summdf.loc['t0', 'median'] - t_offset per = summdf.loc['period', 'median'] epochs = np.arange(-100,100,1) tra_times = t0 + per*epochs plt.close('all') ########################################## # figsize=(8.5, 10) full page... 10 leaves space. fig = plt.figure(figsize=(8.5*1.5, 8)) ax0 = plt.subplot2grid(shape=(3,5), loc=(0,0), colspan=5) ax1 = plt.subplot2grid((3,5), (1,0), colspan=1) ax2 = plt.subplot2grid((3,5), (1,1), colspan=1) ax3 = plt.subplot2grid((3,5), (1,2), colspan=1) ax4 = plt.subplot2grid((3,5), (1,3), colspan=1) ax5 = plt.subplot2grid((3,5), (1,4), colspan=1) ax6 = plt.subplot2grid((3,5), (2,0), colspan=1) ax7 = plt.subplot2grid((3,5), (2,1), colspan=1) ax8 = plt.subplot2grid((3,5), (2,2), colspan=1) ax9 = plt.subplot2grid((3,5), (2,3), colspan=1) ax10 = plt.subplot2grid((3,5), (2,4), colspan=1) all_axs = [ax0,ax1,ax2,ax3,ax4,ax5,ax6,ax7,ax8,ax9,ax10] tra_axs = [ax1,ax2,ax3,ax4,ax5] res_axs = [ax6,ax7,ax8,ax9,ax10] tra_ixs = [0,2,3,4,5] # main lightcurve yval = (flux - np.nanmean(flux))*1e3 ax0.scatter(time, yval, c='k', zorder=3, s=0.75, rasterized=True, linewidths=0) ax0.plot(time, (_d['y_mod'] - np.nanmean(flux))*1e3, color='C0', alpha=0.8, rasterized=False, lw=1, zorder=4) ax0.set_ylim((-20, 20)) # omitting like 1 upper point from the big flare at time 38 ymin, ymax = ax0.get_ylim() ax0.vlines( tra_times, ymin, ymax, colors='C1', alpha=0.5, linestyles='--', zorder=-2, linewidths=0.5 ) ax0.set_ylim((ymin, ymax)) ax0.set_xlim((np.nanmin(time)-1, np.nanmax(time)+1)) # zoom-in of raw transits for ax, tra_ix, rax in zip(tra_axs, tra_ixs, res_axs): mid_time = t0 + per*tra_ix tdur = 2/24. # roughly, in units of days # n = 2.5 # good n = 2.0 # good start_time = mid_time - n*tdur end_time = mid_time + n*tdur s = (time > start_time) & (time < end_time) ax.scatter(time[s], (flux[s] - np.nanmean(flux[s]))*1e3, c='k', zorder=3, s=7, rasterized=False, linewidths=0) ax.plot(time[s], (_d['y_mod'][s] - np.nanmean(flux[s]))*1e3 , color='C0', alpha=0.8, rasterized=False, lw=1, zorder=1) rax.scatter(time[s], (flux[s] - _d['y_mod'][s])*1e3, c='k', zorder=3, s=7, rasterized=False, linewidths=0) rax.plot(time[s], (_d['y_mod'][s] - _d['y_mod'][s])*1e3, color='C0', alpha=0.8, rasterized=False, lw=1, zorder=1) ax.set_ylim((-8, 8)) rax.set_ylim((-8, 8)) for a in [ax,rax]: a.set_xlim((start_time, end_time)) ymin, ymax = a.get_ylim() a.vlines( mid_time, ymin, ymax, colors='C1', alpha=0.5, linestyles='--', zorder=-2, linewidths=0.5 ) a.set_ylim((ymin, ymax)) if tra_ix > 0: # hide the ytick labels labels = [item.get_text() for item in a.get_yticklabels()] empty_string_labels = ['']*len(labels) a.set_yticklabels(empty_string_labels) labels = [item.get_text() for item in ax.get_yticklabels()] empty_string_labels = ['']*len(labels) ax.set_xticklabels(empty_string_labels) for ax in all_axs: format_ax(ax) fig.text(0.5,-0.01, 'Time [days]', ha='center', fontsize='x-large') fig.text(-0.01,0.5, 'Relative flux [part per thousand]', va='center', rotation=90, fontsize='x-large') fig.tight_layout(h_pad=0.2, w_pad=-1.0) savefig(fig, outpath, writepdf=1, dpi=300) def plot_lithium(outdir): set_style() from timmy.lithium import get_Randich18_lithium, get_Berger18_lithium rdf = get_Randich18_lithium() bdf = get_Berger18_lithium() selclusters = [ # 'IC4665', # LDB 23.2 Myr 'NGC2547', # LDB 37.7 Myr 'IC2602', # LDB 43.7 Myr # 'IC2391', # LDB 51.3 Myr ] selrdf = np.zeros(len(rdf)).astype(bool) for c in selclusters: selrdf |= rdf.Cluster.str.contains(c) srdf = rdf[selrdf] srdf_lim = srdf[srdf.f_EWLi==3] srdf_val = srdf[srdf.f_EWLi==0] # young dictionary yd = { 'val_teff_young': nparr(srdf_val.Teff), 'val_teff_err_young': nparr(srdf_val.e_Teff), 'val_li_ew_young': nparr(srdf_val.EWLi), 'val_li_ew_err_young': nparr(srdf_val.e_EWLi), 'lim_teff_young': nparr(srdf_lim.Teff), 'lim_teff_err_young': nparr(srdf_lim.e_Teff), 'lim_li_ew_young': nparr(srdf_lim.EWLi), 'lim_li_ew_err_young': nparr(srdf_lim.e_EWLi), } # field dictionary # SNR > 3 field_det = ( (bdf.EW_Li_ / bdf.e_EW_Li_) > 3 ) bdf_val = bdf[field_det] bdf_lim = bdf[~field_det] fd = { 'val_teff_field': nparr(bdf_val.Teff), 'val_li_ew_field': nparr(bdf_val.EW_Li_), 'val_li_ew_err_field': nparr(bdf_val.e_EW_Li_), 'lim_teff_field': nparr(bdf_lim.Teff), 'lim_li_ew_field': nparr(bdf_lim.EW_Li_), 'lim_li_ew_err_field': nparr(bdf_lim.e_EW_Li_), } d = {**yd, **fd} ########## # make tha plot ########## plt.close('all') f, ax = plt.subplots(figsize=(4,3)) classes = ['young', 'field'] colors = ['k', 'gray'] zorders = [2, 1] markers = ['o', '.'] ss = [13, 5] labels = ['NGC$\,$2547 & IC$\,$2602', 'Kepler Field'] # plot vals for _cls, _col, z, m, l, s in zip(classes, colors, zorders, markers, labels, ss): ax.scatter( d[f'val_teff_{_cls}'], d[f'val_li_ew_{_cls}'], c=_col, alpha=1, zorder=z, s=s, rasterized=False, linewidths=0, label=l, marker=m ) from timmy.priors import TEFF, LI_EW ax.plot( TEFF, LI_EW, alpha=1, mew=0.5, zorder=8, label='TOI 837', markerfacecolor='yellow', markersize=18, marker='*', color='black', lw=0 ) ax.legend(loc='best', handletextpad=0.1, fontsize='x-small', framealpha=0.7) ax.set_ylabel('Li$_{6708}$ EW [m$\mathrm{\AA}$]', fontsize='large') ax.set_xlabel('Effective Temperature [K]', fontsize='large') ax.set_xlim((4900, 6600)) format_ax(ax) outpath = os.path.join(outdir, 'lithium.png') savefig(f, outpath) def plot_rotation(outdir): set_style() from timmy.paths import DATADIR rotdir = os.path.join(DATADIR, 'rotation') # make plot plt.close('all') f, ax = plt.subplots(figsize=(4,3)) classes = ['pleiades', 'praesepe', 'ngc6811'] colors = ['k', 'gray', 'darkgray'] zorders = [3, 2, 1] markers = ['o', 'x', 's'] lws = [0, 0., 0] mews= [0.5, 0.5, 0.5] ss = [3.0, 6, 3.0] labels = ['Pleaides', 'Praesepe', 'NGC$\,$6811'] # plot vals for _cls, _col, z, m, l, lw, s, mew in zip( classes, colors, zorders, markers, labels, lws, ss, mews ): df = pd.read_csv(os.path.join(rotdir, f'curtis19_{_cls}.csv')) ax.plot( df['teff'], df['prot'], c=_col, alpha=1, zorder=z, markersize=s, rasterized=False, lw=lw, label=l, marker=m, mew=mew, mfc=_col ) # ax.plot( # target_df['phot_bp_mean_mag']-target_df['phot_rp_mean_mag'], # target_yval, # alpha=1, mew=0.5, zorder=8, label='TOI 837', markerfacecolor=mfc, # markersize=ms, marker=m, color='black', lw=lw, mec=mec # ) from timmy.priors import TEFF, P_ROT ax.plot( TEFF, P_ROT, alpha=1, mew=0.5, zorder=8, label='TOI 837', markerfacecolor='yellow', markersize=18, marker='*', color='black', lw=0 ) ax.legend(loc='best', handletextpad=0.1, fontsize='x-small', framealpha=0.7) ax.set_ylabel('Rotation Period [days]', fontsize='large') ax.set_xlabel('Effective Temperature [K]', fontsize='large') ax.set_xlim((4900, 6600)) ax.set_ylim((0,14)) format_ax(ax) outpath = os.path.join(outdir, 'rotation.png') savefig(f, outpath) def _get_color_df(tdepth_ap, sep_arcsec, fn_mass_to_dmag, band='Rc'): color_path = os.path.join(RESULTSDIR, 'fpscenarios', f'multicolor_{band}.csv') color_data_df = pd.read_csv(color_path) m2_color = max(color_data_df[color_data_df['frac_viable'] == 0].m2) color_ap = tdepth_ap-0.20 # arcsec, same as tdepth color_sep = sep_arcsec[sep_arcsec < color_ap] color_dmag = np.ones_like(color_sep)*fn_mass_to_dmag(m2_color) color_df = pd.DataFrame({'sep_arcsec': color_sep, 'dmag': color_dmag}) _append_df = pd.DataFrame({ 'sep_arcsec':[2.00001], 'dmag':[10] }) color_df = color_df.append(_append_df) return color_df def _get_rv_secondary_df(dist_pc, method=1): if method == 1: rv_path = os.path.join(RESULTSDIR, 'fpscenarios', 'rvoutersensitivity_3sigma.csv') elif method == 2: rv_path = os.path.join(RESULTSDIR, 'fpscenarios', 'rvoutersensitivity_method2_3sigma.csv') else: raise NotImplementedError rv_df = pd.read_csv(rv_path) rv_df['sma_au'] = 10**(rv_df.log10sma) rv_df['mp_msun'] = 10**(rv_df.log10mpsini) rv_df['sep_arcsec'] = rv_df['sma_au'] / dist_pc # conversion to contrast, from drivers.contrast_to_masslimit smooth_path = os.path.join(DATADIR, 'speckle', 'smooth_dmag_to_mass.csv') smooth_df = pd.read_csv(smooth_path) sel = ~pd.isnull(smooth_df['m_comp/m_sun']) smooth_df = smooth_df[sel] fn_mass_to_dmag = interp1d( nparr(smooth_df['m_comp/m_sun']), nparr(smooth_df['dmag_smooth']), kind='quadratic', bounds_error=False, fill_value=np.nan ) rv_df['dmag'] = fn_mass_to_dmag(nparr(rv_df.mp_msun)) sel = ( (rv_df.sep_arcsec > 1e-3) & (rv_df.sep_arcsec < 1e1) ) if method == 2: sel &= (rv_df.mp_msun > 0.01) sel &= ~(pd.isnull(rv_df.dmag)) srv_df = rv_df[sel] if method == 1: # set the point one above the last finite dmag value to zero. srv_df.loc[np.nanargmin(nparr(srv_df.dmag))+1, 'dmag'] = 0 elif method == 2: eps = 1e-2 row_df = pd.DataFrame({ 'log10sma':np.nan, 'log10mpsini':np.nan, 'sma_au':srv_df.sma_au.max()+eps, 'mp_msun':1.1, 'sep_arcsec':srv_df.sep_arcsec.max()+eps, 'dmag':0 }, index=[0]) srv_df = srv_df.append(row_df, ignore_index=True) return srv_df, fn_mass_to_dmag, smooth_df def plot_fpscenarios(outdir): set_style() # # get data # # # speckle AO from SOAR HRcam # speckle_path = os.path.join(DATADIR, 'speckle', 'sep_vs_dmag.csv') speckle_df = pd.read_csv(speckle_path, names=['sep_arcsec','dmag']) dist_pc = 142.488 # pc, TIC8 sep_arcsec = np.logspace(-2, 1.5, num=1000, endpoint=True) sep_au = sep_arcsec*dist_pc # # transit depth constraint: within 2 arcseconds from ground-based seeing # limited resolution. # within dmag~5.2 from transit depth (and assumption of a totally eclipsing # M+M dwarf type scenario. Totally eclipsing dark companion+Mdwarf is a bit # ridiculous). # N = 0.5 # N=1 for the dark companion scenario. Tmag = 9.9322 depth_obs = (4374e-6) # QLP depth tdepth_ap = 2 # arcsec tdepth_sep = sep_arcsec[sep_arcsec < tdepth_ap] tdepth_dmag = 5/2*
np.log10(N/depth_obs)
numpy.log10
#!/usr/bin/env python # coding: utf-8 # # Chapter 1: Basic Image and Video Processing # ## Problems # # ## 1. Display RGB image color channels in 3D # In[6]: from IPython.core.display import display,HTML display(HTML('<style>.prompt{width: 0px; min-width: 0px; visibility: collapse}</style>')) # In[3]: # comment the next line only if you are not running this code from jupyter notebook get_ipython().run_line_magic('matplotlib', 'inline') from skimage.io import imread import numpy as np import matplotlib.pylab as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm from matplotlib.ticker import LinearLocator, FormatStrFormatter # In[20]: def plot_3d(X, Y, Z, cmap='Reds', title=''): """ This function plots 3D visualization of a channel It displays (x, y, f(x,y)) for all x,y values """ fig = plt.figure(figsize=(15,15)) ax = fig.gca(projection='3d') # Plot the surface. surf = ax.plot_surface(X, Y, Z, cmap=cmap, linewidth=0, antialiased=False, rstride=2, cstride=2, alpha=0.5) ax.xaxis.set_major_locator(LinearLocator(10)) ax.xaxis.set_major_formatter(FormatStrFormatter('%.02f')) ax.view_init(elev=10., azim=5) ax.set_title(title, size=20) plt.show() # In[ ]: im = imread('images/Img_01_01.jpg') # In[ ]: Y = np.arange(im.shape[0]) X = np.arange(im.shape[1]) X, Y = np.meshgrid(X, Y) # In[21]: Z1 = im[...,0] Z2 = im[...,1] Z3 = im[...,2] # In[22]: # plot 3D visualizations of the R, G, B channels of the image respectively plot_3d(Z1, X, im.shape[1]-Y, cmap='Reds', title='3D plot for the Red Channel') # In[23]: plot_3d(Z2, X, im.shape[1]-Y, cmap='Greens', title='3D plot for the Green Channel') # In[24]: plot_3d(Z3, X, im.shape[1]-Y, cmap='Blues', title='3D plot for the Blue Channel') # ## 2. Video I/O # ### 2.1 Read/Write Video Files with scikit-video # In[25]: import skvideo.io import numpy as np import matplotlib.pylab as plt # In[34]: # set keys and values for parameters in ffmpeg inputparameters = {} outputparameters = {} reader = skvideo.io.FFmpegReader('images/Vid_01_01.mp4', inputdict=inputparameters, outputdict=outputparameters) # In[35]: ## Read video file num_frames, height, width, num_channels = reader.getShape() print(num_frames, height, width, num_channels) # 600 916 1920 3 # In[36]: plt.figure(figsize=(20,10)) # iterate through the frames and display a few frames frame_list =
np.random.choice(num_frames, 4)
numpy.random.choice
import math import os import numpy as np from PIL import ImageFilter, Image as Im from skimage.filters import gaussian from stl import Mesh from .config import decay_constant, Material from .perimeter import lines_to_voxels from .slice import to_intersecting_lines def get_material(s): mat = Material() for const in mat.material_constant.keys(): if const in s: return const return '' def find_top_bottom_surfaces(voxels): # Find the heights of the top and bottom surface for each pixel bottom_surface =
np.zeros(voxels.shape[1:], dtype=np.int32)
numpy.zeros
# -*- coding: utf-8 -*- """pyahp.methods.approximate This module contains the class implementing the geometric priority estimation method. """ import numpy as np import numpy.linalg as LA from pyahp.methods import Method def eig(A, initvec=None, tol=0.0001, iteration=16): '''Calculate the dominant eigenvalue of A with power method. The Power Method is a classical method to calculate the single eigenvalue with maximal abstract value, i.e. |lambda_1| > |lambda2| >= |lambda_i|, where lambdai are eigenvalues, in numerical analysis. The speed of convergence is dominated by |lambda2|/|lambda1|. Perron theorem guarantees that lambda_1>|lambda_i| for any positive matrix. see https://en.wikipedia.org/wiki/Power_iteration for more details. Arguments: A {2D-array} -- square matrix Keyword Arguments: initvec {1D-array} -- [initial vector] (default: {None}) tol {number} -- [tolerance] (default: {0.0001}) iteration {number} -- [iteration] (default: {16}) Returns: dominant eigenvalue, eigenvector {1D-array} Example: >>> A = np.array([[1,2,6],[1/2,1,4],[1/6,1/4,1]]) >>> lmd, v = eig(A) >>> lmd 3.0090068360243256 >>> v [1. 0.5503254 0.15142866] ''' m, n = A.shape u0 = initvec or
np.random.random(n)
numpy.random.random
from threading import Thread, Lock import numpy as np import quaternion def generate_mesh_slices(width, height, depth, center_w, center_x, center_y, center_z, zoom, rotation_theta, rotation_phi, rotation_gamma, rotation_beta, offset_x, offset_y, depth_dither=1): ct, st = np.cos(rotation_theta), np.sin(rotation_theta) cp, sp = np.cos(rotation_phi), np.sin(rotation_phi) cg, sg = np.cos(rotation_gamma), np.sin(rotation_gamma) cb, sb = np.cos(rotation_beta), np.sin(rotation_beta) zoom = 2**-zoom x = np.arange(width, dtype='float64') + offset_x y = np.arange(height, dtype='float64') + offset_y z = np.arange(depth, dtype='float64') x, y = np.meshgrid(x, y) x = (2 * x - width) * zoom / height y = (2 * y - height) * zoom / height for z_ in z: z_ += np.random.rand(*x.shape) * depth_dither - 0.5*depth_dither z_ = (2 * z_ - depth) * zoom / depth # The screen coordinates have x as the real axis, so 'w' is a misnomer here. y_ = cb*y w_ = -sb*y x_, z_ = x*ct + z_*st, z_*ct - x*st x_, y_ = x_*cp + y*sp, y*cp - x_*sp y_, z_ = y_*cg + z_*sg, z_*cg - y_*sg # See above for the misnaming compared to the quaternion library. x_ += center_w y_ += center_x z_ += center_y w_ += center_z yield quaternion.from_float_array(np.stack((x_, y_, z_, w_), axis=-1)) def generate_imaginary_mesh_slices(width, height, depth, center_w, center_x, center_y, center_z, zoom, rotation_theta, rotation_phi, rotation_gamma, offset_x, offset_y, depth_dither=1): ct, st = np.cos(rotation_theta), np.sin(rotation_theta) cp, sp = np.cos(rotation_phi), np.sin(rotation_phi) cg, sg = np.cos(rotation_gamma), np.sin(rotation_gamma) zoom = 2**-zoom x = np.arange(width, dtype='float64') + offset_x y = np.arange(height, dtype='float64') + offset_y z = np.arange(depth, dtype='float64') x, y = np.meshgrid(x, y) x = (2 * x - width) * zoom / height y = (2 * y - height) * zoom / height w = 0*x + center_w for z_ in z: z_ += np.random.rand(*x.shape) * depth_dither - 0.5*depth_dither z_ = (2 * z_ - depth) * zoom / depth x_, z_ = x*ct + z_*st, z_*ct - x*st x_, y_ = x_*cp + y*sp, y*cp - x_*sp y_, z_ = y_*cg + z_*sg, z_*cg - y_*sg x_ += center_x y_ += center_y z_ += center_z yield quaternion.from_float_array(
np.stack((w, x_, y_, z_), axis=-1)
numpy.stack
import os, os.path as osp import sys import re import click import time import copy import numpy as np import psutil import torch import torch.nn.functional as F import torchvision import pickle import json import PIL.Image from torch_utils import misc from torch_utils import training_stats from torch_utils.ops import conv2d_gradfix from torch_utils.ops import grid_sample_gradfix from utils.visualization import get_palette import dnnlib from utils import metrics #---------------------------------------------------------------------------- def report_metrics(result_dict, run_dir=None, snapshot_pkl=None, desc='test'): if run_dir is not None and snapshot_pkl is not None: snapshot_pkl = os.path.relpath(snapshot_pkl, run_dir) jsonl_line = json.dumps(dict(result_dict, snapshot_pth=snapshot_pkl, timestamp=time.time())) print(jsonl_line) if run_dir is not None and os.path.isdir(run_dir): with open(os.path.join(run_dir, f'metric-segmentation-{desc}.jsonl'), 'at') as f: f.write(jsonl_line + '\n') #---------------------------------------------------------------------------- def setup_snapshot_image_label_grid(training_set, random_seed=0): rnd = np.random.RandomState(random_seed) gw = np.clip(7680 // training_set.image_shape[2], 7, 32) gh = np.clip(4320 // training_set.image_shape[1], 4, 32) // 2 # Half the number for label all_indices = list(range(len(training_set))) rnd.shuffle(all_indices) grid_indices = [all_indices[i % len(all_indices)] for i in range(gw * gh)] # Load data data = list(zip(*[training_set[i] for i in grid_indices])) images = data[0] labels = data[1] return (gw, gh), np.stack([x.numpy() for x in images]), np.stack([x.numpy() for x in labels]) #---------------------------------------------------------------------------- def save_image_label_grid(img, label, fname, drange, grid_size, conf_threshold=0.9): lo, hi = drange img = np.asarray(img, dtype=np.float32) img = (img - lo) * (255 / (hi - lo)) img = np.rint(img).clip(0, 255).astype(np.uint8) # Colorize label if label.ndim == 4: label_ = label.argmax(axis=1) conf_ = label.max(axis=1) label = label_ hc_label = label.copy() hc_label[conf_ < conf_threshold] = 255 else: hc_label = None cmap = get_palette() label = cmap[label] if hc_label is not None: hc_label = cmap[hc_label] gw, gh = grid_size _N, C, H, W = img.shape assert C == 3, f'{C}' img = img.reshape(gh, gw, C, H, W) img = img.transpose(0, 3, 1, 4, 2) label = label.reshape(gh, gw, H, W, C) label = label.transpose(0, 2, 1, 3, 4) if hc_label is not None: hc_label = hc_label.reshape(gh, gw, H, W, C) hc_label = hc_label.transpose(0, 2, 1, 3, 4) # Save image img = np.concatenate([img, label], axis=1) if hc_label is None else \ np.concatenate([img, label, hc_label], axis=1) img = img.reshape(gh * H * (2 + (hc_label is not None)), gw * W, C) assert C == 3 PIL.Image.fromarray(img, 'RGB').save(fname) #---------------------------------------------------------------------------- def train_annotator( run_dir = '.', # Output directory. resume_path = '', # Resume path of model training_set_kwargs = {}, # Options for training set. validation_set_kwargs = {}, # Options for validation set. # data_loader_kwargs = {}, # Options for torch.utils.data.DataLoader. G_kwargs = {}, # A_kwargs = {}, # Options for annotator network. S_kwargs = {}, # Options for student network. T_kwargs = {}, matcher_kwargs = {}, gmparam_regex = '.*', A_opt_kwargs = {}, # Options for annotator optimizer. S_opt_kwargs = {}, # Options for student optimizer. loss_kwargs = {}, # Options for loss function. random_seed = 0, # Global random seed. image_per_batch = 2, # A_interval = 1, S_interval = 1, total_iters = 150000, # Total length of the training, measured in thousands of real images. niter_per_tick = 20, # Progress snapshot interval. label_snapshot_ticks = 200, # How often to save (image, label) snapshots? None = disable. network_snapshot_ticks = 200, # How often to save annotator network snapshots? None = disable. cudnn_benchmark = True, # Enable torch.backends.cudnn.benchmark? allow_tf32 = False, # Enable torch.backends.cuda.matmul.allow_tf32 and torch.backends.cudnn.allow_tf32? abort_fn = None, # Callback function for determining whether to abort training. Must return consistent results across ranks. progress_fn = None, # Callback function for updating training progress. Called for all ranks. ): # Initialize. start_time = time.time() device = torch.device('cuda')
np.random.seed(random_seed)
numpy.random.seed