prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
import numpy as np import pandas as pd import rasterio import statsmodels.formula.api as smf from scipy.sparse import coo_matrix import scipy.spatial import patsy from statsmodels.api import add_constant, OLS from .utils import transform_coord def test_linearity(x, y, n_knots=5, verbose=True): """Test linearity between two variables. Run a linear regression of y on x, and take the residuals. Fit the residuals with a natural spline with `n_knots` knots. Conduct a joint F-test for all columns in the natural spline basis matrix. Example: >>> import numpy as np >>> rng = np.random.default_rng(0) >>> x = np.linspace(0., 1., 101) >>> y = 5 * x + 3 + rng.random(size=101) / 5 >>> test_linearity(x, y, n_knots=5, verbose=False) 0.194032 """ residuals = OLS(y, add_constant(x)).fit().resid basis_matrix = patsy.dmatrix( f"cr(x, df={n_knots - 1}, constraints='center') - 1", {'x': x}, return_type='dataframe') results = OLS(residuals, basis_matrix).fit() results.summary() nobs = results.nobs f_value = results.fvalue p_value = np.round(results.f_pvalue, 6) print('Test for Linearity: ' f'N = {nobs:.0f}; df={nobs - n_knots - 1:.0f}; ' f'F = {f_value:.3f}; p = {p_value:.6f}.') return p_value def winsorize(s, lower, upper, verbose=False): """Winsorizes a pandas series. Args: s (pandas.Series): the series to be winsorized lower, upper (int): number between 0 to 100 """ lower_value = np.nanpercentile(s.values, lower) upper_value = np.nanpercentile(s.values, upper) if verbose: print(f'Winsorizing to {lower_value} - {upper_value}') return s.clip(lower_value, upper_value) def demean(df, column, by): """Demean a column in a pandas DataFrame. Args: df (pandas.DataFrame): data column (str): the column to be demeaned by (list of str): the column names """ return ( df[column].values - (df.loc[:, by + [column]] .groupby(by).transform(np.nanmean).values.squeeze())) def load_gd_census(GPS_FILE, MASTER_FILE): # read GPS coords + treatment status df = pd.read_csv( GPS_FILE, usecols=['village_code', 'ge', 'hi_sat', 'treat', 'latitude', 'longitude', 'elevation', 'accuracy', 'eligible', 'GPS_imputed'], dtype={ 'village_code': 'Int64', 'ge': 'Int32', 'hi_sat': 'Int32', 'treat': 'Int32', 'eligible': 'Int32', 'GPS_imputed': 'Int32'}) # drop non GE households df = df.loc[df['ge'] == 1, :].copy() # treat x eligible = cash inflow df.loc[:, 'treat_eligible'] = ( df.loc[:, 'treat'].values * df.loc[:, 'eligible'].values) # read sat level identifiers df_master = pd.read_stata( MASTER_FILE, columns=['village_code', 'satlevel_name'] ).astype({'village_code': 'Int64'}) df_master = df_master.drop_duplicates() # merge treatment df = pd.merge( df, df_master, on='village_code', how='left') assert df['satlevel_name'].notna().all(), ( 'Missing saturation level identifier') return df.drop(columns=['ge']) def snap_to_grid(df, lon_col, lat_col, min_lon, max_lon, min_lat, max_lat, step, **kwargs): """Collapses variables in a data frame onto a grid. Args: df (pandas.DataFrame) lon_col, lat_col (str): name of lon, lat columns min_lon, max_lon, min_lat, max_lat, step (float) **kwargs: passed to pandas agg() function after grouping by lat, lon Returns: (numpy.ndarray, numpy.ndarray): lon and lat grids pandas.DataFrame: output data frame """ df_copy = df.copy() # snap to grid df_copy.loc[:, 'grid_lon'] = np.round( (df[lon_col].values - min_lon - step / 2) / step ).astype(np.int32) df_copy.loc[:, 'grid_lat'] = np.round( (df[lat_col].values - min_lat - step / 2) / step ).astype(np.int32) # construct the grid grid_lon, grid_lat = np.meshgrid( np.arange(0, np.round((max_lon - min_lon) / step).astype(np.int32)), np.arange(0, np.round((max_lat - min_lat) / step).astype(np.int32))) df_grid = pd.DataFrame({'grid_lon': grid_lon.flatten(), 'grid_lat': grid_lat.flatten()}) # collapse df_output = pd.merge( df_grid.assign(is_in_grid=True), df_copy.groupby(['grid_lon', 'grid_lat']).agg(**kwargs), how='outer', on=['grid_lon', 'grid_lat']) print(f"Dropping {df_output['is_in_grid'].isna().sum()} observations;\n" f"Keeping {df_output['is_in_grid'].notna().sum()} observations") df_output = df_output.loc[df_output['is_in_grid'].notna(), :].copy() return (grid_lon, grid_lat), df_output.drop(columns=['is_in_grid']) def control_for_spline(x, y, z, cr_df=3): # handle nan's is_na = np.any((np.isnan(x), np.isnan(y), np.isnan(z)), axis=0) df = pd.DataFrame({'x': x[~is_na], 'y': y[~is_na], 'z': z[~is_na]}) mod = smf.ols(formula=f"z ~ 1 + cr(x, df={cr_df}) + cr(y, df={cr_df})", data=df) res = mod.fit() # return nan's for cases where any one of x, y, z is nan z_out =
np.full_like(z, np.nan)
numpy.full_like
#!/usr/bin/env python # ECLAIR/src/ECLAIR/Build_instance/ECLAIR_core.py # Author: <NAME> for the GC Yuan Lab # Affiliation: Harvard University # Contact: <EMAIL>, <EMAIL> """ECLAIR is a package for the robust and scalable inference of cell lineages from gene expression data. ECLAIR achieves a higher level of confidence in the estimated lineages through the use of approximation algorithms for consensus clustering and by combining the information from an ensemble of minimum spanning trees so as to come up with an improved, aggregated lineage tree. In addition, the present package features several customized algorithms for assessing the similarity between weighted graphs or unrooted trees and for estimating the reproducibility of each edge to a given tree. References ---------- * <NAME>., <NAME>., <NAME>. and <NAME>., "Robust Lineage Reconstruction from High-Dimensional Single-Cell Data". ArXiv preprint [q-bio.QM, stat.AP, stat.CO, stat.ML]: http://arxiv.org/abs/1601.02748 * <NAME>. and <NAME>., "Cluster Ensembles - A Knowledge Reuse Framework for Combining Multiple Partitions". In: Journal of Machine Learning Research, 3, pp. 583-617. 2002 * <NAME>., <NAME>., <NAME>. and <NAME>., "Thirty Years of Graph Matching in Pattern Recognition". In: International Journal of Pattern Recognition and Artificial Intelligence, 18, 3, pp. 265-298. 2004 """ from __future__ import print_function try: input = raw_input except NameError: pass import Concurrent_AP as AP import Cluster_Ensembles as CE import DBSCAN_multiplex import Density_Sampling from collections import defaultdict, namedtuple import datetime import igraph from math import floor, sqrt import numpy as np import os import psutil import random import scipy.sparse from scipy.spatial.distance import _validate_vector from sklearn.decomposition import PCA from sklearn.metrics.pairwise import pairwise_distances from sklearn.metrics import pairwise_distances_argmin_min from sklearn.preprocessing import StandardScaler import subprocess from sys import exit import tables import time __all__ = ['tree_path_integrals', 'ECLAIR_processing'] Data_info = namedtuple('Data_info', "data_file_name expected_N_samples " "skip_rows cell_IDs_column extra_excluded_columns " "time_info_column") AP_parameters = namedtuple('AP_parameters', "clustering_method max_iter " "convergence_iter") DBSCAN_parameters = namedtuple('DBSCAN_parameters', "clustering_method minPts " "eps quantile metric") HIERARCHICAL_parameters = namedtuple('HIERARCHICAL_parameters', 'clustering_method k') KMEANS_parameters = namedtuple('KMEANS_parameters', 'clustering_method k') CC_parameters = namedtuple('CC_parameters', 'N_runs sampling_fraction N_cc') Holder = namedtuple('Holder', "N_samples subsample_size N_runs name_tag " "method run error_count") def memory(): """Determine memory specifications of the machine. Returns ------- mem_info : dictonary Holds the current values for the total, free and used memory of the system. """ mem_info = dict() for k, v in psutil.virtual_memory().__dict__.iteritems(): mem_info[k] = int(v) return mem_info def get_chunk_size(N, n): """Given a two-dimensional array with a dimension of size 'N', determine the number of rows or columns that can fit into memory. Parameters ---------- N : int The size of one of the dimensions of a two-dimensional array. n : int The number of arrays of size 'N' times 'chunk_size' that can fit in memory. Returns ------- chunk_size : int The size of the dimension orthogonal to the one of size 'N'. """ mem_free = memory()['free'] if mem_free > 60000000: chunk_size = int(((mem_free - 10000000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 40000000: chunk_size = int(((mem_free - 7000000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 14000000: chunk_size = int(((mem_free - 2000000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 8000000: chunk_size = int(((mem_free - 1400000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 2000000: chunk_size = int(((mem_free - 900000) * 1000) / (4 * n * N)) return chunk_size elif mem_free > 1000000: chunk_size = int(((mem_free - 400000) * 1000) / (4 * n * N)) return chunk_size else: print("\nERROR: ECLAIR: ECLAIR_core: get_chunk_size: " "this machine does not have enough free memory resources " "to perform ensemble clustering.\n") exit(1) def KMEANS(data, k): from sklearn.cluster import k_means, MiniBatchKMeans if data.shape[0] < 50000: centroids, cluster_labels, _ = k_means(data, k, init = 'k-means++', precompute_distances = 'auto', n_init = 20, max_iter = 300, n_jobs = 1) else: mbkm = MiniBatchKMeans(k, 'k-means++', max_iter = 300, batch_size = data.shape[0] / k, n_init = 20) mbkm.fit(data) centroids = mbkm.cluster_centers_ cluster_labels = mbkm.labels_ return centroids, cluster_labels def hierarchical_clustering(data, n_clusters): from .Scalable_SLINK import SLINK from scipy.cluster.hierarchy import fcluster assert isinstance(n_clusters, int) and n_clusters > 1 linkage_matrix = SLINK(data) cluster_labels = fcluster(linkage_matrix, n_clusters - 1, 'maxclust') return cluster_labels def toHDF5(hdf5_file_name, data_file_name, expected_rows, sampling_fraction, clustering_parameters, skip_rows, cell_IDs_column, extra_excluded_columns, time_info_column, scaling = False, PCA_flag = False, N_PCA = 10): """Read the data and store it in HDF5 format. Also records the cell/sample names. If applicable, create spaces in this data structure for various arrays involved in affinity propagation clustering. Parameters ---------- hdf5_file_name : string or file object data_file_name : string or file object expected_rows : int sampling_fraction : float clustering_parameters : namedtuple skip_rows : int cell_IDs_column : int extra_excluded_column : list scaling : Boolean, optional (default = True) Returns ------- data : array (n_samples, n_features) cell_IDs : array (n_samples,) hdf5_file_name : file object or string """ assert isinstance(expected_rows,int) assert isinstance(sampling_fraction, float) or isinstance(sampling_fraction, int) assert isinstance(skip_rows, int) assert isinstance(cell_IDs_column, int) cell_IDs, time_info, data = dataProcessor(data_file_name, skip_rows, cell_IDs_column, extra_excluded_columns, time_info_column) unexpressed_indices = reportUnexpressed(data) if unexpressed_indices.size != 0: data = np.delete(data, unexpressed_indices, axis = 1) cell_IDs = np.delete(cell_IDs, unexpressed_indices) if time_info_column > 0: time_info = np.delete(time_info, unexpressed_indices) # Done with detecting unexpressed genes or reporters. method = clustering_parameters.clustering_method if scaling or method == 'DBSCAN': data = StandardScaler().fit_transform(data) if PCA_flag: if not scaling: data = StandardScaler().fit_transform(data) pca = PCA(copy = True) data = pca.fit_transform(data)[:, :N_PCA] N_samples = data.shape[0] subsample_size = int(floor(N_samples * sampling_fraction)) # Create an HDF5 data structure. For data-sets with a large number of samples, ensemble clustering needs to handle certain arrays that possibly do not fit into memory. We store them on disk, along with the set of probability distributions of distances that we compute for each pair of clusters from the final consensus clustering. Similarly, this HDF5 file format is used for our implementation of affinity propagation clustering. with tables.open_file(hdf5_file_name, mode = 'w') as fileh: consensus_group = fileh.create_group(fileh.root, "consensus_group") atom = tables.Float32Atom() if method == 'affinity_propagation': aff_prop_group = fileh.create_group(fileh.root, "aff_prop_group") fileh.create_carray(aff_prop_group, 'availabilities', atom, (subsample_size, subsample_size), 'Matrix of availabilities for affinity propagation', filters = None) fileh.create_carray(aff_prop_group, 'responsibilities', atom, (subsample_size, subsample_size), 'Matrix of responsibilities for affinity propagation', filters = None) fileh.create_carray(aff_prop_group, 'similarities', atom, (subsample_size, subsample_size), 'Matrix of similarities for affinity propagation', filters = None) fileh.create_carray(aff_prop_group, 'temporaries', atom, (subsample_size, subsample_size), 'Matrix of temporaries for affinity propagation', filters = None) fileh.create_carray(aff_prop_group, 'parallel_updates', atom, (subsample_size, clustering_parameters.convergence_iter), 'Matrix of parallel updates for affinity propagation', filters = None) return data, cell_IDs, time_info, hdf5_file_name def dataProcessor(data_file_name, skip_rows, cell_IDs_column, extra_excluded_columns = None, time_info_column = -1): """Read the contents of data_file_name, extracting the names or IDs of each sample, as stored in column labelled 'cell_IDs_column' and creating an array of the features, excluding those stored in 'extra_excluded_columns'. Also check the validity of the excluded indices. Parameters ---------- data_file_name : file object or string skip_rows : int cell_IDs_column : int extra_excluded_columns : list, optional (default = None) Returns ------- cell_IDs : array (n_samples,) data : array (n_samples, n_features) """ assert isinstance(skip_rows, int) assert isinstance(cell_IDs_column, int) assert isinstance(time_info_column, int) assert time_info_column != cell_IDs_column try: isinstance(skip_rows, int) and skip_rows >= 0 except TypeError: time_now = datetime.datetime.today() format = "%Y-%m-%d %H:%M:%S" time_now = str(time_now.strftime(format)) print('\nECLAIR\t ERROR\t {}: the number of rows to skip as part of a header must be a non-negative integer.\n'.format(time_now)) raise try: isinstance(cell_IDs_column, int) and cell_IDs_column >= 0 except TypeError: time_now = datetime.datetime.today() format = "%Y-%m-%d %H:%M:%S" time_now = str(time_now.strftime(format)) print('\nECLAIR\t ERROR\t {}: the label distinguishing the column of cell IDs from other features must be a single integer.\n'.format(time_now)) raise cell_IDs_column = [cell_IDs_column] with open(data_file_name, 'r') as f: lst = f.readline() lst = lst.replace('\t', ' ').replace(',', ' ').split() N_cols = len(lst) assert time_info_column < N_cols with open(data_file_name, 'r') as f: cell_IDs = np.loadtxt(f, dtype = str, delimiter = '\t', skiprows = skip_rows, usecols = cell_IDs_column) if time_info_column > 0: time_info_column = [time_info_column] with open(data_file_name, 'r') as f: time_info = np.loadtxt(f, dtype = float, delimiter = '\t', skiprows = skip_rows, usecols = [time_info_column]) else: time_info_column = [] time_info = np.zeros(0, dtype = float) if extra_excluded_columns is None: extra_excluded_columns = np.empty(0, dtype = int) else: extra_excluded_columns = np.array(extra_excluded_columns, dtype = int, copy = False) extra_excluded_columns = np.clip(np.append(extra_excluded_columns, cell_IDs_column), 0, N_cols - 1) extra_excluded_columns = np.unique(extra_excluded_columns) ID_index = np.where(extra_excluded_columns == cell_IDs_column[0])[0] if ID_index.size != 0: extra_excluded_columns = np.delete(extra_excluded_columns, ID_index) if len(time_info_column) > 0: time_index = np.where(extra_excluded_columns == time_info_column[0])[0] if time_index.size != 0: extra_excluded_columns = np.delete(extra_excluded_columns, time_index) indices = np.delete(np.arange(N_cols), np.concatenate((extra_excluded_columns, cell_IDs_column, time_info_column)).astype(int)) my_iterator = iter(indices) with open(data_file_name, 'r') as f: data = np.loadtxt(f, dtype = float, delimiter = '\t', skiprows = skip_rows, usecols = my_iterator) return cell_IDs, time_info, data def reportUnexpressed(data): """If a gene is unexpressed throughout all samples, remove its index from the data-set. Parameters ---------- data : array (n_samples, n_features) """ return np.where(data.sum(axis = 0) == 0)[0] def build_weighted_adjacency(graph): adjacency_matrix = np.asarray(graph.get_adjacency(type = igraph.GET_ADJACENCY_BOTH).data) adjacency_matrix = adjacency_matrix.astype(dtype = float) N_clusters = adjacency_matrix.shape[0] c = 0 for i in xrange(N_clusters - 1): for j in xrange(i + 1, N_clusters): if adjacency_matrix[i, j]: x = graph.es['weight'][c] adjacency_matrix[i, j] = x adjacency_matrix[j, i] = x c += 1 return adjacency_matrix def handle_off_diagonal_zeros(M): eensy = np.finfo(np.float32).eps * 1000 M = np.array(M, copy = False) n = M.shape[0] zeros = np.where(M == 0) for i in xrange(zeros[0].size): if zeros[0][i] != zeros[1][i]: M[zeros[0][i], zeros[1][i]] = eensy M[np.diag_indices(n)] = 0 def get_MST(run, exemplars, exemplars_similarities, cell_IDs, name_tag, output_directory): """Build the minimum spanning tree of the graph whose nodes are given by 'exemplars' and 'cell_IDs' and whose edges are weighted according to the second argument, a matrix of similarities. Plot the MST and returns its structure. Parameters ---------- run : int exemplars : array (n_clusters,) exemplars_similarities : array (n_clusters, n_clusters) cell_IDs : list name_tag : string Returns ------- A sparse adjacency matrix for the spanning tree in CSR format """ assert isinstance(run, int) assert isinstance(name_tag, str) n = len(exemplars) handle_off_diagonal_zeros(exemplars_similarities) g = igraph.Graph.Weighted_Adjacency(exemplars_similarities.tolist(), mode=igraph.ADJ_UPPER, attr = 'weight') g.vs['label'] = [cell_IDs[exemplar] for exemplar in exemplars] mst = g.spanning_tree(weights = g.es['weight']) layout = mst.layout('fr') name = output_directory + '/ECLAIR_figures/{}/mst-run-{}__{}.pdf'.format(name_tag, run + 1, name_tag) igraph.plot(mst, name, bbox = (5500, 5500), margin = 60, layout = layout, vertex_label_dist = 1) mst_adjacency_matrix = np.asarray(mst.get_adjacency(type = igraph.GET_ADJACENCY_BOTH).data) return scipy.sparse.csr_matrix(mst_adjacency_matrix) def get_median(values, counts): N_pairs = np.sum(counts) median_index = (N_pairs + 1) / 2 if N_pairs % 2 else N_pairs / 2 cumsum = 0 for i, v in enumerate(values): cumsum += counts[i] if cumsum >= median_index: if N_pairs % 2: median = v break if N_pairs % 2 == 0 and cumsum >= median_index + 1: median = v break else: median = int(np.rint((v + values[i + 1]) / 2)) break return median def tree_path_integrals(hdf5_file_name, N_runs, cluster_dims_list, consensus_labels, mst_adjacency_list, markov = False): """For each pair of cluster from the final ensemble clustering, compute a distribution of distances as follows. Assume that n_A cells are grouped into cluster A and n_B into cluster B. Given cell 'a' from group A, for each cell 'b' from group B, collect the distances separating the cluster where 'a' resides in run 'i' from the cluster where 'b' belongs in run 'i'; do so for each of the 'N_runs' separate runs of subsampling and clusterings. Parameters ---------- hdf5_file_name : string or file object N_runs : int cluster_dims_list : list of size N_clusters consensus_labels : list or array (n_samples) mst_adjacency_list : list of arrays Returns ------- consensus_means : array (N_clusters, N_clusters) consensus_variances : array (N_clusters, N_clusters) """ assert isinstance(N_runs, int) and N_runs > 0 hypergraph_adjacency = CE.load_hypergraph_adjacency(hdf5_file_name) cluster_runs_adjacency = hypergraph_adjacency.transpose().tocsr() del hypergraph_adjacency consensus_labels = np.asarray(consensus_labels) N_samples = consensus_labels.size N_clusters = np.unique(consensus_labels).size consensus_means = np.zeros((N_clusters, N_clusters), dtype = float) consensus_variances = np.zeros((N_clusters, N_clusters), dtype = float) consensus_medians = np.zeros((N_clusters, N_clusters), dtype = int) fileh = tables.open_file(hdf5_file_name, 'r+') consensus_distributions_values = fileh.create_vlarray(fileh.root.consensus_group, 'consensus_distributions_values', tables.UInt16Atom(), 'For each clusters a, b > a from ensemble clustering, stores the possible time steps it takes to reach cells from cluster a to cells from cluster b, over the possible causal sets associated to an ensemble of partitions', filters = None, expectedrows = N_clusters * (N_clusters - 1) / 2) consensus_distributions_counts = fileh.create_vlarray(fileh.root.consensus_group, 'consensus_distributions_counts', tables.Float128Atom(), 'For each clusters a, b > a from ensemble clustering, stores for each time step the number of its occurrences, weighted by the probability that such a time step takes place on the trees from the ensemble', filters = None, expectedrows = N_clusters * (N_clusters - 1) / 2) cluster_separators = np.cumsum(cluster_dims_list) for a in xrange(N_clusters - 1): cells_in_a = np.where(consensus_labels == a)[0] for b in xrange(a+1, N_clusters): cells_in_b = np.where(consensus_labels == b)[0] count = 0 counts_dict = defaultdict(int) weights_dict = defaultdict(float) for run in xrange(N_runs): if cells_in_a.size == 1 and (cluster_separators[run + 1] - cluster_separators[run]) == 1: single_elt = cluster_runs_adjacency[cells_in_a, cluster_separators[run]] if single_elt == 1: cluster_IDs_a = np.zeros(1, dtype = np.int32) else: cluster_IDs_a = np.zeros(0, dtype = np.int32) else: try: cluster_IDs_a = np.where(np.squeeze(np.asarray(cluster_runs_adjacency[cells_in_a, cluster_separators[run]:cluster_separators[run + 1]].todense())) == 1) except ValueError: continue if isinstance(cluster_IDs_a, tuple): if len(cluster_IDs_a) == 1: if (cluster_separators[run + 1] - cluster_separators[run]) == 1: cluster_IDs_a = np.zeros(cluster_IDs_a[0].size, dtype = np.int32) else: cluster_IDs_a = cluster_IDs_a[0] else: cluster_IDs_a = cluster_IDs_a[1] if cluster_IDs_a.size == 0: continue if cells_in_b.size == 1 and (cluster_separators[run + 1] - cluster_separators[run]) == 1: single_elt = cluster_runs_adjacency[cells_in_b, cluster_separators[run]] if single_elt == 1: cluster_IDs_b = np.zeros(1, dtype = np.int32) else: cluster_IDs_b = np.zeros(0, dtype = np.int32) else: try: cluster_IDs_b = np.where(np.squeeze(np.asarray(cluster_runs_adjacency[cells_in_b, cluster_separators[run]:cluster_separators[run + 1]].todense())) == 1) except ValueError: continue if isinstance(cluster_IDs_b, tuple): if len(cluster_IDs_b) == 1: if (cluster_separators[run + 1] - cluster_separators[run]) == 1: cluster_IDs_b = np.zeros(cluster_IDs_b[0].size, dtype = np.int32) else: cluster_IDs_b = cluster_IDs_b[0] else: cluster_IDs_b = cluster_IDs_b[1] if cluster_IDs_b.size == 0: continue cluster_IDs_a, counts_a = np.unique(cluster_IDs_a, return_counts = True) cluster_IDs_b, counts_b = np.unique(cluster_IDs_b, return_counts = True) n_a = cluster_IDs_a.size n_b = cluster_IDs_b.size mst_time_steps_matrix = scipy.sparse.csgraph.dijkstra(mst_adjacency_list[run], directed = False, unweighted = True) #x = mst_time_steps_matrix[cluster_IDs_a] #y = np.zeros((mst_time_steps_matrix.shape[1], n_b), dtype = np.int32) #y[(cluster_IDs_b, xrange(n_b))] = 1 #time_steps_values = np.dot(x, y) time_steps_values = mst_time_steps_matrix[cluster_IDs_a] time_steps_values = time_steps_values[:, cluster_IDs_b] time_steps_values = time_steps_values.astype(int) time_steps_counts = np.dot(counts_a.reshape(-1, 1), counts_b.reshape(1, -1)) if markov: mst_adjacency = np.squeeze(np.asarray(mst_adjacency_list[run].todense())) Delta = np.sum(mst_adjacency, axis = 1).reshape(-1, 1).astype(float) transition_probabilities = np.divide(mst_adjacency, Delta) time_steps_probabilities = np.zeros((n_a, n_b), dtype = float) for time_step in np.unique(time_steps_values): idx = np.where(time_steps_values == time_step) new_x = map(lambda i: cluster_IDs_a[i], idx[0]) new_x = np.array(new_x, dtype = int) new_y = map(lambda i: cluster_IDs_b[i], idx[1]) new_y = np.array(new_y, dtype = int) mapped_idx = (new_x, new_y) time_reversed_mapped_idx = (new_y, new_x) if time_step == 0: time_steps_probabilities[idx] = 1 elif time_step == 1: tmp_1 = transition_probabilities[mapped_idx] tmp_2 = transition_probabilities[time_reversed_mapped_idx] time_steps_probabilities[idx] = np.minimum(tmp_1, tmp_2) else: markov_chain = np.linalg.matrix_power(transition_probabilities, time_step) tmp_1 = markov_chain[mapped_idx] tmp_2 = markov_chain[time_reversed_mapped_idx] time_steps_probabilities[idx] = np.minimum(tmp_1, tmp_2) time_steps_weights = time_steps_counts * time_steps_probabilities else: time_steps_weights = time_steps_counts time_steps_counts = np.ravel(time_steps_counts) time_steps_values = np.ravel(time_steps_values) time_steps_weights = np.ravel(time_steps_weights) for i in xrange(n_a * n_b): counts_dict[time_steps_values[i]] += time_steps_counts[i] weights_dict[time_steps_values[i]] += time_steps_weights[i] count += 1 if count > 0: time_steps = np.array(counts_dict.keys(), dtype = int) counts = np.array(counts_dict.values(), dtype = int) weights = np.array(weights_dict.values(), dtype = float) consensus_distributions_values.append(time_steps) consensus_distributions_counts.append(weights) median = get_median(time_steps, counts) consensus_medians[a, b] = median consensus_medians[b, a] = median normalization_factor = weights.sum() weights /= float(normalization_factor) mean = np.inner(time_steps, weights) consensus_means[a, b] = mean consensus_means[b, a] = mean variance = np.inner((time_steps - mean) ** 2, weights) consensus_variances[a, b] = variance consensus_variances[b, a] = variance else: consensus_distributions_values.append([0]) consensus_distributions_counts.append([0]) consensus_medians[a, b] = np.nan consensus_medians[b, a] = np.nan consensus_means[a, b] = np.nan consensus_means[b, a] = np.nan consensus_variances[a, b] = np.nan consensus_variances[b, a] = np.nan fileh.close() return consensus_medians, consensus_means, consensus_variances def one_to_max(array_in): """Alter a vector of cluster labels to a dense mapping. Given that this function is herein always called after passing a vector to the function checkcl, one_to_max relies on the assumption that cluster_run does not contain any NaN entries. Parameters ---------- array_in : a list or one-dimensional array The list of cluster IDs to be processed. Returns ------- result : one-dimensional array A massaged version of the input vector of cluster identities. """ x = np.asanyarray(array_in) N_in = x.size array_in = x.reshape(N_in) sorted_array = np.sort(array_in) sorting_indices = np.argsort(array_in) last = np.nan current_index = -1 for i in xrange(N_in): if last != sorted_array[i] or np.isnan(last): last = sorted_array[i] current_index += 1 sorted_array[i] = current_index result = np.empty(N_in, dtype = int) result[sorting_indices] = sorted_array return result def handle_disconnected_graph(consensus_medians, consensus_means, consensus_variances, consensus_labels): n = consensus_means.shape[0] assert n == np.amax(consensus_labels) + 1 means_nan_ID = np.empty((n, n), dtype = int) np.isnan(consensus_means, means_nan_ID) null_means = np.where(means_nan_ID.sum(axis = 1) == n - 1) variances_nan_ID = np.empty((n, n), dtype = int) np.isnan(consensus_variances, variances_nan_ID) null_variances = np.where(variances_nan_ID.sum(axis = 1) == n - 1) medians_nan_ID = np.empty((n, n), dtype = int) np.isnan(consensus_medians, medians_nan_ID) null_medians = np.where(medians_nan_ID.sum(axis = 1) == n - 1) if not (np.allclose(null_means[0], null_variances[0]) and np.allclose(null_means[0], null_medians[0])): time_now = datetime.datetime.today() format = "%Y-%m-%d %H:%M:%S" time_now = str(time_now.strftime(format)) raise ValueError('\nECLAIR\t ERROR\t {}: serious problem with the noise clusters: mismatch between the computations of means and variances.\n'.format(time_now)) exclude_nodes = null_means[0] consensus_medians = np.delete(consensus_medians, exclude_nodes, axis = 0) consensus_medians = np.delete(consensus_medians, exclude_nodes, axis = 1) consensus_means = np.delete(consensus_means, exclude_nodes, axis = 0) consensus_means = np.delete(consensus_means, exclude_nodes, axis = 1) consensus_variances = np.delete(consensus_variances, exclude_nodes, axis = 0) consensus_variances = np.delete(consensus_variances, exclude_nodes, axis = 1) for elt in exclude_nodes: consensus_labels[np.where(consensus_labels == elt)[0]] = n consensus_labels = one_to_max(consensus_labels) consensus_labels[np.where(consensus_labels == n - exclude_nodes.size)[0]] = -1 cells_kept = np.where(consensus_labels != -1)[0] return consensus_medians, consensus_means, consensus_variances, consensus_labels, cells_kept, exclude_nodes def MST_coloring(data, consensus_labels): data = StandardScaler().fit_transform(data) pca = PCA(copy = True) rotated_data = pca.fit_transform(data) N_clusters = np.amax(consensus_labels) + 1 cc_centroids = np.zeros((N_clusters, data.shape[1]), dtype = float) for cluster_ID in xrange(N_clusters): cc_centroids[cluster_ID] = np.median(rotated_data[np.where(consensus_labels == cluster_ID)[0]], axis = 0) cc_centroids = pca.transform(cc_centroids) min_PCA = np.amin(cc_centroids[:, 0:3]) max_PCA = np.amax(cc_centroids[:, 0:3]) cc_RGB = np.divide(cc_centroids[:, 0:3] - min_PCA, max_PCA - min_PCA) cc_RGB *= 255 cc_RGB = np.rint(cc_RGB) cc_RGB = cc_RGB.astype(dtype = int) cc_RGB = np.clip(cc_RGB, 0, 255) cc_colors = ["rgb({}, {}, {})".format(cc_RGB[i, 0], cc_RGB[i, 1], cc_RGB[i, 2]) for i in xrange(N_clusters)] return cc_colors def DBSCAN_LOAD(hdf5_file_name, data, subsamples_matrix, clustering_parameters): assert clustering_parameters.clustering_method == 'DBSCAN' minPts = clustering_parameters.minPts eps = clustering_parameters.eps quantile = clustering_parameters.quantile metric = clustering_parameters.metric return DBSCAN_multiplex.load(hdf5_file_name, data, minPts, eps, quantile, subsamples_matrix, metric = metric) def subsamples_clustering(hdf5_file_name, data, sampled_indices, clustering_parameters, run): time_now = datetime.datetime.today() format = "%Y-%m-%d %H:%M:%S" time_now = str(time_now.strftime(format)) print('ECLAIR\t INFO\t {}: starting run of clustering number {:n}.'.format(time_now, run + 1)) beg_clustering = time.time() method = clustering_parameters.clustering_method if method == 'affinity_propagation': # Perform affinity propagation clustering with our customized module, # computing and storing to disk the similarities matrix # between those sampled cells, as a preliminary step. args = "Concurrent_AP -f {0} -c {1} -i {2}".format(hdf5_file_name, clustering_parameters.convergence_iter, clustering_parameters.max_iter) subprocess.call(args, shell = True) with open('./concurrent_AP_output/cluster_centers_indices.tsv', 'r') as f: cluster_centers_indices = np.loadtxt(f, dtype = float, delimiter = '\t') with open('./concurrent_AP_output/labels.tsv', 'r') as f: cluster_labels = np.loadtxt(f, dtype = float, delimiter = '\t') exemplars = [sampled_indices[i] for i in cluster_centers_indices] # Exemplars: indices as per the full data-set # that are the best representatives of their respective clusters centroids = data[exemplars, :] elif method == 'DBSCAN': sampled_data = np.take(data, sampled_indices, axis = 0) minPts = clustering_parameters.minPts metric = clustering_parameters.metric _, cluster_labels = DBSCAN_multiplex.shoot(hdf5_file_name, minPts, run, random_state = None, verbose = True) cluster_IDs = np.unique(cluster_labels) cluster_IDs =
np.extract(cluster_IDs != -2, cluster_IDs)
numpy.extract
from pathlib import Path import unittest import numpy as np import pylas from laserfarm.grid import Grid try: import matplotlib matplotlib_available = True except ModuleNotFoundError: matplotlib_available = False if matplotlib_available: matplotlib.use('Agg') import matplotlib.pyplot as plt class TestValidGridSetup(unittest.TestCase): def setUp(self): self.grid = Grid() self.grid.setup(0., 0., 20., 20., 5) def test_gridMins(self): np.testing.assert_allclose(self.grid.grid_mins, [0., 0.]) def test_gridMaxs(self): np.testing.assert_allclose(self.grid.grid_maxs, [20., 20.]) def test_gridWidth(self): np.testing.assert_allclose(self.grid.grid_width, 20.) def test_tileWidth(self): np.testing.assert_allclose(self.grid.tile_width, 4.) def test_tileIndexForPoint(self): np.testing.assert_array_equal(self.grid.get_tile_index(0.1, 0.2), (0, 0)) def test_tileIndexForArray(self): np.testing.assert_array_equal(self.grid.get_tile_index((0.1, 19.9), (0.2, 19.8)), ((0, 0), (4, 4))) def test_tileBoundsForPoint(self): np.testing.assert_array_equal(self.grid.get_tile_bounds(0, 0), ((0., 0.), (4., 4.))) def test_tileBoundsForArray(self): np.testing.assert_array_equal(self.grid.get_tile_bounds((0, 0), (0, 1)), (((0., 0.), (0., 4.)), ((4., 4.), (4., 8.)))) class TestInvalidGridSetup(unittest.TestCase): def test_fractionalNumberOfTilesGrid(self): with self.assertRaises(ValueError): grid = Grid() grid.setup(0., 0., 20., 20., 0.1) def test_zeroNumberOfTilesGrid(self): with self.assertRaises(ValueError): grid = Grid() grid.setup(0., 0., 20., 20., 0) def test_zeroWidthGrid(self): with self.assertRaises(ValueError): grid = Grid() grid.setup(0., 0., 0., 20., 5) def test_rectangularGrid(self): with self.assertRaises(ValueError): grid = Grid() grid.setup(0., 0., 10., 20., 5) class TestRealGridValid(unittest.TestCase): _test_dir = 'test_tmp_dir' _test_data_dir = 'testdata' _test_tile_idx = [101, 101] _test_file_name = 'C_43FN1_1_1.LAZ' _min_x = -113107.8100 _min_y = 214783.8700 _max_x = 398892.1900 _max_y = 726783.87 _n_tiles_sides = 256 plot = False def setUp(self): self.grid = Grid() self.grid.setup(min_x=self._min_x, min_y=self._min_y, max_x=self._max_x, max_y=self._max_y, n_tiles_side=self._n_tiles_sides) self._test_data_path = Path(self._test_data_dir).joinpath(self._test_file_name) self.points = _read_points_from_file(str(self._test_data_path)) def test_isPointInTile(self): x_pts, y_pts = self.points.T mask_valid_points = self.grid.is_point_in_tile(x_pts, y_pts, *self._test_tile_idx) self.assertTrue(
np.all(mask_valid_points)
numpy.all
import numpy as np import pysubiso import time import itertools import networkx as nx import pytest def reference_gen_possible_next_edges(adj, colors): """ """ out = [] for i in range(adj.shape[0]): for j in range(i +1, adj.shape[1]): if adj[i, j] == 0: for c in colors: out.append([i, j, c]) return np.array(out, dtype=np.int32).reshape((len(out), 3)) def test_possible_next_edges(): np.random.seed(10) # empty adj = np.zeros((31, 31), dtype=np.int32) possible_colors = np.array([1, 2, 3,4], dtype=np.int32) possible_edges = pysubiso.gen_possible_next_edges(adj, possible_colors) for N in [1, 5, 10, 20, 32, 64, 100]: for color_n in [1, 4, 10]: # color_n * 3 to generate sparsity adj = np.random.randint(color_n*3, size=(N,N)).astype(np.int32) adj[adj > color_n] = 0 adj = np.triu(adj, k=1) possible_colors =np.arange(color_n, dtype=np.int32) + 1 t1 = time.time() possible_edges = pysubiso.gen_possible_next_edges(adj, possible_colors) t2 = time.time() correct =reference_gen_possible_next_edges(adj, possible_colors) t3 = time.time() old_time = t3-t2 new_time = t2-t1 print(f"{old_time/new_time:3.1f} times faster ({old_time*1e6:3.1f} us vs {new_time*1e6:3.1f} us)") np.testing.assert_array_equal(possible_edges, correct) def test_get_color_edge_possible_table(): """ Simple manual sanity-preserving examples """ # (node colors) -edge colors- # (0) -1- (1) -2- (2) -3- (3) adj = np.array([[0, 1, 0, 0], [1, 0, 2, 0], [0, 2, 0, 3], [0, 0, 3, 0]], dtype=np.int32) node_colors = np.array([0, 1, 2, 3], dtype=np.int32) possible_edge_colors = np.array([1, 2, 3], dtype=np.int32) possible_node_colors = np.unique(node_colors) possible_table = pysubiso.get_color_edge_possible_table(adj, node_colors, possible_edge_colors) ans = np.zeros((
np.max(node_colors)
numpy.max
''' mod on Jan 17, 2019 @author: trevaz (<EMAIL>) --------------------------------------------------------------------- fctlib --------------------------------------------------------------------- ''' ################################################################################# # IMPORTS ################################################################################# import os import sys import numpy as np ################################################################################# # CONSTANTS ################################################################################# ################################################################################# # FUNCTIONS ################################################################################# def zs_fct0(x,y): X, Y = np.meshgrid(x,y,indexing='ij') zs = np.zeros(X.shape) return zs def zs_fct1(x,y): zs_h = 0.285 zs_l = 0.570 sigma = zs_l/1.1774 zs_x = 5.0 X, Y = np.meshgrid(x,y,indexing='ij') zs = zs_h*np.exp(-0.5*((X-zs_x)/sigma)**2) # for i in range (x.size): # for j in range (y.size): # if (x[i]-zs_x)**2+(y[j]-zs_y)**2>zs_l**2: # zs[i,j] = 0. return zs def zs_fct2(x,y): zs_h = 0.04 zs_l = 0.1 zs_x = 0.6 zs_y = 0.3 X, Y =
np.meshgrid(x,y,indexing='ij')
numpy.meshgrid
# pylint: disable=g-bad-file-header # Copyright 2020 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Utilities for plotting metrics.""" import pathlib from typing import Any, List, Sequence from absl import logging from dm_c19_modelling.evaluation import base_indexing from dm_c19_modelling.evaluation import constants import matplotlib matplotlib.use("agg") import matplotlib.pyplot as plt # pylint: disable=g-import-not-at-top import numpy as np import pandas as pd def plot_metrics(metrics_df: pd.DataFrame, target_name: str, last_observation_date: str, eval_dataset_creation_date: str, forecast_horizon: int, forecast_index_entries: Sequence[base_indexing.IndexEntryType], num_dates: int, num_sites: int, cadence: int, dropped_sites: np.ndarray) -> plt.Figure: """Plots metrics dataframe as a series of bar charts. Args: metrics_df: Dataframe of metrics, with columns [forecast_id, metric_name, metric_value, target_name]. target_name: the target being predicted. last_observation_date: the last date in the training data. eval_dataset_creation_date: the creation date of the dataset used for evaluation. forecast_horizon: the number of days into the future that the forecasts extend to. forecast_index_entries: the entries in the forecast index for each of the forecasts that are included in the metrics dataframe. num_dates: the number of dates included in this evaluation. num_sites: the number of sites included in this evaluation. cadence: the cadence of the forecasts i.e. a cadence of 1 corresponds to daily forecasts, a cadence of 7 corresponds to weekly forecasts. dropped_sites: optional list of sites that were dropped during evaluation from at least one forecast to ensure that all forecasts are for the same sites. Returns: A series of bar plots, one for each metric calculated in the dataframe, evaluating different forecasts against each other. """ fig = plt.figure(figsize=(4, 3)) plot_width = 2 offset = 0 column_width = 0.8 axes = [] metric_names = metrics_df.metric_name.unique() for _ in metric_names: ax = fig.add_axes([offset, 0.1, plot_width, 1.]) ax.grid(axis="y", alpha=0.3, which="both", zorder=0) axes.append(ax) offset += plot_width * 1.2 colour_map = plt.get_cmap("tab20c")( np.linspace(0, 1.0, len(forecast_index_entries))) x_centers = np.arange(len(forecast_index_entries)) for ax_idx, metric_name in enumerate(metric_names): x_offset = ax_idx * column_width - plot_width / 2 + column_width / 2 x_values = x_centers + x_offset ax = axes[ax_idx] for bar_idx, forecast_entry in enumerate(forecast_index_entries): forecast_id = forecast_entry["forecast_id"] row = metrics_df.query( f"forecast_id=='{forecast_id}' and metric_name=='{metric_name}'") assert len(row) == 1, ( "Duplicate entries found in metrics dataframe. " f"Found {len(row)} entries for {forecast_id} and {metric_name}") row = row.iloc[0] metric_value = row.metric_value ax.bar( x_values[bar_idx], metric_value, width=column_width, zorder=2, color=colour_map[bar_idx], label=_get_model_label(forecast_entry)) ax.set_xticklabels([]) ax.set_xticks([]) ax.set_ylabel(metric_name) axes[0].legend( ncol=len(forecast_index_entries), loc="center left", bbox_to_anchor=[0., 1.07], frameon=False) fig.text(0, 0, _get_plot_footnote(num_sites, num_dates, dropped_sites, cadence)) fig.suptitle( _get_plot_title(target_name, last_observation_date, eval_dataset_creation_date, forecast_horizon), y=1.35, x=1) return fig def _get_model_label(forecast_entry: base_indexing.IndexEntryType) -> str: """Gets a description of a model from its entry in the forecast index.""" description = str(forecast_entry["forecast_id"]) if "model_description" in forecast_entry["extra_info"]: description += f": {forecast_entry['extra_info']['model_description']}" return description def _get_plot_title(target_name: str, last_observation_date: str, eval_dataset_creation_date: str, forecast_horizon: int) -> str: """Gets the title of the plot.""" return ( f"Comparison of metrics for predicting {target_name}. Forecast date: " f"{last_observation_date}, forecast horizon: {forecast_horizon} days, " f"evaluation reporting date: {eval_dataset_creation_date}.") def _get_plot_footnote(num_sites: int, num_dates: int, dropped_sites: np.ndarray, cadence: int): """Gets the footnote to be added to the plot.""" footnote = ( f"Forecasts evaluated in this plot have a cadence of {cadence} days. " f"{num_dates} dates and {num_sites} sites were included in the " "evaluation that produced this plot.") if dropped_sites.size: footnote += ( "Note that the following sites were dropped from some forecasts during " f"evaluation to achieve an overlapping set of sites: {dropped_sites}") return footnote def _plot_trajectories( all_forecast_entries: List[Any], all_forecast_arrays: List[Any], target_name: constants.Targets, num_sites: int, eval_dataset: Any = None ) -> plt.Figure: """Plots trajectories. Args: all_forecast_entries: TODO all_forecast_arrays: TODO target_name: the target being predicted. num_sites: number of sites to plot eval_dataset: evaluation dataset Returns: Figure. """ fig = plt.figure(figsize=(16, 16)) dates = all_forecast_arrays[0].dates_array num_dates = len(dates) forecast_x = np.arange(num_dates) x = forecast_x.copy() x_stride = 14 # Weekly x tick strides. previous_x = None avg_values = [] for fa in all_forecast_arrays: avg_values.append(
np.squeeze(fa.data_array, axis=2)
numpy.squeeze
#! /usr/bin/python # -*- encoding: utf-8 -*- import torch import numpy import random import pdb import os import threading import time import math import glob from scipy import signal from scipy.io import wavfile from torch.utils.data import Dataset, DataLoader from audiomentations import Compose, PitchShift import soundfile def round_down(num, divisor): return num - (num%divisor) def worker_init_fn(worker_id): numpy.random.seed(numpy.random.get_state()[1][0] + worker_id) def loadWAV_test(filename, max_frames, evalmode=True, num_eval=10): # Maximum audio length max_audio = max_frames * 160 + 240 # Read wav file and convert to torch tensor audio, sample_rate = soundfile.read(filename) audiosize = audio.shape[0] if audiosize <= max_audio: shortage = max_audio - audiosize + 1 audio = numpy.pad(audio, (0, shortage), 'wrap') audiosize = audio.shape[0] if evalmode: startframe = numpy.linspace(0,audiosize-max_audio,num=num_eval) else: startframe = numpy.array([numpy.int64(random.random()*(audiosize-max_audio))]) feats = [] if evalmode and max_frames == 0: feats.append(audio) else: for asf in startframe: feats.append(audio[int(asf):int(asf)+max_audio]) feat = numpy.stack(feats,axis=0).astype(numpy.float) return feat def loadWAV(filename, max_frames, evalmode=True, num_eval=10, list_augment=[], ps=0): # Maximum audio length max_audio = max_frames * 160 + 240 # Read wav file and convert to torch tensor sample_rate, audio = wavfile.read(filename) audiosize = audio.shape[0] if audiosize <= max_audio: shortage = max_audio - audiosize + 1 audio = numpy.pad(audio, (0, shortage), 'wrap') audiosize = audio.shape[0] if evalmode: startframe = numpy.linspace(0,audiosize-max_audio,num=num_eval) else: startframe = numpy.array([numpy.int64(random.random()*(audiosize-max_audio))]) feats = [] if evalmode and max_frames == 0: feats.append(audio) else: for asf in startframe: feats.append(audio[int(asf):int(asf)+max_audio]) temp_feat = numpy.stack(feats,axis=0).astype(numpy.float32) if ps == 1: semitones = random.randint(0, 7) augment = list_augment[semitones] feat = augment(samples=temp_feat, sample_rate=sample_rate) else: feat = temp_feat return feat class AugmentWAV(object): def __init__(self, musan_path, rir_path, max_frames): self.max_frames = max_frames self.max_audio = max_audio = max_frames * 160 + 240 self.noisetypes = ['noise','speech','music'] self.noisesnr = {'noise':[0,15],'speech':[13,20],'music':[5,15]} self.numnoise = {'noise':[1,1], 'speech':[3,7], 'music':[1,1] } self.noiselist = {} augment_files = glob.glob(os.path.join(musan_path,'*/*/*/*.wav')); for file in augment_files: if not file.split('/')[-4] in self.noiselist: self.noiselist[file.split('/')[-4]] = [] self.noiselist[file.split('/')[-4]].append(file) self.rir_files = glob.glob(os.path.join(rir_path,'*/*/*.wav')); def additive_noise(self, noisecat, audio): clean_db = 10 * numpy.log10(numpy.mean(audio ** 2)+1e-4) numnoise = self.numnoise[noisecat] noiselist = random.sample(self.noiselist[noisecat], random.randint(numnoise[0],numnoise[1])) noises = [] for noise in noiselist: noiseaudio = loadWAV(noise, self.max_frames, evalmode=False) noise_snr = random.uniform(self.noisesnr[noisecat][0],self.noisesnr[noisecat][1]) noise_db = 10 * numpy.log10(numpy.mean(noiseaudio[0] ** 2)+1e-4) noises.append(numpy.sqrt(10 ** ((clean_db - noise_db - noise_snr) / 10)) * noiseaudio) return numpy.sum(
numpy.concatenate(noises,axis=0)
numpy.concatenate
import numpy as np class DTL_corr(object): def __init__(self, X, X_2, selection='mean', uc=2): self.X = X self.X_2 = X_2 self.K = X.shape[0] self.n = X.shape[1] self.m = len(X_2) self.X_bar = np.mean(X, 1) self.selection = selection self.uc = uc self.UC = self.X_bar + uc * np.std(X, axis=1, ddof=1) if selection == 'mean': self.win_idx = np.argmax(self.X_bar) else: self.win_idx = np.argmax(self.UC) stat = self.test_statistic(self.X, self.X_2, return_D0=True) self.theta_hat = stat[0] self.D_0 = stat[1] def basis(self, X_b, X_2_b, basis_type="naive"): """ Compute the basis given any generated data :param X_b: :param X_2_b: :param basis_type: :return: """ d_M = (np.sum(X_b[self.win_idx, :]) + np.sum(X_2_b)) / (len(X_b[self.win_idx, :]) + len(X_2_b)) if basis_type == "complete": Z_b = np.concatenate([np.mean(X_b, 1), np.mean(X_b ** 2, 1), [np.mean(X_2_b)], [np.mean(X_2_b ** 2)]]) elif basis_type == "naive": Z_b = np.mean(X_b, 1) Z_b[self.win_idx] = d_M elif basis_type == "withD0": Z_b = np.mean(X_b, 1) Z_b = np.concatenate([Z_b, np.array(d_M).reshape(1, )]) else: raise AssertionError("invalid basis_type") return Z_b def test_statistic(self, X_b, X_2_b, return_D0=False): """ Compute the test statistic \hat{\theta} :param X_b: :param X_2_b: :return: """ d_M = (np.sum(X_b[self.win_idx, :]) + np.sum(X_2_b)) / (len(X_b[self.win_idx, :]) + len(X_2_b)) if not return_D0: return d_M d_0 = np.mean(X_b[self.win_idx, :]) - np.mean(X_2_b) return d_M, d_0 def gen_train_data(self, ntrain, n_b, m_b, basis_type="naive", return_gamma=True, remove_D0=False, blocklength=10): """ bootstrap training data :param ntrain: number of training data :param return_gamma: whether return gamma = Cov(B, theta_hat) Var(theta_hat)^{-1} :return: """ Z_train = [] W_train = [] theta_hat_train = [] D0_train = [] X_pooled = np.concatenate([self.X[self.win_idx], self.X_2]) num_blocks_1 = n_b // blocklength num_blocks_2 = m_b // blocklength for i in range(ntrain): X_b = np.zeros([self.K, num_blocks_1 * blocklength]) for k in range(self.K): if k != self.win_idx: indices = np.random.choice(self.n - blocklength, num_blocks_1, replace=True) for s in range(num_blocks_1): idx = indices[s] data_block = self.X[k, idx: idx + blocklength] X_b[k, s * blocklength: (s + 1) * blocklength] = data_block if k == self.win_idx: indices = np.random.choice(self.n + self.m - blocklength, num_blocks_1, replace=True) for s in range(num_blocks_1): idx = indices[s] data_block = X_pooled[idx: idx + blocklength] X_b[k, s * blocklength: (s + 1) * blocklength] = data_block if self.selection == 'mean': idx = np.argmax(np.mean(X_b, 1)) else: idx = np.argmax(np.mean(X_b, 1) + self.uc * np.std(X_b, axis=1, ddof=1)) if idx == self.win_idx: W_train.append(1) else: W_train.append(0) indices = np.random.choice(self.n + self.m - blocklength, num_blocks_2, replace=True) X_2_b = [] for s in range(num_blocks_2): idx = indices[s] X_2_b.extend(X_pooled[idx: idx + blocklength]) X_2_b = np.array(X_2_b) Z_train.append(self.basis(X_b, X_2_b, basis_type)) stat = self.test_statistic(X_b, X_2_b, return_D0=True) theta_hat_train.append(stat[0]) D0_train.append(stat[1]) Z_train = np.array(Z_train) W_train = np.array(W_train) result = {'Z_train': Z_train, 'W_train': W_train} theta_hat_train = np.array(theta_hat_train) D0_train =
np.array(D0_train)
numpy.array
import numpy as np import matplotlib.pyplot as plt import pytest import starry def test_terminator_continuity(plot=False): """ Ensure the Oren-Nayar intensity is continuous across the day/night boundary. """ # Simple map map = starry.Map(reflected=True) # Find the terminator latitude ys = 1 zs = 1 b = -zs / np.sqrt(ys ** 2 + zs ** 2) lat0 = np.arcsin(b) * 180 / np.pi if plot: # Latitude array spanning the terminator delta = 1 lat = np.linspace(lat0 - delta, lat0 + delta, 1000) # Lambertian intensity map.roughness = 0 I_lamb = map.intensity(lat=lat, lon=0, xs=0, ys=ys, zs=zs).reshape(-1) # Oren-Nayar intensity map.roughness = 90 I_on94 = map.intensity(lat=lat, lon=0, xs=0, ys=ys, zs=zs).reshape(-1) # View it plt.plot(lat, I_lamb) plt.plot(lat, I_on94) plt.xlabel("lat") plt.ylabel("I") plt.show() # Ensure there's a negligible jump across the terminator eps = 1e-8 lat = np.array([lat0 - eps, lat0 + eps]) map.roughness = 90 diff = np.diff( map.intensity(lat=lat, lon=0, xs=0, ys=ys, zs=zs).reshape(-1) )[0] assert np.abs(diff) < 1e-10, np.abs(diff) def test_half_phase_discontinuity(plot=False): """ Ensure the Oren-Nayar intensity at a point is continuous as we move across half phase (b = 0). """ # Simple map map = starry.Map(reflected=True) if plot: # From crescent to gibbous eps = 0.1 zs = np.linspace(-eps, eps, 1000) # Oren-Nayar intensity map.roughness = 90 I_on94 = map.intensity(lat=60, lon=0, xs=0, ys=1, zs=zs).reshape(-1) # View it plt.plot(-zs, I_on94) plt.xlabel("b") plt.ylabel("I") plt.show() # Ensure there's a negligible jump across the terminator eps = 1e-8 zs = np.array([-eps, eps]) map.roughness = 90 diff = np.diff( map.intensity(lat=60, lon=0, xs=0, ys=1, zs=zs).reshape(-1) )[0] assert np.abs(diff) < 1e-8, np.abs(diff) def test_approximation(plot=False): """ Test our polynomial approximation to the Oren-Nayar intensity. """ # Simple map map = starry.Map(reflected=True) # Approximate and exact intensities map.roughness = 90 img_approx = map.render(xs=1, ys=2, zs=3) img_exact = map.render(xs=1, ys=2, zs=3, on94_exact=True) img_diff = img_exact - img_approx diff = img_diff.reshape(-1) mu = np.nanmean(diff) std = np.nanstd(diff) maxabs = np.nanmax(np.abs(diff)) if plot: fig, ax = plt.subplots(1, 3, figsize=(14, 2.5)) im = ax[0].imshow( img_exact, origin="lower", extent=(-1, 1, -1, 1), vmin=0, vmax=np.nanmax(img_exact), ) plt.colorbar(im, ax=ax[0]) im = ax[1].imshow( img_approx, origin="lower", extent=(-1, 1, -1, 1), vmin=0, vmax=np.nanmax(img_exact), ) plt.colorbar(im, ax=ax[1]) im = ax[2].imshow(img_diff, origin="lower", extent=(-1, 1, -1, 1)) plt.colorbar(im, ax=ax[2]) fig = plt.figure() plt.hist(diff, bins=50) plt.xlabel("diff") plt.show() assert
np.abs(mu)
numpy.abs
"""This module contains methods used for visualizing the enuerated structures.""" from phenum.base import testmode from matplotlib import cm import matplotlib import os if os.name != "nt": matplotlib.use("Agg" if testmode else "TkAgg") import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D def HNF_shapes(enum,lattice,show,testmode=False): """Plots the shape of each HNF. Args: enum (str): The enum.in style input file. lattice (str): The lattice.in style input file. show (bool): If true each HNF is plotted in an interactive window.\ testmode (bool, optional): True if unittests are running. """ from phenum.io_utils import read_lattice from phenum.grouptheory import SmithNormalForm, get_full_HNF from phenum.vector_utils import map_enumStr_to_real_space, cartesian2direct from operator import mul from numpy import array, mgrid, dot try: from functools import reduce except ImportError: #pragma: no cover import numpy as np lattice_data = read_lattice(lattice) system = _convert_read_lat_to_system_dat(lattice_data) with open(enum,"r") as inf: for line in inf: if "#" in line: pass else: structure = {} hnf_name = [int(i) for i in line.strip().split()[:-1]] if len(hnf_name) != 6: hnf_name = hnf_name[0:6] structure["HNF"] = get_full_HNF(hnf_name) (SNF,L,R) = SmithNormalForm(structure["HNF"]) structure["diag"] = [SNF[0][0],SNF[1][1],SNF[2][2]] structure["L"] = L structure["n"] = reduce(mul,structure["diag"],1) structure["labeling"] = "".join(["0" for i in range(structure["n"])]) system["nD"] = len(system["dvecs"]) space_data = map_enumStr_to_real_space(system,structure,True) space_data["aBas"] = cartesian2direct(space_data["sLV"],space_data["aBas"],system["eps"]) # the corners of the polyhedron except the origin. x = space_data["sLV"][0] y = space_data["sLV"][1] z = space_data["sLV"][2] xy = (array(x)+array(y)).tolist() xz = (array(x)+array(z)).tolist() yz = (array(y)+array(z)).tolist() xyz = (array(y)+array(x)+array(z)).tolist() correct = [[0,0,0],x,y,z,xy,xz,yz,xyz] xf = [i[0] for i in correct] yf = [i[1] for i in correct] zf = [i[2] for i in correct] # we need to put the shifted atoms back into cartesian corrdinates. atoms = [] for atom in space_data["aBas"]: atoms.append(dot(atom,space_data["sLV"]).tolist()) xa = [atom[0] for atom in atoms] ya = [atom[1] for atom in atoms] za = [atom[2] for atom in atoms] fig = plt.figure() ax = fig.gca(projection='3d') ax.set_aspect('equal') ax.set_axis_off() ax.scatter(xa,ya,za,zdir='z',c='red',s=1000) # ax.scatter(xf,yf,zf,zdir='z',c='red') ax.plot([0,x[0]],[0,x[1]],[0,x[2]],'k') ax.plot([0,y[0]],[0,y[1]],[0,y[2]],'k') ax.plot([0,z[0]],[0,z[1]],[0,z[2]],'k') ax.plot([xz[0],x[0]],[xz[1],x[1]],[xz[2],x[2]],'k') ax.plot([xz[0],z[0]],[xz[1],z[1]],[xz[2],z[2]],'k') ax.plot([xy[0],x[0]],[xy[1],x[1]],[xy[2],x[2]],'k') ax.plot([xy[0],y[0]],[xy[1],y[1]],[xy[2],y[2]],'k') ax.plot([xz[0],z[0]],[xz[1],z[1]],[xz[2],z[2]],'k') ax.plot([yz[0],z[0]],[yz[1],z[1]],[yz[2],z[2]],'k') ax.plot([yz[0],y[0]],[yz[1],y[1]],[yz[2],y[2]],'k') ax.plot([yz[0],xyz[0]],[yz[1],xyz[1]],[yz[2],xyz[2]],'k') ax.plot([xz[0],xyz[0]],[xz[1],xyz[1]],[xz[2],xyz[2]],'k') ax.plot([xy[0],xyz[0]],[xy[1],xyz[1]],[xy[2],xyz[2]],'k') max_range = array([array(xf).max()-array(xf).min(),array(yf).max()-array(yf).min(), array(zf).max()-array(zf).min()]).max() xb = 0.5*max_range*mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(array(xf).max()+array(xf).min()) yb = 0.5*max_range*mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(array(yf).max()+array(yf).min()) zb = 0.5*max_range*mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(array(zf).max()+array(zf).min()) for xb, yb, zb in zip(xb,yb,zb): ax.plot([xb],[yb],[zb],'w') if not testmode: # pragma: no cover fig.savefig("{}.pdf".format("".join([str(i) for i in hnf_name]))) if show and not testmode: #pragma: no cover plt.show() else: plt.close() def HNF_atoms(enum,lattice,show,testmode=False): """Plots the atomic positions of the atoms in the cells. Args: enum (str): The enum.in style input file. lattice (str): The lattice.in style input file. show (bool): If true each HNF is plotted in an interactive window. testmode (bool, optional): True if unit tests are being run. """ from phenum.io_utils import read_lattice from phenum.grouptheory import SmithNormalForm, get_full_HNF from phenum.vector_utils import map_enumStr_to_real_space, cartesian2direct from operator import mul from numpy import array, mgrid, dot try: from functools import reduce except ImportError: #pragma: no cover import numpy as np lattice_data = read_lattice(lattice) system = _convert_read_lat_to_system_dat(lattice_data) with open(enum,"r") as inf: for line in inf: if "#" in line: pass else: structure = {} hnf_name = [int(i) for i in line.strip().split()[:-1]] if len(hnf_name) != 6: hnf_name = hnf_name[0:6] structure["HNF"] = get_full_HNF(hnf_name) (SNF,L,R) = SmithNormalForm(structure["HNF"]) structure["diag"] = [SNF[0][0],SNF[1][1],SNF[2][2]] structure["L"] = L structure["n"] = reduce(mul,structure["diag"],1) structure["labeling"] = "".join(["0" for i in range(structure["n"])]) system["nD"] = len(system["dvecs"]) space_data = map_enumStr_to_real_space(system,structure,True) space_data["aBas"] = cartesian2direct(space_data["sLV"],space_data["aBas"],system["eps"]) atoms = [] for atom in space_data["aBas"]: atoms.append(dot(atom,space_data["sLV"]).tolist()) xf = [atom[0] for atom in atoms] yf = [atom[1] for atom in atoms] zf = [atom[2] for atom in atoms] fig = plt.figure() ax = fig.gca(projection='3d') ax.set_aspect('equal') ax.set_axis_off() ax.scatter(xf,yf,zf,zdir='z',c='red',s=1000) max_range = array([array(xf).max()-array(xf).min(),array(yf).max()-array(yf).min(), array(zf).max()-array(zf).min()]).max() xb = 0.5*max_range*mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(array(xf).max()+array(xf).min()) yb = 0.5*max_range*mgrid[-1:2:2,-1:2:2,-1:2:2][0].flatten() + 0.5*(
array(yf)
numpy.array
# Copyright (C) 2020 Zurich Instruments # # This software may be modified and distributed under the terms # of the MIT license. See the LICENSE file for details. import numpy as np from zhinst.toolkit.interface import LoggerModule _logger = LoggerModule(__name__) class Waveform(object): """Implements a waveform for two channels. The 'data' attribute holds the waveform samples with the proper scaling, granularity and minimal length. The 'data' attribute holds the actual waveform array that can be sent to the instrument. Arguments: wave1 (array): list or numpy array for the waveform on channel 1, will be scaled to have a maximum amplitude of 1 wave2 (array): list or numpy array for the waveform on channel 2, will be scaled to have a maximum amplitude of 1 delay (float): individual waveform delay in seconds with respect to the time origin of the sequence, a positive value shifts the start of the waveform forward in time (default: 0) granularity (int): granularity that the number of samples are aligned to (default: 16) align_start (bool): the waveform will be padded with zeros to match the granularity, either before or after the samples (default: True) Properties: data (array): interleaved and normalized waveform data of the two channels to be uplaoded to the AWG delay (double): delay in seconds of the individual waveform w.r.t. the sequence time origin buffer_length (int): number of samples for the seuqence c buffer wave """ def __init__(self, wave1, wave2, delay=0, granularity=16, align_start=True): self._granularity = granularity self._align_start = align_start self._waves = [wave1, wave2] self._delay = delay self._update() def replace_data(self, wave1, wave2, delay=0): """Replaces the data in the waveform.""" new_buffer_length = self._round_up(max(len(wave1), len(wave2), 32)) self._delay = delay if new_buffer_length == self.buffer_length: self._waves = [wave1, wave2] self._update() else: _logger.error( "Waveform lengths don't match!", _logger.ExceptionTypes.ToolkitError, ) @property def data(self): return self._data @property def delay(self): return self._delay @property def buffer_length(self): return self._buffer_length def _update(self): """Update the buffer length and data attributes for new waveforms.""" self._buffer_length = self._round_up( max(len(self._waves[0]), len(self._waves[1]), 32) ) self._data = self._interleave_waveforms(self._waves[0], self._waves[1]) def _interleave_waveforms(self, x1, x2): """Interleaves the waveforms of both channels and adjusts the scaling. The data is actually sent as values in the range of +/- (2^15 - 1). """ if len(x1) == 0: x1 =
np.zeros(1)
numpy.zeros
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.11.1 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # 2章 1次元データの整理 # + import numpy as np import pandas as pd pd.set_option("precision", 3) # - df = pd.read_csv("../python_stat_sample/data/ch2_scores_em.csv", index_col="生徒番号") df.head() # + # 英語の点数の最初の10個を取得 scores = np.array(df["英語"])[:10] scores # + index = [chr(i+ord("A")) for i in range(10)] scores_df = pd.DataFrame({"点数":scores}, index=pd.Index(index, name="生徒")) scores_df # - # ## 平均値 # # \begin{align*} # \bar{x} = \frac{1}{N} \sum_{i=0}^{N} x_i # \end{align*} # # - $\bar{x}: \text{average}$ # - $N: \text{length of data}$ # - $x_i: \text{each data in }x$ sum(scores)/len(scores) # numpyを使った方法 np.mean(scores) # pandasを使った方法 scores_df.mean() # ## 中央値 # 中央値を導出するためにデータを順番に置き直す scores_sorted = np.sort(scores) scores_sorted # + n = len(scores_sorted) if n%2 == 0: median = (scores_sorted[n//2 - 1] + scores_sorted[n//2])/2 else: median = scores_sorted[n//2+1] median # - # numpy np.median(scores) # pandas scores_df.median() # ## 最頻値 tmp_list = [1, 1, 1, 2, 2, 3] pd.Series(tmp_list).mode() # multiple modes in list tmp_list = [i+1 for i in range(5)] pd.Series(tmp_list).mode() # ## 偏差 mean = np.mean(scores) deviation = scores - mean deviation # keep copy of scores_df summary_df = scores_df.copy() summary_df["偏差"] = deviation summary_df scores_ = [50, 60, 58, 54, 51, 56, 57, 53, 52, 59] mean_ =
np.mean(scores_)
numpy.mean
import numpy as np from numpy import exp, sqrt from functools import partial from scipy import optimize from scipy.stats import norm import scipy.integrate as integrate from fox_toolbox.utils import rates from hw.hw_helper import _B, _V, _A, sign_changes from hw import hw_helper from hw.hw_helper import get_var_x """This module price swaption under Hull White model using Jamshidian method. Usage example: from hw import Jamshidian as jamsh jamsh_price, debug = jamsh.hw_swo(swo, ref_mr, sigma_hw_jamsh, dsc_curve, estim_curve) swo : rates.Swaption ref_mr : float sigma_hw_jamsh : rates.Curve dsc_curve : rates.RateCurve estim_curve : rates.RateCurve """ def get_coef(swo, a, sigma, dsc_curve, estim_curve): """ Coefficients for Put swaption from calibration basket. Jamishidian """ flt_adjs = swo.get_flt_adjustments(dsc_curve, estim_curve) c0 = -_A(swo.expiry, swo.start_date, a, sigma, dsc_curve) c = list(map(lambda dcf, pdate, fadj: dcf * (swo.strike - fadj) * _A(swo.expiry, pdate, a, sigma, dsc_curve), swo.day_count_fractions, swo.payment_dates, flt_adjs)) c[-1] += _A(swo.expiry, swo.maturity, a, sigma, dsc_curve) c.insert(0, c0) return np.array(c) def get_b_i(swo, a): """ array of B_i for by each payment date """ b0 = _B(swo.expiry, swo.start_date, a) b = list(map(lambda pdate: _B(swo.expiry, pdate, a), swo.payment_dates)) b.insert(0, b0) return np.array(b) def swap_value(coef, b_i, varx, x): """ Swap function for finding x_star """ exp_b_var = exp(- b_i * sqrt(varx) * x) return coef.dot(exp_b_var) def get_x_star(coef, b_i, varx): x0 = .0 func = partial(swap_value, coef, b_i, varx) # optimum = optimize.newton(func, x0=x0) optimum = optimize.bisect(func, -6, 6) return optimum def hw_swo_analytic(coef, b_i, varx, x_star, IsCall): """ analytic """ sign = -1 if IsCall else 1 if IsCall: coef = np.negative(coef) val_arr = exp(0.5 * b_i ** 2 * varx) * norm.cdf(sign*(x_star + b_i *
sqrt(varx)
numpy.sqrt
import os import collections import itertools from typing import Tuple, Union, Optional import numpy as np from continuum.datasets.base import _AudioDataset from continuum.download import download, untar class FluentSpeech(_AudioDataset): """FluentSpeechCommand dataset. Made of short audio with different speakers asking something. https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/ """ URL = "http://fluent.ai:2052/jf8398hf30f0381738rucj3828chfdnchs.tar.gz" def __init__(self, data_path, train: Union[bool, str] = True, download: bool = True): if not isinstance(train, bool) and train not in ("train", "valid", "test"): raise ValueError(f"`train` arg ({train}) must be a bool or train/valid/test.") if isinstance(train, bool): if train: train = "train" else: train = "test" data_path = os.path.expanduser(data_path) super().__init__(data_path, train, download) def _download(self): if not os.path.exists(os.path.join(self.data_path, "fluent_speech_commands_dataset")): tgz_path = os.path.join(self.data_path, "jf8398hf30f0381738rucj3828chfdnchs.tar.gz") if not os.path.exists(tgz_path): print("Downloading tgz archive...", end=" ") download( self.URL, self.data_path ) print("Done!") print("Extracting archive...", end=" ") untar(tgz_path) print("Done!") def get_data(self) -> Tuple[np.ndarray, np.ndarray, Optional[np.ndarray]]: base_path = os.path.join(self.data_path, "fluent_speech_commands_dataset") self.transcriptions = [] x, y, t = [], [], [] with open(os.path.join(base_path, "data", f"{self.train}_data.csv")) as f: lines = f.readlines()[1:] for line in lines: items = line[:-1].split(',') action, obj, location = items[-3:] x.append(os.path.join(base_path, items[1])) y.append([ self.class_ids[action+obj+location], self.actions[action], self.objects[obj], self.locations[location] ]) if self.train == "train": t.append(self.train_speaker_ids[items[2]]) elif self.train == "valid": t.append(self.valid_speaker_ids[items[2]]) else: t.append(self.test_speaker_ids[items[2]]) self.transcriptions.append(items[3]) return np.array(x),
np.array(y)
numpy.array
# Load pickled data import pickle # TODO: Fill this in based on where you saved the training and testing data training_file = 'traffic-signs-data/train.p' validation_file = 'traffic-signs-data/valid.p' testing_file = 'traffic-signs-data/test.p' with open(training_file, mode='rb') as f: train = pickle.load(f) with open(validation_file, mode='rb') as f: valid = pickle.load(f) with open(testing_file, mode='rb') as f: test = pickle.load(f) X_train, y_train = train['features'], train['labels'] X_valid, y_valid = valid['features'], valid['labels'] X_test, y_test = test['features'], test['labels'] ### Replace each question mark with the appropriate value. ### Use python, pandas or numpy methods rather than hard coding the results # TODO: Number of training examples n_train = len(y_train) # TODO: Number of validation examples n_validation = len(y_valid) # TODO: Number of testing examples. n_test = len(y_test) # TODO: What's the shape of an traffic sign image? image_shape = X_train[0].shape # TODO: How many unique classes/labels there are in the dataset. n_classes = len(set(y_train)) print("Number of training examples =", n_train) print("Number of testing examples =", n_test) print("Image data shape =", image_shape) print("Number of classes =", n_classes) ### Data exploration visualization code goes here. ### Feel free to use as many code cells as needed. import matplotlib.pyplot as plt # Visualizations will be shown in the notebook. #% matplotlib inline import numpy as np N = n_classes ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars training_hist = [] valid_hist = [] test_hist = [] for y in range(0, 43): training_hist.append(np.count_nonzero(y_train == y)) valid_hist.append(np.count_nonzero(y_valid == y)) test_hist.append(np.count_nonzero(y_test == y)) fig, ax = plt.subplots() rects1 = ax.bar(ind, training_hist, width, color='r') rects2 = ax.bar(ind + width, valid_hist, width, color='y') rects3 = ax.bar(ind + 2 * width, test_hist, width, color='b') # add some text for labels, title and axes ticks ax.set_ylabel('Number of samples in set') ax.set_title('Number of samples') ax.set_xticks(ind[::2]) # ax.set_xticklabels(('G1', 'G2', 'G3', 'G4', 'G5')) ax.legend((rects1[0], rects2[0], rects3[0]), ('Training', 'Validation', 'Test')) ### Preprocess the data here. It is required to normalize the data. Other preprocessing steps could include ### converting to grayscale, etc. ### Feel free to use as many code cells as needed. import numpy as np X_train =
np.array(X_train,dtype=np.float32)
numpy.array
import numpy as np import pytest from astropy import units as u, constants from plasmapy.physics.magnetostatics import (MagnetoStatics, MagneticDipole, Wire, GeneralWire, FiniteStraightWire, InfiniteStraightWire, CircularWire) mu0_4pi = constants.mu0/4/np.pi class Test_MagneticDipole: def setup_method(self): self.moment = np.array([0, 0, 1])*u.A*u.m*u.m self.p0 =
np.array([0, 0, 0])
numpy.array
""" Implementation of linear algebra operations. """ import contextlib from llvmlite import ir import numpy as np import operator from numba.core.imputils import (lower_builtin, impl_ret_borrowed, impl_ret_new_ref, impl_ret_untracked) from numba.core.typing import signature from numba.core.extending import overload, register_jitable from numba.core import types, cgutils from numba.core.errors import TypingError from .arrayobj import make_array, _empty_nd_impl, array_copy from numba.np import numpy_support as np_support ll_char = ir.IntType(8) ll_char_p = ll_char.as_pointer() ll_void_p = ll_char_p ll_intc = ir.IntType(32) ll_intc_p = ll_intc.as_pointer() intp_t = cgutils.intp_t ll_intp_p = intp_t.as_pointer() # fortran int type, this needs to match the F_INT C declaration in # _lapack.c and is present to accommodate potential future 64bit int # based LAPACK use. F_INT_nptype = np.int32 F_INT_nbtype = types.int32 # BLAS kinds as letters _blas_kinds = { types.float32: 's', types.float64: 'd', types.complex64: 'c', types.complex128: 'z', } def get_blas_kind(dtype, func_name="<BLAS function>"): kind = _blas_kinds.get(dtype) if kind is None: raise TypeError("unsupported dtype for %s()" % (func_name,)) return kind def ensure_blas(): try: import scipy.linalg.cython_blas except ImportError: raise ImportError("scipy 0.16+ is required for linear algebra") def ensure_lapack(): try: import scipy.linalg.cython_lapack except ImportError: raise ImportError("scipy 0.16+ is required for linear algebra") def make_constant_slot(context, builder, ty, val): const = context.get_constant_generic(builder, ty, val) return cgutils.alloca_once_value(builder, const) class _BLAS: """ Functions to return type signatures for wrapped BLAS functions. """ def __init__(self): ensure_blas() @classmethod def numba_xxnrm2(cls, dtype): rtype = getattr(dtype, "underlying_float", dtype) sig = types.intc(types.char, # kind types.intp, # n types.CPointer(dtype), # x types.intp, # incx types.CPointer(rtype)) # returned return types.ExternalFunction("numba_xxnrm2", sig) @classmethod def numba_xxgemm(cls, dtype): sig = types.intc( types.char, # kind types.char, # transa types.char, # transb types.intp, # m types.intp, # n types.intp, # k types.CPointer(dtype), # alpha types.CPointer(dtype), # a types.intp, # lda types.CPointer(dtype), # b types.intp, # ldb types.CPointer(dtype), # beta types.CPointer(dtype), # c types.intp # ldc ) return types.ExternalFunction("numba_xxgemm", sig) class _LAPACK: """ Functions to return type signatures for wrapped LAPACK functions. """ def __init__(self): ensure_lapack() @classmethod def numba_xxgetrf(cls, dtype): sig = types.intc(types.char, # kind types.intp, # m types.intp, # n types.CPointer(dtype), # a types.intp, # lda types.CPointer(F_INT_nbtype) # ipiv ) return types.ExternalFunction("numba_xxgetrf", sig) @classmethod def numba_ez_xxgetri(cls, dtype): sig = types.intc(types.char, # kind types.intp, # n types.CPointer(dtype), # a types.intp, # lda types.CPointer(F_INT_nbtype) # ipiv ) return types.ExternalFunction("numba_ez_xxgetri", sig) @classmethod def numba_ez_rgeev(cls, dtype): sig = types.intc(types.char, # kind types.char, # jobvl types.char, # jobvr types.intp, # n types.CPointer(dtype), # a types.intp, # lda types.CPointer(dtype), # wr types.CPointer(dtype), # wi types.CPointer(dtype), # vl types.intp, # ldvl types.CPointer(dtype), # vr types.intp # ldvr ) return types.ExternalFunction("numba_ez_rgeev", sig) @classmethod def numba_ez_cgeev(cls, dtype): sig = types.intc(types.char, # kind types.char, # jobvl types.char, # jobvr types.intp, # n types.CPointer(dtype), # a types.intp, # lda types.CPointer(dtype), # w types.CPointer(dtype), # vl types.intp, # ldvl types.CPointer(dtype), # vr types.intp # ldvr ) return types.ExternalFunction("numba_ez_cgeev", sig) @classmethod def numba_ez_xxxevd(cls, dtype): wtype = getattr(dtype, "underlying_float", dtype) sig = types.intc(types.char, # kind types.char, # jobz types.char, # uplo types.intp, # n types.CPointer(dtype), # a types.intp, # lda types.CPointer(wtype), # w ) return types.ExternalFunction("numba_ez_xxxevd", sig) @classmethod def numba_xxpotrf(cls, dtype): sig = types.intc(types.char, # kind types.char, # uplo types.intp, # n types.CPointer(dtype), # a types.intp # lda ) return types.ExternalFunction("numba_xxpotrf", sig) @classmethod def numba_ez_gesdd(cls, dtype): stype = getattr(dtype, "underlying_float", dtype) sig = types.intc( types.char, # kind types.char, # jobz types.intp, # m types.intp, # n types.CPointer(dtype), # a types.intp, # lda types.CPointer(stype), # s types.CPointer(dtype), # u types.intp, # ldu types.CPointer(dtype), # vt types.intp # ldvt ) return types.ExternalFunction("numba_ez_gesdd", sig) @classmethod def numba_ez_geqrf(cls, dtype): sig = types.intc( types.char, # kind types.intp, # m types.intp, # n types.CPointer(dtype), # a types.intp, # lda types.CPointer(dtype), # tau ) return types.ExternalFunction("numba_ez_geqrf", sig) @classmethod def numba_ez_xxgqr(cls, dtype): sig = types.intc( types.char, # kind types.intp, # m types.intp, # n types.intp, # k types.CPointer(dtype), # a types.intp, # lda types.CPointer(dtype), # tau ) return types.ExternalFunction("numba_ez_xxgqr", sig) @classmethod def numba_ez_gelsd(cls, dtype): rtype = getattr(dtype, "underlying_float", dtype) sig = types.intc( types.char, # kind types.intp, # m types.intp, # n types.intp, # nrhs types.CPointer(dtype), # a types.intp, # lda types.CPointer(dtype), # b types.intp, # ldb types.CPointer(rtype), # S types.float64, # rcond types.CPointer(types.intc) # rank ) return types.ExternalFunction("numba_ez_gelsd", sig) @classmethod def numba_xgesv(cls, dtype): sig = types.intc( types.char, # kind types.intp, # n types.intp, # nhrs types.CPointer(dtype), # a types.intp, # lda types.CPointer(F_INT_nbtype), # ipiv types.CPointer(dtype), # b types.intp # ldb ) return types.ExternalFunction("numba_xgesv", sig) @contextlib.contextmanager def make_contiguous(context, builder, sig, args): """ Ensure that all array arguments are contiguous, if necessary by copying them. A new (sig, args) tuple is yielded. """ newtys = [] newargs = [] copies = [] for ty, val in zip(sig.args, args): if not isinstance(ty, types.Array) or ty.layout in 'CF': newty, newval = ty, val else: newty = ty.copy(layout='C') copysig = signature(newty, ty) newval = array_copy(context, builder, copysig, (val,)) copies.append((newty, newval)) newtys.append(newty) newargs.append(newval) yield signature(sig.return_type, *newtys), tuple(newargs) for ty, val in copies: context.nrt.decref(builder, ty, val) def check_c_int(context, builder, n): """ Check whether *n* fits in a C `int`. """ _maxint = 2**31 - 1 def impl(n): if n > _maxint: raise OverflowError("array size too large to fit in C int") context.compile_internal(builder, impl, signature(types.none, types.intp), (n,)) def check_blas_return(context, builder, res): """ Check the integer error return from one of the BLAS wrappers in _helperlib.c. """ with builder.if_then(cgutils.is_not_null(builder, res), likely=False): # Those errors shouldn't happen, it's easier to just abort the process pyapi = context.get_python_api(builder) pyapi.gil_ensure() pyapi.fatal_error("BLAS wrapper returned with an error") def check_lapack_return(context, builder, res): """ Check the integer error return from one of the LAPACK wrappers in _helperlib.c. """ with builder.if_then(cgutils.is_not_null(builder, res), likely=False): # Those errors shouldn't happen, it's easier to just abort the process pyapi = context.get_python_api(builder) pyapi.gil_ensure() pyapi.fatal_error("LAPACK wrapper returned with an error") def call_xxdot(context, builder, conjugate, dtype, n, a_data, b_data, out_data): """ Call the BLAS vector * vector product function for the given arguments. """ fnty = ir.FunctionType(ir.IntType(32), [ll_char, ll_char, intp_t, # kind, conjugate, n ll_void_p, ll_void_p, ll_void_p, # a, b, out ]) fn = builder.module.get_or_insert_function(fnty, name="numba_xxdot") kind = get_blas_kind(dtype) kind_val = ir.Constant(ll_char, ord(kind)) conjugate = ir.Constant(ll_char, int(conjugate)) res = builder.call(fn, (kind_val, conjugate, n, builder.bitcast(a_data, ll_void_p), builder.bitcast(b_data, ll_void_p), builder.bitcast(out_data, ll_void_p))) check_blas_return(context, builder, res) def call_xxgemv(context, builder, do_trans, m_type, m_shapes, m_data, v_data, out_data): """ Call the BLAS matrix * vector product function for the given arguments. """ fnty = ir.FunctionType(ir.IntType(32), [ll_char, ll_char, # kind, trans intp_t, intp_t, # m, n ll_void_p, ll_void_p, intp_t, # alpha, a, lda ll_void_p, ll_void_p, ll_void_p, # x, beta, y ]) fn = builder.module.get_or_insert_function(fnty, name="numba_xxgemv") dtype = m_type.dtype alpha = make_constant_slot(context, builder, dtype, 1.0) beta = make_constant_slot(context, builder, dtype, 0.0) if m_type.layout == 'F': m, n = m_shapes lda = m_shapes[0] else: n, m = m_shapes lda = m_shapes[1] kind = get_blas_kind(dtype) kind_val = ir.Constant(ll_char, ord(kind)) trans = ir.Constant(ll_char, ord('t') if do_trans else ord('n')) res = builder.call(fn, (kind_val, trans, m, n, builder.bitcast(alpha, ll_void_p), builder.bitcast(m_data, ll_void_p), lda, builder.bitcast(v_data, ll_void_p), builder.bitcast(beta, ll_void_p), builder.bitcast(out_data, ll_void_p))) check_blas_return(context, builder, res) def call_xxgemm(context, builder, x_type, x_shapes, x_data, y_type, y_shapes, y_data, out_type, out_shapes, out_data): """ Call the BLAS matrix * matrix product function for the given arguments. """ fnty = ir.FunctionType(ir.IntType(32), [ll_char, # kind ll_char, ll_char, # transa, transb intp_t, intp_t, intp_t, # m, n, k ll_void_p, ll_void_p, intp_t, # alpha, a, lda ll_void_p, intp_t, ll_void_p, # b, ldb, beta ll_void_p, intp_t, # c, ldc ]) fn = builder.module.get_or_insert_function(fnty, name="numba_xxgemm") m, k = x_shapes _k, n = y_shapes dtype = x_type.dtype alpha = make_constant_slot(context, builder, dtype, 1.0) beta = make_constant_slot(context, builder, dtype, 0.0) trans = ir.Constant(ll_char, ord('t')) notrans = ir.Constant(ll_char, ord('n')) def get_array_param(ty, shapes, data): return ( # Transpose if layout different from result's notrans if ty.layout == out_type.layout else trans, # Size of the inner dimension in physical array order shapes[1] if ty.layout == 'C' else shapes[0], # The data pointer, unit-less builder.bitcast(data, ll_void_p), ) transa, lda, data_a = get_array_param(y_type, y_shapes, y_data) transb, ldb, data_b = get_array_param(x_type, x_shapes, x_data) _, ldc, data_c = get_array_param(out_type, out_shapes, out_data) kind = get_blas_kind(dtype) kind_val = ir.Constant(ll_char, ord(kind)) res = builder.call(fn, (kind_val, transa, transb, n, m, k, builder.bitcast(alpha, ll_void_p), data_a, lda, data_b, ldb, builder.bitcast(beta, ll_void_p), data_c, ldc)) check_blas_return(context, builder, res) def dot_2_mm(context, builder, sig, args): """ np.dot(matrix, matrix) """ def dot_impl(a, b): m, k = a.shape _k, n = b.shape if k == 0: return np.zeros((m, n), a.dtype) out = np.empty((m, n), a.dtype) return np.dot(a, b, out) res = context.compile_internal(builder, dot_impl, sig, args) return impl_ret_new_ref(context, builder, sig.return_type, res) def dot_2_vm(context, builder, sig, args): """ np.dot(vector, matrix) """ def dot_impl(a, b): m, = a.shape _m, n = b.shape if m == 0: return np.zeros((n, ), a.dtype) out = np.empty((n, ), a.dtype) return np.dot(a, b, out) res = context.compile_internal(builder, dot_impl, sig, args) return impl_ret_new_ref(context, builder, sig.return_type, res) def dot_2_mv(context, builder, sig, args): """ np.dot(matrix, vector) """ def dot_impl(a, b): m, n = a.shape _n, = b.shape if n == 0: return np.zeros((m, ), a.dtype) out = np.empty((m, ), a.dtype) return np.dot(a, b, out) res = context.compile_internal(builder, dot_impl, sig, args) return impl_ret_new_ref(context, builder, sig.return_type, res) def dot_2_vv(context, builder, sig, args, conjugate=False): """ np.dot(vector, vector) np.vdot(vector, vector) """ aty, bty = sig.args dtype = sig.return_type a = make_array(aty)(context, builder, args[0]) b = make_array(bty)(context, builder, args[1]) n, = cgutils.unpack_tuple(builder, a.shape) def check_args(a, b): m, = a.shape n, = b.shape if m != n: raise ValueError("incompatible array sizes for np.dot(a, b) " "(vector * vector)") context.compile_internal(builder, check_args, signature(types.none, *sig.args), args) check_c_int(context, builder, n) out = cgutils.alloca_once(builder, context.get_value_type(dtype)) call_xxdot(context, builder, conjugate, dtype, n, a.data, b.data, out) return builder.load(out) @lower_builtin(np.dot, types.Array, types.Array) def dot_2(context, builder, sig, args): """ np.dot(a, b) a @ b """ ensure_blas() with make_contiguous(context, builder, sig, args) as (sig, args): ndims = [x.ndim for x in sig.args[:2]] if ndims == [2, 2]: return dot_2_mm(context, builder, sig, args) elif ndims == [2, 1]: return dot_2_mv(context, builder, sig, args) elif ndims == [1, 2]: return dot_2_vm(context, builder, sig, args) elif ndims == [1, 1]: return dot_2_vv(context, builder, sig, args) else: assert 0 lower_builtin(operator.matmul, types.Array, types.Array)(dot_2) @lower_builtin(np.vdot, types.Array, types.Array) def vdot(context, builder, sig, args): """ np.vdot(a, b) """ ensure_blas() with make_contiguous(context, builder, sig, args) as (sig, args): return dot_2_vv(context, builder, sig, args, conjugate=True) def dot_3_vm_check_args(a, b, out): m, = a.shape _m, n = b.shape if m != _m: raise ValueError("incompatible array sizes for " "np.dot(a, b) (vector * matrix)") if out.shape != (n,): raise ValueError("incompatible output array size for " "np.dot(a, b, out) (vector * matrix)") def dot_3_mv_check_args(a, b, out): m, _n = a.shape n, = b.shape if n != _n: raise ValueError("incompatible array sizes for np.dot(a, b) " "(matrix * vector)") if out.shape != (m,): raise ValueError("incompatible output array size for " "np.dot(a, b, out) (matrix * vector)") def dot_3_vm(context, builder, sig, args): """ np.dot(vector, matrix, out) np.dot(matrix, vector, out) """ xty, yty, outty = sig.args assert outty == sig.return_type dtype = xty.dtype x = make_array(xty)(context, builder, args[0]) y = make_array(yty)(context, builder, args[1]) out = make_array(outty)(context, builder, args[2]) x_shapes = cgutils.unpack_tuple(builder, x.shape) y_shapes = cgutils.unpack_tuple(builder, y.shape) out_shapes = cgutils.unpack_tuple(builder, out.shape) if xty.ndim < yty.ndim: # Vector * matrix # Asked for x * y, we will compute y.T * x mty = yty m_shapes = y_shapes v_shape = x_shapes[0] lda = m_shapes[1] do_trans = yty.layout == 'F' m_data, v_data = y.data, x.data check_args = dot_3_vm_check_args else: # Matrix * vector # We will compute x * y mty = xty m_shapes = x_shapes v_shape = y_shapes[0] lda = m_shapes[0] do_trans = xty.layout == 'C' m_data, v_data = x.data, y.data check_args = dot_3_mv_check_args context.compile_internal(builder, check_args, signature(types.none, *sig.args), args) for val in m_shapes: check_c_int(context, builder, val) zero = context.get_constant(types.intp, 0) both_empty = builder.icmp_signed('==', v_shape, zero) matrix_empty = builder.icmp_signed('==', lda, zero) is_empty = builder.or_(both_empty, matrix_empty) with builder.if_else(is_empty, likely=False) as (empty, nonempty): with empty: cgutils.memset(builder, out.data, builder.mul(out.itemsize, out.nitems), 0) with nonempty: call_xxgemv(context, builder, do_trans, mty, m_shapes, m_data, v_data, out.data) return impl_ret_borrowed(context, builder, sig.return_type, out._getvalue()) def dot_3_mm(context, builder, sig, args): """ np.dot(matrix, matrix, out) """ xty, yty, outty = sig.args assert outty == sig.return_type dtype = xty.dtype x = make_array(xty)(context, builder, args[0]) y = make_array(yty)(context, builder, args[1]) out = make_array(outty)(context, builder, args[2]) x_shapes = cgutils.unpack_tuple(builder, x.shape) y_shapes = cgutils.unpack_tuple(builder, y.shape) out_shapes = cgutils.unpack_tuple(builder, out.shape) m, k = x_shapes _k, n = y_shapes # The only case Numpy supports assert outty.layout == 'C' def check_args(a, b, out): m, k = a.shape _k, n = b.shape if k != _k: raise ValueError("incompatible array sizes for np.dot(a, b) " "(matrix * matrix)") if out.shape != (m, n): raise ValueError("incompatible output array size for " "np.dot(a, b, out) (matrix * matrix)") context.compile_internal(builder, check_args, signature(types.none, *sig.args), args) check_c_int(context, builder, m) check_c_int(context, builder, k) check_c_int(context, builder, n) x_data = x.data y_data = y.data out_data = out.data # If eliminated dimension is zero, set all entries to zero and return zero = context.get_constant(types.intp, 0) both_empty = builder.icmp_signed('==', k, zero) x_empty = builder.icmp_signed('==', m, zero) y_empty = builder.icmp_signed('==', n, zero) is_empty = builder.or_(both_empty, builder.or_(x_empty, y_empty)) with builder.if_else(is_empty, likely=False) as (empty, nonempty): with empty: cgutils.memset(builder, out.data, builder.mul(out.itemsize, out.nitems), 0) with nonempty: # Check if any of the operands is really a 1-d vector represented # as a (1, k) or (k, 1) 2-d array. In those cases, it is pessimal # to call the generic matrix * matrix product BLAS function. one = context.get_constant(types.intp, 1) is_left_vec = builder.icmp_signed('==', m, one) is_right_vec = builder.icmp_signed('==', n, one) with builder.if_else(is_right_vec) as (r_vec, r_mat): with r_vec: with builder.if_else(is_left_vec) as (v_v, m_v): with v_v: # V * V call_xxdot(context, builder, False, dtype, k, x_data, y_data, out_data) with m_v: # M * V do_trans = xty.layout == outty.layout call_xxgemv(context, builder, do_trans, xty, x_shapes, x_data, y_data, out_data) with r_mat: with builder.if_else(is_left_vec) as (v_m, m_m): with v_m: # V * M do_trans = yty.layout != outty.layout call_xxgemv(context, builder, do_trans, yty, y_shapes, y_data, x_data, out_data) with m_m: # M * M call_xxgemm(context, builder, xty, x_shapes, x_data, yty, y_shapes, y_data, outty, out_shapes, out_data) return impl_ret_borrowed(context, builder, sig.return_type, out._getvalue()) @lower_builtin(np.dot, types.Array, types.Array, types.Array) def dot_3(context, builder, sig, args): """ np.dot(a, b, out) """ ensure_blas() with make_contiguous(context, builder, sig, args) as (sig, args): ndims = set(x.ndim for x in sig.args[:2]) if ndims == set([2]): return dot_3_mm(context, builder, sig, args) elif ndims == set([1, 2]): return dot_3_vm(context, builder, sig, args) else: assert 0 fatal_error_sig = types.intc() fatal_error_func = types.ExternalFunction("numba_fatal_error", fatal_error_sig) @register_jitable def _check_finite_matrix(a): for v in np.nditer(a): if not np.isfinite(v.item()): raise np.linalg.LinAlgError( "Array must not contain infs or NaNs.") def _check_linalg_matrix(a, func_name, la_prefix=True): # la_prefix is present as some functions, e.g. np.trace() # are documented under "linear algebra" but aren't in the # module prefix = "np.linalg" if la_prefix else "np" interp = (prefix, func_name) # Unpack optional type if isinstance(a, types.Optional): a = a.type if not isinstance(a, types.Array): msg = "%s.%s() only supported for array types" % interp raise TypingError(msg, highlighting=False) if not a.ndim == 2: msg = "%s.%s() only supported on 2-D arrays." % interp raise TypingError(msg, highlighting=False) if not isinstance(a.dtype, (types.Float, types.Complex)): msg = "%s.%s() only supported on "\ "float and complex arrays." % interp raise TypingError(msg, highlighting=False) def _check_homogeneous_types(func_name, *types): t0 = types[0].dtype for t in types[1:]: if t.dtype != t0: msg = "np.linalg.%s() only supports inputs that have homogeneous dtypes." % func_name raise TypingError(msg, highlighting=False) def _copy_to_fortran_order(): pass @overload(_copy_to_fortran_order) def ol_copy_to_fortran_order(a): # This function copies the array 'a' into a new array with fortran order. # This exists because the copy routines don't take order flags yet. F_layout = a.layout == 'F' A_layout = a.layout == 'A' def impl(a): if F_layout: # it's F ordered at compile time, just copy acpy = np.copy(a) elif A_layout: # decide based on runtime value flag_f = a.flags.f_contiguous if flag_f: # it's already F ordered, so copy but in a round about way to # ensure that the copy is also F ordered acpy = np.copy(a.T).T else: # it's something else ordered, so let asfortranarray deal with # copying and making it fortran ordered acpy = np.asfortranarray(a) else: # it's C ordered at compile time, asfortranarray it. acpy = np.asfortranarray(a) return acpy return impl @register_jitable def _inv_err_handler(r): if r != 0: if r < 0: fatal_error_func() assert 0 # unreachable if r > 0: raise np.linalg.LinAlgError( "Matrix is singular to machine precision.") @register_jitable def _dummy_liveness_func(a): """pass a list of variables to be preserved through dead code elimination""" return a[0] @overload(np.linalg.inv) def inv_impl(a): ensure_lapack() _check_linalg_matrix(a, "inv") numba_xxgetrf = _LAPACK().numba_xxgetrf(a.dtype) numba_xxgetri = _LAPACK().numba_ez_xxgetri(a.dtype) kind = ord(get_blas_kind(a.dtype, "inv")) def inv_impl(a): n = a.shape[-1] if a.shape[-2] != n: msg = "Last 2 dimensions of the array must be square." raise
np.linalg.LinAlgError(msg)
numpy.linalg.LinAlgError
""" Implementation of SVM using cvxopt package. Implementation uses soft margin and I've defined linear, polynomial and gaussian kernels. To understand the theory (which is a bit challenging) I recommend reading the following: http://cs229.stanford.edu/notes/cs229-notes3.pdf https://www.youtube.com/playlist?list=PLoROMvodv4rMiGQp3WXShtMGgzqpfVfbU (Lectures 6,7 by Andrew Ng) To understand how to reformulate the optimization problem we obtain to get the input to cvxopt QP solver this blogpost can be useful: https://xavierbourretsicotte.github.io/SVM_implementation.html Programmed by <NAME> <aladdin.persson at hotmail dot com> * 2020-04-26 Initial coding """ import numpy as np import cvxopt from utils import create_dataset, plot_contour def linear(x, z): return np.dot(x, z.T) def polynomial(x, z, p=5): return (1 + np.dot(x, z.T)) ** p def gaussian(x, z, sigma=0.1): return np.exp(-np.linalg.norm(x - z, axis=1) ** 2 / (2 * (sigma ** 2))) class SVM: def __init__(self, kernel=gaussian, C=1): self.kernel = kernel self.C = C def fit(self, X, y): self.y = y self.X = X m, n = X.shape # Calculate Kernel self.K = np.zeros((m, m)) for i in range(m): self.K[i, :] = self.kernel(X[i, np.newaxis], self.X) # Solve with cvxopt final QP needs to be reformulated # to match the input form for cvxopt.solvers.qp P = cvxopt.matrix(np.outer(y, y) * self.K) q = cvxopt.matrix(-np.ones((m, 1))) G = cvxopt.matrix(np.vstack((np.eye(m) * -1, np.eye(m)))) h = cvxopt.matrix(np.hstack((np.zeros(m), np.ones(m) * self.C))) A = cvxopt.matrix(y, (1, m), "d") b = cvxopt.matrix(np.zeros(1)) cvxopt.solvers.options["show_progress"] = False sol = cvxopt.solvers.qp(P, q, G, h, A, b) self.alphas =
np.array(sol["x"])
numpy.array
import sys import matplotlib.pyplot as plt import numpy as np import math from scipy import stats import matplotlib.patches as patches import matplotlib.transforms as transforms from .point import Point from .vector import Vector from .util import rotate class Ellipse(): def __init__(self, mu, sigma, ci=0.95, color='#4ca3dd'): self.mu = mu self.sigma = sigma self.ci = ci self.color = color self.chi2 = None self.set_chisquare() self.set_axes() self.set_vectors() def __str__(self): return "Ellipse(%s,%s)" % (self.mu, self.sigma) def __repr__(self): return "Ellipse(%s,%s)" % (self.mu, self.sigma) def set_chisquare(self): """ Upper-tail critical values of chi-square distribution with 2 degrees of freedom """ if self.ci == 0.90: self.chi2 = 4.605 elif self.ci == 0.95: self.chi2 = 5.991 elif self.ci == 0.975: self.chi2 = 7.378 else: self.chi2 = 5.991 def set_axes(self): """ Set the minor, major axes as well as the alpha angle Also set the eigenvalues and eigenvectors of the covariance matrix https://www.math.ubc.ca/~pwalls/math-python/linear-algebra/eigenvalues-eigenvectors/ """ # Eigeinvalues and corresponding eigenvectors # of the covariance matrix eig_val, eig_vec = np.linalg.eig(self.sigma) # Sort the eigenvalues by descending order self.eigs = [(np.abs(eig_val[i]), eig_vec[:,i]) for i in range(len(eig_val))] self.eigs.sort(key=lambda x: x[0], reverse=True) # semi-major and semi-minor axes length self.semi_major = math.sqrt(self.eigs[0][0]*self.chi2) self.semi_minor = math.sqrt(self.eigs[1][0]*self.chi2) # Get the eigenvector associated to the largest eigenvalue vec = self.eigs[0][1] # The ellipse orientation is the arctan of that vector y/x self.alpha =
np.arctan(vec[1]/vec[0])
numpy.arctan
# Copyright 2017 Battelle Energy Alliance, LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Created on January 10, 2019 @author: talbpaul Container to handle ROMs that are made of many sub-roms """ # standard libraries from __future__ import division, print_function, absolute_import import copy import warnings from collections import defaultdict # external libraries import abc import numpy as np # internal libraries from utils import mathUtils, xmlUtils, randomUtils from .SupervisedLearning import supervisedLearning warnings.simplefilter('default', DeprecationWarning) # # # # class Collection(supervisedLearning): """ A container that handles collections of ROMs in a particular way. """ def __init__(self, messageHandler, **kwargs): """ Constructor. @ In, messageHandler, MesageHandler.MessageHandler, message tracker @ In, kwargs, dict, options and initialization settings (from XML) @ Out, None """ supervisedLearning.__init__(self, messageHandler, **kwargs) self.printTag = 'ROM Collection' # message printing appearance self._romName = kwargs.get('name', 'unnamed') # name of the requested ROM self._templateROM = kwargs['modelInstance'] # example of a ROM that will be used in this grouping, set by setTemplateROM self._roms = [] # ROMs that belong to this grouping. def __getstate__(self): """ Customizes the serialization of this class. @ In, None @ Out, d, dict, dictionary with class members """ # construct a list of unpicklable entties and exclude them from pickling nope = ['_divisionClassifier', '_assembledObjects'] d = dict((key, val) for key, val in self.__dict__.items() if key not in nope) # deepcopy needed return d @abc.abstractmethod def train(self, tdict): """ Trains the SVL and its supporting SVLs. Overwrites base class behavior due to special clustering needs. @ In, trainDict, dict, dicitonary with training data @ Out, None """ pass @abc.abstractmethod def evaluate(self, edict): """ Method to evaluate a point or set of points via surrogate. Overwritten for special needs in this ROM @ In, edict, dict, evaluation dictionary @ Out, evaluate, np.array, evaluated points """ pass # dummy methods that are required by SVL and not generally used def __confidenceLocal__(self, featureVals): """ This should return an estimation of the quality of the prediction. This could be distance or probability or anything else, the type needs to be declared in the variable cls.qualityEstType @ In, featureVals, 2-D numpy array , [n_samples,n_features] @ Out, __confidenceLocal__, float, the confidence """ pass def __resetLocal__(self): """ Reset ROM. After this method the ROM should be described only by the initial parameter settings @ In, None @ Out, None """ pass def __returnCurrentSettingLocal__(self): """ Returns a dictionary with the parameters and their current values @ In, None @ Out, params, dict, dictionary of parameter names and current values """ return {} def __returnInitialParametersLocal__(self): """ Returns a dictionary with the parameters and their initial values @ In, None @ Out, params, dict, dictionary of parameter names and initial values """ return {} # Are private-ish so should not be called directly, so we don't implement them, as they don't fit the collection. def __evaluateLocal__(self, featureVals): """ @ In, featureVals, np.array, 2-D numpy array [n_samples,n_features] @ Out, targetVals , np.array, 1-D numpy array [n_samples] """ pass def __trainLocal__(self, featureVals, targetVals): """ Perform training on samples in featureVals with responses y. For an one-class model, +1 or -1 is returned. @ In, featureVals, {array-like, sparse matrix}, shape=[n_samples, n_features], an array of input feature values @ Out, targetVals, array, shape = [n_samples], an array of output target associated with the corresponding points in featureVals """ pass # # # # class Segments(Collection): """ A container that handles ROMs that are segmented along some set of indices """ ######################## # CONSTRUCTION METHODS # ######################## def __init__(self, messageHandler, **kwargs): """ Constructor. @ In, messageHandler, MesageHandler.MessageHandler, message tracker @ In, kwargs, dict, options and initialization settings (from XML) @ Out, None """ Collection.__init__(self, messageHandler, **kwargs) self.printTag = 'Segmented ROM' self._divisionInstructions = {} # which parameters are clustered, and how, and how much? self._divisionMetrics = None # requested metrics to apply; if None, implies everything we know about self._divisionInfo = {} # data that should persist across methods self._divisionPivotShift = {} # whether and how to normalize/shift subspaces self._indexValues = {} # original index values, by index # allow some ROM training to happen globally, seperate from individual segment training ## see design note for Clusters self._romGlobalAdjustments = None # global ROM settings, provided by the templateROM before clustering # set up segmentation # get input specifications from inputParams inputSpecs = kwargs['paramInput'].findFirst('Segment') # initialize settings divisionMode = {} for node in inputSpecs.subparts: if node.name == 'subspace': subspace = node.value # check for duplicate definition if subspace in divisionMode.keys(): self.raiseAWarning('Subspace was defined multiple times for "{}"! Using the first.'.format(subspace)) continue # check correct arguments are given if 'divisions' in node.parameterValues and 'pivotLength' in node.parameterValues: self.raiseAnError(IOError, 'Cannot provide both \'pivotLength\' and \'divisions\' for subspace "{}"!'.format(subspace)) if 'divisions' not in node.parameterValues and 'pivotLength' not in node.parameterValues: self.raiseAnError(IOError, 'Must provide either \'pivotLength\' or \'divisions\' for subspace "{}"!'.format(subspace)) # determine segmentation type if 'divisions' in node.parameterValues: # splitting a particular number of times (or "divisions") mode = 'split' key = 'divisions' elif 'pivotLength' in node.parameterValues: # splitting by pivot parameter values mode = 'value' key = 'pivotLength' divisionMode[subspace] = (mode, node.parameterValues[key]) # standardize pivot param? if 'shift' in node.parameterValues: shift = node.parameterValues['shift'].strip().lower() # check value given makes sense (either "zero" or "first") acceptable = ['zero', 'first'] if shift not in [None] + acceptable: self.raiseAnError(IOError, 'If <subspace> "shift" is specificed, it must be one of {}; got "{}".'.format(acceptable, shift)) self._divisionPivotShift[subspace] = shift else: self._divisionPivotShift[subspace] = None self._divisionInstructions = divisionMode if len(self._divisionInstructions) > 1: self.raiseAnError(NotImplementedError, 'Segmented ROMs do not yet handle multiple subspaces!') ############### # RUN METHODS # ############### def train(self, tdict): """ Trains the SVL and its supporting SVLs. Overwrites base class behavior due to special clustering needs. @ In, trainDict, dict, dicitonary with training data @ Out, None """ # read in assembled objects, if any self.readAssembledObjects() # subdivide space divisions = self._subdivideDomain(self._divisionInstructions, tdict) self._divisionInfo['delimiters'] = divisions[0] + divisions[1] # allow ROM to handle some global training self._romGlobalAdjustments, newTrainingDict = self._templateROM.getGlobalRomSegmentSettings(tdict, divisions) # train segments self._trainBySegments(divisions, newTrainingDict) self.amITrained = True self._templateROM.amITrained = True def evaluate(self, edict): """ Method to evaluate a point or set of points via surrogate. Overwritten for special needs in this ROM @ In, edict, dict, evaluation dictionary @ Out, result, np.array, evaluated points """ result = self._evaluateBySegments(edict) # allow each segment ROM to modify signal based on global training settings for s, segment in enumerate(self._getSequentialRoms()): delim = self._divisionInfo['delimiters'][s] picker = slice(delim[0], delim[-1] + 1) result = segment.finalizeLocalRomSegmentEvaluation(self._romGlobalAdjustments, result, picker) result = self._templateROM.finalizeGlobalRomSegmentEvaluation(self._romGlobalAdjustments, result) return result def writePointwiseData(self, writeTo): """ Writes pointwise data about this ROM to the data object. @ In, writeTo, DataObject, data structure into which data should be written @ Out, None """ rlz = self._writeSegmentsRealization(writeTo) writeTo.addRealization(rlz) def writeXML(self, writeTo, targets=None, skip=None): """ Write out ARMA information @ In, writeTo, xmlUtils.StaticXmlElement, entity to write to @ In, targets, list, optional, unused @ In, skip, list, optional, unused @ Out, None """ # write global information newNode = xmlUtils.StaticXmlElement('GlobalROM', attrib={'segment':'all'}) self._templateROM.writeXML(newNode, targets, skip) writeTo.getRoot().append(newNode.getRoot()) # write subrom information for i, rom in enumerate(self._roms): newNode = xmlUtils.StaticXmlElement('SegmentROM', attrib={'segment':str(i)}) rom.writeXML(newNode, targets, skip) writeTo.getRoot().append(newNode.getRoot()) ################### # UTILITY METHODS # ################### def _evaluateBySegments(self, evaluationDict): """ Evaluate ROM by evaluating its segments @ In, evaluationDict, dict, realization to evaluate @ Out, result, dict, dictionary of results """ # TODO assuming only subspace is pivot param pivotID = self._templateROM.pivotParameterID lastEntry = self._divisionInfo['historyLength'] result = None # we don't know the targets yet, so wait until we get the first evaluation to set this up nextEntry = 0 # index to fill next data set into self.raiseADebug('Sampling from {} segments ...'.format(len(self._roms))) roms = self._getSequentialRoms() for r, rom in enumerate(roms): self.raiseADebug('Evaluating ROM segment', r) subResults = rom.evaluate(evaluationDict) # NOTE the pivot values for subResults will be wrong (shifted) if shifting is used in training ## however, we will set the pivotID values all at once after all results are gathered, so it's okay. # build "results" structure if not already done -> easier to do once we gather the first sample if result is None: # TODO would this be better stored as a numpy array instead? result = dict((target, np.zeros(lastEntry)) for target in subResults.keys()) # place subresult into overall result # TODO this assumes consistent history length! True for ARMA at least. entries = len(list(subResults.values())[0]) # There's a problem here, if using Clustering; the residual shorter-length element at the end might be represented # by a ROM that expects to deliver the full signal. TODO this should be handled in a better way, # but for now we can truncate the signal to the length needed for target, values in subResults.items(): # skip the pivotID if target == pivotID: continue if len(result[target][nextEntry:]) < len(values): result[target][nextEntry:] = values[:len(result[target][nextEntry:])] else: result[target][nextEntry:nextEntry + entries] = values # update next subdomain storage location nextEntry += entries # place pivot values result[pivotID] = self._indexValues[pivotID] return result def _getSequentialRoms(self): """ Returns ROMs in sequential order. Trivial for Segmented. @ In, None @ Out, list, list of ROMs in order (pointer, not copy) """ return self._roms def _subdivideDomain(self, divisionInstructions, trainingSet): """ Creates markers for subdividing the pivot parameter domain, either based on number of subdivisions or on requested pivotValue lengths. @ In, divisionInstructions, dict, dictionary of inputs/indices to cluster on mapped to either number of subdivisions to make or length of the pivot value segments to include @ In, trainingSet, dict or list, data used to train the ROM; if a list is provided a temporal ROM is generated. @ Out, counter, list(tuple), indices that belong to each division; at minimum (first index, last index) @ Out, unclustered, list(tuple), as "counter" but for segments that will not be clustered """ unclustered = [] # division instructions are as {subspace: (mode, value)} ## where "value" is the number of segments in "split" mode ## or the length of pivot values per segment in "value" mode self.raiseADebug('Training segmented subspaces for "{}" ...'.format(self._romName)) for subspace, (mode, value) in divisionInstructions.items(): dataLen = len(trainingSet[subspace][0]) # TODO assumes syncronized histories, or single history self._divisionInfo['historyLength'] = dataLen # TODO assumes single pivotParameter if mode == 'split': numSegments = value # renamed for clarity # divide the subspace into equally-sized segments, store the indexes for each segment counter = np.array_split(np.arange(dataLen), numSegments) # only store bounds, not all indices in between -> note that this is INCLUSIVE! counter = list((c[0], c[-1]) for c in counter) # Note that "segmented" doesn't have "unclustered" since chunks are evenly sized elif mode == 'value': segmentValue = value # renamed for clarity # divide the subspace into segments with roughly the same pivot length (e.g. time length) pivot = trainingSet[subspace][0] # find where the data passes the requested length, and make dividers floor = 0 # where does this pivot segment start? nextOne = segmentValue # how high should this pivot segment go? counter = [] # TODO speedup; can we do this without looping? while pivot[floor] < pivot[-1]: cross = np.searchsorted(pivot, nextOne) # if the next crossing point is past the end, put the remainder piece ## into the "unclustered" grouping, since it might be very oddly sized ## and throw off segmentation (specifically for clustering) if cross == len(pivot): unclustered.append((floor, cross - 1)) break # add this segment, only really need to know the first and last index (inclusive) counter.append((floor, cross - 1)) # Note: indices are INCLUSIVE # update search parameters floor = cross nextOne += segmentValue self.raiseADebug('Dividing {:^20s} into {:^5d} divisions for training ...'.format(subspace, len(counter) + len(unclustered))) # return the counter indicies as well as any odd-piece-out parts return counter, unclustered def _trainBySegments(self, divisions, trainingSet): """ Train ROM by training many ROMs depending on the input/index space clustering. @ In, divisions, tuple, (division slice indices, unclustered spaces) @ In, trainingSet, dict or list, data used to train the ROM; if a list is provided a temporal ROM is generated. @ Out, None """ # train the subdomain ROMs counter, remainder = divisions roms = self._trainSubdomainROMs(self._templateROM, counter, trainingSet, self._romGlobalAdjustments) # if there were leftover domain segments that didn't go with the rest, train those now if remainder: unclusteredROMs = self._trainSubdomainROMs(self._templateROM, remainder, trainingSet, self._romGlobalAdjustments) roms = np.hstack([roms, unclusteredROMs]) self._roms = roms def _trainSubdomainROMs(self, templateROM, counter, trainingSet, romGlobalAdjustments): """ Trains the ROMs on each clusterable subdomain @ In, templateROM, SupervisedLEarning.supervisedLearning instance, template ROM @ In, counter, list(tuple), instructions for dividing subspace into subdomains @ In, trainingSet, dict, data on which ROMs should be trained @ In, romGlobalAdjustments, object, arbitrary container created by ROMs and passed to ROM training @ Out, roms, np.array(supervisedLearning), trained ROMs for each subdomain """ targets = templateROM.target[:] # clear indices from teh training list, since they're independents # TODO assumes pivotParameter is the only subspace being divided pivotID = templateROM.pivotParameterID targets.remove(pivotID) # stash pivot values, since those will break up while training segments # TODO assumes only pivot param if pivotID not in self._indexValues: self._indexValues[pivotID] = trainingSet[pivotID][0] # loop over clusters and train data roms = [] for i, subdiv in enumerate(counter): # slicer for data selection picker = slice(subdiv[0], subdiv[-1] + 1) ## TODO we need to be slicing all the data, not just one realization, once we support non-ARMA segmentation. data = dict((var, [copy.deepcopy(trainingSet[var][0][picker])]) for var in trainingSet) # renormalize the pivot if requested, e.g. by shifting values norm = self._divisionPivotShift[pivotID] if norm: if norm == 'zero': # left-shift pivot so subspace starts at 0 each time delta = data[pivotID][0][0] elif norm == 'first': # left-shift so that first entry is equal to pivot's first value (maybe not zero) delta = data[pivotID][0][0] - trainingSet[pivotID][0][0] data[pivotID][0] -= delta # create a new ROM and train it! newROM = copy.deepcopy(templateROM) newROM.name = '{}_seg{}'.format(self._romName, i) newROM.adjustLocalRomSegment(self._romGlobalAdjustments) self.raiseADebug('Training segment', i, picker) newROM.train(data) roms.append(newROM) # format array for future use roms = np.array(roms) return roms def _writeSegmentsRealization(self, writeTo): """ Writes pointwise data about segmentation to a realization. Won't actually add rlz to D.O., but will register names to it. @ In, writeTo, DataObject, data structure into which data should be written @ Out, None """ pivotID = self._templateROM.pivotParameterID pivot = self._indexValues[pivotID] # realization to add eventually rlz = {} segmentNames = range(len(self._divisionInfo['delimiters'])) # pivot for all this stuff is the segment number rlz['segment_number'] = np.asarray(segmentNames) # start indices varName = 'seg_index_start' writeTo.addVariable(varName,
np.array([])
numpy.array
from matplotlib import pyplot as plt import numpy as np # Compute the bit-reverse of an N-bit input # (ARM RBIT instruction may be useful here?) def bit_reverse(input, N): result = input & 1 for _ in range(N - 1): result <<= 1 input >>= 1 result |= (input & 1) return result # Bit-reverse shuffle an array of 2^N entries in place. def bit_reverse_shuffle(samples, N): assert len(samples) == 2**N, f'bad array length, {len(samples)} != {2**N} (2^{N})' for i in range(2**N): j = bit_reverse(i, N) if i < j: t = samples[i] samples[i] = samples[j] samples[j] = t # Radix-2, time decimation FFT. # Inputs are real-valued; input length must be 2^N. # # very good match to numpy for float64, float32 # float16 works for small but overflows for big. # int64, int32 work for big but not for small (underflow) # int16 is bad for big as well (overflow) # # TODO: can we do a fixed-point FFT with appropriate scaling? # TODO: optimize for real-valued FFT being symmetrical? # TODO: replace bit-reverse shuffle with per-pass strides? # TODO: small optimizations like calculating angles by addition. # def fft(input, N): length = len(input) assert length == 2**N, f'bad input length, {length} != {2**N} (2^{N})' # The radix-2 FFT is a recursive algorithm that breaks a # DFT of 2^N entries into two DFTs each of 2^(N-1) entries. # It combines the results of the sub-DFTs using a set of # 'butterfly' multiply-and-add operations. # # In order to operate in place, the recursive traversal # is actually implemented breadth-first. Conceptually # we do 2^N 1-entry DFTs (which are noops), then combine # them into 2^(N-1) 2-entry DFTs, and so on until we have # one 2^N-entry DFT. # # Each recursive step would have split the inputs into even # and odd entries. We can avoid shuffling between stages by # shuffling once first. real = input.copy() bit_reverse_shuffle(real, N) # No need to shuffle the imaginary parts, which are all zeros. imag = np.zeros(len(real), real.dtype) #for (sub_length = 2; sub_length <= 2**N; sub_length *= 2): for n in range(1, N + 1): sub_length = 2**n # In this pass we are merging smaller DFTs into DFTs # of length sub_length. This should look like: # for (base = 0; base < length; base += sub_length): # for (step = 0; step < sub_length // 2; step++): # calculate 'twiddle factor' for this step # merge [base+step] with [base+(sub_length/2)+step] # but calculating twiddle factors is expensive so # we invert the inner two loops so we can reuse them. for step in range(sub_length // 2): # "twiddle factor" of e^(-2*pi*i*step/sub_length) twiddle_angle = -2 * np.pi * step / sub_length twiddle_sin = np.sin(twiddle_angle) twiddle_cos = np.cos(twiddle_angle) for base in range(0, length, sub_length): # Load the two entries that we're going to merge. A_index = base + step A_real = real[A_index] A_imag = imag[A_index] B_index = A_index + (sub_length // 2) B_real = real[B_index] B_imag = imag[B_index] # Butterfly. This is equivalent to taking # complex A and B and twiddle T and calculating # A' = A + TB # B' = A - TB TB_real = B_real * twiddle_cos - B_imag * twiddle_sin TB_imag = B_imag * twiddle_cos + B_real * twiddle_sin real[A_index] = (A_real + TB_real) imag[A_index] = (A_imag + TB_imag) real[B_index] = (A_real - TB_real) imag[B_index] = (A_imag - TB_imag) # Return a complex-valued numpy array to match the usual API return real + 1j * imag # Size of inputs. power_of_two = 12 number_of_samples = 2**power_of_two # Format a 1D array for C. def c_decl(name, data): decl = f'static const float {name}[{len(data)}]' init = '{' + ', '.join(data.astype(str)) + '}' return f'{decl} = {init};\n' # Test our code on one set of input data, # plot the answers and save the test patterns. def compare(name, data): reference = np.fft.rfft(data.astype(np.float64)) ours64 = fft(data.astype(np.float64), power_of_two) ours32 = fft(data.astype(np.float32), power_of_two) status = 'OK' # FFT of real-valued inputs should be symmetrical apart from DC. if not np.allclose(np.conj(ours64[-1:0:-1]), ours64[1:]): status = 'NOT SYMMETRICAL' # 64bit should match numpy closely. if not np.allclose(ours64[:len(ours64) // 2 + 1], reference, 1e-5): status = 'DOES NOT MATCH NUMPY' # 32bit should match 64bit within reason. if not np.allclose(ours64, ours32, 1e-2, 1e-3): status = '32 DOES NOT MATCH 64' plt.clf() plt.plot(
np.abs(reference)
numpy.abs
from operator import ne import matplotlib.pyplot as plt import numpy as np import os import sys import copy from scipy.interpolate.fitpack import splint import py3Dmol import sympy as sp #import braketlab.solid_harmonics as solid_harmonics #import braketlab.hydrogen as hydrogen import braketlab.basisbank as basisbank import braketlab.animate as anim from functools import lru_cache import warnings from scipy.interpolate import LinearNDInterpolator from scipy.interpolate import RegularGridInterpolator from scipy import integrate from scipy.stats import multivariate_normal from scipy.interpolate import interp1d from sympy.utilities.runtests import split_list def locate(f): """ Determine (numerically) the center and spread of a sympy function ## Returns position (numpy.array) standard deviation (numpy.array) """ s = get_ordered_symbols(f) nd = len(s) fn = sp.lambdify(s, f, "numpy") xn = np.zeros(nd) ss = 100 # initial distribution # qnd norm n20 = 10000 x0 = np.random.multivariate_normal(xn, np.eye(nd)*ss, n20) P = multivariate_normal(mean=xn, cov=np.eye(nd)*ss).pdf(x0) n2 = np.mean(fn(*x0.T).real**2*P**-1, axis = -1)**-1 assert(n2>1e-15), "Unable to normalize function" n_tot = 0 mean_estimate = 0 for i in range(1,100): x0 = np.random.multivariate_normal(xn, np.eye(nd)*ss, n20) P = multivariate_normal(mean=xn, cov=np.eye(nd)*ss).pdf(x0) n2 = np.mean(fn(*x0.T).real**2*P**-1, axis = -1)**-1 assert(n2>1e-15), "Unable to normalize function" x_ = np.mean(x0.T*n2*fn(*x0.T).real**2*P**-1, axis = -1) if i>50: mean_old = mean_estimate mean_estimate = (mean_estimate*n_tot + np.sum(x0.T*n2*fn(*x0.T).real**2*P**-1, axis = -1))/(n_tot+n20) n_tot += n20 xn = x_ # determine spread n20 *= 100 sig = .5 x0 = np.random.multivariate_normal(xn, np.eye(nd)*sig, n20) P = multivariate_normal(mean=xn, cov=np.eye(nd)*sig).pdf(x0) #first estimate of spread n2 = np.mean(fn(*x0.T).real**2*P**-1, axis = -1)**-1 x_ = np.mean(x0.T**2*n2*fn(*x0.T).real**2*P**-1, axis = -1) - xn.T**2 # ensure positive non-zero standard-deviation x_ = np.max(np.stack([np.zeros(3)+.0001,x_]), axis = 0 ) i = .5*(2*x_)**-1 sig = (2*i)**-.5 # recompute spread with better precision x0 = np.random.multivariate_normal(xn, np.diag(sig), n20) P = multivariate_normal(mean=xn, cov=np.diag(sig)).pdf(x0) n2 = np.mean(fn(*x0.T).real**2*P**-1, axis = -1)**-1 x_ = np.mean(x0.T**2*n2*fn(*x0.T).real**2*P**-1, axis = -1) - xn.T**2 # ensure positive non-zero standard-deviation x_ = np.max(np.stack([np.zeros(3)+.0001,x_]), axis = 0 ) i = .5*(2*x_)**-1 sig = (2*i)**-.5 return mean_estimate, sig def plot(*p): warnings.warn("replaced by show( ... )", DeprecationWarning, stacklevel=2) show(*p) def get_cubefile(p): Nx = 60 t = np.linspace(-20,20,Nx) cubic = p(t[:,None,None], t[None,:,None], t[None,None,:]) if cubic.dtype == np.complex128: cubic = cubic.real cube = """CUBE FILE. OUTER LOOP: X, MIDDLE LOOP: Y, INNER LOOP: Z 3 0.000000 0.000000 0.000000 %i 1 0.000000 0.000000 %i 0.000000 1 0.000000 %i 0.000000 0.000000 1 """ % (Nx,Nx,Nx) for i in range(Nx): for j in range(Nx): for k in range(Nx): cube += "%.4f " % cubic[i,j,k].real cube += "\n" #print(cube) #f = open("cubeworld.cube", "w") #f.write(cube) #f.close() return cube, cubic.mean(), cubic.max(), cubic.min() def show(*p, t=None): """ all-purpose vector visualization Example usage to show the vectors as an image a = ket( ... ) b = ket( ... ) show(a, b) """ mpfig = False mv = 1 for i in list(p): spe = i.get_ket_sympy_expression() if type(spe) in [np.array, list, np.ndarray]: # 1d vector if not mpfig: mpfig = True plt.figure(figsize=(6,6)) vec_R2 = i.coefficients[0]*i.basis[0] + i.coefficients[1]*i.basis[1] plt.plot([0, vec_R2[0]], [0, vec_R2[1]], "-") plt.plot([vec_R2[0]], [vec_R2[1]], "o", color = (0,0,0)) plt.text(vec_R2[0]+.1, vec_R2[1], "%s" % i.__name__) mv = max( mv, max(vec_R2[1], vec_R2[0]) ) else: vars = list(spe.free_symbols) nd = len(vars) Nx = 200 x = np.linspace(-8,8,200) mv = 8 if nd == 1: if not mpfig: mpfig = True plt.figure(figsize=(6,6)) plt.plot(x,i(x) , label=i.__name__) mpfig = True if nd == 2: if not mpfig: mpfig = True plt.figure(figsize=(6,6)) plt.contour(x,x,i(x[:, None], x[None,:])) if nd == 3: """ cube, cm, cmax, cmin = get_cubefile(i) v = py3Dmol.view() #cm = cube.mean() offs = cmax*.05 bins = np.linspace(cm-offs,cm+offs, 2) for i in range(len(bins)): di = int((255*i/len(bins))) v.addVolumetricData(cube, "cube", {'isoval':bins[i], 'color': '#%02x%02x%02x' % (255 - di, di, di), 'opacity': 1.0}) v.zoomTo() v.show() """ import k3d import SimpleITK as sitk #psi = bk.basisbank.get_hydrogen_function(5,2,2) #psi = bk.basisbank.get_gto(4,2,0) x = np.linspace(-1,1,100)*80 img = i(x[None,None,:], x[None,:,None], x[:,None,None]) #Nc = 3 #colormap = interp1d(np.linspace(0,1,Nc), np.random.uniform(0,1,(3, Nc))) #embryo = k3d.volume(img.astype(np.float32), # color_map=np.array(k3d.basic_color_maps.BlackBodyRadiation, dtype=np.float32), # opacity_function = np.linspace(0,1,30)[::-1]**.1) orb_pos = k3d.volume(img.astype(np.float32), color_map=np.array(k3d.basic_color_maps.Gold, dtype=np.float32), opacity_function = np.linspace(0,1,30)[::-1]**.2) orb_neg = k3d.volume(-1*img.astype(np.float32), color_map=np.array(k3d.basic_color_maps.Blues, dtype=np.float32), opacity_function = np.linspace(0,1,30)[::-1]**.2) plot = k3d.plot() plot += orb_pos plot += orb_neg plot.display() if mpfig: plt.grid() plt.xlim(-mv-1,mv+1) plt.ylim(-mv-1,mv+1) plt.legend() plt.show() def show_old(*p, t=None): """ all-purpose vector visualization Example usage to show the vectors as an image a = ket( ... ) b = ket( ... ) plot(a, b) """ plt.figure(figsize=(6,6)) try: Nx = 200 x = np.linspace(-8,8,200) Z = np.zeros((Nx, Nx, 3), dtype = float) colors = np.random.uniform(0,1,(len(list(p)), 3)) for i in list(p): try: plt.contour(x,x,i(x[:, None], x[None,:])) except: plt.plot(x,i(x) , label=i.__name__) plt.grid() plt.legend() #plt.show() except: mv = 1 #plt.figure(figsize = (6,6)) for i in list(p): vec_R2 = i.coefficients[0]*i.basis[0] + i.coefficients[1]*i.basis[1] plt.plot([0, vec_R2[0]], [0, vec_R2[1]], "-") plt.plot([vec_R2[0]], [vec_R2[1]], "o", color = (0,0,0)) plt.text(vec_R2[0]+.1, vec_R2[1], "%s" % i.__name__) mv = max( mv, max(vec_R2[1], vec_R2[0]) ) plt.grid() plt.xlim(-mv-1,mv+1) plt.ylim(-mv-1,mv+1) plt.show() def construct_basis(p): """ Build basis from prism object """ basis = [] for atom, pos in zip(p.basis_set, p.atoms): for shell in atom: for contracted in shell: contracted = np.array(contracted) l = int(contracted[0,2]) a = contracted[:, 0] w = contracted[:, 1] for m in range(-l,l+1): bf = w[0]*get_solid_harmonic_gaussian(a[0],l,m, position = [0,0,0]) for weights in range(1,len(w)): bf += w[i]*get_solid_harmonic_gaussian(a[i],l,m, position = [0,0,0]) #get_solid_harmonic_gaussian(a,l,m, position = [0,0,0]) basis.append( bf ) return basis class basisfunction: """ # A general class for a basis function in $\mathbb{R}^n$ ## Keyword arguments: | Argument | Description | | ----------- | ----------- | | sympy_expression | A sympy expression | | position | assumed center of basis function (defaults to $\mathbf{0}$ ) | | name | (unused) | | domain |if None, the domain is R^n, if [ [x0, x1], [ y0, y1], ... ] , the domain is finite | ## Methods | Method | Description | | ----------- | ----------- | | normalize | Perform numerical normalization of self | | estimate_decay | Estimate decay of self, used for importance sampling (currently inactive) | | get_domain(other) | Returns the intersecting domain of two basis functions | ## Example usage: ``` x = sympy.Symbol("x") x2 = basisfunction(x**2) x2.normalize() ``` """ position = None normalization = 1 domain = None __name__ = "\chi" def __init__(self, sympy_expression, position = None, domain = None, name = "\chi"): self.__name__ = name self.dimension = len(sympy_expression.free_symbols) self.position = np.array(position) if position is None: self.position = np.zeros(self.dimension, dtype = float) assert(len(self.position)==self.dimension), "Basis function position contains incorrect number of dimensions (%.i)." % self.dimension # sympy expressions self.ket_sympy_expression = translate_sympy_expression(sympy_expression, self.position) self.bra_sympy_expression = translate_sympy_expression(sp.conjugate(sympy_expression), self.position) # numeric expressions symbols = np.array(list(sympy_expression.free_symbols)) l_symbols = np.argsort([i.name for i in symbols]) symbols = symbols[l_symbols] self.ket_numeric_expression = sp.lambdify(symbols, self.ket_sympy_expression, "numpy") self.bra_numeric_expression = sp.lambdify(symbols, self.bra_sympy_expression, "numpy") # decay self.decay = 1.0 def normalize(self, domain = None): """ Set normalization factor $N$ of self ($\chi$) so that $\langle \chi \\vert \chi \\rangle = 1$. """ s_12 = inner_product(self, self) self.normalization = s_12**-.5 def locate(self): """ Locate and determine spread of self """ self.position, self.decay = locate(self.ket_sympy_expression) def estimate_decay(self): # estimate standard deviation #todo : proper decay estimate (this one is incorrect) #x = np.random.multivariate_normal(self.position*0, np.eye(len(self.position)), 1e7) #r2 = np.sum(x**2, axis = 1) #P = multivariate_normal(mean=self.position*0, cov=np.eye(len(self.position))).pdf(x) self.decay = 1 #np.mean(self.numeric_expression(*x.T)*r2*P**-1)**.5 def get_domain(self, other = None): if other is None: return self.domain else: domain = self.domain if self.domain is not None: domain = [] for i in range(len(self.domain)): domain.append([np.array([self.domain[i].min(), other.domain[i].min()]).max(), np.array([self.domain[i].max(), other.domain[i].max()]).min()]) return domain def __call__(self, *r): """ Evaluate function in coordinates ```*r``` (arbitrary dimensions). ## Returns The basisfunction $\chi$ evaluated in the coordinates provided in the array(s) ```*r```: $\int_{\mathbb{R}^n} \delta(\mathbf{r} - \mathbf{r'}) \chi(\mathbf{r'}) d\mathbf{r'}$ """ return self.normalization*self.ket_numeric_expression(*r) def __mul__(self, other): """ Returns a basisfunction $\chi_{a*b}(\mathbf{r})$, where $\chi_{a*b}(\mathbf{r}) = \chi_a(\mathbf{r}) \chi_b(\mathbf{r})$ """ return basisfunction(self.ket_sympy_expression * other.ket_sympy_expression, position = .5*(self.position + other.position), domain = self.get_domain(other), name = self.__name__+other.__name__) def __rmul__(self, other): return basisfunction(self.ket_sympy_expression * other.ket_sympy_expression, position = .5*(self.position + other.position), domain = self.get_domain(other), name = self.__name__+other.__name__) def __add__(self, other): """ Returns a basisfunction $\chi_{a+b}(\mathbf{r})$, where $\chi_{a+b}(\mathbf{r}) = \chi_a(\mathbf{r}) + \chi_b(\mathbf{r})$ """ return basisfunction(self.ket_sympy_expression + other.ket_sympy_expression, position = .5*(self.position + other.position), domain = self.get_domain(other)) def __sub__(self, other): """ Returns a basisfunction $\chi_{a-b}(\mathbf{r})$, where $\chi_{a-b}(\mathbf{r}) = \chi_a(\mathbf{r}) - \chi_b(\mathbf{r})$ """ return basisfunction(self.ket_sympy_expression - other.ket_sympy_expression, position = .5*(self.position + other.position), domain = self.get_domain(other)) def _repr_html_(self): """ Returns a latex-formatted string to display the mathematical expression of the basisfunction. """ return "$ %s $" % sp.latex(self.ket_sympy_expression) #def get_solid_harmonic_gaussian(a,l,m, position = [0,0,0]): # return basisfunction(solid_harmonics.get_Nao(a,l,m), position = position) class operator_expression(object): """ # A class for algebraic operator manipulations instantiate with a list of list of operators ## Example ```operator([[a, b], [c,d]], [1,2]]) = 1*ab + 2*cd ``` """ def __init__(self, ops, coefficients = None): self.ops = ops if issubclass(type(ops),operator): self.ops = [[ops]] self.coefficients = coefficients if coefficients is None: self.coefficients = np.ones(len(self.ops)) def __mul__(self, other): """ # Operator multiplication """ if type(other) is operator: new_ops = [] for i in self.ops: for j in other.ops: new_ops.append(i+j) return operator(new_ops).flatten() else: return self.apply(other) def __add__(self, other): """ # Operator addition """ new_ops = self.ops + other.ops new_coeffs = self.coefficients + other.coefficients return operator_expression(new_ops, new_coeffs).flatten() def __sub__(self, other): """ # Operator subtraction """ new_ops = self.ops + other.ops new_coeffs = self.coefficients + [-1*i for i in other.coefficients] return operator_expression(new_ops, new_coeffs).flatten() def flatten(self): """ # Remove redundant terms """ new_ops = [] new_coeffs = [] found = [] for i in range(len(self.ops)): if i not in found: new_ops.append(self.ops[i]) new_coeffs.append(1) for j in range(i+1, len(self.ops)): if self.ops[i]==self.ops[j]: print("flatten:", i,j, self.ops[i], self.ops[j]) #self.coefficients[i] += 1 found.append(j) new_coeffs[-1] += self.coefficients[j] return operator_expression(new_ops, new_coeffs) def apply(self, other_ket): """ # Apply operator to ket $\hat{\Omega} \vert a \rangle = \vert a' \rangle $ ## Returns A new ket """ ret = 0 for i in range(len(self.ops)): ret_term = other_ket*1 for j in range(len(self.ops[i])): ret_term = self.ops[i][-j]*ret_term if i==0: ret = ret_term else: ret = ret + ret_term return ret def _repr_html_(self): """ Returns a latex-formatted string to display the mathematical expression of the operator. """ ret = "" for i in range(len(self.ops)): if np.abs(self.coefficients[i]) == 1: if self.coefficients[i]>0: ret += "+" else: ret += "-" else: if self.coefficients[i]>0: ret += "+ %.2f" % self.coefficients[i] else: ret += "%.2f" % self.coefficients[i] for j in range(len(self.ops[i])): ret += "$\\big{(}$" + self.ops[i][j]._repr_html_() + "$\\big{)}$" return ret class operator(object): """ Parent class for operators """ def __init__(self): pass class sympy_operator_action: def __init__(self, sympy_expression): self.sympy_expression = sympy_expression def __mul__(self, other): assert(type(other) is basisfunction), "cannot operate on %s" %type(other) bs = basisfunction(self.sympy_expression*other.ket_sympy_expression) bs.position = other.position return ket( bs) class translation(operator): def __init__(self, translation_vector): self.translation_vector = np.array(translation_vector) def __mul__(self, other): #assert(type(other) is basisfunction), "cannot translate %s" %type(other) new_expression = translate_sympy_expression(other.get_ket_sympy_expression(), self.translation_vector) #bs = basisfunction(new_expression) #if other.position is not None: # bs.position = other.position + self.translation_vector return ket( new_expression ) class differential(operator): def __init__(self, order): self.order = order def __mul__(self, other): #assert(type(other) is basisfunction), "cannot differentiate %s" %type(other) new_expression = 0 symbols = np.array(list(other.get_ket_sympy_expression().free_symbols)) l_symbols = np.argsort([i.name for i in symbols]) symbols = symbols[l_symbols] for i in range(len(symbols)): new_expression += sp.diff(other.get_ket_sympy_expression(), symbols[i], self.order[i]) bs = basisfunction(new_expression) #bs.position = other.position return ket( new_expression) def translate_sympy_expression(sympy_expression, translation_vector): symbols = np.array(list(sympy_expression.free_symbols)) l_symbols = np.argsort([i.name for i in symbols]) shifts = symbols[l_symbols] assert(len(shifts)==len(translation_vector)), "Incorrect length of translation vector" return_expression = sympy_expression*1 for i in range(len(shifts)): return_expression = return_expression.subs(shifts[i], shifts[i]-translation_vector[i]) return return_expression # Operators class kinetic_operator(operator): def __init__(self, p = None): self.p = p if p is not None: self.variables = get_default_variables(p) def __mul__(self, other): if self.p is None: self.variables = other.basis[0].ket_sympy_expression.free_symbols #ret = 0 new_coefficients = other.coefficients new_basis = [] for i in other.basis: new_basis_ = 0 for j in self.variables: new_basis_ += sp.diff(i.ket_sympy_expression,j, 2) new_basis.append(basisfunction(new_basis_)) new_basis[-1].position = i.position return ket([-.5*i for i in new_coefficients], basis = new_basis) def _repr_html_(self): return "$ -\\frac{1}{2} \\nabla^2 $" def get_translation_operator(pos): return operator_expression(translation(pos))# , special_operator = True) def get_sympy_operator(sympy_expression): return operator_expression(sympy_expression) def get_differential_operator(order): return operator_expression(differential(order)) #,special_operator = True) def get_onebody_coulomb_operator(position = np.array([0,0,0.0]), Z = 1.0, p = None, variables = None): return operator_expression(onebody_coulomb_operator(position, Z = Z, p = p, variables = variables)) def get_twobody_coulomb_operator(p1=0,p2=1): return operator_expression(twobody_coulomb_operator(p1,p2)) def get_kinetic_operator(p = None): return operator_expression(kinetic_operator(p = p)) def get_default_variables(p, n = 3): variables = [] for i in range(n): variables.append(sp.Symbol("x_{%i; %i}" % (p, i))) return variables class onebody_coulomb_operator(operator): def __init__(self, position = np.array([0.0,0,0]), Z = 1.0, p = None, variables = None): self.position = position self.Z = Z self.p = p self.variables = variables if p is not None: self.variables = get_default_variables(self.p, len(position)) r = 0 for j in range(len(self.variables)): r += (self.variables[j]-self.position[j])**2 self.r_inv = r**-.5 def __mul__(self, other, r = None): variables = self.variables if self.variables is None: #variables = other.basis[0].ket_sympy_expression.free_symbols symbols = np.array(list(other.basis[0].ket_sympy_expression.free_symbols)) """ symbols_particles = [int(x.name.split("{")[1].split(";")[0]) for x in symbols] particle_symbols = [] for i in range(len(symbols)): if symbols_particles[i] == self.p: particle_symbols.append(symbols[i]) print("part_s:", particle_symbols) symbols = particle_symbols """ l_symbols = np.argsort([i.name for i in symbols]) variables = symbols[l_symbols] r = 0 for j in range(len(variables)): r += (variables[j]-self.position[j])**2 self.r_inv = r**-.5 new_coefficients = other.coefficients new_basis = [] for i in other.basis: new_basis.append(basisfunction(self.r_inv*i.ket_sympy_expression))#, position = i.position+self.position)) return ket([-self.Z*i for i in new_coefficients], basis = new_basis) def _repr_html_(self): if self.position is None: return "$ -\\frac{1}{\\mathbf{r}} $" else: return "$ -\\frac{1}{\\vert \\mathbf{r} - (%f, %f, %f) \\vert }$" % (self.position[0], self.position[1], self.position[2]) def twobody_denominator(p1, p2, ndim): v_1 = get_default_variables(p1, ndim) v_2 = get_default_variables(p2, ndim) ret = 0 for i in range(ndim): ret += (v_1[i] - v_2[i])**2 return ret**.5 class twobody_coulomb_operator(operator): def __init__(self, p1 = 0, p2 = 1, ndim = 3): self.p1 = p1 self.p2 = p2 self.ndim = ndim def __mul__(self, other): #vid = other.variable_identities #if vid is None: # assert(False), "unable to determine variables of ket" new_basis = 0 for i in range(len(other.basis)): #new_basis += other.coefficients[i]*apply_twobody_operator(other.basis[i].ket_sympy_expression, self.p1, self.p2) new_basis += other.coefficients[i]*other.basis[i].ket_sympy_expression/twobody_denominator(self.p1, self.p2, self.ndim) return ket(new_basis) def _repr_html_(self): return "$ -\\frac{1}{\\vert \\mathbf{r}_1 - \\mathbf{r}_2 \\vert} $" class twobody_coulomb_operator_older(operator): def __init__(self): pass def __mul__(self, other): vid = other.variable_identities if vid is None: assert(False), "unable to determine variables of ket" new_basis = [] for i in range(len(other.basis)): fs1, fs2 = vid[i] denom = 0 for k,l in zip(list(fs1), list(fs2)): denom += (k - l)**2 new_basis.append( ket(other.basis[i].ket_sympy_expression/np.sqrt(denom) ) ) return ket(other.coefficients, basis = new_basis) def _repr_html_(self): return "$ -\\frac{1}{\\vert \\mathbf{r}_1 - \\mathbf{r}_2 \\vert} $" class twobody_coulomb_operator_old(): def __init__(self): pass def __mul__(self, other, r = None): variables = other.basis[0].ket_sympy_expression.free_symbols r = 0 for j in variables: r += j**2 r_inv = r**-.5 new_coefficients = other.coefficients new_basis = [] for i in other.basis: new_basis.append(basisfunction(r_inv*i.ket_sympy_expression, position = i.position)) return ket(-new_coefficients, basis = new_basis) def _repr_html_(self): return "$ -\\frac{1}{\\mathbf{r}} $" def get_standard_basis(n): b = np.eye(n) basis = [] for i in range(n): basis.append(ket(b[i], basis = b)) return basis class ket(object): """ A class for vectors defined on general vector spaces Author: <NAME> (<EMAIL>) ## Keyword arguments: | Method | Description | | ----------- | ----------- | | generic_input | if list or numpy.ndarray: if basis is None, returns a cartesian vector else, assumes input to contain coefficients. If sympy expression, returns ket([1], basis = [basisfunction(generic_input)]) | | name | a string, used for labelling and plotting, visual aids | | basis | a list of basisfunctions | | position | assumed centre of function $\langle \\vert \hat{\mathbf{r}} \\vert \\rangle$. | | energy | if this is an eigenstate of a Hamiltonian, it's eigenvalue may be fixed at initialization | ## Operations For kets B and A and scalar c | Operation | Description | | ----------- | ----------- | | A + B | addition | | A - C | subtraction | | A * c | scalar multiplication | | A / c | division by a scalar | | A * B | pointwise product | | A.bra*B | inner product | | A.bra@B | inner product | | A @ B | cartesian product | | A(x) | $\int_R^n \delta(x - x') f(x') dx'$ evaluate function at x | """ def __init__(self, generic_input, name = "", basis = None, position = None, energy = None): """ ## Initialization of a ket """ self.position = position if type(generic_input) in [np.ndarray, list]: self.coefficients = list(generic_input) self.basis = [i for i in np.eye(len(self.coefficients))] if basis is not None: self.basis = basis else: # assume sympy expression if position is None: position = np.zeros(len(generic_input.free_symbols), dtype = float) self.coefficients = [1.0] self.basis = [basisfunction(generic_input, position = position)] self.ket_sympy_expression = self.get_ket_sympy_expression() self.bra_sympy_expression = self.get_bra_sympy_expression() if energy is not None: self.energy = energy else: self.energy = [0 for i in range(len(self.basis))] self.__name__ = name self.bra_state = False self.a = None """ Algebraic operators """ def __add__(self, other): new_basis = self.basis + other.basis new_coefficients = self.coefficients + other.coefficients new_energies = self.energy + other.energy ret = ket(new_coefficients, basis = new_basis, energy = new_energies) ret.flatten() ret.__name__ = "%s + %s" % (self.__name__, other.__name__) return ret def __sub__(self, other): new_basis = self.basis + other.basis new_coefficients = self.coefficients + [-i for i in other.coefficients] ret = ket(new_coefficients, basis = new_basis) ret.flatten() ret.__name__ = "%s - %s" % (self.__name__, other.__name__) return ret def __mul__(self, other): if type(other) is ket: new_basis = [] new_coefficients = [] for i in range(len(self.basis)): for j in range(len(other.basis)): new_basis.append(self.basis[i]*other.basis[j]) new_coefficients.append(self.coefficients[i]*other.coefficients[j]) #return self.__matmul__(other) return ket(new_coefficients, basis = new_basis) else: return ket([other*i for i in self.coefficients], basis = self.basis) def __rmul__(self, other): return ket([other*i for i in self.coefficients], basis = self.basis) def __truediv__(self, other): assert(type(other) in [float, int]), "Divisor must be float or int" return ket([i/other for i in self.coefficients], basis = self.basis) def __matmul__(self, other): """ Inner- and Cartesian products """ if type(other) in [float, int]: return self*other if type(other) is ket: if self.bra_state: # Compute inner product: < self | other > metric = np.zeros((len(self.basis), len(other.basis)), dtype = np.complex) for i in range(len(self.basis)): for j in range(len(other.basis)): if type(self.basis[i]) is np.ndarray and type(other.basis[j]) is np.ndarray: metric[i,j] = np.dot(self.basis[i], other.basis[j]) else: if type(self.basis[i]) is basisfunction: if type(other.basis[j]) is basisfunction: # (basisfunction | basisfunction) metric[i,j] = inner_product(self.basis[i], other.basis[j]) if other.basis[j] is ket: # (basisfunction | ket ) metric[i,j] = ket([1.0], basis = [self.basis[i]])[email protected][j] else: if type(other.basis[j]) is basisfunction: # ( ket | basisfunction ) metric[i,j] = self.basis[i].bra@ket([1.0], basis = [other.basis[j]]) else: # ( ket | ket ) metric[i,j] = self.basis[i][email protected][j] if np.linalg.norm(metric.imag)<=1e-10: metric = metric.real return np.array(self.coefficients).T.dot(metric.dot(np.array(other.coefficients))) else: if type(other) is ket: if other.bra_state: return outerprod(self, other) else: new_coefficients = [] new_basis = [] variable_identities = [] #for potential two-body interactions for i in range(len(self.basis)): for j in range(len(other.basis)): #bij, sep = split_variables(self.basis[i].ket_sympy_expression, other.basis[j].ket_sympy_expression) bij, sep = relabel_direct(self.basis[i].ket_sympy_expression, other.basis[j].ket_sympy_expression) #bij = ket(bij) bij = basisfunction(bij) #, position = other.basis[j].position) bij.position = np.append(self.basis[i].position, other.basis[j].position) new_basis.append(bij) new_coefficients.append(self.coefficients[i]*other.coefficients[j]) variable_identities.append(sep) ret = ket(new_coefficients, basis = new_basis) ret.flatten() ret.__name__ = self.__name__ + other.__name__ ret.variable_identities = variable_identities return ret def set_position(self, position): for i in range(len(self.basis)): pass def flatten(self): """ Remove redundancies in the expansion of self """ new_coefficients = [] new_basis = [] new_energies = [] found = [] for i in range(len(self.basis)): if i not in found: new_coefficients.append(self.coefficients[i]) new_basis.append(self.basis[i]) new_energies.append(self.energy[i]) for j in range(i+1, len(self.basis)): if type(self.basis[i]) is np.ndarray: if type(self.basis[j]) is np.ndarray: if np.all(self.basis[i]==self.basis[j]): new_coefficients[i] += self.coefficients[j] found.append(j) else: if self.basis[i].ket_sympy_expression == self.basis[j].ket_sympy_expression: if np.all(self.basis[i].position == self.basis[j].position): new_coefficients[i] += self.coefficients[j] found.append(j) self.basis = new_basis self.coefficients = new_coefficients self.energy = new_energies def get_ket_sympy_expression(self): ret = 0 for i in range(len(self.coefficients)): if type(self.basis[i]) in [basisfunction, ket]: ret += self.coefficients[i]*self.basis[i].ket_sympy_expression else: ret += self.coefficients[i]*self.basis[i] return ret def get_bra_sympy_expression(self): ret = 0 for i in range(len(self.coefficients)): if type(self.basis[i]) in [basisfunction, ket]: ret += np.conjugate(self.coefficients[i])*self.basis[i].bra_sympy_expression else: ret += np.conjugate(self.coefficients[i]*self.basis[i]) return ret def __call__(self, *R, t = None): #Ri = *np.array([R[i] - self.position[i] for i in range(len(self.position))]) #Ri = np.array([R[i] - self.position[i] for i in range(len(self.position))], dtype = object) if t is None: result = 0 if self.bra_state: for i in range(len(self.basis)): result += np.conjugate(self.coefficients[i]*self.basis[i](*R)) else: for i in range(len(self.basis)): result += self.coefficients[i]*self.basis[i](*R) return result else: result = 0 if self.bra_state: for i in range(len(self.basis)): result += np.conjugate(self.coefficients[i]*self.basis[i](*R)*np.exp(-np.complex(0,1)*self.energy[i]*t)) else: for i in range(len(self.basis)): result += self.coefficients[i]*self.basis[i](*R)*np.exp(-np.complex(0,1)*self.energy[i]*t) return result @property def bra(self): return self.__a @bra.setter def a(self, var): self.__a = copy.copy(self) self.__a.bra_state = True def _repr_html_(self): if self.bra_state: return "$\\langle %s \\vert$" % self.__name__ else: return "$\\vert %s \\rangle$" % self.__name__ def run(self, x = 8*np.linspace(-1,1,100), t = 0, dt = 0.001): anim_s = anim.system(self, x, t, dt) anim_s.run() """ Measurement """ def measure(self, observable = None, repetitions = 1): """ Make a mesaurement of the observable (hermitian operator) Measures by default the continuous distribution as defined by self.bra*self """ if observable is None: # Measure position P = self.get_bra_sympy_expression()*self.get_ket_sympy_expression() symbols = get_ordered_symbols(P) P = sp.lambdify(symbols, P, "numpy") nd = len(symbols) sig = .1 #variance of initial distribution r = np.random.multivariate_normal(np.zeros(nd), sig*np.eye(nd), repetitions ) # Metropolis-Hastings for i in range(1000): dr = np.random.multivariate_normal(np.zeros(nd), 0.01*sig*np.eye(nd), repetitions) accept = P(r+dr)/P(r) > np.random.uniform(0,1,nd) r[accept] += dr[accept] return r else: #assert(False), "Arbitrary measurements not yet implemented" # get coefficients P = np.zeros(len(observable.eigenstates), dtype = float) for i in range(len(observable.eigenstates)): P[i] = (observable.eigenstates[i].bra@self)**2 distribution = discrete_metropolis_hastings(P, n_samples = repetitions) return observable.eigenvalues[distribution] def discrete_metropolis_hastings(P, n_samples = 10000, n_iterations = 10000, stepsize = None): """ Perform a random walk in the discrete distribution P (array) """ #ensure normality n = np.sum(P) Px = interp1d(np.linspace(0,1,len(P)), P/n) x = np.random.uniform(0,1,n_samples) if stepsize is None: #set stepsize proportional to discretization stepsize = .5*len(P)**-1 print("stepsize:", stepsize) for i in range(n_iterations): dx = np.random.normal(0,stepsize, n_samples) xdx = x + dx # periodic boundaries xdx[xdx<0] += 1 xdx[xdx>1] -= 1 accept = Px(xdx)/Px(x) > np.random.uniform(0,1,n_samples) x[accept] = xdx[accept] return np.array(x*len(P), dtype = int) def metropolis_hastings(f, N, x0, a): """ Metropolis-Hastings random walk in the function f """ x = np.random.multivariate_normal(x0, a, N) for i in range(1000): dx = np.random.multivariate_normal(x0, a*0.01, N) accept = f(x+dx)/f(x) > np.random.uniform(0,1,N) x[accept] += dx[accept] return x def get_particles_in_expression(s): symbols = get_ordered_symbols(s) particles = [] for i in symbols: particles.append( int(i.name.split("{")[1].split(";")[0] ) ) particles = np.array(particles) return np.unique(particles) def get_ordered_symbols(sympy_expression): symbols = np.array(list(sympy_expression.free_symbols)) l_symbols = np.argsort([i.name for i in symbols]) return symbols[l_symbols] def substitute_sequence(s, var_i, var_f): for i in range(len(var_i)): s = s.subs(var_i[i], var_f[i]) return s def relabel_direct(s1,s2): p1 = get_particles_in_expression(s1) p_max = p1.max() + 1 p2 = get_particles_in_expression(s2) for i in p2: if i in p1: s2 = substitute_sequence(s2, get_default_variables(i), get_default_variables(p_max)) p_max += 1 return s1*s2, get_ordered_symbols(s1*s2) def split_variables(s1,s2): """ make a product where """ # gather particles in first symbols s1s = get_ordered_symbols(s1) for i in range(len(s1s)): s1 = s1.subs(s1s[i], sp.Symbol("x_{0; %i}" % i)) s2s = get_ordered_symbols(s2) for i in range(len(s2s)): s2 = s2.subs(s2s[i], sp.Symbol("x_{1; %i}" % i)) return s1*s2, get_ordered_symbols(s1*s2) def parse_symbol(x): """ Parse a symbol of the form x_{i;j} Return a list [i,j] """ strspl = str(x).split("{")[1].split("}")[0].split(";") return [int(i) for i in strspl] def map_expression(sympy_expression, x1=0, x2=1): """ Map out the free symbols of sympy_expressions in order to determine z[p, x] where p = [0,1] is particle x1 and x2, while x is their cartesian component """ map_ = {x1:0, x2:1} s = sympy_expression.free_symbols n = int(len(s)/2) z = np.zeros((2, n), dtype = object) for i in s: j,k = parse_symbol(i) #particle, coordinate z[map_[j], k] = i return z, n def get_twobody_denominator(sympy_expression, p1, p2): """ For a sympy_expression of arbitrary dimensionality, generate the coulomb operator 1/sqrt( r_{p1, p2} ) assuming that the symbols are of the form "x_{pn, x_i}" where x_i is the cartesian vector component """ mex, n = map_expression(sympy_expression, p1, p2) denom = 0 for i in range(n): denom += (mex[0,i] - mex[1,i])**2 return sp.sqrt(denom) def apply_twobody_operator(sympy_expression, p1, p2): """ Generate the sympy expression sympy_expression / | x_p1 - x_p2 | """ return sympy_expression/get_twobody_denominator(sympy_expression, p1, p2) def trace(outer): assert(len(outer.ket.basis)==len(outer.bra.basis)), "Trace ill-defined." return projector(outer.ket, outer.bra) class outerprod(object): def __init__(self, ket, bra): self.ket = ket self.bra = bra def _repr_html_(self): return "$$\\sum_{ij} \\vert %s_i \\rangle \\langle %s_j \\vert$$" % (self.ket.__name__, self.bra.__name__) def __mul__(self, other): if type(other) is ket: coefficients = [] for i in range(len(self.ket.basis)): coeff_i = 0 for j in range(len(self.bra.basis)): if type(self.bra.basis[j]) is ket: coeff_i += self.bra.basis[i].bra@other if type(self.bra.basis[j]) is basisfunction: coeff_i += ket([1], basis = [self.bra.basis[j]]).bra@other coefficients.append(coeff_i*self.ket.coefficients[i]) return ket(coefficients, basis = copy.copy(self.ket.basis), energy = copy.copy(self.ket.energy)) class projector(object): def __init__(self, ket, bra): self.ket = ket self.bra = bra def _repr_html_(self): return "$$\\sum_{i} \\vert %s_i \\rangle \\langle %s_i \\vert$$" % (self.ket.__name__, self.bra.__name__) def __mul__(self, other): if type(other) is ket: coefficients = [] for i in range(len(self.ket.basis)): coeff_i = 0 if type(self.bra.basis[i]) is ket: coeff_i = self.bra.basis[i].bra@other if type(self.bra.basis[i]) is basisfunction: coeff_i = ket([1], basis = [self.bra.basis[i]]).bra@other coefficients.append(coeff_i*self.ket.coefficients[i]) return ket(coefficients, basis = copy.copy(self.ket.basis), energy = copy.copy(self.ket.energy)) @lru_cache(maxsize=100) def inner_product(b1, b2, operator = None, n_samples = int(1e6), grid = 101, sigma = None): """ Computes the inner product < b1 | b2 >, where bn are instances of basisfunction Keyword arguments: b1, b2 -- basisfunction objects operator -- obsolete n_samples -- number of Monte Carlo samples grid -- number of grid-points in every direction for the spline control variate Returns: The inner product as a float """ ri = b1.position*0 rj = b2.position*0 integrand = lambda *R, \ f1 = b1.bra_numeric_expression, \ f2 = b2.ket_numeric_expression, \ ri = ri, rj = rj: \ f1(*np.array([R[i] - ri[i] for i in range(len(ri))]))*f2(*np.array([R[i] - rj[i] for i in range(len(rj))])) #f1(*np.array([R[i] - ri[i] for i in range(len(ri))]))*f2(*np.array([R[i] - rj[i] for i in range(len(rj))])) variables_b1 = b1.bra_sympy_expression.free_symbols variables_b2 = b2.ket_sympy_expression.free_symbols if len(variables_b1) == 1 and len(variables_b2) == 1: return integrate.quad(integrand, -10,10)[0] else: ai,aj = b1.decay, b2.decay ri,rj = b1.position, b2.position R = (ai*ri + aj*rj)/(ai+aj) if sigma is None: sigma = .5*(ai + aj) #print("R, sigma:", R, sigma) return onebody(integrand, np.ones(len(R))*sigma, R, n_samples) #, control_variate = "spline", grid = grid) """ else: R, sigma = locate(b1.bra_sympy_expression*b2.ket_sympy_expression) return onebody(integrand, np.ones(len(R))*sigma, R, n_samples) #, control_variate = "spline", grid = grid) """ def compose_basis(p): """ generate a list of basis functions corresponding to the AO-basis (same ordering and so on) """ basis = [] for charge in np.arange(p.charges.shape[0]): atomic_number = p.charges[charge] atom = np.argwhere(p.atomic_numbers==atomic_number)[0,0] #index of basis function pos = p.atoms[charge] for shell in np.arange(len(p.basis_set[atom])): for contracted in np.arange(len(p.basis_set[atom][shell])): W = np.array(p.basis_set[atom][shell][contracted]) w = W[:,1] a = W[:,0] if shell == 1: for m in np.array([1,-1,0]): basis.append(basis_function([shell,m,a,w], basis_type = "cgto",domain = [[-8,8],[-8,8],[-8,8]], position = pos)) else: for m in np.arange(-shell, shell+1): basis.append(basis_function([shell,m,a,w], basis_type = "cgto",domain = [[-8,8],[-8,8],[-8,8]], position = pos)) return basis def get_control_variate(integrand, loc, a = .6, tmin = 1e-5, extent = 6, grid = 101): """ Generate an nd interpolated control variate returns RegularGridInterpolator, definite integral on mesh, mesh points Keyword arguments integrand -- an evaluateable function loc -- position offset for integrand a -- grid density decay, tmin -- extent -- grid -- number of grid points """ t = np.linspace(tmin,extent**a,grid)**(a**-1) t = np.append(-t[::-1],t) R_ = np.ones((loc.shape[0],t.shape[0]))*t[None,:] R = np.meshgrid(*(R_ - loc[:, None]), indexing='ij', sparse=True) data = integrand(*R) # Integrate I0 = rgrid_integrate_nd(t, data) #return RegularGridInterpolator(R_, data, bounds_error = False, fill_value = 0), I0, t return RegularGridInterpolator(R_-loc[:, None], data, bounds_error = False, fill_value = 0), I0, t def rgrid_integrate_3d(points, values): """ regular grid integration, 3D """ # volume per cell v = np.diff(points) v = v[:,None,None]*v[None,:,None]*v[None,None,:] # weight per cell w = values[:-1] + values[1:] w = w[:, :-1] + w[:, 1:] w = w[:, :, :-1] + w[:, :, 1:] w = w/8 return np.sum(w*v) def rgrid_integrate_nd(points, values): """ Integrate over n dimensions as linear polynomials on a grid Keyword arguments: points -- cartesian coordinates of gridpoints values -- values of integrand at gridpoints Returns: Integral of linearly interpolated integrand """ points = np.diff(points) w = "" for i in range(len(values.shape)): cycle = "" for j in range(len(values.shape)): if j==i: cycle+=":," else: cycle+="None," w +="points[%s] * " % cycle[:-1] v = eval(w[:-2]) w = values wd= 1 for i in range(len(values.shape)): w = eval("w[%s:-1] + w[%s1:]" % (i*":,", i*":,")) wd *= 2 return np.sum(v*w/wd) def sphere_distribution(N_samples, scale = 1): theta = np.random.uniform(0,2*np.pi, N_samples) phi = np.arccos(np.random.uniform(-1,1, N_samples)) r = np.random.exponential(scale, N_samples) x = r*np.sin(phi)*np.cos(theta) y = r*np.sin(phi)*np.sin(theta) z = r*np.cos(phi) return np.array([x,y,z]) def sphere_pdf(x, scale =1): r = np.sqrt(np.sum(x**2, axis= 0)) return np.exp(-x/scale)/scale #/scale def onebody(integrand, sigma, loc, n_samples, control_variate = lambda *r : 0, grid = 101, I0 = 0): """ Monte Carlo (MC) estimate of integral Keyword arguments: integrand -- evaluatable function sigma -- standard deviation of normal distribution used for importance sampling loc -- centre used for control variate and importance sampling n_sampes -- number of MC-samples control_variate -- evaluatable function grid -- sampling density of spline control variate I0 -- analytical integral of control variate returns: Estimated integral (float) """ if control_variate == "spline": control_variate, I0, t = get_control_variate(integrand, loc, a = .6, tmin = 1e-5, extent = 6, grid = grid) #R = np.random.multivariate_normal(loc, np.eye(len(loc))*sigma, n_samples) #R = np.random.Generator.multivariate_normal(loc, np.eye(len(loc))*sigma, size=n_samples) #sig = np.eye(len(loc))*sigma sig = np.diag(sigma) R = np.random.default_rng().multivariate_normal(loc, sig, n_samples) P = multivariate_normal(mean=loc, cov=sig).pdf(R) return I0+np.mean((integrand(*R.T)-control_variate(R)) * P**-1) def eri_mci(phi_p, phi_q, phi_r, phi_s, pp = np.array([0,0,0]), pq = np.array([0,0,0]), pr = np.array([0,0,0]), ps = np.array([0,0,0]), N_samples = 1000000, sigma = .5, Pr = np.array([0,0,0]), Qr = np.array([0,0,0]), zeta = 1, eta = 1, auto = False, control_variate = lambda x1,x2,x3,x4,x5,x6 : 0): """ Electron repulsion integral estimate using zero-variance Monte Carlo """ x = np.random.multivariate_normal([0,0,0,0,0,0], np.eye(6)*sigma, N_samples) P = multivariate_normal(mean=[0,0,0,0,0,0], cov=np.eye(6)*sigma).pdf if auto: # estimate mean and variance of orbitals X,Y,Z = np.random.uniform(-5,5,(3, 10000)) P_1 = phi_p(X,Y,Z)*phi_q(X,Y,Z) P_2 = phi_r(X,Y,Z)*phi_s(X,Y,Z) Pr[0] = np.mean(P_1**2*X) Pr[1] = np.mean(P_1**2*Y) Pr[2] =
np.mean(P_1**2*Z)
numpy.mean
import argparse import math import os import numpy as np import torch from torch.nn import Module, Dropout, Embedding, Linear, Transformer from torch import optim from torch.nn import functional as F from torch.utils.data import DataLoader from tqdm import tqdm from utils import WordVocab, Seq2seqDataset, split class PositionalEncoding(Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super(PositionalEncoding, self).__init__() self.dropout = Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) pe = pe.unsqueeze(0).transpose(0, 1) self.register_buffer('pe', pe) def forward(self, x): x = x + self.pe[:x.size(0), :] return self.dropout(x) class TrfmSmiles(Module): def __init__(self, in_size, hidden_size, out_size, n_layers, nhead=4, dropout=0.1): super(TrfmSmiles, self).__init__() self.in_size = in_size self.hidden_size = hidden_size self.embed = Embedding(in_size, hidden_size) self.pe = PositionalEncoding(hidden_size, dropout) self.trfm = Transformer(d_model=hidden_size, nhead=nhead, num_encoder_layers=n_layers, num_decoder_layers=n_layers, dim_feedforward=hidden_size) self.out = Linear(hidden_size, out_size) def forward(self, src): # src: (T,B) embedded = self.embed(src) # (T,B,H) embedded = self.pe(embedded) # (T,B,H) hidden = self.trfm(embedded, embedded) # (T,B,H) out = self.out(hidden) # (T,B,V) out = F.log_softmax(out, dim=2) # (T,B,V) return out # (T,B,V) def _encode(self, src): # src: (T,B) embedded = self.embed(src) # (T,B,H) embedded = self.pe(embedded) # (T,B,H) output = embedded for i in range(self.trfm.encoder.num_layers - 1): output = self.trfm.encoder.layers[i](output, None) # (T,B,H) penul = output.detach().numpy() output = self.trfm.encoder.layers[-1](output, None) # (T,B,H) if self.trfm.encoder.norm: output = self.trfm.encoder.norm(output) # (T,B,H) output = output.detach().numpy() # mean, max, first*2 return np.hstack([
np.mean(output, axis=0)
numpy.mean
# 2021-03 : Initial code [<NAME>, IGE-CNRS] #============================================================================================ import numpy as np from scipy import interpolate #============================================================================================ def vertical_interp(original_depth,interpolated_depth): """ Find upper and lower bound indices for simple vertical interpolation """ if ( original_depth[1] < original_depth[0] ): ll_kupward = True else: ll_kupward = False nn = np.size(interpolated_depth) kinf=np.zeros(nn,dtype='int') ksup=np.zeros(nn,dtype='int') for k in np.arange(nn): knear = np.argmin( np.abs( original_depth - interpolated_depth[k] ) ) if (original_depth[knear] > interpolated_depth[k]): ksup[k] = knear if ll_kupward: kinf[k] = np.min([ np.size(original_depth)-1, knear+1 ]) else: kinf[k] = np.max([ 0, knear-1 ]) else: kinf[k] = knear if ll_kupward: ksup[k] = np.max([ 0, knear-1 ]) else: ksup[k] = np.min([ np.size(original_depth)-1, knear+1 ]) return (kinf,ksup) #============================================================================================ def horizontal_interp( lon_in_1d, lat_in_1d, mlat_misomip, mlon_misomip, lon_out_1d, lat_out_1d, var_in_1d ): """ Interpolates one-dimension data horizontally to a 2d numpy array reshaped to the misomip standard (lon,lat) format. Method: triangular linear barycentryc interpolation, using nans (i.e. gives nan if any nan in the triangle) lon\_in\_1d, lat\_in\_1d: 1d longitude and latitude of data to interpolate var\_in\_1d: 1d input data (same dimension as lon\_in\_1d and lat\_in\_1d) mlat\_misomip, mlon\_misomip: misomip grid size (nb points) alond latitude and longitude dimensions lon\_out\_1d, lat\_out\_1d: 1d longitude and latitude of the target misomip grid """ txxxx = interpolate.griddata( (lon_in_1d,lat_in_1d), var_in_1d, (lon_out_1d,lat_out_1d), method='linear', fill_value=np.nan ) out = np.reshape( txxxx, (mlat_misomip, mlon_misomip) ) return out #============================================================================================ def horizontal_interp_nonan( lon_in_1d, lat_in_1d, mlat_misomip, mlon_misomip, lon_out_1d, lat_out_1d, var_in_1d ): """ Interpolates one-dimension data horizontally to a 2d numpy array reshaped to the misomip standard (lon,lat) format. Method: triangular linear barycentryc interpolation, NOT using nans (i.e. find triangle with non-nan values) and nearest-neighbor interpolations for points not surrounded by 3 data points. lon\_in\_1d, lat\_in\_1d: 1d longitude and latitude of data to interpolate var\_in\_1d: 1d input data (same dimension as lon\_in\_1d and lat\_in\_1d) mlat\_misomip, mlon\_misomip: misomip grid size (nb points) alond latitude and longitude dimensions lon\_out\_1d, lat\_out\_1d: 1d longitude and latitude of the target misomip grid """ var1d_nonan = var_in_1d[ (~np.isnan(var_in_1d)) & (~np.isinf(var_in_1d)) ] if ( np.size(var1d_nonan)==0 ): out =
np.zeros((mlat_misomip, mlon_misomip))
numpy.zeros
# coding: utf-8 ### # @file attacker.py # @author <NAME> <<EMAIL>>, <NAME> <<EMAIL>> # # @section LICENSE # # MIT License # # Copyright (c) 2020 Distributed Computing Laboratory, EPFL # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. ### #!/usr/bin/env python import numpy as np class Attacker: """ Class defining the attack used. """ def __init__(self, attack): _possible_attacks = { 'Random': self.random_attack, 'Reverse': self.reverse_attack, 'PartialDrop': self.partial_drop_attack, 'LittleIsEnough': self.little_is_enough_attack, 'FallEmpires': self.fall_empires_attack } self.attack_strategy = _possible_attacks[attack] def attack(self, **kwargs): """ Compute the attack. Args: - gradients: numpy array Returns: gradients: numpy array """ return self.attack_strategy(**kwargs) def random_attack(self, gradient): """ Return a random gradient with the same size of the submitted one. Args: - gradients numpy array Returns: Random gradient """ return np.random.random(gradient.shape).astype(np.float32) def reverse_attack(self, gradient, coeff=100): """ Return the gradient, yet in the opposite direction and amplified. Args: - gradients numpy array - coeff float number representing the amplification Returns: numpy array """ return gradient*coeff*(-1.) def partial_drop_attack(self, gradient, probability): """ return the gradient but with some missing coordinates (replaced by zeros) Args - gradient numpy array - probability float number representing the percent of the values that should be replaced by zeros Returns: numpy array """ mask = np.random.rand(gradient.shape) > 1-probability return np.ma.array(gradient, mask=mask).filled(fill_value=0) ### Should be available only for Byzantine Workers: def little_is_enough_attack(self, gradient, byz_gradients): """ return a Byzantine gradient based on the little is enough attack Args: - gradient numpy array - byz_gradients list of numpy array """ #First, calculate fw true gradients; this simulates the cooperation of fw Byzantine workers grad = gradient est_grads = byz_gradients est_grads.append(grad) #Stack these gradients together and calcualte their mean and standard deviation est_grads = np.stack(est_grads) mu = np.mean(est_grads,axis=0) sigma = np.std(est_grads,axis=0) #Now, apply the rule of the attack to generate the Byzantine gradient z = 1.035 #Pre-calculated value for z_{max} from z-table, based on n=20, f=8 (and hence, s=3) grad = mu + z*sigma return grad def fall_empires_attack(self, gradient, byz_gradients): """ return a Byzantine gradient based on the fall of empires attack Args: - gradient numpy array - byz_gradients list of numpy array """ #First, calculate fw true gradients; this simulates the cooperation of fw Byzantine workers grad = gradient est_grads = byz_gradients est_grads.append(grad) #Stack these gradients together and calcualte their mean and standard deviation est_grads = np.stack(est_grads) mu =
np.mean(est_grads,axis=0)
numpy.mean
import datetime as dt import functools import networkx as nx from numba import njit import numpy as np import scipy.sparse as sp from .fem_attribute import FEMAttribute from . import functions class GraphProcessorMixin: def separate(self): """Separate the FEMData object into parts in terms of connected subgraphs. Returns ------- list_fem_data: List[femio.FEMData] Connected subgraphs of the FEMData object. The components are in the order of the smallest node ids. """ original_graph = nx.from_scipy_sparse_matrix( self.calculate_adjacency_matrix_element()) list_element_indices = list(nx.connected_components(original_graph)) unsorted_list_fem_data = [ self.extract_with_element_indices(list(element_indices)) for element_indices in list_element_indices] return sorted( unsorted_list_fem_data, key=lambda fd: np.min(fd.nodes.ids)) def convert_id_elements_to_index_elements(self, element_ids=None): if element_ids is None: return self.nodes.ids2indices(self.elements.data) else: return self.nodes.ids2indices( self.elements.filter_with_ids[element_ids].data) @functools.lru_cache(maxsize=1) def extract_surface(self, elements=None, element_type=None): """Extract surface from solid mesh. Returns ------- surface_indices: indices of nodes (not IDs). surface_positions: Positions of each nodes on the surface. """ dict_facets = self.extract_facets() dict_facet_shapes = {'tri': [], 'quad': [], 'polygon': []} for facet in dict_facets.values(): for f in facet: n_node_per_element = f.shape[-1] if n_node_per_element == 3: dict_facet_shapes['tri'].append(f) elif n_node_per_element == 4: dict_facet_shapes['quad'].append(f) else: n_nodes = np.array([len(f_) for f_ in f]) unique_n_nodes = np.unique(n_nodes) if 3 in unique_n_nodes: dict_facet_shapes['tri'].append( np.stack(f[n_nodes == 3])) if 4 in unique_n_nodes: dict_facet_shapes['quad'].append( np.stack(f[n_nodes == 4])) dict_facet_shapes['polygon'].append(f[n_nodes > 4]) extracted_surface_info = { k: self._extract_surface(np.concatenate(v, axis=0), facet_type=k) for k, v in dict_facet_shapes.items() if len(v) > 0} if len(extracted_surface_info) == 1: s = list(extracted_surface_info.values())[0] return s[0], s[1] else: return {k: v[0] for k, v in extracted_surface_info.items()}, \ {k: v[1] for k, v in extracted_surface_info.items()} def _extract_surface(self, facets, facet_type): sorted_facets = np.array([np.sort(f) for f in facets]) if facet_type == 'polygon': surface_indices, surface_positions \ = self._extract_surface_polygon(facets, sorted_facets) else: unique_sorted_facets, unique_indices, unique_counts = np.unique( sorted_facets, return_index=True, return_counts=True, axis=0) surface_ids = facets[unique_indices[np.where(unique_counts == 1)]] surface_indices = self.nodes.ids2indices(surface_ids) surface_positions = self.nodes.data[surface_indices] return surface_indices, surface_positions def _extract_surface_polygon(self, facets, sorted_facets): n_nodes = np.array([len(f) for f in sorted_facets]) unique_n_nodes = np.unique(n_nodes) list_surface_indices = [] list_surface_positions = [] n_surface = 0 for n_node in unique_n_nodes: focus_sorted_facets = sorted_facets[n_nodes == n_node] unique_sorted_facets, unique_indices, unique_counts = np.unique( np.stack(focus_sorted_facets), return_index=True, return_counts=True, axis=0) focus_facets = facets[n_nodes == n_node] surface_ids = focus_facets[ unique_indices[np.where(unique_counts == 1)]] surface_indices = self.nodes.ids2indices(surface_ids) surface_positions = np.array([ self.nodes.data[si] for si in surface_indices], dtype=object) n_surface += len(surface_ids) list_surface_indices.append(surface_indices) list_surface_positions.append(surface_positions) ret_surface_indices = np.empty(n_surface, object) ret_surface_indices[:] = [ f_ for f in list_surface_indices for f_ in f] ret_surface_positions = np.empty(n_surface, object) ret_surface_positions[:] = [ f_ for f in list_surface_positions for f_ in f] return ret_surface_indices, ret_surface_positions def extract_surface_fistr(self): """Extract surface from solid mesh. Returns ------- surface_data: 2D array of int. row data correspond to (element_id, surface_id) of surface. """ data = self.elements.data N = len(data) # node_0, node_1, node_2, elem_id, surf_id surfs = np.empty((4 * N, 5), np.int32) surfs[0 * N:1 * N, :3] = data[:, [0, 1, 2]] surfs[1 * N:2 * N, :3] = data[:, [0, 1, 3]] surfs[2 * N:3 * N, :3] = data[:, [1, 2, 3]] surfs[3 * N:4 * N, :3] = data[:, [2, 0, 3]] surfs[0 * N:1 * N, 3] = self.elements.ids surfs[1 * N:2 * N, 3] = self.elements.ids surfs[2 * N:3 * N, 3] = self.elements.ids surfs[3 * N:4 * N, 3] = self.elements.ids surfs[0 * N:1 * N, 4] = 1 surfs[1 * N:2 * N, 4] = 2 surfs[2 * N:3 * N, 4] = 3 surfs[3 * N:4 * N, 4] = 4 surfs[:, :3].sort(axis=1) ind = np.lexsort( (surfs[:, 4], surfs[:, 3], surfs[:, 2], surfs[:, 1], surfs[:, 0])) surfs = surfs[ind] # select surce unique = np.ones(4 * N, np.bool_) distinct = (surfs[:-1, 0] != surfs[1:, 0]) distinct |= (surfs[:-1, 1] != surfs[1:, 1]) distinct |= (surfs[:-1, 2] != surfs[1:, 2]) unique[:-1] &= distinct unique[1:] &= distinct surfs = surfs[unique] return surfs[:, 3:] def extract_facets( self, elements=None, element_type=None, remove_duplicates=False, method=None): """Extract facets. Parameters ---------- elements: femio.FEMAttribute, optional If fed, extract facets of the specified elements. elements: str, optional If not fed, infer element type from the number of nodes per element. method: callable A method to aggregate facet features. If not fed, numpy.concatenate is used. Returns ------- facets: dict[tuple(numpy.ndarray)] """ if elements is None: elements = self.elements if element_type is None: if hasattr(elements, 'element_type'): element_type = elements.element_type else: nodes_per_element = elements.data.shape[1] if nodes_per_element == 3: element_type = 'tri' elif nodes_per_element == 4: element_type = 'tet' elif nodes_per_element == 10: element_type = 'tet2' elif nodes_per_element == 8: element_type = 'hex' elif nodes_per_element == 12: element_type = 'hexprism' else: raise ValueError( f"Unknown nodes_per_element: {nodes_per_element}") if hasattr(elements, 'element_type'): if elements.element_type == 'mix': return { element_type: self.extract_facets( element, element_type=element_type, remove_duplicates=remove_duplicates, method=method)[ element_type] for element_type, element in self.elements.items()} else: elements = list(elements.values())[0] if element_type == 'tri' or element_type == 'quad': facets = (elements.data,) else: facets = self._generate_all_faces( elements, element_type, method=method) if remove_duplicates: facets = tuple(functions.remove_duplicates(f) for f in facets) return {element_type: facets} def _generate_all_faces( self, elements=None, element_type=None, method=None): if elements is None: elements = self.elements if element_type is None: if hasattr(elements, 'element_type'): element_type = elements.element_type else: nodes_per_element = elements.data.shape[1] if nodes_per_element == 3: element_type = 'tri' elif nodes_per_element == 4: element_type = 'tet' elif nodes_per_element == 10: element_type = 'tet2' elif nodes_per_element == 8: element_type = 'hex' else: raise ValueError( f"Unknown nodes_per_element: {nodes_per_element}") if hasattr(elements, 'element_type'): root_data = { element_type: self.extract_surface(element, element_type=element_type) for element_type, element in self.elements.items()} return { e: d[0] for e, d in root_data.items()}, { e: d[1] for e, d in root_data.items()} if method is None: method = np.concatenate if isinstance(elements, np.ndarray): elements_data = elements else: elements_data = elements.data if element_type in ['tri', 'quad', 'polygon']: face_ids = elements.data elif element_type == 'tet': face_ids = method([ np.stack([ [element[0], element[2], element[1]], [element[0], element[1], element[3]], [element[1], element[2], element[3]], [element[0], element[3], element[2]], ]) for element in elements_data]) elif element_type == 'tet2': tet1_elements = elements_data[:, :4] face_ids = self._generate_all_faces( tet1_elements, 'tet', method=method) elif element_type == 'hex': face_ids = method([[ [e[0], e[1], e[5], e[4]], [e[0], e[3], e[2], e[1]], [e[1], e[2], e[6], e[5]], [e[2], e[3], e[7], e[6]], [e[3], e[0], e[4], e[7]], [e[4], e[5], e[6], e[7]]] for e in elements_data]) elif element_type == 'pyr': face_ids = ( method([ [ [e[0], e[1], e[4]], [e[1], e[2], e[4]], [e[2], e[3], e[4]], [e[3], e[0], e[4]], ] for e in elements_data]), method([ [ [e[0], e[3], e[2], e[1]], ] for e in elements_data])) elif element_type == 'prism': face_ids = ( method([ [ [e[0], e[2], e[1]], [e[3], e[4], e[5]], ] for e in elements_data]), method([ [ [e[0], e[1], e[4], e[3]], [e[1], e[2], e[5], e[4]], [e[0], e[3], e[5], e[2]], ] for e in elements_data])) elif element_type == 'hexprism': face_ids = method([[ [e[0], e[5], e[4], e[1]], [e[1], e[4], e[3], e[2]], [e[5], e[11], e[10], e[4]], [e[4], e[10], e[9], e[3]], [e[3], e[9], e[8], e[2]], [e[0], e[6], e[11], e[5]], [e[6], e[7], e[10], e[11]], [e[7], e[8], e[9], e[10]], [e[1], e[2], e[8], e[7]], [e[0], e[1], e[7], e[6]]] for e in elements_data]) elif element_type == 'polyhedron': assert 'face' in self.elemental_data, \ 'No face definition found for polyhedron: ' \ f"{self.elemental_data.keys()}" face_ids = method([ self._parse_polyhedron_faces(f) for f in self.elemental_data.get_attribute_data('face')]) else: raise NotImplementedError( f"Unexpected element type: {element_type}") if isinstance(face_ids, tuple): return face_ids else: return (face_ids,) def _parse_polyhedron_faces(self, faces): def split(n, f): return f[:n], f[n:] d = faces[1:] parsed_faces = [] for i in range(faces[0]): face, d = split(d[0], d[1:]) parsed_faces.append(
np.array(face)
numpy.array
from .interval import IntervalGoalEnv from abc import ABC, abstractmethod import numpy as np import copy import matplotlib.pyplot as plt import matplotlib.patches as patches import math #todo first run jsut the algorithm with the minimizer of collision along side to see what Q values it does create #A space visualizer V value will be needed that(heat map) env_dt = 0.02 #becomes obstacles in both steps returns the most current one as 2-dim array def extract_most_current_obstacles(obstacles_array): splitted = np.array(np.split(obstacles_array, len(obstacles_array)/4)) most_recent = splitted[0:len(splitted):2, :] return most_recent #b_bboxes is expected to be 2 dim array def check_collisions(a_bbox, b_bboxes): # b_min_x - a_max_x d1x = (b_bboxes[:, 0] - b_bboxes[:, 2]) - (a_bbox[0]+a_bbox[2]) d1y = (b_bboxes[:, 1] - b_bboxes[:, 3]) - (a_bbox[1]+a_bbox[3]) d2x = (a_bbox[0] - a_bbox[2]) - (b_bboxes[:, 0] + b_bboxes[:, 2]) d2y = (a_bbox[1] - a_bbox[3]) - (b_bboxes[:, 1] + b_bboxes[:, 3]) d1_bools = np.logical_or(d1x>0., d1y>0.) d2_bools = np.logical_or(d2x>0., d2y>0.) d_bools = np.logical_or(d1_bools, d2_bools) return np.logical_not(d_bools) def aabbs_max_distances(a_bbox, b_bboxes): dcxs = np.abs(b_bboxes[:, 0] - a_bbox[0]) extra_x_dist = b_bboxes[:, ] + a_bbox[2] x_max_dists = dcxs + extra_x_dist dcys = np.abs(b_bboxes[:, 1] - a_bbox[1]) extra_y_dist = b_bboxes[:, 3] + a_bbox[3] y_max_dists = dcys + extra_y_dist d_maxs = np.sqrt(x_max_dists**2 + y_max_dists**2) return d_maxs def aabbs_min_distances(a_bbox, b_bboxes): dcxs = np.abs(b_bboxes[:, 0] - a_bbox[0]) extra_x_dist = b_bboxes[:, 2] + a_bbox[2] zeros_array = np.zeros(shape=extra_x_dist.shape) x_min_dists = np.maximum(dcxs - extra_x_dist, zeros_array) dcys = np.abs(b_bboxes[:, 1] - a_bbox[1]) extra_y_dist = b_bboxes[:, 3] + a_bbox[3] y_min_dists = np.maximum(dcys - extra_y_dist, zeros_array) d_mins = np.sqrt(x_min_dists**2 + y_min_dists**2) return d_mins def calc_vels(bboxes, bboxes_prev, dt): pos_dif = bboxes[:, 0:2] - bboxes_prev[:, 0:2] vel = pos_dif / dt return vel def calc_angles(a_bbox, b_bboxes): if a_bbox[0] == 100. and a_bbox[1] == 100.: # use a negative angle so it is different in this case angles = np.repeat(-1., repeats=b_bboxes.shape[0]) else: angles = np.arctan2(b_bboxes[:, 1] - a_bbox[1], b_bboxes[:, 0] - a_bbox[0]) * 180 / np.pi # to degree angles = angles % 360. angles = np.expand_dims(angles, axis=1) return angles class ObsExtender(ABC): def __init__(self, args): self.args = args self.counter = 0 @abstractmethod def extend_obs(self, obs, env): pass def step(self):#just here makes sense to increment step self.counter += 1 def reset_ep(self): self.counter = 0 #leaves everything as it is, used for test of HGG class DummyExtender(ObsExtender): def __init__(self, args): super(DummyExtender, self).__init__(args) def extend_obs(self, obs, env): return obs class ObsExtenderBbox(ObsExtender): def __init__(self, args): super(ObsExtenderBbox, self).__init__(args) def extend_obs(self, obs, env): if self.args.vae_dist_help: extra_goal_state = np.concatenate([obs['achieved_goal_latent'], obs['achieved_goal_size_latent']]) obstacle_l = obs['obstacle_latent'] obstacle_s_l = obs['obstacle_size_latent'] obstacle_len_shape = len(obstacle_l.shape) if len(obstacle_l.shape) > 1: extra_obstacle_state = np.concatenate([obstacle_l, obstacle_s_l], axis=1) else: extra_obstacle_state = np.concatenate([obstacle_l, obstacle_s_l]) else: extra_goal_state = np.concatenate([obs['achieved_goal'][:2], obs['real_size_goal'][:2]]) obstacle_info = obs['real_obstacle_info'] obstacle_len_shape = len(obstacle_info.shape) if len(obstacle_info.shape) > 1: extra_obstacle_state = np.concatenate([obstacle_info[:, :2], obstacle_info[:, -3:-1]], axis=1) else: extra_obstacle_state = np.concatenate([obstacle_info[:2], obstacle_info[-3:-1]]) if self.counter == 0: extra_goal_state = np.concatenate([extra_goal_state, extra_goal_state]) if obstacle_len_shape > 1: extra_obstacle_state = np.ravel(np.concatenate([extra_obstacle_state, extra_obstacle_state], axis=1) ) else: extra_obstacle_state = np.concatenate([extra_obstacle_state, extra_obstacle_state]) self.single_step_extra_goal_state_size = len(extra_goal_state) // 2 self.single_step_extra_obstacle_state_size = len(extra_obstacle_state) // 2 self.start_index_extra_observation = len(obs['observation']) else: # the first entries will always have the more recent representations prev_obs = env.last_obs.copy() begin_index = self.start_index_extra_observation end_index = begin_index + self.single_step_extra_goal_state_size prev_goal_state = prev_obs['observation'][begin_index: end_index] begin_index = self.start_index_extra_observation + 2 * self.single_step_extra_goal_state_size # This one extract until the end since it might exist more tah one obstacle end_index = begin_index + self.single_step_extra_obstacle_state_size * 2 prev_obstacle_state = prev_obs['observation'][begin_index: end_index] prev_obstacle_state = extract_most_current_obstacles(prev_obstacle_state) # the previous ones are pushed to the back extra_goal_state = np.concatenate([extra_goal_state, prev_goal_state]) if obstacle_len_shape > 1: extra_obstacle_state = np.ravel(np.concatenate([extra_obstacle_state, prev_obstacle_state], axis=1)) else: extra_obstacle_state = np.concatenate([extra_obstacle_state, prev_obstacle_state[0]]) new_state = np.concatenate([obs['observation'], extra_goal_state, extra_obstacle_state]) obs['observation'] = new_state return obs #basically the same but does not extend the state that is passed to agent. This class will be inherited to extend the #class in other ways class ObsExtBboxInfo(ObsExtender): def __init__(self, args): super(ObsExtBboxInfo, self).__init__(args) def extend_obs(self, obs, env): if self.args.vae_dist_help: extra_goal_state = np.concatenate([obs['achieved_goal_latent'], obs['achieved_goal_size_latent']]) obstacle_l = obs['obstacle_latent'] obstacle_s_l = obs['obstacle_size_latent'] obstacle_len_shape = len(obstacle_l.shape) if len(obstacle_l.shape) > 1: extra_obstacle_state = np.concatenate([obstacle_l, obstacle_s_l], axis=1) else: extra_obstacle_state = np.concatenate([obstacle_l, obstacle_s_l]) extra_obstacle_state = np.expand_dims(extra_obstacle_state, axis=0) else: extra_goal_state = np.concatenate([obs['achieved_goal'][:2], obs['real_size_goal'][:2]]) obstacle_info = obs['real_obstacle_info'] if len(obstacle_info.shape) > 1: extra_obstacle_state = np.concatenate([obstacle_info[:, :2], obstacle_info[:, -3:-1]], axis=1) else: extra_obstacle_state = np.concatenate([obstacle_info[:2], obstacle_info[-3:-1]]) extra_obstacle_state = np.expand_dims(extra_obstacle_state, axis=0) if self.counter == 0: #It is the first observation. We cannot assume nothing from previous steps and therefore init every #field with the same #might not need to store all goal state since they will not be used obs['goal_st_t'] = extra_goal_state.copy() obs['goal_st_t_minus1'] = extra_goal_state.copy() obs['goal_st_t_minus2'] = extra_goal_state.copy() obs['obstacle_st_t'] = extra_obstacle_state.copy() obs['obstacle_st_t_minus1'] = extra_obstacle_state.copy() obs['obstacle_st_t_minus2'] = extra_obstacle_state.copy() else: # the previous ones are pushed to the back prev_obs = env.last_obs.copy() obs['goal_st_t'] = extra_goal_state.copy() obs['goal_st_t_minus1'] = prev_obs['goal_st_t'].copy() obs['goal_st_t_minus2'] = prev_obs['goal_st_t_minus1'].copy() obs['obstacle_st_t'] = extra_obstacle_state.copy() obs['obstacle_st_t_minus1'] = prev_obs['obstacle_st_t'].copy() obs['obstacle_st_t_minus2'] = prev_obs['obstacle_st_t_minus2'].copy() return obs def _modify_obs(self, obs, new_obstacle_list, extra_info, index): new_obs = copy.deepcopy(obs) new_obs['obstacle_st_t'] = new_obstacle_list.copy() new_obs['obstacle_st_t_minus1'] = None new_obs['obstacle_st_t_minus1'] = None return new_obs class ObsExtBboxColl(ObsExtBboxInfo): def __init__(self, args): super(ObsExtBboxColl, self).__init__(args) def extend_obs(self, obs, env): obs = ObsExtBboxInfo.extend_obs(self, obs, env) goal_bbox = obs['goal_st_t'] obstacle_bboxes = obs['obstacle_st_t'] # goal object is not in visible range if goal_bbox[0] == 100. and goal_bbox[1] == 100.: obs['coll'] = 0. obs['coll_bool_ar'] = np.repeat(False, len(obstacle_bboxes)) else: cols = check_collisions(goal_bbox, obstacle_bboxes) obs['coll_bool_ar'] = cols.copy() ncols = np.sum(cols.astype(np.float)) obs['coll'] = ncols return obs def _modify_obs(self, obs, new_obstacle_list, extra_info, index): new_obs = super(ObsExtBboxColl, self)._modify_obs(obs, new_obstacle_list, extra_info, index) goal_bbox = new_obs['goal_st_t'] obstacle_bboxes = new_obs['obstacle_st_t'] # goal object is not in visible range if goal_bbox[0] == 100. and goal_bbox[1] == 100.: new_obs['coll'] = 0. new_obs['coll_bool_ar'] = np.repeat(False, len(obstacle_bboxes)) else: cols = check_collisions(goal_bbox, obstacle_bboxes) new_obs['coll_bool_ar'] = cols.copy() ncols = np.sum(cols.astype(np.float)) new_obs['coll'] = ncols return new_obs class ObsExtMinDist(ObsExtBboxColl): def __init__(self, args): super(ObsExtMinDist, self).__init__(args) def extend_obs(self, obs, env): obs = super(ObsExtMinDist, self).extend_obs(obs, env) goal_bbox = obs['goal_st_t'] obstacle_bboxes = obs['obstacle_st_t'] # goal object is not in visible range therefore distance really far away if goal_bbox[0] == 100. and goal_bbox[1] == 100.: dists = np.repeat(1000., repeats=obstacle_bboxes.shape[0]) else: dists = aabbs_min_distances(goal_bbox, obstacle_bboxes) obs['dists'] = dists.copy() new_state = np.concatenate([obs['observation'], dists.copy()]) obs['observation'] = new_state return obs def _modify_obs(self, obs, new_obstacle_list, extra_info, index): new_obs = super(ObsExtMinDist, self)._modify_obs(obs, new_obstacle_list, extra_info, index) goal_bbox = new_obs['goal_st_t'] obstacle_bboxes = new_obs['obstacle_st_t'] # goal object is not in visible range therefore distance really far away if goal_bbox[0] == 100. and goal_bbox[1] == 100.: dists = np.repeat(1000., repeats=obstacle_bboxes.shape[0]) else: dists = aabbs_min_distances(goal_bbox, obstacle_bboxes) new_obs['dists'] = dists.copy() len_dists = len(dists) new_obs['observation'][-len_dists:] = dists return new_obs class ObsExtP(ObsExtMinDist): def __init__(self, args): super(ObsExtP, self).__init__(args) def extend_obs(self, obs, env): obs = super(ObsExtP, self).extend_obs(obs, env) goal_bbox = obs['goal_st_t'] obstacle_bboxes = obs['obstacle_st_t'] dists = obs['dists'].copy() len_dists = len(dists) dists = np.expand_dims(dists, axis=1) pos = obstacle_bboxes[:, 0:2] observation_without_dist = obs['observation'][:-len_dists] extension = np.concatenate([dists, pos], axis=1) new_state = np.concatenate([observation_without_dist, np.ravel(extension)]) obs['observation'] = new_state return obs def _modify_obs(self, obs, new_obstacle_list, extra_info, index): new_obs = super(ObsExtP, self)._modify_obs(obs, new_obstacle_list, extra_info, index) goal_bbox = new_obs['goal_st_t'] obstacle_bboxes = new_obs['obstacle_st_t'] dists = new_obs['dists'].copy() len_dists = len(dists) dists = np.expand_dims(dists, axis=1) pos = obstacle_bboxes[:, 0:2] extension = np.ravel(np.concatenate([dists, pos], axis=1)) len_extension = len(extension) new_obs['observation'][-len_extension:] = extension return new_obs class ObsExtPAV(ObsExtMinDist): def __init__(self, args): super(ObsExtPAV, self).__init__(args) self.length_extension = None self.env_dt = None def extend_obs(self, obs, env): if self.env_dt is None: self.env_dt = env.env.env.dt obs = super(ObsExtPAV, self).extend_obs(obs, env) goal_bbox = obs['goal_st_t'] obstacle_bboxes = obs['obstacle_st_t'] previous_obstacle_bboxes = obs['obstacle_st_t_minus1'] dists = obs['dists'].copy() len_dists = len(dists) dists = np.expand_dims(dists, axis=1) pos = obstacle_bboxes[:, 0:2] dt = env.env.dt vel = calc_vels(obstacle_bboxes, previous_obstacle_bboxes, dt) angles = calc_angles(goal_bbox, obstacle_bboxes) observation_without_dist = obs['observation'][:-len_dists] extension = np.ravel(np.concatenate([dists, pos, angles, vel], axis=1)) if self.length_extension is None: self.length_extension = len(extension) new_state = np.concatenate([observation_without_dist, extension]) obs['observation'] = new_state return obs def _modify_obs(self, obs, new_obstacle_list, extra_info, index): new_obs = super(ObsExtPAV, self)._modify_obs(obs, new_obstacle_list, extra_info, index) goal_bbox = new_obs['goal_st_t'] obstacle_bboxes = new_obs['obstacle_st_t'] dists = new_obs['dists'].copy() len_dists = len(dists) dists = np.expand_dims(dists, axis=1) pos = obstacle_bboxes[:, 0:2] len_pos_el = len(pos[0]) #vel = calc_vels(obstacle_bboxes, previous_obstacle_bboxes, dt) angles = calc_angles(goal_bbox, obstacle_bboxes) mock_extension = np.ravel(np.concatenate([dists, pos, angles, pos], axis=1)) len_extension = len(mock_extension) unmodified_extension = obs['observation'][-len_extension:].copy() unmodified_extension =np.reshape(unmodified_extension, newshape=(-1, 1+2*len_pos_el+1)) vel = unmodified_extension[:, -2:] dir_not_scaled = extra_info['dir_not_scaled'] if self.env_dt is None: raise Exception('this was called before modification of obs') vel[index] = dir_not_scaled / self.env_dt extension = np.ravel(np.concatenate([dists, pos, angles, vel], axis=1)) len_extension = len(extension) new_obs['observation'][-len_extension:] = extension return new_obs def visualize(self, obs, file_name): extension = obs['observation'][- self.length_extension:].copy() extension = np.reshape(extension, (-1, 6)) dists = extension[:, 0:1] pos = extension[:, 1:3] angles = extension[:, 3:4] vel = extension[:, 4:6] goal_bbox = obs['goal_st_t'] obstacle_bboxes = obs['obstacle_st_t'] fig, ax = plt.subplots() if True: c_x, c_y = self.args.field_center[0], self.args.field_center[1] d_x, d_y = self.args.field_size[0], self.args.field_size[1] support_points = np.array([[c_x - d_x, c_y - d_y], [c_x - d_x, c_y + d_y], [c_x + d_x, c_y - d_y], [c_x + d_x, c_y + d_y]]) ax.scatter(support_points[:, 0], support_points[:, 1], c='black') ax.scatter(pos[:, 0], pos[:, 1], c='blue') ax.scatter(pos[:, 0], pos[:, 1], s=dists[:, 0], c='blue', alpha=0.8) ax.scatter([goal_bbox[0]], [goal_bbox[1]], c='red') ax.quiver(pos[:, 0], pos[:, 1], vel[:, 0], vel[:, 1]) def plot_point_angle(x, y, a, length, color): # find the end point endy = y + length * math.sin(math.radians(a)) endx = x + length * math.cos(math.radians(a)) # plot the points ax.plot([x, endx], [y, endy], '--', c=color) colors_extended_area = ['yellow', 'green', 'orange'] if True: for i in range(len(obstacle_bboxes)): bb = obstacle_bboxes[i] #half of extended area ax.add_patch( patches.Rectangle( (bb[0] - bb[2], bb[1] - bb[3]), bb[2] * 2, bb[3] * 2, edgecolor='blue', facecolor='blue', fill=True, alpha = 0.6 )) #extended area e_h = dists[i] ax.add_patch( patches.Rectangle( (goal_bbox[0] - goal_bbox[2] - e_h, goal_bbox[1] - goal_bbox[3] - e_h), (goal_bbox[2]+e_h) * 2, (goal_bbox[3]+e_h) * 2, edgecolor=colors_extended_area[i], facecolor=colors_extended_area[i], fill=True, alpha=0.2 )) #todo visualization for corner cases l = np.linalg.norm(pos[i] - goal_bbox[:2]) plot_point_angle(goal_bbox[0], goal_bbox[1], angles[i], l, colors_extended_area[i]) #goal ax.add_patch( patches.Rectangle( (goal_bbox[0] - goal_bbox[2], goal_bbox[1] - goal_bbox[3]), goal_bbox[2] * 2,goal_bbox[3] * 2, edgecolor='red',facecolor='red', fill=True, alpha=0.5 )) plt.savefig(file_name) plt.close() #calculates position realitve to goal object class ObsExtPRel(ObsExtMinDist): def __init__(self, args): super(ObsExtPRel, self).__init__(args) def extend_obs(self, obs, env): obs = super(ObsExtPRel, self).extend_obs(obs, env) goal_bbox = obs['goal_st_t'] obstacle_bboxes = obs['obstacle_st_t'] dists = obs['dists'].copy() len_dists = len(dists) dists = np.expand_dims(dists, axis=1) pos = obstacle_bboxes[:, 0:2] # here transformation to relative pos = pos - goal_bbox[0:2] observation_without_dist = obs['observation'][:-len_dists] extension = np.concatenate([dists, pos], axis=1) new_state = np.concatenate([observation_without_dist,
np.ravel(extension)
numpy.ravel
from collections import defaultdict import csv import json from logging import Logger import os import sys from typing import Callable, Dict, List, Tuple import subprocess import numpy as np import pandas as pd from .run_training import run_training from chemprop.args import TrainArgs from chemprop.constants import TEST_SCORES_FILE_NAME, TRAIN_LOGGER_NAME from chemprop.data import get_data, get_task_names, MoleculeDataset, validate_dataset_type from chemprop.utils import create_logger, makedirs, timeit from chemprop.features import set_extra_atom_fdim, set_extra_bond_fdim, set_explicit_h, set_reaction, reset_featurization_parameters @timeit(logger_name=TRAIN_LOGGER_NAME) def cross_validate(args: TrainArgs, train_func: Callable[[TrainArgs, MoleculeDataset, Logger], Dict[str, List[float]]] ) -> Tuple[float, float]: """ Runs k-fold cross-validation. For each of k splits (folds) of the data, trains and tests a model on that split and aggregates the performance across folds. :param args: A :class:`~chemprop.args.TrainArgs` object containing arguments for loading data and training the Chemprop model. :param train_func: Function which runs training. :return: A tuple containing the mean and standard deviation performance across folds. """ logger = create_logger(name=TRAIN_LOGGER_NAME, save_dir=args.save_dir, quiet=args.quiet) if logger is not None: debug, info = logger.debug, logger.info else: debug = info = print # Initialize relevant variables init_seed = args.seed save_dir = args.save_dir args.task_names = get_task_names(path=args.data_path, smiles_columns=args.smiles_columns, target_columns=args.target_columns, ignore_columns=args.ignore_columns) # Print command line debug('Command line') debug(f'python {" ".join(sys.argv)}') # Print args debug('Args') debug(args) # Save args makedirs(args.save_dir) try: args.save(os.path.join(args.save_dir, 'args.json')) except subprocess.CalledProcessError: debug('Could not write the reproducibility section of the arguments to file, thus omitting this section.') args.save(os.path.join(args.save_dir, 'args.json'), with_reproducibility=False) #set explicit H option and reaction option reset_featurization_parameters(logger=logger) set_explicit_h(args.explicit_h) set_reaction(args.reaction, args.reaction_mode) # Get data debug('Loading data') data = get_data( path=args.data_path, args=args, logger=logger, skip_none_targets=True, data_weights_path=args.data_weights_path ) validate_dataset_type(data, dataset_type=args.dataset_type) args.features_size = data.features_size() if args.atom_descriptors == 'descriptor': args.atom_descriptors_size = data.atom_descriptors_size() args.ffn_hidden_size += args.atom_descriptors_size elif args.atom_descriptors == 'feature': args.atom_features_size = data.atom_features_size() set_extra_atom_fdim(args.atom_features_size) if args.bond_features_path is not None: args.bond_features_size = data.bond_features_size() set_extra_bond_fdim(args.bond_features_size) debug(f'Number of tasks = {args.num_tasks}') if args.target_weights is not None and len(args.target_weights) != args.num_tasks: raise ValueError('The number of provided target weights must match the number and order of the prediction tasks') # Run training on different random seeds for each fold all_scores = defaultdict(list) for fold_num in range(args.num_folds): info(f'Fold {fold_num}') args.seed = init_seed + fold_num args.save_dir = os.path.join(save_dir, f'fold_{fold_num}') makedirs(args.save_dir) data.reset_features_and_targets() # If resuming experiment, load results from trained models test_scores_path = os.path.join(args.save_dir, 'test_scores.json') if args.resume_experiment and os.path.exists(test_scores_path): print('Loading scores') with open(test_scores_path) as f: model_scores = json.load(f) # Otherwise, train the models else: model_scores = train_func(args, data, logger) for metric, scores in model_scores.items(): all_scores[metric].append(scores) all_scores = dict(all_scores) # Convert scores to numpy arrays for metric, scores in all_scores.items(): all_scores[metric] = np.array(scores) # Report results info(f'{args.num_folds}-fold cross validation') # Report scores for each fold for fold_num in range(args.num_folds): for metric, scores in all_scores.items(): info(f'\tSeed {init_seed + fold_num} ==> test {metric} = {np.nanmean(scores[fold_num]):.6f}') if args.show_individual_scores: for task_name, score in zip(args.task_names, scores[fold_num]): info(f'\t\tSeed {init_seed + fold_num} ==> test {task_name} {metric} = {score:.6f}') # Report scores across folds for metric, scores in all_scores.items(): avg_scores = np.nanmean(scores, axis=1) # average score for each model across tasks mean_score, std_score = np.nanmean(avg_scores),
np.nanstd(avg_scores)
numpy.nanstd
import matplotlib import matplotlib.pyplot as plt import numpy as np y = [2,4,6,8,10,12,14,16,18,20] x =
np.arange(10)
numpy.arange
# This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. import numpy as np class MCCube: """A cube used for drawing points and running a Monte Carlo integration.""" def __init__(self, intervals: [(float, float)] = None, volume = .0): """Constructor. Args: intervals: A list of tuples of two floats, defining the interval boundaries of each parameter. volume: The total integration volume (separately calculated from the intervals). """ self.intervals = intervals self.volume = volume self.values = [] self.ordered_values = [] self.ordered_indices = [] self.zeros = None self.ones = None # self.probabilities = {} self.log_p = {} self.log_1_p = {} self.p_non_positive = {} self.p_non_ones = {} def draw(self, n_draws): """Draw points uniformly within the cube. Args: n_draws: The number of draws of points from the cube. """ self.values = [] for interval in self.intervals: values = np.random.uniform(interval[0], interval[1], n_draws) self.values.append(values) self.zeros = np.zeros(n_draws) self.ones =
np.ones(n_draws)
numpy.ones
import sys import yaml from itertools import groupby from matplotlib import pyplot as plt import numpy as np folder = sys.argv[1] data_list = [] # Initialize array of datasets. Each element is a time step. with open(folder + "/E") as f: # Split datafile into sections separated by empty lines for k, g in groupby(f, lambda x: x=="\n"): if not k: # Split line of data after comma, striping whitespace. data_list.append(np.array([[float(x) for x in d.split(',')] for d in g if len(d.strip()) ])) with open(folder + "/params") as f: p = yaml.load(f) for key, val in p.items(): p[key] = float(val) matlablines = open("%s/inte0" % sys.argv[2]).read().splitlines() for line in matlablines: line = float(line.strip()) I_init = 1e-4*np.asarray(matlablines,dtype='double') matlablines = open("%s/inte" % sys.argv[2]).read().splitlines() for line in matlablines: line = float(line.strip()) I_finl = 1e-4*np.asarray(matlablines,dtype='double') matlablines = open("%s/spec0" % sys.argv[2]).read().splitlines() for line in matlablines: line = float(line.strip()) If_init = 1e-4*np.asarray(matlablines,dtype='double') matlablines = open("%s/spec" % sys.argv[2]).read().splitlines() for line in matlablines: line = float(line.strip()) If_finl = 1e-4*np.asarray(matlablines,dtype='double') # x axese dt = p["tmax"]/(p["Nt"]-1) # Time step points = np.arange(-p["Nt"]/2,p["Nt"]/2,1) t = points*dt # Time grid iterator f = points/p["tmax"] # Frequency grid 0 centered f = f + 299792458/p["lambda"] # frequency axis # Initialize figure fig = plt.figure() fig.suptitle(r"Simulation of: $\lambda = %.0f$ nm, $E = %.0f$ $\mu$J, $\Delta t_{fwhm} = %.0f$ fs, $P=%.0f$ Bar" % (p["lambda"]*1E9, p["Energy"]*1E6, p["Tfwhm"]*1E15, p["Pout"])) ax1 = fig.add_subplot(221) ax2 = fig.add_subplot(222) ax3 = fig.add_subplot(223) ax4 = fig.add_subplot(224) # Only make sys.argv[2]# of plots in between the intitial and final. # If set to only 1, prints the final plot #data_list = [data_list[i] for i in map(int, np.linspace(len(data_list)-1,0,2))] data_list = [data_list[i] for i in map(int, np.linspace(len(data_list)-1,0,2))] # Position in Color Space cpos = np.linspace(0.8, 0.2, len(data_list)) # Plot each timestep re, im = data_list[0].T ax3.plot(t*1e15,1E-4*(np.power(re,2) + np.power(im,2))[::-1], #color=plt.cm.viridis(c)) ) re, im = data_list[1].T ax1.plot(t*1e15,1E-4*(np.power(re,2) + np.power(im,2)), #color=plt.cm.viridis(c)) ) ax1.plot(t*1e15, I_init) ax3.plot(t*1e15, I_finl) ax1.set_title("Pulse Shape") ax1.set_xlabel("t (fs)") ax1.set_ylabel(r"Intensity (W$\cdot$cm$^{-2}$)") ax3.set_title("Pulse Shape") ax3.set_xlabel("t (fs)") ax3.set_ylabel(r"Intensity (W$\cdot$cm$^{-2}$)") re, im = data_list[0].T Ef = np.fft.fftshift(np.fft.fft(np.fft.fftshift(re+im*1j))) re = np.real(Ef) im = np.imag(Ef) If = (np.power(re,2) + np.power(im,2)) ax4.plot(f*1e-12,(If/max(If))[::-1], #color=plt.cm.viridis(c)) ) re, im = data_list[1].T Ef = np.fft.fftshift(np.fft.fft(np.fft.ifftshift(re+im*1j))) re = np.real(Ef) im = np.imag(Ef) If = (np.power(re,2) + np.power(im,2)) print(len(If)) print(len(If_init)) ax2.plot(f*1e-12,If/max(If), #color=plt.cm.viridis(c)) ) # THIS IS DIRTY, FIX THIS WHEN YOU'RE LESS LAZY ax4.plot(f*1e-12, np.roll(If_finl/max(If_finl),0)) ax2.plot(f*1e-12, If_init/max(If_init)) ax2.set_xlim(
np.array([-60,60])
numpy.array
import os import json import time import torch import argparse import numpy as np import datetime import torch.nn as nn from tensorboardX import SummaryWriter from loss import XE_LOSS, BPR_LOSS, SIG_LOSS from metric import get_example_recall_precision, compute_bleu, get_bleu, get_sentence_bleu from model import GraphX import random import torch.nn.functional as F from rouge import Rouge from torch_geometric.utils import to_dense_batch class TRAINER(object): def __init__(self, vocab_obj, args, device): super().__init__() self.m_device = device self.m_save_mode = True self.m_mean_train_loss = 0 self.m_mean_train_precision = 0 self.m_mean_train_recall = 0 self.m_mean_val_loss = 0 self.m_mean_eval_precision = 0 self.m_mean_eval_recall = 0 self.m_mean_eval_bleu = 0 self.m_epochs = args.epoch_num self.m_batch_size = args.batch_size # self.m_rec_loss = XE_LOSS(vocab_obj.item_num, self.m_device) # self.m_rec_loss = BPR_LOSS(self.m_device) self.m_rec_loss = SIG_LOSS(self.m_device) self.m_rec_soft_loss = BPR_LOSS(self.m_device) # self.m_criterion = nn.BCEWithLogitsLoss(reduction="none") self.m_train_step = 0 self.m_valid_step = 0 self.m_model_path = args.model_path self.m_model_file = args.model_file self.m_data_dir = args.data_dir self.m_dataset = args.data_set self.m_dataset_name = args.data_name self.m_grad_clip = args.grad_clip self.m_weight_decay = args.weight_decay # self.m_l2_reg = args.l2_reg self.m_feature_loss_lambda = args.feature_lambda # the weight for the feature loss self.m_soft_train = args.soft_label # use soft label for sentence prediction self.m_multi_task = args.multi_task # use multi-task loss (sent + feat) self.m_valid_trigram = args.valid_trigram # use trigram blocking for valid self.m_valid_trigram_feat = args.valid_trigram_feat # use trigram + feature unigram for valid self.m_select_topk_s = args.select_topk_s # select topk sentence for valid self.m_select_topk_f = args.select_topk_f # select topk feature for valid self.m_train_iteration = 0 self.m_valid_iteration = 0 self.m_eval_iteration = 0 self.m_print_interval = args.print_interval self.m_sid2swords = vocab_obj.m_sid2swords self.m_item2iid = vocab_obj.m_item2iid self.m_user2uid = vocab_obj.m_user2uid self.m_iid2item = {self.m_item2iid[k]: k for k in self.m_item2iid} self.m_uid2user = {self.m_user2uid[k]: k for k in self.m_user2uid} feature2id_file = os.path.join(self.m_data_dir, 'train/feature/feature2id.json') testset_combined_file = os.path.join(self.m_data_dir, 'test_combined.json') with open(feature2id_file, 'r') as f: self.d_feature2id = json.load(f) self.d_testset_combined = dict() with open(testset_combined_file, 'r') as f: for line in f: line_data = json.loads(line) userid = line_data['user'] itemid = line_data['item'] review_text = line_data['review'] if userid not in self.d_testset_combined: self.d_testset_combined[userid] = dict() self.d_testset_combined[userid][itemid] = review_text else: assert itemid not in self.d_testset_combined[userid] self.d_testset_combined[userid][itemid] = review_text print("--"*10+"train params"+"--"*10) print("print_interval", self.m_print_interval) print("number of topk selected sentences: {}".format(self.m_select_topk_s)) if self.m_valid_trigram: print("use trigram blocking for validation") elif self.m_valid_trigram_feat: print("use trigram + feature unigram for validation") else: print("use the original topk scores for validation") self.m_overfit_epoch_threshold = 3 def f_save_model(self, checkpoint): # checkpoint = {'model':network.state_dict(), # 'epoch': epoch, # 'en_optimizer': en_optimizer, # 'de_optimizer': de_optimizer # } torch.save(checkpoint, self.m_model_file) def f_train(self, train_data, valid_data, network, optimizer, logger_obj): last_train_loss = 0 last_eval_loss = 0 self.m_mean_eval_loss = 0 overfit_indicator = 0 # best_eval_precision = 0 best_eval_recall = 0 best_eval_bleu = 0 # self.f_init_word_embed(pretrain_word_embed, network) try: for epoch in range(self.m_epochs): print("++"*10, epoch, "++"*10) s_time = datetime.datetime.now() self.f_eval_epoch(valid_data, network, optimizer, logger_obj) e_time = datetime.datetime.now() print("validation epoch duration", e_time-s_time) if last_eval_loss == 0: last_eval_loss = self.m_mean_eval_loss elif last_eval_loss < self.m_mean_eval_loss: print( "!"*10, "error val loss increase", "!"*10, "last val loss %.4f" % last_eval_loss, "cur val loss %.4f" % self.m_mean_eval_loss ) overfit_indicator += 1 # if overfit_indicator > self.m_overfit_epoch_threshold: # break else: print( "last val loss %.4f" % last_eval_loss, "cur val loss %.4f" % self.m_mean_eval_loss ) last_eval_loss = self.m_mean_eval_loss if best_eval_bleu < self.m_mean_eval_bleu: print("... saving model ...") checkpoint = {'model': network.state_dict()} self.f_save_model(checkpoint) best_eval_bleu = self.m_mean_eval_bleu print("--"*10, epoch, "--"*10) s_time = datetime.datetime.now() # train_data.sampler.set_epoch(epoch) self.f_train_epoch(train_data, network, optimizer, logger_obj) # self.f_eval_train_epoch(train_data, network, optimizer, logger_obj) e_time = datetime.datetime.now() print("epoch duration", e_time-s_time) if last_train_loss == 0: last_train_loss = self.m_mean_train_loss elif last_train_loss < self.m_mean_train_loss: print( "!"*10, "error training loss increase", "!"*10, "last train loss %.4f" % last_train_loss, "cur train loss %.4f" % self.m_mean_train_loss ) # break else: print( "last train loss %.4f" % last_train_loss, "cur train loss %.4f" % self.m_mean_train_loss ) last_train_loss = self.m_mean_train_loss # if best_eval_bleu < self.m_mean_eval_bleu: # print("... saving model ...") # checkpoint = {'model': network.state_dict()} # self.f_save_model(checkpoint) # best_eval_bleu = self.m_mean_eval_bleu s_time = datetime.datetime.now() self.f_eval_epoch(valid_data, network, optimizer, logger_obj) e_time = datetime.datetime.now() print("test epoch duration", e_time-s_time) if best_eval_bleu < self.m_mean_eval_bleu: print("... saving model ...") checkpoint = {'model': network.state_dict()} self.f_save_model(checkpoint) best_eval_bleu = self.m_mean_eval_bleu except KeyboardInterrupt: print("--"*20) print("... exiting from training early") if best_eval_bleu < self.m_mean_eval_bleu: print("... final save ...") checkpoint = {'model': network.state_dict()} self.f_save_model(checkpoint) best_eval_bleu = self.m_mean_eval_bleu s_time = datetime.datetime.now() self.f_eval_epoch(valid_data, network, optimizer, logger_obj) e_time = datetime.datetime.now() print("test epoch duration", e_time-s_time) print(" done !!!") def f_train_epoch(self, train_data, network, optimizer, logger_obj): loss_s_list, loss_f_list, loss_list = [], [], [] tmp_loss_s_list, tmp_loss_f_list, tmp_loss_list = [], [], [] iteration = 0 logger_obj.f_add_output2IO(" "*10+"training the user and item encoder"+" "*10) start_time = time.time() # Start one epoch train of the network network.train() feat_loss_weight = self.m_feature_loss_lambda for g_batch in train_data: # print("graph_batch", g_batch) # if i % self.m_print_interval == 0: # print("... eval ... ", i) graph_batch = g_batch.to(self.m_device) logits_s, logits_f = network(graph_batch) labels_s = graph_batch.s_label loss = None loss_s = None if not self.m_soft_train: # If not using soft label, only the gt sentences are labeled as 1 labels_s = (labels_s == 3) loss_s = self.m_rec_loss(logits_s, labels_s.float()) else: loss_s = self.m_rec_soft_loss(graph_batch, logits_s, labels_s) # 1. Loss from feature prediction labels_f = graph_batch.f_label loss_f = self.m_rec_loss(logits_f, labels_f.float()) # 2. multi-task loss, sum of sentence loss and feature loss loss = loss_s + feat_loss_weight*loss_f # add current sentence prediction loss loss_s_list.append(loss_s.item()) tmp_loss_s_list.append(loss_s.item()) # add current feature prediction loss loss_f_list.append(loss_f.item()) tmp_loss_f_list.append(loss_f.item()) # add current loss loss_list.append(loss.item()) tmp_loss_list.append(loss.item()) optimizer.zero_grad() loss.backward() # perform gradient clip # if self.m_grad_clip: # max_norm = 5.0 # torch.nn.utils.clip_grad_norm_(network.parameters(), max_norm) optimizer.step() self.m_train_iteration += 1 iteration += 1 if iteration % self.m_print_interval == 0: logger_obj.f_add_output2IO( "%d, loss:%.4f, sent loss:%.4f, weighted feat loss:%.4f, feat loss:%.4f" % ( iteration, np.mean(tmp_loss_list), np.mean(tmp_loss_s_list), feat_loss_weight*np.mean(tmp_loss_f_list), np.mean(tmp_loss_f_list) ) ) tmp_loss_s_list, tmp_loss_f_list, tmp_loss_list = [], [], [] logger_obj.f_add_output2IO( "%d, loss:%.4f, sent loss:%.4f, weighted feat loss:%.4f, feat loss:%.4f" % ( self.m_train_iteration, np.mean(loss_list), np.mean(loss_s_list), feat_loss_weight*np.mean(loss_f_list), np.mean(loss_f_list) ) ) logger_obj.f_add_scalar2tensorboard("train/loss", np.mean(loss_list), self.m_train_iteration) logger_obj.f_add_scalar2tensorboard("train/sent_loss", np.mean(loss_s_list), self.m_train_iteration) logger_obj.f_add_scalar2tensorboard("train/feat_loss", np.mean(loss_f_list), self.m_train_iteration) end_time = time.time() print("+++ duration +++", end_time-start_time) self.m_mean_train_loss = np.mean(loss_list) def f_eval_train_epoch(self, eval_data, network, optimizer, logger_obj): loss_list = [] recall_list, precision_list, F1_list = [], [], [] rouge_1_f_list, rouge_1_p_list, rouge_1_r_list = [], [], [] rouge_2_f_list, rouge_2_p_list, rouge_2_r_list = [], [], [] rouge_l_f_list, rouge_l_p_list, rouge_l_r_list = [], [], [] bleu_list, bleu_1_list, bleu_2_list, bleu_3_list, bleu_4_list = [], [], [], [], [] self.m_eval_iteration = self.m_train_iteration logger_obj.f_add_output2IO(" "*10+" eval for train data"+" "*10) rouge = Rouge() network.eval() topk = 3 start_time = time.time() with torch.no_grad(): for i, (G, index) in enumerate(eval_data): eval_flag = random.randint(1, 100) if eval_flag != 2: continue G = G.to(self.m_device) logits = network(G) snode_id = G.filter_nodes(lambda nodes: nodes.data["dtype"] == 1) G.nodes[snode_id].data["p"] = logits glist = dgl.unbatch(G) loss = self.m_rec_loss(glist) for j in range(len(glist)): hyps_j = [] refs_j = [] idx = index[j] example_j = eval_data.dataset.get_example(idx) label_sid_list_j = example_j["label_sid"] gt_sent_num = len(label_sid_list_j) # print("gt_sent_num", gt_sent_num) g_j = glist[j] snode_id_j = g_j.filter_nodes(lambda nodes: nodes.data["dtype"]==1) N = len(snode_id_j) p_sent_j = g_j.ndata["p"][snode_id_j] p_sent_j = p_sent_j.view(-1) # p_sent_j = p_sent_j.view(-1, 2) # topk_j, pred_idx_j = torch.topk(p_sent_j[:, 1], min(topk, N)) # topk_j, topk_pred_idx_j = torch.topk(p_sent_j, min(topk, N)) topk_j, topk_pred_idx_j = torch.topk(p_sent_j, gt_sent_num) topk_pred_snode_id_j = snode_id_j[topk_pred_idx_j] topk_pred_sid_list_j = g_j.nodes[topk_pred_snode_id_j].data["raw_id"] topk_pred_logits_list_j = g_j.nodes[topk_pred_snode_id_j].data["p"] # recall_j, precision_j = get_example_recall_precision(pred_sid_list_j.cpu(), label_sid_list_j, min(topk, N)) print("topk_j", topk_j) print("label_sid_list_j", label_sid_list_j) print("topk_pred_idx_j", topk_pred_sid_list_j) recall_j, precision_j = get_example_recall_precision(topk_pred_sid_list_j.cpu(), label_sid_list_j, gt_sent_num) recall_list.append(recall_j) precision_list.append(precision_j) for sid_k in label_sid_list_j: refs_j.append(self.m_sid2swords[sid_k]) for sid_k in topk_pred_sid_list_j: hyps_j.append(self.m_sid2swords[sid_k.item()]) hyps_j = " ".join(hyps_j) refs_j = " ".join(refs_j) scores_j = rouge.get_scores(hyps_j, refs_j, avg=True) rouge_1_f_list.append(scores_j["rouge-1"]["f"]) rouge_1_r_list.append(scores_j["rouge-1"]["r"]) rouge_1_p_list.append(scores_j["rouge-1"]["p"]) rouge_2_f_list.append(scores_j["rouge-2"]["f"]) rouge_2_r_list.append(scores_j["rouge-2"]["r"]) rouge_2_p_list.append(scores_j["rouge-2"]["p"]) rouge_l_f_list.append(scores_j["rouge-l"]["f"]) rouge_l_r_list.append(scores_j["rouge-l"]["r"]) rouge_l_p_list.append(scores_j["rouge-l"]["p"]) # bleu_scores_j = compute_bleu([hyps_j], [refs_j]) bleu_scores_j = compute_bleu([[refs_j.split()]], [hyps_j.split()]) bleu_list.append(bleu_scores_j) # bleu_1_scores_j, bleu_2_scores_j, bleu_3_scores_j, bleu_4_scores_j = get_bleu([refs_j], [hyps_j]) bleu_1_scores_j, bleu_2_scores_j, bleu_3_scores_j, bleu_4_scores_j = get_sentence_bleu([refs_j.split()], hyps_j.split()) bleu_1_list.append(bleu_1_scores_j) bleu_2_list.append(bleu_2_scores_j) bleu_3_list.append(bleu_3_scores_j) bleu_4_list.append(bleu_4_scores_j) loss_list.append(loss.item()) end_time = time.time() duration = end_time - start_time print("... one epoch", duration) logger_obj.f_add_scalar2tensorboard("eval/loss", np.mean(loss_list), self.m_eval_iteration) # logger_obj.f_add_scalar2tensorboard("eval/recall", np.mean(recall_list), self.m_eval_iteration) self.m_mean_eval_loss = np.mean(loss_list) self.m_mean_eval_recall = np.mean(recall_list) self.m_mean_eval_precision = np.mean(precision_list) self.m_mean_eval_rouge_1_f = np.mean(rouge_1_f_list) self.m_mean_eval_rouge_1_r = np.mean(rouge_1_r_list) self.m_mean_eval_rouge_1_p = np.mean(rouge_1_p_list) self.m_mean_eval_rouge_2_f = np.mean(rouge_2_f_list) self.m_mean_eval_rouge_2_r = np.mean(rouge_2_r_list) self.m_mean_eval_rouge_2_p = np.mean(rouge_2_p_list) self.m_mean_eval_rouge_l_f = np.mean(rouge_l_f_list) self.m_mean_eval_rouge_l_r = np.mean(rouge_l_r_list) self.m_mean_eval_rouge_l_p = np.mean(rouge_l_p_list) self.m_mean_eval_bleu = np.mean(bleu_list) self.m_mean_eval_bleu_1 = np.mean(bleu_1_list) self.m_mean_eval_bleu_2 = np.mean(bleu_2_list) self.m_mean_eval_bleu_3 = np.mean(bleu_3_list) self.m_mean_eval_bleu_4 = np.mean(bleu_4_list) logger_obj.f_add_output2IO("%d, NLL_loss:%.4f" % (self.m_eval_iteration, self.m_mean_eval_loss)) logger_obj.f_add_output2IO("recall@%d:%.4f" % (topk, self.m_mean_eval_recall)) logger_obj.f_add_output2IO("precision@%d:%.4f" % (topk, self.m_mean_eval_precision)) logger_obj.f_add_output2IO( "rouge-1:|f:%.4f |p:%.4f |r:%.4f, rouge-2:|f:%.4f |p:%.4f |r:%.4f, rouge-l:|f:%.4f |p:%.4f |r:%.4f" % ( self.m_mean_eval_rouge_1_f, self.m_mean_eval_rouge_1_p, self.m_mean_eval_rouge_1_r, self.m_mean_eval_rouge_2_f, self.m_mean_eval_rouge_2_p, self.m_mean_eval_rouge_2_r, self.m_mean_eval_rouge_l_f, self.m_mean_eval_rouge_l_p, self.m_mean_eval_rouge_l_r)) logger_obj.f_add_output2IO("bleu:%.4f" % (self.m_mean_eval_bleu)) logger_obj.f_add_output2IO("bleu-1:%.4f" % (self.m_mean_eval_bleu_1)) logger_obj.f_add_output2IO("bleu-2:%.4f" % (self.m_mean_eval_bleu_2)) logger_obj.f_add_output2IO("bleu-3:%.4f" % (self.m_mean_eval_bleu_3)) logger_obj.f_add_output2IO("bleu-4:%.4f" % (self.m_mean_eval_bleu_4)) network.train() def f_eval_epoch(self, eval_data, network, optimizer, logger_obj): # loss_list = [] # recall_list, precision_list, F1_list = [], [], [] rouge_1_f_list, rouge_1_p_list, rouge_1_r_list = [], [], [] rouge_2_f_list, rouge_2_p_list, rouge_2_r_list = [], [], [] rouge_l_f_list, rouge_l_p_list, rouge_l_r_list = [], [], [] bleu_list, bleu_1_list, bleu_2_list, bleu_3_list, bleu_4_list = [], [], [], [], [] self.m_eval_iteration = self.m_train_iteration logger_obj.f_add_output2IO(" "*10+" eval the user and item encoder"+" "*10) rouge = Rouge() # topk = 3 # start one epoch validation network.eval() start_time = time.time() i = 0 # count batch with torch.no_grad(): for graph_batch in eval_data: # eval_flag = random.randint(1,5) # if eval_flag != 2: # continue # start_time = time.time() # print("... eval ", i) if i % 100 == 0: print("... eval ... ", i) i += 1 graph_batch = graph_batch.to(self.m_device) # #### logits: batch_size*max_sen_num #### s_logits, sids, s_masks, target_sids, _, _, _, _, _ = network.eval_forward(graph_batch) batch_size = s_logits.size(0) # get batch userid and itemid uid_batch = graph_batch.u_rawid iid_batch = graph_batch.i_rawid # map uid to userid and iid to itemid userid_batch = [self.m_uid2user[uid_batch[j].item()] for j in range(batch_size)] itemid_batch = [self.m_iid2item[iid_batch[j].item()] for j in range(batch_size)] # loss = self.m_rec_loss(glist) # loss_list.append(loss.item()) # #### topk sentence #### # logits: batch_size*topk_sent # #### topk sentence index #### # pred_sids: batch_size*topk_sent if self.m_valid_trigram: # apply trigram blocking for validation s_topk_logits, s_pred_sids = self.trigram_blocking_sent_prediction( s_logits, sids, s_masks, batch_size, topk=self.m_select_topk_s, pool_size=None ) elif self.m_valid_trigram_feat: # apply trigram + feature unigram blocking for validation s_topk_logits, s_pred_sids = self.trigram_unigram_blocking_sent_prediction( s_logits, sids, s_masks, n_win=3, topk=self.m_select_topk_s, pool_size=None ) else: # apply original topk selection for validation s_topk_logits, s_pred_sids = self.origin_blocking_sent_prediction( s_logits, sids, s_masks, topk=self.m_select_topk_s ) # topk_logits, topk_pred_snids = torch.topk(s_logits, topk, dim=1) # pred_sids = sids.gather(dim=1, index=topk_pred_snids) for j in range(batch_size): refs_j = [] hyps_j = [] true_userid_j = userid_batch[j] true_itemid_j = itemid_batch[j] # for sid_k in target_sids[j]: # refs_j.append(self.m_sid2swords[sid_k.item()]) # refs_j = " ".join(refs_j) for sid_k in s_pred_sids[j]: hyps_j.append(self.m_sid2swords[sid_k.item()]) hyps_j = " ".join(hyps_j) true_combined_ref = self.d_testset_combined[true_userid_j][true_itemid_j] # scores_j = rouge.get_scores(hyps_j, refs_j, avg=True) scores_j = rouge.get_scores(hyps_j, true_combined_ref, avg=True) rouge_1_f_list.append(scores_j["rouge-1"]["f"]) rouge_1_r_list.append(scores_j["rouge-1"]["r"]) rouge_1_p_list.append(scores_j["rouge-1"]["p"]) rouge_2_f_list.append(scores_j["rouge-2"]["f"]) rouge_2_r_list.append(scores_j["rouge-2"]["r"]) rouge_2_p_list.append(scores_j["rouge-2"]["p"]) rouge_l_f_list.append(scores_j["rouge-l"]["f"]) rouge_l_r_list.append(scores_j["rouge-l"]["r"]) rouge_l_p_list.append(scores_j["rouge-l"]["p"]) # bleu_scores_j = compute_bleu([[refs_j.split()]], [hyps_j.split()]) bleu_scores_j = compute_bleu([[true_combined_ref.split()]], [hyps_j.split()]) bleu_list.append(bleu_scores_j) # bleu_1_scores_j, bleu_2_scores_j, bleu_3_scores_j, bleu_4_scores_j = get_sentence_bleu( # [refs_j.split()], hyps_j.split()) bleu_1_scores_j, bleu_2_scores_j, bleu_3_scores_j, bleu_4_scores_j = get_sentence_bleu( [true_combined_ref.split()], hyps_j.split()) bleu_1_list.append(bleu_1_scores_j) bleu_2_list.append(bleu_2_scores_j) bleu_3_list.append(bleu_3_scores_j) bleu_4_list.append(bleu_4_scores_j) end_time = time.time() duration = end_time - start_time print("... one epoch", duration) # logger_obj.f_add_scalar2tensorboard("eval/loss", np.mean(loss_list), self.m_eval_iteration) # logger_obj.f_add_scalar2tensorboard("eval/recall", np.mean(recall_list), self.m_eval_iteration) # self.m_mean_eval_loss = np.mean(loss_list) # self.m_mean_eval_recall = np.mean(recall_list) # self.m_mean_eval_precision = np.mean(precision_list) self.m_mean_eval_rouge_1_f = np.mean(rouge_1_f_list) self.m_mean_eval_rouge_1_r = np.mean(rouge_1_r_list) self.m_mean_eval_rouge_1_p = np.mean(rouge_1_p_list) self.m_mean_eval_rouge_2_f = np.mean(rouge_2_f_list) self.m_mean_eval_rouge_2_r = np.mean(rouge_2_r_list) self.m_mean_eval_rouge_2_p =
np.mean(rouge_2_p_list)
numpy.mean
import numpy as np from scipy.signal import find_peaks, stft, lfilter, butter, welch from plotly.subplots import make_subplots from plotly.colors import n_colors import plotly.graph_objects as go from scipy.interpolate import interp1d class BVPsignal: """ Manage (multi-channel, row-wise) BVP signals """ nFFT = 2048 # freq. resolution for STFTs step = 1 # step in seconds def __init__(self, data, fs, startTime=0, minHz=0.75, maxHz=4., verb=False): if len(data.shape) == 1: self.data = data.reshape(1,-1) # 2D array raw-wise else: self.data = data self.numChls = self.data.shape[0] # num channels self.fs = fs # sample rate self.startTime = startTime self.verb = verb self.minHz = minHz self.maxHz = maxHz def getChunk(startTime, winsize=None, numSample=None): assert startTime >= self.startTime, "Start time error!" N = self.data.shape[1] fs = self.fs Nstart = int(fs*startTime) # -- winsize > 0 if winsize: stopTime = startTime + winsize Nstop = np.min([int(fs*stopTime),N]) # -- numSample > 0 if numSample: Nstop = np.min([numSample,N]) return self.data[0,Nstart:Nstop] def hps(self, spect, d=3): if spect.ndim == 2: n_win = spect.shape[1] new_spect = np.zeros_like(spect) for w in range(n_win): curr_w = spect[:,w] w_down_z = np.zeros_like(curr_w) w_down = curr_w[::d] w_down_z[0:len(w_down)] = w_down w_hps = np.multiply(curr_w, w_down_z) new_spect[:, w] = w_hps return new_spect elif spect.ndim == 1: s_down_z = np.zeros_like(spect) s_down = spect[::d] s_down_z[0:len(s_down)] = s_down w_hps = np.multiply(spect, s_down_z) return w_hps else: raise ValueError("Wrong Dimensionality of the Spectrogram for the HPS") def spectrogram(self, winsize=5, use_hps=False): """ Compute the BVP signal spectrogram restricted to the band 42-240 BPM by using winsize (in sec) samples. """ # -- spect. Z is 3-dim: Z[#chnls, #freqs, #times] F, T, Z = stft(self.data, self.fs, nperseg=self.fs*winsize, noverlap=self.fs*(winsize-self.step), boundary='even', nfft=self.nFFT) Z = np.squeeze(Z, axis=0) # -- freq subband (0.75 Hz - 4.0 Hz) minHz = 0.75 maxHz = 4.0 band = np.argwhere((F > minHz) & (F < maxHz)).flatten() self.spect = np.abs(Z[band,:]) # spectrum magnitude self.freqs = 60*F[band] # spectrum freq in bpm self.times = T # spectrum times if use_hps: spect_hps = self.hps(self.spect) # -- BPM estimate by spectrum self.bpm = self.freqs[np.argmax(spect_hps,axis=0)] else: # -- BPM estimate by spectrum self.bpm = self.freqs[np.argmax(self.spect,axis=0)] def getBPM(self, winsize=5): self.spectrogram(winsize, use_hps=False) return self.bpm, self.times def PSD2BPM(self, chooseBest=True, use_hps=False): """ Compute power spectral density using Welch’s method and estimate BPMs from video frames """ # -- interpolation for less than 256 samples c,n = self.data.shape if n < 256: seglength = n overlap = int(0.8*n) # fixed overlapping else: seglength = 256 overlap = 200 # -- periodogram by Welch F, P = welch(self.data, nperseg=seglength, noverlap=overlap, window='hamming',fs=self.fs, nfft=self.nFFT) # -- freq subband (0.75 Hz - 4.0 Hz) band = np.argwhere((F > self.minHz) & (F < self.maxHz)).flatten() self.Pfreqs = 60*F[band] self.Power = P[:,band] # -- if c = 3 choose that with the best SNR if chooseBest: winner = 0 lobes = self.PDSrippleAnalysis(ch=0) SNR = lobes[-1]/lobes[-2] if c == 3: lobes = self.PDSrippleAnalysis(ch=1) SNR1 = lobes[-1]/lobes[-2] if SNR1 > SNR: SNR = SNR1 winner = 1 lobes = self.PDSrippleAnalysis(ch=2) SNR1 = lobes[-1]/lobes[-2] if SNR1 > SNR: SNR = SNR1 winner = 2 self.Power = self.Power[winner].reshape(1,-1) # TODO: eliminare? if use_hps: p = self.Power[0] phps = self.hps(p) '''import matplotlib.pyplot as plt plt.plot(p) plt.figure() plt.plot(phps) plt.show()''' Pmax = np.argmax(phps) # power max self.bpm = np.array([self.Pfreqs[Pmax]]) # freq max else: # -- BPM estimate by PSD Pmax = np.argmax(self.Power, axis=1) # power max self.bpm = self.Pfreqs[Pmax] # freq max if '3' in str(self.verb): lobes = self.PDSrippleAnalysis() self.displayPSD(lobe1=lobes[-1], lobe2=lobes[-2]) def autocorr(self): from statsmodels.graphics.tsaplots import plot_acf, plot_pacf # TODO: to handle all channels x = self.data[0,:] plot_acf(x) plt.show() plot_pacf(x) plt.show() def displaySpectrum(self, display=False, dims=3): """Show the spectrogram of the BVP signal""" # -- check if bpm exists try: bpm = self.bpm except AttributeError: self.spectrogram() bpm = self.bpm t = self.times f = self.freqs S = self.spect fig = go.Figure() fig.add_trace(go.Heatmap(z=S, x=t, y=f, colorscale="viridis")) fig.add_trace(go.Scatter(x=t, y=bpm, name='Frequency Domain', line=dict(color='red', width=2))) fig.update_layout(autosize=False, height=420, showlegend=True, title='Spectrogram of the BVP signal', xaxis_title='Time (sec)', yaxis_title='BPM (60*Hz)', legend=dict( x=0, y=1, traceorder="normal", font=dict( family="sans-serif", size=12, color="black"), bgcolor="LightSteelBlue", bordercolor="Black", borderwidth=2) ) fig.show() def findPeaks(self, distance=None, height=None): # -- take the first channel x = self.data[0].flatten() if distance is None: distance = self.fs/2 if height is None: height = np.mean(x) # -- find peaks with the specified params self.peaks, _ = find_peaks(x, distance=distance, height=height) self.peaksTimes = self.peaks/self.fs self.bpmPEAKS = 60.0/np.diff(self.peaksTimes) def plotBPMPeaks(self, height=None, width=None): """ Plot the the BVP signal and peak marks """ # -- find peaks try: peaks = self.peaks except AttributeError: self.findPeaks() peaks = self.peaks #-- signals y = self.data[0] n = y.shape[0] startTime = self.startTime stopTime = startTime+n/self.fs x = np.linspace(startTime, stopTime, num=n, endpoint=False) fig = go.Figure() fig.add_trace(go.Scatter(x=x, y=y, name="BVP")) fig.add_trace(go.Scatter(x=x[peaks], y=y[peaks], mode='markers', name="Peaks")) if not height: height=400 if not width: width=800 fig.update_layout(height=height, width=width, title="BVP signal + peaks", font=dict( family="Courier New, monospace", size=14, color="#7f7f7f")) fig.show() def plot(self, title="BVP signal", height=400, width=800): """ Plot the the BVP signal (multiple channels) """ #-- signals y = self.data c,n = y.shape startTime = self.startTime stopTime = startTime+n/self.fs x =
np.linspace(startTime, stopTime, num=n, endpoint=False)
numpy.linspace
# --- # jupyter: # jupytext: # formats: ipynb,py:light # text_representation: # extension: .py # format_name: light # format_version: '1.5' # jupytext_version: 1.5.2 # kernelspec: # display_name: Python 3 # language: python # name: python3 # --- # # Visualizing COVID-19 cases in Ontario # By <NAME> # # ### How to run this code # <font color='red'>In the above ribbon, click **cell** and then click **Run All**</font> # + import pandas as pd import numpy as np import datetime import matplotlib.pyplot as plt import matplotlib from matplotlib.widgets import CheckButtons import requests from io import StringIO from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() # %matplotlib inline # - # ## Load the data from the data.ontario.ca website # Read it into a pandas dataframe, which is like a table) data_url = 'https://data.ontario.ca/dataset/f4112442-bdc8-45d2-be3c-12efae72fb27/resource/455fd63b-603d-4608-8216-7d8647f43350/download/conposcovidloc.csv' response = requests.get(data_url) csv_string = response.content.decode('utf-8') cases = pd.read_csv(StringIO(csv_string)) cases.head(4) # see the first few columns # ## Define the population of each phu phu_populations = {'Algoma Public Health Unit': 114434, 'Brant County Health Unit': 155203, 'Chatham-Kent Health Unit': 106317, 'Durham Region Health Department': 712402, 'Eastern Ontario Health Unit': 208711, 'Grey Bruce Health Unit': 169884, 'Haldimand-Norfolk Health Unit': 114081, 'Haliburton, Kawartha, Pine Ridge District Health Unit': 188937, 'Halton Region Health Department': 619087, 'Hamilton Public Health Services': 592163, 'Hastings and Prince Edward Counties Health Unit': 168493, 'Huron Perth District Health Unit': 139757, 'Kingston, Frontenac and Lennox & Addington Public Health': 212719, 'Lambton Public Health': 130964, 'Leeds, Grenville and Lanark District Health Unit': 173170, 'Middlesex-London Health Unit': 507524, 'Niagara Region Public Health Department': 472485, 'North Bay Parry Sound District Health Unit': 129752, 'Northwestern Health Unit': 87675, 'Ottawa Public Health': 1054656, 'Peel Public Health': 1605952, 'Peterborough Public Health': 147977, 'Porcupine Health Unit': 83441, 'Region of Waterloo, Public Health': 584361, 'Renfrew County and District Health Unit': 108631, 'Simcoe Muskoka District Health Unit': 599589, 'Southwestern Public Health': 211498, 'Sudbury & District Health Unit': 199023, 'Thunder Bay District Health Unit': 149960, 'Timiskaming Health Unit': 32689, 'Toronto Public Health': 3120358, 'Wellington-Dufferin-Guelph Public Health': 311908, 'Windsor-Essex County Health Unit': 424830, 'York Region Public Health Services': 1225797} # ## Timeline # ### turn the dates into integers, which are easier to deal with # cases['Date'] = cases['Accurate_Episode_Date'] cases = cases.dropna(subset=['Date']) cases['Date'] = [int(str(s).replace('-', '')) for s in cases['Date']] # ### get a list of all dates until today # We want to begin at Feb 15, 2020, but we're looking at cases in 14-day periods, so we'll start the timeline 14 days before (inclusive of) Feb 15. d1 = datetime.date(2020,2,15) d2 = datetime.date.today() datetimes = [(d1 + datetime.timedelta(days=x)) for x in range((d2-d1).days + 1)] dates = [int(str(s).replace('-', '')) for s in datetimes] # ## Get the relevant data # I.e., get the data for each PHU and day from the *cases* dataframe, and store it in a new dataframe called *data*. *data* has a row for each day, and a column for each PHU # # + # initialize dataframe data = pd.DataFrame() data['Date'] = dates days_in_range = 14 overall_begin_date = 20200215 # february 15 2020 phus =
np.unique(cases['Reporting_PHU'])
numpy.unique
import os import base64 import requests import glob import time import multiprocessing import numpy as np from itertools import chain, islice import ujson import logging import shutil import cv2 from tqdm import tqdm # cos_sim from sklearn.metrics.pairwise import cosine_similarity dir_path = os.path.dirname(os.path.realpath(__file__)) test_cat = os.path.join(dir_path, 'images') session = requests.Session() session.trust_env = False logging.basicConfig( level='INFO', format='%(asctime)s %(levelname)s - %(message)s', datefmt='[%H:%M:%S]', ) def file2base64(path): with open(path, mode='rb') as fl: encoded = base64.b64encode(fl.read()).decode('ascii') return encoded def save_crop(data, name): img = base64.b64decode(data) with open(name, mode="wb") as fl: fl.write(img) fl.close() def extract_vecs(task): target = task[0] server = task[1] images = dict(data=target) req = dict(images=images, threshold=0.6, extract_ga=True, extract_embedding=True, return_face_data=True, embed_only=False, # If set to true API expects each image to be 112x112 face crop limit_faces=0, # Limit maximum number of processed faces, 0 = no limit api_ver='2' ) resp = session.post(server, json=req, timeout=120) content = ujson.loads(resp.content) took = content.get('took') status = content.get('status') images = content.get('data') counts = [len(e.get('faces', [])) for e in images] a_recode=[] for im in images: faces = im.get('faces', []) return faces def to_chunks(iterable, size=10): iterator = iter(iterable) for first in iterator: yield chain([first], islice(iterator, size - 1)) if __name__ == "__main__": ims = 'src/api_trt/test_images' server = 'http://localhost:18081/extract' if os.path.exists('crops'): shutil.rmtree('crops') os.mkdir('crops') speeds = [] # Test cam cap = cv2.VideoCapture(4) while True: ret, image = cap.read() target = [base64.b64encode(cv2.imencode('.jpg', image)[1]).decode()] print("done pre-prosscess") target_chunks = to_chunks(target, 1) task_set = [[list(chunk), server] for i, chunk in enumerate(target_chunks)] task_set = list(task_set) print('Encoding images.... Finished') pool = multiprocessing.Pool(2) t0 = time.time() r = pool.map(extract_vecs, task_set) if r != None: for i, face in enumerate(r[0]): bbox = face.get('bbox') cv2.rectangle(image, (bbox[0], bbox[1]), (bbox[2], bbox[3]), (0, 255, 0), 2) t1 = time.time() took = t1 - t0 speed = 1 / took speeds.append(speed) print("Took: {} ({} im/sec)".format(took, speed)) pool.close() mean = np.mean(speeds) median = np.median(speeds) print(f'mean: {mean} im/sec\n' f'median: {median}\n' f'min: {np.min(speeds)}\n' f'max: {
np.max(speeds)
numpy.max
""" Random Interval Spectral Forest (RISE). Implementation of Deng's Time Series Forest, with minor changes """ __author__ = "<NAME>" __all__ = ["RandomIntervalSpectralForest","acf","matrix_acf","ps"] import numpy as np import pandas as pd import math from numpy import random from copy import deepcopy from sklearn.ensemble.forest import ForestClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.utils.multiclass import class_distribution class RandomIntervalSpectralForest(ForestClassifier): """Random Interval Spectral Forest (RISE). Random Interval Spectral Forest: stripped down implementation of RISE from Lines 2018: @article {lines17hive-cote, author = {<NAME>, <NAME> and <NAME>}, title = {Time Series Classification with HIVE-COTE: The Hierarchical Vote Collective of Transformation-Based Ensembles}, journal = {ACM Transactions on Knowledge and Data Engineering}, volume = {12}, number= {5}, year = {2018} Overview: Input n series length m for each tree sample a random intervals take the ACF and PS over this interval, and concatenate features build tree on new features ensemble the trees through averaging probabilities. Need to have a minimum interval for each tree This is from the python github. Parameters ---------- n_trees : int, ensemble size, optional (default = 200) random_state : int, seed for random, integer, optional (default to no seed) min_interval : int, minimum width of an interval, optional (default = 16) acf_lag : int, maximum number of autocorellation terms to use (default =100) acf_min_values : int, never use fewer than this number of terms to fnd a correlation (default =4) Attributes ---------- n_classes : int, extracted from the data classifiers : array of shape = [n_trees] of DecisionTree classifiers intervals : array of shape = [n_trees][2] stores indexes of start and end points for all classifiers TO DO: handle missing values, unequal length series and multivariate problems """ def __init__(self, n_trees=200, random_state=None, min_interval=16, acf_lag=100, acf_min_values=4 ): super(RandomIntervalSpectralForest, self).__init__( base_estimator=DecisionTreeClassifier(), n_estimators=n_trees) self.n_trees=n_trees self.random_state = random_state random.seed(random_state) self.min_interval=min_interval self.acf_lag=acf_lag self.acf_min_values=acf_min_values # These are all set in fit self.n_classes = 0 self.series_length = 0 self.classifiers = [] self.intervals=[] self.lags=[] self.classes_ = [] def fit(self, X, y, sample_weight=None): """Build a forest of trees from the training set (X, y) using random intervals and spectral features Parameters ---------- X : array-like or sparse matrix of shape = [n_instances,series_length] or shape = [n_instances,n_columns] The training input samples. If a Pandas data frame is passed it must have a single column (i.e. univariate classification. RISE has no bespoke method for multivariate classification as yet. y : array-like, shape = [n_instances] The class labels. Returns ------- self : object """ if isinstance(X, pd.DataFrame): if X.shape[1] > 1: raise TypeError("RISE cannot handle multivariate problems yet") elif isinstance(X.iloc[0, 0], pd.Series): X = np.asarray([a.values for a in X.iloc[:, 0]]) else: raise TypeError( "Input should either be a 2d numpy array, or a pandas dataframe with a single column of Series objects (TSF cannot yet handle multivariate problems") n_instances, self.series_length = X.shape self.n_classes = np.unique(y).shape[0] self.classes_ = class_distribution(np.asarray(y).reshape(-1, 1))[0][0] self.intervals=np.zeros((self.n_trees, 2), dtype=int) self.intervals[0][0] = 0 self.intervals[0][1] = self.series_length for i in range(1, self.n_trees): self.intervals[i][0]=random.randint(self.series_length - self.min_interval) self.intervals[i][1]=random.randint(self.intervals[i][0] + self.min_interval, self.series_length) # Check lag against global properties if self.acf_lag > self.series_length-self.acf_min_values: self.acf_lag = self.series_length - self.acf_min_values if self.acf_lag < 0: self.acf_lag = 1 self.lags=np.zeros(self.n_trees, dtype=int) for i in range(0, self.n_trees): temp_lag=self.acf_lag if temp_lag > self.intervals[i][1]-self.intervals[i][0]-self.acf_min_values: temp_lag = self.intervals[i][1] - self.intervals[i][0] - self.acf_min_values if temp_lag < 0: temp_lag = 1 self.lags[i] = int(temp_lag) acf_x = np.empty(shape=(n_instances, self.lags[i])) ps_len = (self.intervals[i][1] - self.intervals[i][0]) / 2 ps_x = np.empty(shape=(n_instances, int(ps_len))) for j in range(0, n_instances): acf_x[j] = acf(X[j,self.intervals[i][0]:self.intervals[i][1]], temp_lag) ps_x[j] = ps(X[j, self.intervals[i][0]:self.intervals[i][1]]) transformed_x = np.concatenate((acf_x,ps_x),axis=1) # transformed_x=acf_x tree = deepcopy(self.base_estimator) tree.fit(transformed_x, y) self.classifiers.append(tree) return self def predict(self, X): """ Find predictions for all cases in X. Built on top of predict_proba Parameters ---------- X : array-like or sparse matrix of shape = [n_instances, n_columns] or a data frame. If a Pandas data frame is passed, Returns ------- output : array of shape = [n_instances] """ probs=self.predict_proba(X) return [self.classes_[np.argmax(prob)] for prob in probs] def predict_proba(self, X): """ Find probability estimates for each class for all cases in X. Parameters ---------- X : array-like or sparse matrix of shape = [n_instances, n_columns] The training input samples. If a Pandas data frame is passed, Local variables ---------- n_samps : int, number of cases to classify n_columns : int, number of attributes in X, must match _num_atts determined in fit Returns ------- output : array of shape = [n_instances, n_classes] of probabilities """ if isinstance(X, pd.DataFrame): if X.shape[1] > 1: raise TypeError("RISE cannot handle multivariate problems yet") elif isinstance(X.iloc[0, 0], pd.Series): X = np.asarray([a.values for a in X.iloc[:, 0]]) else: raise TypeError( "Input should either be a 2d numpy array, or a pandas dataframe with a single column of Series objects (TSF cannot yet handle multivariate problems") rows,cols=X.shape #HERE Do transform again n_cases, n_columns = X.shape if n_columns != self.series_length: raise TypeError(" ERROR number of attributes in the train does not match that in the test data") sums = np.zeros((X.shape[0],self.n_classes), dtype=np.float64) for i in range(0, self.n_trees): acf_x = np.empty(shape=(n_cases, self.lags[i])) ps_len=(self.intervals[i][1] - self.intervals[i][0]) / 2 ps_x = np.empty(shape=(n_cases,int(ps_len))) for j in range(0, n_cases): acf_x[j] = acf(X[j, self.intervals[i][0]:self.intervals[i][1]], self.lags[i]) ps_x[j] = ps(X[j, self.intervals[i][0]:self.intervals[i][1]]) transformed_x=np.concatenate((acf_x,ps_x),axis=1) sums += self.classifiers[i].predict_proba(transformed_x) output = sums / (np.ones(self.n_classes) * self.n_estimators) return output def acf(x, max_lag): """ autocorrelation function transform, currently calculated using standard stats method. We could use inverse of power spectrum, especially given we already have found it, worth testing for speed and correctness HOWEVER, for long series, it may not give much benefit, as we do not use that many ACF terms Parameters ---------- x : array-like shape = [interval_width] max_lag: int, number of ACF terms to find Return ---------- y : array-like shape = [max_lag] """ y = np.zeros(max_lag) length=len(x) for lag in range(1, max_lag + 1): # Do it ourselves to avoid zero variance warnings s1=np.sum(x[:-lag]) ss1=np.sum(np.square(x[:-lag])) s2=np.sum(x[lag:]) ss2=np.sum(np.square(x[lag:])) s1=s1/(length-lag) s2 = s2 / (length - lag) y[lag-1] = np.sum((x[:-lag]-s1)*(x[lag:]-s2)) y[lag - 1] = y[lag - 1]/ (length - lag) v1 = ss1/(length - lag)-s1*s1 v2 = ss2/(length-lag)-s2*s2 if v1 <= 0.000000001 and v2 <= 0.000000001: # Both zero variance, so must be 100% correlated y[lag - 1]=1 elif v1 <= 0.000000001 or v2 <= 0.000000001: # One zero variance the other not y[lag - 1] = 0 else: y[lag - 1] = y[lag - 1]/(math.sqrt(v1)*math.sqrt(v2)) return
np.array(y)
numpy.array
import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' # Removes Tensorflow debuggin ouputs import tensorflow as tf tf.get_logger().setLevel('INFO') # Removes Tensorflow debugging ouputs from auto_cnn.gan import AutoCNN from sklearn.metrics import roc_auc_score as roc_auc import statistics import random import numpy as np import os import cv2 import json from os.path import isfile, join from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score from tensorflow.keras.callbacks import Callback import pandas as pd # Sets the random seeds to make testing more consisent random.seed(12) tf.random.set_seed(12) class RocCallback(Callback): def __init__(self, training_data, validation_data): self.x = training_data[0] self.y = training_data[1] self.x_val = validation_data[0] self.y_val = validation_data[1] def on_train_begin(self, logs={}): return def on_train_end(self, logs={}): return def on_epoch_begin(self, epoch, logs={}): return def on_epoch_end(self, epoch, logs={}): y_pred_train = self.model.predict(self.x) roc_train = roc_auc_score(self.y, y_pred_train) y_pred_val = self.model.predict(self.x_val) roc_val = roc_auc_score(self.y_val, y_pred_val) print('\rroc-auc_train: %s - roc-auc_val: %s' % (str(round(roc_train, 4)), str(round(roc_val, 4))), end=100 * ' ' + '\n') return def on_batch_begin(self, batch, logs={}): return def on_batch_end(self, batch, logs={}): return def auc_f(truth, prediction): roc_auc_values = [] for predict, true in zip(prediction, truth): y_true = [0 for _ in range(3)] y_true[true[0]] = 1 roc_auc_score = roc_auc(y_true=y_true, y_score=predict) roc_auc_values.append(roc_auc_score) roc_auc_value = statistics.mean(roc_auc_values) return roc_auc_value def from_json(file_path): df_train = pd.read_json(file_path) Xtrain = get_scaled_imgs(df_train) Ytrain = np.array(df_train['is_iceberg']) df_train.inc_angle = df_train.inc_angle.replace('na', 0) idx_tr = np.where(df_train.inc_angle > 0) Ytrain = Ytrain[idx_tr[0]] Xtrain = Xtrain[idx_tr[0], ...] Ytrain_new = [] for y in Ytrain: new_Y = [] new_Y.append(y) Ytrain_new.append(y) Ytrain = np.array(Ytrain_new) Xtrain, Xtest, Ytrain, Ytest = train_test_split(Xtrain, Ytrain, random_state=1, train_size=0.05) Xtr_more = get_more_images(Xtrain) Ytr_more = np.concatenate((Ytrain, Ytrain, Ytrain)) return (Xtr_more, Ytr_more), (Xtest, Ytest) # return Xtrain, Ytrain, Xtest, Ytest def get_scaled_imgs(df): imgs = [] for i, row in df.iterrows(): # make 75x75 image band_1 = np.array(row['band_1']).reshape(75, 75) band_2 = np.array(row['band_2']).reshape(75, 75) band_3 = band_1 + band_2 # plus since log(x*y) = log(x) + log(y) # Rescale a = (band_1 - band_1.mean()) / (band_1.max() - band_1.min()) b = (band_2 - band_2.mean()) / (band_2.max() - band_2.min()) c = (band_3 - band_3.mean()) / (band_3.max() - band_3.min()) im = np.dstack((a, b, c)) im = cv2.resize(im, (72, 72), interpolation=cv2.INTER_AREA) imgs.append(im) return np.array(imgs) def get_more_images(imgs): more_images = [] vert_flip_imgs = [] hori_flip_imgs = [] for i in range(0, imgs.shape[0]): a = imgs[i, :, :, 0] b = imgs[i, :, :, 1] c = imgs[i, :, :, 2] av = cv2.flip(a, 1) ah = cv2.flip(a, 0) bv = cv2.flip(b, 1) bh = cv2.flip(b, 0) cv = cv2.flip(c, 1) ch = cv2.flip(c, 0) vert_flip_imgs.append(
np.dstack((av, bv, cv))
numpy.dstack
#!usr/bin/python3 # -*- coding : utf8 -*- import random; import numpy as np; import scipy.sparse as sp; from sklearn.model_selection import KFold; from sklearn.preprocessing import StandardScaler, LabelEncoder; def sparse_or_not(x, is_matrix=False): """ Convert sparse vector or sparse matrix to ndarray If sparse, convert it to ndarray and return it Else, return it Parameters : ----------- x : sparse or ndarray Sparse vector or sparse matrix or ndarray is_matrix : boolean, default=False Tell us if x is an vector or matrix Return : ------- y : ndarray """ if sp.issparse(x): if is_matrix: return x.toarray(); else: return x.toarray().reshape((-1, )); else: return x; def rand_initialisation(X, n_clusters, seed, cste): """ Initialize centroids from X randomly Parameters : ----------- X : ndarray of shape (n_samples, n_features) Samples to be clustered n_clusters : int Number of clusters / Number of centroids seed : int For reproductibility cste : int To add to seed for reproductibility Return : ------- centroids : ndarray of shape (n_clusters, n_features) Initial centroids """ index = []; repeat = n_clusters; # Take one index if seed is None: idx = np.random.RandomState().randint(X.shape[0]); else: idx = np.random.RandomState(seed+cste).randint(X.shape[0]); while repeat != 0: # Let's check that we haven't taken this index yet if idx not in index: index.append(idx); repeat = repeat - 1; if seed is not None: idx = np.random.RandomState(seed+cste+repeat).randint(X.shape[0]); return sparse_or_not(X[index], is_matrix=True); def kmeans_plus_plus(X, n_clusters, seed, cste): """ Initialize centroids from X according heuristic kmeans++ Parameters : ----------- X : ndarray of shape (n_samples, n_features) Samples to be clustered n_clusters : int Number of clusters / Number of centroids seed : int For reproductibility cste : int To add to seed for reproductibility Return : ------- centroids : ndarray of shape (n_clusters, n_features) Initial centroids """ n_samples, n_features = X.shape; centroids = []; # First centroid is randomly selected from the data points X if seed is None: centroids.append( sparse_or_not(X[np.random.RandomState() .randint(X.shape[0])]) ); else: centroids.append( sparse_or_not(X[np.random.RandomState(seed+cste) .randint(X.shape[0])]) ); # Let's select remaining "n_clusters - 1" centroids for cluster_idx in range(1, n_clusters): # Array that will store distances of data points from nearest centroid distances = np.zeros((n_samples, )); for sample_idx in range(n_samples): minimum = np.inf; # Let's compute distance of 'point' from each of the previously # selected centroid and store the minimum distance for j in range(0, len(centroids)): dist = np.square( np.linalg.norm(sparse_or_not(X[sample_idx]) - centroids[j]) ); minimum = min(minimum, dist); distances[sample_idx] = minimum; centroids.append(sparse_or_not(X[np.argmax(distances)])); return np.array(centroids); def choose_byzantines(P, n_byzantines, seed): """ Generate machines that will become good and byzantines Parameters : ----------- P : int Number of nodes (machines) 0 is the coordinator (server) ID {1, 2,..., P-1} workers ID n_byzantine : int Number of byzantines nodes seed : int For reproductibility Return : ------- goods, byzantines : tuple of length 2 goods is the list of good workers byzantines is the list of bad workers """ byzantines = []; repeat = n_byzantines; cste = 1; while repeat != 0: # Take one index if seed is None: x =
np.random.RandomState()
numpy.random.RandomState
import os import argparse import matplotlib.pyplot as plt import numpy as np def main(args): path=args.out_path # losses in train lossD = np.load(os.path.join(path, "lossD.npy")) lossH = np.load(os.path.join(path, "lossH.npy")) lossL = np.load(os.path.join(path, "lossL.npy")) auc_all = np.load(os.path.join(path, "auc_all.npy"), allow_pickle=True).item() acc_hm_all = np.load(os.path.join(path, "acc_hm_all.npy"), allow_pickle=True).item() # rhd auc_all_rhd = np.array(auc_all['rhd']) acc_hm_rhd = np.array(acc_hm_all["rhd"]) # stb auc_all_stb = np.array(auc_all['stb']) acc_hm_stb = np.array(acc_hm_all["stb"]) # do auc_all_do = np.array(auc_all['do']) # eo auc_all_eo = np.array(auc_all['eo']) plt.figure(figsize=[50, 50]) plt.subplot(2, 4, 1) plt.plot(lossH[:, :1], lossH[:, 1:], marker='o', label='lossH') plt.plot(lossD[:, :1], lossD[:, 1:], marker='*', label='lossD') plt.plot(lossL[:, :1], lossL[:, 1:], marker='h', label='lossL') plt.title("LOSSES") plt.legend(title='Losses Category:') # rhd plt.subplot(2, 4, 2) plt.plot(auc_all_rhd[:, :1], auc_all_rhd[:, 1:], marker='d') plt.title( "{}_test || (EPOCH={} , AUC={:0.4f})".format("RHD", np.argmax(auc_all_rhd[:, 1:]) + 1, np.max(auc_all_rhd[:, 1:]))) plt.subplot(2, 4, 3) plt.plot(acc_hm_rhd[:, :1], acc_hm_rhd[:, 1:], marker='d') plt.title( "{}_test || (EPOCH={} , ACC_HM={:0.4f})".format("RHD", np.argmax(acc_hm_rhd[:, 1:]) + 1, np.max(acc_hm_rhd[:, 1:]))) # stb plt.subplot(2, 4, 4) plt.plot(auc_all_stb[:, :1], auc_all_stb[:, 1:], marker='d') plt.title( "{}_test || (EPOCH={} , AUC={:0.4f})".format("STB", np.argmax(auc_all_stb[:, 1:]) + 1, np.max(auc_all_stb[:, 1:]))) plt.subplot(2, 4, 5) plt.plot(acc_hm_stb[:, :1], acc_hm_stb[:, 1:], marker='d') plt.title( "{}_test || (EPOCH={} , ACC_HM={:0.4f})".format("STB", np.argmax(acc_hm_stb[:, 1:]) + 1, np.max(acc_hm_stb[:, 1:]))) # do plt.subplot(2, 4, 6) plt.plot(auc_all_do[:, :1], auc_all_do[:, 1:], marker='d') plt.title( "{}_test || (EPOCH={} , AUC={:0.4f})".format("DO",
np.argmax(auc_all_do[:, 1:] + 1)
numpy.argmax
import numpy as np from scipy import signal from scipy.interpolate import splev, splrep class Record: sr = 20000 # Sample Rate - 20 kHz def __init__(self,array): self.array = array ## Instance Variables # Control System Features self.dom_pp = [] self.rec_pp = [] self.dom_bp = [] self.rec_bp = [] self.dom_pt = [] self.rec_pt = [] self.dom_ssv = [] self.rec_ssv = [] self.dom_sse = [] self.rec_sse = [] self.dom_po = [] self.rec_po = [] self.dom_st_s = [] self.rec_st_s = [] self.dom_rt_s = [] self.rec_rt_s = [] self.dom_dt_s = [] self.rec_dt_s = [] # Spectral Analysis Features self.dom_pulse_data = [] self.rec_pulse_data = [] self.dom_sd = [] self.rec_sd = [] self.dom_snr = [] self.rec_snr = [] self.dom_mdfr = [] self.rec_mdfr = [] self.dom_mnfr = [] self.rec_mnfr = [] # Outlier Check Results self.outlier_count = [] ## Instance Methods # Control System Processing self.PeakDetection() self.PeakTime() self.SteadyStateValErr() self.PercentOvershoot() self.SettlingTime() self.RiseTime() self.DelayTime() # Spectral Analysis Processing self.RunSpectralAnalysis() self.total_rec = np.min((len(self.dom_sd), len(self.rec_sd))) # # Outlier Detection and Removal # self.OutlierCount() # self.RemoveOutliers() # # Build Feature Datastructure self.features = self.GenerateFeatures() self.headers = [] self.headers.append('Dom_Peak_Time') self.headers.append('Dom_Steady_State_Value') self.headers.append('Dom_Steady_State_Error') self.headers.append('Dom_Percent_Overshoot') self.headers.append('Dom_Settling_Time') self.headers.append('Dom_Rise_Time') self.headers.append('Dom_Delay_Time') for i in np.arange(len(self.dom_sd[0])): self.headers.append('Dom_Spectral_Bin_%d' % i) self.headers.append('Dom_SNR') self.headers.append('Dom_Mean_Freq') self.headers.append('Dom_Median_Freq') self.headers.append('Rec_Peak_Time') self.headers.append('Rec_Steady_State_Value') self.headers.append('Rec_Steady_State_Error') self.headers.append('Rec_Percent_Overshoot') self.headers.append('Rec_Settling_Time') self.headers.append('Rec_Rise_Time') self.headers.append('Rec_Delay_Time') for i in np.arange(len(self.rec_sd[0])): self.headers.append('Rec_Spectral_Bin_%d' % i) self.headers.append('Rec_SNR') self.headers.append('Rec_Mean_Freq') self.headers.append('Rec_Median_Freq') def PeakDetection(self): ##### PeakDetection # Input: array - raw signal data for record # Output: dom_pp - dominant Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_pp - recessive Pulse Peak index # rec_bp - recessive Before Pulse peak index ### Pulse Peak Detection ### # Calculate difference array arr_diff = np.diff(self.array, prepend=self.array[0]) # Perform moving average filter, width=3, x2 w = 3 arr_diff = np.convolve(arr_diff, np.ones(w), 'valid') / w arr_diff = np.convolve(arr_diff, np.ones(w), 'valid') / w # Prepend zeros to offset processing delay arr_diff = np.insert(arr_diff, 0, np.zeros((w-1)*2), axis=0) # Crossing filter to detect dominant and recessive leading edge zones dom_pp_ts = (arr_diff > 0.2).astype(float) rec_pp_ts = (arr_diff < -0.2).astype(float) # Find peak for each zone (dominant) a = np.where(dom_pp_ts == 1)[0].astype(float) b = np.diff(a, prepend=0) c = np.where(b > 1)[0] dom_pp = a[c].astype(int) # Remove errant peaks (dominant) corr_idx = np.concatenate((np.diff(dom_pp),[np.average(np.diff(dom_pp))])) if np.min(np.diff(corr_idx)) < 100: corr_idx = np.where(corr_idx > np.average(corr_idx/4))[0] dom_pp = dom_pp[corr_idx] # Find peak for each zone (recessive) a = np.where(rec_pp_ts == 1)[0].astype(float) b = np.diff(a, prepend=0) c = np.where(b > 1)[0] rec_pp = a[c].astype(int) # Remove errant peaks (recessive) corr_idx = np.concatenate((np.diff(rec_pp),[np.average(np.diff(rec_pp))])) if np.min(np.diff(corr_idx)) < 15: corr_idx = np.where(corr_idx > np.average(corr_idx/4))[0] rec_pp = rec_pp[corr_idx] # Pair dom and rec indices dom_len = len(dom_pp) rec_len = len(rec_pp) dom_is_larger = [] if dom_len > rec_len + 1: dom_is_larger = 1 elif rec_len > dom_len + 1: dom_is_larger = 0 if not dom_is_larger == []: len_min = np.min((dom_len, rec_len)) len_dif = np.abs(dom_len - rec_len) + 1 dif_amt = [] for i in np.arange(len_dif): if dom_is_larger: temp = dom_pp[0:dom_len] - rec_pp[i:dom_len+i] else: temp = dom_pp[0:dom_len] - rec_pp[i:dom_len+i] temp = np.abs(temp) temp = np.sum(temp) dif_amt.append(temp) dif_loc = np.where(np.min(dif_amt) == dif_amt)[0] if dom_is_larger: dom_pp = dom_pp[dif_loc[0]:rec_len+dif_loc[0]+1] else: rec_pp = rec_pp[dif_loc[0]:dom_len+dif_loc[0]+1] # Create timestamps using indices dom_pp_ts = np.zeros(dom_pp_ts.size) dom_pp_ts[dom_pp] = 1 self.dom_pp = np.where(dom_pp_ts == 1)[0] rec_pp_ts = np.zeros(rec_pp_ts.size) rec_pp_ts[rec_pp] = 1 self.rec_pp = np.where(rec_pp_ts == 1)[0] ### Pre-Peak Detection ### # Crossing filter to detect pre-dominant steady state (Before Leading-edge) dom_bp_ts = np.abs(np.diff(self.array - 2.5, prepend = self.array[0])) w = 5 dom_bp_ts = np.convolve(dom_bp_ts, np.ones(w), 'valid') / w dom_bp_ts = np.insert(dom_bp_ts, 0, np.zeros(w-1), axis=0) dom_bp_ts = 1-(dom_bp_ts > 0.05).astype(float) # Crossing filter to detect pre-recessive steady state (Before Leading-edge) rec_bp_ts = np.abs(np.diff(3.5 - self.array, prepend = self.array[0])) w = 5 rec_bp_ts = np.convolve(rec_bp_ts, np.ones(w), 'valid') / w rec_bp_ts = np.insert(rec_bp_ts, 0, np.zeros(w-1), axis=0) rec_bp_ts = 1-(rec_bp_ts > 0.05).astype(float) ## Find the last instance of steady state prior to dominant peaks jj = np.zeros(dom_pp.size).astype(int) for k in np.arange(0,dom_pp.size): # "Dominant-low steady state" indices before peak j = np.where(dom_bp_ts[0:dom_pp[k]] == 1) j = j[0] # Find nearest index before dominant peak min_idx = j-dom_pp[k] min_idx = min_idx[np.where(np.min(np.abs(min_idx)) == np.abs(min_idx))[0]] jj[k] = ((min_idx + dom_pp[k])[0]) # Dominant prior-to-peak steady-state indices dom_bp_ts2 = np.zeros(dom_bp_ts.size, dtype=int) dom_bp_ts2[jj] = 1 self.dom_bp = jj ## Find the last instance of steady state prior to recessive peaks jj = np.zeros(rec_pp.size).astype(int) for k in np.arange(0,rec_pp.size): # "Recesive-low steady state" indices before peak j = np.where(rec_bp_ts[0:rec_pp[k]] == 1) j = j[0] # Find nearest index before recessive peak min_idx = j-rec_pp[k] min_idx = min_idx[np.where(np.min(np.abs(min_idx)) == np.abs(min_idx))[0]] jj[k] = ((min_idx + rec_pp[k])[0]) # Recessive prior-to-peak steady-state indices rec_bp_ts2 = np.zeros(rec_bp_ts.size, dtype=int) rec_bp_ts2[jj] = 1 self.rec_bp = jj def PeakTime(self): ##### PeakTime # Input: dom_pp - dominant Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_pp - recessive Pulse Peak index # rec_bp - recessive Before Pulse peak index # sr - sample rate of the raw data # Output: dom_pt - dominant Peak Time # rec_pt - recessive Peak Time self.dom_pt = (self.dom_pp-self.dom_bp)/Record.sr self.rec_pt = (self.rec_pp-self.rec_bp)/Record.sr def SteadyStateValErr(self): ##### Steady State Value and Error # Input: array - raw signal data for record # dom_bp - dominant Before Pulse peak index # rec_bp - recessive Before Pulse peak index # Output: dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # dom_sse - dominant Steady State Error # rec_sse - recessive Steady State Error # Perform moving average filter, width=19 w = 19 arr_avg = np.convolve(self.array, np.ones(w), 'valid') / w arr_avg = np.insert(arr_avg, 0, arr_avg[0]*np.ones(w-1), axis=0) # Extract Steady State Value from previous Steady State Index dom_ssv_idx = self.rec_bp rec_ssv_idx = self.dom_bp self.dom_ssv = arr_avg[dom_ssv_idx] self.rec_ssv = arr_avg[rec_ssv_idx] # Calculate Steady State Error self.dom_sse = arr_avg[dom_ssv_idx] - 3.5 self.rec_sse = arr_avg[rec_ssv_idx] - 2.5 def PercentOvershoot(self): ##### Percent Overshoot # Input: array - raw signal data for record # dom_pp - dominant Before Pulse peak index # rec_pp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # Output: dom_po - dominant Percent Overshoot # rec_po - recessive Percent Overshoot dom_pv = self.array[self.dom_pp] rec_pv = self.array[self.rec_pp] try: self.dom_po = 100 * (dom_pv - self.dom_ssv) / self.dom_ssv self.rec_po = 100 * (self.rec_ssv - rec_pv) / self.rec_ssv except: self.dom_po = 100 * (dom_pv - np.average(self.dom_ssv)) / np.average(self.dom_ssv) self.rec_po = 100 * (np.average(self.rec_ssv) - rec_pv) / np.average(self.rec_ssv) def SettlingTime(self): ##### Settling Time # Input: array - raw signal data for record # dom_pp - dominant Before Pulse peak index # rec_pp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # sr - sample rate of the raw data # Output: dom_st_s - dominant Settling Time (s) # rec_st_s - recessive Settling Time (s) ss_rng = 0.05 # 5% Steady State Range of 1V Vpp design # Find index and time of settling point (dominant) w = 3 arr_avg1 = np.convolve(np.abs(self.array-np.average(self.dom_ssv)), np.ones(w), 'valid') / w arr_avg1 = np.insert(arr_avg1, 0, arr_avg1[0]*np.ones(w-1), axis=0) arr_avg11 = np.abs(np.round(arr_avg1,decimals=2)) dom_st_idx = np.where(arr_avg11 <= ss_rng)[0] dom_st = np.zeros(self.dom_pp.size) if dom_st_idx.size != 0: for i in np.arange(self.dom_pp.size): dom_st_idx[dom_st_idx <= self.dom_pp[i]] = -self.array.size j = np.where( np.min(np.abs(dom_st_idx - self.dom_pp[i])) == np.abs(dom_st_idx - self.dom_pp[i]) )[0][-1] dom_st[i] = dom_st_idx[j] dom_st = dom_st.astype(int) else: self.dom_st = np.concatenate((self.dom_pp[1:],[self.array.size])) self.dom_st_s = (dom_st - self.dom_pp)/Record.sr # Find index and time of settling point (dominant) w = 3 arr_avg2 = np.convolve(np.average(self.dom_ssv)-self.array, np.ones(w), 'valid') / w arr_avg2 = np.insert(arr_avg2, 0, arr_avg2[0]*np.ones(w-1), axis=0) arr_avg22 = np.abs(np.round(arr_avg2,decimals=2)) rec_st_idx = np.where(arr_avg22 <= ss_rng)[0] rec_st = np.zeros(self.rec_pp.size) for i in np.arange(self.rec_pp.size): rec_st_idx[rec_st_idx <= self.rec_pp[i]] = -self.array.size j = np.where( np.min(np.abs(rec_st_idx - self.rec_pp[i])) == np.abs(rec_st_idx - self.rec_pp[i]) )[0][-1] rec_st[i] = rec_st_idx[j] rec_st = rec_st.astype(int) self.rec_st_s = (rec_st - self.rec_pp)/Record.sr def RiseTime(self): ##### Rise Time # Input: array - raw signal data for record # dom_pp - dominant Pulse Peak index # rec_pp - recessive Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_bp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # sr - sample rate of the raw data # Output: dom_rt_s - dominant Settling Time (s) # rec_rt_s - recessive Settling Time (s) # Find index and time of rise point (dominant) dom_rt_ts = (self.array.copy() - np.average(self.rec_ssv) <= 1).astype(int) dom_rt_idx = np.where(dom_rt_ts == 1)[0] dom_rt = np.zeros(self.dom_pp.size) for i in np.arange(self.dom_pp.size): j = np.where(np.min(np.abs(dom_rt_idx - self.dom_pp[i])) == np.abs(dom_rt_idx - self.dom_pp[i]))[0][-1] dom_rt[i] = dom_rt_idx[j] dom_rt = dom_rt.astype(int) self.dom_rt_s = (dom_rt - self.dom_bp)/Record.sr # Find index and time of rise point (recessive) rec_rt_ts = (-self.array.copy() + np.average(self.dom_ssv) <= 1).astype(int) rec_rt_idx = np.where(rec_rt_ts == 1)[0] rec_rt = np.zeros(self.rec_pp.size) for i in np.arange(self.rec_pp.size): j = np.where(np.min(np.abs(rec_rt_idx - self.rec_pp[i])) == np.abs(rec_rt_idx - self.rec_pp[i]))[0][-1] rec_rt[i] = rec_rt_idx[j] rec_rt = rec_rt.astype(int) self.rec_rt_s = (rec_rt - self.rec_bp)/Record.sr def DelayTime(self): ##### Delay Time # Input: array - raw signal data for record # dom_pp - dominant Pulse Peak index # rec_pp - recessive Pulse Peak index # dom_bp - dominant Before Pulse peak index # rec_bp - recessive Before Pulse peak index # dom_ssv - dominant Steady State Value # rec_ssv - recessive Steady State Value # sr - sample rate of the raw data # Output: dom_rt_s - dominant Settling Time (s) # rec_rt_s - recessive Settling Time (s) # Find index and time of delay point (dominant) dom_dt_ts = (self.array.copy() - np.average(self.rec_ssv) <= 0.5).astype(int) dom_dt_idx = np.where(dom_dt_ts == 1)[0] dom_dt = np.zeros(self.dom_pp.size) for i in np.arange(self.dom_pp.size): j = np.where(np.min(np.abs(dom_dt_idx - self.dom_pp[i])) == np.abs(dom_dt_idx - self.dom_pp[i]))[0][-1] dom_dt[i] = dom_dt_idx[j] dom_dt = dom_dt.astype(int) self.dom_dt_s = (dom_dt - self.dom_bp)/Record.sr # Find index and time of delay point (recessive) rec_dt_ts = (-self.array.copy() + np.average(self.dom_ssv) <= 0.5).astype(int) rec_dt_idx = np.where(rec_dt_ts == 1)[0] rec_dt = np.zeros(self.rec_pp.size) for i in np.arange(self.rec_pp.size): j = np.where(np.min(np.abs(rec_dt_idx - self.rec_pp[i])) == np.abs(rec_dt_idx - self.rec_pp[i]))[0][-1] rec_dt[i] = rec_dt_idx[j] rec_dt = rec_dt.astype(int) self.rec_dt_s = (rec_dt - self.rec_bp)/Record.sr def RunSpectralAnalysis(self): ##### Spectral Analysis # Run the following methods: # # + Spectral Density Binning # + Signal-to-Noise Ratio # + Median Frequency # + Mean Frequency # # Features will be processed for both # Dominant and Recessive CAN High bits self.SpectralDensityBinning() self.SignalToNoiseRatio() self.MeanMedianFrequency() def SpectralDensityBinning(self): ##### Bin Spectral Density index_shift = -5 # Include some steady state info from prev pulse dom_pp_sd = self.dom_pp.copy() + index_shift rec_pp_sd = self.rec_pp.copy() + index_shift # Find the start/end pulse indices if self.dom_pp[0] <= self.rec_pp[0]: if len(self.dom_pp) > len(self.rec_pp): dom_pp_sd = dom_pp_sd[0:-1] idx_dom_se = np.array([dom_pp_sd,rec_pp_sd]) idx_rec_se = np.array([rec_pp_sd[0:-1],dom_pp_sd[1:]]) else: if len(self.rec_pp) > len(self.dom_pp): rec_pp_sd = rec_pp_sd[0:-1] idx_rec_se = np.array([rec_pp_sd,dom_pp_sd]) idx_dom_se = np.array([dom_pp_sd[0:-1],rec_pp_sd[1:]]) # Remove pulses that don't provide enough steady-state information from the prev pulse if idx_dom_se[0][0] < -index_shift: idx_dom_se = np.array([idx_dom_se[0][1:],idx_dom_se[1][1:]]) if idx_rec_se[0][0] < -index_shift: idx_rec_se = np.array([idx_rec_se[0][1:],idx_rec_se[1][1:]]) # Check for out-or-order index error if idx_dom_se[0][0] > idx_dom_se[1][0]: temp1 = np.array([idx_dom_se[1],idx_dom_se[0]]) temp2 = np.array([idx_dom_se[0],idx_rec_se[1]]) idx_dom_se = temp2 idx_rec_se = temp1 # Save dom pulse info to parent method variable dom_pulse_data for i in np.arange(idx_dom_se.shape[1]): self.dom_pulse_data.append(self.array[idx_dom_se[0][i]:idx_dom_se[1][i]]) # Save dom pulse info to parent method variable rec_pulse_data for i in np.arange(idx_rec_se.shape[1]): self.rec_pulse_data.append(self.array[idx_rec_se[0][i]:idx_rec_se[1][i]]) # Reset indices idx_dom_se = idx_dom_se - index_shift idx_rec_se = idx_rec_se - index_shift # Bin power densities def binned_sd(Pxx_den, nbins): bs = Pxx_den.size/nbins bs = round(bs) Pxx_hist = [] for i in np.arange(nbins): idx_s = i*bs idx_e = (i+1)*bs if idx_e >= Pxx_den.size: idx_e = Pxx_den.size - 1 Pxx_hist.append(np.average(Pxx_den[idx_s:idx_e])) Pxx_hist = np.nan_to_num(Pxx_hist) return Pxx_hist # Select bin sizes bin_sel = 2 dom_nbin = [15,13,10] # Bin size limited by pulse length # Perform binning of spectral density self.dom_sd = [] for i in np.arange(len(self.dom_pulse_data)): f, pd = signal.welch(self.dom_pulse_data[i], Record.sr, nperseg=len(self.dom_pulse_data[i])); self.dom_sd.append(binned_sd(pd, dom_nbin[bin_sel])) rec_nbin = [10, 8, 5] # Bin size limited by pulse length self.rec_sd = [] for i in np.arange(len(self.rec_pulse_data)): f, pd = signal.welch(self.rec_pulse_data[i], Record.sr, nperseg=len(self.rec_pulse_data[i])); self.rec_sd.append(binned_sd(pd, rec_nbin[bin_sel])) def SignalToNoiseRatio(self): index_shift = -5 self.dom_snr = [] for i in np.arange(len(self.dom_pulse_data)): cur_array = self.dom_pulse_data[i] signl = (np.arange(len(cur_array)) > -index_shift-1).astype(float)*np.average(self.dom_ssv) + \ (np.arange(len(cur_array)) <= -index_shift-1).astype(float)*np.average(self.rec_ssv) noise = signl - cur_array f, s_pd = signal.welch(signl, Record.sr, nperseg=len(signl)); f, n_pd = signal.welch(noise, Record.sr, nperseg=len(noise)); Ps = sum(s_pd) Pn = sum(n_pd) if Pn == 0: self.rec_snr.append(np.nan) continue self.dom_snr.append(10*np.log10(Ps/Pn)) self.rec_snr = [] for i in np.arange(len(self.rec_pulse_data)): cur_array = self.rec_pulse_data[i] signl = (np.arange(len(cur_array)) > -index_shift-2).astype(float)*np.average(self.rec_ssv) + \ (np.arange(len(cur_array)) <= -index_shift-2).astype(float)*np.average(self.dom_ssv) noise = signl - cur_array f, s_pd = signal.welch(signl, Record.sr, nperseg=len(signl)) f, n_pd = signal.welch(noise, Record.sr, nperseg=len(noise)) Ps = sum(s_pd) Pn = sum(n_pd) if Pn == 0: self.rec_snr.append(np.nan) continue self.rec_snr.append(10*np.log10(Ps/Pn)) def MeanMedianFrequency(self): self.dom_mdfr = [] self.rec_mdfr = [] self.dom_mnfr = [] self.rec_mnfr = [] self.dom_mnfr = [] self.dom_mdfr = [] for i in np.arange(len(self.dom_pulse_data)): cur_pulse = self.dom_pulse_data[i] f, pd = signal.welch(cur_pulse, Record.sr, nperseg=len(cur_pulse)) spl = splrep(f, pd, k=1) x2 = np.arange(f[0], f[-1],0.01) y2 = splev(x2, spl) y21 = y2/np.sum(y2) # Normalize spectra y22 = np.cumsum(y21) # Cummulative sum (CDF for SPD) y23 = y22-0.5 # Subtract 50% of energy y24 = abs(y23) # Abs value to create a minima y25 = np.where(np.min(y24) == y24)[0][-1] # Locate minima index self.dom_mdfr.append(x2[y25]) # Retrieve minima frequency self.dom_mnfr.append(np.sum(pd*f)/np.sum(pd)) self.rec_mnfr = [] self.rec_mdfr = [] for i in np.arange(len(self.rec_pulse_data)): cur_pulse = self.rec_pulse_data[i] f, pd = signal.welch(cur_pulse, Record.sr, nperseg=len(cur_pulse)) spl = splrep(f, pd, k=1) x2 = np.arange(f[0], f[-1],0.01) y2 = splev(x2, spl) y21 = y2/np.sum(y2) # Normalize spectra y22 = np.cumsum(y21) # Cummulative sum (CDF for SPD) y23 = y22-0.5 # Subtract 50% of energy y24 = abs(y23) # Abs value to create a minima y25 = np.where(np.min(y24) == y24)[0][-1] # Locate minima index self.rec_mdfr.append(x2[y25]) # Retrieve minima frequency self.rec_mnfr.append(np.sum(pd*f)/np.sum(pd)) def OutlierCount(self): ##### Outlier Count # Calculates the standard deviation for each feature and creates a binary # mask of pulses that exceed the standard deviation threshold # Binary masks are added to determine total number of deviations per pulse # across all features std = 1.5 # Threshold def fix_size_disparity(in1, in2): if in1.size > in2.size: in2 = np.concatenate((in2,np.zeros(in1.size - in2.size))).astype(int) elif in2.size > in1.size: in1 = np.concatenate((in1,np.zeros(in2.size - in1.size))).astype(int) return in1, in2 # Outlier check and size correction self.dom_pp, self.rec_pp = fix_size_disparity(self.dom_pp, self.rec_pp) self.dom_bp, self.rec_bp = fix_size_disparity(self.dom_bp, self.rec_bp) self.dom_pt, self.rec_pt = fix_size_disparity(self.dom_pt, self.rec_pt) dom_pt_out = (np.abs(self.dom_pt-np.average(self.dom_pt)) > std*np.std(self.dom_pt)).astype(int) rec_pt_out = (np.abs(self.rec_pt-np.average(self.rec_pt)) > std*np.std(self.rec_pt)).astype(int) pt_out = dom_pt_out + rec_pt_out self.dom_ssv, self.rec_ssv = fix_size_disparity(self.dom_ssv, self.rec_ssv) dom_ssv_out = (np.abs(self.dom_ssv-np.average(self.dom_ssv)) > std*np.std(self.dom_ssv)).astype(int) rec_ssv_out = (np.abs(self.rec_ssv-np.average(self.rec_ssv)) > std*np.std(self.rec_ssv)).astype(int) ssv_out = dom_ssv_out + rec_ssv_out self.dom_sse, self.rec_sse = fix_size_disparity(self.dom_sse, self.rec_sse) dom_sse_out = (np.abs(self.dom_sse-np.average(self.dom_sse)) > std*np.std(self.dom_sse)).astype(int) rec_sse_out = (np.abs(self.rec_sse-np.average(self.rec_sse)) > std*np.std(self.rec_sse)).astype(int) sse_out = dom_sse_out + rec_sse_out self.dom_po, self.rec_po = fix_size_disparity(self.dom_po, self.rec_po) dom_po_out = (np.abs(self.dom_po-np.average(self.dom_po)) > std*np.std(self.dom_po)).astype(int) rec_po_out = (np.abs(self.rec_po-np.average(self.rec_po)) > std*np.std(self.rec_po)).astype(int) po_out = dom_po_out + rec_po_out self.dom_st_s, self.rec_st_s = fix_size_disparity(self.dom_st_s, self.rec_st_s) dom_st_s_out = (np.abs(self.dom_st_s-np.average(self.dom_st_s)) > std*np.std(self.dom_st_s)).astype(int) rec_st_s_out = (np.abs(self.rec_st_s-np.average(self.rec_st_s)) > std*np.std(self.rec_st_s)).astype(int) st_s_out = dom_st_s_out + rec_st_s_out self.dom_rt_s, self.rec_rt_s = fix_size_disparity(self.dom_rt_s, self.rec_rt_s) dom_rt_s_out = (np.abs(self.dom_rt_s-np.average(self.dom_rt_s)) > std*np.std(self.dom_rt_s)).astype(int) rec_rt_s_out = (np.abs(self.rec_rt_s-np.average(self.rec_rt_s)) > std*np.std(self.rec_rt_s)).astype(int) rt_s_out = dom_rt_s_out + rec_rt_s_out self.dom_dt_s, self.rec_dt_s = fix_size_disparity(self.dom_dt_s, self.rec_dt_s) dom_dt_s_out = (np.abs(self.dom_dt_s-np.average(self.dom_dt_s)) > std*np.std(self.dom_dt_s)).astype(int) rec_dt_s_out = (np.abs(self.rec_dt_s-np.average(self.rec_dt_s)) > std*np.std(self.rec_dt_s)).astype(int) dt_s_out = dom_dt_s_out + rec_dt_s_out self.outlier_count = pt_out + ssv_out + sse_out + \ po_out + st_s_out + rt_s_out + dt_s_out return self.outlier_count def RemoveOutliers(self): ##### Remove Outlier Pulses # Checks outlier count for each pulse and removes pulses that exceed # the deviation threshold dev = 6 noutlier_idx = np.where(self.outlier_count < dev + 1)[0] self.dom_pp = self.dom_pp[noutlier_idx] self.rec_pp = self.rec_pp[noutlier_idx] self.dom_bp = self.dom_bp[noutlier_idx] self.rec_bp = self.rec_bp[noutlier_idx] self.dom_pt = self.dom_pt[noutlier_idx] self.rec_pt = self.rec_pt[noutlier_idx] self.dom_ssv = self.dom_ssv[noutlier_idx] self.rec_ssv = self.rec_ssv[noutlier_idx] self.dom_sse = self.dom_sse[noutlier_idx] self.rec_sse = self.rec_sse[noutlier_idx] self.dom_po = self.dom_po[noutlier_idx] self.rec_po = self.rec_po[noutlier_idx] self.dom_st_s = self.dom_st_s[noutlier_idx] self.rec_st_s = self.rec_st_s[noutlier_idx] self.dom_rt_s = self.dom_rt_s[noutlier_idx] self.rec_rt_s = self.rec_rt_s[noutlier_idx] self.dom_dt_s = self.dom_dt_s[noutlier_idx] self.rec_dt_s = self.rec_dt_s[noutlier_idx] self.OutlierCount() def summary(self): print('Peak Time (s):') print(' dom: ', self.dom_pt) print(' avg: ', np.average(self.dom_pt)) print(' std: ', np.std(self.dom_pt)) print(' dev: ', np.abs(self.dom_pt-np.average(self.dom_pt))) # print(' out: ', dom_pt_out) print(' rec: ', self.rec_pt) print(' avg: ', np.average(self.rec_pt)) print(' std: ', np.std(self.rec_pt)) print(' dev: ', np.abs(self.rec_pt-np.average(self.rec_pt))) # print(' out: ', rec_pt_out) print('') print('Steady State Value (V):') print(' dom: ', self.dom_ssv) print(' avg: ', np.average(self.dom_ssv)) print(' std: ', np.std(self.dom_ssv)) print(' dev: ', np.abs(self.dom_ssv-np.average(self.dom_ssv))) # print(' out: ', dom_ssv_out) print(' rec: ', self.rec_ssv) print(' avg: ', np.average(self.rec_ssv)) print(' std: ', np.std(self.rec_ssv)) print(' dev: ', np.abs(self.rec_ssv-np.average(self.rec_ssv))) # print(' out: ', rec_ssv_out) print('') print('Steady State Error (V):') print(' dom: ', self.dom_sse) print(' avg: ', np.average(self.dom_sse)) print(' std: ', np.std(self.dom_sse)) print(' dev: ', np.abs(self.dom_sse-np.average(self.dom_sse))) # print(' out: ', dom_sse_out) print(' rec: ', self.rec_sse) print(' avg: ', np.average(self.rec_sse)) print(' std: ', np.std(self.rec_sse)) print(' dev: ', np.abs(self.rec_sse-np.average(self.rec_sse))) # print(' out: ', rec_sse_out) print('') print('Percent Overshoot') print(' dom: ', self.dom_po) print(' avg: ', np.average(self.dom_po)) print(' std: ',
np.std(self.dom_po)
numpy.std
import pybullet import numpy as np import copy from causal_world.utils.rotation_utils import rotate_points, cyl2cart, \ cart2cyl, euler_to_quaternion from causal_world.configs.world_constants import WorldConstants class SilhouetteObject(object): def __init__(self, pybullet_client_ids, name, size, position, orientation, color): """ This is the base object for a silhouette in the arena. :param pybullet_client_ids: (list) list of pybullet client ids. :param name: (str) specifies the name of the silhouette object :param size: (list float) specifies the size of the object. :param position: (list float) x, y, z position. :param orientation: (list float) quaternion. :param color: (list float) RGB values. """ self._pybullet_client_ids = pybullet_client_ids self._name = name self._type_id = None self._size = size self._color = color self._alpha = 0.3 self._position = position self._orientation = orientation self._block_ids = [] self._shape_ids = [] self._define_type_id() self._volume = None self._set_volume() self._init_object() self._lower_bounds = dict() self._upper_bounds = dict() self._lower_bounds[self._name + "_type"] = \ np.array([self._type_id]) self._lower_bounds[self._name + "_cartesian_position"] = \ np.array([-0.5, -0.5, 0]) self._lower_bounds[self._name + "_cylindrical_position"] = \ np.array([0, 0, 0]) self._lower_bounds[self._name + "_orientation"] = \ np.array([-10] * 4) self._lower_bounds[self._name + "_size"] = \ np.array([0.03, 0.03, 0.03]) self._lower_bounds[self._name + "_color"] = \ np.array([0] * 3) #decision: type id is not normalized self._upper_bounds[self._name + "_type"] = \ np.array([self._type_id]) self._upper_bounds[self._name + "_cartesian_position"] = \ np.array([0.5] * 3) self._upper_bounds[self._name + "_cylindrical_position"] = \ np.array([0.20, np.pi, 0.5]) self._upper_bounds[self._name + "_orientation"] = \ np.array([10] * 4) self._upper_bounds[self._name + "_size"] = \ np.array([0.1, 0.1, 0.1]) self._upper_bounds[self._name + "_color"] = \ np.array([1] * 3) self._state_variable_names = [] self._state_variable_names = [ 'type', 'cartesian_position', 'cylindrical_position', 'orientation', 'size', 'color' ] self._state_variable_sizes = [] self._state_size = 0 for state_variable_name in self._state_variable_names: self._state_variable_sizes.append( self._upper_bounds[self._name + "_" + state_variable_name].shape[0]) self._state_size += self._state_variable_sizes[-1] self._add_state_variables() return def _set_volume(self): """ sets the volume of the goal using the size attribute. :return: """ self._volume = self._size[0] * self._size[1] * self._size[2] return def _add_state_variables(self): """ used to add state variables to the silhouette object. :return: """ return def _create_object(self, pybullet_client_id, **kwargs): """ :param pybullet_client_id: (int) pybullet client id to be used when creating the gaol itself. :param kwargs: (params) parameters to be used when creating the goal using the corresponding pybullet goal creation parameters :return: """ raise NotImplementedError("the creation function is not defined " "yet") def _define_type_id(self): """ Defines the type id of the goal itself. :return: """ raise NotImplementedError("the define type id function " "is not defined yet") def _init_object(self): """ Used to initialize the goal, by creating it in the arena. :return: """ for pybullet_client_id in self._pybullet_client_ids: shape_id, block_id =\ self._create_object(pybullet_client_id) self._block_ids.append(block_id) self._shape_ids.append(shape_id) self._set_color(self._color) return def reinit_object(self): """ Used to remove the goal from the arena and creating it again. :return: """ self.remove() self._init_object() return def remove(self): """ Used to remove the goal from the arena. :return: """ for i in range(0, len(self._pybullet_client_ids)): pybullet.removeBody(self._block_ids[i], physicsClientId=self._pybullet_client_ids[i]) self._block_ids = [] self._shape_ids = [] return def _set_color(self, color): """ :param color: (list) color RGB normalized from 0 to 1. :return: """ for i in range(len(self._pybullet_client_ids)): pybullet.changeVisualShape( self._block_ids[i], -1, rgbaColor=np.append(color, self._alpha), physicsClientId=self._pybullet_client_ids[i]) return def set_pose(self, position, orientation): """ :param position: (list) cartesian x,y,z positon of the center of the gaol shape. :param orientation: (list) quaternion x,y,z,w of the goal itself. :return: """ position[-1] += WorldConstants.FLOOR_HEIGHT for i in range(0, len(self._pybullet_client_ids)): pybullet.resetBasePositionAndOrientation( self._block_ids[i], position, orientation, physicsClientId=self._pybullet_client_ids[i]) return def get_state(self, state_type='dict'): """ :param state_type: (str) specifying 'dict' or 'list' :return: (list) returns either a dict or a list specifying the state variables of the goal shape. """ if state_type == 'dict': state = dict() position, orientation = \ pybullet.getBasePositionAndOrientation( self._block_ids[0], physicsClientId = self._pybullet_client_ids[0]) position = np.array(position) position[-1] -= WorldConstants.FLOOR_HEIGHT state["type"] = self._type_id state["cartesian_position"] =
np.array(position)
numpy.array
""" This file contains experimental versions of downgridding xy-grids. Conclusions: - **Downgrid xy-grid**. It seems that usage of `UnivariateSpline` (combined with custom greedy downgridding based on probability penalty logic to ensure exact number of elements in output xy-grid) delivers best compromise between computation time and accuracy. This is implemented in `downgrid_spline()`. However, some benchmarks are done in 'downgrid_cont_benchmarks.py'. - **Downgrid xp-grid**. Use iterative greedy removing of points based on penalty. Implemented in `downgrid_xp` (probably should be simplified to not use `downgrid_metricpenalty()`), as part of other approaches to xy-downgridding. """ import numpy as np from scipy.integrate import quad from scipy.interpolate import UnivariateSpline, interp1d from scipy.linalg import solve_banded from scipy.optimize import root_scalar import scipy.stats as ss import matplotlib.pyplot as plt import matplotlib.colors import matplotlib.cm as cm from randomvars import Cont from randomvars.options import config # %% Downgrid xy-grid # Version 1. Downgrid by iteratively removing points. At one iteration point is # picked so that its removing will lead to **the smallest absolute change in # square** compared to current (at the beginning of iteration) xy-grid. def downgrid_probpenalty(x, y, n_grid_out, plot_step=10): x_orig, y_orig = x, y cur_net_change = 0 # Iteratively remove one-by-one x-values with the smallest penalty for i in range(len(x) - n_grid_out): penalty = compute_penalty(x, y) # Pick best index as the one which delivers the smallest change in # total square compared to the current iteration min_ind = np.argmin(penalty) if (i + 1) % plot_step == 0: plt.plot(x, penalty, "best index") plt.title(f"Length of x = {len(x)}") plt.show() plt.plot(x_orig, y_orig, label="original") plt.plot(x, y, "-o", label="current") plt.plot(x[min_ind], y[min_ind], "o", label="best index") plt.title(f"Density. Length of x = {len(x)}") plt.legend() plt.show() # print(f"Delete x={x[min_ind]}") x = np.delete(x, min_ind) y = np.delete(y, min_ind) y = y / trapez_integral(x, y) return x, y / trapez_integral(x, y) def compute_penalty(x, y): # Compute current neighboring square of every x-grid: square of left # trapezoid (if no, then zero) plus square of right trapezoid (if no, then # zero). trapezoids_ext = np.concatenate(([0], 0.5 * np.diff(x) * (y[:-1] + y[1:]), [0])) square_cur = trapezoids_ext[:-1] + trapezoids_ext[1:] # Compute new neighboring square after removing corresponding x-value and # replacing two segments with one segment connecting neighboring xy-points. # The leftmost and rightmost x-values are removed without any segment # replacement. square_new = np.concatenate(([0], 0.5 * (x[2:] - x[:-2]) * (y[:-2] + y[2:]), [0])) # Compute penalty as value of absolute change in total square if # corresponding x-point will be removed. return np.abs(square_cur - square_new) # Version 1.5. Downgrid by iteratively removing points. At one iteration point # is picked so that its removing will lead to **the best balancing of removed # square**. def downgrid_probpenalty_1half(x, y, n_grid_out, plot_step=10): x_orig, y_orig = x, y cur_net_change = 0 # Iteratively remove one-by-one x-values with the smallest penalty for i in range(len(x) - n_grid_out): penalty = compute_penalty_1half(x, y) # Pick best index as the one which best balances current net change # from the input. best_ind = np.argmin(np.abs(cur_net_change + penalty)) cur_net_change = cur_net_change + penalty[best_ind] if (i + 1) % plot_step == 0: plt.plot(x, penalty, "best index") plt.title(f"Length of x = {len(x)}") plt.show() plt.plot(x_orig, y_orig, label="original") plt.plot(x, y, "-o", label="current") plt.plot(x[best_ind], y[best_ind], "o", label="best index") plt.title(f"Density. Length of x = {len(x)}") plt.legend() plt.show() # print(f"Delete x={x[best_ind]}") x = np.delete(x, best_ind) y = np.delete(y, best_ind) y = y / trapez_integral(x, y) return x, y / trapez_integral(x, y) def compute_penalty_1half(x, y): # Compute current neighboring square of every x-grid: square of left # trapezoid (if no, then zero) plus square of right trapezoid (if no, then # zero). trapezoids_ext = np.concatenate(([0], 0.5 * np.diff(x) * (y[:-1] + y[1:]), [0])) square_cur = trapezoids_ext[:-1] + trapezoids_ext[1:] # Compute new neighboring square after removing corresponding x-value and # replacing two segments with one segment connecting neighboring xy-points. # The leftmost and rightmost x-values are removed without any segment # replacement. square_new = np.concatenate(([0], 0.5 * (x[2:] - x[:-2]) * (y[:-2] + y[2:]), [0])) # Compute penalty as value for which total square will change if # corresponding x-point will be removed. return square_new - square_cur # Version 2. Downgrid by iteratively removing points. At one iteration point is # picked so that its removing after renormalization results into **the smallest # absolute difference between input reference CDF and new CDF at removed # point**. def downgrid_probpenalty_2(x, y, n_grid_out, plot_step=10): x_orig, y_orig = x, y cump_ref = trapez_integral_cum(x, y) # Iteratively remove one-by-one x-values with the smallest penalty for i in range(len(x_orig) - n_grid_out): penalty = compute_penalty_2(x, y, cump_ref) min_ind = np.argmin(penalty) # print(f"Delete x={x[min_ind]}") if (i + 1) % plot_step == 0: plt.plot(x, penalty, "-o") plt.plot(x[min_ind], penalty[min_ind], "or") plt.title(f"Penalty. Length of x = {len(x)}") plt.show() plt.plot(x_orig, y_orig, label="original") plt.plot(x, y, "-o", label="current") plt.plot(x[min_ind], y[min_ind], "o", label="min. penalty") plt.title(f"Density. Length of x = {len(x)}") plt.legend() plt.show() x, y, cump_ref = delete_index(x, y, cump_ref, min_ind) return x, y / trapez_integral(x, y) def compute_penalty_2(x, y, cump_ref): integral_cum = trapez_integral_cum(x, y) sq_total = integral_cum[-1] sq_inter = np.diff(trapez_integral_cum(x, y)) # Nearest two-squares of inner x-points (sum of squares of two nearest # intervals) sq_twointer_before = sq_inter[:-1] + sq_inter[1:] # Squares after removing x-point (for inner x-points only) sq_twointer_after = 0.5 * (y[:-2] + y[2:]) * (x[2:] - x[:-2]) # Coefficient of stretching alpha = sq_total / (sq_total + (sq_twointer_after - sq_twointer_before)) # Compute penalty as difference between input reference cump and cump after # removing corresponding x-points dx = np.diff(x)[:-1] dx2 = x[2:] - x[:-2] dy2 = y[2:] - y[:-2] penalty_inner = np.abs( cump_ref[1:-1] - alpha * (0.5 * dy2 * dx ** 2 / dx2 + y[:-2] * dx + cump_ref[:-2]) ) return np.concatenate(([cump_ref[1]], penalty_inner, [1 - cump_ref[-2]])) # Version 3 (**VERY SLOW**). Downgrid by iteratively removing points. At one # iteration point is picked so that its removing after renormalization results # into the smallest functional distance between input refernce CDF and new CDF. def downgrid_probpenalty_3(x, y, n_grid_out, plot_step=10, method="L2"): x_orig, y_orig = x, y cdf_spline_ref = xy_to_cdf_spline(x, y) # Iteratively remove one-by-one x-values with the smallest penalty for i in range(len(x_orig) - n_grid_out): penalty = compute_penalty_3(x, y, cdf_spline_ref, method=method) min_ind = np.argmin(penalty) print(f"Delete x={x[min_ind]}") if (i + 1) % plot_step == 0: plt.plot(x, penalty, "-o") plt.plot(x[min_ind], penalty[min_ind], "or") plt.title(f"Penalty. Length of x = {len(x)}") plt.show() plt.plot(x_orig, y_orig, label="original") plt.plot(x, y, "-o", label="current") plt.plot(x[min_ind], y[min_ind], "o", label="min. penalty") plt.title(f"Density. Length of x = {len(x)}") plt.legend() plt.show() x = np.delete(x, min_ind) y = np.delete(y, min_ind) y = y / trapez_integral(x, y) return x, y def compute_penalty_3(x, y, cdf_spline_ref, method="L2"): sq_total = trapez_integral(x, y) res = [] for i in range(len(x)): x_cur = np.delete(x, i) y_cur = np.delete(y, i) y_cur = y_cur * sq_total / trapez_integral(x_cur, y_cur) cdf_spline = xy_to_cdf_spline(x_cur, y_cur) res.append(fun_distance(cdf_spline, cdf_spline_ref, method=method)) return np.array(res) # Version from spline def downgrid_spline(x, y, n_grid_out, s_big=2, s_small=1e-16): cdf_vals = trapez_integral_cum(x, y) cdf_spline = UnivariateSpline(x=x, y=cdf_vals, s=np.inf, k=2) cur_s = s_big scale_factor = 0.5 while cur_s > s_small: n_knots = len(cdf_spline.get_knots()) if n_knots >= n_grid_out: break cdf_spline.set_smoothing_factor(cur_s) cur_s *= scale_factor x_res, y_res = cdf_spline_to_xy(cdf_spline) n_excess_points = len(x_res) - n_grid_out if n_excess_points < 0: # If output xy-grid has not enough points, use all input grid and later # possibly remove points x_res, y_res = x, y n_excess_points = len(x_res) - n_grid_out if n_excess_points > 0: # Remove excess points if `s` got too small for _ in range(n_excess_points): x_res, y_res = remove_point_from_xy(x_res, y_res) return x_res, y_res def remove_point_from_xy(x, y): # This uses "version 1" removing approach penalty = compute_penalty(x, y) # Pick best index (accept edges) as the one which delivers the smallest # change in total square compared to the current iteration min_ind = np.argmin(penalty[1:-1]) + 1 x = np.delete(x, min_ind) y = np.delete(y, min_ind) y = y / trapez_integral(x, y) return x, y def cdf_spline_to_xy(spline): dens_spline = spline.derivative() x = dens_spline.get_knots() y = np.clip(dens_spline(x), 0, None) y = y / trapez_integral(x, y) return x, y # Downgrid xp-grid def downgrid_xp(x, p, n_grid_out, metric="L2", plot_step=10, remove_edges=True): c = np.concatenate(([0], np.cumsum(p))) x_down, c_down = downgrid_metricpenalty( x=x, c=c, n_grid_out=n_grid_out, metric=metric, plot_step=plot_step, remove_edges=remove_edges, ) p_down = np.diff(c_down) return x_down, p_down def downgrid_metricpenalty( x, c, n_grid_out, metric="L2", plot_step=10, remove_edges=True ): """ Here `c` - constant values on intervals (-inf, x[0]), [x[0], x[1]), ..., [x[-2], x[-1]), and [x[-1], +inf) between `x[:-1]` and `x[1:]` (this also means that `len(c) == len(x) + 1`) """ x_orig, c_orig = x, c x_grid = np.linspace(x[0], x[-1], 1001) for i in range(len(x) - n_grid_out): penalty = compute_metricpenalty(x, c, metric) # Pick best index as the one which delivers the smallest penalty if remove_edges: min_ind = np.argmin(penalty) else: min_ind = np.argmin(penalty[1:-1]) + 1 if (i + 1) % plot_step == 0: plt.plot(x, penalty, "-o") plt.plot(x[min_ind], penalty[min_ind], "or") plt.title(f"Penalty. Length of x = {len(x)}") plt.show() plt.plot( x_grid, interp1d(x_orig, c_orig[1:], kind="previous")(x_grid), label="original", ) plt.plot( x_grid, interp1d( x, c[1:], kind="previous", bounds_error=False, fill_value=(c[0], c[-1]), )(x_grid), label="current", ) plt.plot(x[min_ind], c[min_ind], "o", label="best index") plt.title(f"Piecewise constant. Length of x = {len(x)}") plt.legend() plt.show() # print(f"Delete x={x[min_ind]}") x, c = delete_xc_index(x, c, min_ind, metric=metric) return x, c def compute_metricpenalty(x, c, metric): dc_abs = np.abs(np.diff(c)) dx = np.diff(x) if metric == "L2": inner_penalty = dx[:-1] * dx[1:] * dc_abs[1:-1] / (dx[:-1] + dx[1:]) if metric == "L1": inner_penalty = dc_abs[1:-1] * np.minimum(dx[:-1], dx[1:]) res = np.concatenate(([dc_abs[0] * dx[0]], inner_penalty, [dc_abs[-1] * dx[-1]])) return np.sqrt(2) * res if metric == "L2" else res def delete_xc_index(x, c, ind, metric): if ind == 0: c = np.delete(c, 1) elif ind == (len(x) - 1): c = np.delete(c, ind) else: if metric == "L2": alpha = (x[ind] - x[ind - 1]) / (x[ind + 1] - x[ind - 1]) elif metric == "L1": mid = 0.5 * (x[ind - 1] + x[ind + 1]) # alpha = 1 if x < mid; alpha = 0.5 if x = mid; alpha = 0 if x > mid alpha = 0.5 * (0.0 + (mid < x[ind]) + (mid <= x[ind])) # Avoid modifing original array c_right = c[ind + 1] c = np.delete(c, ind + 1) c[ind] = alpha * c[ind] + (1 - alpha) * c_right x = np.delete(x, ind) return x, c # Version from xp. Retype xy-grid to xp-grid, downgrid xp-grid, retype back to # xy-grid. def downgrid_fromxp(x, y, n_grid_out, plot_step=10, metric="L2"): p = p_from_xy(x, y) x_down, p_down = downgrid_xp( x, p, n_grid_out=n_grid_out, metric=metric, plot_step=plot_step, remove_edges=False, ) # Clip possible negative values y_down = np.clip(y_from_xp(x_down, p_down), 0, None) y_down = y_down / trapez_integral(x_down, y_down) return x_down, y_down def y_from_xp(x, p, metric="L2"): metric_coeffs = {"L1": 0.75, "L2": 2 / 3, "Linf": 0.5} coeff = metric_coeffs[metric] dx = np.diff(x) dx_lead = np.concatenate([dx, [0]]) dx_lag = np.concatenate([[0], dx]) banded_matrix = 0.5 * np.array( [dx_lag * (1 - coeff), (dx_lag + dx_lead) * coeff, dx_lead * (1 - coeff)] ) return solve_banded(l_and_u=(1, 1), ab=banded_matrix, b=p) def p_from_xy(x, y, metric="L2"): metric_coeffs = {"L1": 0.75, "L2": 2 / 3, "Linf": 0.5} coeff = metric_coeffs[metric] cump = trapez_integral_cum(x, y) dx = np.diff(x) # This is missing last value, which is 1 disc_cump = cump[:-1] + 0.5 * dx * (coeff * y[:-1] + (1 - coeff) * y[1:]) p = np.diff(disc_cump, prepend=0, append=1) return p # Version from slopes. Convert xy-grid to xslope-grid, downgrid with discrete # downgridding, convert back to xy-grid. def downgrid_fromslopes(x, y, n_grid_out, metric="L2", plot_step=10): slopes = np.diff(y) / np.diff(x) c = np.concatenate(([0], slopes, [0])) x_down, c_down = downgrid_metricpenalty( x, c, n_grid_out=n_grid_out, metric=metric, plot_step=plot_step ) y0 = np.interp(x_down[0], x, y) y_down = np.concatenate(([y0], y0 + np.cumsum(c_down[1:-1] * np.diff(x_down)))) y_down = np.clip(y_down, 0, None) y_down = y_down / trapez_integral(x_down, y_down) return x_down, y_down # Helper functions def trapez_integral_cum(x, y): """Compute cumulative integral with trapezoidal formula. Element of output represents cumulative probability **before** its left "x" edge. """ res = np.cumsum(0.5 * np.diff(x) * (y[:-1] + y[1:])) return np.concatenate([[0], res]) def trapez_integral(x, y): return np.sum(0.5 * np.diff(x) * (y[:-1] + y[1:])) def delete_index(x, y, cump_ref, ind): x = np.delete(x, ind) y =
np.delete(y, ind)
numpy.delete
# Copyright 2021 Division of Medical Image Computing, German Cancer Research Center (DKFZ) # and Applied Computer Vision Lab, Helmholtz Imaging Platform # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from batchgenerators.augmentations.spatial_transformations import augment_rot90, augment_resize, augment_transpose_axes class AugmentTransposeAxes(unittest.TestCase): def setUp(self): np.random.seed(123) self.data_3D = np.random.random((2, 4, 5, 6)) self.seg_3D = np.random.random(self.data_3D.shape) def test_transpose_axes(self): n_iter = 1000 tmp = 0 for i in range(n_iter): data_out, seg_out = augment_transpose_axes(self.data_3D, self.seg_3D, axes=(1, 0)) if np.array_equal(data_out, np.swapaxes(self.data_3D, 1, 2)): tmp += 1 self.assertAlmostEqual(tmp, n_iter/2., delta=10) class AugmentResize(unittest.TestCase): def setUp(self): np.random.seed(123) self.data_3D = np.random.random((2, 12, 14, 31)) self.seg_3D = np.random.random(self.data_3D.shape) def test_resize(self): data_resized, seg_resized = augment_resize(self.data_3D, self.seg_3D, target_size=15) mean_resized = float(np.mean(data_resized)) mean_original = float(np.mean(self.data_3D)) self.assertAlmostEqual(mean_original, mean_resized, places=2) self.assertTrue(all((data_resized.shape[i] == 15 and seg_resized.shape[i] == 15) for i in range(1, len(data_resized.shape)))) def test_resize2(self): data_resized, seg_resized = augment_resize(self.data_3D, self.seg_3D, target_size=(7, 5, 6)) mean_resized = float(np.mean(data_resized)) mean_original = float(np.mean(self.data_3D)) self.assertAlmostEqual(mean_original, mean_resized, places=2) self.assertTrue(all([i == j for i, j in zip(data_resized.shape[1:], (7, 5, 6))])) self.assertTrue(all([i == j for i, j in zip(seg_resized.shape[1:], (7, 5, 6))])) class AugmentRot90(unittest.TestCase): def setUp(self): np.random.seed(123) self.data_3D = np.random.random((2, 4, 5, 6)) self.seg_3D = np.random.random(self.data_3D.shape) self.num_rot = [1] def test_rotation_checkerboard(self): data_2d_checkerboard = np.zeros((1, 2, 2)) data_2d_checkerboard[0, 0, 0] = 1 data_2d_checkerboard[0, 1, 1] = 1 data_rotated_list = [] n_iter = 1000 for i in range(n_iter): d_r, _ = augment_rot90(np.copy(data_2d_checkerboard), None, num_rot=[4,1], axes=[0, 1]) data_rotated_list.append(d_r) data_rotated_np = np.array(data_rotated_list) sum_data_list = np.sum(data_rotated_np, axis=0) a = np.unique(sum_data_list) self.assertAlmostEqual(a[0], n_iter/2, delta=20) self.assertTrue(len(a) == 2) def test_rotation(self): data_rotated, seg_rotated = augment_rot90(np.copy(self.data_3D), np.copy(self.seg_3D), num_rot=self.num_rot, axes=[0, 1]) for i in range(self.data_3D.shape[1]): self.assertTrue(np.array_equal(self.data_3D[:, i, :, :], np.flip(data_rotated[:, :, i, :], axis=1))) self.assertTrue(np.array_equal(self.seg_3D[:, i, :, :], np.flip(seg_rotated[:, :, i, :], axis=1))) def test_randomness_rotation_axis(self): tmp = 0 for j in range(100): data_rotated, seg_rotated = augment_rot90(np.copy(self.data_3D), np.copy(self.seg_3D), num_rot=self.num_rot, axes=[0, 1, 2]) if np.array_equal(self.data_3D[:, 0, :, :], np.flip(data_rotated[:, :, 0, :], axis=1)): tmp += 1 self.assertAlmostEqual(tmp, 33, places=2) def test_rotation_list(self): num_rot = [1, 3] data_rotated, seg_rotated = augment_rot90(np.copy(self.data_3D), np.copy(self.seg_3D), num_rot=num_rot, axes=[0, 1]) tmp = 0 for i in range(self.data_3D.shape[1]): # check for normal and inverse rotations normal_rotated = np.array_equal(self.data_3D[:, i, :, :], data_rotated[:, :, -i-1, :]) inverse_rotated = np.array_equal(self.data_3D[:, i, :, :], np.flip(data_rotated[:, :, i, :], axis=1)) if normal_rotated: tmp += 1 self.assertTrue(normal_rotated or inverse_rotated) self.assertTrue(np.array_equal(self.seg_3D[:, i, :, :], seg_rotated[:, :, -i - 1, :]) or np.array_equal(self.seg_3D[:, i, :, :],
np.flip(seg_rotated[:, :, i, :], axis=1)
numpy.flip
import numpy as np import pytest from dask_histogram.bins import ( BinsStyle, RangeStyle, bins_range_styles, bins_style, normalize_bins_range, ) def test_bins_styles_scalar(): # Valid assert bins_style(ndim=1, bins=5) is BinsStyle.SingleScalar assert bins_style(ndim=2, bins=(2, 5)) is BinsStyle.MultiScalar assert bins_style(ndim=2, bins=[3, 4]) is BinsStyle.MultiScalar # Invalid with pytest.raises( ValueError, match="Total number of bins definitions must be equal to the dimensionality of the histogram.", ): bins_style(ndim=3, bins=[2, 3]) with pytest.raises( ValueError, match="Total number of bins definitions must be equal to the dimensionality of the histogram.", ): bins_style(ndim=4, bins=[2, 3, 4, 7, 8]) def test_bins_styles_sequence(): assert bins_style(ndim=1, bins=np.array([1, 2, 3])) is BinsStyle.SingleSequence assert bins_style(ndim=1, bins=[1, 2, 3]) is BinsStyle.SingleSequence assert bins_style(ndim=1, bins=(4, 5, 6)) is BinsStyle.SingleSequence assert bins_style(ndim=2, bins=[[1, 2, 3], [4, 5, 7]]) is BinsStyle.MultiSequence bins = [[1, 2, 6, 7], [1, 2, 3], [4, 7, 11, 12, 13]] assert bins_style(ndim=3, bins=bins) is BinsStyle.MultiSequence bins = (np.array([1.1, 2.2]), np.array([2.2, 4.4, 6.6])) assert BinsStyle.MultiSequence is bins_style(ndim=2, bins=bins) with pytest.raises( ValueError, match="Total number of bins definitions must be equal to the dimensionality of the histogram.", ): bins_style(ndim=1, bins=[[1, 2], [4, 5]]) with pytest.raises( ValueError, match="Total number of bins definitions must be equal to the dimensionality of the histogram.", ): bins_style(ndim=3, bins=[[1, 2], [4, 5]]) with pytest.raises( ValueError, match="Total number of bins definitions must be equal to the dimensionality of the histogram.", ): bins = (np.array([1.1, 2.2]), np.array([2.2, 4.4, 6.6])) bins_style(ndim=3, bins=bins) def test_bins_style_cannot_determine(): bins = 3.3 with pytest.raises(ValueError, match="Could not determine bin style from bins=3.3"): bins_style(ndim=1, bins=bins) def test_bins_range_styles(): bs, rs = bins_range_styles(ndim=2, bins=(3, 4), range=((0, 1), (0, 1))) assert bs is BinsStyle.MultiScalar assert rs is RangeStyle.MultiPair bs, rs = bins_range_styles(ndim=1, bins=10, range=(0, 1)) assert bs is BinsStyle.SingleScalar assert rs is RangeStyle.SinglePair bs, rs = bins_range_styles(ndim=2, bins=[[1, 2, 3], [4, 5, 6]], range=None) assert bs is BinsStyle.MultiSequence assert rs is RangeStyle.IsNone bs, rs = bins_range_styles(ndim=1, bins=[1, 2, 3], range=None) assert bs is BinsStyle.SingleSequence assert rs is RangeStyle.IsNone bins = np.array([[1, 2, 3], [2, 5, 6]]) bs, rs = bins_range_styles(ndim=2, bins=bins, range=None) assert bs is BinsStyle.MultiSequence assert rs is RangeStyle.IsNone with pytest.raises( ValueError, match="range cannot be None when bins argument is a scalar or sequence of scalars.", ): bins_range_styles(ndim=1, bins=3, range=None) with pytest.raises( ValueError, match="range cannot be None when bins argument is a scalar or sequence of scalars.", ): bins_range_styles(ndim=2, bins=3, range=None) with pytest.raises( ValueError, match="range cannot be None when bins argument is a scalar or sequence of scalars.", ): bins_range_styles(ndim=2, bins=(3, 8), range=None) with pytest.raises( ValueError, match="For a single scalar bin definition, one range tuple must be defined.", ): bins_range_styles(ndim=1, bins=5, range=((2, 3), (4, 5))) def test_normalize_bins_range(): # 1D, scalar bins, single range ndim = 1 bins, range = 5, (3, 3) bins, range = normalize_bins_range(ndim, bins, range) assert bins == (5,) assert range == ((3, 3),) # 1D, sequence bins, no range ndim = 1 bins, range = [1, 2, 3], None bins, range = normalize_bins_range(ndim, bins, range) assert bins == ([1, 2, 3],) assert range == (None,) # 2D, singel scalar bins, single range ndim = 2 bins, range = 5, (3, 3) bins, range = normalize_bins_range(ndim, bins, range) assert bins == (5, 5) assert range == ((3, 3), (3, 3)) # 2D, sequence bins, no range ndim = 2 bins, range = [[1, 2, 3], [4, 5, 6]], None bins, range = normalize_bins_range(ndim, bins, range) assert bins == [[1, 2, 3], [4, 5, 6]] assert range == (None, None) # 2D, numpy arrays as bins, no range ndim = 2 bins, range = (np.array([1, 2, 3]), np.array([4, 5, 6])), None bins, range = normalize_bins_range(ndim, bins, range) assert len(bins) == 2 np.testing.assert_array_equal(bins[0], np.array([1, 2, 3])) np.testing.assert_array_equal(bins[1], np.array([4, 5, 6])) # 3D, single multidim numpy array as bins, no range ndim = 3 bins, range = np.array([[1, 2, 3], [4, 5, 6], [1, 5, 6]]), None bins, range = normalize_bins_range(ndim, bins, range) assert len(bins) == 3 assert range == (None, None, None) np.testing.assert_array_equal(bins[0], np.array([1, 2, 3])) np.testing.assert_array_equal(bins[1], np.array([4, 5, 6])) np.testing.assert_array_equal(bins[2], np.array([1, 5, 6])) np.testing.assert_array_equal(bins,
np.array([[1, 2, 3], [4, 5, 6], [1, 5, 6]])
numpy.array
"""main Main file to run to create figures 2-5 in the paper. All values are in SI units (m, s, T, etc) unless otherwise noted. Dependencies: sigpy (https://sigpy.readthedocs.io/en/latest/mri_rf.html) numpy scipy matplotlib Author: <NAME> Last Modified: 6/2/21 """ import numpy as np import sigpy as sp import sigpy.mri as mr import sigpy.mri.rf as rf import sigpy.plot as pl import scipy.signal as signal import matplotlib.pyplot as plt from scipy.special import * from scipy.integrate import odeint import matplotlib.gridspec as gridspec import csv from various_constants import * from pulse_generator_functions import * from simulation_functions import * from plotting_functions import * ################################################################# # Make Figure 2: equivalent single-photon, two-photon, and freq mod slice select # Make a grid of subplots and label the rows and columns fig = plt.figure(figsize=(20, 10)) cols = 2+SEQUENCE_PLOT_END # Number of columns used for pulse sequence plot outer = gridspec.GridSpec(4, cols, wspace=1, hspace=0.3) ax = plt.Subplot(fig, outer[cols]) t = ax.text(0.7,0.2, 'Single-Photon', fontsize=CATEGORY_SIZE, rotation=90) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[2*cols]) t = ax.text(0.7,0.2, 'Two-Photon', fontsize=CATEGORY_SIZE, rotation=90) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[3*cols]) t = ax.text(0.7,-0.1, 'Frequency Modulation', fontsize=CATEGORY_SIZE, rotation=90) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[1:SEQUENCE_PLOT_END]) t = ax.text(0.5,0, 'Pulse Sequence', fontsize=CATEGORY_SIZE) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[SEQUENCE_PLOT_END]) t = ax.text(0.5,0, 'Simulation Slice Profile', fontsize=CATEGORY_SIZE) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[SEQUENCE_PLOT_END+1]) t = ax.text(0.5,0, 'Experimental Slice Profile', fontsize=CATEGORY_SIZE) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) # 2a) Make single photon version pulse = slr_pulse(N, TB, FA, name='2a') bz_pulse = np.zeros(N) gz_pulse = np.zeros(N) sim_duration = PULSE_DURATION*1.5 t = np.linspace(0,sim_duration,WAVEFORM_RES) RF = np.zeros(len(t), dtype=complex) B1z = np.zeros(len(t)) Gz = np.zeros(len(t)) for i in range(len(t)): RF[i] = bxy_waveform(t[i], SLICE_PEAK, PULSE_DURATION, pulse) B1z[i] = bz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, np.zeros(N)) Gz[i] = gz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, gz_pulse) plot_waveform(fig, outer[cols+1:cols+SEQUENCE_PLOT_END], t, np.abs(RF), -1*np.angle(RF), B1z, Gz) if PRINT_MAX_VALS: print('2a max B1xy: ' + str(np.max(np.abs(pulse)))) M = np.array([0, 0, M0]) t = np.linspace(0, sim_duration, 101) final_m = np.zeros(XRES, dtype=complex) x_vals = np.linspace(-XLIM,XLIM,XRES) for i in range(XRES): x = x_vals[i] y = 0 sol = odeint(bloch, M, t, args=(x, y, pulse, bz_pulse, gz_pulse, SLICE_PEAK, PULSE_DURATION),atol=1e-7, rtol=1e-11, hmax=2e-6, mxstep=5000) final_m[i] = np.complex(sol[-1,0], sol[-1,1]) plot_sim(fig, outer[cols+SEQUENCE_PLOT_END], x_vals, np.abs(final_m), -1*np.angle(final_m)) plot_experiment(fig, outer[cols+SEQUENCE_PLOT_END+1], '2a.npy') # 2b) Make two-photon version pulse = slr_pulse(N, TB, FA, freq=FZ, phase=g*B1Z_AMP/(2*np.pi*FZ)-np.pi/2, name='2b') / (j1(g/(2*np.pi*FZ) * B1Z_AMP)) bz_pulse = B1Z_AMP * np.sin(2e-6*np.arange(N)*2*np.pi*FZ) t = np.linspace(0,sim_duration,WAVEFORM_RES) RF = np.zeros(len(t), dtype=complex) B1z = np.zeros(len(t)) Gz = np.zeros(len(t)) for i in range(len(t)): RF[i] = bxy_waveform(t[i], SLICE_PEAK, PULSE_DURATION, pulse) B1z[i] = bz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, bz_pulse) Gz[i] = gz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, gz_pulse) plot_waveform(fig, outer[2*cols+1:2*cols+SEQUENCE_PLOT_END], t, np.abs(RF), -1*np.angle(RF), B1z, Gz) if PRINT_MAX_VALS: print('2b max B1xy: ' + str(np.max(np.abs(pulse)))) M = np.array([0, 0, M0]) t = np.linspace(0, sim_duration, 101) final_m = np.zeros(XRES, dtype=complex) x_vals = np.linspace(-XLIM,XLIM,XRES) for i in range(XRES): x = x_vals[i] y = 0 sol = odeint(bloch, M, t, args=(x, y, pulse, bz_pulse, gz_pulse, SLICE_PEAK, PULSE_DURATION),atol=1e-7, rtol=1e-11, hmax=2e-6, mxstep=5000) final_m[i] = np.complex(sol[-1,0], sol[-1,1]) plot_sim(fig, outer[2*cols+SEQUENCE_PLOT_END], x_vals, np.abs(final_m), -1*np.angle(final_m)) plot_experiment(fig, outer[2*cols+SEQUENCE_PLOT_END+1], '2b.npy') # 2c) Make frequency modulated version pulse = fm_pulse(N, TB, FA, FZ, B1Z_AMP, phase=g*B1Z_AMP/(2*np.pi*FZ)-np.pi/2, name='2c') bz_pulse = np.zeros(N) t = np.linspace(0,sim_duration,WAVEFORM_RES) RF = np.zeros(len(t), dtype=complex) B1z = np.zeros(len(t)) Gz = np.zeros(len(t)) for i in range(len(t)): RF[i] = bxy_waveform(t[i], SLICE_PEAK, PULSE_DURATION, pulse) B1z[i] = bz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, bz_pulse) Gz[i] = gz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, gz_pulse) plot_waveform(fig, outer[3*cols+1:3*cols+SEQUENCE_PLOT_END], t, np.abs(RF), -1*np.angle(RF), B1z, Gz) if PRINT_MAX_VALS: print('2c max B1xy: ' + str(np.max(np.abs(pulse)))) M = np.array([0, 0, M0]) t = np.linspace(0, sim_duration, 101) final_m = np.zeros(XRES, dtype=complex) x_vals = np.linspace(-XLIM,XLIM,XRES) for i in range(XRES): x = x_vals[i] y = 0 sol = odeint(bloch, M, t, args=(x, y, pulse, bz_pulse, gz_pulse, SLICE_PEAK, PULSE_DURATION),atol=1e-7, rtol=1e-11, hmax=2e-6, mxstep=5000) final_m[i] = np.complex(sol[-1,0], sol[-1,1]) plot_sim(fig, outer[3*cols+SEQUENCE_PLOT_END], x_vals, np.abs(final_m), -1*np.angle(final_m)) plot_experiment(fig, outer[3*cols+SEQUENCE_PLOT_END+1], '2c.npy') plt.savefig("figure2.pdf") ################################################################# # Make Figure 3: slice shifting # Make a grid of subplots and label the rows and columns fig = plt.figure(figsize=(20, 10)) cols = 2+SEQUENCE_PLOT_END outer = gridspec.GridSpec(4, cols, wspace=1, hspace=0.3) ax = plt.Subplot(fig, outer[cols]) t = ax.text(0.7,0.3, r'$\omega_{xy}$ Shift', fontsize=CATEGORY_SIZE, rotation=90) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[2*cols]) t = ax.text(0.7,0.2, r'Constant $B_{1z}$', fontsize=CATEGORY_SIZE, rotation=90) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[3*cols]) t = ax.text(0.7,0.3, r'$\omega_{z}$ Shift', fontsize=CATEGORY_SIZE, rotation=90) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[1:SEQUENCE_PLOT_END]) t = ax.text(0.5,0, 'Pulse Sequence', fontsize=CATEGORY_SIZE) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[SEQUENCE_PLOT_END]) t = ax.text(0.5,0, 'Simulation Slice Profile', fontsize=CATEGORY_SIZE) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[SEQUENCE_PLOT_END+1]) t = ax.text(0.5,0, 'Experimental Slice Profile', fontsize=CATEGORY_SIZE) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) # 3a) Shifting using wxy offset f_offset = 2*TB/PULSE_DURATION if PRINT_MAX_VALS: print('3 frequency offset: ' + str(f_offset)) pulse = slr_pulse(N, TB, FA, freq=(FZ-f_offset), phase=g*B1Z_AMP/(2*np.pi*FZ)-np.pi/2, name='3a') / (j1(g/(2*np.pi*FZ) * B1Z_AMP)) # this is actually increasing the frequency bz_pulse = B1Z_AMP * np.sin(2e-6*np.arange(N)*2*np.pi*FZ) t = np.linspace(0,sim_duration,WAVEFORM_RES) RF = np.zeros(len(t), dtype=complex) B1z = np.zeros(len(t)) Gz = np.zeros(len(t)) for i in range(len(t)): RF[i] = bxy_waveform(t[i], SLICE_PEAK, PULSE_DURATION, pulse) B1z[i] = bz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, bz_pulse) Gz[i] = gz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, gz_pulse) plot_waveform(fig, outer[cols+1:cols+SEQUENCE_PLOT_END], t, np.abs(RF), -1*np.angle(RF), B1z, Gz) if PRINT_MAX_VALS: print('3a max B1xy: ' + str(np.max(np.abs(pulse)))) M = np.array([0, 0, M0]) t = np.linspace(0, sim_duration, 101) final_m = np.zeros(XRES, dtype=complex) x_vals = np.linspace(-XLIM,XLIM,XRES) for i in range(XRES): x = x_vals[i] y = 0 sol = odeint(bloch, M, t, args=(x, y, pulse, bz_pulse, gz_pulse, SLICE_PEAK, PULSE_DURATION),atol=1e-7, rtol=1e-11, hmax=2e-6, mxstep=5000) final_m[i] = np.complex(sol[-1,0], sol[-1,1]) plot_sim(fig, outer[cols+SEQUENCE_PLOT_END], x_vals, np.abs(final_m), -1*np.angle(final_m)) plot_experiment(fig, outer[cols+SEQUENCE_PLOT_END+1], '3a.npy') # 3b) Shifting using constant B1z pulse = slr_pulse(N, TB, FA, freq=FZ, phase=g*B1Z_AMP/(2*np.pi*FZ)-np.pi/2, name='3b') / (j1(g/(2*np.pi*FZ) * B1Z_AMP)) bz_pulse = B1Z_AMP * np.sin(2e-6*np.arange(N)*2*np.pi*FZ) t = np.linspace(0,sim_duration,WAVEFORM_RES) RF = np.zeros(len(t), dtype=complex) B1z = np.zeros(len(t)) Gz = np.zeros(len(t)) for i in range(len(t)): RF[i] = bxy_waveform(t[i], SLICE_PEAK, PULSE_DURATION, pulse) B1z[i] = bz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, bz_pulse, dc_value=-2*np.pi*f_offset/g) # subtract to get the same direction as adding wxy Gz[i] = gz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, gz_pulse) plot_waveform(fig, outer[2*cols+1:2*cols+SEQUENCE_PLOT_END], t, np.abs(RF), -1*np.angle(RF), B1z, Gz) if PRINT_MAX_VALS: print('3b max B1xy: ' + str(np.max(np.abs(pulse)))) print('3b rise-time: ' + str(SLICE_PEAK/SLEW_LIMIT)) if WRITE_WAVEFORM_FILES: make_b1z_csv(bz_pulse, SLICE_PEAK, PULSE_DURATION, '3b.csv', dc_value=-2*np.pi*f_offset/g) M = np.array([0, 0, M0]) t = np.linspace(0, sim_duration, 101) final_m = np.zeros(XRES, dtype=complex) x_vals = np.linspace(-XLIM,XLIM,XRES) for i in range(XRES): x = x_vals[i] y = 0 sol = odeint(bloch, M, t, args=(x, y, pulse, bz_pulse, gz_pulse, SLICE_PEAK, PULSE_DURATION, 0, -2*np.pi*f_offset/g),atol=1e-7, rtol=1e-11, hmax=2e-6, mxstep=5000) final_m[i] = np.complex(sol[-1,0], sol[-1,1]) plot_sim(fig, outer[2*cols+SEQUENCE_PLOT_END], x_vals, np.abs(final_m), -1*np.angle(final_m)) plot_experiment(fig, outer[2*cols+SEQUENCE_PLOT_END+1], '3b.npy') # 3c) Shifitng using wz offset pulse = slr_pulse(N, TB, FA, freq=FZ, phase=g*B1Z_AMP/(2*np.pi*FZ)-np.pi/2, name='3c') / (j1(g/(2*np.pi*(FZ+f_offset)) * B1Z_AMP)) # compensate for different wz freq bz_pulse = B1Z_AMP * np.sin(2e-6*np.arange(N)*2*np.pi*(FZ+f_offset)) t = np.linspace(0,sim_duration,WAVEFORM_RES) RF = np.zeros(len(t), dtype=complex) B1z = np.zeros(len(t)) Gz = np.zeros(len(t)) for i in range(len(t)): RF[i] = bxy_waveform(t[i], SLICE_PEAK, PULSE_DURATION, pulse) B1z[i] = bz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, bz_pulse) Gz[i] = gz_waveform(t[i], SLICE_PEAK, PULSE_DURATION, gz_pulse) plot_waveform(fig, outer[3*cols+1:3*cols+SEQUENCE_PLOT_END], t, np.abs(RF), -1*np.angle(RF), B1z, Gz) if PRINT_MAX_VALS: print('3c max B1xy: ' + str(np.max(np.abs(pulse)))) M = np.array([0, 0, M0]) t = np.linspace(0, sim_duration, 101) final_m = np.zeros(XRES, dtype=complex) x_vals = np.linspace(-XLIM,XLIM,XRES) for i in range(XRES): x = x_vals[i] y = 0 sol = odeint(bloch, M, t, args=(x, y, pulse, bz_pulse, gz_pulse, SLICE_PEAK, PULSE_DURATION),atol=1e-7, rtol=1e-11, hmax=2e-6, mxstep=5000) final_m[i] = np.complex(sol[-1,0], sol[-1,1]) plot_sim(fig, outer[3*cols+SEQUENCE_PLOT_END], x_vals, np.abs(final_m), -1*np.angle(final_m)) plot_experiment(fig, outer[3*cols+SEQUENCE_PLOT_END+1], '3c.npy') plt.savefig("figure3.pdf") ################################################################# # Make Figure 4: Modulation using B1z or B1xy # Make a grid of subplots and label the rows and columns fig = plt.figure(figsize=(20, 10)) cols = 2+SEQUENCE_PLOT_END outer = gridspec.GridSpec(4, cols, wspace=1, hspace=0.3) ax = plt.Subplot(fig, outer[cols]) t = ax.text(0.7,0.1, r'$B_{1xy}$ Mod Two-Photon', fontsize=CATEGORY_SIZE-2, rotation=90) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[2*cols]) t = ax.text(0.7,0.1, r'$B_{1z}$ Mod Two-Photon', fontsize=CATEGORY_SIZE-2, rotation=90) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[3*cols]) t = ax.text(0.7,0.1, 'Both Mod Two-Photon', fontsize=CATEGORY_SIZE-2, rotation=90) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[1:SEQUENCE_PLOT_END]) t = ax.text(0.5,0, 'Pulse Sequence', fontsize=CATEGORY_SIZE) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[SEQUENCE_PLOT_END]) t = ax.text(0.5,0, 'Simulation Slice Profile', fontsize=CATEGORY_SIZE) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) ax = plt.Subplot(fig, outer[SEQUENCE_PLOT_END+1]) t = ax.text(0.5,0, 'Experimental Slice Profile', fontsize=CATEGORY_SIZE) t.set_ha('center') ax.axis("off") fig.add_subplot(ax) # 4a) Two-photon slice selection using B1xy modulation pulse = slr_pulse(N_FIG4, TB_FIG4, FA, freq=FZ, name='4a') / (j1(g/(2*np.pi*FZ) * B1Z_AMP)) bz_pulse = -1*B1Z_AMP * np.cos(2e-6*np.arange(N_FIG4)*2*np.pi*FZ) sim_duration_fig4 = PULSE_DURATION_FIG4*1.5 if WRITE_WAVEFORM_FILES: write_rf_pulse_for_heartvista(pulse, '4a') t = np.linspace(0,sim_duration_fig4,WAVEFORM_RES) RF = np.zeros(len(t), dtype=complex) B1z = np.zeros(len(t)) Gz = np.zeros(len(t)) for i in range(len(t)): RF[i] = bxy_waveform(t[i], SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, pulse) B1z[i] = bz_waveform(t[i], SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, bz_pulse) Gz[i] = gz_waveform(t[i], SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, gz_pulse) plot_waveform(fig, outer[cols+1:cols+SEQUENCE_PLOT_END], t, np.abs(RF), -1*np.angle(RF), B1z, Gz, zoom_time=[5.9, 6.1]) if PRINT_MAX_VALS: print('4a max B1xy: ' + str(np.max(np.abs(pulse)))) M = np.array([0, 0, M0]) t = np.linspace(0, sim_duration_fig4, 101) final_m = np.zeros(XRES, dtype=complex) x_vals = np.linspace(-XLIM,XLIM,XRES) for i in range(XRES): x = x_vals[i] y = 0 sol = odeint(bloch, M, t, args=(x, y, pulse, bz_pulse, gz_pulse, SLICE_PEAK_FIG4, PULSE_DURATION_FIG4),atol=1e-7, rtol=1e-11, hmax=2e-6, mxstep=5000) final_m[i] = np.complex(sol[-1,0], sol[-1,1]) plot_sim(fig, outer[cols+SEQUENCE_PLOT_END], x_vals, np.abs(final_m), -1*np.angle(final_m)) plot_experiment(fig, outer[cols+SEQUENCE_PLOT_END+1], '4a.npy') # 4b) Two-photon slice selection using B1z modulation max_bessel_arg = g*B1Z_AMP/(2*np.pi*FZ) pulse = slr_pulse(N_FIG4, TB_FIG4, FA, freq=0) scale = np.max(np.abs(pulse)) / j1(max_bessel_arg) pulse = pulse / np.max(np.abs(pulse)) * j1(max_bessel_arg) pulse_bz1 = np.zeros(len(pulse)) from scipy.optimize import minimize def diff(x,a): yt = j1(x) return (yt - a )**2 for i in range(len(pulse)): res = minimize(diff, 0, args=(np.real(pulse[i])), bounds=[(-max_bessel_arg, max_bessel_arg)]) pulse_bz1[i] = res.x[0] bz_pulse = -1*pulse_bz1 * 2*np.pi*FZ/g * np.cos(2e-6*np.arange(N_FIG4)*2*np.pi*FZ) # lets make this a cos to get rid of phase differences if WRITE_WAVEFORM_FILES: make_b1z_csv(bz_pulse, SLICE_PEAK, PULSE_DURATION_FIG4, '4b.csv') pulse = np.zeros(len(pulse), dtype=complex) for i in range(len(pulse)): pulse[i] = scale * np.complex(np.cos(2e-6*i*2*np.pi*FZ), np.sin(2e-6*i*2*np.pi*FZ)) if WRITE_WAVEFORM_FILES: write_rf_pulse_for_heartvista(pulse, '4b') t = np.linspace(0,sim_duration_fig4,WAVEFORM_RES) RF = np.zeros(len(t), dtype=complex) B1z = np.zeros(len(t)) Gz = np.zeros(len(t)) for i in range(len(t)): RF[i] = bxy_waveform(t[i], SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, pulse) B1z[i] = bz_waveform(t[i], SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, bz_pulse) Gz[i] = gz_waveform(t[i], SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, gz_pulse) plot_waveform(fig, outer[2*cols+1:2*cols+SEQUENCE_PLOT_END], t, np.abs(RF), -1*np.angle(RF), B1z, Gz, zoom_time=[5.9, 6.1]) if PRINT_MAX_VALS: print('4b max B1xy: ' + str(np.max(np.abs(pulse)))) M = np.array([0, 0, M0]) t = np.linspace(0, sim_duration_fig4, 101) final_m = np.zeros(XRES, dtype=complex) x_vals = np.linspace(-XLIM,XLIM,XRES) for i in range(XRES): x = x_vals[i] y = 0 sol = odeint(bloch, M, t, args=(x, y, pulse, bz_pulse, gz_pulse, SLICE_PEAK_FIG4, PULSE_DURATION_FIG4),atol=1e-7, rtol=1e-11, hmax=2e-6, mxstep=5000) final_m[i] = np.complex(sol[-1,0], sol[-1,1]) plot_sim(fig, outer[2*cols+SEQUENCE_PLOT_END], x_vals, np.abs(final_m), -1*np.angle(final_m)) plot_experiment(fig, outer[2*cols+SEQUENCE_PLOT_END+1], '4b.npy') # 4c) Two-photon slice selection using both B1xy and B1z modulation pulse = slr_pulse(N_FIG4, TB_FIG4, FA, freq=0) / j1(g/(2*np.pi*FZ) * B1Z_AMP) for i in range(len(pulse)): if i<N_FIG4/2: pulse[i] = scale else: bz_pulse[i] = -1*B1Z_AMP * np.cos(2e-6*i*2*np.pi*FZ) pulse[i] = pulse[i] * np.complex(np.cos(2e-6*i*2*np.pi*FZ), np.sin(2e-6*i*2*np.pi*FZ)) if WRITE_WAVEFORM_FILES: write_rf_pulse_for_heartvista(pulse, '4c') make_b1z_csv(bz_pulse, SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, '4c.csv') t = np.linspace(0,sim_duration_fig4,WAVEFORM_RES) RF = np.zeros(len(t), dtype=complex) B1z = np.zeros(len(t)) Gz = np.zeros(len(t)) for i in range(len(t)): RF[i] = bxy_waveform(t[i], SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, pulse) B1z[i] = bz_waveform(t[i], SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, bz_pulse) Gz[i] = gz_waveform(t[i], SLICE_PEAK_FIG4, PULSE_DURATION_FIG4, gz_pulse) plot_waveform(fig, outer[3*cols+1:3*cols+SEQUENCE_PLOT_END], t,
np.abs(RF)
numpy.abs
'''Spectral Modelling''' from __future__ import print_function, division import numpy as np import numpy.lib.recfunctions as rf from mla.spectral import * from mla.timing import * import scipy.stats from mla import tools class PSinjector(object): r'''injector of point source''' def __init__(self, spectrum, mc , signal_time_profile = None , background_time_profile = (0,1)): r'''initial the injector with a spectum and signal_time_profile. background_time_profile can be generic_profile or the time range. args: Spectrum: object inherited from BaseSpectrum. mc: Monte Carlo simulation set signal_time_profile(optional):Object inherited from generic_profile.Default is the same as background_time_profile. background_time_profile(optional):Object inherited from generic_profile.Default is a uniform_profile with time range from 0 to 1. ''' self.spectrum = spectrum self.mc = mc if isinstance(background_time_profile,generic_profile): self.background_time_profile = background_time_profile else: self.background_time_profile = uniform_profile(background_time_profile[0],background_time_profile[1]) if signal_time_profile == None: self.signal_time_profile = self.background_time_profile else: self.signal_time_profile = signal_time_profile return def set_backround(self, background ,grl ,background_window = 14): r'''Setting the background information which will later be used when drawing data as background args: background:Background data grl:The good run list background_window: The time window(days) that will be used to estimated the background rate and drawn sample from.Default is 14 days ''' start_time = self.background_time_profile.get_range()[0] fully_contained = (grl['start'] >= start_time-background_window) &\ (grl['stop'] < start_time) start_contained = (grl['start'] < start_time-background_window) &\ (grl['stop'] > start_time-background_window) background_runs = (fully_contained | start_contained) if not np.any(background_runs): print("ERROR: No runs found in GRL for calculation of " "background rates!") raise RuntimeError background_grl = grl[background_runs] # Get the number of events we see from these runs and scale # it to the number we expect for our search livetime. n_background = background_grl['events'].sum() n_background /= background_grl['livetime'].sum() n_background *= self.background_time_profile.effective_exposure() self.n_background = n_background self.background = background return def draw_data(self): r'''Draw data sample return: background: background sample ''' n_background_observed = np.random.poisson(self.n_background) background = np.random.choice(self.background, n_background_observed).copy() background['time'] = self.background_time_profile.random(len(background)) return background def update_spectrum(self, spectrum): r"""Updating the injection spectrum. args: spectrum: Object inherited from BaseSpectrum. """ self.spectrum = spectrum return def add_background(self, background ,grl): r''' Add Background data into the injector such that it can also inject background args: background: background dataset. grl: Good run list. ''' self.background = background self.background_rate = len(background)/
np.sum(grl['livetime'])
numpy.sum
import logging import numpy as np from collections import OrderedDict import theano import theano.tensor as T from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams from theano.tensor.nnet import conv2d, ConvOp from theano.gpuarray.blas import GpuCorrMM from theano.gpuarray.basic_ops import gpu_contiguous from blocks.bricks.cost import SquaredError from blocks.bricks.cost import CategoricalCrossEntropy, MisclassificationRate from blocks.graph import add_annotation, Annotation from blocks.roles import add_role, PARAMETER, WEIGHT, BIAS from utils import shared_param, AttributeDict from nn import maxpool_2d, global_meanpool_2d, BNPARAM, softmax_n logger = logging.getLogger('main.model') floatX = theano.config.floatX class LadderAE(): def __init__(self, p): self.p = p self.init_weights_transpose = False self.default_lr = p.lr self.shareds = OrderedDict() self.rstream = RandomStreams(seed=p.seed) self.rng = np.random.RandomState(seed=p.seed) n_layers = len(p.encoder_layers) assert n_layers > 1, "Need to define encoder layers" assert n_layers == len(p.denoising_cost_x), ( "Number of denoising costs does not match with %d layers: %s" % (n_layers, str(p.denoising_cost_x))) def one_to_all(x): """ (5.,) -> 5 -> (5., 5., 5.) ('relu',) -> 'relu' -> ('relu', 'relu', 'relu') """ if type(x) is tuple and len(x) == 1: x = x[0] if type(x) is float: x = (np.float32(x),) * n_layers if type(x) is str: x = (x,) * n_layers return x p.decoder_spec = one_to_all(p.decoder_spec) p.f_local_noise_std = one_to_all(p.f_local_noise_std) acts = one_to_all(p.get('act', 'relu')) assert n_layers == len(p.decoder_spec), "f and g need to match" assert (n_layers == len(acts)), ( "Not enough activations given. Requires %d. Got: %s" % (n_layers, str(acts))) acts = acts[:-1] + ('softmax',) def parse_layer(spec): """ 'fc:5' -> ('fc', 5) '5' -> ('fc', 5) 5 -> ('fc', 5) 'convv:3:2:2' -> ('convv', [3,2,2]) """ if type(spec) is not str: return "fc", spec spec = spec.split(':') l_type = spec.pop(0) if len(spec) >= 2 else "fc" spec = map(int, spec) spec = spec[0] if len(spec) == 1 else spec return l_type, spec enc = map(parse_layer, p.encoder_layers) self.layers = list(enumerate(zip(enc, p.decoder_spec, acts))) def weight(self, init, name, cast_float32=True, for_conv=False): weight = self.shared(init, name, cast_float32, role=WEIGHT) if for_conv: return weight.dimshuffle('x', 0, 'x', 'x') return weight def bias(self, init, name, cast_float32=True, for_conv=False): b = self.shared(init, name, cast_float32, role=BIAS) if for_conv: return b.dimshuffle('x', 0, 'x', 'x') return b def shared(self, init, name, cast_float32=True, role=PARAMETER, **kwargs): p = self.shareds.get(name) if p is None: p = shared_param(init, name, cast_float32, role, **kwargs) self.shareds[name] = p return p def counter(self): name = 'counter' p = self.shareds.get(name) update = [] if p is None: p_max_val = np.float32(10) p = self.shared(np.float32(1), name, role=BNPARAM) p_max = self.shared(p_max_val, name + '_max', role=BNPARAM) update = [(p, T.clip(p + np.float32(1),
np.float32(0)
numpy.float32
import importlib import os.path import hydra import numpy as np import torch import torch.nn.functional as F import torchvision from omegaconf import DictConfig from skimage.io import imsave from torch.utils.data import DataLoader from psa.tool import imutils from psa.voc12 import data @hydra.main(config_path='./conf', config_name="infer_aff") def run_app(cfg: DictConfig) -> None: os.makedirs(cfg.out_rw, exist_ok=True) model = getattr(importlib.import_module(cfg.network), 'Net')() model.load_state_dict(torch.load(cfg.weights, map_location=torch.device('cpu'))) model.eval() infer_dataset = data.VOC12ImageDataset(cfg.infer_list, voc12_root=cfg.voc12_root, transform=torchvision.transforms.Compose( [np.asarray, model.normalize, imutils.HWC_to_CHW])) infer_data_loader = DataLoader(infer_dataset, shuffle=False, num_workers=cfg.num_workers, pin_memory=True) for iter, (name, img) in enumerate(infer_data_loader): name = name[0] print(iter) orig_shape = img.shape padded_size = (int(np.ceil(img.shape[2] / 8) * 8), int(np.ceil(img.shape[3] / 8) * 8)) p2d = (0, padded_size[1] - img.shape[3], 0, padded_size[0] - img.shape[2]) img = F.pad(img, p2d) dheight = int(np.ceil(img.shape[2] / 8)) dwidth = int(np.ceil(img.shape[3] / 8)) cam = np.load(os.path.join(cfg.cam_dir, name + '.npy'), allow_pickle=True).item() cam_full_arr =
np.zeros((21, orig_shape[2], orig_shape[3]), np.float32)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright (c) 2019 Idiap Research Institute, http://www.idiap.ch/ # Written by <NAME> <<EMAIL>> # """Module description: Create world lf0 and vuv feature labels for .wav files. """ # System imports. import argparse import glob import logging import math import os import sys from collections import OrderedDict import numpy as np # Third-party imports. import pyworld import soundfile # Local source tree imports. from idiaptts.misc.normalisation.MeanStdDevExtractor import MeanStdDevExtractor from idiaptts.src.data_preparation.LabelGen import LabelGen from idiaptts.misc.utils import makedirs_safe, interpolate_lin, compute_deltas class LF0LabelGen(LabelGen): """Create LF0 feature labels for .wav files.""" f0_silence_threshold = 20 lf0_zero = 0 dir_lf0 = "lf0" dir_deltas = "lf0" dir_vuv = "vuv" ext_lf0 = ".lf0" ext_deltas = ".lf0_deltas" ext_vuv = ".vuv" logger = logging.getLogger(__name__) def __init__(self, dir_labels, add_deltas=False): """ Prepare a numpy array with the LF0 and V/UV labels for each frame for each utterance extracted by WORLD. If add_delta is false each frame has only the LF0 value, otherwise its deltas and double deltas are added. :param dir_labels: While using it as a database dir_labels has to contain the prepared labels. :param add_deltas: Determines if labels contain deltas and double deltas. """ # Attributes. self.dir_labels = dir_labels self.add_deltas = add_deltas self.norm_params = None def __getitem__(self, id_name): """Return the preprocessed sample with the given id_name.""" sample = self.load_sample(id_name, self.dir_labels) sample = self.preprocess_sample(sample) return sample @staticmethod def trim_end_sample(sample, length, reverse=False): """ Trim the end of a sample by the given length. If reverse is True, the front of the sample is trimmed. This function is called after preprocess_sample. """ if length == 0: return sample if reverse: return sample[length:, ...] else: return sample[:-length, ...] def preprocess_sample(self, sample, norm_params=None): """ Normalise one sample (by default to 0 mean and variance 1). This function should be used within the batch loading of PyTorch. :param sample: The sample to pre-process. :param norm_params: Use this normalisation parameters instead of self.norm_params. :return: Pre-processed sample. """ if norm_params is not None: mean, std_dev = norm_params elif self.norm_params is not None: mean, std_dev = self.norm_params else: self.logger.error("Please give norm_params argument or call get_normaliations_params() before.") return None return np.float32((sample - mean) / std_dev) def postprocess_sample(self, sample, norm_params=None): """ Denormalise one sample. This function is used after inference of a network. :param sample: The sample to post-process. :param norm_params: Use this normalisation parameters instead of self.norm_params. :return: Post-processed sample. """ if norm_params is not None: mean, std_dev = norm_params elif self.norm_params is not None: mean, std_dev = self.norm_params else: self.logger.error("Please give norm_params argument or call get_normaliations_params() before.") return None sample = np.copy((sample * std_dev) + mean) return sample @staticmethod def load_sample(id_name, dir_out, add_deltas=False): """ Load LF0 and V/UV features from dir_out. :param id_name: Id of the sample. :param dir_out: Directory containing the sample. :param add_deltas: Determines if deltas and double deltas are expected. :return: Numpy array with dimensions num_frames x len(lf0, vuv). """ logging.debug("Load WORLD features for " + id_name) lf0 = LF0LabelGen.load_lf0(id_name, dir_out, add_deltas) vuv = LF0LabelGen.load_vuv(id_name, dir_out) labels = np.concatenate((lf0, vuv), axis=1) return labels @staticmethod def load_lf0(id_name, dir_out, add_deltas=False): """Loads LF0 features from dir_out.""" if add_deltas: with open(os.path.join(dir_out, LF0LabelGen.dir_lf0, id_name + LF0LabelGen.ext_deltas), 'rb') as f: lf0 = np.fromfile(f, dtype=np.float32) lf0 = np.reshape(lf0, [-1, 3]) else: with open(os.path.join(dir_out, LF0LabelGen.dir_lf0, id_name + LF0LabelGen.ext_lf0), 'rb') as f: lf0 = np.fromfile(f, dtype=np.float32) lf0 = np.reshape(lf0, [-1, 1]) return lf0 @staticmethod def load_vuv(id_name, dir_out): """Loads V/UV features from dir_out.""" dim_vuv = 1 with open(os.path.join(dir_out, LF0LabelGen.dir_vuv, id_name + LF0LabelGen.ext_vuv), 'rb') as f: vuv = np.fromfile(f, dtype=np.float32) vuv = np.reshape(vuv, [-1, dim_vuv]) return vuv @staticmethod def convert_to_world_features(sample): lf0 = sample[:, 0] vuv = np.copy(sample[:, -1]) vuv[vuv < 0.5] = 0.0 vuv[vuv >= 0.5] = 1.0 return lf0, vuv def get_normalisation_params(self, dir_out, file_name=None): """ Read the mean std_dev values from a file. Save them in self.norm_params. :param dir_out: Directory containing the normalisation file. :param file_name: Prefix of normalisation file. Expects file to be named <file_name-><MeanStdDevExtractor.file_name_appendix>.bin :return: Tuple of normalisation parameters (mean, std_dev). """ full_file_name = (file_name + "-" if file_name is not None else "") + MeanStdDevExtractor.file_name_appendix + ".bin" if not self.add_deltas: # Collect all means and std_devs in a list. all_mean = list() all_std_dev = list() # Load normalisation parameters for all features. mean, std_dev = MeanStdDevExtractor.load(os.path.join(dir_out, self.dir_lf0, full_file_name)) all_mean.append(np.atleast_2d(mean)) all_std_dev.append(np.atleast_2d(std_dev)) # Manually set vuv normalisation parameters. # Note that vuv normalisation parameters are not saved in gen_data method (except for add_deltas=True). all_mean.append(np.atleast_2d(0.0)) all_std_dev.append(np.atleast_2d(1.0)) # for dir_feature in [self.dir_lf0, self.dir_vuv]: # mean, std_dev = MeanStdDevExtractor.load(os.path.join(dir_out, dir_feature, full_file_name)) # all_mean.append(np.atleast_2d(mean)) # all_std_dev.append(np.atleast_2d(std_dev)) # Save the concatenated normalisation parameters locally. self.norm_params = np.concatenate(all_mean, axis=1), np.concatenate(all_std_dev, axis=1) else: # Save the normalisation parameters locally. # VUV normalisation parameters are manually set to mean=0 and std_dev=1 in gen_data method. self.norm_params = MeanStdDevExtractor.load(os.path.join(dir_out, self.dir_deltas, full_file_name)) return self.norm_params def gen_data(self, dir_in, dir_out=None, file_id_list="", id_list=None, add_deltas=False, return_dict=False): """ Prepare LF0 and V/UV features from audio files. If add_delta is false each numpy array has the dimension num_frames x 2 [f0, vuv], otherwise the deltas and double deltas are added between the features resulting in num_frames x 4 [lf0(3*1), vuv]. :param dir_in: Directory where the .wav files are stored for each utterance to process. :param dir_out: Main directory where the labels and normalisation parameters are saved to subdirectories. If None, labels are not saved. :param file_id_list: Name of the file containing the ids. Normalisation parameters are saved using this name to differentiate parameters between subsets. :param id_list: The list of utterances to process. Should have the form uttId1 \\n uttId2 \\n ...\\n uttIdN. If None, all file in audio_dir are used. :param add_deltas: Add deltas and double deltas to all features except vuv. :param return_dict: If true, returns an OrderedDict of all samples as first output. :return: Returns two normalisation parameters as tuple. If return_dict is True it returns all processed labels in an OrderedDict followed by the two normalisation parameters. """ # Fill file_id_list by .wav files in dir_in if not given and set an appropriate file_id_list_name. if id_list is None: id_list = list() filenames = glob.glob(os.path.join(dir_in, "*.wav")) for filename in filenames: id_list.append(os.path.splitext(os.path.basename(filename))[0]) file_id_list_name = "all" else: file_id_list_name = os.path.splitext(os.path.basename(file_id_list))[0] # Create directories in dir_out if it is given. if dir_out is not None: if add_deltas: makedirs_safe(os.path.join(dir_out, LF0LabelGen.dir_deltas)) else: makedirs_safe(os.path.join(dir_out, LF0LabelGen.dir_lf0)) makedirs_safe(os.path.join(dir_out, LF0LabelGen.dir_vuv)) # Create the return dictionary if required. if return_dict: label_dict = OrderedDict() # Create normalisation computation units. norm_params_ext_lf0 = MeanStdDevExtractor() # norm_params_ext_vuv = MeanStdDevExtractor() norm_params_ext_deltas = MeanStdDevExtractor() logging.info("Extract WORLD LF0 features for " + "[{0}]".format(", ".join(str(i) for i in id_list))) for file_name in id_list: logging.debug("Extract WORLD LF0 features from " + file_name) # Load audio file and extract features. audio_name = os.path.join(dir_in, file_name + ".wav") raw, fs = soundfile.read(audio_name) _f0, t = pyworld.dio(raw, fs) # Raw pitch extraction. TODO: Use magphase here? f0 = pyworld.stonemask(raw, _f0, t, fs) # Pitch refinement. # Compute lf0 and vuv information. lf0 = np.log(f0, dtype=np.float32) lf0[lf0 <= math.log(LF0LabelGen.f0_silence_threshold)] = LF0LabelGen.lf0_zero lf0, vuv = interpolate_lin(lf0) if add_deltas: # Compute the deltas and double deltas for all features. lf0_deltas, lf0_double_deltas = compute_deltas(lf0) # Combine them to a single feature sample. labels = np.concatenate((lf0, lf0_deltas, lf0_double_deltas, vuv), axis=1) # Save into return dictionary and/or file. if return_dict: label_dict[file_name] = labels if dir_out is not None: labels.tofile(os.path.join(dir_out, LF0LabelGen.dir_deltas, file_name + LF0LabelGen.ext_deltas)) # Add sample to normalisation computation unit. norm_params_ext_deltas.add_sample(labels) else: # Save into return dictionary and/or file. if return_dict: label_dict[file_name] = np.concatenate((lf0, vuv), axis=1) if dir_out is not None: lf0.tofile(os.path.join(dir_out, LF0LabelGen.dir_lf0, file_name + LF0LabelGen.ext_lf0)) vuv.astype(np.float32).tofile(os.path.join(dir_out, LF0LabelGen.dir_vuv, file_name + LF0LabelGen.ext_vuv)) # Add sample to normalisation computation unit. norm_params_ext_lf0.add_sample(lf0) # norm_params_ext_vuv.add_sample(vuv) # Save mean and std dev of all features. if not add_deltas: norm_params_ext_lf0.save(os.path.join(dir_out, LF0LabelGen.dir_lf0, file_id_list_name)) # norm_params_ext_vuv.save(os.path.join(dir_out, LF0LabelGen.dir_vuv, file_id_list_name)) else: # Manually set vuv normalisation parameters before saving. norm_params_ext_deltas.sum_frames[-1] = 0.0 # Mean = 0.0 norm_params_ext_deltas.sum_squared_frames[-1] = norm_params_ext_deltas.sum_length # Variance = 1.0 norm_params_ext_deltas.save(os.path.join(dir_out, LF0LabelGen.dir_deltas, file_id_list_name)) # Get normalisation parameters. if not add_deltas: norm_lf0 = norm_params_ext_lf0.get_params() # norm_vuv = norm_params_ext_vuv.get_params() norm_first =
np.concatenate((norm_lf0[0], (0.0,)), axis=0)
numpy.concatenate
import numpy as np import matplotlib.pyplot as plt from scipy.stats import binned_statistic, sem import matplotlib as mpl mpl.rcParams['mathtext.fontset'] = 'cm' colors = [color['color'] for color in list(plt.rcParams['axes.prop_cycle'])] import sys # compute fast/slow state index def calc_timings(data): index_high = [] index_low = [] temp_index_high = [] temp_index_low = [] bound = False for i, (time, step, out, number_bound, _) in enumerate(data): if number_bound == 0: temp_index_high.append(i) if not bound and i != 0: temp_index_low.append(i) index_low.append(temp_index_low) temp_index_low = [] bound=True else: temp_index_low.append(i) if bound: temp_index_high.append(i) index_high.append(temp_index_high) temp_index_high = [] bound=False if bound: temp_index_high.append(i) index_high.append(temp_index_high) temp_index_high = [] else: temp_index_low.append(i) index_low.append(temp_index_low) temp_index_low = [] return index_high, index_low R=0.1 Ron_list = [] kOff_list = [0.001212, 0.012122, 0.121224, 1.212245, 12.122449, 121.22449, 1212.244898,12122.44898, 121224.489796, 1212244.897959, 12122448.979592, 121224489.795918] for kOff in kOff_list: kA = 1.0/R kOn = kA * kOff dx=7.0 D0=270000.0 Dhop = 2.0*D0/(dx*dx) fractionFree = 1.0/(1.0 + kA) khop = Dhop/fractionFree Ron = kOn/khop Ron_list.append(Ron) tau_high_list = [] tau_low_list = [] flux_high_list = [] flux_low_list = [] prob_list = [] n_high_list = [] n_low_list = [] flux_eqn1 = [] flux_eqn2 = [] phi_slow = [] phi_free = [] tau_slow = [] tau_free = [] width = 8 for id,Ron in enumerate(Ron_list): data = np.loadtxt('../Sim/Data/TimeSeries_Width'+str(width)+'R'+str(R)+'koff'+str(kOff_list[id])+'ID' + str(id)) time, step, out, number_bound, number_total = list(data.T) index_high, index_low = calc_timings(data) total_time = time[-1] - time[0] pscale = np.sqrt((Ron*khop + (khop*Ron/kA))/khop) * (1.0 + 1.0/kA) nu_s = 0.55 n_plug = (width-1)/2.0 n_bound = 1 + nu_s * n_plug/(1 + 1.0/kA) phi_slow.append( (1.0 + n_plug) / (n_bound/(khop*Ron/kA)) ) phi_free.append(khop/2.0/width) n_free = (width+1)/2.0 tau_slow.append(n_bound/ (khop*Ron/kA) ) tau_free.append(1.0/(Ron*khop * n_free)) flux_eqn1.append(2.0*D0/(dx**2)*pscale/width/np.sqrt(3) * (np.arctan(1 + 2.0/pscale) - np.arctan(1) ) ) tau_high = np.array(list(map(lambda x: time[x][-1] - time[x][0], index_high))) tau_low = np.array(list(map(lambda x: time[x][-1] - time[x][0], index_low))) n_high = np.array(list(map(lambda x: out[x].sum(), index_high))) n_low = np.array(list(map(lambda x: out[x].sum(), index_low))) n_high = n_high[tau_high > 0] n_low = n_low[tau_low > 0] tau_high = tau_high[tau_high > 0] tau_low = tau_low[tau_low > 0] flux_high = (n_high / tau_high) flux_low = (n_low / tau_low) # duration-weighted flux flux_high_av = np.nansum(flux_high * tau_high) / np.nansum(tau_high) flux_low_av = np.nansum(flux_low * tau_low) / np.nansum(tau_low) flux_high_list.append(flux_high_av) flux_low_list.append(flux_low_av) tau_high_av = np.mean(tau_high) tau_low_av = np.mean(tau_low) tau_high_list.append(tau_high_av) tau_low_list.append(tau_low_av) total_time_high = np.sum(tau_high/total_time) total_time_low = np.sum(tau_low/total_time) prob_list.append(total_time_high/(total_time_low + total_time_high)) print(total_time_high + total_time_low, total_time_high, tau_low_av, tau_high_av, flux_low_av, flux_high_av) n_high_av = np.mean(n_high) n_low_av = np.mean(n_low) n_high_list.append(n_high_av) n_low_list.append(n_low_av) fig,ax = plt.subplots(1,2,figsize=(9.75,4)) ax = ax.flatten() Ron_list = np.array(Ron_list) tau_high_list = np.array(tau_high_list) tau_low_list = np.array(tau_low_list) flux_high_list = np.array(flux_high_list) flux_low_list = np.array(flux_low_list) Rx = width**(-3.0) ax[0].loglog(Ron_list[Ron_list < Rx], tau_low_list[Ron_list < Rx],marker='s',color = colors[1], label = '',markersize = 8,linestyle = '') ax[0].loglog(Ron_list[Ron_list < Rx], tau_high_list[Ron_list < Rx],marker='o',color = colors[0],label = '',markersize = 8,linestyle = '') ax[0].loglog(Ron_list[Ron_list >= Rx], tau_low_list[Ron_list >= Rx],marker='s',color = colors[1], label = 'slow-plugged',markersize = 8,linestyle = '') ax[0].loglog(Ron_list[Ron_list >= Rx], tau_high_list[Ron_list >= Rx],marker='o',color = colors[0],label = 'free-flowing',markersize = 8,linestyle = '') ax[0].set_ylabel(r'$\langle\tau\rangle$',fontsize=19,rotation=0,labelpad=14) ax[0].set_xlabel(r'$R_{\mathrm{on}}$',fontsize=20) ax[1].loglog(Ron_list[Ron_list < Rx], flux_high_list[Ron_list < Rx],marker='o',color = colors[0],label = 'high',markersize = 8,linestyle = '') ax[1].loglog(Ron_list[Ron_list < Rx], flux_low_list[Ron_list < Rx],marker = 's',color = colors[1], label = 'low',markersize = 8,linestyle = '') ax[1].loglog(Ron_list[Ron_list >= Rx], flux_high_list[Ron_list >= Rx],marker='o',color = colors[0],label = 'high',markersize = 8,linestyle = '') ax[1].loglog(Ron_list[Ron_list >= Rx], flux_low_list[Ron_list >= Rx],marker = 's',color = colors[1], label = 'low',markersize = 8,linestyle = '') ax[1].set_ylabel(r'$\langle \Phi\rangle$',fontsize=20,rotation=0,labelpad=7) ax[1].set_xlabel(r'$R_{\mathrm{on}}$',fontsize=20) Ron_list=
np.array(Ron_list)
numpy.array
from .regression import Regression import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from sklearn.model_selection import train_test_split from sklearn.preprocessing import PolynomialFeatures from imageio import imread import os FIGURE_DIR = "./figures" DATA_DIR = "./data" if not os.path.exists(FIGURE_DIR): os.mkdir(FIGURE_DIR) if not os.path.exists(DATA_DIR): os.mkdir(DATA_DIR) def image_path(fig_id): return os.path.join(FIGURE_DIR, fig_id) def data_path(DATA_file): return os.path.join(DATA_DIR, DATA_file) def save_fig(fig_id): fn = image_path(fig_id) + ".png" if os.path.exists(fn): overwrite = str( input( "The file " + fn + " already exists," + "\ndo you wish to overwrite it [y/n/new_file_name]?\n" ) ) if overwrite == "y": plt.savefig(fn, format="png") plt.close() print(fn + " was overwritten.") elif overwrite == "n": print("Figure was not saved.") elif fn != overwrite: fn = image_path(overwrite) + ".png" # user specified filename plt.savefig(fn, format="png") plt.close() print("New file: " + fn + " written.") # if user types new_file_name = fn, the original file is preserved, # and NOT overwritten. else: plt.savefig(fn, format="png") plt.close() return None def create_polynomial_design_matrix(X_data, degree): """ X_data = [x_data y_data] Create polynomial design matrix on the form where columns are: X = [1 x y x**2 xy y**2 x**3 x**2y ... ] """ X = PolynomialFeatures(degree).fit_transform(X_data) return X def get_polynomial_coefficients(degree=5): """ Return a list with coefficient names, [1 x y x^2 xy y^2 x^3 ...] """ names = ["1"] for exp in range(1, degree + 1): # 0, ..., degree for x_exp in range(exp, -1, -1): y_exp = exp - x_exp if x_exp == 0: x_str = "" elif x_exp == 1: x_str = r"$x$" else: x_str = rf"$x^{x_exp}$" if y_exp == 0: y_str = "" elif y_exp == 1: y_str = r"$y$" else: y_str = rf"$y^{y_exp}$" names.append(x_str + y_str) return names def franke_function(x, y): """ Info: The Franke function f(x, y). The inputs are elements or vectors with elements in the domain of [0, 1]. Inputs: x, y: array, int or float. Must be of same shape. Output: f(x,y), same type and shape as inputs. """ if np.shape(x) != np.shape(y): raise ValueError("x and y must be of same shape!") term1 = 0.75 * np.exp(-(0.25 * (9 * x - 2) ** 2) - 0.25 * ((9 * y - 2) ** 2)) term2 = 0.75 * np.exp(-((9 * x + 1) ** 2) / 49.0 - 0.1 * (9 * y + 1)) term3 = 0.5 * np.exp(-(9 * x - 7) ** 2 / 4.0 - 0.25 * ((9 * y - 3) ** 2)) term4 = -0.2 * np.exp(-(9 * x - 4) ** 2 - (9 * y - 7) ** 2) return term1 + term2 + term3 + term4 # Ordinary least squares analysis def ols_franke_function(X, y, x1, x2, variance, degree=5, svd=False, k=5): """ Info: Make a plot of the sample data and an Ordinary Least Squares fit on the data. The purpose here is only to illustrate the fit, and the data is NOT yet split in training/test data. Input: * X: design matrix * y: sample data * x1: sample data * x2: sample data * degree=5: polynomial degree of regression. * svd=False: if set to true the matrix inversion of (X.T @ X) will be inverted with SVD * k=5: number of k subsets for k-fold CV Output: The function produces a plot of the data and corresponding regression. """ # OLS model = Regression(X, y) model.ols_fit(svd=svd) y_pred = model.predict(X) N = X.shape[0] mse = model.mean_squared_error(y, y_pred) r2 = model.r2_score(y, y_pred) # PLOT fig = plt.figure() ax = fig.add_subplot(111, projection="3d") # plot the original data data = ax.scatter(x1, x2, y, marker="^", alpha=0.04) ax.set_xlabel(r"$x_1$") ax.set_ylabel(r"$x_2$") ax.set_zlabel("y") # make a surface plot on a smooth meshgrid, given OLS model l = np.linspace(0, 1, 1001) x1_mesh, x2_mesh = np.meshgrid(l, l) x1_flat, x2_flat = x1_mesh.flatten(), x2_mesh.flatten() X_mesh = np.column_stack((x1_flat, x2_flat)) y_pred = model.predict(create_polynomial_design_matrix(X_mesh, degree)) y_pred_mesh = np.reshape(y_pred, x1_mesh.shape) surface = ax.plot_surface(x1_mesh, x2_mesh, y_pred_mesh, cmap=mpl.cm.coolwarm) fake_surf = mpl.lines.Line2D( [0], [0], linestyle="none", c="r", marker="s", alpha=0.5 ) fake_data = mpl.lines.Line2D( [0], [0], linestyle="none", c="b", marker="^", alpha=0.2 ) ax.legend( [fake_surf, fake_data], [ f"OLS surface fit with polynomial degree {degree}\n" + "Training MSE = " + f"{mse:1.3f}" + r", $R^2$ = " + f"{r2:1.3f}", f"{N} Data points with variance = {variance:1.3f}", ], numpoints=1, loc=1, ) fig.colorbar(surface, shrink=0.5) save_fig("ols_franke_function") return None def ols_test_size_analysis(X, y, variance, svd=False): """ Info: Analyse the MSE and R2 as a function of test size Input: * X: design matrix * y: y data * variance: Var(y) in noise of franke function, only used for plot title * svd=False: if set to true the matrix inversion of (X.T @ X) will be inverted with SVD Output: Produces and saves a plot """ N = X.shape[0] n = 17 test_sizes = np.linspace(0.1, 0.9, n) mse = np.zeros(n) r2 = np.zeros(n) model = Regression(X, y) # Collect MSE and R2 as a function of test_size for i in range(n): X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=test_sizes[i], random_state=i ) model.update_X(X_train) model.update_y(y_train) model.ols_fit(svd=svd) y_pred = model.predict(X_test) mse[i] = model.mean_squared_error(y_test, y_pred) r2[i] = model.r2_score(y_test, y_pred) # Plot the results plt.subplot(211) plt.title(f"Test Size Analysis, Data points = {N}, Variance = {variance:1.3f}") plt.plot(test_sizes, mse, label="Mean Squared Error") plt.ylabel("MSE") plt.grid() plt.legend() plt.subplot(212) plt.plot(test_sizes, r2, label="R squared score") plt.ylabel(r"$R^2$") plt.grid() plt.legend() plt.xlabel("Test Size") save_fig("ols_test_size_analysis") return None def ols_beta_variance(X_data, y, variance=1.0, degree=5): """ Info: plot the beta-coefficients with errorbars corresponding to one sigma (standard deviation) = sqrt(variance) Input: * X_data: x1, x2 coordinates of data * y: y coordinates of data * variance=1: sigma**2 of noise in data * degree=5: polynomial degree for design matrix Output: Produces and saves a plot """ p = X.shape[1] XTXinv = np.linalg.inv(X.T @ X) x = np.linspace(0, p - 1, p) beta = XTXinv @ X.T @ y beta_err = np.diag(XTXinv) * np.sqrt(variance) names = get_polynomial_coefficients(degree) # PLOT fig = plt.figure() ax = fig.add_subplot(1, 1, 1) plt.errorbar( x, beta, yerr=beta_err, fmt="b.", capsize=3, label=r"$\beta_i\pm\sigma$" ) ax.set_title(r"$\beta_i$ confidence intervals") ax.set_xticks(x.tolist()) ax.set_xticklabels(names, fontdict={"fontsize": 7}) plt.ylabel(r"$\beta$") plt.xlabel(r"$\beta$ coeff. terms") plt.grid() plt.legend() save_fig("beta_st_dev") return None def ols_k_fold_analysis(X, y, variance, largest_k, svd=False): """ Info: Analyse the MSE and R2 as a function of k Input: * X: design matrix * y: y data * variance: Var(y) in noise of franke function, only used for plot title * largest_k: integer where k = [2, 3, ..., largest_k] * svd=False: if set to true the matrix inversion of (X.T @ X) will be inverted with SVD Output: Produces and saves a plot """ N = X.shape[0] if largest_k < 2: raise ValueError("largest k must be >= 2.") n = largest_k - 1 k_arr = np.linspace(2, largest_k, n, dtype=np.int64) mse = np.zeros(n) r2 = np.zeros(n) model = Regression(X, y) # Collect MSE and R2 as a function of test_size for i in range(n): mse[i], r2[i] = model.k_fold_cross_validation(k_arr[i], "ols", svd=svd) # Plot the results fig = plt.figure() ax1 = fig.add_subplot(2, 1, 1) plt.title(f"K-fold Cross Validation, Data points = {N}, Variance = {variance:1.3f}") plt.plot(k_arr, mse, label="Mean Squared Error") plt.ylabel("MSE") plt.grid() plt.legend() ax1.set_yticklabels([f"{x:1.4f}" for x in ax1.get_yticks().tolist()]) ax2 = fig.add_subplot(2, 1, 2) plt.plot(k_arr, r2, label="R squared score") plt.ylabel(r"$R^2$") plt.grid() plt.legend() plt.xlabel("k") ax2.set_yticklabels([f"{x:1.4f}" for x in ax2.get_yticks().tolist()]) save_fig("ols_k_fold_analysis") return None def ols_degree_analysis(X_data, y, min_deg, max_deg, variance, svd=False, k=5): """ Info: Analyse the MSE as a function of degree Input: * X: design matrix * y: y data * min_deg: maximum polynomial degree * max_deg: minimum polynomial degree * variance: Var(y) in noise of franke function, only used for plot title * svd=False: if set to true the matrix inversion of (X.T @ X) will be inverted with SVD * k=5: number of k subsets for k-fold CV Output: Produces and saves a plot """ N = X_data.shape[0] n = max_deg - min_deg + 1 mse_k_fold = np.zeros(n) mse_train = np.zeros(n) degree_arr = np.linspace(min_deg, max_deg, n, dtype=np.int64) model = Regression(X_data, y) min_MSE = variance * 5 min_deg = 0 # Collect MSE and R2 as a function of test_size for i in range(n): deg = degree_arr[i] X = create_polynomial_design_matrix(X_data, deg) model.update_X(X) model.ols_fit(svd=svd) y_pred = model.predict(X) mse_train[i] = model.mean_squared_error(y, y_pred) mse_k_fold[i], r2 = model.k_fold_cross_validation(k, "ols", svd=svd) if mse_k_fold[i] < min_MSE: min_deg = deg min_MSE = mse_k_fold[i] # Plot the results fig = plt.figure() plt.title(f"Data points = {N}, Variance = {variance:1.4f}") plt.plot(degree_arr, mse_train, label=f"MSE: training data") plt.plot(degree_arr, mse_k_fold, label=f"MSE: {k}-fold CV") plt.plot(min_deg, min_MSE, "ro", label=f"Min. MSE = {min_MSE:1.4f}") plt.plot() plt.ylabel("Prediction Error") plt.xlabel("Polynomial degree") plt.grid() plt.legend() save_fig("degree_analysis_ols") return None def ols_degree_and_n_analysis( max_log_N, max_degree, test_size=0.33, st_dev=0.5, svd=False, k=5 ): """ Info: Study the prediction error vs. degree and number of data points, and also the prediction error will be evaluated on BOTH the training set and the test set. This should illustrate the Bias-Variance tradeoff (optimal degree of complexity) and how the training set gets overfitted. Input: * max_log_N: Largest exponent of 10 (int > 3). The number of data points will be N = 10**(log N), where - log N = [3, 4, ...] - N = [100, 1000, 10 000, ...] * max_degree: Largest polynomial degree for OLS regression. Integer between 0 and 20 * test_size: fraction of data which will be used in test set * st_dev: standard deviation on noise in franke function * svd=False: if set to true the matrix inversion of (X.T @ X) will be inverted with SVD * k=5: number of k subsets for k-fold CV Output: Produces and saves a plot """ if max_log_N <= 3: raise ValueError("max_log_N must be an integer > 3") if max_degree < 0 or max_degree > 20: raise ValueError("max_degree should be an integer between 0 and 20") degree_arr = np.linspace(2, max_degree, max_degree - 1, dtype=np.int64) N_arr = np.logspace(3, max_log_N, (max_log_N - 2), dtype=np.int64) log_N_arr = np.linspace(3, max_log_N, (max_log_N - 2), dtype=np.int64) log_N_mesh, degree_mesh = np.meshgrid(log_N_arr, degree_arr) mse_test_mesh = np.zeros(log_N_mesh.shape) mse_train_mesh =
np.zeros(log_N_mesh.shape)
numpy.zeros
# coding: utf-8 # In[1]: from __future__ import print_function from keras.models import Sequential from keras.layers import Dense, Activation from keras.layers import LSTM from keras.optimizers import RMSprop from keras.utils.data_utils import get_file import numpy as np from keras.models import load_model from keras.models import model_from_json import sys import mecab import MeCab model = load_model('LSTM_Tweet.h5') # path = get_file('nietzsche.txt', origin='https://s3.amazonaws.com/text-datasets/nietzsche.txt') path = "/home/MakeTweet/MakedataByTwimeMachine/maguroTweetimprove.txt" #回復アイテム といった風に一行ずつ readfiletext = open(path,"r",encoding="utf-8").read().lower() print('corpus length:', len(readfiletext)) #'書', '替'とか使う漢字が入っているとおもう #形態素解析をここで使う mecabText = mecab.mecab_list(readfiletext) mecabTextLen = len(mecabText) print(mecabTextLen) chars = sorted(list(set(mecabText))) print('total chars:', len(chars)) #'便': 349, '係': 350,とかになっていたのを形態素解析にして単語ずつにしている。 char_indices = dict((c, i) for i, c in enumerate(chars)) #'便', 350: '係', 351:とかになっていたのを形態素解析にして単語ずつにしている。 indices_char = dict((i, c) for i, c in enumerate(chars)) def sample(preds, temperature=1.0): # helper function to sample an index from a probability array preds = np.asarray(preds).astype('float64') preds = np.log(preds) / temperature exp_preds = np.exp(preds) preds = exp_preds / np.sum(exp_preds) probas = np.random.multinomial(1, preds, 1) return
np.argmax(probas)
numpy.argmax
# import necessary libraries import numpy as np from scipy.sparse import csr_matrix from pathlib import Path import sys sys.path.append( "/users/rohan/news-classification/ranking-featured-writing/rankfromsets" ) import os import argparse from data_processing.articles import Articles from models.models import InnerProduct import data_processing.dictionaries as dictionary import scipy import json import pandas as pd import time # get arguments for script and parse def expand_path(string): return Path(os.path.expandvars(string)) parser = argparse.ArgumentParser( description="Train model on article data and test evaluation" ) parser.add_argument( "--model_matrix_dir", type=expand_path, required=True, help="This is required to load model matrices.", ) parser.add_argument( "--data_matrix_path", type=expand_path, required=True, help="This is required to load data matrices", ) parser.add_argument( "--dict_dir", type=expand_path, required=True, help="Path to data to be ranked." ) parser.add_argument( "--list_output_dir", type=expand_path, required=True, help="The place to store the generated html.", ) parser.add_argument( "--real_data_path", type=expand_path, required=True, help="Mapped and filtered data to generate html with.", ) parser.add_argument( "--dataset_name", type=str, required=True, help="Indicates which dataset for demo this is.", ) parser.add_argument( "--amount", type=int, default=75, help="Quantity of articles to include in list!" ) parser.add_argument( "--emb_size", type=int, default=10, help="Embedding Size of Model Used" ) args = parser.parse_args() # load dictionaries dict_dir = Path(args.dict_dir) final_word_ids, final_url_ids, final_publication_ids = dictionary.load_dictionaries( dict_dir ) print("Dictionaries loaded.") # load numeric data for calculations publication_emb = np.asarray( [ 0.77765566, 0.76451594, 0.75550663, -0.7732487, 0.7341457, 0.7216135, -0.7263404, 0.73897207, -0.720818, 0.73908365, ], dtype=np.float32, ) publication_bias = 0.43974462 word_article_path = args.data_matrix_path word_articles = scipy.sparse.load_npz(word_article_path) word_emb_path = args.model_matrix_dir / "word_emb.npy" word_emb =
np.load(word_emb_path)
numpy.load
import numpy as np import scipy from scipy.stats import t, norm def ztest_notch(greater, smaller, data): ngreater, nsmaller = data[greater].sum(), data[smaller].sum() n_bins_greater, n_bins_smaller = len(greater), len(smaller) ntotal = ngreater + nsmaller p_hat = float(ngreater)/ntotal p_hat_var = p_hat*(1-p_hat)/ntotal p_null = float(n_bins_greater)/(n_bins_greater+n_bins_smaller) z = (p_hat - p_null)/np.sqrt(p_hat_var) pval = 1 - norm.cdf(z) return pval def ttest_notch(greater, smaller, data): data = data.astype('float32') data += 0.5 N = data.sum() if N == 0: return 1 ngreater, nsmaller = data[greater], data[smaller] #if np.any(ngreater <= 2) or np.any(nsmaller <= 2): # return 1 pg = ngreater/N siggsq = pg*(1-pg)/N pg = pg.sum()/pg.size siggsq = siggsq.sum()/siggsq.size**2 # print(pg, siggsq) ps = nsmaller/N sigssq = ps*(1-ps)/N ps = ps.sum()/ps.size sigssq = sigssq.sum()/sigssq.size**2 tstat = (pg - ps)/np.sqrt(siggsq + sigssq) df = (siggsq + sigssq)**2/((siggsq)**2/(N-1) + (sigssq)**2/(N-1) ) # print(pg, ps, siggsq, sigssq) return (1 - t.cdf(tstat, df)) def findnotchpairs(correlograms, mc, CONFIG): nunits = correlograms.shape[0] numbins = correlograms.shape[2] baseline = np.arange(0, 20) baseline = np.concatenate([baseline, np.arange(numbins - 20, numbins)]) centrebins = [numbins//2-1, numbins//2, numbins//2+1] offbins = np.arange(correlograms.shape[2]//2-13, correlograms.shape[2]//2-3) offbins = np.concatenate([offbins, np.arange(numbins//2+3, numbins//2+13)]) # baseline = np.arange(correlograms.shape[2]//2-29, correlograms.shape[2]//2-8) # baseline = np.concatenate([baseline, np.arange(correlograms.shape[2]//2+8, correlograms.shape[2]//2+28)]) # centrebins = [correlograms.shape[2]//2] # offbins = np.arange(correlograms.shape[2]//2-7, correlograms.shape[2]//2-2) # offbins = np.concatenate([offbins, np.arange(correlograms.shape[2]//2+2, correlograms.shape[2]//2+7)]) notchpairs = [] for unit1 in range(nunits): idx = np.in1d(mc,
np.arange(49)
numpy.arange
"""Module is for data (time series and anomaly list) processing. """ from typing import Dict, List, Optional, Tuple, Union, overload import numpy as np import pandas as pd def validate_series( ts: Union[pd.Series, pd.DataFrame], check_freq: bool = True, check_categorical: bool = False, ) -> Union[pd.Series, pd.DataFrame]: """Validate time series. This functoin will check some common critical issues of time series that may cause problems if anomaly detection is performed without fixing them. The function will automatically fix some of them and raise errors for the others. Issues will be checked and automatically fixed include: - Time index is not monotonically increasing; - Time index contains duplicated time stamps (fix by keeping first values); - (optional) Time index attribute `freq` is missed while the index follows a frequency; - (optional) Time series include categorical (non-binary) label columns (to fix by converting categorical labels into binary indicators). Issues will be checked and raise error include: - Wrong type of time series object (must be pandas Series or DataFrame); - Wrong type of time index object (must be pandas DatetimeIndex). Parameters ---------- ts: pandas Series or DataFrame Time series to be validated. check_freq: bool, optional Whether to check time index attribute `freq` is missed. Default: True. check_categorical: bool, optional Whether to check time series include categorical (non-binary) label columns. Default: False. Returns ------- pandas Series or DataFrame Validated time series. """ ts = ts.copy() # check input type if not isinstance(ts, (pd.Series, pd.DataFrame)): raise TypeError("Input is not a pandas Series or DataFrame object") # check index type if not isinstance(ts.index, pd.DatetimeIndex): raise TypeError( "Index of time series must be a pandas DatetimeIndex object." ) # check duplicated if any(ts.index.duplicated(keep="first")): ts = ts[ts.index.duplicated(keep="first") == False] # check sorted if not ts.index.is_monotonic_increasing: ts.sort_index(inplace=True) # check time step frequency if check_freq: if (ts.index.freq is None) and (ts.index.inferred_freq is not None): ts = ts.asfreq(ts.index.inferred_freq) # convert categorical labels into binary indicators if check_categorical: if isinstance(ts, pd.DataFrame): ts = pd.get_dummies(ts) if isinstance(ts, pd.Series): seriesName = ts.name ts = pd.get_dummies( ts.to_frame(), prefix="" if seriesName is None else seriesName, prefix_sep="" if seriesName is None else "_", ) if len(ts.columns) == 1: ts = ts[ts.columns[0]] ts.name = seriesName return ts def validate_events( event_list: List[Union[Tuple[pd.Timestamp, pd.Timestamp], pd.Timestamp]], point_as_interval: bool = False, ) -> List[Union[Tuple[pd.Timestamp, pd.Timestamp], pd.Timestamp]]: """Validate event list. This function will check and fix some common issues in an event list (a list of time windows), including invalid time window, overlapped time windows, unsorted events, etc. Parameters ---------- event_list: list A list of events, where an event is a pandas Timestamp if it is instantaneous or a 2-tuple of pandas Timestamps if it is a closed time interval. point_as_interval: bool, optional Whether to return all instantaneous event as a close interval with identicial start point and end point. Default: False. Returns ------- list: A validated list of events. """ if not isinstance(event_list, list): raise TypeError("Argument `event_list` must be a list.") for event in event_list: if not ( isinstance(event, pd.Timestamp) or ( isinstance(event, tuple) and (len(event) == 2) and all([isinstance(event[i], pd.Timestamp) for i in [0, 1]]) ) ): raise TypeError( "Every event in the list must be a pandas Timestamp, " "or a 2-tuple of Timestamps." ) time_window_ends = [] # type: List[pd.Timestamp] time_window_type = [] # type: List[int] for time_window in event_list: if isinstance(time_window, tuple): if time_window[0] <= time_window[1]: time_window_ends.append(time_window[0]) time_window_type.append(+1) time_window_ends.append(time_window[1]) time_window_type.append(-1) else: time_window_ends.append(time_window) time_window_type.append(+1) time_window_ends.append(time_window) time_window_type.append(-1) time_window_end_series = pd.Series( time_window_type, index=pd.DatetimeIndex(time_window_ends), dtype=int ) # type: pd.Series time_window_end_series.sort_index(kind="mergesort", inplace=True) time_window_end_series = time_window_end_series.cumsum() status = 0 merged_event_list = ( [] ) # type: List[Union[Tuple[pd.Timestamp, pd.Timestamp], pd.Timestamp]] for t, v in time_window_end_series.iteritems(): # type: pd.Timestamp, int if (status == 0) and (v > 0): start = t # type: pd.Timestamp status = 1 if (status == 1) and (v <= 0): end = t # type: pd.Timestamp merged_event_list.append([start, end]) status = 0 for i in range(1, len(merged_event_list)): this_start = merged_event_list[i][0] # type: pd.Timestamp this_end = merged_event_list[i][1] # type: pd.Timestamp last_start = merged_event_list[i - 1][0] # type: pd.Timestamp last_end = merged_event_list[i - 1][1] # type: pd.Timestamp if last_end + pd.Timedelta("1ns") >= this_start: merged_event_list[i] = [last_start, this_end] merged_event_list[i - 1] = None merged_event_list = [ w[0] if (w[0] == w[1] and not point_as_interval) else tuple(w) for w in merged_event_list if w is not None ] return merged_event_list @overload def to_events( labels: pd.Series, freq_as_period: bool = True, merge_consecutive: Optional[bool] = None, ) -> List[Union[Tuple[pd.Timestamp, pd.Timestamp], pd.Timestamp]]: ... @overload def to_events( # type: ignore labels: pd.DataFrame, freq_as_period: bool = True, merge_consecutive: Optional[bool] = None, ) -> Dict[str, List[Union[Tuple[pd.Timestamp, pd.Timestamp], pd.Timestamp]]]: ... def to_events( labels: Union[pd.Series, pd.DataFrame], freq_as_period: bool = True, merge_consecutive: Optional[bool] = None, ) -> Union[ List[Union[Tuple[pd.Timestamp, pd.Timestamp], pd.Timestamp]], Dict[str, List[Union[Tuple[pd.Timestamp, pd.Timestamp], pd.Timestamp]]], ]: """Convert binary label series to event list. Parameters ---------- labels: pandas Series or DataFrame Binary series of anomaly labels. If a DataFrame, each column is regarded as a type of anomaly independently. freq_as_period: bool, optional Whether to regard time index with regular frequency (i.e. attribute `freq` of time index is not None) as time intervals. For example, DatetimeIndex(['2017-01-01', '2017-01-02', '2017-01-03', '2017-01-04', '2017-01-05'], dtype='datetime64[ns]', freq='D') has daily frequency. If freq_as_period=True, each time point in the index represents that day (24 hours). Otherwsie, each time point represents the instantaneous time instance of 00:00:00 on that day. Default: True. merge_consecutive: bool, optional Whether to merge consecutive events into a single time window. If not specified, it is on automatically if the input time index has a regular frequency and freq_as_period=True, and it is off otherwise. Default: None. Returns ------- list or dict - If input is a Series, output is a list of events where an event is a pandas Timestamp if it is instantaneous or a 2-tuple of pandas Timestamps if it is a closed time interval. - If input is a DataFrame, every column is treated as an independent binary series, and output is a dict where keys are column names and values are event lists. """ if isinstance(labels, pd.Series): labels = validate_series( labels, check_freq=False, check_categorical=False ) labels = labels == 1 if merge_consecutive is None: if freq_as_period and (labels.index.freq is not None): merge_consecutive = True else: merge_consecutive = False if not merge_consecutive: if freq_as_period and (labels.index.freq is not None): period_end = pd.date_range( start=labels.index[1], periods=len(labels.index), freq=labels.index.freq, ) - pd.Timedelta( "1ns" ) # type: pd.DatetimeIndex return [ (start, end) if start != end else start for start, end in zip( list(labels.index[labels]), list(period_end[labels]) ) ] else: return list(labels.index[labels]) else: labels_values = labels.values.astype(int).reshape( -1, 1 ) # type: np.ndarray mydiff = np.vstack( [ labels_values[0, :] - 0, np.diff(labels_values, axis=0), 0 - labels_values[-1, :], ] ) # type: np.ndarray starts =
np.argwhere(mydiff == 1)
numpy.argwhere
''' setting up the datasets for ggnn ''' import init_path # system import from copy import deepcopy # compute import numpy as np import random # torch import import torch import torch.nn as nn import torch.nn.functional as F from torch.autograd import Variable import torch.utils.data as data_utils import torchvision.transforms as transforms # local imports class VerifyGraphDataset(data_utils.Dataset): def __init__(self, samples, args, valset=False): self.samples = samples self.args = args if not valset: self.valset = False self.graph_size = args.graph_size else: self.valset = True self.graph_size = args.val_graph_size def __len__(self): return len(self.samples) def __getitem__(self, index): ''' ''' g1 = self.samples[index] # the isomorphic graph g1_prime = deepcopy(g1) g1_prime.generate_isomorphic() # randomly sample another graph g2 = Graph(self.args, valset_graph=self.valset) while g2.same_connection(g1): g2 = Graph(self.args, valset_graph=self.valset) # need to return initial state, annotation, and adjacency matrix # initial states are random g1_state = np.random.rand(self.graph_size, self.args.state_dim) g1_prime_state = np.random.rand(self.graph_size, self.args.state_dim) g2_state = np.random.rand(self.graph_size, self.args.state_dim) # g1_state = np.ones( (self.args.graph_size, self.args.state_dim) ) # g1_prime_state = np.ones( (self.args.graph_size, self.args.state_dim) ) # g2_state = np.ones( (self.args.graph_size, self.args.state_dim) ) # annotation state is generated by the given attributes g1_anno = np.stack(g1.attr_list) g1_prime_anno = np.stack(g1_prime.attr_list) g2_anno = np.stack(g2.attr_list) # adjacency matrix g1_mat = compact2sparse_representation(g1.mat, self.args.edge_type) g1_prime_mat = compact2sparse_representation(g1_prime.mat, self.args.edge_type) g2_mat = compact2sparse_representation(g2.mat, self.args.edge_type) # if random.randint(0, 1) == 1: # use same positive example # label = np.array([1]).astype('float32') # state_mat = np.dstack( (g1_state, g1_prime_state) ) # state_mat = np.transpose(state_mat, (2, 0, 1)) # anno_mat = np.dstack( (g1_anno, g1_prime_anno) ) # anno_mat = np.transpose(anno_mat, (2, 0, 1)) # adj_mat = np.dstack( ( g1_mat, g1_prime_mat) ) # adj_mat = np.transpose(adj_mat, (2, 0, 1)) # else: # label = np.array([0]).astype('float32') # state_mat = np.dstack( (g1_state, g2_state) ) # state_mat = np.transpose(state_mat, (2, 0, 1)) # anno_mat = np.dstack( (g1_anno, g2_anno) ) # anno_mat = np.transpose(anno_mat, (2, 0, 1)) # adj_mat = np.dstack( ( g1_mat, g2_mat) ) # adj_mat = np.transpose(adj_mat, (2, 0, 1)) label = np.array([1, 0]).astype('float32') state_mat = np.dstack( (g1_state, g1_prime_state, g1_state, g2_state) ) state_mat = np.transpose(state_mat, (2, 0, 1)) anno_mat = np.dstack( (g1_anno, g1_prime_anno, g1_anno, g2_anno) ) anno_mat = np.transpose(anno_mat, (2, 0, 1)) adj_mat = np.dstack( ( g1_mat, g1_prime_mat, g1_mat, g2_mat) ) adj_mat = np.transpose(adj_mat, (2, 0, 1)) return state_mat.astype('float32'), anno_mat.astype('float32'), \ adj_mat.astype('float32'), label def get_dloader(args, num, val_set=False, test=False): ''' ''' data = generate_graph(num, args, val_set) dataset = VerifyGraphDataset(data, args, valset=val_set) if test: dataloader = data_utils.DataLoader(dataset, batch_size=args.bs ) else: dataloader = data_utils.DataLoader(dataset, args.bs, pin_memory=False, num_workers=args.num_workers ) return dataloader def generate_graph(num, args, val_set): ''' generate <num> number of graphs for GGNN return a list of Graph structures ''' graph_list = [] for i in range(num): graph_list.append( Graph(args, valset_graph=val_set) ) pass return graph_list def compact2sparse_representation(mat, total_edge_type): ''' convert a compact adjacent matrix to a sparse matrix ''' N, _ = mat.shape total_edge_type = total_edge_type sparse_mat = np.zeros((N, N * total_edge_type * 2)) # fill the in's and out's in the sparse matrix for i in range(N): for j in range(N): if mat[i, j] == 0: continue edge_type = mat[i, j] _from = i _to = j # fill in in_x = j in_y = i + N * (edge_type - 1) sparse_mat[int(in_x), int(in_y)] = 1 # fill out # need to skip all the in's out_x = i out_y = N * total_edge_type + j + N * (edge_type - 1) sparse_mat[int(out_x), int(out_y)] = 1 return sparse_mat.astype('int') def adj_mat2list(mat): ''' convert an adjacency matrix to a list return: a dictionary - key: node id val: node id that connects to ''' N, _ = mat.shape adj_list = {} for i in range(N): adj_list[i] = np.where(mat[i] != 0)[0].tolist() return adj_list def adj_list2mat(adj_list): ''' convert an adjacency list to a matrix input: a dictionary of size N describing the connection relationship return: a numpy array (N x N) describing the connection between nodes ''' N = len(adj_list) mat = np.zeros((N, N)) for node, connected_nodes in adj_list.items(): for x in connected_nodes: mat[node][x] = 1 return mat.astype(int) def generate_isomorphic_graph(adj_list): ''' @brief: generate an isomorphic graph based on the adjacency matrix return: a new adj_list that is isomorphic to the graph described by the adj_list ''' N = len(adj_list) # shuffle the list to get a new one original_order = list(range(N)) shuffled_order = list(range(N)) random.shuffle( shuffled_order ) # construct a mapping from the old index to the new index old2new_index = {} for i, x in enumerate(shuffled_order): old2new_index[x] = original_order[i] # construct the new adj_list new_adj_list = {} for i, x in enumerate(shuffled_order): new_adj_list[i] = [] for y in adj_list[x]: new_adj_list[i].append( old2new_index[y] ) return new_adj_list class Graph(): def __init__(self, args, valset_graph=False): self.args = args if valset_graph: self.graph_size = self.args.val_graph_size else: self.graph_size = self.args.graph_size self.mat = self._generate_connection( self.graph_size, self.args.edge_type, self.args.connection_rate ) self.attr_list = self._generate_node_attr( self.graph_size, self.args.node_type, self.args.random_embed ) self.graph_size = args.graph_size def __eq__(self, other): if self.graph_size != other.graph_size: return False if np.array_equal(self.mat, other.mat) == False: return False for i in range(self.args.graph_size): if np.array_equal(self.attr_list[i], other.attr_list[i]) \ == False: return False return True def generate_isomorphic(self): ''' recreate a new adjacency matrix and replace the current ''' cur_adj_list = adj_mat2list(self.mat) iso_adj_list = generate_isomorphic_graph(cur_adj_list) self.mat = adj_list2mat(iso_adj_list) return def same_connection(self, other): ''' 2 graphs having the same connection edge type is also the same ''' if np.array_equal(self.mat, other.mat): return True return False def resample_attr(self): ''' resample new attributes ''' self.attr_list = self._generate_node_attr( self.args.graph_size, self.args.node_type, self.args.random_embed ) return None def _generate_connection(self, size, edge_type=3, connect_rate=0.1): ''' generated a connected graph in the from of adjacency matrix ''' mat = np.zeros((size, size)) node_id = 0 while node_id < size: connected = False # flip coin on column for i in range(size): if i == node_id: continue if
np.random.binomial(1, connect_rate, 1)
numpy.random.binomial
import os import sys import numpy as np import time import glob import pickle from sklearn.neighbors import KDTree import tensorflow as tf BASE_DIR = os.path.dirname(os.path.abspath(__file__)) ROOT_DIR = os.path.dirname(BASE_DIR) sys.path.append(ROOT_DIR) DATA_DIR = os.path.join('/data/dataset/', 'SensatUrban') if not os.path.exists(DATA_DIR): raise IOError(f"{DATA_DIR} not found!") from utils.ply import read_ply, write_ply from .custom_dataset import CustomDataset, grid_subsampling, tf_batch_subsampling, tf_batch_neighbors class SensatUrbanDataset(CustomDataset): def __init__(self, config, input_threads=8): """Class to handle SensatUrban dataset for scene segmentation task. Args: config: config file input_threads: the number elements to process in parallel """ super(SensatUrbanDataset, self).__init__() self.config = config self.num_threads = input_threads self.trainval = config.get('trainval', False) # Dict from labels to names self.path = DATA_DIR self.label_to_names = {0: 'Ground', 1: 'High Vegetation', 2: 'Buildings', 3: 'Walls', 4: 'Bridge', 5: 'Parking', 6: 'Rail', 7: 'traffic Roads', 8: 'Street Furniture', 9: 'Cars', 10: 'Footpath', 11: 'Bikes', 12: 'Water'} # Initiate a bunch of variables concerning class labels self.init_labels() config.num_classes = self.num_classes # Number of input threads self.num_threads = input_threads self.all_files = np.sort(glob.glob(os.path.join(self.path, 'original_block_ply', '*.ply'))) self.val_file_name = ['birmingham_block_1', 'birmingham_block_5', 'cambridge_block_10', 'cambridge_block_7'] self.test_file_name = ['birmingham_block_2', 'birmingham_block_8', 'cambridge_block_15', 'cambridge_block_22', 'cambridge_block_16', 'cambridge_block_27'] # Some configs self.num_gpus = config.num_gpus self.first_subsampling_dl = config.first_subsampling_dl self.in_features_dim = config.in_features_dim self.num_layers = config.num_layers self.downsample_times = config.num_layers - 1 self.density_parameter = config.density_parameter self.batch_size = config.batch_size self.augment_scale_anisotropic = config.augment_scale_anisotropic self.augment_symmetries = config.augment_symmetries self.augment_rotation = config.augment_rotation self.augment_scale_min = config.augment_scale_min self.augment_scale_max = config.augment_scale_max self.augment_noise = config.augment_noise self.augment_color = config.augment_color self.epoch_steps = config.epoch_steps self.validation_size = config.validation_size self.in_radius = config.in_radius # initialize self.num_per_class = np.zeros(self.num_classes) self.ignored_labels = np.array([]) self.val_proj = [] self.val_labels = [] self.test_proj = [] self.test_labels = [] self.possibility = {} self.min_possibility = {} self.input_trees = {'training': [], 'validation': [], 'test': []} self.input_colors = {'training': [], 'validation': [], 'test': []} self.input_labels = {'training': [], 'validation': [], 'test': []} self.input_names = {'training': [], 'validation': [], 'test': []} # input subsampling self.load_sub_sampled_clouds(self.first_subsampling_dl) self.batch_limit = self.calibrate_batches() print("batch_limit: ", self.batch_limit) self.neighborhood_limits = [26, 31, 38, 41, 39] self.neighborhood_limits = [int(l * self.density_parameter // 5) for l in self.neighborhood_limits] print("neighborhood_limits: ", self.neighborhood_limits) # Get generator and mapping function gen_function, gen_types, gen_shapes = self.get_batch_gen('training') gen_function_val, _, _ = self.get_batch_gen('validation') gen_function_test, _, _ = self.get_batch_gen('test') map_func = self.get_tf_mapping() self.train_data = tf.data.Dataset.from_generator(gen_function, gen_types, gen_shapes) self.train_data = self.train_data.map(map_func=map_func, num_parallel_calls=self.num_threads) self.train_data = self.train_data.prefetch(10) self.val_data = tf.data.Dataset.from_generator(gen_function_val, gen_types, gen_shapes) self.val_data = self.val_data.map(map_func=map_func, num_parallel_calls=self.num_threads) self.val_data = self.val_data.prefetch(10) self.test_data = tf.data.Dataset.from_generator(gen_function_test, gen_types, gen_shapes) self.test_data = self.test_data.map(map_func=map_func, num_parallel_calls=self.num_threads) self.test_data = self.test_data.prefetch(10) # create a iterator of the correct shape and type iter = tf.data.Iterator.from_structure(self.train_data.output_types, self.train_data.output_shapes) self.flat_inputs = [None] * self.num_gpus for i in range(self.num_gpus): self.flat_inputs[i] = iter.get_next() # create the initialisation operations self.train_init_op = iter.make_initializer(self.train_data) self.val_init_op = iter.make_initializer(self.val_data) self.test_init_op = iter.make_initializer(self.test_data) @staticmethod def get_num_class_from_label(labels, total_class): num_pts_per_class = np.zeros(total_class, dtype=np.int32) # original class distribution val_list, counts = np.unique(labels, return_counts=True) for idx, val in enumerate(val_list): num_pts_per_class[val] += counts[idx] return num_pts_per_class @staticmethod def get_class_weights(num_per_class, sqrt=True): # # pre-calculate the number of points in each category frequency = num_per_class / float(sum(num_per_class)) if sqrt: ce_label_weight = 1 / np.sqrt(frequency + 0.02) else: ce_label_weight = 1 / (frequency + 0.02) return np.expand_dims(ce_label_weight, axis=0) def load_sub_sampled_clouds(self, sub_grid_size): tree_path = os.path.join(DATA_DIR, 'grid_{:.3f}'.format(sub_grid_size)) for i, file_path in enumerate(self.all_files): t0 = time.time() cloud_name = file_path.split('/')[-1][:-4] if cloud_name in self.test_file_name: cloud_split = 'test' elif cloud_name in self.val_file_name: if self.trainval: cloud_split = 'training' else: cloud_split = 'validation' else: cloud_split = 'training' # Name of the input files kd_tree_file = os.path.join(tree_path, '{:s}_KDTree.pkl'.format(cloud_name)) sub_ply_file = os.path.join(tree_path, '{:s}.ply'.format(cloud_name)) data = read_ply(sub_ply_file) sub_colors = np.vstack((data['red'], data['green'], data['blue'])).T sub_labels = data['class'] # compute num_per_class in training set if cloud_split == 'training': self.num_per_class += self.get_num_class_from_label(sub_labels, self.num_classes) self.num_per_class_weights = self.get_class_weights(self.num_per_class) # Read pkl with search tree with open(kd_tree_file, 'rb') as f: search_tree = pickle.load(f) self.input_trees[cloud_split] += [search_tree] self.input_colors[cloud_split] += [sub_colors] self.input_labels[cloud_split] += [sub_labels] self.input_names[cloud_split] += [cloud_name] size = sub_colors.shape[0] * 4 * 7 print('{:s} {:.1f} MB loaded in {:.1f}s'.format(kd_tree_file.split('/')[-1], size * 1e-6, time.time() - t0)) print('\nPreparing reprojected indices for testing') # Get number of clouds self.num_training = len(self.input_trees['training']) self.num_validation = len(self.input_trees['validation']) self.num_test = len(self.input_trees['test']) # Get validation and test reprojected indices for i, file_path in enumerate(self.all_files): t0 = time.time() cloud_name = file_path.split('/')[-1][:-4] # val projection and labels if cloud_name in self.val_file_name: proj_file = os.path.join(tree_path, '{:s}_proj.pkl'.format(cloud_name)) with open(proj_file, 'rb') as f: proj_idx, labels = pickle.load(f) self.val_proj += [proj_idx] self.val_labels += [labels] print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0)) # test projection and labels if cloud_name in self.test_file_name: proj_file = os.path.join(tree_path, '{:s}_proj.pkl'.format(cloud_name)) with open(proj_file, 'rb') as f: proj_idx, labels = pickle.load(f) self.test_proj += [proj_idx] self.test_labels += [labels] print('{:s} done in {:.1f}s'.format(cloud_name, time.time() - t0)) def get_batch_gen(self, split): """ A function defining the batch generator for each split. Should return the generator, the generated types and generated shapes :param split: string in "training", "validation" or "test" :return: gen_func, gen_types, gen_shapes """ ############ # Parameters ############ # Initiate parameters depending on the chosen split if split == 'training': # First compute the number of point we want to pick in each cloud and for each class epoch_n = self.epoch_steps * self.batch_size random_pick_n = None elif split == 'validation': # First compute the number of point we want to pick in each cloud and for each class epoch_n = self.validation_size * self.batch_size elif split == 'test': # First compute the number of point we want to pick in each cloud and for each class epoch_n = self.validation_size * self.batch_size else: raise ValueError('Split argument in data generator should be "training", "validation" or "test"') # Initiate potentials for regular generation if not hasattr(self, 'potentials'): self.potentials = {} self.min_potentials = {} # Reset potentials self.potentials[split] = [] self.min_potentials[split] = [] data_split = split for i, tree in enumerate(self.input_trees[data_split]): self.potentials[split] += [np.random.rand(tree.data.shape[0]) * 1e-3] self.min_potentials[split] += [float(np.min(self.potentials[split][-1]))] def get_random_epoch_inds(): # Initiate container for indices all_epoch_inds = np.zeros((2, 0), dtype=np.int32) # Choose random points of each class for each cloud for cloud_ind, cloud_labels in enumerate(self.input_labels[split]): epoch_indices = np.empty((0,), dtype=np.int32) for label_ind, label in enumerate(self.label_values): if label not in self.ignored_labels: label_indices = np.where(np.equal(cloud_labels, label))[0] if len(label_indices) <= random_pick_n: epoch_indices = np.hstack((epoch_indices, label_indices)) elif len(label_indices) < 50 * random_pick_n: new_randoms = np.random.choice(label_indices, size=random_pick_n, replace=False) epoch_indices = np.hstack((epoch_indices, new_randoms.astype(np.int32))) else: rand_inds = [] while len(rand_inds) < random_pick_n: rand_inds = np.unique(np.random.choice(label_indices, size=5 * random_pick_n, replace=True)) epoch_indices = np.hstack((epoch_indices, rand_inds[:random_pick_n].astype(np.int32))) # Stack those indices with the cloud index epoch_indices = np.vstack((np.full(epoch_indices.shape, cloud_ind, dtype=np.int32), epoch_indices)) # Update the global indice container all_epoch_inds = np.hstack((all_epoch_inds, epoch_indices)) return all_epoch_inds ########################## # Def generators ########################## def spatially_regular_gen(): # Initiate concatanation lists p_list = [] c_list = [] pl_list = [] pi_list = [] ci_list = [] batch_n = 0 # Generator loop for i in range(epoch_n): # Choose a random cloud cloud_ind = int(np.argmin(self.min_potentials[split])) # Choose point ind as minimum of potentials point_ind = np.argmin(self.potentials[split][cloud_ind]) # Get points from tree structure points = np.array(self.input_trees[data_split][cloud_ind].data, copy=False) # Center point of input region center_point = points[point_ind, :].reshape(1, -1) # Add noise to the center point noise = np.random.normal(scale=self.in_radius / 10, size=center_point.shape) pick_point = center_point + noise.astype(center_point.dtype) # Indices of points in input region input_inds = self.input_trees[data_split][cloud_ind].query_radius(pick_point, r=self.in_radius)[0] # Number collected n = input_inds.shape[0] # Update potentials (Tuckey weights) dists = np.sum(np.square((points[input_inds] - pick_point).astype(np.float32)), axis=1) tukeys = np.square(1 - dists / np.square(self.in_radius)) tukeys[dists > np.square(self.in_radius)] = 0 self.potentials[split][cloud_ind][input_inds] += tukeys self.min_potentials[split][cloud_ind] = float(np.min(self.potentials[split][cloud_ind])) # Safe check for very dense areas if n > self.batch_limit: input_inds = np.random.choice(input_inds, size=int(self.batch_limit) - 1, replace=False) n = input_inds.shape[0] # Collect points and colors input_points = (points[input_inds] - pick_point).astype(np.float32) input_colors = self.input_colors[data_split][cloud_ind][input_inds] if split == 'test': input_labels = np.zeros(input_points.shape[0]) else: input_labels = self.input_labels[data_split][cloud_ind][input_inds] input_labels = np.array([self.label_to_idx[l] for l in input_labels]) # In case batch is full, yield it and reset it if batch_n + n > self.batch_limit and batch_n > 0: yield (np.concatenate(p_list, axis=0), np.concatenate(c_list, axis=0), np.concatenate(pl_list, axis=0), np.array([tp.shape[0] for tp in p_list]), np.concatenate(pi_list, axis=0), np.array(ci_list, dtype=np.int32)) p_list = [] c_list = [] pl_list = [] pi_list = [] ci_list = [] batch_n = 0 # Add data to current batch if n > 0: p_list += [input_points] c_list += [np.hstack((input_colors, input_points + pick_point))] pl_list += [input_labels] pi_list += [input_inds] ci_list += [cloud_ind] # Update batch size batch_n += n if batch_n > 0: yield (np.concatenate(p_list, axis=0), np.concatenate(c_list, axis=0), np.concatenate(pl_list, axis=0), np.array([tp.shape[0] for tp in p_list]), np.concatenate(pi_list, axis=0), np.array(ci_list, dtype=np.int32)) def random_balanced_gen(): # First choose the point we are going to look at for this epoch # ************************************************************* # This generator cannot be used on test split if split == 'training': all_epoch_inds = get_random_epoch_inds() elif split == 'validation': all_epoch_inds = get_random_epoch_inds() else: raise ValueError('generator to be defined for test split.') # Now create batches # ****************** # Initiate concatanation lists p_list = [] c_list = [] pl_list = [] pi_list = [] ci_list = [] batch_n = 0 # Generator loop for i, rand_i in enumerate(np.random.permutation(all_epoch_inds.shape[1])): cloud_ind = all_epoch_inds[0, rand_i] point_ind = all_epoch_inds[1, rand_i] # Get points from tree structure points = np.array(self.input_trees[split][cloud_ind].data, copy=False) # Center point of input region center_point = points[point_ind, :].reshape(1, -1) # Add noise to the center point noise = np.random.normal(scale=config.in_radius / 10, size=center_point.shape) pick_point = center_point + noise.astype(center_point.dtype) # Indices of points in input region input_inds = self.input_trees[split][cloud_ind].query_radius(pick_point, r=config.in_radius)[0] # Number collected n = input_inds.shape[0] # Safe check for very dense areas if n > self.batch_limit: input_inds = np.random.choice(input_inds, size=int(self.batch_limit) - 1, replace=False) n = input_inds.shape[0] # Collect points and colors input_points = (points[input_inds] - pick_point).astype(np.float32) input_colors = self.input_colors[split][cloud_ind][input_inds] input_labels = self.input_labels[split][cloud_ind][input_inds] input_labels = np.array([self.label_to_idx[l] for l in input_labels]) # In case batch is full, yield it and reset it if batch_n + n > self.batch_limit and batch_n > 0: yield (np.concatenate(p_list, axis=0), np.concatenate(c_list, axis=0), np.concatenate(pl_list, axis=0), np.array([tp.shape[0] for tp in p_list]), np.concatenate(pi_list, axis=0), np.array(ci_list, dtype=np.int32)) p_list = [] c_list = [] pl_list = [] pi_list = [] ci_list = [] batch_n = 0 # Add data to current batch if n > 0: p_list += [input_points] c_list += [np.hstack((input_colors, input_points + pick_point))] pl_list += [input_labels] pi_list += [input_inds] ci_list += [cloud_ind] # Update batch size batch_n += n if batch_n > 0: yield (np.concatenate(p_list, axis=0), np.concatenate(c_list, axis=0), np.concatenate(pl_list, axis=0), np.array([tp.shape[0] for tp in p_list]),
np.concatenate(pi_list, axis=0)
numpy.concatenate
from personal.MaurizioFramework.ParameterTuning.BayesianSearch import BayesianSearch from personal.MaurizioFramework.ParameterTuning.AbstractClassSearch import DictionaryKeys from utils.definitions import ROOT_DIR import pickle from personal.MaurizioFramework.SLIM_BPR.Cython.SLIM_BPR_Cython import SLIM_BPR_Cython from recommenders.similarity.dot_product import dot_product from utils.datareader import Datareader from utils.evaluator import Evaluator from utils.bot import Bot_v1 from tqdm import tqdm import scipy.sparse as sps import numpy as np import sys def run_SLIM_bananesyan_search(URM_train, URM_validation, logFilePath = ROOT_DIR+"/results/logs_baysian/"): recommender_class = SLIM_BPR_Cython bananesyan_search = BayesianSearch(recommender_class, URM_validation=URM_validation, evaluation_function=evaluateRecommendationsSpotify_BAYSIAN) hyperparamethers_range_dictionary = {} hyperparamethers_range_dictionary["topK"] = [100, 150, 200, 250, 300, 350, 400, 500] hyperparamethers_range_dictionary["lambda_i"] = [1e-7,1e-6,1e-5,1e-4,1e-3,0.001,0.01,0.05,0.1] hyperparamethers_range_dictionary["lambda_j"] = [1e-7,1e-6,1e-5,1e-4,1e-3,0.001,0.01,0.05,0.1] hyperparamethers_range_dictionary["learning_rate"] = [0.1,0.01,0.001,0.0001,0.00005,0.000001, 0.0000001] hyperparamethers_range_dictionary["minRatingsPerUser"] = [0, 5, 50, 100] logFile = open(logFilePath + recommender_class.RECOMMENDER_NAME + "_BayesianSearch Results.txt", "a") recommenderDictionary = {DictionaryKeys.CONSTRUCTOR_POSITIONAL_ARGS: [], DictionaryKeys.CONSTRUCTOR_KEYWORD_ARGS: { "URM_train":URM_train, "positive_threshold":0, "URM_validation":URM_validation, "final_model_sparse_weights":True, "train_with_sparse_weights":True, "symmetric" : True}, DictionaryKeys.FIT_POSITIONAL_ARGS: dict(), DictionaryKeys.FIT_KEYWORD_ARGS: { "epochs" : 5, "beta_1" : 0.9, "beta_2" : 0.999, "validation_function": evaluateRecommendationsSpotify_RECOMMENDER, "stop_on_validation":True , "sgd_mode" : 'adam', "validation_metric" : "ndcg_t", "lower_validatons_allowed":3, "validation_every_n":1}, DictionaryKeys.FIT_RANGE_KEYWORD_ARGS: hyperparamethers_range_dictionary} best_parameters = bananesyan_search.search(recommenderDictionary, metric="ndcg_t", n_cases=200, output_root_path=""+logFilePath + recommender_class.RECOMMENDER_NAME, parallelPoolSize=4) logFile.write("best_parameters: {}".format(best_parameters)) logFile.flush() logFile.close() pickle.dump(best_parameters, open(logFilePath + recommender_class.RECOMMENDER_NAME + "_best_parameters", "wb"), protocol=pickle.HIGHEST_PROTOCOL) def evaluateRecommendationsSpotify_RECOMMENDER(recommender): """ THIS FUNCTION WORKS INSIDE THE RECOMMENDER :param self: :return: """ user_profile_batch = recommender.URM_train[pids_converted] eurm = dot_product(user_profile_batch, recommender.W_sparse, k=500).tocsr() recommendation_list =
np.zeros((10000, 500))
numpy.zeros
import client import load_data import logging import numpy as np import pickle import random import sys from threading import Thread import torch import utils.dists as dists # pylint: disable=no-name-in-module import math def random_n(b1, b2, b3): rand_list = [] out = [0, 0, 0, 0] for i in range(20): rand_list.append(random.randint(1, 100)) for rand in rand_list: if rand <= b1: out[0] += 1 elif b1 < rand <= b2: out[1] += 1 elif b2 < rand <= b3: out[2] += 1 else: out[3] += 1 return out def random_d(d, k=20): rand_list = [] out = [0, 0, 0, 0] for i in range(d): rand_list.append(random.randint(1, 100)) for rand in rand_list: if rand <= 25: out[0] += 1 elif 25 < rand <= 50: out[1] += 1 elif 50 < rand <= 75: out[2] += 1 else: out[3] += 1 pick = k for i in range(4): if pick == 0: out[i] = 0 elif pick < out[i]: out[i] = pick pick = 0 else: pick -= out[i] return out def random_sim(sample_clients): ans = [] out = random_n(25, 50, 75) pick = np.random.binomial(size=out[0], n=1, p=0.1) pick = np.append(pick, np.random.binomial(size=out[1], n=1, p=0.3)) pick = np.append(pick, np.random.binomial(size=out[2], n=1, p=0.6)) pick = np.append(pick, np.random.binomial(size=out[3], n=1, p=0.9)) for i in range(len(pick)): if pick[i] == 1: ans.append(sample_clients[i]) return ans def fedcs_sim(sample_clients): ans = [] pick = np.random.binomial(size=20, n=1, p=0.9) for i in range(len(pick)): if pick[i] == 1: ans.append(sample_clients[i]) return ans def pow_d_sim(clients_per_round, class_a, class_b, class_c, class_d): out = random_d(d=70) pick_a =
np.random.binomial(size=out[0], n=1, p=0.1)
numpy.random.binomial
#!/usr/bin/env python3 import os import sys import errno import numpy as np import glob import unittest import socket from shutil import which, rmtree import multiprocessing as mp import threading from queue import Empty from time import sleep import yaml from astropy.time import Time, TimeDelta try: import psrdada except ImportError: psrdada = None from darc import AMBERListener, AMBERClustering, DADATrigger from darc import util from darc.definitions import TIME_UNIT # only run this test if this script is run directly, _not_ in automated testing (pytest etc) @unittest.skipUnless(__name__ == '__main__', "Skipping full test run in automated testing") # skip if not running on arts041 @unittest.skipUnless(socket.gethostname() == 'arts041', "Test can only run on arts041") # Skip if psrdada not available @unittest.skipIf(psrdada is None or which('dada_db') is None, "psrdada not available") class TestFullRun(unittest.TestCase): def setUp(self): """ Set up the pipeline and observation software """ print("Setup") # observation settings files = glob.glob('/tank/data/sky/B1933+16/20200211_dump/dada/*.dada') self.assertTrue(len(files) > 0) output_dir = '/tank/users/oostrum/test_full_run' amber_dir = os.path.join(output_dir, 'amber') amber_conf_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'amber.conf') amber_conf_dir = '/home/arts/.controller/amber_conf' # ensure we start clean rmtree(amber_dir) util.makedirs(amber_dir) # load the encoded parset with open('/tank/data/sky/B1933+16/20200211_dump/parset', 'r') as f: parset = f.read().strip() # nreader: one for each programme reading from the buffer, i.e. 3x AMBER self.settings = {'resolution': 1536 * 12500 * 12, 'nbuf': 5, 'key_i': 'aaaa', 'hdr_size': 40960, 'dada_files': files, 'nreader': 3, 'freq': 1370, 'amber_dir': amber_dir, 'nbatch': len(files) * 10, 'beam': 0, 'amber_config': amber_conf_file, 'amber_conf_dir': amber_conf_dir, 'min_freq': 1219.70092773, 'parset': parset, 'datetimesource': '2019-01-01-00:00:00.FAKE'} # open custom config file self.config_file = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'config.yaml') with open(self.config_file, 'r') as f: self.master_config = yaml.load(f, Loader=yaml.SafeLoader)['darc_master'] # create buffers # stokes I print("Creating buffers") os.system('dada_db -d -k {key_i} 2>/dev/null ; dada_db -k {key_i} -a {hdr_size} ' '-b {resolution} -n {nbuf} -r {nreader}'.format(**self.settings)) # init GPU pipeline thread self.t_amber = threading.Thread(target=self.amber, name='AMBER', daemon=True) # init amber listener thread self.listener = AMBERListener() self.listener.set_source_queue(mp.Queue()) self.listener.set_target_queue(mp.Queue()) self.listener.start() # init amber clustering thread # do not connect to VOEvent server nor LOFAR trigger system self.clustering = AMBERClustering(connect_vo=False, connect_lofar=False) self.clustering.set_source_queue(self.listener.target_queue) self.clustering.set_target_queue(mp.Queue()) self.clustering.start() # init DADA trigger thread self.dadatrigger = DADATrigger() self.dadatrigger.set_source_queue(self.clustering.target_queue) self.dadatrigger.start() # init writer thread self.t_disk_to_db = threading.Thread(target=self.writer, name='disk_to_db', daemon=True) # init output listener thread self.event_queue = mp.Queue() self.t_dbevent = threading.Thread(target=self.dbevent, name='dbevent', daemon=True, args=(self.event_queue,)) def tearDown(self): """ Clean up after pipeline run """ print("teardown") # remove buffers print("Removing buffers") os.system('dada_db -d -k {key_i}'.format(**self.settings)) self.listener.source_queue.put('stop') self.clustering.source_queue.put('stop') self.dadatrigger.source_queue.put('stop') def writer(self): """ Write data from disk into ringbuffer """ print("Starting writer") # connect to the buffer dada_writer = psrdada.Writer() hex_key = int('0x{key_i}'.format(**self.settings), 16) dada_writer.connect(hex_key) # loop over dada files for n, fname in enumerate(self.settings['dada_files']): # open file with open(fname, 'rb') as f: # read the header of the first file if n == 0: # read header, strip empty bytes, convert to string, remove last newline raw_hdr = f.read(self.settings['hdr_size']).rstrip(b'\x00').decode().strip() # convert to dict by splitting on newline, then whitespace hdr = dict([line.split(maxsplit=1) for line in raw_hdr.split('\n') if line]) dada_writer.setHeader(hdr) else: # skip header f.seek(self.settings['hdr_size']) # read data while True: data =
np.fromfile(f, count=self.settings['resolution'], dtype='uint8')
numpy.fromfile
# SPDX-License-Identifier: Apache-2.0 """ tfl_math """ import logging import numpy as np from onnx.onnx_pb import TensorProto from tf2onnx.handler import tfl_op from tf2onnx import utils logger = logging.getLogger(__name__) # pylint: disable=unused-argument,missing-docstring,unused-variable,pointless-string-statement,invalid-name def separate_fused_activation_function(ctx, node): activation_fn = node.attr['fused_activation_function'].s del node.attr['fused_activation_function'] if activation_fn == b'RELU': ctx.insert_new_node_on_output("Relu", node.output[0]) elif activation_fn == b'RELU6': # This is a TF op. We will convert it on the 2nd pass. shape = ctx.get_shape(node.output[0]) dtype = ctx.get_dtype(node.output[0]) new_node = ctx.make_node("Relu6", [node.output[0]], skip_conversion=False, shapes=[shape], dtypes=[dtype]) ctx.insert_node_on_output(new_node, node.output[0]) elif activation_fn == b'TANH': ctx.insert_new_node_on_output("Tanh", node.output[0]) else: # TODO: SIGN_BIT and RELU_N1_TO_1 not supported yet utils.make_sure(activation_fn == b'NONE', "Unsupported fused activation function %s on node %s", activation_fn, node.name) @tfl_op(["TFL_ADD"], tf_op="Add") class TflAdd: @classmethod def to_tf(cls, ctx, node, **kwargs): separate_fused_activation_function(ctx, node) @tfl_op(["TFL_SUB"], tf_op="Sub") class TflSub: @classmethod def to_tf(cls, ctx, node, **kwargs): separate_fused_activation_function(ctx, node) @tfl_op(["TFL_MUL"], tf_op="Mul") class TflMul: @classmethod def to_tf(cls, ctx, node, **kwargs): separate_fused_activation_function(ctx, node) @tfl_op(["TFL_DIV"], tf_op="Div") class TflDiv: @classmethod def to_tf(cls, ctx, node, **kwargs): separate_fused_activation_function(ctx, node) @tfl_op(["TFL_LOGISTIC"], tf_op="Sigmoid") class TflLogistic: @classmethod def to_tf(cls, ctx, node, **kwargs): pass @tfl_op(["TFL_REDUCE_MAX"], tf_op="Max") @tfl_op(["TFL_REDUCE_ANY"], tf_op="Any") @tfl_op(["TFL_REDUCE_PROD"], tf_op="Prod") class TflReduceOp: @classmethod def to_tf(cls, ctx, node, **kwargs): pass @tfl_op(["TFL_LOCAL_RESPONSE_NORMALIZATION"], tf_op="LRN") class TFlLocalResponseNormalizationOp: @classmethod def to_tf(cls, ctx, node, **kwargs): node.attr["depth_radius"] = node.attr["radius"] del node.attr["radius"] @tfl_op(["TFL_RANGE"], tf_op="Range") class TflRangeOp: @classmethod def to_tf(cls, ctx, node, **kwargs): node.set_attr("Tidx", ctx.get_dtype(node.output[0])) @tfl_op(["TFL_QUANTIZE"], onnx_op="QuantizeLinear") class TflQuantizeOp: @classmethod def version_1(cls, ctx, node, dequantize=False, **kwargs): # We could just let the TFL_QUANTIZE fall through as an unconverted op, but they are added programmatically # so that might be confusing. raise ValueError("Opset 10 is required for quantization. Consider using the --dequantize flag or --opset 10.") @classmethod def version_10(cls, ctx, node, **kwargs): scale = node.get_attr_value('scale') zero_point = node.get_attr_value('zero_point') axis = node.get_attr_value('quantized_dimension') np_q_type = utils.map_onnx_to_numpy_type(ctx.get_dtype(node.output[0])) if len(scale) > 1 or len(zero_point) > 1: utils.make_sure(ctx.opset >= 13, "Opset 13 is required for per-axis quantization for node %s", node.name) node.set_attr("axis", axis) scale_node = ctx.make_const(utils.make_name("scale"), np.array(scale[0], dtype=np.float32)) zero_point_node = ctx.make_const(utils.make_name("zero_point"), np.array(zero_point[0], dtype=np_q_type)) ctx.replace_inputs(node, [node.input[0], scale_node.output[0], zero_point_node.output[0]]) del node.attr["scale"] del node.attr["zero_point"] del node.attr["quantized_dimension"] if "min" in node.attr: del node.attr["min"] if "max" in node.attr: del node.attr["max"] @tfl_op(["TFL_DEQUANTIZE"], onnx_op="DequantizeLinear") class TflDequantizeOp: @classmethod def version_1(cls, ctx, node, **kwargs): scale = np.array(node.get_attr_value('scale'), dtype=np.float32) zero_point = np.array(node.get_attr_value('zero_point'), dtype=np.float32) axis = node.get_attr_value('quantized_dimension') in_rank = ctx.get_rank(node.input[0]) def expand_tensor(t): if t.shape == (1,): return t[0] utils.make_sure(in_rank is not None, "Cannot dequantize node %s with unknown input rank", node.name) new_shape = [1] * in_rank new_shape[axis] = t.shape[0] return t.reshape(new_shape) scale = expand_tensor(scale) zero_point = expand_tensor(zero_point) if node.inputs[0].is_const(): x_val = node.inputs[0].get_tensor_value(as_list=False).astype(np.float32) new_val = (x_val - zero_point) * scale dequant_const = ctx.make_const(utils.make_name(node.name), new_val) ctx.replace_all_inputs(node.output[0], dequant_const.output[0]) ctx.remove_node(node.name) else: scale_const = ctx.make_const(utils.make_name(node.name + "_scale"), scale).output[0] zero_point_const = ctx.make_const(utils.make_name(node.name + "_zero_point"), zero_point).output[0] cast_node = ctx.make_node("Cast", [node.input[0]], attr={'to': TensorProto.FLOAT}, op_name_scope=node.name).output[0] sub_node = ctx.make_node("Sub", [cast_node, zero_point_const], op_name_scope=node.name).output[0] mul_node = ctx.make_node("Mul", [sub_node, scale_const], op_name_scope=node.name).output[0] ctx.replace_all_inputs(node.output[0], mul_node) ctx.remove_node(node.name) @classmethod def version_10(cls, ctx, node, dequantize=False, **kwargs): if dequantize: cls.version_1(ctx, node, dequantize=True, **kwargs) return scale = node.get_attr_value('scale') zero_point = node.get_attr_value('zero_point') axis = node.get_attr_value('quantized_dimension') np_q_type = utils.map_onnx_to_numpy_type(ctx.get_dtype(node.input[0])) if len(scale) > 1 or len(zero_point) > 1: utils.make_sure(ctx.opset >= 13, "Opset 13 is required for per-axis quantization for node %s", node.name) node.set_attr("axis", axis) scale_node = ctx.make_const(utils.make_name("scale"), np.array(scale, dtype=np.float32)) zero_point_node = ctx.make_const(utils.make_name("zero_point"), np.array(zero_point, dtype=np_q_type)) else: scale_node = ctx.make_const(utils.make_name("scale"), np.array(scale[0], dtype=np.float32)) zero_point_node = ctx.make_const(utils.make_name("zero_point"), np.array(zero_point[0], dtype=np_q_type)) ctx.replace_inputs(node, [node.input[0], scale_node.output[0], zero_point_node.output[0]]) del node.attr["scale"] del node.attr["zero_point"] del node.attr["quantized_dimension"] if "min" in node.attr: del node.attr["min"] if "max" in node.attr: del node.attr["max"] def dynamic_quantize_inputs(ctx, node): if ctx.opset < 11: logger.warning("Opset 11 is required for asymmetric_quantize_inputs of node %s", node.name) return for i in range(len(node.input)): # Don't quantize inputs that are already quantized if node.inputs[i].type in ["DequantizeLinear", "TFL_DEQUANTIZE"]: continue dyn_quant = ctx.make_node("DynamicQuantizeLinear", [node.input[i]], output_count=3, op_name_scope=node.name) dyn_quant.skip_conversion = True dequant = ctx.make_node("DequantizeLinear", dyn_quant.output, op_name_scope=node.name) dequant.skip_conversion = True ctx.replace_input(node, node.input[i], dequant.output[0], input_index=i) @tfl_op(["TFL_FULLY_CONNECTED"]) class TflFullyConnectedOp: @classmethod def to_tf(cls, ctx, node, **kwargs): separate_fused_activation_function(ctx, node) utils.make_sure(node.attr['weights_format'].s == b'DEFAULT', "Only default weights format supported for fully connected op") utils.make_sure(node.attr['keep_num_dims'].i == 0, "Only keep_num_dims=False supported for fully connected op") if node.attr['asymmetric_quantize_inputs'].i == 1: dynamic_quantize_inputs(ctx, node) transpose_node = ctx.insert_new_node_on_input(node, "Transpose", node.input[1], name=None, input_index=1, perm=[1, 0]) transpose_node.skip_conversion = True node.set_attr("transpose_a", 0) node.set_attr("transpose_b", 0) node.type = "MatMul" if len(node.input) == 3: # FIXME: Add a test for this bias_inp = node.input[2] ctx.replace_inputs(node, node.input[:2]) add_node = ctx.insert_new_node_on_output("Add", node.output[0], inputs=[node.output[0], bias_inp]) add_node.skip_conversion = True del node.attr["weights_format"] del node.attr["keep_num_dims"] del node.attr["asymmetric_quantize_inputs"] @tfl_op(["TFL_SOFTMAX"], tf_op="Softmax") class TFlSoftmaxOp: @classmethod def to_tf(cls, ctx, node, **kwargs): beta = node.get_attr_value("beta") beta_node = ctx.make_const(utils.make_name("beta"),
np.array(beta, dtype=np.float32)
numpy.array
from datetime import datetime import numpy as np from hdmf.backends.hdf5 import H5DataIO from hdmf.build import ObjectMapper from hdmf.data_utils import DataChunkIterator from hdmf.spec import DatasetSpec, RefSpec, DtypeSpec from hdmf.testing import TestCase class TestConvertDtype(TestCase): def test_value_none(self): spec = DatasetSpec('an example dataset', 'int', name='data') self.assertTupleEqual(ObjectMapper.convert_dtype(spec, None), (None, 'int')) spec = DatasetSpec('an example dataset', RefSpec(reftype='object', target_type='int'), name='data') self.assertTupleEqual(ObjectMapper.convert_dtype(spec, None), (None, 'object')) # do full matrix test of given value x and spec y, what does convert_dtype return? def test_convert_to_64bit_spec(self): """ Test that if given any value for a spec with a 64-bit dtype, convert_dtype will convert to the spec type. Also test that if the given value is not the same as the spec, convert_dtype raises a warning. """ spec_type = 'float64' value_types = ['double', 'float64'] self._test_convert_alias(spec_type, value_types) spec_type = 'float64' value_types = ['float', 'float32', 'long', 'int64', 'int', 'int32', 'int16', 'short', 'int8', 'uint64', 'uint', 'uint32', 'uint16', 'uint8', 'bool'] self._test_convert_higher_precision_helper(spec_type, value_types) spec_type = 'int64' value_types = ['long', 'int64'] self._test_convert_alias(spec_type, value_types) spec_type = 'int64' value_types = ['double', 'float64', 'float', 'float32', 'int', 'int32', 'int16', 'short', 'int8', 'uint64', 'uint', 'uint32', 'uint16', 'uint8', 'bool'] self._test_convert_higher_precision_helper(spec_type, value_types) spec_type = 'uint64' value_types = ['uint64'] self._test_convert_alias(spec_type, value_types) spec_type = 'uint64' value_types = ['double', 'float64', 'float', 'float32', 'long', 'int64', 'int', 'int32', 'int16', 'short', 'int8', 'uint', 'uint32', 'uint16', 'uint8', 'bool'] self._test_convert_higher_precision_helper(spec_type, value_types) def test_convert_to_float32_spec(self): """Test conversion of various types to float32. If given a value with precision > float32 and float base type, convert_dtype will keep the higher precision. If given a value with 64-bit precision and different base type, convert_dtype will convert to float64. If given a value that is float32, convert_dtype will convert to float32. If given a value with precision <= float32, convert_dtype will convert to float32 and raise a warning. """ spec_type = 'float32' value_types = ['double', 'float64'] self._test_keep_higher_precision_helper(spec_type, value_types) value_types = ['long', 'int64', 'uint64'] expected_type = 'float64' self._test_change_basetype_helper(spec_type, value_types, expected_type) value_types = ['float', 'float32'] self._test_convert_alias(spec_type, value_types) value_types = ['int', 'int32', 'int16', 'short', 'int8', 'uint', 'uint32', 'uint16', 'uint8', 'bool'] self._test_convert_higher_precision_helper(spec_type, value_types) def test_convert_to_int32_spec(self): """Test conversion of various types to int32. If given a value with precision > int32 and int base type, convert_dtype will keep the higher precision. If given a value with 64-bit precision and different base type, convert_dtype will convert to int64. If given a value that is int32, convert_dtype will convert to int32. If given a value with precision <= int32, convert_dtype will convert to int32 and raise a warning. """ spec_type = 'int32' value_types = ['int64', 'long'] self._test_keep_higher_precision_helper(spec_type, value_types) value_types = ['double', 'float64', 'uint64'] expected_type = 'int64' self._test_change_basetype_helper(spec_type, value_types, expected_type) value_types = ['int', 'int32'] self._test_convert_alias(spec_type, value_types) value_types = ['float', 'float32', 'int16', 'short', 'int8', 'uint', 'uint32', 'uint16', 'uint8', 'bool'] self._test_convert_higher_precision_helper(spec_type, value_types) def test_convert_to_uint32_spec(self): """Test conversion of various types to uint32. If given a value with precision > uint32 and uint base type, convert_dtype will keep the higher precision. If given a value with 64-bit precision and different base type, convert_dtype will convert to uint64. If given a value that is uint32, convert_dtype will convert to uint32. If given a value with precision <= uint32, convert_dtype will convert to uint32 and raise a warning. """ spec_type = 'uint32' value_types = ['uint64'] self._test_keep_higher_precision_helper(spec_type, value_types) value_types = ['double', 'float64', 'long', 'int64'] expected_type = 'uint64' self._test_change_basetype_helper(spec_type, value_types, expected_type) value_types = ['uint', 'uint32'] self._test_convert_alias(spec_type, value_types) value_types = ['float', 'float32', 'int', 'int32', 'int16', 'short', 'int8', 'uint16', 'uint8', 'bool'] self._test_convert_higher_precision_helper(spec_type, value_types) def test_convert_to_int16_spec(self): """Test conversion of various types to int16. If given a value with precision > int16 and int base type, convert_dtype will keep the higher precision. If given a value with 64-bit precision and different base type, convert_dtype will convert to int64. If given a value with 32-bit precision and different base type, convert_dtype will convert to int32. If given a value that is int16, convert_dtype will convert to int16. If given a value with precision <= int16, convert_dtype will convert to int16 and raise a warning. """ spec_type = 'int16' value_types = ['long', 'int64', 'int', 'int32'] self._test_keep_higher_precision_helper(spec_type, value_types) value_types = ['double', 'float64', 'uint64'] expected_type = 'int64' self._test_change_basetype_helper(spec_type, value_types, expected_type) value_types = ['float', 'float32', 'uint', 'uint32'] expected_type = 'int32' self._test_change_basetype_helper(spec_type, value_types, expected_type) value_types = ['int16', 'short'] self._test_convert_alias(spec_type, value_types) value_types = ['int8', 'uint16', 'uint8', 'bool'] self._test_convert_higher_precision_helper(spec_type, value_types) def test_convert_to_uint16_spec(self): """Test conversion of various types to uint16. If given a value with precision > uint16 and uint base type, convert_dtype will keep the higher precision. If given a value with 64-bit precision and different base type, convert_dtype will convert to uint64. If given a value with 32-bit precision and different base type, convert_dtype will convert to uint32. If given a value that is uint16, convert_dtype will convert to uint16. If given a value with precision <= uint16, convert_dtype will convert to uint16 and raise a warning. """ spec_type = 'uint16' value_types = ['uint64', 'uint', 'uint32'] self._test_keep_higher_precision_helper(spec_type, value_types) value_types = ['double', 'float64', 'long', 'int64'] expected_type = 'uint64' self._test_change_basetype_helper(spec_type, value_types, expected_type) value_types = ['float', 'float32', 'int', 'int32'] expected_type = 'uint32' self._test_change_basetype_helper(spec_type, value_types, expected_type) value_types = ['uint16'] self._test_convert_alias(spec_type, value_types) value_types = ['int16', 'short', 'int8', 'uint8', 'bool'] self._test_convert_higher_precision_helper(spec_type, value_types) def test_convert_to_bool_spec(self): """Test conversion of various types to bool. If given a value with type bool, convert_dtype will convert to bool. If given a value with type int8/uint8, convert_dtype will convert to bool and raise a warning. Otherwise, convert_dtype will raise an error. """ spec_type = 'bool' value_types = ['bool'] self._test_convert_alias(spec_type, value_types) value_types = ['uint8', 'int8'] self._test_convert_higher_precision_helper(spec_type, value_types) value_types = ['double', 'float64', 'float', 'float32', 'long', 'int64', 'int', 'int32', 'int16', 'short', 'uint64', 'uint', 'uint32', 'uint16'] self._test_convert_mismatch_helper(spec_type, value_types) def _get_type(self, type_str): return ObjectMapper._ObjectMapper__dtypes[type_str] # apply ObjectMapper mapping string to dtype def _test_convert_alias(self, spec_type, value_types): data = 1 spec = DatasetSpec('an example dataset', spec_type, name='data') match = (self._get_type(spec_type)(data), self._get_type(spec_type)) for dtype in value_types: value = self._get_type(dtype)(data) # convert data to given dtype with self.subTest(dtype=dtype): ret = ObjectMapper.convert_dtype(spec, value) self.assertTupleEqual(ret, match) self.assertIs(ret[0].dtype.type, match[1]) def _test_convert_higher_precision_helper(self, spec_type, value_types): data = 1 spec = DatasetSpec('an example dataset', spec_type, name='data') match = (self._get_type(spec_type)(data), self._get_type(spec_type)) for dtype in value_types: value = self._get_type(dtype)(data) # convert data to given dtype with self.subTest(dtype=dtype): s = np.dtype(self._get_type(spec_type)) g = np.dtype(self._get_type(dtype)) msg = ("Spec 'data': Value with data type %s is being converted to data type %s as specified." % (g.name, s.name)) with self.assertWarnsWith(UserWarning, msg): ret = ObjectMapper.convert_dtype(spec, value) self.assertTupleEqual(ret, match) self.assertIs(ret[0].dtype.type, match[1]) def _test_keep_higher_precision_helper(self, spec_type, value_types): data = 1 spec = DatasetSpec('an example dataset', spec_type, name='data') for dtype in value_types: value = self._get_type(dtype)(data) match = (value, self._get_type(dtype)) with self.subTest(dtype=dtype): ret = ObjectMapper.convert_dtype(spec, value) self.assertTupleEqual(ret, match) self.assertIs(ret[0].dtype.type, match[1]) def _test_change_basetype_helper(self, spec_type, value_types, exp_type): data = 1 spec = DatasetSpec('an example dataset', spec_type, name='data') match = (self._get_type(exp_type)(data), self._get_type(exp_type)) for dtype in value_types: value = self._get_type(dtype)(data) # convert data to given dtype with self.subTest(dtype=dtype): s = np.dtype(self._get_type(spec_type)) e = np.dtype(self._get_type(exp_type)) g = np.dtype(self._get_type(dtype)) msg = ("Spec 'data': Value with data type %s is being converted to data type %s " "(min specification: %s)." % (g.name, e.name, s.name)) with self.assertWarnsWith(UserWarning, msg): ret = ObjectMapper.convert_dtype(spec, value) self.assertTupleEqual(ret, match) self.assertIs(ret[0].dtype.type, match[1]) def _test_convert_mismatch_helper(self, spec_type, value_types): data = 1 spec = DatasetSpec('an example dataset', spec_type, name='data') for dtype in value_types: value = self._get_type(dtype)(data) # convert data to given dtype with self.subTest(dtype=dtype): s = np.dtype(self._get_type(spec_type)) g = np.dtype(self._get_type(dtype)) msg = "expected %s, received %s - must supply %s" % (s.name, g.name, s.name) with self.assertRaisesWith(ValueError, msg): ObjectMapper.convert_dtype(spec, value) def test_dci_input(self): spec = DatasetSpec('an example dataset', 'int64', name='data') value = DataChunkIterator(np.array([1, 2, 3], dtype=np.int32)) msg = "Spec 'data': Value with data type int32 is being converted to data type int64 as specified." with self.assertWarnsWith(UserWarning, msg): ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) # no conversion self.assertIs(ret, value) self.assertEqual(ret_dtype, np.int64) spec = DatasetSpec('an example dataset', 'int16', name='data') value = DataChunkIterator(np.array([1, 2, 3], dtype=np.int32)) ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) # no conversion self.assertIs(ret, value) self.assertEqual(ret_dtype, np.int32) # increase precision def test_text_spec(self): text_spec_types = ['text', 'utf', 'utf8', 'utf-8'] for spec_type in text_spec_types: with self.subTest(spec_type=spec_type): spec = DatasetSpec('an example dataset', spec_type, name='data') value = 'a' ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) self.assertEqual(ret, value) self.assertIs(type(ret), str) self.assertEqual(ret_dtype, 'utf8') value = b'a' ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) self.assertEqual(ret, 'a') self.assertIs(type(ret), str) self.assertEqual(ret_dtype, 'utf8') value = ['a', 'b'] ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) self.assertListEqual(ret, value) self.assertIs(type(ret[0]), str) self.assertEqual(ret_dtype, 'utf8') value = np.array(['a', 'b']) ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) np.testing.assert_array_equal(ret, value) self.assertEqual(ret_dtype, 'utf8') value = np.array(['a', 'b'], dtype='S1') ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) np.testing.assert_array_equal(ret, np.array(['a', 'b'], dtype='U1')) self.assertEqual(ret_dtype, 'utf8') value = [] ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) self.assertListEqual(ret, value) self.assertEqual(ret_dtype, 'utf8') value = 1 msg = "Expected unicode or ascii string, got <class 'int'>" with self.assertRaisesWith(ValueError, msg): ObjectMapper.convert_dtype(spec, value) value = DataChunkIterator(np.array(['a', 'b'])) ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) # no conversion self.assertIs(ret, value) self.assertEqual(ret_dtype, 'utf8') value = DataChunkIterator(np.array(['a', 'b'], dtype='S1')) ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) # no conversion self.assertIs(ret, value) self.assertEqual(ret_dtype, 'utf8') def test_ascii_spec(self): ascii_spec_types = ['ascii', 'bytes'] for spec_type in ascii_spec_types: with self.subTest(spec_type=spec_type): spec = DatasetSpec('an example dataset', spec_type, name='data') value = 'a' ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) self.assertEqual(ret, b'a') self.assertIs(type(ret), bytes) self.assertEqual(ret_dtype, 'ascii') value = b'a' ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) self.assertEqual(ret, b'a') self.assertIs(type(ret), bytes) self.assertEqual(ret_dtype, 'ascii') value = ['a', 'b'] ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) self.assertListEqual(ret, [b'a', b'b']) self.assertIs(type(ret[0]), bytes) self.assertEqual(ret_dtype, 'ascii') value = np.array(['a', 'b']) ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) np.testing.assert_array_equal(ret, np.array(['a', 'b'], dtype='S1')) self.assertEqual(ret_dtype, 'ascii') value = np.array(['a', 'b'], dtype='S1') ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) np.testing.assert_array_equal(ret, value) self.assertEqual(ret_dtype, 'ascii') value = [] ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) self.assertListEqual(ret, value) self.assertEqual(ret_dtype, 'ascii') value = 1 msg = "Expected unicode or ascii string, got <class 'int'>" with self.assertRaisesWith(ValueError, msg): ObjectMapper.convert_dtype(spec, value) value = DataChunkIterator(np.array(['a', 'b'])) ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) # no conversion self.assertIs(ret, value) self.assertEqual(ret_dtype, 'ascii') value = DataChunkIterator(np.array(['a', 'b'], dtype='S1')) ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) # no conversion self.assertIs(ret, value) self.assertEqual(ret_dtype, 'ascii') def test_no_spec(self): spec_type = None spec = DatasetSpec('an example dataset', spec_type, name='data') value = [1, 2, 3] ret, ret_dtype = ObjectMapper.convert_dtype(spec, value) self.assertListEqual(ret, value) self.assertIs(type(ret[0]), int) self.assertEqual(ret_dtype, int) value =
np.uint64(4)
numpy.uint64
# time2dist.py - DeerAnalysis distance axis constructor # ------------------------------------------------------------------------ # This file is a part of DeerLab. License is MIT (see LICENSE.md). # Copyright(c) 2019-2021: <NAME>, <NAME> and other contributors. import numpy as np from deerlab.utils import isempty def time2dist(t, M=[]): r""" DeerAnalysis conversion from time-axis to distance-axis .. warning:: This is a legacy function. Its use is not recommended for routine or accurate data analysis. Parameters ---------- t : array_like Time axis, in microseconds. M : int scalar Length of output distance axis, by default equal length as time axis. Returns ------- r : ndarray Distance axis, in nanometers. Notes ----- The minimal and maximal distances (rmin,rmax) are determined by the empirical approximations derived by <NAME> as implemented in DeerAnalysis. These empirical equation approximate the minimal and maximal detectable distances given a certain time step :math:`\Delta t` and trace length :math:`t_\text{max}`. .. math:: r_\text{min} = 4\left( \frac{4\Delta t \nu_0}{0.85} \right)^{1/3} .. math:: r_\text{max} = 6\left( \frac{t_\text{max}}{2} \right)^{1/3} where :math:`\nu_0` = 52.04 MHz is the dipolar frequency of between two nitroxide electron spins separated by 1 nm. """ t = np.atleast_1d(t) if isempty(M): M = len(t) t = np.abs(t) dt = np.mean(np.abs(np.diff(t))) tmax =
np.max(t)
numpy.max
""" QTNM field module. Provides concrete implementations of QtnmBaseField. Implementations: ---------------- BiotSavart: General purpose numerical integration of current elements. CoilField: Magnetic field due to a circular loop of wire. BathTub: Magnetic field based on Project8 bathtub trap. Solenoid: Approximate magnetic field due to solenoid. ExternalField: Reads and interpolates field from external file. """ import numpy as np from scipy.constants import mu_0 as mu0 from scipy.special import ellipk, ellipe from scipy.spatial import KDTree from qtnm_base import QtnmBaseField class BiotSavart(QtnmBaseField): """ Generic QTNM field class which numerically integrates the Biot-Savart law to produce a magnetic field. """ def __init__(self, x, y, z, current=1.0, mu=mu0): """ Parameters ---------- x: x positions of current elements (1D) y: y positions of current elements (1D) z: z positions of current elements (1D) current: Current (Default 1.0). mu: Magnetic permeability (Default mu0) """ self.current = current self.mu = mu # Construct positions of current elements self.xc = 0.5 * (x[1:] + x[:-1]) self.yc = 0.5 * (y[1:] + y[:-1]) self.zc = 0.5 * (z[1:] + z[:-1]) # Wire elements self.dlx = x[1:] - x[:-1] self.dly = y[1:] - y[:-1] self.dlz = z[1:] - z[:-1] def evaluate_field_at_point(self, x, y, z): # Displacement vectors r_x = x - self.xc r_y = y - self.yc r_z = z - self.zc rmag = np.sqrt(r_x**2 + r_y**2 + r_z**2) # Cross product components. Better implementations # (e.g. using built in cross product) exist lrx = self.dly * r_z - self.dlz * r_y lry = self.dlz * r_x - self.dlx * r_z lrz = self.dlx * r_y - self.dly * r_x b_x = np.sum(lrx / rmag**3) b_y = np.sum(lry / rmag**3) b_z = np.sum(lrz / rmag**3) b_x *= self.current * self.mu / 4.0 / np.pi b_y *= self.current * self.mu / 4.0 / np.pi b_z *= self.current * self.mu / 4.0 / np.pi return b_x, b_y, b_z class CoilField(QtnmBaseField): """ Interface to magnetic field generated by a circular loop of wire in xy plane. """ def __init__(self, radius=0.005, current=40, Z=0.0, mu=mu0): """ Parameters ---------- radius: Radius of coil (Default 0.005) current: Current (Default 1.0). Z: Vertical position of coil (Default 1.0). mu: Magnetic permeability (Default mu0) """ self.current = current self.mu = mu self.z = Z self.radius = radius def __central_field(self): return self.current * self.mu / self.radius / 2.0 # On-Axis field def __on_axis_field(self, z): return (self.mu * self.current * self.radius**2 / 2.0 / (self.radius**2 + (z - self.z)**2)**(1.5)) def evaluate_field_at_point(self, x, y, z): rad = np.sqrt(x**2 + y**2) # If on-axis if rad / self.radius < 1e-10: return 0.0, 0.0, self.__on_axis_field(z) # z relative to position of coil z_rel = z - self.z b_central = self.__central_field() rad_norm = rad / self.radius z_norm = z_rel / self.radius alpha = (1.0 + rad_norm)**2 + z_norm**2 root_alpha_pi = np.sqrt(alpha) * np.pi beta = 4 * rad_norm / alpha int_e = ellipe(beta) int_k = ellipk(beta) gamma = alpha - 4 * rad_norm b_r = b_central * (int_e * ((1.0 + rad_norm**2 + z_norm**2) / gamma) - int_k) / root_alpha_pi * (z_rel / rad) b_z = b_central * (int_e * ((1.0 - rad_norm**2 - z_norm**2) / gamma) + int_k) / root_alpha_pi return b_r * x / rad, b_r * y / rad, b_z class BathTubField(QtnmBaseField): """ Interface to magnetic field based on the Project 8 "bath tub" set-up. Essentially a superposition of a magnetic bottle formed by two current loops, and a background magnetic field. """ def __init__(self, radius=0.005, current=40, Z1=-1, Z2=1, background=np.zeros(3)): """ Parameters ---------- radius: Radius of current loops (Default 0.005) current: Current (Default 1.0). Z1: Vertical position of 1st coil (Default -1). Z2: Vertical position of 2nd coil (Default 1). background: Background magnetic field (Default 0). """ self.coil1 = CoilField(radius=radius, current=current, Z=Z1) self.coil2 = CoilField(radius=radius, current=current, Z=Z2) self.background = background def evaluate_field_at_point(self, x, y, z): b_x1, b_y1, b_z1 = self.coil1.evaluate_field_at_point(x, y, z) b_x2, b_y2, b_z2 = self.coil2.evaluate_field_at_point(x, y, z) b_x = b_x1 + b_x2 b_y = b_y1 + b_y2 b_z = b_z1 + b_z2 return np.array([b_x, b_y, b_z]) + self.background class SolenoidField(QtnmBaseField): """ Interface to approximate solenoid field. Solenoid is approximated by combining multiple instances of CoilField. """ def __init__(self, radius=0.005, current=40, Zmin=-1, Zmax=1, Ncoils=11): """ Parameters ---------- radius: Radius of current loops (Default 0.005) current: Current (Default 40). Zmin: Vertical position of 1st coil (Default -1). Zmax: Vertical position of last coil (Default 1). Ncoils: Number of coils to use (Default 11). """ self.coils = [] for z in np.linspace(Zmin, Zmax, Ncoils): self.coils.append(CoilField(radius=radius, current=current, Z=z)) def evaluate_field_at_point(self, x, y, z): field = np.zeros(3) for coil in self.coils: field = field + coil.evaluate_field_at_point(x, y, z) return field class ExternalField(QtnmBaseField): """ Reads the field in from an external (plain text) file Assumes the file is formatted as (x, y, z, Bx, By, Bz) with a variable number of header lines before the data """ def __init__(self, fname, nheader=8, interp_pts=11): """ Parameters ---------- fname: Name of file to read data from nheader: Number of lines to skip at start of file (Default 6) interp_pts: Number of points to use for interpolation (Default 11) """ try: data = np.loadtxt(fname, skiprows=nheader) positions = data[:,:3] self.bx = data[:,3] self.by = data[:,4] self.bz = data[:,5] except IOError: print('Requested file: %s could not be opened' % fname) # Set up KD Tree self.tree = KDTree(positions) # Number of points for IDW self.ipts = interp_pts def evaluate_field_at_point(self, x, y, z): # Use nearest neighbour for now distances, indices = self.tree.query([x, y, z], k=self.ipts) # If we got lucky if distances[0] < 1e-10: return self.bx[indices[0]], self.by[indices[0]], self.bz[indices[0]] # Otherwise weights = 1.0 / distances weights_tot = np.sum(weights) bx =
np.dot(self.bx[indices], weights)
numpy.dot
#!/usr/bin/env python3 # Copyright (c) 2017 Computer Vision Center (CVC) at the Universitat Autonoma de # Barcelona (UAB). # # This work is licensed under the terms of the MIT license. # For a copy, see <https://opensource.org/licenses/MIT>. # Keyboard controlling for CARLA. Please refer to client_example.py for a simpler # and more documented example. """ Welcome to CARLA manual control. Use ARROWS or WASD keys for control. W : throttle S : brake AD : steer Q : toggle reverse Space : hand-brake P : toggle autopilot R : restart level STARTING in a moment... """ from __future__ import print_function import argparse import logging import random import time try: import pygame from pygame.locals import K_DOWN from pygame.locals import K_LEFT from pygame.locals import K_RIGHT from pygame.locals import K_SPACE from pygame.locals import K_UP from pygame.locals import K_a from pygame.locals import K_d from pygame.locals import K_p from pygame.locals import K_q from pygame.locals import K_r from pygame.locals import K_s from pygame.locals import K_w except ImportError: raise RuntimeError('cannot import pygame, make sure pygame package is installed') try: import numpy as np except ImportError: raise RuntimeError('cannot import numpy, make sure numpy package is installed') from carla import image_converter from carla import sensor from carla.client import make_carla_client, VehicleControl from carla.planner.map import CarlaMap from carla.settings import CarlaSettings from carla.tcp import TCPConnectionError from carla.util import print_over_same_line WINDOW_WIDTH = 800 WINDOW_HEIGHT = 600 MINI_WINDOW_WIDTH = 320 MINI_WINDOW_HEIGHT = 180 def make_carla_settings(args): """Make a CarlaSettings object with the settings we need.""" settings = CarlaSettings() settings.set( SynchronousMode=False, SendNonPlayerAgentsInfo=True, NumberOfVehicles=15, NumberOfPedestrians=30, WeatherId=random.choice([1, 3, 7, 8, 14]), QualityLevel=args.quality_level) settings.randomize_seeds() camera0 = sensor.Camera('CameraRGB') camera0.set_image_size(WINDOW_WIDTH, WINDOW_HEIGHT) camera0.set_position(2.0, 0.0, 1.4) camera0.set_rotation(0.0, 0.0, 0.0) settings.add_sensor(camera0) camera1 = sensor.Camera('CameraDepth', PostProcessing='Depth') camera1.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT) camera1.set_position(2.0, 0.0, 1.4) camera1.set_rotation(0.0, 0.0, 0.0) settings.add_sensor(camera1) camera2 = sensor.Camera('CameraSemSeg', PostProcessing='SemanticSegmentation') camera2.set_image_size(MINI_WINDOW_WIDTH, MINI_WINDOW_HEIGHT) camera2.set_position(2.0, 0.0, 1.4) camera2.set_rotation(0.0, 0.0, 0.0) settings.add_sensor(camera2) if args.lidar: lidar = sensor.Lidar('Lidar32') lidar.set_position(0, 0, 2.5) lidar.set_rotation(0, 0, 0) lidar.set( Channels=32, Range=50, PointsPerSecond=100000, RotationFrequency=10, UpperFovLimit=10, LowerFovLimit=-30) settings.add_sensor(lidar) return settings class Timer(object): def __init__(self): self.step = 0 self._lap_step = 0 self._lap_time = time.time() def tick(self): self.step += 1 def lap(self): self._lap_step = self.step self._lap_time = time.time() def ticks_per_second(self): return float(self.step - self._lap_step) / self.elapsed_seconds_since_lap() def elapsed_seconds_since_lap(self): return time.time() - self._lap_time class CarlaGame(object): def __init__(self, carla_client, args): self.client = carla_client self._carla_settings = make_carla_settings(args) self._timer = None self._display = None self._main_image = None self._mini_view_image1 = None self._mini_view_image2 = None self._enable_autopilot = args.autopilot self._lidar_measurement = None self._map_view = None self._is_on_reverse = False self._city_name = args.map_name self._map = CarlaMap(self._city_name, 0.1643, 50.0) if self._city_name is not None else None self._map_shape = self._map.map_image.shape if self._city_name is not None else None self._map_view = self._map.get_map(WINDOW_HEIGHT) if self._city_name is not None else None self._position = None self._agent_positions = None def execute(self): """Launch the PyGame.""" pygame.init() self._initialize_game() try: while True: for event in pygame.event.get(): if event.type == pygame.QUIT: return self._on_loop() self._on_render() finally: pygame.quit() def _initialize_game(self): if self._city_name is not None: self._display = pygame.display.set_mode( (WINDOW_WIDTH + int((WINDOW_HEIGHT/float(self._map.map_image.shape[0]))*self._map.map_image.shape[1]), WINDOW_HEIGHT), pygame.HWSURFACE | pygame.DOUBLEBUF) else: self._display = pygame.display.set_mode( (WINDOW_WIDTH, WINDOW_HEIGHT), pygame.HWSURFACE | pygame.DOUBLEBUF) logging.debug('pygame started') self._on_new_episode() def _on_new_episode(self): self._carla_settings.randomize_seeds() self._carla_settings.randomize_weather() scene = self.client.load_settings(self._carla_settings) number_of_player_starts = len(scene.player_start_spots) player_start =
np.random.randint(number_of_player_starts)
numpy.random.randint
import numpy as np import sys import os import asdf import matplotlib.pyplot as plt from numpy import log10 from scipy.integrate import simps from astropy.io import fits from matplotlib.ticker import FormatStrFormatter from .function import * from .function_class import Func from .basic_func import Basic import corner col = ['violet', 'indigo', 'b', 'lightblue', 'lightgreen', 'g', 'orange', 'coral', 'r', 'darkred']#, 'k'] #col = ['darkred', 'r', 'coral','orange','g','lightgreen', 'lightblue', 'b','indigo','violet','k'] def plot_sed(MB, flim=0.01, fil_path='./', scale=1e-19, f_chind=True, figpdf=False, save_sed=True, inputs=False, \ mmax=300, dust_model=0, DIR_TMP='./templates/', f_label=False, f_bbbox=False, verbose=False, f_silence=True, \ f_fill=False, f_fancyplot=False, f_Alog=True, dpi=300, f_plot_filter=True): ''' Parameters ---------- MB.SNlim : float SN limit to show flux or up lim in SED. f_chind : bool If include non-detection in chi2 calculation, using Sawicki12. mmax : int Number of mcmc realization for plot. Not for calculation. f_fancy : bool plot each SED component. f_fill: bool if True, and so is f_fancy, fill each SED component. Returns ------- plots ''' from mpl_toolkits.axes_grid1.inset_locator import zoomed_inset_axes from mpl_toolkits.axes_grid1.inset_locator import mark_inset from mpl_toolkits.axes_grid1.inset_locator import inset_axes from scipy.optimize import curve_fit from scipy import asarray as ar,exp import matplotlib import scipy.integrate as integrate import scipy.special as special import os.path from astropy.io import ascii import time if f_silence: import matplotlib matplotlib.use("Agg") def gaus(x,a,x0,sigma): return a*exp(-(x-x0)**2/(2*sigma**2)) lcb = '#4682b4' # line color, blue fnc = MB.fnc bfnc = MB.bfnc ID = MB.ID Z = MB.Zall age = MB.age nage = MB.nage tau0 = MB.tau0 #col = ['violet', 'indigo', 'b', 'lightblue', 'lightgreen', 'g', 'orange', 'coral', 'r', 'darkred']#, 'k'] NUM_COLORS = len(age) cm = plt.get_cmap('gist_rainbow') col = [cm(1 - 1.*i/NUM_COLORS) for i in range(NUM_COLORS)] nstep_plot = 1 if MB.f_bpass: nstep_plot = 30 SNlim = MB.SNlim ################ # RF colors. home = os.path.expanduser('~') c = MB.c chimax = 1. m0set = MB.m0set Mpc_cm = MB.Mpc_cm d = MB.d * scale ################## # Fitting Results ################## DIR_FILT = MB.DIR_FILT SFILT = MB.filts try: f_err = MB.ferr except: f_err = 0 ########################### # Open result file ########################### file = MB.DIR_OUT + 'summary_' + ID + '.fits' hdul = fits.open(file) ndim_eff = hdul[0].header['NDIM'] # Redshift MC zp16 = hdul[1].data['zmc'][0] zp50 = hdul[1].data['zmc'][1] zp84 = hdul[1].data['zmc'][2] # Stellar mass MC M16 = hdul[1].data['ms'][0] M50 = hdul[1].data['ms'][1] M84 = hdul[1].data['ms'][2] if verbose: print('Total stellar mass is %.2e'%(M50)) # Amplitude MC A50 = np.zeros(len(age), dtype='float') A16 = np.zeros(len(age), dtype='float') A84 = np.zeros(len(age), dtype='float') for aa in range(len(age)): A16[aa] = 10**hdul[1].data['A'+str(aa)][0] A50[aa] = 10**hdul[1].data['A'+str(aa)][1] A84[aa] = 10**hdul[1].data['A'+str(aa)][2] Asum = np.sum(A50) aa = 0 Av16 = hdul[1].data['Av'+str(aa)][0] Av50 = hdul[1].data['Av'+str(aa)][1] Av84 = hdul[1].data['Av'+str(aa)][2] AAv = [Av50] Z50 = np.zeros(len(age), dtype='float') Z16 = np.zeros(len(age), dtype='float') Z84 = np.zeros(len(age), dtype='float') NZbest = np.zeros(len(age), dtype='int') for aa in range(len(age)): Z16[aa] = hdul[1].data['Z'+str(aa)][0] Z50[aa] = hdul[1].data['Z'+str(aa)][1] Z84[aa] = hdul[1].data['Z'+str(aa)][2] NZbest[aa]= bfnc.Z2NZ(Z50[aa]) # Light weighted Z. ZZ50 = np.sum(Z50*A50)/np.sum(A50) # FIR Dust; try: MD16 = hdul[1].data['MDUST'][0] MD50 = hdul[1].data['MDUST'][1] MD84 = hdul[1].data['MDUST'][2] TD16 = hdul[1].data['TDUST'][0] TD50 = hdul[1].data['TDUST'][1] TD84 = hdul[1].data['TDUST'][2] nTD16 = hdul[1].data['nTDUST'][0] nTD50 = hdul[1].data['nTDUST'][1] nTD84 = hdul[1].data['nTDUST'][2] DFILT = inputs['FIR_FILTER'] # filter band string. DFILT = [x.strip() for x in DFILT.split(',')] DFWFILT = fil_fwhm(DFILT, DIR_FILT) if verbose: print('Total dust mass is %.2e'%(MD50)) f_dust = True except: f_dust = False chi = hdul[1].data['chi'][0] chin = hdul[1].data['chi'][1] fitc = chin Cz0 = hdul[0].header['Cz0'] Cz1 = hdul[0].header['Cz1'] zbes = zp50 zscl = (1.+zbes) ############################### # Data taken from ############################### if MB.f_dust: MB.dict = MB.read_data(Cz0, Cz1, zbes, add_fir=True) else: MB.dict = MB.read_data(Cz0, Cz1, zbes) NR = MB.dict['NR'] x = MB.dict['x'] fy = MB.dict['fy'] ey = MB.dict['ey'] con0 = (NR<1000) xg0 = x[con0] fg0 = fy[con0] eg0 = ey[con0] con1 = (NR>=1000) & (NR<10000) xg1 = x[con1] fg1 = fy[con1] eg1 = ey[con1] if len(xg0)>0 or len(xg1)>0: f_grsm = True else: f_grsm = False wht = fy * 0 con_wht = (ey>0) wht[con_wht] = 1./np.square(ey[con_wht]) # BB data points; NRbb = MB.dict['NRbb'] xbb = MB.dict['xbb'] fybb = MB.dict['fybb'] eybb = MB.dict['eybb'] exbb = MB.dict['exbb'] snbb = fybb/eybb ###################### # Weight by line ###################### wh0 = 1./np.square(eg0) LW0 = [] model = fg0 wht3 = check_line_man(fy, x, wht, fy, zbes, LW0) ###################### # Mass-to-Light ratio. ###################### ms = np.zeros(len(age), dtype='float') af = MB.af sedpar = af['ML'] for aa in range(len(age)): ms[aa] = sedpar['ML_' + str(int(NZbest[aa]))][aa] try: isochrone = af['isochrone'] LIBRARY = af['library'] except: isochrone = '' LIBRARY = '' ############# # Plot. ############# # Set the inset. if f_grsm or f_dust: fig = plt.figure(figsize=(7.,3.2)) fig.subplots_adjust(top=0.98, bottom=0.16, left=0.1, right=0.99, hspace=0.15, wspace=0.25) ax1 = fig.add_subplot(111) xsize = 0.29 ysize = 0.25 if f_grsm: ax2t = ax1.inset_axes((1-xsize-0.01,1-ysize-0.01,xsize,ysize)) if f_dust: ax3t = ax1.inset_axes((0.7,.35,.28,.25)) else: fig = plt.figure(figsize=(5.5,2.2)) fig.subplots_adjust(top=0.98, bottom=0.16, left=0.1, right=0.99, hspace=0.15, wspace=0.25) ax1 = fig.add_subplot(111) ####################################### # D.Kelson like Box for BB photometry ####################################### col_dat = 'r' if f_bbbox: for ii in range(len(xbb)): if eybb[ii]<100 and fybb[ii]/eybb[ii]>1: xx = [xbb[ii]-exbb[ii],xbb[ii]-exbb[ii]] yy = [(fybb[ii]-eybb[ii])*c/np.square(xbb[ii])/d, (fybb[ii]+eybb[ii])*c/np.square(xbb[ii])/d] ax1.plot(xx, yy, color='k', linestyle='-', linewidth=0.5, zorder=3) xx = [xbb[ii]+exbb[ii],xbb[ii]+exbb[ii]] yy = [(fybb[ii]-eybb[ii])*c/np.square(xbb[ii])/d, (fybb[ii]+eybb[ii])*c/np.square(xbb[ii])/d] ax1.plot(xx, yy, color='k', linestyle='-', linewidth=0.5, zorder=3) xx = [xbb[ii]-exbb[ii],xbb[ii]+exbb[ii]] yy = [(fybb[ii]-eybb[ii])*c/np.square(xbb[ii])/d, (fybb[ii]-eybb[ii])*c/np.square(xbb[ii])/d] ax1.plot(xx, yy, color='k', linestyle='-', linewidth=0.5, zorder=3) xx = [xbb[ii]-exbb[ii],xbb[ii]+exbb[ii]] yy = [(fybb[ii]+eybb[ii])*c/np.square(xbb[ii])/d, (fybb[ii]+eybb[ii])*c/np.square(xbb[ii])/d] ax1.plot(xx, yy, color='k', linestyle='-', linewidth=0.5, zorder=3) else: # Normal BB plot; # Detection; conbb_hs = (fybb/eybb>SNlim) ax1.errorbar(xbb[conbb_hs], fybb[conbb_hs] * c / np.square(xbb[conbb_hs]) / d, \ yerr=eybb[conbb_hs]*c/np.square(xbb[conbb_hs])/d, color='k', linestyle='', linewidth=0.5, zorder=4) ax1.plot(xbb[conbb_hs], fybb[conbb_hs] * c / np.square(xbb[conbb_hs]) / d, \ marker='.', color=col_dat, linestyle='', linewidth=0, zorder=4, ms=8)#, label='Obs.(BB)') try: # For any data removed fron fit (i.e. IRAC excess): data_ex = ascii.read(DIR_TMP + 'bb_obs_' + ID + '_removed.cat') NR_ex = data_ex['col1'] except: NR_ex = [] # Upperlim; sigma = 1.0 leng = np.max(fybb[conbb_hs] * c / np.square(xbb[conbb_hs]) / d) * 0.05 #0.2 conebb_ls = (fybb/eybb<=SNlim) & (eybb>0) for ii in range(len(xbb)): if NRbb[ii] in NR_ex[:]: conebb_ls[ii] = False ax1.errorbar(xbb[conebb_ls], eybb[conebb_ls] * c / np.square(xbb[conebb_ls]) / d * sigma, yerr=leng,\ uplims=eybb[conebb_ls] * c / np.square(xbb[conebb_ls]) / d * sigma, linestyle='', color=col_dat, marker='', ms=4, label='', zorder=4, capsize=3) # For any data removed fron fit (i.e. IRAC excess): f_exclude = False try: col_ex = 'lawngreen' #col_ex = 'limegreen' #col_ex = 'r' # Currently, this file is made after FILTER_SKIP; data_ex = ascii.read(DIR_TMP + 'bb_obs_' + ID + '_removed.cat') x_ex = data_ex['col2'] fy_ex = data_ex['col3'] ey_ex = data_ex['col4'] ex_ex = data_ex['col5'] ax1.errorbar(x_ex, fy_ex * c / np.square(x_ex) / d, \ xerr=ex_ex, yerr=ey_ex*c/np.square(x_ex)/d, color='k', linestyle='', linewidth=0.5, zorder=5) ax1.scatter(x_ex, fy_ex * c / np.square(x_ex) / d, marker='s', color=col_ex, edgecolor='k', zorder=5, s=30) f_exclude = True except: pass ##################################### # Open ascii file and stock to array. lib = fnc.open_spec_fits(fall=0) lib_all = fnc.open_spec_fits(fall=1, orig=True) #lib_all_conv = fnc.open_spec_fits(fall=1) if f_dust: DT0 = float(inputs['TDUST_LOW']) DT1 = float(inputs['TDUST_HIG']) dDT = float(inputs['TDUST_DEL']) Temp = np.arange(DT0,DT1,dDT) iimax = len(nage)-1 # FIR dust plot; if f_dust: from lmfit import Parameters par = Parameters() par.add('MDUST',value=MD50) par.add('TDUST',value=nTD50) par.add('zmc',value=zp50) y0d, x0d = fnc.tmp04_dust(par.valuesdict())#, zbes, lib_dust_all) y0d_cut, x0d_cut = fnc.tmp04_dust(par.valuesdict())#, zbes, lib_dust) # data; dat_d = ascii.read(MB.DIR_TMP + 'bb_dust_obs_' + MB.ID + '.cat') NRbbd = dat_d['col1'] xbbd = dat_d['col2'] fybbd = dat_d['col3'] eybbd = dat_d['col4'] exbbd = dat_d['col5'] snbbd = fybbd/eybbd try: conbbd_hs = (fybbd/eybbd>SNlim) ax1.errorbar(xbbd[conbbd_hs], fybbd[conbbd_hs] * c / np.square(xbbd[conbbd_hs]) / d, \ yerr=eybbd[conbbd_hs]*c/np.square(xbbd[conbbd_hs])/d, color='k', linestyle='', linewidth=0.5, zorder=4) ax1.plot(xbbd[conbbd_hs], fybbd[conbbd_hs] * c / np.square(xbbd[conbbd_hs]) / d, \ '.r', linestyle='', linewidth=0, zorder=4)#, label='Obs.(BB)') ax3t.plot(xbbd[conbbd_hs], fybbd[conbbd_hs] * c / np.square(xbbd[conbbd_hs]) / d, \ '.r', linestyle='', linewidth=0, zorder=4)#, label='Obs.(BB)') except: pass try: conebbd_ls = (fybbd/eybbd<=SNlim) ax1.errorbar(xbbd[conebbd_ls], eybbd[conebbd_ls] * c / np.square(xbbd[conebbd_ls]) / d, \ yerr=fybbd[conebbd_ls]*0+np.max(fybbd[conebbd_ls]*c/np.square(xbbd[conebbd_ls])/d)*0.05, \ uplims=eybbd[conebbd_ls]*c/np.square(xbbd[conebbd_ls])/d, color='r', linestyle='', linewidth=0.5, zorder=4) ax3t.errorbar(xbbd[conebbd_ls], eybbd[conebbd_ls] * c / np.square(xbbd[conebbd_ls]) / d, \ yerr=fybbd[conebbd_ls]*0+np.max(fybbd[conebbd_ls]*c/np.square(xbbd[conebbd_ls])/d)*0.05, \ uplims=eybbd[conebbd_ls]*c/np.square(xbbd[conebbd_ls])/d, color='r', linestyle='', linewidth=0.5, zorder=4) except: pass # # This is for UVJ color time evolution. # Asum = np.sum(A50[:]) alp = .5 for jj in range(len(age)): ii = int(len(nage) - jj - 1) # from old to young templates. if jj == 0: y0, x0 = fnc.tmp03(A50[ii], AAv[0], ii, Z50[ii], zbes, lib_all) y0p, x0p = fnc.tmp03(A50[ii], AAv[0], ii, Z50[ii], zbes, lib) ysum = y0 ysump = y0p nopt = len(ysump) f_50_comp = np.zeros((len(age),len(y0)),'float') # Keep each component; f_50_comp[ii,:] = y0[:] * c / np.square(x0) / d if f_dust: ysump[:] += y0d_cut[:nopt] ysump = np.append(ysump,y0d_cut[nopt:]) # Keep each component; f_50_comp_dust = y0d * c / np.square(x0d) / d else: y0_r, x0_tmp = fnc.tmp03(A50[ii], AAv[0], ii, Z50[ii], zbes, lib_all) y0p, x0p = fnc.tmp03(A50[ii], AAv[0], ii, Z50[ii], zbes, lib) ysum += y0_r ysump[:nopt] += y0p f_50_comp[ii,:] = y0_r[:] * c / np.square(x0_tmp) / d # The following needs revised. f_uvj = False if f_uvj: if jj == 0: fwuvj = open(MB.DIR_OUT + ID + '_uvj.txt', 'w') fwuvj.write('# age uv vj\n') ysum_wid = ysum * 0 for kk in range(0,ii+1,1): tt = int(len(nage) - kk - 1) nn = int(len(nage) - ii - 1) nZ = bfnc.Z2NZ(Z50[tt]) y0_wid, x0_wid = fnc.open_spec_fits_dir(tt, nZ, nn, AAv[0], zbes, A50[tt]) ysum_wid += y0_wid lmrest_wid = x0_wid/(1.+zbes) band0 = ['u','v','j'] lmconv,fconv = filconv(band0, lmrest_wid, ysum_wid, fil_path) # f0 in fnu fu_t = fconv[0] fv_t = fconv[1] fj_t = fconv[2] uvt = -2.5*log10(fu_t/fv_t) vjt = -2.5*log10(fv_t/fj_t) fwuvj.write('%.2f %.3f %.3f\n'%(age[ii], uvt, vjt)) fwuvj.close() ############# # Main result ############# conbb_ymax = (xbb>0) & (fybb>0) & (eybb>0) & (fybb/eybb>1) ymax = np.max(fybb[conbb_ymax]*c/np.square(xbb[conbb_ymax])/d) * 1.6 xboxl = 17000 xboxu = 28000 ax1.set_xlabel('Observed wavelength ($\mathrm{\mu m}$)', fontsize=12) ax1.set_ylabel('Flux ($10^{%d}\mathrm{erg}/\mathrm{s}/\mathrm{cm}^{2}/\mathrm{\AA}$)'%(np.log10(scale)),fontsize=12,labelpad=-2) x1min = 2000 x1max = 100000 xticks = [2500, 5000, 10000, 20000, 40000, 80000, x1max] xlabels= ['0.25', '0.5', '1', '2', '4', '8', ''] if f_dust: x1max = 400000 xticks = [2500, 5000, 10000, 20000, 40000, 80000, 400000] xlabels= ['0.25', '0.5', '1', '2', '4', '8', ''] #if x1max < np.max(xbb[conbb_ymax]): # x1max = np.max(xbb[conbb_ymax]) * 1.5 if x1max < np.max(xbb): x1max = np.max(xbb) * 1.5 if x1min > np.min(xbb[conbb_ymax]): x1min = np.min(xbb[conbb_ymax]) / 1.5 ax1.set_xlim(x1min, x1max) ax1.set_xscale('log') if f_plot_filter: scl_yaxis = 0.2 else: scl_yaxis = 0.1 ax1.set_ylim(-ymax*scl_yaxis,ymax) ax1.text(x1min+100,-ymax*0.08,'SNlimit:%.1f'%(SNlim),fontsize=8) ax1.set_xticks(xticks) ax1.set_xticklabels(xlabels) dely1 = 0.5 while (ymax-0)/dely1<1: dely1 /= 2. while (ymax-0)/dely1>4: dely1 *= 2. y1ticks = np.arange(0, ymax, dely1) ax1.set_yticks(y1ticks) ax1.set_yticklabels(np.arange(0, ymax, dely1), minor=False) ax1.yaxis.set_major_formatter(FormatStrFormatter('%.1f')) ax1.yaxis.labelpad = 1.5 xx = np.arange(100,400000) yy = xx * 0 ax1.plot(xx, yy, ls='--', lw=0.5, color='k') ############# # Plot ############# eAAl = np.zeros(len(age),dtype='float') eAAu = np.zeros(len(age),dtype='float') eAMl = np.zeros(len(age),dtype='float') eAMu = np.zeros(len(age),dtype='float') MSsum = np.sum(ms) Asum = np.sum(A50) A50 /= Asum A16 /= Asum A84 /= Asum AM50 = A50 * M50 * ms / MSsum CM = M50/np.sum(AM50) AM50 = A50 * M50 * ms / MSsum * CM AM16 = A16 * M50 * ms / MSsum * CM AM84 = A84 * M50 * ms / MSsum * CM AC50 = A50 * 0 # Cumulative for ii in range(len(A50)): eAAl[ii] = A50[ii] - A16[ii] eAAu[ii] = A84[ii] - A50[ii] eAMl[ii] = AM50[ii] - AM16[ii] eAMu[ii] = AM84[ii] - AM50[ii] AC50[ii] = np.sum(AM50[ii:]) ################ # Lines ################ LN = ['Mg2', 'Ne5', 'O2', 'Htheta', 'Heta', 'Ne3', 'Hdelta', 'Hgamma', 'Hbeta', 'O3', 'O3', 'Mgb', 'Halpha', 'S2L', 'S2H'] FLW = np.zeros(len(LN),dtype='int') #################### # For cosmology #################### DL = MB.cosmo.luminosity_distance(zbes).value * Mpc_cm #, **cosmo) # Luminositydistance in cm Cons = (4.*np.pi*DL**2/(1.+zbes)) if f_grsm: print('This function (write_lines) needs to be revised.') write_lines(ID, zbes, DIR_OUT=MB.DIR_OUT) ########################## # Zoom in Line regions ########################## if f_grsm: conspec = (NR<10000) #& (fy/ey>1) #ax2t.fill_between(xg1, (fg1-eg1) * c/np.square(xg1)/d, (fg1+eg1) * c/np.square(xg1)/d, lw=0, color='#DF4E00', zorder=10, alpha=0.7, label='') #ax2t.fill_between(xg0, (fg0-eg0) * c/np.square(xg0)/d, (fg0+eg0) * c/np.square(xg0)/d, lw=0, color='royalblue', zorder=10, alpha=0.2, label='') ax2t.errorbar(xg1, fg1 * c/np.square(xg1)/d, yerr=eg1 * c/np.square(xg1)/d, lw=0.5, color='#DF4E00', zorder=10, alpha=1., label='', capsize=0) ax2t.errorbar(xg0, fg0 * c/np.square(xg0)/d, yerr=eg0 * c/np.square(xg0)/d, lw=0.5, linestyle='', color='royalblue', zorder=10, alpha=1., label='', capsize=0) xgrism = np.concatenate([xg0,xg1]) fgrism = np.concatenate([fg0,fg1]) egrism = np.concatenate([eg0,eg1]) con4000b = (xgrism/zscl>3400) & (xgrism/zscl<3800) & (fgrism>0) & (egrism>0) con4000r = (xgrism/zscl>4200) & (xgrism/zscl<5000) & (fgrism>0) & (egrism>0) print('Median SN at 3400-3800 is;', np.median((fgrism/egrism)[con4000b])) print('Median SN at 4200-5000 is;', np.median((fgrism/egrism)[con4000r])) #ax1.errorbar(xg1, fg1 * c/np.square(xg1)/d, yerr=eg1 * c/np.square(xg1)/d, lw=0.5, color='#DF4E00', zorder=10, alpha=1., label='', capsize=0) #ax1.errorbar(xg0, fg0 * c/np.square(xg0)/d, yerr=eg0 * c/np.square(xg0)/d, lw=0.5, linestyle='', color='royalblue', zorder=10, alpha=1., label='', capsize=0) # # From MCMC chain # file = MB.DIR_OUT + 'chain_' + ID + '_corner.cpkl' niter = 0 data = loadcpkl(file) try: ndim = data['ndim'] # By default, use ndim and burnin values contained in the cpkl file, if present. burnin = data['burnin'] nmc = data['niter'] nwalk = data['nwalkers'] Nburn = burnin #*20 res = data['chain'][:] except: if verbose: print(' = > NO keys of ndim and burnin found in cpkl, use input keyword values') samples = res # Saved template; ytmp = np.zeros((mmax,len(ysum)), dtype='float') ytmp_each = np.zeros((mmax,len(ysum),len(age)), dtype='float') ytmpmax = np.zeros(len(ysum), dtype='float') ytmpmin = np.zeros(len(ysum), dtype='float') # MUV; DL = MB.cosmo.luminosity_distance(zbes).value * Mpc_cm # Luminositydistance in cm DL10 = Mpc_cm/1e6 * 10 # 10pc in cm Fuv = np.zeros(mmax, dtype='float') # For Muv Fuv28 = np.zeros(mmax, dtype='float') # For Fuv(1500-2800) Lir = np.zeros(mmax, dtype='float') # For L(8-1000um) UVJ = np.zeros((mmax,4), dtype='float') # For UVJ color; Cmznu = 10**((48.6+m0set)/(-2.5)) # Conversion from m0_25 to fnu # From random chain; alp=0.02 for kk in range(0,mmax,1): nr = np.random.randint(Nburn, len(samples['A%d'%MB.aamin[0]])) try: Av_tmp = samples['Av'][nr] except: Av_tmp = MB.AVFIX try: zmc = samples['zmc'][nr] except: zmc = zbes for ss in MB.aamin: try: AA_tmp = 10**samples['A'+str(ss)][nr] except: AA_tmp = 0 pass try: Ztest = samples['Z'+str(len(age)-1)][nr] ZZ_tmp = samples['Z'+str(ss)][nr] except: try: ZZ_tmp = samples['Z0'][nr] except: ZZ_tmp = MB.ZFIX if ss == MB.aamin[0]: mod0_tmp, xm_tmp = fnc.tmp03(AA_tmp, Av_tmp, ss, ZZ_tmp, zmc, lib_all) fm_tmp = mod0_tmp else: mod0_tmp, xx_tmp = fnc.tmp03(AA_tmp, Av_tmp, ss, ZZ_tmp, zmc, lib_all) fm_tmp += mod0_tmp # Each; ytmp_each[kk,:,ss] = mod0_tmp[:] * c / np.square(xm_tmp[:]) / d # # Dust component; # if f_dust: if kk == 0: par = Parameters() par.add('MDUST',value=samples['MDUST'][nr]) try: par.add('TDUST',value=samples['TDUST'][nr]) except: par.add('TDUST',value=0) par['MDUST'].value = samples['MDUST'][nr] try: par['TDUST'].value = samples['TDUST'][nr] except: par['TDUST'].value = 0 model_dust, x1_dust = fnc.tmp04_dust(par.valuesdict())#, zbes, lib_dust_all) if kk == 0: deldt = (x1_dust[1] - x1_dust[0]) x1_tot = np.append(xm_tmp,np.arange(np.max(xm_tmp),np.max(x1_dust),deldt)) # Redefine?? ytmp = np.zeros((mmax,len(x1_tot)), dtype='float') ytmp_dust = np.zeros((mmax,len(x1_dust)), dtype='float') ytmp_comp = np.zeros((mmax,len(x1_tot)), dtype='float') ytmp_dust[kk,:] = model_dust * c/np.square(x1_dust)/d model_tot = np.interp(x1_tot,xx_tmp,fm_tmp) + np.interp(x1_tot,x1_dust,model_dust) ytmp[kk,:] = model_tot[:] * c/np.square(x1_tot[:])/d else: x1_tot = xm_tmp ytmp[kk,:] = fm_tmp[:] * c / np.square(xm_tmp[:]) / d # # Grism plot + Fuv flux + LIR. # #if f_grsm: #ax2t.plot(x1_tot, ytmp[kk,:], '-', lw=0.5, color='gray', zorder=3., alpha=0.02) # Get FUV flux; Fuv[kk] = get_Fuv(x1_tot[:]/(1.+zbes), (ytmp[kk,:]/(c/np.square(x1_tot)/d)) * (DL**2/(1.+zbes)) / (DL10**2), lmin=1250, lmax=1650) Fuv28[kk] = get_Fuv(x1_tot[:]/(1.+zbes), (ytmp[kk,:]/(c/np.square(x1_tot)/d)) * (4*np.pi*DL**2/(1.+zbes))*Cmznu, lmin=1500, lmax=2800) Lir[kk] = 0 # Get UVJ Color; lmconv,fconv = filconv_fast(MB.filts_rf, MB.band_rf, x1_tot[:]/(1.+zbes), (ytmp[kk,:]/(c/np.square(x1_tot)/d))) UVJ[kk,0] = -2.5*np.log10(fconv[0]/fconv[2]) UVJ[kk,1] = -2.5*np.log10(fconv[1]/fconv[2]) UVJ[kk,2] = -2.5*np.log10(fconv[2]/fconv[3]) UVJ[kk,3] = -2.5*np.log10(fconv[4]/fconv[3]) # Do stuff... time.sleep(0.01) # Update Progress Bar printProgressBar(kk, mmax, prefix = 'Progress:', suffix = 'Complete', length = 40) # # Plot Median SED; # ytmp16 = np.percentile(ytmp[:,:],16,axis=0) ytmp50 = np.percentile(ytmp[:,:],50,axis=0) ytmp84 = np.percentile(ytmp[:,:],84,axis=0) if f_dust: ytmp_dust50 = np.percentile(ytmp_dust[:,:],50, axis=0) #if not f_fill: ax1.fill_between(x1_tot[::nstep_plot], ytmp16[::nstep_plot], ytmp84[::nstep_plot], ls='-', lw=.5, color='gray', zorder=-2, alpha=0.5) ax1.plot(x1_tot[::nstep_plot], ytmp50[::nstep_plot], '-', lw=.5, color='gray', zorder=-1, alpha=1.) # For grism; if f_grsm: from astropy.convolution import convolve from .maketmp_filt import get_LSF LSF, lmtmp = get_LSF(MB.inputs, MB.DIR_EXTR, ID, x1_tot[::nstep_plot], c=3e18) spec_grsm16 = convolve(ytmp16[::nstep_plot], LSF, boundary='extend') spec_grsm50 = convolve(ytmp50[::nstep_plot], LSF, boundary='extend') spec_grsm84 = convolve(ytmp84[::nstep_plot], LSF, boundary='extend') ax2t.plot(x1_tot[::nstep_plot], spec_grsm50, '-', lw=0.5, color='gray', zorder=3., alpha=1.0) # Attach the data point in MB; MB.sed_wave_obs = xbb MB.sed_flux_obs = fybb * c / np.square(xbb) / d MB.sed_eflux_obs = eybb * c / np.square(xbb) / d # Attach the best SED to MB; MB.sed_wave = x1_tot MB.sed_flux16 = ytmp16 MB.sed_flux50 = ytmp50 MB.sed_flux84 = ytmp84 if f_fancyplot: alp_fancy = 0.5 #ax1.plot(x1_tot[::nstep_plot], np.percentile(ytmp[:, ::nstep_plot], 50, axis=0), '-', lw=.5, color='gray', zorder=-1, alpha=1.) ysumtmp = ytmp[0, ::nstep_plot] * 0 ysumtmp2 = ytmp[:, ::nstep_plot] * 0 ysumtmp2_prior = ytmp[0, ::nstep_plot] * 0 for ss in range(len(age)): ii = int(len(nage) - ss - 1) # from old to young templates. #ysumtmp += np.percentile(ytmp_each[:, ::nstep_plot, ii], 50, axis=0) #ax1.plot(x1_tot[::nstep_plot], ysumtmp, linestyle='--', lw=.5, color=col[ii], alpha=0.5) # !! Take median after summation; ysumtmp2[:,:len(xm_tmp)] += ytmp_each[:, ::nstep_plot, ii] if f_fill: ax1.fill_between(x1_tot[::nstep_plot], ysumtmp2_prior, np.percentile(ysumtmp2[:,:], 50, axis=0), linestyle='None', lw=0., color=col[ii], alpha=alp_fancy, zorder=-3) else: ax1.plot(x1_tot[::nstep_plot], np.percentile(ysumtmp2[:, ::nstep_plot], 50, axis=0), linestyle='--', lw=.5, color=col[ii], alpha=alp_fancy, zorder=-3) ysumtmp2_prior[:] = np.percentile(ysumtmp2[:, :], 50, axis=0) elif f_fill: print('f_fancyplot is False. f_fill is set to False.') ######################### # Calculate non-det chi2 # based on Sawick12 ######################### def func_tmp(xint,eobs,fmodel): int_tmp = np.exp(-0.5 * ((xint-fmodel)/eobs)**2) return int_tmp if f_chind: conw = (wht3>0) & (ey>0) & (fy/ey>SNlim) else: conw = (wht3>0) & (ey>0) #& (fy/ey>SNlim) #chi2 = sum((np.square(fy-ysump) * np.sqrt(wht3))[conw]) try: logf = hdul[1].data['logf'][1] ey_revised = np.sqrt(ey**2+ ysump**2 * np.exp(logf)**2) except: ey_revised = ey chi2 = sum((np.square(fy-ysump) / ey_revised)[conw]) chi_nd = 0.0 if f_chind: f_ex = np.zeros(len(fy), 'int') if f_exclude: for ii in range(len(fy)): if x[ii] in x_ex: f_ex[ii] = 1 con_up = (ey>0) & (fy/ey<=SNlim) & (f_ex == 0) from scipy import special #x_erf = (ey[con_up] - ysump[con_up]) / (np.sqrt(2) * ey[con_up]) #f_erf = special.erf(x_erf) #chi_nd = np.sum( np.log(np.sqrt(np.pi / 2) * ey[con_up] * (1 + f_erf)) ) x_erf = (ey_revised[con_up] - ysump[con_up]) / (np.sqrt(2) * ey_revised[con_up]) f_erf = special.erf(x_erf) chi_nd = np.sum( np.log(np.sqrt(np.pi / 2) * ey_revised[con_up] * (1 + f_erf)) ) # Number of degree; con_nod = (wht3>0) & (ey>0) #& (fy/ey>SNlim) nod = int(len(wht3[con_nod])-ndim_eff) print('\n') print('No-of-detection : %d'%(len(wht3[conw]))) print('chi2 : %.2f'%(chi2)) if f_chind: print('No-of-non-detection: %d'%(len(ey[con_up]))) print('chi2 for non-det : %.2f'%(- 2 * chi_nd)) print('No-of-params : %d'%(ndim_eff)) print('Degrees-of-freedom : %d'%(nod)) if nod>0: fin_chi2 = (chi2 - 2 * chi_nd) / nod else: fin_chi2 = -99 print('Final chi2/nu : %.2f'%(fin_chi2)) # # plot BB model from best template (blue squares) # col_dia = 'blue' if f_dust: ALLFILT = np.append(SFILT,DFILT) #for ii in range(len(x1_tot)): # print(x1_tot[ii], model_tot[ii]*c/np.square(x1_tot[ii])/d) lbb, fbb, lfwhm = filconv(ALLFILT, x1_tot, ytmp50, DIR_FILT, fw=True) lbb, fbb16, lfwhm = filconv(ALLFILT, x1_tot, ytmp16, DIR_FILT, fw=True) lbb, fbb84, lfwhm = filconv(ALLFILT, x1_tot, ytmp84, DIR_FILT, fw=True) ax1.plot(x1_tot, ytmp50, '--', lw=0.5, color='purple', zorder=-1, label='') ax3t.plot(x1_tot, ytmp50, '--', lw=0.5, color='purple', zorder=-1, label='') iix = [] for ii in range(len(fbb)): iix.append(ii) con_sed = () ax1.scatter(lbb[iix][con_sed], fbb[iix][con_sed], lw=0.5, color='none', edgecolor=col_dia, zorder=3, alpha=1.0, marker='d', s=50) # plot FIR range; ax3t.scatter(lbb, fbb, lw=0.5, color='none', edgecolor=col_dia, \ zorder=2, alpha=1.0, marker='d', s=50) else: lbb, fbb, lfwhm = filconv(SFILT, x1_tot, ytmp50, DIR_FILT, fw=True, MB=MB, f_regist=False) lbb, fbb16, lfwhm = filconv(SFILT, x1_tot, ytmp16, DIR_FILT, fw=True, MB=MB, f_regist=False) lbb, fbb84, lfwhm = filconv(SFILT, x1_tot, ytmp84, DIR_FILT, fw=True, MB=MB, f_regist=False) iix = [] for ii in range(len(fbb)): iix.append(np.argmin(np.abs(lbb[ii]-xbb[:]))) con_sed = (eybb>0) ax1.scatter(lbb[iix][con_sed], fbb[iix][con_sed], lw=0.5, color='none', edgecolor=col_dia, zorder=3, alpha=1.0, marker='d', s=50) # Calculate EW, if there is excess band; try: iix2 = [] for ii in range(len(fy_ex)): iix2.append(np.argmin(np.abs(lbb[:]-x_ex[ii]))) # Rest-frame EW; # Note about 16/84 in fbb EW16 = (fy_ex * c / np.square(x_ex) / d - fbb84[iix2]) / (fbb[iix2]) * lfwhm[iix2] / (1.+zbes) EW50 = (fy_ex * c / np.square(x_ex) / d - fbb[iix2]) / (fbb[iix2]) * lfwhm[iix2] / (1.+zbes) EW84 = (fy_ex * c / np.square(x_ex) / d - fbb16[iix2]) / (fbb[iix2]) * lfwhm[iix2] / (1.+zbes) EW50_er1 = ((fy_ex-ey_ex) * c / np.square(x_ex) / d - fbb[iix2]) / (fbb[iix2]) * lfwhm[iix2] / (1.+zbes) EW50_er2 = ((fy_ex+ey_ex) * c / np.square(x_ex) / d - fbb[iix2]) / (fbb[iix2]) * lfwhm[iix2] / (1.+zbes) cnt50 = fbb[iix2] cnt16 = fbb16[iix2] cnt84 = fbb84[iix2] # Luminosity; #Lsun = 3.839 * 1e33 #erg s-1 L16 = EW16 * cnt16 * (4.*np.pi*DL**2) * scale * (1+zbes) # A * erg/s/A/cm2 * cm2 L50 = EW50 * cnt50 * (4.*np.pi*DL**2) * scale * (1+zbes) # A * erg/s/A/cm2 * cm2 L84 = EW84 * cnt84 * (4.*np.pi*DL**2) * scale * (1+zbes) # A * erg/s/A/cm2 * cm2 ew_label = [] for ii in range(len(fy_ex)): lres = MB.band['%s_lam'%MB.filts[iix2[ii]]][:] fres = MB.band['%s_res'%MB.filts[iix2[ii]]][:] ew_label.append(MB.filts[iix2[ii]]) print('\n') print('EW016 for', x_ex[ii], 'is %d'%EW16[ii]) print('EW050 for', x_ex[ii], 'is %d'%EW50[ii]) print('EW084 for', x_ex[ii], 'is %d'%EW84[ii]) print('%d_{-%d}^{+%d} , for sed error'%(EW50[ii],EW50[ii]-EW84[ii],EW16[ii]-EW50[ii])) print('Or, %d\pm{%d} , for flux error'%(EW50[ii],EW50[ii]-EW50_er1[ii])) except: pass if save_sed: fbb16_nu = flamtonu(lbb, fbb16*scale, m0set=25.0) fbb_nu = flamtonu(lbb, fbb*scale, m0set=25.0) fbb84_nu = flamtonu(lbb, fbb84*scale, m0set=25.0) # Then save full spectrum; col00 = [] col1 = fits.Column(name='wave_model', format='E', unit='AA', array=x1_tot) col00.append(col1) col2 = fits.Column(name='f_model_16', format='E', unit='1e%derg/s/cm2/AA'%(np.log10(scale)), array=ytmp16[:]) col00.append(col2) col3 = fits.Column(name='f_model_50', format='E', unit='1e%derg/s/cm2/AA'%(np.log10(scale)), array=ytmp50[:]) col00.append(col3) col4 = fits.Column(name='f_model_84', format='E', unit='1e%derg/s/cm2/AA'%(np.log10(scale)), array=ytmp84[:]) col00.append(col4) # Each component # Stellar col1 = fits.Column(name='wave_model_stel', format='E', unit='AA', array=x0) col00.append(col1) for aa in range(len(age)): col1 = fits.Column(name='f_model_stel_%d'%aa, format='E', unit='1e%derg/s/cm2/AA'%(np.log10(scale)), array=f_50_comp[aa,:]) col00.append(col1) if f_dust: col1 = fits.Column(name='wave_model_dust', format='E', unit='AA', array=x1_dust) col00.append(col1) col1 = fits.Column(name='f_model_dust', format='E', unit='1e%derg/s/cm2/AA'%(np.log10(scale)), array=ytmp_dust50) col00.append(col1) # Grism; if f_grsm: col2 = fits.Column(name='f_model_conv_16', format='E', unit='1e%derg/s/cm2/AA'%(np.log10(scale)), array=spec_grsm16) col00.append(col2) col3 = fits.Column(name='f_model_conv_50', format='E', unit='1e%derg/s/cm2/AA'%(np.log10(scale)), array=spec_grsm50) col00.append(col3) col4 = fits.Column(name='f_model_conv_84', format='E', unit='1e%derg/s/cm2/AA'%(np.log10(scale)), array=spec_grsm84) col00.append(col4) # BB for dust if f_dust: xbb = np.append(xbb,xbbd) fybb = np.append(fybb,fybbd) eybb = np.append(eybb,eybbd) col5 = fits.Column(name='wave_obs', format='E', unit='AA', array=xbb) col00.append(col5) col6 = fits.Column(name='f_obs', format='E', unit='1e%derg/s/cm2/AA'%(np.log10(scale)), array=fybb[:] * c /
np.square(xbb[:])
numpy.square
from copy import deepcopy import numpy as np """ This module defines the ranges of hyper-params to search upon """ # Define the high level configuration structure _all_config = {} _all_config['AWA1'] = {} _all_config['SUN'] = {} _all_config['CUB'] = {} _all_config['FLO'] = {} def get(dataset_name, combiner, metric_name, all_config=_all_config): assert(dataset_name in all_config) dataset_cfgs = all_config[dataset_name] if metric_name in dataset_cfgs: cfg = dataset_cfgs[metric_name].get(combiner, dataset_cfgs[metric_name]['default']) else: cfg = dataset_cfgs.get(combiner, dataset_cfgs['default']) # sanity check assert (len(cfg['anomaly_detector_threshold']) == 1) return deepcopy(cfg) def cast_to_lists(hyper_params): """ Put in a list (with len=1), if given as individual value """ hyper_params_as_lists = {} for k,v in hyper_params.items(): if not (isinstance(v, list) or isinstance(v, np.ndarray)) : v = [v,] hyper_params_as_lists[k] = list(v) return hyper_params_as_lists def _individual_cfg(hyper_params={}, anomaly_detector_threshold={}): assert( len(anomaly_detector_threshold) == 1 ) hyper_params_as_lists = cast_to_lists(hyper_params) threshold_as_list = cast_to_lists(anomaly_detector_threshold) return dict(hyper_params=hyper_params_as_lists, anomaly_detector_threshold=threshold_as_list) # Here we define defaults configurations CUB_default = _individual_cfg(hyper_params= dict( T_cond=[0.1, 0.3, 1, 3], ), anomaly_detector_threshold= dict(threshold=np.arange(-2.5, 2.5, 0.1)) ) _all_config['CUB']['default'] = deepcopy(CUB_default) SUN_default = _individual_cfg(hyper_params= dict( T_cond=[0.1, 0.3, 1, 3, 10], ), anomaly_detector_threshold= dict(threshold=np.arange(-2.5, 20, 0.2)) ) _all_config['SUN']['default'] = deepcopy(SUN_default) _all_config['SUN']['Confidence Based Gater: T = (3,)'] = {} _all_config['SUN']['Confidence Based Gater: T = (3,)']['adaptive_smoothing'] = \ _individual_cfg(hyper_params= dict( T_cond=[0.1, 0.3, 1, 3, 10], ), anomaly_detector_threshold= dict(threshold=np.arange(0, 50, 0.2)) ) _all_config['SUN']['Confidence Based Gater: T = (3,)']['default'] = deepcopy( SUN_default) _all_config['SUN']['const_smoothing'] = deepcopy(SUN_default) _all_config['SUN']['const_smoothing']['hyper_params']['T_cond'] = [0.1, 0.3, 1, 3, 10] _all_config['SUN']['const_smoothing']['anomaly_detector_threshold']['threshold'] = \ np.arange(-2.5, 20, 0.2).tolist() _all_config['SUN']['const_smoothing']['hyper_params']['gamma'] = \ list(np.arange(0.05, 1.001, 0.05)) AWA1_default = _individual_cfg(hyper_params= dict( T_cond=[0.003, 0.01, 0.03, 0.1,], ), anomaly_detector_threshold= dict(threshold=np.block([ np.arange(0., 0.7, 0.05),
np.arange(0.7, 1.2, 0.005)
numpy.arange
try: import numpy as np from scipy.interpolate import interp1d import decida.Data except ModuleNotFoundError: print('Failed to import libraries for results parsing. Capabilities may be limited.') # noqa class SpiceResult: def __init__(self, t, v): self.t = t self.v = v self.func = interp1d(t, v, bounds_error=False, fill_value=(v[0], v[-1])) def __call__(self, t): return self.func(t) # temporary measure -- CSDF parsing is broken in # DeCiDa so a simple parser is implemented here class CSDFData: def __init__(self): self._names = {'time': 0} self._data = None self.data = {} def names(self): return list(self._names.keys()) def get(self, name): return self._data[:, self._names[name]] def read(self, file): # read in flat data vector mode = None data = [] with open(file, 'r') as f: for line in f: # determine mode line = line.strip().split() if not line: continue elif line[0] == '#N': mode = '#N' line.pop(0) elif line[0] == '#C': mode = '#C' line.pop(0) data.append(float(line.pop(0))) line.pop(0) elif line[0] == '#;': break # parse depending on mode if mode == '#N': for tok in line: tok = tok[1:-1] self._names[tok] = len(self._names) elif mode == '#C': for tok in line: data.append(float(tok)) # reshape into numpy array nv = len(self._names) ns = len(data) // nv data =
np.array(data, dtype=float)
numpy.array
import os, logging import pyqtgraph as pg from pyqtgraph import QtGui, QtCore import pyqtgraph_extensions as pgx import numpy as np logging.basicConfig(level=logging.DEBUG) logging.getLogger(pgx.__name__).setLevel(level=logging.DEBUG) def test_ColorBarItem_manual(qtbot): ## glw = pg.GraphicsLayoutWidget() plt = glw.addPlot(title='Testing colormaps', labels={'left': 'y', 'bottom': 'x'}) im = pgx.ImageItem() im.setLookupTable(pgx.get_colormap_lut()) x = np.arange(100) - 50 y = np.arange(110)[:, None] - 55 z = 5e9*np.exp(-(x**2 + y**2)/100.0) im.setImage(z + np.random.random(z.shape)) plt.addItem(im) cb = pgx.ColorBarItem() cb.setManual(lut=im.lut, levels=im.levels) # cb.setLabel('intensity') glw.addItem(cb) glw.show() ## assert np.allclose(cb.axis.range, im.levels) qtbot.addWidget(glw) def test_ColorBarItem_auto(qtbot): ## glw = pg.GraphicsLayoutWidget() plt = glw.addPlot(title='Testing colormaps', labels={'left': 'y', 'bottom': 'x'}) im = pgx.ImageItem() im.setLookupTable(pgx.get_colormap_lut()) x = np.arange(100) - 50 y = np.arange(110)[:, None] - 55 z = 5e9*np.exp(-(x**2 + y**2)/100.0) im.setImage(z +
np.random.random(z.shape)
numpy.random.random
from __future__ import division, absolute_import, print_function try: # Accessing collections abstract classes from collections # has been deprecated since Python 3.3 import collections.abc as collections_abc except ImportError: import collections as collections_abc import tempfile import sys import shutil import warnings import operator import io import itertools import functools import ctypes import os import gc import weakref import pytest from contextlib import contextmanager from numpy.core.numeric import pickle if sys.version_info[0] >= 3: import builtins else: import __builtin__ as builtins from decimal import Decimal import numpy as np from numpy.compat import strchar, unicode import numpy.core._multiarray_tests as _multiarray_tests from numpy.testing import ( assert_, assert_raises, assert_warns, assert_equal, assert_almost_equal, assert_array_equal, assert_raises_regex, assert_array_almost_equal, assert_allclose, IS_PYPY, HAS_REFCOUNT, assert_array_less, runstring, temppath, suppress_warnings ) from numpy.core.tests._locales import CommaDecimalPointLocale # Need to test an object that does not fully implement math interface from datetime import timedelta, datetime if sys.version_info[:2] > (3, 2): # In Python 3.3 the representation of empty shape, strides and sub-offsets # is an empty tuple instead of None. # https://docs.python.org/dev/whatsnew/3.3.html#api-changes EMPTY = () else: EMPTY = None def _aligned_zeros(shape, dtype=float, order="C", align=None): """ Allocate a new ndarray with aligned memory. The ndarray is guaranteed *not* aligned to twice the requested alignment. Eg, if align=4, guarantees it is not aligned to 8. If align=None uses dtype.alignment.""" dtype = np.dtype(dtype) if dtype == np.dtype(object): # Can't do this, fall back to standard allocation (which # should always be sufficiently aligned) if align is not None: raise ValueError("object array alignment not supported") return np.zeros(shape, dtype=dtype, order=order) if align is None: align = dtype.alignment if not hasattr(shape, '__len__'): shape = (shape,) size = functools.reduce(operator.mul, shape) * dtype.itemsize buf = np.empty(size + 2*align + 1, np.uint8) ptr = buf.__array_interface__['data'][0] offset = ptr % align if offset != 0: offset = align - offset if (ptr % (2*align)) == 0: offset += align # Note: slices producing 0-size arrays do not necessarily change # data pointer --- so we use and allocate size+1 buf = buf[offset:offset+size+1][:-1] data = np.ndarray(shape, dtype, buf, order=order) data.fill(0) return data class TestFlags(object): def setup(self): self.a = np.arange(10) def test_writeable(self): mydict = locals() self.a.flags.writeable = False assert_raises(ValueError, runstring, 'self.a[0] = 3', mydict) assert_raises(ValueError, runstring, 'self.a[0:1].itemset(3)', mydict) self.a.flags.writeable = True self.a[0] = 5 self.a[0] = 0 def test_writeable_from_readonly(self): # gh-9440 - make sure fromstring, from buffer on readonly buffers # set writeable False data = b'\x00' * 100 vals = np.frombuffer(data, 'B') assert_raises(ValueError, vals.setflags, write=True) types = np.dtype( [('vals', 'u1'), ('res3', 'S4')] ) values = np.core.records.fromstring(data, types) vals = values['vals'] assert_raises(ValueError, vals.setflags, write=True) def test_writeable_from_buffer(self): data = bytearray(b'\x00' * 100) vals = np.frombuffer(data, 'B') assert_(vals.flags.writeable) vals.setflags(write=False) assert_(vals.flags.writeable is False) vals.setflags(write=True) assert_(vals.flags.writeable) types = np.dtype( [('vals', 'u1'), ('res3', 'S4')] ) values = np.core.records.fromstring(data, types) vals = values['vals'] assert_(vals.flags.writeable) vals.setflags(write=False) assert_(vals.flags.writeable is False) vals.setflags(write=True) assert_(vals.flags.writeable) @pytest.mark.skipif(sys.version_info[0] < 3, reason="Python 2 always copies") def test_writeable_pickle(self): import pickle # Small arrays will be copied without setting base. # See condition for using PyArray_SetBaseObject in # array_setstate. a = np.arange(1000) for v in range(pickle.HIGHEST_PROTOCOL): vals = pickle.loads(pickle.dumps(a, v)) assert_(vals.flags.writeable) assert_(isinstance(vals.base, bytes)) def test_otherflags(self): assert_equal(self.a.flags.carray, True) assert_equal(self.a.flags['C'], True) assert_equal(self.a.flags.farray, False) assert_equal(self.a.flags.behaved, True) assert_equal(self.a.flags.fnc, False) assert_equal(self.a.flags.forc, True) assert_equal(self.a.flags.owndata, True) assert_equal(self.a.flags.writeable, True) assert_equal(self.a.flags.aligned, True) with assert_warns(DeprecationWarning): assert_equal(self.a.flags.updateifcopy, False) with assert_warns(DeprecationWarning): assert_equal(self.a.flags['U'], False) assert_equal(self.a.flags['UPDATEIFCOPY'], False) assert_equal(self.a.flags.writebackifcopy, False) assert_equal(self.a.flags['X'], False) assert_equal(self.a.flags['WRITEBACKIFCOPY'], False) def test_string_align(self): a = np.zeros(4, dtype=np.dtype('|S4')) assert_(a.flags.aligned) # not power of two are accessed byte-wise and thus considered aligned a = np.zeros(5, dtype=np.dtype('|S4')) assert_(a.flags.aligned) def test_void_align(self): a = np.zeros(4, dtype=np.dtype([("a", "i4"), ("b", "i4")])) assert_(a.flags.aligned) class TestHash(object): # see #3793 def test_int(self): for st, ut, s in [(np.int8, np.uint8, 8), (np.int16, np.uint16, 16), (np.int32, np.uint32, 32), (np.int64, np.uint64, 64)]: for i in range(1, s): assert_equal(hash(st(-2**i)), hash(-2**i), err_msg="%r: -2**%d" % (st, i)) assert_equal(hash(st(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (st, i - 1)) assert_equal(hash(st(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (st, i)) i = max(i - 1, 1) assert_equal(hash(ut(2**(i - 1))), hash(2**(i - 1)), err_msg="%r: 2**%d" % (ut, i - 1)) assert_equal(hash(ut(2**i - 1)), hash(2**i - 1), err_msg="%r: 2**%d - 1" % (ut, i)) class TestAttributes(object): def setup(self): self.one = np.arange(10) self.two = np.arange(20).reshape(4, 5) self.three = np.arange(60, dtype=np.float64).reshape(2, 5, 6) def test_attributes(self): assert_equal(self.one.shape, (10,)) assert_equal(self.two.shape, (4, 5)) assert_equal(self.three.shape, (2, 5, 6)) self.three.shape = (10, 3, 2) assert_equal(self.three.shape, (10, 3, 2)) self.three.shape = (2, 5, 6) assert_equal(self.one.strides, (self.one.itemsize,)) num = self.two.itemsize assert_equal(self.two.strides, (5*num, num)) num = self.three.itemsize assert_equal(self.three.strides, (30*num, 6*num, num)) assert_equal(self.one.ndim, 1) assert_equal(self.two.ndim, 2) assert_equal(self.three.ndim, 3) num = self.two.itemsize assert_equal(self.two.size, 20) assert_equal(self.two.nbytes, 20*num) assert_equal(self.two.itemsize, self.two.dtype.itemsize) assert_equal(self.two.base, np.arange(20)) def test_dtypeattr(self): assert_equal(self.one.dtype, np.dtype(np.int_)) assert_equal(self.three.dtype, np.dtype(np.float_)) assert_equal(self.one.dtype.char, 'l') assert_equal(self.three.dtype.char, 'd') assert_(self.three.dtype.str[0] in '<>') assert_equal(self.one.dtype.str[1], 'i') assert_equal(self.three.dtype.str[1], 'f') def test_int_subclassing(self): # Regression test for https://github.com/numpy/numpy/pull/3526 numpy_int = np.int_(0) if sys.version_info[0] >= 3: # On Py3k int_ should not inherit from int, because it's not # fixed-width anymore assert_equal(isinstance(numpy_int, int), False) else: # Otherwise, it should inherit from int... assert_equal(isinstance(numpy_int, int), True) # ... and fast-path checks on C-API level should also work from numpy.core._multiarray_tests import test_int_subclass assert_equal(test_int_subclass(numpy_int), True) def test_stridesattr(self): x = self.one def make_array(size, offset, strides): return np.ndarray(size, buffer=x, dtype=int, offset=offset*x.itemsize, strides=strides*x.itemsize) assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) assert_raises(ValueError, make_array, 4, 4, -2) assert_raises(ValueError, make_array, 4, 2, -1) assert_raises(ValueError, make_array, 8, 3, 1) assert_equal(make_array(8, 3, 0), np.array([3]*8)) # Check behavior reported in gh-2503: assert_raises(ValueError, make_array, (2, 3), 5, np.array([-2, -3])) make_array(0, 0, 10) def test_set_stridesattr(self): x = self.one def make_array(size, offset, strides): try: r = np.ndarray([size], dtype=int, buffer=x, offset=offset*x.itemsize) except Exception as e: raise RuntimeError(e) r.strides = strides = strides*x.itemsize return r assert_equal(make_array(4, 4, -1), np.array([4, 3, 2, 1])) assert_equal(make_array(7, 3, 1), np.array([3, 4, 5, 6, 7, 8, 9])) assert_raises(ValueError, make_array, 4, 4, -2) assert_raises(ValueError, make_array, 4, 2, -1) assert_raises(RuntimeError, make_array, 8, 3, 1) # Check that the true extent of the array is used. # Test relies on as_strided base not exposing a buffer. x = np.lib.stride_tricks.as_strided(np.arange(1), (10, 10), (0, 0)) def set_strides(arr, strides): arr.strides = strides assert_raises(ValueError, set_strides, x, (10*x.itemsize, x.itemsize)) # Test for offset calculations: x = np.lib.stride_tricks.as_strided(np.arange(10, dtype=np.int8)[-1], shape=(10,), strides=(-1,)) assert_raises(ValueError, set_strides, x[::-1], -1) a = x[::-1] a.strides = 1 a[::2].strides = 2 def test_fill(self): for t in "?bhilqpBHILQPfdgFDGO": x = np.empty((3, 2, 1), t) y = np.empty((3, 2, 1), t) x.fill(1) y[...] = 1 assert_equal(x, y) def test_fill_max_uint64(self): x = np.empty((3, 2, 1), dtype=np.uint64) y = np.empty((3, 2, 1), dtype=np.uint64) value = 2**64 - 1 y[...] = value x.fill(value) assert_array_equal(x, y) def test_fill_struct_array(self): # Filling from a scalar x = np.array([(0, 0.0), (1, 1.0)], dtype='i4,f8') x.fill(x[0]) assert_equal(x['f1'][1], x['f1'][0]) # Filling from a tuple that can be converted # to a scalar x = np.zeros(2, dtype=[('a', 'f8'), ('b', 'i4')]) x.fill((3.5, -2)) assert_array_equal(x['a'], [3.5, 3.5]) assert_array_equal(x['b'], [-2, -2]) class TestArrayConstruction(object): def test_array(self): d = np.ones(6) r = np.array([d, d]) assert_equal(r, np.ones((2, 6))) d = np.ones(6) tgt = np.ones((2, 6)) r = np.array([d, d]) assert_equal(r, tgt) tgt[1] = 2 r = np.array([d, d + 1]) assert_equal(r, tgt) d = np.ones(6) r = np.array([[d, d]]) assert_equal(r, np.ones((1, 2, 6))) d = np.ones(6) r = np.array([[d, d], [d, d]]) assert_equal(r, np.ones((2, 2, 6))) d = np.ones((6, 6)) r = np.array([d, d]) assert_equal(r, np.ones((2, 6, 6))) d = np.ones((6, )) r = np.array([[d, d + 1], d + 2]) assert_equal(len(r), 2) assert_equal(r[0], [d, d + 1]) assert_equal(r[1], d + 2) tgt = np.ones((2, 3), dtype=bool) tgt[0, 2] = False tgt[1, 0:2] = False r = np.array([[True, True, False], [False, False, True]]) assert_equal(r, tgt) r = np.array([[True, False], [True, False], [False, True]]) assert_equal(r, tgt.T) def test_array_empty(self): assert_raises(TypeError, np.array) def test_array_copy_false(self): d = np.array([1, 2, 3]) e = np.array(d, copy=False) d[1] = 3 assert_array_equal(e, [1, 3, 3]) e = np.array(d, copy=False, order='F') d[1] = 4 assert_array_equal(e, [1, 4, 3]) e[2] = 7 assert_array_equal(d, [1, 4, 7]) def test_array_copy_true(self): d = np.array([[1,2,3], [1, 2, 3]]) e = np.array(d, copy=True) d[0, 1] = 3 e[0, 2] = -7 assert_array_equal(e, [[1, 2, -7], [1, 2, 3]]) assert_array_equal(d, [[1, 3, 3], [1, 2, 3]]) e = np.array(d, copy=True, order='F') d[0, 1] = 5 e[0, 2] = 7 assert_array_equal(e, [[1, 3, 7], [1, 2, 3]]) assert_array_equal(d, [[1, 5, 3], [1,2,3]]) def test_array_cont(self): d = np.ones(10)[::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.ascontiguousarray(d).flags.f_contiguous) assert_(np.asfortranarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) d = np.ones((10, 10))[::2,::2] assert_(np.ascontiguousarray(d).flags.c_contiguous) assert_(np.asfortranarray(d).flags.f_contiguous) class TestAssignment(object): def test_assignment_broadcasting(self): a = np.arange(6).reshape(2, 3) # Broadcasting the input to the output a[...] = np.arange(3) assert_equal(a, [[0, 1, 2], [0, 1, 2]]) a[...] = np.arange(2).reshape(2, 1) assert_equal(a, [[0, 0, 0], [1, 1, 1]]) # For compatibility with <= 1.5, a limited version of broadcasting # the output to the input. # # This behavior is inconsistent with NumPy broadcasting # in general, because it only uses one of the two broadcasting # rules (adding a new "1" dimension to the left of the shape), # applied to the output instead of an input. In NumPy 2.0, this kind # of broadcasting assignment will likely be disallowed. a[...] = np.arange(6)[::-1].reshape(1, 2, 3) assert_equal(a, [[5, 4, 3], [2, 1, 0]]) # The other type of broadcasting would require a reduction operation. def assign(a, b): a[...] = b assert_raises(ValueError, assign, a, np.arange(12).reshape(2, 2, 3)) def test_assignment_errors(self): # Address issue #2276 class C: pass a = np.zeros(1) def assign(v): a[0] = v assert_raises((AttributeError, TypeError), assign, C()) assert_raises(ValueError, assign, [1]) def test_unicode_assignment(self): # gh-5049 from numpy.core.numeric import set_string_function @contextmanager def inject_str(s): """ replace ndarray.__str__ temporarily """ set_string_function(lambda x: s, repr=False) try: yield finally: set_string_function(None, repr=False) a1d = np.array([u'test']) a0d = np.array(u'done') with inject_str(u'bad'): a1d[0] = a0d # previously this would invoke __str__ assert_equal(a1d[0], u'done') # this would crash for the same reason np.array([np.array(u'\xe5\xe4\xf6')]) def test_stringlike_empty_list(self): # gh-8902 u = np.array([u'done']) b = np.array([b'done']) class bad_sequence(object): def __getitem__(self): pass def __len__(self): raise RuntimeError assert_raises(ValueError, operator.setitem, u, 0, []) assert_raises(ValueError, operator.setitem, b, 0, []) assert_raises(ValueError, operator.setitem, u, 0, bad_sequence()) assert_raises(ValueError, operator.setitem, b, 0, bad_sequence()) def test_longdouble_assignment(self): # only relevant if longdouble is larger than float # we're looking for loss of precision for dtype in (np.longdouble, np.longcomplex): # gh-8902 tinyb = np.nextafter(np.longdouble(0), 1).astype(dtype) tinya = np.nextafter(np.longdouble(0), -1).astype(dtype) # construction tiny1d = np.array([tinya]) assert_equal(tiny1d[0], tinya) # scalar = scalar tiny1d[0] = tinyb assert_equal(tiny1d[0], tinyb) # 0d = scalar tiny1d[0, ...] = tinya assert_equal(tiny1d[0], tinya) # 0d = 0d tiny1d[0, ...] = tinyb[...] assert_equal(tiny1d[0], tinyb) # scalar = 0d tiny1d[0] = tinyb[...] assert_equal(tiny1d[0], tinyb) arr = np.array([np.array(tinya)]) assert_equal(arr[0], tinya) def test_cast_to_string(self): # cast to str should do "str(scalar)", not "str(scalar.item())" # Example: In python2, str(float) is truncated, so we want to avoid # str(np.float64(...).item()) as this would incorrectly truncate. a = np.zeros(1, dtype='S20') a[:] = np.array(['1.12345678901234567890'], dtype='f8') assert_equal(a[0], b"1.1234567890123457") class TestDtypedescr(object): def test_construction(self): d1 = np.dtype('i4') assert_equal(d1, np.dtype(np.int32)) d2 = np.dtype('f8') assert_equal(d2, np.dtype(np.float64)) def test_byteorders(self): assert_(np.dtype('<i4') != np.dtype('>i4')) assert_(np.dtype([('a', '<i4')]) != np.dtype([('a', '>i4')])) def test_structured_non_void(self): fields = [('a', '<i2'), ('b', '<i2')] dt_int = np.dtype(('i4', fields)) assert_equal(str(dt_int), "(numpy.int32, [('a', '<i2'), ('b', '<i2')])") # gh-9821 arr_int = np.zeros(4, dt_int) assert_equal(repr(arr_int), "array([0, 0, 0, 0], dtype=(numpy.int32, [('a', '<i2'), ('b', '<i2')]))") class TestZeroRank(object): def setup(self): self.d = np.array(0), np.array('x', object) def test_ellipsis_subscript(self): a, b = self.d assert_equal(a[...], 0) assert_equal(b[...], 'x') assert_(a[...].base is a) # `a[...] is a` in numpy <1.9. assert_(b[...].base is b) # `b[...] is b` in numpy <1.9. def test_empty_subscript(self): a, b = self.d assert_equal(a[()], 0) assert_equal(b[()], 'x') assert_(type(a[()]) is a.dtype.type) assert_(type(b[()]) is str) def test_invalid_subscript(self): a, b = self.d assert_raises(IndexError, lambda x: x[0], a) assert_raises(IndexError, lambda x: x[0], b) assert_raises(IndexError, lambda x: x[np.array([], int)], a) assert_raises(IndexError, lambda x: x[np.array([], int)], b) def test_ellipsis_subscript_assignment(self): a, b = self.d a[...] = 42 assert_equal(a, 42) b[...] = '' assert_equal(b.item(), '') def test_empty_subscript_assignment(self): a, b = self.d a[()] = 42 assert_equal(a, 42) b[()] = '' assert_equal(b.item(), '') def test_invalid_subscript_assignment(self): a, b = self.d def assign(x, i, v): x[i] = v assert_raises(IndexError, assign, a, 0, 42) assert_raises(IndexError, assign, b, 0, '') assert_raises(ValueError, assign, a, (), '') def test_newaxis(self): a, b = self.d assert_equal(a[np.newaxis].shape, (1,)) assert_equal(a[..., np.newaxis].shape, (1,)) assert_equal(a[np.newaxis, ...].shape, (1,)) assert_equal(a[..., np.newaxis].shape, (1,)) assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1)) assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) assert_equal(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a, b = self.d def subscript(x, i): x[i] assert_raises(IndexError, subscript, a, (np.newaxis, 0)) assert_raises(IndexError, subscript, a, (np.newaxis,)*50) def test_constructor(self): x = np.ndarray(()) x[()] = 5 assert_equal(x[()], 5) y = np.ndarray((), buffer=x) y[()] = 6 assert_equal(x[()], 6) def test_output(self): x = np.array(2) assert_raises(ValueError, np.add, x, [1], x) def test_real_imag(self): # contiguity checks are for gh-11245 x = np.array(1j) xr = x.real xi = x.imag assert_equal(xr, np.array(0)) assert_(type(xr) is np.ndarray) assert_equal(xr.flags.contiguous, True) assert_equal(xr.flags.f_contiguous, True) assert_equal(xi, np.array(1)) assert_(type(xi) is np.ndarray) assert_equal(xi.flags.contiguous, True) assert_equal(xi.flags.f_contiguous, True) class TestScalarIndexing(object): def setup(self): self.d = np.array([0, 1])[0] def test_ellipsis_subscript(self): a = self.d assert_equal(a[...], 0) assert_equal(a[...].shape, ()) def test_empty_subscript(self): a = self.d assert_equal(a[()], 0) assert_equal(a[()].shape, ()) def test_invalid_subscript(self): a = self.d assert_raises(IndexError, lambda x: x[0], a) assert_raises(IndexError, lambda x: x[np.array([], int)], a) def test_invalid_subscript_assignment(self): a = self.d def assign(x, i, v): x[i] = v assert_raises(TypeError, assign, a, 0, 42) def test_newaxis(self): a = self.d assert_equal(a[np.newaxis].shape, (1,)) assert_equal(a[..., np.newaxis].shape, (1,)) assert_equal(a[np.newaxis, ...].shape, (1,)) assert_equal(a[..., np.newaxis].shape, (1,)) assert_equal(a[np.newaxis, ..., np.newaxis].shape, (1, 1)) assert_equal(a[..., np.newaxis, np.newaxis].shape, (1, 1)) assert_equal(a[np.newaxis, np.newaxis, ...].shape, (1, 1)) assert_equal(a[(np.newaxis,)*10].shape, (1,)*10) def test_invalid_newaxis(self): a = self.d def subscript(x, i): x[i] assert_raises(IndexError, subscript, a, (np.newaxis, 0)) assert_raises(IndexError, subscript, a, (np.newaxis,)*50) def test_overlapping_assignment(self): # With positive strides a = np.arange(4) a[:-1] = a[1:] assert_equal(a, [1, 2, 3, 3]) a = np.arange(4) a[1:] = a[:-1] assert_equal(a, [0, 0, 1, 2]) # With positive and negative strides a = np.arange(4) a[:] = a[::-1] assert_equal(a, [3, 2, 1, 0]) a = np.arange(6).reshape(2, 3) a[::-1,:] = a[:, ::-1] assert_equal(a, [[5, 4, 3], [2, 1, 0]]) a = np.arange(6).reshape(2, 3) a[::-1, ::-1] = a[:, ::-1] assert_equal(a, [[3, 4, 5], [0, 1, 2]]) # With just one element overlapping a = np.arange(5) a[:3] = a[2:] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[2:] = a[:3] assert_equal(a, [0, 1, 0, 1, 2]) a = np.arange(5) a[2::-1] = a[2:] assert_equal(a, [4, 3, 2, 3, 4]) a = np.arange(5) a[2:] = a[2::-1] assert_equal(a, [0, 1, 2, 1, 0]) a = np.arange(5) a[2::-1] = a[:1:-1] assert_equal(a, [2, 3, 4, 3, 4]) a = np.arange(5) a[:1:-1] = a[2::-1] assert_equal(a, [0, 1, 0, 1, 2]) class TestCreation(object): """ Test the np.array constructor """ def test_from_attribute(self): class x(object): def __array__(self, dtype=None): pass assert_raises(ValueError, np.array, x()) def test_from_string(self): types = np.typecodes['AllInteger'] + np.typecodes['Float'] nstr = ['123', '123'] result = np.array([123, 123], dtype=int) for type in types: msg = 'String conversion for %s' % type assert_equal(np.array(nstr, dtype=type), result, err_msg=msg) def test_void(self): arr = np.array([], dtype='V') assert_equal(arr.dtype.kind, 'V') def test_too_big_error(self): # 45341 is the smallest integer greater than sqrt(2**31 - 1). # 3037000500 is the smallest integer greater than sqrt(2**63 - 1). # We want to make sure that the square byte array with those dimensions # is too big on 32 or 64 bit systems respectively. if np.iinfo('intp').max == 2**31 - 1: shape = (46341, 46341) elif np.iinfo('intp').max == 2**63 - 1: shape = (3037000500, 3037000500) else: return assert_raises(ValueError, np.empty, shape, dtype=np.int8) assert_raises(ValueError, np.zeros, shape, dtype=np.int8) assert_raises(ValueError, np.ones, shape, dtype=np.int8) def test_zeros(self): types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((13,), dtype=dt) assert_equal(np.count_nonzero(d), 0) # true for ieee floats assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='4i4') assert_equal(np.count_nonzero(d), 0) assert_equal(d.sum(), 0) assert_(not d.any()) d = np.zeros(2, dtype='(2,4)i4, (2,4)i4') assert_equal(np.count_nonzero(d), 0) @pytest.mark.slow def test_zeros_big(self): # test big array as they might be allocated different by the system types = np.typecodes['AllInteger'] + np.typecodes['AllFloat'] for dt in types: d = np.zeros((30 * 1024**2,), dtype=dt) assert_(not d.any()) # This test can fail on 32-bit systems due to insufficient # contiguous memory. Deallocating the previous array increases the # chance of success. del(d) def test_zeros_obj(self): # test initialization from PyLong(0) d = np.zeros((13,), dtype=object) assert_array_equal(d, [0] * 13) assert_equal(np.count_nonzero(d), 0) def test_zeros_obj_obj(self): d = np.zeros(10, dtype=[('k', object, 2)]) assert_array_equal(d['k'], 0) def test_zeros_like_like_zeros(self): # test zeros_like returns the same as zeros for c in np.typecodes['All']: if c == 'V': continue d = np.zeros((3,3), dtype=c) assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) # explicitly check some special cases d = np.zeros((3,3), dtype='S5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='U5') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>i4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='<M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='>M8[s]') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) d = np.zeros((3,3), dtype='f4,f4') assert_array_equal(np.zeros_like(d), d) assert_equal(np.zeros_like(d).dtype, d.dtype) def test_empty_unicode(self): # don't throw decode errors on garbage memory for i in range(5, 100, 5): d = np.empty(i, dtype='U') str(d) def test_sequence_non_homogenous(self): assert_equal(np.array([4, 2**80]).dtype, object) assert_equal(np.array([4, 2**80, 4]).dtype, object) assert_equal(np.array([2**80, 4]).dtype, object) assert_equal(np.array([2**80] * 3).dtype, object) assert_equal(np.array([[1, 1],[1j, 1j]]).dtype, complex) assert_equal(np.array([[1j, 1j],[1, 1]]).dtype, complex) assert_equal(np.array([[1, 1, 1],[1, 1j, 1.], [1, 1, 1]]).dtype, complex) @pytest.mark.skipif(sys.version_info[0] >= 3, reason="Not Python 2") def test_sequence_long(self): assert_equal(np.array([long(4), long(4)]).dtype, np.long) assert_equal(np.array([long(4), 2**80]).dtype, object) assert_equal(np.array([long(4), 2**80, long(4)]).dtype, object) assert_equal(np.array([2**80, long(4)]).dtype, object) def test_non_sequence_sequence(self): """Should not segfault. Class Fail breaks the sequence protocol for new style classes, i.e., those derived from object. Class Map is a mapping type indicated by raising a ValueError. At some point we may raise a warning instead of an error in the Fail case. """ class Fail(object): def __len__(self): return 1 def __getitem__(self, index): raise ValueError() class Map(object): def __len__(self): return 1 def __getitem__(self, index): raise KeyError() a = np.array([Map()]) assert_(a.shape == (1,)) assert_(a.dtype == np.dtype(object)) assert_raises(ValueError, np.array, [Fail()]) def test_no_len_object_type(self): # gh-5100, want object array from iterable object without len() class Point2: def __init__(self): pass def __getitem__(self, ind): if ind in [0, 1]: return ind else: raise IndexError() d = np.array([Point2(), Point2(), Point2()]) assert_equal(d.dtype, np.dtype(object)) def test_false_len_sequence(self): # gh-7264, segfault for this example class C: def __getitem__(self, i): raise IndexError def __len__(self): return 42 assert_raises(ValueError, np.array, C()) # segfault? def test_failed_len_sequence(self): # gh-7393 class A(object): def __init__(self, data): self._data = data def __getitem__(self, item): return type(self)(self._data[item]) def __len__(self): return len(self._data) # len(d) should give 3, but len(d[0]) will fail d = A([1,2,3]) assert_equal(len(np.array(d)), 3) def test_array_too_big(self): # Test that array creation succeeds for arrays addressable by intp # on the byte level and fails for too large arrays. buf = np.zeros(100) max_bytes = np.iinfo(np.intp).max for dtype in ["intp", "S20", "b"]: dtype = np.dtype(dtype) itemsize = dtype.itemsize np.ndarray(buffer=buf, strides=(0,), shape=(max_bytes//itemsize,), dtype=dtype) assert_raises(ValueError, np.ndarray, buffer=buf, strides=(0,), shape=(max_bytes//itemsize + 1,), dtype=dtype) def test_jagged_ndim_object(self): # Lists of mismatching depths are treated as object arrays a = np.array([[1], 2, 3]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) a = np.array([1, [2], 3]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) a = np.array([1, 2, [3]]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) def test_jagged_shape_object(self): # The jagged dimension of a list is turned into an object array a = np.array([[1, 1], [2], [3]]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) a = np.array([[1], [2, 2], [3]]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) a = np.array([[1], [2], [3, 3]]) assert_equal(a.shape, (3,)) assert_equal(a.dtype, object) class TestStructured(object): def test_subarray_field_access(self): a = np.zeros((3, 5), dtype=[('a', ('i4', (2, 2)))]) a['a'] = np.arange(60).reshape(3, 5, 2, 2) # Since the subarray is always in C-order, a transpose # does not swap the subarray: assert_array_equal(a.T['a'], a['a'].transpose(1, 0, 2, 3)) # In Fortran order, the subarray gets appended # like in all other cases, not prepended as a special case b = a.copy(order='F') assert_equal(a['a'].shape, b['a'].shape) assert_equal(a.T['a'].shape, a.T.copy()['a'].shape) def test_subarray_comparison(self): # Check that comparisons between record arrays with # multi-dimensional field types work properly a = np.rec.fromrecords( [([1, 2, 3], 'a', [[1, 2], [3, 4]]), ([3, 3, 3], 'b', [[0, 0], [0, 0]])], dtype=[('a', ('f4', 3)), ('b', object), ('c', ('i4', (2, 2)))]) b = a.copy() assert_equal(a == b, [True, True]) assert_equal(a != b, [False, False]) b[1].b = 'c' assert_equal(a == b, [True, False]) assert_equal(a != b, [False, True]) for i in range(3): b[0].a = a[0].a b[0].a[i] = 5 assert_equal(a == b, [False, False]) assert_equal(a != b, [True, True]) for i in range(2): for j in range(2): b = a.copy() b[0].c[i, j] = 10 assert_equal(a == b, [False, True]) assert_equal(a != b, [True, False]) # Check that broadcasting with a subarray works a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8')]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8')]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[(0,)], [(1,)]], dtype=[('a', 'f8', (1,))]) b = np.array([(0,), (0,), (1,)], dtype=[('a', 'f8', (1,))]) assert_equal(a == b, [[True, True, False], [False, False, True]]) assert_equal(b == a, [[True, True, False], [False, False, True]]) a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))]) b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that broadcasting Fortran-style arrays with a subarray work a = np.array([[([0, 0],)], [([1, 1],)]], dtype=[('a', 'f8', (2,))], order='F') b = np.array([([0, 0],), ([0, 1],), ([1, 1],)], dtype=[('a', 'f8', (2,))]) assert_equal(a == b, [[True, False, False], [False, False, True]]) assert_equal(b == a, [[True, False, False], [False, False, True]]) # Check that incompatible sub-array shapes don't result to broadcasting x = np.zeros((1,), dtype=[('a', ('f4', (1, 2))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with suppress_warnings() as sup: sup.filter(FutureWarning, "elementwise == comparison failed") assert_equal(x == y, False) x = np.zeros((1,), dtype=[('a', ('f4', (2, 1))), ('b', 'i1')]) y = np.zeros((1,), dtype=[('a', ('f4', (2,))), ('b', 'i1')]) # This comparison invokes deprecated behaviour, and will probably # start raising an error eventually. What we really care about in this # test is just that it doesn't return True. with suppress_warnings() as sup: sup.filter(FutureWarning, "elementwise == comparison failed") assert_equal(x == y, False) # Check that structured arrays that are different only in # byte-order work a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i8'), ('b', '<f8')]) b = np.array([(5, 43), (10, 1)], dtype=[('a', '<i8'), ('b', '>f8')]) assert_equal(a == b, [False, True]) def test_casting(self): # Check that casting a structured array to change its byte order # works a = np.array([(1,)], dtype=[('a', '<i4')]) assert_(np.can_cast(a.dtype, [('a', '>i4')], casting='unsafe')) b = a.astype([('a', '>i4')]) assert_equal(b, a.byteswap().newbyteorder()) assert_equal(a['a'][0], b['a'][0]) # Check that equality comparison works on structured arrays if # they are 'equiv'-castable a = np.array([(5, 42), (10, 1)], dtype=[('a', '>i4'), ('b', '<f8')]) b = np.array([(5, 42), (10, 1)], dtype=[('a', '<i4'), ('b', '>f8')]) assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) assert_equal(a == b, [True, True]) # Check that 'equiv' casting can change byte order assert_(np.can_cast(a.dtype, b.dtype, casting='equiv')) c = a.astype(b.dtype, casting='equiv') assert_equal(a == c, [True, True]) # Check that 'safe' casting can change byte order and up-cast # fields t = [('a', '<i8'), ('b', '>f8')] assert_(np.can_cast(a.dtype, t, casting='safe')) c = a.astype(t, casting='safe') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that 'same_kind' casting can change byte order and # change field widths within a "kind" t = [('a', '<i4'), ('b', '>f4')] assert_(np.can_cast(a.dtype, t, casting='same_kind')) c = a.astype(t, casting='same_kind') assert_equal((c == np.array([(5, 42), (10, 1)], dtype=t)), [True, True]) # Check that casting fails if the casting rule should fail on # any of the fields t = [('a', '>i8'), ('b', '<f4')] assert_(not np.can_cast(a.dtype, t, casting='safe')) assert_raises(TypeError, a.astype, t, casting='safe') t = [('a', '>i2'), ('b', '<f8')] assert_(not np.can_cast(a.dtype, t, casting='equiv')) assert_raises(TypeError, a.astype, t, casting='equiv') t = [('a', '>i8'), ('b', '<i2')] assert_(not np.can_cast(a.dtype, t, casting='same_kind')) assert_raises(TypeError, a.astype, t, casting='same_kind') assert_(not np.can_cast(a.dtype, b.dtype, casting='no')) assert_raises(TypeError, a.astype, b.dtype, casting='no') # Check that non-'unsafe' casting can't change the set of field names for casting in ['no', 'safe', 'equiv', 'same_kind']: t = [('a', '>i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) t = [('a', '>i4'), ('b', '<f8'), ('c', 'i4')] assert_(not np.can_cast(a.dtype, t, casting=casting)) def test_objview(self): # https://github.com/numpy/numpy/issues/3286 a = np.array([], dtype=[('a', 'f'), ('b', 'f'), ('c', 'O')]) a[['a', 'b']] # TypeError? # https://github.com/numpy/numpy/issues/3253 dat2 = np.zeros(3, [('A', 'i'), ('B', '|O')]) dat2[['B', 'A']] # TypeError? def test_setfield(self): # https://github.com/numpy/numpy/issues/3126 struct_dt = np.dtype([('elem', 'i4', 5),]) dt = np.dtype([('field', 'i4', 10),('struct', struct_dt)]) x = np.zeros(1, dt) x[0]['field'] = np.ones(10, dtype='i4') x[0]['struct'] = np.ones(1, dtype=struct_dt) assert_equal(x[0]['field'], np.ones(10, dtype='i4')) def test_setfield_object(self): # make sure object field assignment with ndarray value # on void scalar mimics setitem behavior b = np.zeros(1, dtype=[('x', 'O')]) # next line should work identically to b['x'][0] = np.arange(3) b[0]['x'] = np.arange(3) assert_equal(b[0]['x'], np.arange(3)) # check that broadcasting check still works c = np.zeros(1, dtype=[('x', 'O', 5)]) def testassign(): c[0]['x'] = np.arange(3) assert_raises(ValueError, testassign) def test_zero_width_string(self): # Test for PR #6430 / issues #473, #4955, #2585 dt = np.dtype([('I', int), ('S', 'S0')]) x = np.zeros(4, dtype=dt) assert_equal(x['S'], [b'', b'', b'', b'']) assert_equal(x['S'].itemsize, 0) x['S'] = ['a', 'b', 'c', 'd'] assert_equal(x['S'], [b'', b'', b'', b'']) assert_equal(x['I'], [0, 0, 0, 0]) # Variation on test case from #4955 x['S'][x['I'] == 0] = 'hello' assert_equal(x['S'], [b'', b'', b'', b'']) assert_equal(x['I'], [0, 0, 0, 0]) # Variation on test case from #2585 x['S'] = 'A' assert_equal(x['S'], [b'', b'', b'', b'']) assert_equal(x['I'], [0, 0, 0, 0]) # Allow zero-width dtypes in ndarray constructor y = np.ndarray(4, dtype=x['S'].dtype) assert_equal(y.itemsize, 0) assert_equal(x['S'], y) # More tests for indexing an array with zero-width fields assert_equal(np.zeros(4, dtype=[('a', 'S0,S0'), ('b', 'u1')])['a'].itemsize, 0) assert_equal(np.empty(3, dtype='S0,S0').itemsize, 0) assert_equal(np.zeros(4, dtype='S0,u1')['f0'].itemsize, 0) xx = x['S'].reshape((2, 2)) assert_equal(xx.itemsize, 0) assert_equal(xx, [[b'', b''], [b'', b'']]) # check for no uninitialized memory due to viewing S0 array assert_equal(xx[:].dtype, xx.dtype) assert_array_equal(eval(repr(xx), dict(array=np.array)), xx) b = io.BytesIO() np.save(b, xx) b.seek(0) yy = np.load(b) assert_equal(yy.itemsize, 0) assert_equal(xx, yy) with temppath(suffix='.npy') as tmp: np.save(tmp, xx) yy = np.load(tmp) assert_equal(yy.itemsize, 0) assert_equal(xx, yy) def test_base_attr(self): a = np.zeros(3, dtype='i4,f4') b = a[0] assert_(b.base is a) def test_assignment(self): def testassign(arr, v): c = arr.copy() c[0] = v # assign using setitem c[1:] = v # assign using "dtype_transfer" code paths return c dt = np.dtype([('foo', 'i8'), ('bar', 'i8')]) arr = np.ones(2, dt) v1 = np.array([(2,3)], dtype=[('foo', 'i8'), ('bar', 'i8')]) v2 = np.array([(2,3)], dtype=[('bar', 'i8'), ('foo', 'i8')]) v3 = np.array([(2,3)], dtype=[('bar', 'i8'), ('baz', 'i8')]) v4 = np.array([(2,)], dtype=[('bar', 'i8')]) v5 = np.array([(2,3)], dtype=[('foo', 'f8'), ('bar', 'f8')]) w = arr.view({'names': ['bar'], 'formats': ['i8'], 'offsets': [8]}) ans = np.array([(2,3),(2,3)], dtype=dt) assert_equal(testassign(arr, v1), ans) assert_equal(testassign(arr, v2), ans) assert_equal(testassign(arr, v3), ans) assert_raises(ValueError, lambda: testassign(arr, v4)) assert_equal(testassign(arr, v5), ans) w[:] = 4 assert_equal(arr, np.array([(1,4),(1,4)], dtype=dt)) # test field-reordering, assignment by position, and self-assignment a = np.array([(1,2,3)], dtype=[('foo', 'i8'), ('bar', 'i8'), ('baz', 'f4')]) a[['foo', 'bar']] = a[['bar', 'foo']] assert_equal(a[0].item(), (2,1,3)) # test that this works even for 'simple_unaligned' structs # (ie, that PyArray_EquivTypes cares about field order too) a = np.array([(1,2)], dtype=[('a', 'i4'), ('b', 'i4')]) a[['a', 'b']] = a[['b', 'a']] assert_equal(a[0].item(), (2,1)) def test_structuredscalar_indexing(self): # test gh-7262 x = np.empty(shape=1, dtype="(2)3S,(2)3U") assert_equal(x[["f0","f1"]][0], x[0][["f0","f1"]]) assert_equal(x[0], x[0][()]) def test_multiindex_titles(self): a = np.zeros(4, dtype=[(('a', 'b'), 'i'), ('c', 'i'), ('d', 'i')]) assert_raises(KeyError, lambda : a[['a','c']]) assert_raises(KeyError, lambda : a[['a','a']]) assert_raises(ValueError, lambda : a[['b','b']]) # field exists, but repeated a[['b','c']] # no exception class TestBool(object): def test_test_interning(self): a0 = np.bool_(0) b0 = np.bool_(False) assert_(a0 is b0) a1 = np.bool_(1) b1 = np.bool_(True) assert_(a1 is b1) assert_(np.array([True])[0] is a1) assert_(np.array(True)[()] is a1) def test_sum(self): d = np.ones(101, dtype=bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) d = np.frombuffer(b'\xff\xff' * 100, dtype=bool) assert_equal(d.sum(), d.size) assert_equal(d[::2].sum(), d[::2].size) assert_equal(d[::-2].sum(), d[::-2].size) def check_count_nonzero(self, power, length): powers = [2 ** i for i in range(length)] for i in range(2**power): l = [(i & x) != 0 for x in powers] a = np.array(l, dtype=bool) c = builtins.sum(l) assert_equal(np.count_nonzero(a), c) av = a.view(np.uint8) av *= 3 assert_equal(np.count_nonzero(a), c) av *= 4 assert_equal(np.count_nonzero(a), c) av[av != 0] = 0xFF assert_equal(np.count_nonzero(a), c) def test_count_nonzero(self): # check all 12 bit combinations in a length 17 array # covers most cases of the 16 byte unrolled code self.check_count_nonzero(12, 17) @pytest.mark.slow def test_count_nonzero_all(self): # check all combinations in a length 17 array # covers all cases of the 16 byte unrolled code self.check_count_nonzero(17, 17) def test_count_nonzero_unaligned(self): # prevent mistakes as e.g. gh-4060 for o in range(7): a = np.zeros((18,), dtype=bool)[o+1:] a[:o] = True assert_equal(np.count_nonzero(a), builtins.sum(a.tolist())) a = np.ones((18,), dtype=bool)[o+1:] a[:o] = False assert_equal(np.count_nonzero(a), builtins.sum(a.tolist())) def _test_cast_from_flexible(self, dtype): # empty string -> false for n in range(3): v = np.array(b'', (dtype, n)) assert_equal(bool(v), False) assert_equal(bool(v[()]), False) assert_equal(v.astype(bool), False) assert_(isinstance(v.astype(bool), np.ndarray)) assert_(v[()].astype(bool) is np.False_) # anything else -> true for n in range(1, 4): for val in [b'a', b'0', b' ']: v = np.array(val, (dtype, n)) assert_equal(bool(v), True) assert_equal(bool(v[()]), True) assert_equal(v.astype(bool), True) assert_(isinstance(v.astype(bool), np.ndarray)) assert_(v[()].astype(bool) is np.True_) def test_cast_from_void(self): self._test_cast_from_flexible(np.void) @pytest.mark.xfail(reason="See gh-9847") def test_cast_from_unicode(self): self._test_cast_from_flexible(np.unicode_) @pytest.mark.xfail(reason="See gh-9847") def test_cast_from_bytes(self): self._test_cast_from_flexible(np.bytes_) class TestZeroSizeFlexible(object): @staticmethod def _zeros(shape, dtype=str): dtype = np.dtype(dtype) if dtype == np.void: return np.zeros(shape, dtype=(dtype, 0)) # not constructable directly dtype = np.dtype([('x', dtype, 0)]) return np.zeros(shape, dtype=dtype)['x'] def test_create(self): zs = self._zeros(10, bytes) assert_equal(zs.itemsize, 0) zs = self._zeros(10, np.void) assert_equal(zs.itemsize, 0) zs = self._zeros(10, unicode) assert_equal(zs.itemsize, 0) def _test_sort_partition(self, name, kinds, **kwargs): # Previously, these would all hang for dt in [bytes, np.void, unicode]: zs = self._zeros(10, dt) sort_method = getattr(zs, name) sort_func = getattr(np, name) for kind in kinds: sort_method(kind=kind, **kwargs) sort_func(zs, kind=kind, **kwargs) def test_sort(self): self._test_sort_partition('sort', kinds='qhm') def test_argsort(self): self._test_sort_partition('argsort', kinds='qhm') def test_partition(self): self._test_sort_partition('partition', kinds=['introselect'], kth=2) def test_argpartition(self): self._test_sort_partition('argpartition', kinds=['introselect'], kth=2) def test_resize(self): # previously an error for dt in [bytes, np.void, unicode]: zs = self._zeros(10, dt) zs.resize(25) zs.resize((10, 10)) def test_view(self): for dt in [bytes, np.void, unicode]: zs = self._zeros(10, dt) # viewing as itself should be allowed assert_equal(zs.view(dt).dtype, np.dtype(dt)) # viewing as any non-empty type gives an empty result assert_equal(zs.view((dt, 1)).shape, (0,)) def test_pickle(self): for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): for dt in [bytes, np.void, unicode]: zs = self._zeros(10, dt) p = pickle.dumps(zs, protocol=proto) zs2 = pickle.loads(p) assert_equal(zs.dtype, zs2.dtype) @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5, reason="requires pickle protocol 5") def test_pickle_with_buffercallback(self): array = np.arange(10) buffers = [] bytes_string = pickle.dumps(array, buffer_callback=buffers.append, protocol=5) array_from_buffer = pickle.loads(bytes_string, buffers=buffers) # when using pickle protocol 5 with buffer callbacks, # array_from_buffer is reconstructed from a buffer holding a view # to the initial array's data, so modifying an element in array # should modify it in array_from_buffer too. array[0] = -1 assert array_from_buffer[0] == -1, array_from_buffer[0] class TestMethods(object): def test_compress(self): tgt = [[5, 6, 7, 8, 9]] arr = np.arange(10).reshape(2, 5) out = arr.compress([0, 1], axis=0) assert_equal(out, tgt) tgt = [[1, 3], [6, 8]] out = arr.compress([0, 1, 0, 1, 0], axis=1) assert_equal(out, tgt) tgt = [[1], [6]] arr = np.arange(10).reshape(2, 5) out = arr.compress([0, 1], axis=1) assert_equal(out, tgt) arr = np.arange(10).reshape(2, 5) out = arr.compress([0, 1]) assert_equal(out, 1) def test_choose(self): x = 2*np.ones((3,), dtype=int) y = 3*np.ones((3,), dtype=int) x2 = 2*np.ones((2, 3), dtype=int) y2 = 3*np.ones((2, 3), dtype=int) ind = np.array([0, 0, 1]) A = ind.choose((x, y)) assert_equal(A, [2, 2, 3]) A = ind.choose((x2, y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) A = ind.choose((x, y2)) assert_equal(A, [[2, 2, 3], [2, 2, 3]]) oned = np.ones(1) # gh-12031, caused SEGFAULT assert_raises(TypeError, oned.choose,np.void(0), [oned]) def test_prod(self): ba = [1, 2, 10, 11, 6, 5, 4] ba2 = [[1, 2, 3, 4], [5, 6, 7, 9], [10, 3, 4, 5]] for ctype in [np.int16, np.uint16, np.int32, np.uint32, np.float32, np.float64, np.complex64, np.complex128]: a = np.array(ba, ctype) a2 = np.array(ba2, ctype) if ctype in ['1', 'b']: assert_raises(ArithmeticError, a.prod) assert_raises(ArithmeticError, a2.prod, axis=1) else: assert_equal(a.prod(axis=0), 26400) assert_array_equal(a2.prod(axis=0), np.array([50, 36, 84, 180], ctype)) assert_array_equal(a2.prod(axis=-1), np.array([24, 1890, 600], ctype)) def test_repeat(self): m = np.array([1, 2, 3, 4, 5, 6]) m_rect = m.reshape((2, 3)) A = m.repeat([1, 3, 2, 1, 1, 2]) assert_equal(A, [1, 2, 2, 2, 3, 3, 4, 5, 6, 6]) A = m.repeat(2) assert_equal(A, [1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6]) A = m_rect.repeat([2, 1], axis=0) assert_equal(A, [[1, 2, 3], [1, 2, 3], [4, 5, 6]]) A = m_rect.repeat([1, 3, 2], axis=1) assert_equal(A, [[1, 2, 2, 2, 3, 3], [4, 5, 5, 5, 6, 6]]) A = m_rect.repeat(2, axis=0) assert_equal(A, [[1, 2, 3], [1, 2, 3], [4, 5, 6], [4, 5, 6]]) A = m_rect.repeat(2, axis=1) assert_equal(A, [[1, 1, 2, 2, 3, 3], [4, 4, 5, 5, 6, 6]]) def test_reshape(self): arr = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9], [10, 11, 12]]) tgt = [[1, 2, 3, 4, 5, 6], [7, 8, 9, 10, 11, 12]] assert_equal(arr.reshape(2, 6), tgt) tgt = [[1, 2, 3, 4], [5, 6, 7, 8], [9, 10, 11, 12]] assert_equal(arr.reshape(3, 4), tgt) tgt = [[1, 10, 8, 6], [4, 2, 11, 9], [7, 5, 3, 12]] assert_equal(arr.reshape((3, 4), order='F'), tgt) tgt = [[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]] assert_equal(arr.T.reshape((3, 4), order='C'), tgt) def test_round(self): def check_round(arr, expected, *round_args): assert_equal(arr.round(*round_args), expected) # With output array out = np.zeros_like(arr) res = arr.round(*round_args, out=out) assert_equal(out, expected) assert_equal(out, res) check_round(np.array([1.2, 1.5]), [1, 2]) check_round(np.array(1.5), 2) check_round(np.array([12.2, 15.5]), [10, 20], -1) check_round(np.array([12.15, 15.51]), [12.2, 15.5], 1) # Complex rounding check_round(np.array([4.5 + 1.5j]), [4 + 2j]) check_round(np.array([12.5 + 15.5j]), [10 + 20j], -1) def test_squeeze(self): a = np.array([[[1], [2], [3]]]) assert_equal(a.squeeze(), [1, 2, 3]) assert_equal(a.squeeze(axis=(0,)), [[1], [2], [3]]) assert_raises(ValueError, a.squeeze, axis=(1,)) assert_equal(a.squeeze(axis=(2,)), [[1, 2, 3]]) def test_transpose(self): a = np.array([[1, 2], [3, 4]]) assert_equal(a.transpose(), [[1, 3], [2, 4]]) assert_raises(ValueError, lambda: a.transpose(0)) assert_raises(ValueError, lambda: a.transpose(0, 0)) assert_raises(ValueError, lambda: a.transpose(0, 1, 2)) def test_sort(self): # test ordering for floats and complex containing nans. It is only # necessary to check the less-than comparison, so sorts that # only follow the insertion sort path are sufficient. We only # test doubles and complex doubles as the logic is the same. # check doubles msg = "Test real sort order with nans" a = np.array([np.nan, 1, 0]) b = np.sort(a) assert_equal(b, a[::-1], msg) # check complex msg = "Test complex sort order with nans" a = np.zeros(9, dtype=np.complex128) a.real += [np.nan, np.nan, np.nan, 1, 0, 1, 1, 0, 0] a.imag += [np.nan, 1, 0, np.nan, np.nan, 1, 0, 1, 0] b = np.sort(a) assert_equal(b, a[::-1], msg) # all c scalar sorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test complex sorts. These use the same code as the scalars # but the compare function differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex sort, real part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex sort, imag part == 1, kind=%s" % kind c = ai.copy() c.sort(kind=kind) assert_equal(c, ai, msg) c = bi.copy() c.sort(kind=kind) assert_equal(c, ai, msg) # test sorting of complex arrays requiring byte-swapping, gh-5441 for endianness in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianness + dt) c = arr.copy() c.sort() msg = 'byte-swapped complex sort, dtype={0}'.format(dt) assert_equal(c, arr, msg) # test string sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "string sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test unicode sorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "unicode sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test object array sorts. a = np.empty((101,), dtype=object) a[:] = list(range(101)) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test record array sorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] for kind in ['q', 'h', 'm']: msg = "object sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test datetime64 sorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # test timedelta64 sorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 sort, kind=%s" % kind c = a.copy() c.sort(kind=kind) assert_equal(c, a, msg) c = b.copy() c.sort(kind=kind) assert_equal(c, a, msg) # check axis handling. This should be the same for all type # specific sorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 0], [3, 2]]) c = np.array([[2, 3], [0, 1]]) d = a.copy() d.sort(axis=0) assert_equal(d, b, "test sort with axis=0") d = a.copy() d.sort(axis=1) assert_equal(d, c, "test sort with axis=1") d = a.copy() d.sort() assert_equal(d, c, "test sort with default axis") # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array sort with axis={0}'.format(axis) assert_equal(np.sort(a, axis=axis), a, msg) msg = 'test empty array sort with axis=None' assert_equal(np.sort(a, axis=None), a.ravel(), msg) # test generic class with bogus ordering, # should not segfault. class Boom(object): def __lt__(self, other): return True a = np.array([Boom()]*100, dtype=object) for kind in ['q', 'm', 'h']: msg = "bogus comparison object sort, kind=%s" % kind c.sort(kind=kind) def test_void_sort(self): # gh-8210 - previously segfaulted for i in range(4): rand = np.random.randint(256, size=4000, dtype=np.uint8) arr = rand.view('V4') arr[::-1].sort() dt = np.dtype([('val', 'i4', (1,))]) for i in range(4): rand = np.random.randint(256, size=4000, dtype=np.uint8) arr = rand.view(dt) arr[::-1].sort() def test_sort_raises(self): #gh-9404 arr = np.array([0, datetime.now(), 1], dtype=object) for kind in ['q', 'm', 'h']: assert_raises(TypeError, arr.sort, kind=kind) #gh-3879 class Raiser(object): def raises_anything(*args, **kwargs): raise TypeError("SOMETHING ERRORED") __eq__ = __ne__ = __lt__ = __gt__ = __ge__ = __le__ = raises_anything arr = np.array([[Raiser(), n] for n in range(10)]).reshape(-1) np.random.shuffle(arr) for kind in ['q', 'm', 'h']: assert_raises(TypeError, arr.sort, kind=kind) def test_sort_degraded(self): # test degraded dataset would take minutes to run with normal qsort d = np.arange(1000000) do = d.copy() x = d # create a median of 3 killer where each median is the sorted second # last element of the quicksort partition while x.size > 3: mid = x.size // 2 x[mid], x[-2] = x[-2], x[mid] x = x[:-2] assert_equal(np.sort(d), do) assert_equal(d[np.argsort(d)], do) def test_copy(self): def assert_fortran(arr): assert_(arr.flags.fortran) assert_(arr.flags.f_contiguous) assert_(not arr.flags.c_contiguous) def assert_c(arr): assert_(not arr.flags.fortran) assert_(not arr.flags.f_contiguous) assert_(arr.flags.c_contiguous) a = np.empty((2, 2), order='F') # Test copying a Fortran array assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_fortran(a.copy('A')) # Now test starting with a C array. a = np.empty((2, 2), order='C') assert_c(a.copy()) assert_c(a.copy('C')) assert_fortran(a.copy('F')) assert_c(a.copy('A')) def test_sort_order(self): # Test sorting an array with fields x1 = np.array([21, 32, 14]) x2 = np.array(['my', 'first', 'name']) x3 = np.array([3.1, 4.5, 6.2]) r = np.rec.fromarrays([x1, x2, x3], names='id,word,number') r.sort(order=['id']) assert_equal(r.id, np.array([14, 21, 32])) assert_equal(r.word, np.array(['name', 'my', 'first'])) assert_equal(r.number, np.array([6.2, 3.1, 4.5])) r.sort(order=['word']) assert_equal(r.id, np.array([32, 21, 14])) assert_equal(r.word, np.array(['first', 'my', 'name'])) assert_equal(r.number, np.array([4.5, 3.1, 6.2])) r.sort(order=['number']) assert_equal(r.id, np.array([21, 32, 14])) assert_equal(r.word, np.array(['my', 'first', 'name'])) assert_equal(r.number, np.array([3.1, 4.5, 6.2])) assert_raises_regex(ValueError, 'duplicate', lambda: r.sort(order=['id', 'id'])) if sys.byteorder == 'little': strtype = '>i2' else: strtype = '<i2' mydtype = [('name', strchar + '5'), ('col2', strtype)] r = np.array([('a', 1), ('b', 255), ('c', 3), ('d', 258)], dtype=mydtype) r.sort(order='col2') assert_equal(r['col2'], [1, 3, 255, 258]) assert_equal(r, np.array([('a', 1), ('c', 3), ('b', 255), ('d', 258)], dtype=mydtype)) def test_argsort(self): # all c scalar argsorts use the same code with different types # so it suffices to run a quick check with one type. The number # of sorted items must be greater than ~50 to check the actual # algorithm because quick and merge sort fall over to insertion # sort for small arrays. a = np.arange(101) b = a[::-1].copy() for kind in ['q', 'm', 'h']: msg = "scalar argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), a, msg) assert_equal(b.copy().argsort(kind=kind), b, msg) # test complex argsorts. These use the same code as the scalars # but the compare function differs. ai = a*1j + 1 bi = b*1j + 1 for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) ai = a + 1j bi = b + 1j for kind in ['q', 'm', 'h']: msg = "complex argsort, kind=%s" % kind assert_equal(ai.copy().argsort(kind=kind), a, msg) assert_equal(bi.copy().argsort(kind=kind), b, msg) # test argsort of complex arrays requiring byte-swapping, gh-5441 for endianness in '<>': for dt in np.typecodes['Complex']: arr = np.array([1+3.j, 2+2.j, 3+1.j], dtype=endianness + dt) msg = 'byte-swapped complex argsort, dtype={0}'.format(dt) assert_equal(arr.argsort(), np.arange(len(arr), dtype=np.intp), msg) # test string argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)]) b = a[::-1].copy() r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "string argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test unicode argsorts. s = 'aaaaaaaa' a = np.array([s + chr(i) for i in range(101)], dtype=np.unicode) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "unicode argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test object array argsorts. a = np.empty((101,), dtype=object) a[:] = list(range(101)) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "object argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test structured array argsorts. dt = np.dtype([('f', float), ('i', int)]) a = np.array([(i, i) for i in range(101)], dtype=dt) b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'm', 'h']: msg = "structured array argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test datetime64 argsorts. a = np.arange(0, 101, dtype='datetime64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "datetime64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # test timedelta64 argsorts. a = np.arange(0, 101, dtype='timedelta64[D]') b = a[::-1] r = np.arange(101) rr = r[::-1] for kind in ['q', 'h', 'm']: msg = "timedelta64 argsort, kind=%s" % kind assert_equal(a.copy().argsort(kind=kind), r, msg) assert_equal(b.copy().argsort(kind=kind), rr, msg) # check axis handling. This should be the same for all type # specific argsorts, so we only check it for one type and one kind a = np.array([[3, 2], [1, 0]]) b = np.array([[1, 1], [0, 0]]) c = np.array([[1, 0], [1, 0]]) assert_equal(a.copy().argsort(axis=0), b) assert_equal(a.copy().argsort(axis=1), c) assert_equal(a.copy().argsort(), c) # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argsort with axis={0}'.format(axis) assert_equal(np.argsort(a, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argsort with axis=None' assert_equal(np.argsort(a, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) # check that stable argsorts are stable r = np.arange(100) # scalars a = np.zeros(100) assert_equal(a.argsort(kind='m'), r) # complex a = np.zeros(100, dtype=complex) assert_equal(a.argsort(kind='m'), r) # string a = np.array(['aaaaaaaaa' for i in range(100)]) assert_equal(a.argsort(kind='m'), r) # unicode a = np.array(['aaaaaaaaa' for i in range(100)], dtype=np.unicode) assert_equal(a.argsort(kind='m'), r) def test_sort_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.sort, kind=k) assert_raises(ValueError, d.argsort, kind=k) def test_searchsorted(self): # test for floats and complex containing nans. The logic is the # same for all float types so only test double types for now. # The search sorted routines use the compare functions for the # array type, so this checks if that is consistent with the sort # order. # check double a = np.array([0, 1, np.nan]) msg = "Test real searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(3), msg) msg = "Test real searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 4), msg) # check double complex a = np.zeros(9, dtype=np.complex128) a.real += [0, 0, 1, 1, 0, 1, np.nan, np.nan, np.nan] a.imag += [0, 1, 0, 1, np.nan, np.nan, 0, 1, np.nan] msg = "Test complex searchsorted with nans, side='l'" b = a.searchsorted(a, side='l') assert_equal(b, np.arange(9), msg) msg = "Test complex searchsorted with nans, side='r'" b = a.searchsorted(a, side='r') assert_equal(b, np.arange(1, 10), msg) msg = "Test searchsorted with little endian, side='l'" a = np.array([0, 128], dtype='<i4') b = a.searchsorted(np.array(128, dtype='<i4')) assert_equal(b, 1, msg) msg = "Test searchsorted with big endian, side='l'" a = np.array([0, 128], dtype='>i4') b = a.searchsorted(np.array(128, dtype='>i4')) assert_equal(b, 1, msg) # Check 0 elements a = np.ones(0) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 0]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 0, 0]) a = np.ones(1) # Check 1 element b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 1]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 1, 1]) # Check all elements equal a = np.ones(2) b = a.searchsorted([0, 1, 2], 'l') assert_equal(b, [0, 0, 2]) b = a.searchsorted([0, 1, 2], 'r') assert_equal(b, [0, 2, 2]) # Test searching unaligned array a = np.arange(10) aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) unaligned[:] = a # Test searching unaligned array b = unaligned.searchsorted(a, 'l') assert_equal(b, a) b = unaligned.searchsorted(a, 'r') assert_equal(b, a + 1) # Test searching for unaligned keys b = a.searchsorted(unaligned, 'l') assert_equal(b, a) b = a.searchsorted(unaligned, 'r') assert_equal(b, a + 1) # Test smart resetting of binsearch indices a = np.arange(5) b = a.searchsorted([6, 5, 4], 'l') assert_equal(b, [5, 5, 4]) b = a.searchsorted([6, 5, 4], 'r') assert_equal(b, [5, 5, 5]) # Test all type specific binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.arange(2, dtype=dt) out = np.arange(2) else: a = np.arange(0, 5, dtype=dt) out = np.arange(5) b = a.searchsorted(a, 'l') assert_equal(b, out) b = a.searchsorted(a, 'r') assert_equal(b, out + 1) # Test empty array, use a fresh array to get warnings in # valgrind if access happens. e = np.ndarray(shape=0, buffer=b'', dtype=dt) b = e.searchsorted(a, 'l') assert_array_equal(b, np.zeros(len(a), dtype=np.intp)) b = a.searchsorted(e, 'l') assert_array_equal(b, np.zeros(0, dtype=np.intp)) def test_searchsorted_unicode(self): # Test searchsorted on unicode strings. # 1.6.1 contained a string length miscalculation in # arraytypes.c.src:UNICODE_compare() which manifested as # incorrect/inconsistent results from searchsorted. a = np.array(['P:\\20x_dapi_cy3\\20x_dapi_cy3_20100185_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100186_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100187_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100189_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100190_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100191_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100192_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100193_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100194_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100195_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100196_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100197_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100198_1', 'P:\\20x_dapi_cy3\\20x_dapi_cy3_20100199_1'], dtype=np.unicode) ind = np.arange(len(a)) assert_equal([a.searchsorted(v, 'left') for v in a], ind) assert_equal([a.searchsorted(v, 'right') for v in a], ind + 1) assert_equal([a.searchsorted(a[i], 'left') for i in ind], ind) assert_equal([a.searchsorted(a[i], 'right') for i in ind], ind + 1) def test_searchsorted_with_sorter(self): a = np.array([5, 2, 1, 3, 4]) s = np.argsort(a) assert_raises(TypeError, np.searchsorted, a, 0, sorter=(1, (2, 3))) assert_raises(TypeError, np.searchsorted, a, 0, sorter=[1.1]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[1, 2, 3, 4, 5, 6]) # bounds check assert_raises(ValueError, np.searchsorted, a, 4, sorter=[0, 1, 2, 3, 5]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[-1, 0, 1, 2, 3]) assert_raises(ValueError, np.searchsorted, a, 0, sorter=[4, 0, -1, 2, 3]) a = np.random.rand(300) s = a.argsort() b = np.sort(a) k = np.linspace(0, 1, 20) assert_equal(b.searchsorted(k), a.searchsorted(k, sorter=s)) a = np.array([0, 1, 2, 3, 5]*20) s = a.argsort() k = [0, 1, 2, 3, 5] expected = [0, 20, 40, 60, 80] assert_equal(a.searchsorted(k, side='l', sorter=s), expected) expected = [20, 40, 60, 80, 100] assert_equal(a.searchsorted(k, side='r', sorter=s), expected) # Test searching unaligned array keys = np.arange(10) a = keys.copy() np.random.shuffle(s) s = a.argsort() aligned = np.empty(a.itemsize * a.size + 1, 'uint8') unaligned = aligned[1:].view(a.dtype) # Test searching unaligned array unaligned[:] = a b = unaligned.searchsorted(keys, 'l', s) assert_equal(b, keys) b = unaligned.searchsorted(keys, 'r', s) assert_equal(b, keys + 1) # Test searching for unaligned keys unaligned[:] = keys b = a.searchsorted(unaligned, 'l', s) assert_equal(b, keys) b = a.searchsorted(unaligned, 'r', s) assert_equal(b, keys + 1) # Test all type specific indirect binary search functions types = ''.join((np.typecodes['AllInteger'], np.typecodes['AllFloat'], np.typecodes['Datetime'], '?O')) for dt in types: if dt == 'M': dt = 'M8[D]' if dt == '?': a = np.array([1, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([1, 0], dtype=np.int16) out = np.array([1, 0]) else: a = np.array([3, 4, 1, 2, 0], dtype=dt) # We want the sorter array to be of a type that is different # from np.intp in all platforms, to check for #4698 s = np.array([4, 2, 3, 0, 1], dtype=np.int16) out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) # Test empty array, use a fresh array to get warnings in # valgrind if access happens. e = np.ndarray(shape=0, buffer=b'', dtype=dt) b = e.searchsorted(a, 'l', s[:0]) assert_array_equal(b, np.zeros(len(a), dtype=np.intp)) b = a.searchsorted(e, 'l', s) assert_array_equal(b, np.zeros(0, dtype=np.intp)) # Test non-contiguous sorter array a = np.array([3, 4, 1, 2, 0]) srt = np.empty((10,), dtype=np.intp) srt[1::2] = -1 srt[::2] = [4, 2, 3, 0, 1] s = srt[::2] out = np.array([3, 4, 1, 2, 0], dtype=np.intp) b = a.searchsorted(a, 'l', s) assert_equal(b, out) b = a.searchsorted(a, 'r', s) assert_equal(b, out + 1) def test_searchsorted_return_type(self): # Functions returning indices should always return base ndarrays class A(np.ndarray): pass a = np.arange(5).view(A) b = np.arange(1, 3).view(A) s = np.arange(5).view(A) assert_(not isinstance(a.searchsorted(b, 'l'), A)) assert_(not isinstance(a.searchsorted(b, 'r'), A)) assert_(not isinstance(a.searchsorted(b, 'l', s), A)) assert_(not isinstance(a.searchsorted(b, 'r', s), A)) def test_argpartition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.argpartition, 10) assert_raises(ValueError, d.argpartition, -11) # Test also for generic type argpartition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.argpartition, 10) assert_raises(ValueError, d_obj.argpartition, -11) def test_partition_out_of_range(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(ValueError, d.partition, 10) assert_raises(ValueError, d.partition, -11) # Test also for generic type partition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(ValueError, d_obj.partition, 10) assert_raises(ValueError, d_obj.partition, -11) def test_argpartition_integer(self): # Test non-integer values in kth raise an error/ d = np.arange(10) assert_raises(TypeError, d.argpartition, 9.) # Test also for generic type argpartition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(TypeError, d_obj.argpartition, 9.) def test_partition_integer(self): # Test out of range values in kth raise an error, gh-5469 d = np.arange(10) assert_raises(TypeError, d.partition, 9.) # Test also for generic type partition, which uses sorting # and used to not bound check kth d_obj = np.arange(10, dtype=object) assert_raises(TypeError, d_obj.partition, 9.) def test_partition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array partition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), a, msg) msg = 'test empty array partition with axis=None' assert_equal(np.partition(a, 0, axis=None), a.ravel(), msg) def test_argpartition_empty_array(self): # check axis handling for multidimensional empty arrays a = np.array([]) a.shape = (3, 2, 1, 0) for axis in range(-a.ndim, a.ndim): msg = 'test empty array argpartition with axis={0}'.format(axis) assert_equal(np.partition(a, 0, axis=axis), np.zeros_like(a, dtype=np.intp), msg) msg = 'test empty array argpartition with axis=None' assert_equal(np.partition(a, 0, axis=None), np.zeros_like(a.ravel(), dtype=np.intp), msg) def test_partition(self): d = np.arange(10) assert_raises(TypeError, np.partition, d, 2, kind=1) assert_raises(ValueError, np.partition, d, 2, kind="nonsense") assert_raises(ValueError, np.argpartition, d, 2, kind="nonsense") assert_raises(ValueError, d.partition, 2, axis=0, kind="nonsense") assert_raises(ValueError, d.argpartition, 2, axis=0, kind="nonsense") for k in ("introselect",): d = np.array([]) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(np.argpartition(d, 0, kind=k), d) d = np.ones(1) assert_array_equal(np.partition(d, 0, kind=k)[0], d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # kth not modified kth = np.array([30, 15, 5]) okth = kth.copy() np.partition(np.arange(40), kth) assert_array_equal(kth, okth) for r in ([2, 1], [1, 2], [1, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) for r in ([3, 2, 1], [1, 2, 3], [2, 1, 3], [2, 3, 1], [1, 1, 1], [1, 2, 2], [2, 2, 1], [1, 2, 1]): d = np.array(r) tgt = np.sort(d) assert_array_equal(np.partition(d, 0, kind=k)[0], tgt[0]) assert_array_equal(np.partition(d, 1, kind=k)[1], tgt[1]) assert_array_equal(np.partition(d, 2, kind=k)[2], tgt[2]) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) assert_array_equal(d[np.argpartition(d, 1, kind=k)], np.partition(d, 1, kind=k)) assert_array_equal(d[np.argpartition(d, 2, kind=k)], np.partition(d, 2, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.ones(50) assert_array_equal(np.partition(d, 0, kind=k), d) assert_array_equal(d[np.argpartition(d, 0, kind=k)], np.partition(d, 0, kind=k)) # sorted d = np.arange(49) assert_equal(np.partition(d, 5, kind=k)[5], 5) assert_equal(np.partition(d, 15, kind=k)[15], 15) assert_array_equal(d[np.argpartition(d, 5, kind=k)], np.partition(d, 5, kind=k)) assert_array_equal(d[np.argpartition(d, 15, kind=k)], np.partition(d, 15, kind=k)) # rsorted d = np.arange(47)[::-1] assert_equal(np.partition(d, 6, kind=k)[6], 6) assert_equal(np.partition(d, 16, kind=k)[16], 16) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) assert_array_equal(np.partition(d, -6, kind=k), np.partition(d, 41, kind=k)) assert_array_equal(np.partition(d, -16, kind=k), np.partition(d, 31, kind=k)) assert_array_equal(d[np.argpartition(d, -6, kind=k)], np.partition(d, 41, kind=k)) # median of 3 killer, O(n^2) on pure median 3 pivot quickselect # exercises the median of median of 5 code used to keep O(n) d = np.arange(1000000) x = np.roll(d, d.size // 2) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) d = np.arange(1000001) x = np.roll(d, d.size // 2 + 1) mid = x.size // 2 + 1 assert_equal(np.partition(x, mid)[mid], mid) # max d = np.ones(10) d[1] = 4 assert_equal(np.partition(d, (2, -1))[-1], 4) assert_equal(np.partition(d, (2, -1))[2], 1) assert_equal(d[np.argpartition(d, (2, -1))][-1], 4) assert_equal(d[np.argpartition(d, (2, -1))][2], 1) d[1] = np.nan assert_(np.isnan(d[np.argpartition(d, (2, -1))][-1])) assert_(np.isnan(np.partition(d, (2, -1))[-1])) # equal elements d = np.arange(47) % 7 tgt = np.sort(np.arange(47) % 7) np.random.shuffle(d) for i in range(d.size): assert_equal(np.partition(d, i, kind=k)[i], tgt[i]) assert_array_equal(d[np.argpartition(d, 6, kind=k)], np.partition(d, 6, kind=k)) assert_array_equal(d[np.argpartition(d, 16, kind=k)], np.partition(d, 16, kind=k)) for i in range(d.size): d[i:].partition(0, kind=k) assert_array_equal(d, tgt) d = np.array([0, 1, 2, 3, 4, 5, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 9]) kth = [0, 3, 19, 20] assert_equal(np.partition(d, kth, kind=k)[kth], (0, 3, 7, 7)) assert_equal(d[np.argpartition(d, kth, kind=k)][kth], (0, 3, 7, 7)) d = np.array([2, 1]) d.partition(0, kind=k) assert_raises(ValueError, d.partition, 2) assert_raises(np.AxisError, d.partition, 3, axis=1) assert_raises(ValueError, np.partition, d, 2) assert_raises(np.AxisError, np.partition, d, 2, axis=1) assert_raises(ValueError, d.argpartition, 2) assert_raises(np.AxisError, d.argpartition, 3, axis=1) assert_raises(ValueError, np.argpartition, d, 2) assert_raises(np.AxisError, np.argpartition, d, 2, axis=1) d = np.arange(10).reshape((2, 5)) d.partition(1, axis=0, kind=k) d.partition(4, axis=1, kind=k) np.partition(d, 1, axis=0, kind=k) np.partition(d, 4, axis=1, kind=k) np.partition(d, 1, axis=None, kind=k) np.partition(d, 9, axis=None, kind=k) d.argpartition(1, axis=0, kind=k) d.argpartition(4, axis=1, kind=k) np.argpartition(d, 1, axis=0, kind=k) np.argpartition(d, 4, axis=1, kind=k) np.argpartition(d, 1, axis=None, kind=k) np.argpartition(d, 9, axis=None, kind=k) assert_raises(ValueError, d.partition, 2, axis=0) assert_raises(ValueError, d.partition, 11, axis=1) assert_raises(TypeError, d.partition, 2, axis=None) assert_raises(ValueError, np.partition, d, 9, axis=1) assert_raises(ValueError, np.partition, d, 11, axis=None) assert_raises(ValueError, d.argpartition, 2, axis=0) assert_raises(ValueError, d.argpartition, 11, axis=1) assert_raises(ValueError, np.argpartition, d, 9, axis=1) assert_raises(ValueError, np.argpartition, d, 11, axis=None) td = [(dt, s) for dt in [np.int32, np.float32, np.complex64] for s in (9, 16)] for dt, s in td: aae = assert_array_equal at = assert_ d = np.arange(s, dtype=dt) np.random.shuffle(d) d1 = np.tile(np.arange(s, dtype=dt), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) for i in range(d.size): p = np.partition(d, i, kind=k) assert_equal(p[i], i) # all before are smaller assert_array_less(p[:i], p[i]) # all after are larger assert_array_less(p[i], p[i + 1:]) aae(p, d[np.argpartition(d, i, kind=k)]) p = np.partition(d1, i, axis=1, kind=k) aae(p[:, i], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:, :i].T <= p[:, i]).all(), msg="%d: %r <= %r" % (i, p[:, i], p[:, :i].T)) at((p[:, i + 1:].T > p[:, i]).all(), msg="%d: %r < %r" % (i, p[:, i], p[:, i + 1:].T)) aae(p, d1[np.arange(d1.shape[0])[:, None], np.argpartition(d1, i, axis=1, kind=k)]) p = np.partition(d0, i, axis=0, kind=k) aae(p[i, :], np.array([i] * d1.shape[0], dtype=dt)) # array_less does not seem to work right at((p[:i, :] <= p[i, :]).all(), msg="%d: %r <= %r" % (i, p[i, :], p[:i, :])) at((p[i + 1:, :] > p[i, :]).all(), msg="%d: %r < %r" % (i, p[i, :], p[:, i + 1:])) aae(p, d0[np.argpartition(d0, i, axis=0, kind=k), np.arange(d0.shape[1])[None, :]]) # check inplace dc = d.copy() dc.partition(i, kind=k) assert_equal(dc, np.partition(d, i, kind=k)) dc = d0.copy() dc.partition(i, axis=0, kind=k) assert_equal(dc, np.partition(d0, i, axis=0, kind=k)) dc = d1.copy() dc.partition(i, axis=1, kind=k) assert_equal(dc, np.partition(d1, i, axis=1, kind=k)) def assert_partitioned(self, d, kth): prev = 0 for k in np.sort(kth): assert_array_less(d[prev:k], d[k], err_msg='kth %d' % k) assert_((d[k:] >= d[k]).all(), msg="kth %d, %r not greater equal %d" % (k, d[k:], d[k])) prev = k + 1 def test_partition_iterative(self): d = np.arange(17) kth = (0, 1, 2, 429, 231) assert_raises(ValueError, d.partition, kth) assert_raises(ValueError, d.argpartition, kth) d = np.arange(10).reshape((2, 5)) assert_raises(ValueError, d.partition, kth, axis=0) assert_raises(ValueError, d.partition, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=1) assert_raises(ValueError, np.partition, d, kth, axis=None) d = np.array([3, 4, 2, 1]) p = np.partition(d, (0, 3)) self.assert_partitioned(p, (0, 3)) self.assert_partitioned(d[np.argpartition(d, (0, 3))], (0, 3)) assert_array_equal(p, np.partition(d, (-3, -1))) assert_array_equal(p, d[np.argpartition(d, (-3, -1))]) d = np.arange(17) np.random.shuffle(d) d.partition(range(d.size)) assert_array_equal(np.arange(17), d) np.random.shuffle(d) assert_array_equal(np.arange(17), d[d.argpartition(range(d.size))]) # test unsorted kth d = np.arange(17) np.random.shuffle(d) keys = np.array([1, 3, 8, -2]) np.random.shuffle(d) p = np.partition(d, keys) self.assert_partitioned(p, keys) p = d[np.argpartition(d, keys)] self.assert_partitioned(p, keys) np.random.shuffle(keys) assert_array_equal(np.partition(d, keys), p) assert_array_equal(d[np.argpartition(d, keys)], p) # equal kth d = np.arange(20)[::-1] self.assert_partitioned(np.partition(d, [5]*4), [5]) self.assert_partitioned(np.partition(d, [5]*4 + [6, 13]), [5]*4 + [6, 13]) self.assert_partitioned(d[np.argpartition(d, [5]*4)], [5]) self.assert_partitioned(d[np.argpartition(d, [5]*4 + [6, 13])], [5]*4 + [6, 13]) d = np.arange(12) np.random.shuffle(d) d1 = np.tile(np.arange(12), (4, 1)) map(np.random.shuffle, d1) d0 = np.transpose(d1) kth = (1, 6, 7, -1) p = np.partition(d1, kth, axis=1) pa = d1[np.arange(d1.shape[0])[:, None], d1.argpartition(kth, axis=1)] assert_array_equal(p, pa) for i in range(d1.shape[0]): self.assert_partitioned(p[i,:], kth) p = np.partition(d0, kth, axis=0) pa = d0[np.argpartition(d0, kth, axis=0), np.arange(d0.shape[1])[None,:]] assert_array_equal(p, pa) for i in range(d0.shape[1]): self.assert_partitioned(p[:, i], kth) def test_partition_cdtype(self): d = np.array([('Galahad', 1.7, 38), ('Arthur', 1.8, 41), ('Lancelot', 1.9, 38)], dtype=[('name', '|S10'), ('height', '<f8'), ('age', '<i4')]) tgt = np.sort(d, order=['age', 'height']) assert_array_equal(np.partition(d, range(d.size), order=['age', 'height']), tgt) assert_array_equal(d[np.argpartition(d, range(d.size), order=['age', 'height'])], tgt) for k in range(d.size): assert_equal(np.partition(d, k, order=['age', 'height'])[k], tgt[k]) assert_equal(d[np.argpartition(d, k, order=['age', 'height'])][k], tgt[k]) d = np.array(['Galahad', 'Arthur', 'zebra', 'Lancelot']) tgt = np.sort(d) assert_array_equal(np.partition(d, range(d.size)), tgt) for k in range(d.size): assert_equal(np.partition(d, k)[k], tgt[k]) assert_equal(d[np.argpartition(d, k)][k], tgt[k]) def test_partition_unicode_kind(self): d = np.arange(10) k = b'\xc3\xa4'.decode("UTF8") assert_raises(ValueError, d.partition, 2, kind=k) assert_raises(ValueError, d.argpartition, 2, kind=k) def test_partition_fuzz(self): # a few rounds of random data testing for j in range(10, 30): for i in range(1, j - 2): d = np.arange(j) np.random.shuffle(d) d = d % np.random.randint(2, 30) idx = np.random.randint(d.size) kth = [0, idx, i, i + 1] tgt = np.sort(d)[kth] assert_array_equal(np.partition(d, kth)[kth], tgt, err_msg="data: %r\n kth: %r" % (d, kth)) def test_argpartition_gh5524(self): # A test for functionality of argpartition on lists. d = [6,7,3,2,9,0] p = np.argpartition(d,1) self.assert_partitioned(np.array(d)[p],[1]) def test_flatten(self): x0 = np.array([[1, 2, 3], [4, 5, 6]], np.int32) x1 = np.array([[[1, 2], [3, 4]], [[5, 6], [7, 8]]], np.int32) y0 = np.array([1, 2, 3, 4, 5, 6], np.int32) y0f = np.array([1, 4, 2, 5, 3, 6], np.int32) y1 = np.array([1, 2, 3, 4, 5, 6, 7, 8], np.int32) y1f = np.array([1, 5, 3, 7, 2, 6, 4, 8], np.int32) assert_equal(x0.flatten(), y0) assert_equal(x0.flatten('F'), y0f) assert_equal(x0.flatten('F'), x0.T.flatten()) assert_equal(x1.flatten(), y1) assert_equal(x1.flatten('F'), y1f) assert_equal(x1.flatten('F'), x1.T.flatten()) @pytest.mark.parametrize('func', (np.dot, np.matmul)) def test_arr_mult(self, func): a = np.array([[1, 0], [0, 1]]) b = np.array([[0, 1], [1, 0]]) c = np.array([[9, 1], [1, -9]]) d = np.arange(24).reshape(4, 6) ddt = np.array( [[ 55, 145, 235, 325], [ 145, 451, 757, 1063], [ 235, 757, 1279, 1801], [ 325, 1063, 1801, 2539]] ) dtd = np.array( [[504, 540, 576, 612, 648, 684], [540, 580, 620, 660, 700, 740], [576, 620, 664, 708, 752, 796], [612, 660, 708, 756, 804, 852], [648, 700, 752, 804, 856, 908], [684, 740, 796, 852, 908, 964]] ) # gemm vs syrk optimizations for et in [np.float32, np.float64, np.complex64, np.complex128]: eaf = a.astype(et) assert_equal(func(eaf, eaf), eaf) assert_equal(func(eaf.T, eaf), eaf) assert_equal(func(eaf, eaf.T), eaf) assert_equal(func(eaf.T, eaf.T), eaf) assert_equal(func(eaf.T.copy(), eaf), eaf) assert_equal(func(eaf, eaf.T.copy()), eaf) assert_equal(func(eaf.T.copy(), eaf.T.copy()), eaf) # syrk validations for et in [np.float32, np.float64, np.complex64, np.complex128]: eaf = a.astype(et) ebf = b.astype(et) assert_equal(func(ebf, ebf), eaf) assert_equal(func(ebf.T, ebf), eaf) assert_equal(func(ebf, ebf.T), eaf) assert_equal(func(ebf.T, ebf.T), eaf) # syrk - different shape, stride, and view validations for et in [np.float32, np.float64, np.complex64, np.complex128]: edf = d.astype(et) assert_equal( func(edf[::-1, :], edf.T), func(edf[::-1, :].copy(), edf.T.copy()) ) assert_equal( func(edf[:, ::-1], edf.T), func(edf[:, ::-1].copy(), edf.T.copy()) ) assert_equal( func(edf, edf[::-1, :].T), func(edf, edf[::-1, :].T.copy()) ) assert_equal( func(edf, edf[:, ::-1].T), func(edf, edf[:, ::-1].T.copy()) ) assert_equal( func(edf[:edf.shape[0] // 2, :], edf[::2, :].T), func(edf[:edf.shape[0] // 2, :].copy(), edf[::2, :].T.copy()) ) assert_equal( func(edf[::2, :], edf[:edf.shape[0] // 2, :].T), func(edf[::2, :].copy(), edf[:edf.shape[0] // 2, :].T.copy()) ) # syrk - different shape for et in [np.float32, np.float64, np.complex64, np.complex128]: edf = d.astype(et) eddtf = ddt.astype(et) edtdf = dtd.astype(et) assert_equal(func(edf, edf.T), eddtf) assert_equal(func(edf.T, edf), edtdf) @pytest.mark.parametrize('func', (np.dot, np.matmul)) @pytest.mark.parametrize('dtype', 'ifdFD') def test_no_dgemv(self, func, dtype): # check vector arg for contiguous before gemv # gh-12156 a = np.arange(8.0, dtype=dtype).reshape(2, 4) b = np.broadcast_to(1., (4, 1)) ret1 = func(a, b) ret2 = func(a, b.copy()) assert_equal(ret1, ret2) ret1 = func(b.T, a.T) ret2 = func(b.T.copy(), a.T) assert_equal(ret1, ret2) # check for unaligned data dt = np.dtype(dtype) a = np.zeros(8 * dt.itemsize // 2 + 1, dtype='int16')[1:].view(dtype) a = a.reshape(2, 4) b = a[0] # make sure it is not aligned assert_(a.__array_interface__['data'][0] % dt.itemsize != 0) ret1 = func(a, b) ret2 = func(a.copy(), b.copy()) assert_equal(ret1, ret2) ret1 = func(b.T, a.T) ret2 = func(b.T.copy(), a.T.copy()) assert_equal(ret1, ret2) def test_dot(self): a = np.array([[1, 0], [0, 1]]) b = np.array([[0, 1], [1, 0]]) c = np.array([[9, 1], [1, -9]]) # function versus methods assert_equal(np.dot(a, b), a.dot(b)) assert_equal(np.dot(np.dot(a, b), c), a.dot(b).dot(c)) # test passing in an output array c = np.zeros_like(a) a.dot(b, c) assert_equal(c, np.dot(a, b)) # test keyword args c = np.zeros_like(a) a.dot(b=b, out=c) assert_equal(c, np.dot(a, b)) def test_dot_type_mismatch(self): c = 1. A = np.array((1,1), dtype='i,i') assert_raises(TypeError, np.dot, c, A) assert_raises(TypeError, np.dot, A, c) def test_dot_out_mem_overlap(self): np.random.seed(1) # Test BLAS and non-BLAS code paths, including all dtypes # that dot() supports dtypes = [np.dtype(code) for code in np.typecodes['All'] if code not in 'USVM'] for dtype in dtypes: a = np.random.rand(3, 3).astype(dtype) # Valid dot() output arrays must be aligned b = _aligned_zeros((3, 3), dtype=dtype) b[...] = np.random.rand(3, 3) y = np.dot(a, b) x = np.dot(a, b, out=b) assert_equal(x, y, err_msg=repr(dtype)) # Check invalid output array assert_raises(ValueError, np.dot, a, b, out=b[::2]) assert_raises(ValueError, np.dot, a, b, out=b.T) def test_dot_matmul_out(self): # gh-9641 class Sub(np.ndarray): pass a = np.ones((2, 2)).view(Sub) b = np.ones((2, 2)).view(Sub) out = np.ones((2, 2)) # make sure out can be any ndarray (not only subclass of inputs) np.dot(a, b, out=out) np.matmul(a, b, out=out) def test_dot_matmul_inner_array_casting_fails(self): class A(object): def __array__(self, *args, **kwargs): raise NotImplementedError # Don't override the error from calling __array__() assert_raises(NotImplementedError, np.dot, A(), A()) assert_raises(NotImplementedError, np.matmul, A(), A()) assert_raises(NotImplementedError, np.inner, A(), A()) def test_matmul_out(self): # overlapping memory a = np.arange(18).reshape(2, 3, 3) b = np.matmul(a, a) c = np.matmul(a, a, out=a) assert_(c is a) assert_equal(c, b) a = np.arange(18).reshape(2, 3, 3) c = np.matmul(a, a, out=a[::-1, ...]) assert_(c.base is a.base) assert_equal(c, b) def test_diagonal(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.diagonal(), [0, 5, 10]) assert_equal(a.diagonal(0), [0, 5, 10]) assert_equal(a.diagonal(1), [1, 6, 11]) assert_equal(a.diagonal(-1), [4, 9]) assert_raises(np.AxisError, a.diagonal, axis1=0, axis2=5) assert_raises(np.AxisError, a.diagonal, axis1=5, axis2=0) assert_raises(np.AxisError, a.diagonal, axis1=5, axis2=5) assert_raises(ValueError, a.diagonal, axis1=1, axis2=1) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.diagonal(), [[0, 6], [1, 7]]) assert_equal(b.diagonal(0), [[0, 6], [1, 7]]) assert_equal(b.diagonal(1), [[2], [3]]) assert_equal(b.diagonal(-1), [[4], [5]]) assert_raises(ValueError, b.diagonal, axis1=0, axis2=0) assert_equal(b.diagonal(0, 1, 2), [[0, 3], [4, 7]]) assert_equal(b.diagonal(0, 0, 1), [[0, 6], [1, 7]]) assert_equal(b.diagonal(offset=1, axis1=0, axis2=2), [[1], [3]]) # Order of axis argument doesn't matter: assert_equal(b.diagonal(0, 2, 1), [[0, 3], [4, 7]]) def test_diagonal_view_notwriteable(self): # this test is only for 1.9, the diagonal view will be # writeable in 1.10. a = np.eye(3).diagonal() assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diagonal(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) a = np.diag(np.eye(3)) assert_(not a.flags.writeable) assert_(not a.flags.owndata) def test_diagonal_memleak(self): # Regression test for a bug that crept in at one point a = np.zeros((100, 100)) if HAS_REFCOUNT: assert_(sys.getrefcount(a) < 50) for i in range(100): a.diagonal() if HAS_REFCOUNT: assert_(sys.getrefcount(a) < 50) def test_size_zero_memleak(self): # Regression test for issue 9615 # Exercises a special-case code path for dot products of length # zero in cblasfuncs (making it is specific to floating dtypes). a = np.array([], dtype=np.float64) x = np.array(2.0) for _ in range(100): np.dot(a, a, out=x) if HAS_REFCOUNT: assert_(sys.getrefcount(x) < 50) def test_trace(self): a = np.arange(12).reshape((3, 4)) assert_equal(a.trace(), 15) assert_equal(a.trace(0), 15) assert_equal(a.trace(1), 18) assert_equal(a.trace(-1), 13) b = np.arange(8).reshape((2, 2, 2)) assert_equal(b.trace(), [6, 8]) assert_equal(b.trace(0), [6, 8]) assert_equal(b.trace(1), [2, 3]) assert_equal(b.trace(-1), [4, 5]) assert_equal(b.trace(0, 0, 1), [6, 8]) assert_equal(b.trace(0, 0, 2), [5, 9]) assert_equal(b.trace(0, 1, 2), [3, 11]) assert_equal(b.trace(offset=1, axis1=0, axis2=2), [1, 3]) def test_trace_subclass(self): # The class would need to overwrite trace to ensure single-element # output also has the right subclass. class MyArray(np.ndarray): pass b = np.arange(8).reshape((2, 2, 2)).view(MyArray) t = b.trace() assert_(isinstance(t, MyArray)) def test_put(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] for dt in icodes + fcodes + 'O': tgt = np.array([0, 1, 0, 3, 0, 5], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [1, 3, 5]) assert_equal(a, tgt.reshape(2, 3)) for dt in '?': tgt = np.array([False, True, False, True, False, True], dtype=dt) # test 1-d a = np.zeros(6, dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt) # test 2-d a = np.zeros((2, 3), dtype=dt) a.put([1, 3, 5], [True]*3) assert_equal(a, tgt.reshape(2, 3)) # check must be writeable a = np.zeros(6) a.flags.writeable = False assert_raises(ValueError, a.put, [1, 3, 5], [1, 3, 5]) # when calling np.put, make sure a # TypeError is raised if the object # isn't an ndarray bad_array = [1, 2, 3] assert_raises(TypeError, np.put, bad_array, [0, 2], 5) def test_ravel(self): a = np.array([[0, 1], [2, 3]]) assert_equal(a.ravel(), [0, 1, 2, 3]) assert_(not a.ravel().flags.owndata) assert_equal(a.ravel('F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='C'), [0, 1, 2, 3]) assert_equal(a.ravel(order='F'), [0, 2, 1, 3]) assert_equal(a.ravel(order='A'), [0, 1, 2, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_equal(a.ravel(order='K'), [0, 1, 2, 3]) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) a = np.array([[0, 1], [2, 3]], order='F') assert_equal(a.ravel(), [0, 1, 2, 3]) assert_equal(a.ravel(order='A'), [0, 2, 1, 3]) assert_equal(a.ravel(order='K'), [0, 2, 1, 3]) assert_(not a.ravel(order='A').flags.owndata) assert_(not a.ravel(order='K').flags.owndata) assert_equal(a.ravel(), a.reshape(-1)) assert_equal(a.ravel(order='A'), a.reshape(-1, order='A')) a = np.array([[0, 1], [2, 3]])[::-1, :] assert_equal(a.ravel(), [2, 3, 0, 1]) assert_equal(a.ravel(order='C'), [2, 3, 0, 1]) assert_equal(a.ravel(order='F'), [2, 0, 3, 1]) assert_equal(a.ravel(order='A'), [2, 3, 0, 1]) # 'K' doesn't reverse the axes of negative strides assert_equal(a.ravel(order='K'), [2, 3, 0, 1]) assert_(a.ravel(order='K').flags.owndata) # Test simple 1-d copy behaviour: a = np.arange(10)[::2] assert_(a.ravel('K').flags.owndata) assert_(a.ravel('C').flags.owndata) assert_(a.ravel('F').flags.owndata) # Not contiguous and 1-sized axis with non matching stride a = np.arange(2**3 * 2)[::2] a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('K'), np.arange(0, 15, 2)) # contiguous and 1-sized axis with non matching stride works: a = np.arange(2**3) a = a.reshape(2, 1, 2, 2).swapaxes(-1, -2) strides = list(a.strides) strides[1] = 123 a.strides = strides assert_(np.may_share_memory(a.ravel(order='K'), a)) assert_equal(a.ravel(order='K'), np.arange(2**3)) # Test negative strides (not very interesting since non-contiguous): a = np.arange(4)[::-1].reshape(2, 2) assert_(a.ravel(order='C').flags.owndata) assert_(a.ravel(order='K').flags.owndata) assert_equal(a.ravel('C'), [3, 2, 1, 0]) assert_equal(a.ravel('K'), [3, 2, 1, 0]) # 1-element tidy strides test (NPY_RELAXED_STRIDES_CHECKING): a = np.array([[1]]) a.strides = (123, 432) # If the stride is not 8, NPY_RELAXED_STRIDES_CHECKING is messing # them up on purpose: if np.ones(1).strides == (8,): assert_(np.may_share_memory(a.ravel('K'), a)) assert_equal(a.ravel('K').strides, (a.dtype.itemsize,)) for order in ('C', 'F', 'A', 'K'): # 0-d corner case: a = np.array(0) assert_equal(a.ravel(order), [0]) assert_(np.may_share_memory(a.ravel(order), a)) # Test that certain non-inplace ravels work right (mostly) for 'K': b = np.arange(2**4 * 2)[::2].reshape(2, 2, 2, 2) a = b[..., ::2] assert_equal(a.ravel('K'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('C'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('A'), [0, 4, 8, 12, 16, 20, 24, 28]) assert_equal(a.ravel('F'), [0, 16, 8, 24, 4, 20, 12, 28]) a = b[::2, ...] assert_equal(a.ravel('K'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('C'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('A'), [0, 2, 4, 6, 8, 10, 12, 14]) assert_equal(a.ravel('F'), [0, 8, 4, 12, 2, 10, 6, 14]) def test_ravel_subclass(self): class ArraySubclass(np.ndarray): pass a = np.arange(10).view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) a = np.arange(10)[::2].view(ArraySubclass) assert_(isinstance(a.ravel('C'), ArraySubclass)) assert_(isinstance(a.ravel('F'), ArraySubclass)) assert_(isinstance(a.ravel('A'), ArraySubclass)) assert_(isinstance(a.ravel('K'), ArraySubclass)) def test_swapaxes(self): a = np.arange(1*2*3*4).reshape(1, 2, 3, 4).copy() idx = np.indices(a.shape) assert_(a.flags['OWNDATA']) b = a.copy() # check exceptions assert_raises(np.AxisError, a.swapaxes, -5, 0) assert_raises(np.AxisError, a.swapaxes, 4, 0) assert_raises(np.AxisError, a.swapaxes, 0, -5) assert_raises(np.AxisError, a.swapaxes, 0, 4) for i in range(-4, 4): for j in range(-4, 4): for k, src in enumerate((a, b)): c = src.swapaxes(i, j) # check shape shape = list(src.shape) shape[i] = src.shape[j] shape[j] = src.shape[i] assert_equal(c.shape, shape, str((i, j, k))) # check array contents i0, i1, i2, i3 = [dim-1 for dim in c.shape] j0, j1, j2, j3 = [dim-1 for dim in src.shape] assert_equal(src[idx[j0], idx[j1], idx[j2], idx[j3]], c[idx[i0], idx[i1], idx[i2], idx[i3]], str((i, j, k))) # check a view is always returned, gh-5260 assert_(not c.flags['OWNDATA'], str((i, j, k))) # check on non-contiguous input array if k == 1: b = c def test_conjugate(self): a = np.array([1-1j, 1+1j, 23+23.0j]) ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 23+23.0j], 'F') ac = a.conj() assert_equal(a.real, ac.real) assert_equal(a.imag, -ac.imag) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1, 2, 3]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1.0, 2.0, 3.0]) ac = a.conj() assert_equal(a, ac) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1+1j, 1, 2.0], object) ac = a.conj() assert_equal(ac, [k.conjugate() for k in a]) assert_equal(ac, a.conjugate()) assert_equal(ac, np.conjugate(a)) a = np.array([1-1j, 1, 2.0, 'f'], object) assert_raises(AttributeError, lambda: a.conj()) assert_raises(AttributeError, lambda: a.conjugate()) def test__complex__(self): dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'f', 'd', 'g', 'F', 'D', 'G', '?', 'O'] for dt in dtypes: a = np.array(7, dtype=dt) b = np.array([7], dtype=dt) c = np.array([[[[[7]]]]], dtype=dt) msg = 'dtype: {0}'.format(dt) ap = complex(a) assert_equal(ap, a, msg) bp = complex(b) assert_equal(bp, b, msg) cp = complex(c) assert_equal(cp, c, msg) def test__complex__should_not_work(self): dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8', 'f', 'd', 'g', 'F', 'D', 'G', '?', 'O'] for dt in dtypes: a = np.array([1, 2, 3], dtype=dt) assert_raises(TypeError, complex, a) dt = np.dtype([('a', 'f8'), ('b', 'i1')]) b = np.array((1.0, 3), dtype=dt) assert_raises(TypeError, complex, b) c = np.array([(1.0, 3), (2e-3, 7)], dtype=dt) assert_raises(TypeError, complex, c) d = np.array('1+1j') assert_raises(TypeError, complex, d) e = np.array(['1+1j'], 'U') assert_raises(TypeError, complex, e) class TestCequenceMethods(object): def test_array_contains(self): assert_(4.0 in np.arange(16.).reshape(4,4)) assert_(20.0 not in np.arange(16.).reshape(4,4)) class TestBinop(object): def test_inplace(self): # test refcount 1 inplace conversion assert_array_almost_equal(np.array([0.5]) * np.array([1.0, 2.0]), [0.5, 1.0]) d = np.array([0.5, 0.5])[::2] assert_array_almost_equal(d * (d * np.array([1.0, 2.0])), [0.25, 0.5]) a = np.array([0.5]) b = np.array([0.5]) c = a + b c = a - b c = a * b c = a / b assert_equal(a, b) assert_almost_equal(c, 1.) c = a + b * 2. / b * a - a / b assert_equal(a, b) assert_equal(c, 0.5) # true divide a = np.array([5]) b = np.array([3]) c = (a * a) / b assert_almost_equal(c, 25 / 3) assert_equal(a, 5) assert_equal(b, 3) # ndarray.__rop__ always calls ufunc # ndarray.__iop__ always calls ufunc # ndarray.__op__, __rop__: # - defer if other has __array_ufunc__ and it is None # or other is not a subclass and has higher array priority # - else, call ufunc def test_ufunc_binop_interaction(self): # Python method name (without underscores) # -> (numpy ufunc, has_in_place_version, preferred_dtype) ops = { 'add': (np.add, True, float), 'sub': (np.subtract, True, float), 'mul': (np.multiply, True, float), 'truediv': (np.true_divide, True, float), 'floordiv': (np.floor_divide, True, float), 'mod': (np.remainder, True, float), 'divmod': (np.divmod, False, float), 'pow': (np.power, True, int), 'lshift': (np.left_shift, True, int), 'rshift': (np.right_shift, True, int), 'and': (np.bitwise_and, True, int), 'xor': (np.bitwise_xor, True, int), 'or': (np.bitwise_or, True, int), # 'ge': (np.less_equal, False), # 'gt': (np.less, False), # 'le': (np.greater_equal, False), # 'lt': (np.greater, False), # 'eq': (np.equal, False), # 'ne': (np.not_equal, False), } if sys.version_info >= (3, 5): ops['matmul'] = (np.matmul, False, float) class Coerced(Exception): pass def array_impl(self): raise Coerced def op_impl(self, other): return "forward" def rop_impl(self, other): return "reverse" def iop_impl(self, other): return "in-place" def array_ufunc_impl(self, ufunc, method, *args, **kwargs): return ("__array_ufunc__", ufunc, method, args, kwargs) # Create an object with the given base, in the given module, with a # bunch of placeholder __op__ methods, and optionally a # __array_ufunc__ and __array_priority__. def make_obj(base, array_priority=False, array_ufunc=False, alleged_module="__main__"): class_namespace = {"__array__": array_impl} if array_priority is not False: class_namespace["__array_priority__"] = array_priority for op in ops: class_namespace["__{0}__".format(op)] = op_impl class_namespace["__r{0}__".format(op)] = rop_impl class_namespace["__i{0}__".format(op)] = iop_impl if array_ufunc is not False: class_namespace["__array_ufunc__"] = array_ufunc eval_namespace = {"base": base, "class_namespace": class_namespace, "__name__": alleged_module, } MyType = eval("type('MyType', (base,), class_namespace)", eval_namespace) if issubclass(MyType, np.ndarray): # Use this range to avoid special case weirdnesses around # divide-by-0, pow(x, 2), overflow due to pow(big, big), etc. return np.arange(3, 7).reshape(2, 2).view(MyType) else: return MyType() def check(obj, binop_override_expected, ufunc_override_expected, inplace_override_expected, check_scalar=True): for op, (ufunc, has_inplace, dtype) in ops.items(): err_msg = ('op: %s, ufunc: %s, has_inplace: %s, dtype: %s' % (op, ufunc, has_inplace, dtype)) check_objs = [np.arange(3, 7, dtype=dtype).reshape(2, 2)] if check_scalar: check_objs.append(check_objs[0][0]) for arr in check_objs: arr_method = getattr(arr, "__{0}__".format(op)) def first_out_arg(result): if op == "divmod": assert_(isinstance(result, tuple)) return result[0] else: return result # arr __op__ obj if binop_override_expected: assert_equal(arr_method(obj), NotImplemented, err_msg) elif ufunc_override_expected: assert_equal(arr_method(obj)[0], "__array_ufunc__", err_msg) else: if (isinstance(obj, np.ndarray) and (type(obj).__array_ufunc__ is np.ndarray.__array_ufunc__)): # __array__ gets ignored res = first_out_arg(arr_method(obj)) assert_(res.__class__ is obj.__class__, err_msg) else: assert_raises((TypeError, Coerced), arr_method, obj, err_msg=err_msg) # obj __op__ arr arr_rmethod = getattr(arr, "__r{0}__".format(op)) if ufunc_override_expected: res = arr_rmethod(obj) assert_equal(res[0], "__array_ufunc__", err_msg=err_msg) assert_equal(res[1], ufunc, err_msg=err_msg) else: if (isinstance(obj, np.ndarray) and (type(obj).__array_ufunc__ is np.ndarray.__array_ufunc__)): # __array__ gets ignored res = first_out_arg(arr_rmethod(obj)) assert_(res.__class__ is obj.__class__, err_msg) else: # __array_ufunc__ = "asdf" creates a TypeError assert_raises((TypeError, Coerced), arr_rmethod, obj, err_msg=err_msg) # arr __iop__ obj # array scalars don't have in-place operators if has_inplace and isinstance(arr, np.ndarray): arr_imethod = getattr(arr, "__i{0}__".format(op)) if inplace_override_expected: assert_equal(arr_method(obj), NotImplemented, err_msg=err_msg) elif ufunc_override_expected: res = arr_imethod(obj) assert_equal(res[0], "__array_ufunc__", err_msg) assert_equal(res[1], ufunc, err_msg) assert_(type(res[-1]["out"]) is tuple, err_msg) assert_(res[-1]["out"][0] is arr, err_msg) else: if (isinstance(obj, np.ndarray) and (type(obj).__array_ufunc__ is np.ndarray.__array_ufunc__)): # __array__ gets ignored assert_(arr_imethod(obj) is arr, err_msg) else: assert_raises((TypeError, Coerced), arr_imethod, obj, err_msg=err_msg) op_fn = getattr(operator, op, None) if op_fn is None: op_fn = getattr(operator, op + "_", None) if op_fn is None: op_fn = getattr(builtins, op) assert_equal(op_fn(obj, arr), "forward", err_msg) if not isinstance(obj, np.ndarray): if binop_override_expected: assert_equal(op_fn(arr, obj), "reverse", err_msg) elif ufunc_override_expected: assert_equal(op_fn(arr, obj)[0], "__array_ufunc__", err_msg) if ufunc_override_expected: assert_equal(ufunc(obj, arr)[0], "__array_ufunc__", err_msg) # No array priority, no array_ufunc -> nothing called check(make_obj(object), False, False, False) # Negative array priority, no array_ufunc -> nothing called # (has to be very negative, because scalar priority is -1000000.0) check(make_obj(object, array_priority=-2**30), False, False, False) # Positive array priority, no array_ufunc -> binops and iops only check(make_obj(object, array_priority=1), True, False, True) # ndarray ignores array_priority for ndarray subclasses check(make_obj(np.ndarray, array_priority=1), False, False, False, check_scalar=False) # Positive array_priority and array_ufunc -> array_ufunc only check(make_obj(object, array_priority=1, array_ufunc=array_ufunc_impl), False, True, False) check(make_obj(np.ndarray, array_priority=1, array_ufunc=array_ufunc_impl), False, True, False) # array_ufunc set to None -> defer binops only check(make_obj(object, array_ufunc=None), True, False, False) check(make_obj(np.ndarray, array_ufunc=None), True, False, False, check_scalar=False) def test_ufunc_override_normalize_signature(self): # gh-5674 class SomeClass(object): def __array_ufunc__(self, ufunc, method, *inputs, **kw): return kw a = SomeClass() kw = np.add(a, [1]) assert_('sig' not in kw and 'signature' not in kw) kw = np.add(a, [1], sig='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') kw = np.add(a, [1], signature='ii->i') assert_('sig' not in kw and 'signature' in kw) assert_equal(kw['signature'], 'ii->i') def test_array_ufunc_index(self): # Check that index is set appropriately, also if only an output # is passed on (latter is another regression tests for github bug 4753) # This also checks implicitly that 'out' is always a tuple. class CheckIndex(object): def __array_ufunc__(self, ufunc, method, *inputs, **kw): for i, a in enumerate(inputs): if a is self: return i # calls below mean we must be in an output. for j, a in enumerate(kw['out']): if a is self: return (j,) a = CheckIndex() dummy = np.arange(2.) # 1 input, 1 output assert_equal(np.sin(a), 0) assert_equal(np.sin(dummy, a), (0,)) assert_equal(np.sin(dummy, out=a), (0,)) assert_equal(np.sin(dummy, out=(a,)), (0,)) assert_equal(np.sin(a, a), 0) assert_equal(np.sin(a, out=a), 0) assert_equal(np.sin(a, out=(a,)), 0) # 1 input, 2 outputs assert_equal(np.modf(dummy, a), (0,)) assert_equal(np.modf(dummy, None, a), (1,)) assert_equal(np.modf(dummy, dummy, a), (1,)) assert_equal(np.modf(dummy, out=(a, None)), (0,)) assert_equal(np.modf(dummy, out=(a, dummy)), (0,)) assert_equal(np.modf(dummy, out=(None, a)), (1,)) assert_equal(np.modf(dummy, out=(dummy, a)), (1,)) assert_equal(np.modf(a, out=(dummy, a)), 0) with warnings.catch_warnings(record=True) as w: warnings.filterwarnings('always', '', DeprecationWarning) assert_equal(np.modf(dummy, out=a), (0,)) assert_(w[0].category is DeprecationWarning) assert_raises(ValueError, np.modf, dummy, out=(a,)) # 2 inputs, 1 output assert_equal(np.add(a, dummy), 0) assert_equal(np.add(dummy, a), 1) assert_equal(np.add(dummy, dummy, a), (0,)) assert_equal(np.add(dummy, a, a), 1) assert_equal(np.add(dummy, dummy, out=a), (0,)) assert_equal(np.add(dummy, dummy, out=(a,)), (0,)) assert_equal(np.add(a, dummy, out=a), 0) def test_out_override(self): # regression test for github bug 4753 class OutClass(np.ndarray): def __array_ufunc__(self, ufunc, method, *inputs, **kw): if 'out' in kw: tmp_kw = kw.copy() tmp_kw.pop('out') func = getattr(ufunc, method) kw['out'][0][...] = func(*inputs, **tmp_kw) A = np.array([0]).view(OutClass) B = np.array([5]) C = np.array([6]) np.multiply(C, B, A) assert_equal(A[0], 30) assert_(isinstance(A, OutClass)) A[0] = 0 np.multiply(C, B, out=A) assert_equal(A[0], 30) assert_(isinstance(A, OutClass)) def test_pow_override_with_errors(self): # regression test for gh-9112 class PowerOnly(np.ndarray): def __array_ufunc__(self, ufunc, method, *inputs, **kw): if ufunc is not np.power: raise NotImplementedError return "POWER!" # explicit cast to float, to ensure the fast power path is taken. a = np.array(5., dtype=np.float64).view(PowerOnly) assert_equal(a ** 2.5, "POWER!") with assert_raises(NotImplementedError): a ** 0.5 with assert_raises(NotImplementedError): a ** 0 with assert_raises(NotImplementedError): a ** 1 with assert_raises(NotImplementedError): a ** -1 with assert_raises(NotImplementedError): a ** 2 def test_pow_array_object_dtype(self): # test pow on arrays of object dtype class SomeClass(object): def __init__(self, num=None): self.num = num # want to ensure a fast pow path is not taken def __mul__(self, other): raise AssertionError('__mul__ should not be called') def __div__(self, other): raise AssertionError('__div__ should not be called') def __pow__(self, exp): return SomeClass(num=self.num ** exp) def __eq__(self, other): if isinstance(other, SomeClass): return self.num == other.num __rpow__ = __pow__ def pow_for(exp, arr): return np.array([x ** exp for x in arr]) obj_arr = np.array([SomeClass(1), SomeClass(2), SomeClass(3)]) assert_equal(obj_arr ** 0.5, pow_for(0.5, obj_arr)) assert_equal(obj_arr ** 0, pow_for(0, obj_arr)) assert_equal(obj_arr ** 1, pow_for(1, obj_arr)) assert_equal(obj_arr ** -1, pow_for(-1, obj_arr)) assert_equal(obj_arr ** 2, pow_for(2, obj_arr)) def test_pos_array_ufunc_override(self): class A(np.ndarray): def __array_ufunc__(self, ufunc, method, *inputs, **kwargs): return getattr(ufunc, method)(*[i.view(np.ndarray) for i in inputs], **kwargs) tst = np.array('foo').view(A) with assert_raises(TypeError): +tst class TestTemporaryElide(object): # elision is only triggered on relatively large arrays def test_extension_incref_elide(self): # test extension (e.g. cython) calling PyNumber_* slots without # increasing the reference counts # # def incref_elide(a): # d = input.copy() # refcount 1 # return d, d + d # PyNumber_Add without increasing refcount from numpy.core._multiarray_tests import incref_elide d = np.ones(100000) orig, res = incref_elide(d) d + d # the return original should not be changed to an inplace operation assert_array_equal(orig, d) assert_array_equal(res, d + d) def test_extension_incref_elide_stack(self): # scanning if the refcount == 1 object is on the python stack to check # that we are called directly from python is flawed as object may still # be above the stack pointer and we have no access to the top of it # # def incref_elide_l(d): # return l[4] + l[4] # PyNumber_Add without increasing refcount from numpy.core._multiarray_tests import incref_elide_l # padding with 1 makes sure the object on the stack is not overwritten l = [1, 1, 1, 1, np.ones(100000)] res = incref_elide_l(l) # the return original should not be changed to an inplace operation assert_array_equal(l[4], np.ones(100000)) assert_array_equal(res, l[4] + l[4]) def test_temporary_with_cast(self): # check that we don't elide into a temporary which would need casting d = np.ones(200000, dtype=np.int64) assert_equal(((d + d) + 2**222).dtype, np.dtype('O')) r = ((d + d) / 2) assert_equal(r.dtype, np.dtype('f8')) r = np.true_divide((d + d), 2) assert_equal(r.dtype, np.dtype('f8')) r = ((d + d) / 2.) assert_equal(r.dtype, np.dtype('f8')) r = ((d + d) // 2) assert_equal(r.dtype, np.dtype(np.int64)) # commutative elision into the astype result f = np.ones(100000, dtype=np.float32) assert_equal(((f + f) + f.astype(np.float64)).dtype, np.dtype('f8')) # no elision into lower type d = f.astype(np.float64) assert_equal(((f + f) + d).dtype, d.dtype) l = np.ones(100000, dtype=np.longdouble) assert_equal(((d + d) + l).dtype, l.dtype) # test unary abs with different output dtype for dt in (np.complex64, np.complex128, np.clongdouble): c = np.ones(100000, dtype=dt) r = abs(c * 2.0) assert_equal(r.dtype, np.dtype('f%d' % (c.itemsize // 2))) def test_elide_broadcast(self): # test no elision on broadcast to higher dimension # only triggers elision code path in debug mode as triggering it in # normal mode needs 256kb large matching dimension, so a lot of memory d = np.ones((2000, 1), dtype=int) b = np.ones((2000), dtype=bool) r = (1 - d) + b assert_equal(r, 1) assert_equal(r.shape, (2000, 2000)) def test_elide_scalar(self): # check inplace op does not create ndarray from scalars a = np.bool_() assert_(type(~(a & a)) is np.bool_) def test_elide_scalar_readonly(self): # The imaginary part of a real array is readonly. This needs to go # through fast_scalar_power which is only called for powers of # +1, -1, 0, 0.5, and 2, so use 2. Also need valid refcount for # elision which can be gotten for the imaginary part of a real # array. Should not error. a = np.empty(100000, dtype=np.float64) a.imag ** 2 def test_elide_readonly(self): # don't try to elide readonly temporaries r = np.asarray(np.broadcast_to(np.zeros(1), 100000).flat) * 0.0 assert_equal(r, 0) def test_elide_updateifcopy(self): a = np.ones(2**20)[::2] b = a.flat.__array__() + 1 del b assert_equal(a, 1) class TestCAPI(object): def test_IsPythonScalar(self): from numpy.core._multiarray_tests import IsPythonScalar assert_(IsPythonScalar(b'foobar')) assert_(IsPythonScalar(1)) assert_(IsPythonScalar(2**80)) assert_(IsPythonScalar(2.)) assert_(IsPythonScalar("a")) class TestSubscripting(object): def test_test_zero_rank(self): x = np.array([1, 2, 3]) assert_(isinstance(x[0], np.int_)) if sys.version_info[0] < 3: assert_(isinstance(x[0], int)) assert_(type(x[0, ...]) is np.ndarray) class TestPickling(object): def test_highest_available_pickle_protocol(self): try: import pickle5 except ImportError: pickle5 = None if sys.version_info[:2] >= (3, 8) or pickle5 is not None: assert pickle.HIGHEST_PROTOCOL >= 5 else: assert pickle.HIGHEST_PROTOCOL < 5 @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL >= 5, reason=('this tests the error messages when trying to' 'protocol 5 although it is not available')) def test_correct_protocol5_error_message(self): array = np.arange(10) if sys.version_info[:2] in ((3, 6), (3, 7)): # For the specific case of python3.6 and 3.7, raise a clear import # error about the pickle5 backport when trying to use protocol=5 # without the pickle5 package with pytest.raises(ImportError): array.__reduce_ex__(5) elif sys.version_info[:2] < (3, 6): # when calling __reduce_ex__ explicitly with protocol=5 on python # raise a ValueError saying that protocol 5 is not available for # this python version with pytest.raises(ValueError): array.__reduce_ex__(5) def test_record_array_with_object_dtype(self): my_object = object() arr_with_object = np.array( [(my_object, 1, 2.0)], dtype=[('a', object), ('b', int), ('c', float)]) arr_without_object = np.array( [('xxx', 1, 2.0)], dtype=[('a', str), ('b', int), ('c', float)]) for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): depickled_arr_with_object = pickle.loads( pickle.dumps(arr_with_object, protocol=proto)) depickled_arr_without_object = pickle.loads( pickle.dumps(arr_without_object, protocol=proto)) assert_equal(arr_with_object.dtype, depickled_arr_with_object.dtype) assert_equal(arr_without_object.dtype, depickled_arr_without_object.dtype) @pytest.mark.skipif(pickle.HIGHEST_PROTOCOL < 5, reason="requires pickle protocol 5") def test_f_contiguous_array(self): f_contiguous_array = np.array([[1, 2, 3], [4, 5, 6]], order='F') buffers = [] # When using pickle protocol 5, Fortran-contiguous arrays can be # serialized using out-of-band buffers bytes_string = pickle.dumps(f_contiguous_array, protocol=5, buffer_callback=buffers.append) assert len(buffers) > 0 depickled_f_contiguous_array = pickle.loads(bytes_string, buffers=buffers) assert_equal(f_contiguous_array, depickled_f_contiguous_array) def test_non_contiguous_array(self): non_contiguous_array = np.arange(12).reshape(3, 4)[:, :2] assert not non_contiguous_array.flags.c_contiguous assert not non_contiguous_array.flags.f_contiguous # make sure non-contiguous arrays can be pickled-depickled # using any protocol for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): depickled_non_contiguous_array = pickle.loads( pickle.dumps(non_contiguous_array, protocol=proto)) assert_equal(non_contiguous_array, depickled_non_contiguous_array) def test_roundtrip(self): for proto in range(2, pickle.HIGHEST_PROTOCOL + 1): carray = np.array([[2, 9], [7, 0], [3, 8]]) DATA = [ carray, np.transpose(carray), np.array([('xxx', 1, 2.0)], dtype=[('a', (str, 3)), ('b', int), ('c', float)]) ] refs = [weakref.ref(a) for a in DATA] for a in DATA: assert_equal( a, pickle.loads(pickle.dumps(a, protocol=proto)), err_msg="%r" % a) del a, DATA, carray gc.collect() # check for reference leaks (gh-12793) for ref in refs: assert ref() is None def _loads(self, obj): if sys.version_info[0] >= 3: return pickle.loads(obj, encoding='latin1') else: return pickle.loads(obj) # version 0 pickles, using protocol=2 to pickle # version 0 doesn't have a version field def test_version0_int8(self): s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(s) assert_equal(a, p) def test_version0_float32(self): s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(s) assert_equal(a, p) def test_version0_object(self): s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a': 1}, {'b': 2}]) p = self._loads(s) assert_equal(a, p) # version 1 pickles, using protocol=2 to pickle def test_version1_int8(self): s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02i1K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x04\x01\x02\x03\x04tb.' a = np.array([1, 2, 3, 4], dtype=np.int8) p = self._loads(s) assert_equal(a, p) def test_version1_float32(self): s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x04\x85cnumpy\ndtype\nq\x04U\x02f4K\x00K\x01\x87Rq\x05(K\x01U\x01<NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89U\x10\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@tb.' a = np.array([1.0, 2.0, 3.0, 4.0], dtype=np.float32) p = self._loads(s) assert_equal(a, p) def test_version1_object(self): s = b'\x80\x02cnumpy.core._internal\n_reconstruct\nq\x01cnumpy\nndarray\nq\x02K\x00\x85U\x01b\x87Rq\x03(K\x01K\x02\x85cnumpy\ndtype\nq\x04U\x02O8K\x00K\x01\x87Rq\x05(K\x01U\x01|NNJ\xff\xff\xff\xffJ\xff\xff\xff\xfftb\x89]q\x06(}q\x07U\x01aK\x01s}q\x08U\x01bK\x02setb.' a = np.array([{'a': 1}, {'b': 2}]) p = self._loads(s) assert_equal(a, p) def test_subarray_int_shape(self): s = b"cnumpy.core.multiarray\n_reconstruct\np0\n(cnumpy\nndarray\np1\n(I0\ntp2\nS'b'\np3\ntp4\nRp5\n(I1\n(I1\ntp6\ncnumpy\ndtype\np7\n(S'V6'\np8\nI0\nI1\ntp9\nRp10\n(I3\nS'|'\np11\nN(S'a'\np12\ng3\ntp13\n(dp14\ng12\n(g7\n(S'V4'\np15\nI0\nI1\ntp16\nRp17\n(I3\nS'|'\np18\n(g7\n(S'i1'\np19\nI0\nI1\ntp20\nRp21\n(I3\nS'|'\np22\nNNNI-1\nI-1\nI0\ntp23\nb(I2\nI2\ntp24\ntp25\nNNI4\nI1\nI0\ntp26\nbI0\ntp27\nsg3\n(g7\n(S'V2'\np28\nI0\nI1\ntp29\nRp30\n(I3\nS'|'\np31\n(g21\nI2\ntp32\nNNI2\nI1\nI0\ntp33\nbI4\ntp34\nsI6\nI1\nI0\ntp35\nbI00\nS'\\x01\\x01\\x01\\x01\\x01\\x02'\np36\ntp37\nb." a = np.array([(1, (1, 2))], dtype=[('a', 'i1', (2, 2)), ('b', 'i1', 2)]) p = self._loads(s) assert_equal(a, p) class TestFancyIndexing(object): def test_list(self): x = np.ones((1, 1)) x[:, [0]] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:, :, [0]] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_tuple(self): x = np.ones((1, 1)) x[:, (0,)] = 2.0 assert_array_equal(x, np.array([[2.0]])) x = np.ones((1, 1, 1)) x[:, :, (0,)] = 2.0 assert_array_equal(x, np.array([[[2.0]]])) def test_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) assert_array_equal(x[m], np.array([2])) def test_mask2(self): x = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) assert_array_equal(x[m], np.array([[5, 6, 7, 8]])) assert_array_equal(x[m2], np.array([2, 5])) assert_array_equal(x[m3], np.array([2])) def test_assign_mask(self): x = np.array([1, 2, 3, 4]) m = np.array([0, 1, 0, 0], bool) x[m] = 5 assert_array_equal(x, np.array([1, 5, 3, 4])) def test_assign_mask2(self): xorig = np.array([[1, 2, 3, 4], [5, 6, 7, 8]]) m = np.array([0, 1], bool) m2 = np.array([[0, 1, 0, 0], [1, 0, 0, 0]], bool) m3 = np.array([[0, 1, 0, 0], [0, 0, 0, 0]], bool) x = xorig.copy() x[m] = 10 assert_array_equal(x, np.array([[1, 2, 3, 4], [10, 10, 10, 10]])) x = xorig.copy() x[m2] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [10, 6, 7, 8]])) x = xorig.copy() x[m3] = 10 assert_array_equal(x, np.array([[1, 10, 3, 4], [5, 6, 7, 8]])) class TestStringCompare(object): def test_string(self): g1 = np.array(["This", "is", "example"]) g2 = np.array(["This", "was", "example"]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) def test_mixed(self): g1 = np.array(["spam", "spa", "spammer", "and eggs"]) g2 = "spam" assert_array_equal(g1 == g2, [x == g2 for x in g1]) assert_array_equal(g1 != g2, [x != g2 for x in g1]) assert_array_equal(g1 < g2, [x < g2 for x in g1]) assert_array_equal(g1 > g2, [x > g2 for x in g1]) assert_array_equal(g1 <= g2, [x <= g2 for x in g1]) assert_array_equal(g1 >= g2, [x >= g2 for x in g1]) def test_unicode(self): g1 = np.array([u"This", u"is", u"example"]) g2 = np.array([u"This", u"was", u"example"]) assert_array_equal(g1 == g2, [g1[i] == g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 != g2, [g1[i] != g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 <= g2, [g1[i] <= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 >= g2, [g1[i] >= g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 < g2, [g1[i] < g2[i] for i in [0, 1, 2]]) assert_array_equal(g1 > g2, [g1[i] > g2[i] for i in [0, 1, 2]]) class TestArgmax(object): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 1), ([complex(1, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(1, 1)], 2), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 5), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2015-11-20T12:20:59'), np.datetime64('1932-09-23T10:10:13'), np.datetime64('2014-10-10T03:50:30')], 3), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 4), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 0), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 3), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 0), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 1), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 2), ([False, False, False, False, True], 4), ([False, False, False, True, False], 3), ([True, False, False, False, False], 0), ([True, False, True, False, False], 0), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amax = a.max(i) aargmax = a.argmax(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amax == aargmax.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in reduce") max_val = np.max(arr) assert_equal(np.argmax(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmax(arr)], max_val, err_msg="%r" % arr) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmax, -1, out) out = np.ones(10, dtype=np.int_) a.argmax(-1, out=out) assert_equal(out, a.argmax(-1)) def test_argmax_unicode(self): d = np.zeros(6031, dtype='<U9') d[5942] = "as" assert_equal(d.argmax(), 5942) def test_np_vs_ndarray(self): # make sure both ndarray.argmax and numpy.argmax support out/axis args a = np.random.normal(size=(2,3)) # check positional args out1 = np.zeros(2, dtype=int) out2 = np.zeros(2, dtype=int) assert_equal(a.argmax(1, out1), np.argmax(a, 1, out2)) assert_equal(out1, out2) # check keyword args out1 = np.zeros(3, dtype=int) out2 = np.zeros(3, dtype=int) assert_equal(a.argmax(out=out1, axis=0), np.argmax(a, out=out2, axis=0)) assert_equal(out1, out2) def test_object_argmax_with_NULLs(self): # See gh-6032 a = np.empty(4, dtype='O') ctypes.memset(a.ctypes.data, 0, a.nbytes) assert_equal(a.argmax(), 0) a[3] = 10 assert_equal(a.argmax(), 3) a[1] = 30 assert_equal(a.argmax(), 1) class TestArgmin(object): nan_arr = [ ([0, 1, 2, 3, np.nan], 4), ([0, 1, 2, np.nan, 3], 3), ([np.nan, 0, 1, 2, 3], 0), ([np.nan, 0, np.nan, 2, 3], 0), ([0, 1, 2, 3, complex(0, np.nan)], 4), ([0, 1, 2, 3, complex(np.nan, 0)], 4), ([0, 1, 2, complex(np.nan, 0), 3], 3), ([0, 1, 2, complex(0, np.nan), 3], 3), ([complex(0, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, np.nan), 0, 1, 2, 3], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, np.nan), complex(np.nan, 2), complex(np.nan, 1)], 0), ([complex(np.nan, 0), complex(np.nan, 2), complex(np.nan, np.nan)], 0), ([complex(0, 0), complex(0, 2), complex(0, 1)], 0), ([complex(1, 0), complex(0, 2), complex(0, 1)], 2), ([complex(1, 0), complex(0, 2), complex(1, 1)], 1), ([np.datetime64('1923-04-14T12:43:12'), np.datetime64('1994-06-21T14:43:15'), np.datetime64('2001-10-15T04:10:32'), np.datetime64('1995-11-25T16:02:16'), np.datetime64('2005-01-04T03:14:12'), np.datetime64('2041-12-03T14:05:03')], 0), ([np.datetime64('1935-09-14T04:40:11'), np.datetime64('1949-10-12T12:32:11'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('2014-11-20T12:20:59'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), # Assorted tests with NaTs ([np.datetime64('NaT'), np.datetime64('NaT'), np.datetime64('2010-01-03T05:14:12'), np.datetime64('NaT'), np.datetime64('2015-09-23T10:10:13'), np.datetime64('1932-10-10T03:50:30')], 5), ([np.datetime64('2059-03-14T12:43:12'), np.datetime64('1996-09-21T14:43:15'), np.datetime64('NaT'), np.datetime64('2022-12-25T16:02:16'), np.datetime64('1963-10-04T03:14:12'), np.datetime64('2013-05-08T18:15:23')], 4), ([np.timedelta64(2, 's'), np.timedelta64(1, 's'), np.timedelta64('NaT', 's'), np.timedelta64(3, 's')], 1), ([np.timedelta64('NaT', 's')] * 3, 0), ([timedelta(days=5, seconds=14), timedelta(days=2, seconds=35), timedelta(days=-1, seconds=23)], 2), ([timedelta(days=1, seconds=43), timedelta(days=10, seconds=5), timedelta(days=5, seconds=14)], 0), ([timedelta(days=10, seconds=24), timedelta(days=10, seconds=5), timedelta(days=10, seconds=43)], 1), ([True, True, True, True, False], 4), ([True, True, True, False, True], 3), ([False, True, True, True, True], 0), ([False, True, False, True, True], 0), ] def test_all(self): a = np.random.normal(0, 1, (4, 5, 6, 7, 8)) for i in range(a.ndim): amin = a.min(i) aargmin = a.argmin(i) axes = list(range(a.ndim)) axes.remove(i) assert_(np.all(amin == aargmin.choose(*a.transpose(i,*axes)))) def test_combinations(self): for arr, pos in self.nan_arr: with suppress_warnings() as sup: sup.filter(RuntimeWarning, "invalid value encountered in reduce") min_val = np.min(arr) assert_equal(np.argmin(arr), pos, err_msg="%r" % arr) assert_equal(arr[np.argmin(arr)], min_val, err_msg="%r" % arr) def test_minimum_signed_integers(self): a = np.array([1, -2**7, -2**7 + 1], dtype=np.int8) assert_equal(np.argmin(a), 1) a = np.array([1, -2**15, -2**15 + 1], dtype=np.int16) assert_equal(np.argmin(a), 1) a = np.array([1, -2**31, -2**31 + 1], dtype=np.int32) assert_equal(np.argmin(a), 1) a = np.array([1, -2**63, -2**63 + 1], dtype=np.int64) assert_equal(np.argmin(a), 1) def test_output_shape(self): # see also gh-616 a = np.ones((10, 5)) # Check some simple shape mismatches out = np.ones(11, dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) out = np.ones((2, 5), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) # these could be relaxed possibly (used to allow even the previous) out = np.ones((1, 10), dtype=np.int_) assert_raises(ValueError, a.argmin, -1, out) out = np.ones(10, dtype=np.int_) a.argmin(-1, out=out) assert_equal(out, a.argmin(-1)) def test_argmin_unicode(self): d = np.ones(6031, dtype='<U9') d[6001] = "0" assert_equal(d.argmin(), 6001) def test_np_vs_ndarray(self): # make sure both ndarray.argmin and numpy.argmin support out/axis args a = np.random.normal(size=(2, 3)) # check positional args out1 = np.zeros(2, dtype=int) out2 = np.ones(2, dtype=int) assert_equal(a.argmin(1, out1), np.argmin(a, 1, out2)) assert_equal(out1, out2) # check keyword args out1 = np.zeros(3, dtype=int) out2 = np.ones(3, dtype=int) assert_equal(a.argmin(out=out1, axis=0), np.argmin(a, out=out2, axis=0)) assert_equal(out1, out2) def test_object_argmin_with_NULLs(self): # See gh-6032 a = np.empty(4, dtype='O') ctypes.memset(a.ctypes.data, 0, a.nbytes) assert_equal(a.argmin(), 0) a[3] = 30 assert_equal(a.argmin(), 3) a[1] = 10 assert_equal(a.argmin(), 1) class TestMinMax(object): def test_scalar(self): assert_raises(np.AxisError, np.amax, 1, 1) assert_raises(np.AxisError, np.amin, 1, 1) assert_equal(np.amax(1, axis=0), 1) assert_equal(np.amin(1, axis=0), 1) assert_equal(np.amax(1, axis=None), 1) assert_equal(np.amin(1, axis=None), 1) def test_axis(self): assert_raises(np.AxisError, np.amax, [1, 2, 3], 1000) assert_equal(np.amax([[1, 2, 3]], axis=1), 3) def test_datetime(self): # NaTs are ignored for dtype in ('m8[s]', 'm8[Y]'): a = np.arange(10).astype(dtype) a[3] = 'NaT' assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[9]) a[0] = 'NaT' assert_equal(np.amin(a), a[1]) assert_equal(np.amax(a), a[9]) a.fill('NaT') assert_equal(np.amin(a), a[0]) assert_equal(np.amax(a), a[0]) class TestNewaxis(object): def test_basic(self): sk = np.array([0, -0.1, 0.1]) res = 250*sk[:, np.newaxis] assert_almost_equal(res.ravel(), 250*sk) class TestClip(object): def _check_range(self, x, cmin, cmax): assert_(np.all(x >= cmin)) assert_(np.all(x <= cmax)) def _clip_type(self, type_group, array_max, clip_min, clip_max, inplace=False, expected_min=None, expected_max=None): if expected_min is None: expected_min = clip_min if expected_max is None: expected_max = clip_max for T in np.sctypes[type_group]: if sys.byteorder == 'little': byte_orders = ['=', '>'] else: byte_orders = ['<', '='] for byteorder in byte_orders: dtype = np.dtype(T).newbyteorder(byteorder) x = (np.random.random(1000) * array_max).astype(dtype) if inplace: x.clip(clip_min, clip_max, x) else: x = x.clip(clip_min, clip_max) byteorder = '=' if x.dtype.byteorder == '|': byteorder = '|' assert_equal(x.dtype.byteorder, byteorder) self._check_range(x, expected_min, expected_max) return x def test_basic(self): for inplace in [False, True]: self._clip_type( 'float', 1024, -12.8, 100.2, inplace=inplace) self._clip_type( 'float', 1024, 0, 0, inplace=inplace) self._clip_type( 'int', 1024, -120, 100.5, inplace=inplace) self._clip_type( 'int', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, 0, 0, inplace=inplace) self._clip_type( 'uint', 1024, -120, 100, inplace=inplace, expected_min=0) def test_record_array(self): rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '<f8'), ('z', '<f8')]) y = rec['x'].clip(-0.3, 0.5) self._check_range(y, -0.3, 0.5) def test_max_or_min(self): val = np.array([0, 1, 2, 3, 4, 5, 6, 7]) x = val.clip(3) assert_(np.all(x >= 3)) x = val.clip(min=3) assert_(np.all(x >= 3)) x = val.clip(max=4) assert_(np.all(x <= 4)) def test_nan(self): input_arr = np.array([-2., np.nan, 0.5, 3., 0.25, np.nan]) result = input_arr.clip(-1, 1) expected = np.array([-1., np.nan, 0.5, 1., 0.25, np.nan]) assert_array_equal(result, expected) class TestCompress(object): def test_axis(self): tgt = [[5, 6, 7, 8, 9]] arr = np.arange(10).reshape(2, 5) out = np.compress([0, 1], arr, axis=0) assert_equal(out, tgt) tgt = [[1, 3], [6, 8]] out = np.compress([0, 1, 0, 1, 0], arr, axis=1) assert_equal(out, tgt) def test_truncate(self): tgt = [[1], [6]] arr = np.arange(10).reshape(2, 5) out = np.compress([0, 1], arr, axis=1) assert_equal(out, tgt) def test_flatten(self): arr = np.arange(10).reshape(2, 5) out = np.compress([0, 1], arr) assert_equal(out, 1) class TestPutmask(object): def tst_basic(self, x, T, mask, val): np.putmask(x, mask, val) assert_equal(x[mask], T(val)) assert_equal(x.dtype, T) def test_ip_types(self): unchecked_types = [bytes, unicode, np.void, object] x = np.random.random(1000)*100 mask = x < 40 for val in [-100, 0, 15]: for types in np.sctypes.values(): for T in types: if T not in unchecked_types: self.tst_basic(x.copy().astype(T), T, mask, val) def test_mask_size(self): assert_raises(ValueError, np.putmask, np.array([1, 2, 3]), [True], 5) @pytest.mark.parametrize('dtype', ('>i4', '<i4')) def test_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) np.putmask(x, [True, False, True], -1) assert_array_equal(x, [-1, 2, -1]) def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) np.putmask(rec['x'], [True, False], 10) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [2, 4]) assert_array_equal(rec['z'], [3, 3]) np.putmask(rec['y'], [True, False], 11) assert_array_equal(rec['x'], [10, 5]) assert_array_equal(rec['y'], [11, 4]) assert_array_equal(rec['z'], [3, 3]) class TestTake(object): def tst_basic(self, x): ind = list(range(x.shape[0])) assert_array_equal(x.take(ind, axis=0), x) def test_ip_types(self): unchecked_types = [bytes, unicode, np.void, object] x = np.random.random(24)*100 x.shape = 2, 3, 4 for types in np.sctypes.values(): for T in types: if T not in unchecked_types: self.tst_basic(x.copy().astype(T)) def test_raise(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_raises(IndexError, x.take, [0, 1, 2], axis=0) assert_raises(IndexError, x.take, [-3], axis=0) assert_array_equal(x.take([-1], axis=0)[0], x[1]) def test_clip(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='clip')[0], x[0]) assert_array_equal(x.take([2], axis=0, mode='clip')[0], x[1]) def test_wrap(self): x = np.random.random(24)*100 x.shape = 2, 3, 4 assert_array_equal(x.take([-1], axis=0, mode='wrap')[0], x[1]) assert_array_equal(x.take([2], axis=0, mode='wrap')[0], x[0]) assert_array_equal(x.take([3], axis=0, mode='wrap')[0], x[1]) @pytest.mark.parametrize('dtype', ('>i4', '<i4')) def test_byteorder(self, dtype): x = np.array([1, 2, 3], dtype) assert_array_equal(x.take([0, 2, 1]), [1, 3, 2]) def test_record_array(self): # Note mixed byteorder. rec = np.array([(-5, 2.0, 3.0), (5.0, 4.0, 3.0)], dtype=[('x', '<f8'), ('y', '>f8'), ('z', '<f8')]) rec1 = rec.take([1]) assert_(rec1['x'] == 5.0 and rec1['y'] == 4.0) class TestLexsort(object): def test_basic(self): a = [1, 2, 1, 3, 1, 5] b = [0, 4, 5, 6, 2, 3] idx = np.lexsort((b, a)) expected_idx = np.array([0, 4, 2, 1, 3, 5]) assert_array_equal(idx, expected_idx) x = np.vstack((b, a)) idx = np.lexsort(x) assert_array_equal(idx, expected_idx) assert_array_equal(x[1][idx], np.sort(x[1])) def test_datetime(self): a = np.array([0,0,0], dtype='datetime64[D]') b = np.array([2,1,0], dtype='datetime64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) a = np.array([0,0,0], dtype='timedelta64[D]') b = np.array([2,1,0], dtype='timedelta64[D]') idx = np.lexsort((b, a)) expected_idx = np.array([2, 1, 0]) assert_array_equal(idx, expected_idx) def test_object(self): # gh-6312 a = np.random.choice(10, 1000) b = np.random.choice(['abc', 'xy', 'wz', 'efghi', 'qwst', 'x'], 1000) for u in a, b: left = np.lexsort((u.astype('O'),)) right = np.argsort(u, kind='mergesort') assert_array_equal(left, right) for u, v in (a, b), (b, a): idx = np.lexsort((u, v)) assert_array_equal(idx, np.lexsort((u.astype('O'), v))) assert_array_equal(idx, np.lexsort((u, v.astype('O')))) u, v = np.array(u, dtype='object'), np.array(v, dtype='object') assert_array_equal(idx, np.lexsort((u, v))) def test_invalid_axis(self): # gh-7528 x = np.linspace(0., 1., 42*3).reshape(42, 3) assert_raises(np.AxisError, np.lexsort, x, axis=2) class TestIO(object): """Test tofile, fromfile, tobytes, and fromstring""" def setup(self): shape = (2, 4, 3) rand = np.random.random self.x = rand(shape) + rand(shape).astype(complex)*1j self.x[0,:, 1] = [np.nan, np.inf, -np.inf, np.nan] self.dtype = self.x.dtype self.tempdir = tempfile.mkdtemp() self.filename = tempfile.mktemp(dir=self.tempdir) def teardown(self): shutil.rmtree(self.tempdir) def test_nofile(self): # this should probably be supported as a file # but for now test for proper errors b = io.BytesIO() assert_raises(IOError, np.fromfile, b, np.uint8, 80) d = np.ones(7) assert_raises(IOError, lambda x: x.tofile(b), d) def test_bool_fromstring(self): v = np.array([True, False, True, False], dtype=np.bool_) y = np.fromstring('1 0 -2.3 0.0', sep=' ', dtype=np.bool_) assert_array_equal(v, y) def test_uint64_fromstring(self): d = np.fromstring("9923372036854775807 104783749223640", dtype=np.uint64, sep=' ') e = np.array([9923372036854775807, 104783749223640], dtype=np.uint64) assert_array_equal(d, e) def test_int64_fromstring(self): d = np.fromstring("-25041670086757 104783749223640", dtype=np.int64, sep=' ') e = np.array([-25041670086757, 104783749223640], dtype=np.int64) assert_array_equal(d, e) def test_empty_files_binary(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename) assert_(y.size == 0, "Array not empty") def test_empty_files_text(self): f = open(self.filename, 'w') f.close() y = np.fromfile(self.filename, sep=" ") assert_(y.size == 0, "Array not empty") def test_roundtrip_file(self): f = open(self.filename, 'wb') self.x.tofile(f) f.close() # NB. doesn't work with flush+seek, due to use of C stdio f = open(self.filename, 'rb') y = np.fromfile(f, dtype=self.dtype) f.close() assert_array_equal(y, self.x.flat) def test_roundtrip_filename(self): self.x.tofile(self.filename) y = np.fromfile(self.filename, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_roundtrip_binary_str(self): s = self.x.tobytes() y = np.frombuffer(s, dtype=self.dtype) assert_array_equal(y, self.x.flat) s = self.x.tobytes('F') y = np.frombuffer(s, dtype=self.dtype) assert_array_equal(y, self.x.flatten('F')) def test_roundtrip_str(self): x = self.x.real.ravel() s = "@".join(map(str, x)) y = np.fromstring(s, sep="@") # NB. str imbues less precision nan_mask = ~np.isfinite(x) assert_array_equal(x[nan_mask], y[nan_mask]) assert_array_almost_equal(x[~nan_mask], y[~nan_mask], decimal=5) def test_roundtrip_repr(self): x = self.x.real.ravel() s = "@".join(map(repr, x)) y = np.fromstring(s, sep="@") assert_array_equal(x, y) def test_unseekable_fromfile(self): # gh-6246 self.x.tofile(self.filename) def fail(*args, **kwargs): raise IOError('Can not tell or seek') with io.open(self.filename, 'rb', buffering=0) as f: f.seek = fail f.tell = fail assert_raises(IOError, np.fromfile, f, dtype=self.dtype) def test_io_open_unbuffered_fromfile(self): # gh-6632 self.x.tofile(self.filename) with io.open(self.filename, 'rb', buffering=0) as f: y = np.fromfile(f, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_largish_file(self): # check the fallocate path on files > 16MB d = np.zeros(4 * 1024 ** 2) d.tofile(self.filename) assert_equal(os.path.getsize(self.filename), d.nbytes) assert_array_equal(d, np.fromfile(self.filename)) # check offset with open(self.filename, "r+b") as f: f.seek(d.nbytes) d.tofile(f) assert_equal(os.path.getsize(self.filename), d.nbytes * 2) # check append mode (gh-8329) open(self.filename, "w").close() # delete file contents with open(self.filename, "ab") as f: d.tofile(f) assert_array_equal(d, np.fromfile(self.filename)) with open(self.filename, "ab") as f: d.tofile(f) assert_equal(os.path.getsize(self.filename), d.nbytes * 2) def test_io_open_buffered_fromfile(self): # gh-6632 self.x.tofile(self.filename) with io.open(self.filename, 'rb', buffering=-1) as f: y = np.fromfile(f, dtype=self.dtype) assert_array_equal(y, self.x.flat) def test_file_position_after_fromfile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.close() for mode in ['rb', 'r+b']: err_msg = "%d %s" % (size, mode) f = open(self.filename, mode) f.read(2) np.fromfile(f, dtype=np.float64, count=1) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def test_file_position_after_tofile(self): # gh-4118 sizes = [io.DEFAULT_BUFFER_SIZE//8, io.DEFAULT_BUFFER_SIZE, io.DEFAULT_BUFFER_SIZE*8] for size in sizes: err_msg = "%d" % (size,) f = open(self.filename, 'wb') f.seek(size-1) f.write(b'\0') f.seek(10) f.write(b'12') np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10 + 2 + 8, err_msg=err_msg) f = open(self.filename, 'r+b') f.read(2) f.seek(0, 1) # seek between read&write required by ANSI C np.array([0], dtype=np.float64).tofile(f) pos = f.tell() f.close() assert_equal(pos, 10, err_msg=err_msg) def test_load_object_array_fromfile(self): # gh-12300 with open(self.filename, 'w') as f: # Ensure we have a file with consistent contents pass with open(self.filename, 'rb') as f: assert_raises_regex(ValueError, "Cannot read into object array", np.fromfile, f, dtype=object) assert_raises_regex(ValueError, "Cannot read into object array", np.fromfile, self.filename, dtype=object) def _check_from(self, s, value, **kw): if 'sep' not in kw: y = np.frombuffer(s, **kw) else: y = np.fromstring(s, **kw) assert_array_equal(y, value) f = open(self.filename, 'wb') f.write(s) f.close() y = np.fromfile(self.filename, **kw) assert_array_equal(y, value) def test_nan(self): self._check_from( b"nan +nan -nan NaN nan(foo) +NaN(BAR) -NAN(q_u_u_x_)", [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan, np.nan], sep=' ') def test_inf(self): self._check_from( b"inf +inf -inf infinity -Infinity iNfInItY -inF", [np.inf, np.inf, -np.inf, np.inf, -np.inf, np.inf, -np.inf], sep=' ') def test_numbers(self): self._check_from(b"1.234 -1.234 .3 .3e55 -123133.1231e+133", [1.234, -1.234, .3, .3e55, -123133.1231e+133], sep=' ') def test_binary(self): self._check_from(b'\x00\x00\x80?\x00\x00\x00@\x00\x00@@\x00\x00\x80@', np.array([1, 2, 3, 4]), dtype='<f4') @pytest.mark.slow # takes > 1 minute on mechanical hard drive def test_big_binary(self): """Test workarounds for 32-bit limited fwrite, fseek, and ftell calls in windows. These normally would hang doing something like this. See http://projects.scipy.org/numpy/ticket/1660""" if sys.platform != 'win32': return try: # before workarounds, only up to 2**32-1 worked fourgbplus = 2**32 + 2**16 testbytes = np.arange(8, dtype=np.int8) n = len(testbytes) flike = tempfile.NamedTemporaryFile() f = flike.file np.tile(testbytes, fourgbplus // testbytes.nbytes).tofile(f) flike.seek(0) a = np.fromfile(f, dtype=np.int8) flike.close() assert_(len(a) == fourgbplus) # check only start and end for speed: assert_((a[:n] == testbytes).all()) assert_((a[-n:] == testbytes).all()) except (MemoryError, ValueError): pass def test_string(self): self._check_from(b'1,2,3,4', [1., 2., 3., 4.], sep=',') def test_counted_string(self): self._check_from(b'1,2,3,4', [1., 2., 3., 4.], count=4, sep=',') self._check_from(b'1,2,3,4', [1., 2., 3.], count=3, sep=',') self._check_from(b'1,2,3,4', [1., 2., 3., 4.], count=-1, sep=',') def test_string_with_ws(self): self._check_from(b'1 2 3 4 ', [1, 2, 3, 4], dtype=int, sep=' ') def test_counted_string_with_ws(self): self._check_from(b'1 2 3 4 ', [1, 2, 3], count=3, dtype=int, sep=' ') def test_ascii(self): self._check_from(b'1 , 2 , 3 , 4', [1., 2., 3., 4.], sep=',') self._check_from(b'1,2,3,4', [1., 2., 3., 4.], dtype=float, sep=',') def test_malformed(self): self._check_from(b'1.234 1,234', [1.234, 1.], sep=' ') def test_long_sep(self): self._check_from(b'1_x_3_x_4_x_5', [1, 3, 4, 5], sep='_x_') def test_dtype(self): v = np.array([1, 2, 3, 4], dtype=np.int_) self._check_from(b'1,2,3,4', v, sep=',', dtype=np.int_) def test_dtype_bool(self): # can't use _check_from because fromstring can't handle True/False v = np.array([True, False, True, False], dtype=np.bool_) s = b'1,0,-2.3,0' f = open(self.filename, 'wb') f.write(s) f.close() y = np.fromfile(self.filename, sep=',', dtype=np.bool_) assert_(y.dtype == '?') assert_array_equal(y, v) def test_tofile_sep(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',') f.close() f = open(self.filename, 'r') s = f.read() f.close() #assert_equal(s, '1.51,2.0,3.51,4.0') y = np.array([float(p) for p in s.split(',')]) assert_array_equal(x,y) def test_tofile_format(self): x = np.array([1.51, 2, 3.51, 4], dtype=float) f = open(self.filename, 'w') x.tofile(f, sep=',', format='%.2f') f.close() f = open(self.filename, 'r') s = f.read() f.close() assert_equal(s, '1.51,2.00,3.51,4.00') def test_locale(self): with CommaDecimalPointLocale(): self.test_numbers() self.test_nan() self.test_inf() self.test_counted_string() self.test_ascii() self.test_malformed() self.test_tofile_sep() self.test_tofile_format() class TestFromBuffer(object): @pytest.mark.parametrize('byteorder', ['<', '>']) @pytest.mark.parametrize('dtype', [float, int, complex]) def test_basic(self, byteorder, dtype): dt = np.dtype(dtype).newbyteorder(byteorder) x = (np.random.random((4, 7)) * 5).astype(dt) buf = x.tobytes() assert_array_equal(np.frombuffer(buf, dtype=dt), x.flat) def test_empty(self): assert_array_equal(np.frombuffer(b''), np.array([])) class TestFlat(object): def setup(self): a0 = np.arange(20.0) a = a0.reshape(4, 5) a0.shape = (4, 5) a.flags.writeable = False self.a = a self.b = a[::2, ::2] self.a0 = a0 self.b0 = a0[::2, ::2] def test_contiguous(self): testpassed = False try: self.a.flat[12] = 100.0 except ValueError: testpassed = True assert_(testpassed) assert_(self.a.flat[12] == 12.0) def test_discontiguous(self): testpassed = False try: self.b.flat[4] = 100.0 except ValueError: testpassed = True assert_(testpassed) assert_(self.b.flat[4] == 12.0) def test___array__(self): c = self.a.flat.__array__() d = self.b.flat.__array__() e = self.a0.flat.__array__() f = self.b0.flat.__array__() assert_(c.flags.writeable is False) assert_(d.flags.writeable is False) # for 1.14 all are set to non-writeable on the way to replacing the # UPDATEIFCOPY array returned for non-contiguous arrays. assert_(e.flags.writeable is True) assert_(f.flags.writeable is False) with assert_warns(DeprecationWarning): assert_(c.flags.updateifcopy is False) with assert_warns(DeprecationWarning): assert_(d.flags.updateifcopy is False) with assert_warns(DeprecationWarning): assert_(e.flags.updateifcopy is False) with assert_warns(DeprecationWarning): # UPDATEIFCOPY is removed. assert_(f.flags.updateifcopy is False) assert_(c.flags.writebackifcopy is False) assert_(d.flags.writebackifcopy is False) assert_(e.flags.writebackifcopy is False) assert_(f.flags.writebackifcopy is False) class TestResize(object): def test_basic(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) if IS_PYPY: x.resize((5, 5), refcheck=False) else: x.resize((5, 5)) assert_array_equal(x.flat[:9], np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]).flat) assert_array_equal(x[9:].flat, 0) def test_check_reference(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) y = x assert_raises(ValueError, x.resize, (5, 1)) del y # avoid pyflakes unused variable warning. def test_int_shape(self): x = np.eye(3) if IS_PYPY: x.resize(3, refcheck=False) else: x.resize(3) assert_array_equal(x, np.eye(3)[0,:]) def test_none_shape(self): x = np.eye(3) x.resize(None) assert_array_equal(x, np.eye(3)) x.resize() assert_array_equal(x, np.eye(3)) def test_0d_shape(self): # to it multiple times to test it does not break alloc cache gh-9216 for i in range(10): x = np.empty((1,)) x.resize(()) assert_equal(x.shape, ()) assert_equal(x.size, 1) x = np.empty(()) x.resize((1,)) assert_equal(x.shape, (1,)) assert_equal(x.size, 1) def test_invalid_arguments(self): assert_raises(TypeError, np.eye(3).resize, 'hi') assert_raises(ValueError, np.eye(3).resize, -1) assert_raises(TypeError, np.eye(3).resize, order=1) assert_raises(TypeError, np.eye(3).resize, refcheck='hi') def test_freeform_shape(self): x = np.eye(3) if IS_PYPY: x.resize(3, 2, 1, refcheck=False) else: x.resize(3, 2, 1) assert_(x.shape == (3, 2, 1)) def test_zeros_appended(self): x = np.eye(3) if IS_PYPY: x.resize(2, 3, 3, refcheck=False) else: x.resize(2, 3, 3) assert_array_equal(x[0], np.eye(3)) assert_array_equal(x[1], np.zeros((3, 3))) def test_obj_obj(self): # check memory is initialized on resize, gh-4857 a = np.ones(10, dtype=[('k', object, 2)]) if IS_PYPY: a.resize(15, refcheck=False) else: a.resize(15,) assert_equal(a.shape, (15,)) assert_array_equal(a['k'][-5:], 0) assert_array_equal(a['k'][:-5], 1) def test_empty_view(self): # check that sizes containing a zero don't trigger a reallocate for # already empty arrays x = np.zeros((10, 0), int) x_view = x[...] x_view.resize((0, 10)) x_view.resize((0, 100)) def test_check_weakref(self): x = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]]) xref = weakref.ref(x) assert_raises(ValueError, x.resize, (5, 1)) del xref # avoid pyflakes unused variable warning. class TestRecord(object): def test_field_rename(self): dt = np.dtype([('f', float), ('i', int)]) dt.names = ['p', 'q'] assert_equal(dt.names, ['p', 'q']) def test_multiple_field_name_occurrence(self): def test_dtype_init(): np.dtype([("A", "f8"), ("B", "f8"), ("A", "f8")]) # Error raised when multiple fields have the same name assert_raises(ValueError, test_dtype_init) @pytest.mark.skipif(sys.version_info[0] < 3, reason="Not Python 3") def test_bytes_fields(self): # Bytes are not allowed in field names and not recognized in titles # on Py3 assert_raises(TypeError, np.dtype, [(b'a', int)]) assert_raises(TypeError, np.dtype, [(('b', b'a'), int)]) dt = np.dtype([((b'a', 'b'), int)]) assert_raises(TypeError, dt.__getitem__, b'a') x = np.array([(1,), (2,), (3,)], dtype=dt) assert_raises(IndexError, x.__getitem__, b'a') y = x[0] assert_raises(IndexError, y.__getitem__, b'a') @pytest.mark.skipif(sys.version_info[0] < 3, reason="Not Python 3") def test_multiple_field_name_unicode(self): def test_dtype_unicode(): np.dtype([("\u20B9", "f8"), ("B", "f8"), ("\u20B9", "f8")]) # Error raised when multiple fields have the same name(unicode included) assert_raises(ValueError, test_dtype_unicode) @pytest.mark.skipif(sys.version_info[0] >= 3, reason="Not Python 2") def test_unicode_field_titles(self): # Unicode field titles are added to field dict on Py2 title = u'b' dt = np.dtype([((title, 'a'), int)]) dt[title] dt['a'] x = np.array([(1,), (2,), (3,)], dtype=dt) x[title] x['a'] y = x[0] y[title] y['a'] @pytest.mark.skipif(sys.version_info[0] >= 3, reason="Not Python 2") def test_unicode_field_names(self): # Unicode field names are converted to ascii on Python 2: encodable_name = u'b' assert_equal(np.dtype([(encodable_name, int)]).names[0], b'b') assert_equal(np.dtype([(('a', encodable_name), int)]).names[0], b'b') # But raises UnicodeEncodeError if it can't be encoded: nonencodable_name = u'\uc3bc' assert_raises(UnicodeEncodeError, np.dtype, [(nonencodable_name, int)]) assert_raises(UnicodeEncodeError, np.dtype, [(('a', nonencodable_name), int)]) def test_fromarrays_unicode(self): # A single name string provided to fromarrays() is allowed to be unicode # on both Python 2 and 3: x = np.core.records.fromarrays([[0], [1]], names=u'a,b', formats=u'i4,i4') assert_equal(x['a'][0], 0) assert_equal(x['b'][0], 1) def test_unicode_order(self): # Test that we can sort with order as a unicode field name in both Python 2 and # 3: name = u'b' x = np.array([1, 3, 2], dtype=[(name, int)]) x.sort(order=name) assert_equal(x[u'b'], np.array([1, 2, 3])) def test_field_names(self): # Test unicode and 8-bit / byte strings can be used a = np.zeros((1,), dtype=[('f1', 'i4'), ('f2', 'i4'), ('f3', [('sf1', 'i4')])]) is_py3 = sys.version_info[0] >= 3 if is_py3: funcs = (str,) # byte string indexing fails gracefully assert_raises(IndexError, a.__setitem__, b'f1', 1) assert_raises(IndexError, a.__getitem__, b'f1') assert_raises(IndexError, a['f1'].__setitem__, b'sf1', 1) assert_raises(IndexError, a['f1'].__getitem__, b'sf1') else: funcs = (str, unicode) for func in funcs: b = a.copy() fn1 = func('f1') b[fn1] = 1 assert_equal(b[fn1], 1) fnn = func('not at all') assert_raises(ValueError, b.__setitem__, fnn, 1) assert_raises(ValueError, b.__getitem__, fnn) b[0][fn1] = 2 assert_equal(b[fn1], 2) # Subfield assert_raises(ValueError, b[0].__setitem__, fnn, 1) assert_raises(ValueError, b[0].__getitem__, fnn) # Subfield fn3 = func('f3') sfn1 = func('sf1') b[fn3][sfn1] = 1 assert_equal(b[fn3][sfn1], 1) assert_raises(ValueError, b[fn3].__setitem__, fnn, 1) assert_raises(ValueError, b[fn3].__getitem__, fnn) # multiple subfields fn2 = func('f2') b[fn2] = 3 assert_equal(b[['f1', 'f2']][0].tolist(), (2, 3)) assert_equal(b[['f2', 'f1']][0].tolist(), (3, 2)) assert_equal(b[['f1', 'f3']][0].tolist(), (2, (1,))) # non-ascii unicode field indexing is well behaved if not is_py3: pytest.skip('non ascii unicode field indexing skipped; ' 'raises segfault on python 2.x') else: assert_raises(ValueError, a.__setitem__, u'\u03e0', 1) assert_raises(ValueError, a.__getitem__, u'\u03e0') def test_record_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') a.flags.writeable = False b = np.array([(1, 2), (3, 4)], dtype=[('num1', 'i1'), ('num2', 'i2')]) b.flags.writeable = False c = np.array([(1, 2), (3, 4)], dtype='i1,i2') c.flags.writeable = False assert_(hash(a[0]) == hash(a[1])) assert_(hash(a[0]) == hash(b[0])) assert_(hash(a[0]) != hash(b[1])) assert_(hash(c[0]) == hash(a[0]) and c[0] == a[0]) def test_record_no_hash(self): a = np.array([(1, 2), (1, 2)], dtype='i1,i2') assert_raises(TypeError, hash, a[0]) def test_empty_structure_creation(self): # make sure these do not raise errors (gh-5631) np.array([()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) np.array([(), (), (), (), ()], dtype={'names': [], 'formats': [], 'offsets': [], 'itemsize': 12}) def test_multifield_indexing_view(self): a = np.ones(3, dtype=[('a', 'i4'), ('b', 'f4'), ('c', 'u4')]) v = a[['a', 'c']] assert_(v.base is a) assert_(v.dtype == np.dtype({'names': ['a', 'c'], 'formats': ['i4', 'u4'], 'offsets': [0, 8]})) v[:] = (4,5) assert_equal(a[0].item(), (4, 1, 5)) class TestView(object): def test_basic(self): x = np.array([(1, 2, 3, 4), (5, 6, 7, 8)], dtype=[('r', np.int8), ('g', np.int8), ('b', np.int8), ('a', np.int8)]) # We must be specific about the endianness here: y = x.view(dtype='<i4') # ... and again without the keyword. z = x.view('<i4') assert_array_equal(y, z) assert_array_equal(y, [67305985, 134678021]) def _mean(a, **args): return a.mean(**args) def _var(a, **args): return a.var(**args) def _std(a, **args): return a.std(**args) class TestStats(object): funcs = [_mean, _var, _std] def setup(self): np.random.seed(range(3)) self.rmat = np.random.random((4, 5)) self.cmat = self.rmat + 1j * self.rmat self.omat = np.array([Decimal(repr(r)) for r in self.rmat.flat]) self.omat = self.omat.reshape(4, 5) def test_python_type(self): for x in (np.float16(1.), 1, 1., 1+0j): assert_equal(np.mean([x]), 1.) assert_equal(np.std([x]), 0.) assert_equal(np.var([x]), 0.) def test_keepdims(self): mat = np.eye(3) for f in self.funcs: for axis in [0, 1]: res = f(mat, axis=axis, keepdims=True) assert_(res.ndim == mat.ndim) assert_(res.shape[axis] == 1) for axis in [None]: res = f(mat, axis=axis, keepdims=True) assert_(res.shape == (1, 1)) def test_out(self): mat = np.eye(3) for f in self.funcs: out = np.zeros(3) tgt = f(mat, axis=1) res = f(mat, axis=1, out=out) assert_almost_equal(res, out) assert_almost_equal(res, tgt) out = np.empty(2) assert_raises(ValueError, f, mat, axis=1, out=out) out = np.empty((2, 2)) assert_raises(ValueError, f, mat, axis=1, out=out) def test_dtype_from_input(self): icodes = np.typecodes['AllInteger'] fcodes = np.typecodes['AllFloat'] # object type for f in self.funcs: mat = np.array([[Decimal(1)]*3]*3) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = type(f(mat, axis=None)) assert_(res is Decimal) # integer types for f in self.funcs: for c in icodes: mat = np.eye(3, dtype=c) tgt = np.float64 res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # mean for float types for f in [_mean]: for c in fcodes: mat = np.eye(3, dtype=c) tgt = mat.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) # var, std for float types for f in [_var, _std]: for c in fcodes: mat = np.eye(3, dtype=c) # deal with complex types tgt = mat.real.dtype.type res = f(mat, axis=1).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None).dtype.type assert_(res is tgt) def test_dtype_from_dtype(self): mat = np.eye(3) # stats for integer types # FIXME: # this needs definition as there are lots places along the line # where type casting may take place. # for f in self.funcs: # for c in np.typecodes['AllInteger']: # tgt = np.dtype(c).type # res = f(mat, axis=1, dtype=c).dtype.type # assert_(res is tgt) # # scalar case # res = f(mat, axis=None, dtype=c).dtype.type # assert_(res is tgt) # stats for float types for f in self.funcs: for c in np.typecodes['AllFloat']: tgt = np.dtype(c).type res = f(mat, axis=1, dtype=c).dtype.type assert_(res is tgt) # scalar case res = f(mat, axis=None, dtype=c).dtype.type assert_(res is tgt) def test_ddof(self): for f in [_var]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * dim res = f(self.rmat, axis=1, ddof=ddof) * (dim - ddof) for f in [_std]: for ddof in range(3): dim = self.rmat.shape[1] tgt = f(self.rmat, axis=1) * np.sqrt(dim) res = f(self.rmat, axis=1, ddof=ddof) * np.sqrt(dim - ddof) assert_almost_equal(res, tgt) assert_almost_equal(res, tgt) def test_ddof_too_big(self): dim = self.rmat.shape[1] for f in [_var, _std]: for ddof in range(dim, dim + 2): with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') res = f(self.rmat, axis=1, ddof=ddof) assert_(not (res < 0).any()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) def test_empty(self): A = np.zeros((0, 3)) for f in self.funcs: for axis in [0, None]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_(np.isnan(f(A, axis=axis)).all()) assert_(len(w) > 0) assert_(issubclass(w[0].category, RuntimeWarning)) for axis in [1]: with warnings.catch_warnings(record=True) as w: warnings.simplefilter('always') assert_equal(f(A, axis=axis), np.zeros([])) def test_mean_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * mat.shape[axis] assert_almost_equal(res, tgt) for axis in [None]: tgt = mat.sum(axis=axis) res = _mean(mat, axis=axis) * np.prod(mat.shape) assert_almost_equal(res, tgt) def test_mean_float16(self): # This fail if the sum inside mean is done in float16 instead # of float32. assert_(_mean(np.ones(100000, dtype='float16')) == 1) def test_var_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: msqr = _mean(mat * mat.conj(), axis=axis) mean = _mean(mat, axis=axis) tgt = msqr - mean * mean.conjugate() res = _var(mat, axis=axis) assert_almost_equal(res, tgt) def test_std_values(self): for mat in [self.rmat, self.cmat, self.omat]: for axis in [0, 1, None]: tgt = np.sqrt(_var(mat, axis=axis)) res = _std(mat, axis=axis) assert_almost_equal(res, tgt) def test_subclass(self): class TestArray(np.ndarray): def __new__(cls, data, info): result = np.array(data) result = result.view(cls) result.info = info return result def __array_finalize__(self, obj): self.info = getattr(obj, "info", '') dat = TestArray([[1, 2, 3, 4], [5, 6, 7, 8]], 'jubba') res = dat.mean(1) assert_(res.info == dat.info) res = dat.std(1) assert_(res.info == dat.info) res = dat.var(1) assert_(res.info == dat.info) class TestVdot(object): def test_basic(self): dt_numeric = np.typecodes['AllFloat'] + np.typecodes['AllInteger'] dt_complex = np.typecodes['Complex'] # test real a = np.eye(3) for dt in dt_numeric + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test complex a = np.eye(3) * 1j for dt in dt_complex + 'O': b = a.astype(dt) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), 3) # test boolean b = np.eye(3, dtype=bool) res = np.vdot(b, b) assert_(np.isscalar(res)) assert_equal(np.vdot(b, b), True) def test_vdot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.vdot(a, a) # integer arrays are exact assert_equal(np.vdot(a, b), res) assert_equal(np.vdot(b, a), res) assert_equal(np.vdot(b, b), res) def test_vdot_uncontiguous(self): for size in [2, 1000]: # Different sizes match different branches in vdot. a = np.zeros((size, 2, 2)) b = np.zeros((size, 2, 2)) a[:, 0, 0] = np.arange(size) b[:, 0, 0] = np.arange(size) + 1 # Make a and b uncontiguous: a = a[..., 0] b = b[..., 0] assert_equal(np.vdot(a, b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy()), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy(), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a.copy('F'), b), np.vdot(a.flatten(), b.flatten())) assert_equal(np.vdot(a, b.copy('F')), np.vdot(a.flatten(), b.flatten())) class TestDot(object): def setup(self): np.random.seed(128) self.A = np.random.rand(4, 2) self.b1 = np.random.rand(2, 1) self.b2 = np.random.rand(2) self.b3 = np.random.rand(1, 2) self.b4 = np.random.rand(4) self.N = 7 def test_dotmatmat(self): A = self.A res = np.dot(A.transpose(), A) tgt = np.array([[1.45046013, 0.86323640], [0.86323640, 0.84934569]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec(self): A, b1 = self.A, self.b1 res = np.dot(A, b1) tgt = np.array([[0.32114320], [0.04889721], [0.15696029], [0.33612621]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotmatvec2(self): A, b2 = self.A, self.b2 res = np.dot(A, b2) tgt = np.array([0.29677940, 0.04518649, 0.14468333, 0.31039293]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat(self): A, b4 = self.A, self.b4 res = np.dot(b4, A) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat2(self): b3, A = self.b3, self.A res = np.dot(b3, A.transpose()) tgt = np.array([[0.58793804, 0.08957460, 0.30605758, 0.62716383]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecmat3(self): A, b4 = self.A, self.b4 res = np.dot(A.transpose(), b4) tgt = np.array([1.23495091, 1.12222648]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecouter(self): b1, b3 = self.b1, self.b3 res = np.dot(b1, b3) tgt = np.array([[0.20128610, 0.08400440], [0.07190947, 0.03001058]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecvecinner(self): b1, b3 = self.b1, self.b3 res = np.dot(b3, b1) tgt = np.array([[ 0.23129668]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect1(self): b1 = np.ones((3, 1)) b2 = [5.3] res = np.dot(b1, b2) tgt = np.array([5.3, 5.3, 5.3]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotcolumnvect2(self): b1 = np.ones((3, 1)).transpose() b2 = [6.2] res = np.dot(b2, b1) tgt = np.array([6.2, 6.2, 6.2]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar(self): np.random.seed(100) b1 = np.random.rand(1, 1) b2 = np.random.rand(1, 4) res = np.dot(b1, b2) tgt = np.array([[0.15126730, 0.23068496, 0.45905553, 0.00256425]]) assert_almost_equal(res, tgt, decimal=self.N) def test_dotvecscalar2(self): np.random.seed(100) b1 = np.random.rand(4, 1) b2 = np.random.rand(1, 1) res = np.dot(b1, b2) tgt = np.array([[0.00256425],[0.00131359],[0.00200324],[ 0.00398638]]) assert_almost_equal(res, tgt, decimal=self.N) def test_all(self): dims = [(), (1,), (1, 1)] dout = [(), (1,), (1, 1), (1,), (), (1,), (1, 1), (1,), (1, 1)] for dim, (dim1, dim2) in zip(dout, itertools.product(dims, dims)): b1 = np.zeros(dim1) b2 = np.zeros(dim2) res = np.dot(b1, b2) tgt = np.zeros(dim) assert_(res.shape == tgt.shape) assert_almost_equal(res, tgt, decimal=self.N) def test_vecobject(self): class Vec(object): def __init__(self, sequence=None): if sequence is None: sequence = [] self.array = np.array(sequence) def __add__(self, other): out = Vec() out.array = self.array + other.array return out def __sub__(self, other): out = Vec() out.array = self.array - other.array return out def __mul__(self, other): # with scalar out = Vec(self.array.copy()) out.array *= other return out def __rmul__(self, other): return self*other U_non_cont = np.transpose([[1., 1.], [1., 2.]]) U_cont = np.ascontiguousarray(U_non_cont) x = np.array([Vec([1., 0.]), Vec([0., 1.])]) zeros = np.array([Vec([0., 0.]), Vec([0., 0.])]) zeros_test = np.dot(U_cont, x) - np.dot(U_non_cont, x) assert_equal(zeros[0].array, zeros_test[0].array) assert_equal(zeros[1].array, zeros_test[1].array) def test_dot_2args(self): from numpy.core.multiarray import dot a = np.array([[1, 2], [3, 4]], dtype=float) b = np.array([[1, 0], [1, 1]], dtype=float) c = np.array([[3, 2], [7, 4]], dtype=float) d = dot(a, b) assert_allclose(c, d) def test_dot_3args(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 32)) for i in range(12): dot(f, v, r) if HAS_REFCOUNT: assert_equal(sys.getrefcount(r), 2) r2 = dot(f, v, out=None) assert_array_equal(r2, r) assert_(r is dot(f, v, out=r)) v = v[:, 0].copy() # v.shape == (16,) r = r[:, 0].copy() # r.shape == (1024,) r2 = dot(f, v) assert_(r is dot(f, v, r)) assert_array_equal(r2, r) def test_dot_3args_errors(self): from numpy.core.multiarray import dot np.random.seed(22) f = np.random.random_sample((1024, 16)) v = np.random.random_sample((16, 32)) r = np.empty((1024, 31)) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32,)) assert_raises(ValueError, dot, f, v, r) r = np.empty((32, 1024)) assert_raises(ValueError, dot, f, v, r) assert_raises(ValueError, dot, f, v, r.T) r = np.empty((1024, 64)) assert_raises(ValueError, dot, f, v, r[:, ::2]) assert_raises(ValueError, dot, f, v, r[:, :32]) r = np.empty((1024, 32), dtype=np.float32) assert_raises(ValueError, dot, f, v, r) r = np.empty((1024, 32), dtype=int) assert_raises(ValueError, dot, f, v, r) def test_dot_array_order(self): a = np.array([[1, 2], [3, 4]], order='C') b = np.array([[1, 2], [3, 4]], order='F') res = np.dot(a, a) # integer arrays are exact assert_equal(np.dot(a, b), res) assert_equal(np.dot(b, a), res) assert_equal(np.dot(b, b), res) def test_accelerate_framework_sgemv_fix(self): def aligned_array(shape, align, dtype, order='C'): d = dtype(0) N = np.prod(shape) tmp = np.zeros(N * d.nbytes + align, dtype=np.uint8) address = tmp.__array_interface__["data"][0] for offset in range(align): if (address + offset) % align == 0: break tmp = tmp[offset:offset+N*d.nbytes].view(dtype=dtype) return tmp.reshape(shape, order=order) def as_aligned(arr, align, dtype, order='C'): aligned = aligned_array(arr.shape, align, dtype, order) aligned[:] = arr[:] return aligned def assert_dot_close(A, X, desired): assert_allclose(np.dot(A, X), desired, rtol=1e-5, atol=1e-7) m = aligned_array(100, 15, np.float32) s = aligned_array((100, 100), 15, np.float32) np.dot(s, m) # this will always segfault if the bug is present testdata = itertools.product((15,32), (10000,), (200,89), ('C','F')) for align, m, n, a_order in testdata: # Calculation in double precision A_d = np.random.rand(m, n) X_d = np.random.rand(n) desired = np.dot(A_d, X_d) # Calculation with aligned single precision A_f = as_aligned(A_d, align, np.float32, order=a_order) X_f = as_aligned(X_d, align, np.float32) assert_dot_close(A_f, X_f, desired) # Strided A rows A_d_2 = A_d[::2] desired = np.dot(A_d_2, X_d) A_f_2 = A_f[::2] assert_dot_close(A_f_2, X_f, desired) # Strided A columns, strided X vector A_d_22 = A_d_2[:, ::2] X_d_2 = X_d[::2] desired = np.dot(A_d_22, X_d_2) A_f_22 = A_f_2[:, ::2] X_f_2 = X_f[::2] assert_dot_close(A_f_22, X_f_2, desired) # Check the strides are as expected if a_order == 'F': assert_equal(A_f_22.strides, (8, 8 * m)) else: assert_equal(A_f_22.strides, (8 * n, 8)) assert_equal(X_f_2.strides, (8,)) # Strides in A rows + cols only X_f_2c = as_aligned(X_f_2, align, np.float32) assert_dot_close(A_f_22, X_f_2c, desired) # Strides just in A cols A_d_12 = A_d[:, ::2] desired = np.dot(A_d_12, X_d_2) A_f_12 = A_f[:, ::2] assert_dot_close(A_f_12, X_f_2c, desired) # Strides in A cols and X assert_dot_close(A_f_12, X_f_2, desired) class MatmulCommon(object): """Common tests for '@' operator and numpy.matmul. """ # Should work with these types. Will want to add # "O" at some point types = "?bhilqBHILQefdgFDG" def test_exceptions(self): dims = [ ((1,), (2,)), # mismatched vector vector ((2, 1,), (2,)), # mismatched matrix vector ((2,), (1, 2)), # mismatched vector matrix ((1, 2), (3, 1)), # mismatched matrix matrix ((1,), ()), # vector scalar ((), (1)), # scalar vector ((1, 1), ()), # matrix scalar ((), (1, 1)), # scalar matrix ((2, 2, 1), (3, 1, 2)), # cannot broadcast ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) assert_raises(ValueError, self.matmul, a, b) def test_shapes(self): dims = [ ((1, 1), (2, 1, 1)), # broadcast first argument ((2, 1, 1), (1, 1)), # broadcast second argument ((2, 1, 1), (2, 1, 1)), # matrix stack sizes match ] for dt, (dm1, dm2) in itertools.product(self.types, dims): a = np.ones(dm1, dtype=dt) b = np.ones(dm2, dtype=dt) res = self.matmul(a, b) assert_(res.shape == (2, 1, 1)) # vector vector returns scalars. for dt in self.types: a = np.ones((2,), dtype=dt) b = np.ones((2,), dtype=dt) c = self.matmul(a, b) assert_(np.array(c).shape == ()) def test_result_types(self): mat = np.ones((1,1)) vec = np.ones((1,)) for dt in self.types: m = mat.astype(dt) v = vec.astype(dt) for arg in [(m, v), (v, m), (m, m)]: res = self.matmul(*arg) assert_(res.dtype == dt) # vector vector returns scalars res = self.matmul(v, v) assert_(type(res) is np.dtype(dt).type) def test_scalar_output(self): vec1 = np.array([2]) vec2 = np.array([3, 4]).reshape(1, -1) tgt = np.array([6, 8]) for dt in self.types[1:]: v1 = vec1.astype(dt) v2 = vec2.astype(dt) res = self.matmul(v1, v2) assert_equal(res, tgt) res = self.matmul(v2.T, v1) assert_equal(res, tgt) # boolean type vec = np.array([True, True], dtype='?').reshape(1, -1) res = self.matmul(vec[:, 0], vec) assert_equal(res, True) def test_vector_vector_values(self): vec1 = np.array([1, 2]) vec2 = np.array([3, 4]).reshape(-1, 1) tgt1 = np.array([11]) tgt2 = np.array([[3, 6], [4, 8]]) for dt in self.types[1:]: v1 = vec1.astype(dt) v2 = vec2.astype(dt) res = self.matmul(v1, v2) assert_equal(res, tgt1) # no broadcast, we must make v1 into a 2d ndarray res = self.matmul(v2, v1.reshape(1, -1)) assert_equal(res, tgt2) # boolean type vec = np.array([True, True], dtype='?') res = self.matmul(vec, vec) assert_equal(res, True) def test_vector_matrix_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([7, 10]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(v, m1) assert_equal(res, tgt1) res = self.matmul(v, m2) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2) assert_equal(res, tgt2) def test_matrix_vector_values(self): vec = np.array([1, 2]) mat1 = np.array([[1, 2], [3, 4]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([5, 11]) tgt2 = np.stack([tgt1]*2, axis=0) for dt in self.types[1:]: v = vec.astype(dt) m1 = mat1.astype(dt) m2 = mat2.astype(dt) res = self.matmul(m1, v) assert_equal(res, tgt1) res = self.matmul(m2, v) assert_equal(res, tgt2) # boolean type vec = np.array([True, False]) mat1 = np.array([[True, False], [False, True]]) mat2 = np.stack([mat1]*2, axis=0) tgt1 = np.array([True, False]) tgt2 = np.stack([tgt1]*2, axis=0) res = self.matmul(vec, mat1) assert_equal(res, tgt1) res = self.matmul(vec, mat2)
assert_equal(res, tgt2)
numpy.testing.assert_equal
""" Utilities for converting COLIBRI tracks into TRILEGAL tracks """ import glob import logging import os import sys import matplotlib.pyplot as plt import numpy as np from ast import literal_eval from matplotlib import cm, rcParams from matplotlib.ticker import NullFormatter, MultipleLocator, ScalarFormatter, MaxNLocator logging.basicConfig(level=logging.DEBUG) logger = logging.getLogger(__name__) rcParams['text.usetex'] = True rcParams['text.latex.unicode'] = False rcParams['axes.linewidth'] = 1 rcParams['ytick.labelsize'] = 'large' rcParams['xtick.labelsize'] = 'large' rcParams['axes.edgecolor'] = 'black' nullfmt = NullFormatter() # no labels def colibri2trilegal(input_file): ''' This script formats Paola's tracks and creates the files needed to use them with TRILEGAL as well as the option to make diagnostic plots. infile is an input_file object. See class InputFile WHAT'S GOING ON: Here is what it takes to go from COLIBRI agb tracks to TRILEGAL: 1. COLIBRI tracks 2. COLIBRI tracks formatted for TRILEGAL 3. TRILEGAL files that link to COLIBRI re-formatted tracks 1. COLIBRI tracks must have naming scheme [mix]/[set]/[Trash]_[metallicity]_[Y]/[track_identifier] ex: agb_caf09_z0.008/S1/agb_*Z*.dat ex: CAF09/S_SCS/*Z*/agb_*Z*.dat These can live anywhere, and do not need to be included in TRILEGAL directories. 2. COLIBRI tracks are formatted for TRILEGAL with no header file. They only include the quiescent phases and a column with dL/dT (See AGBTracks) 3. TRILEGAL needs two files to link to COLIBRI re-formatted tracks a. track file goes here: isotrack/tracce_[mix]_[set].dat b. cmd_input_file that links to the track file goes here trilegal_1.3/cmd_input_[mix]_[set].dat ''' infile = InputFile(input_file, default_dict=agb_input_defaults()) # set up file names and directories, cd to COLIBRI tracks. agb_setup(infile) # list of isofiles, zs, and ys to send to tracce file. isofiles, Zs, Ys = [], [], [] imfr_data = np.array([]) lifetime_data = np.array([]) for metal_dir in infile.metal_dirs: metallicity, Y = metallicity_from_dir(metal_dir) logger.info('Z = {}'.format(metallicity)) if infile.diag_plots is True: if infile.diagnostic_dir0 is not None: diagnostic_dir = os.path.join(infile.diagnostic_dir0, infile.agb_mix, infile.set_name, metal_dir) + '/' ensure_dir(diagnostic_dir) # update infile class to place plots in this directory infile.diagnostic_dir = diagnostic_dir else: logger.error('Must specifiy diagnostic_dir0 in infile for diag plots') sys.exit(2) agb_tracks = get_files(os.path.join(infile.agbtrack_dir, infile.agb_mix, infile.set_name, metal_dir), infile.track_identifier) agb_tracks.sort() assert len(agb_tracks) > 0, 'No agb tracks found!' iso_name_conv = '_'.join(('Z%.4f' % metallicity, infile.name_conv)) isofile = os.path.join(infile.home, infile.isotrack_dir, iso_name_conv) if infile.over_write is False and os.path.isfile(isofile): logger.warning('not over writing {}'.format(isofile)) out = None else: out = open(isofile, 'w') isofile_rel_name = os.path.join('isotrack', infile.isotrack_dir, iso_name_conv) logger.info('found {} tracks'.format(len(agb_tracks))) for i, agb_track in enumerate(agb_tracks): # load track track = get_numeric_data(agb_track) if track == -1: continue if track.bad_track is True: continue assert metallicity == track.metallicity, \ 'directory and track metallicity do not match' # make iso file for trilegal if out is not None: if i == 0: make_iso_file(track, out, write_header=True) else: make_iso_file(track, out) # save information for lifetime file. lifetime_datum = np.array([metallicity, track.mass, track.tauc, track.taum]) lifetime_data = np.append(lifetime_data, lifetime_datum) # make diagnostic plots if infile.diag_plots is True and infile.diagnostic_dir0 is not None: assert metallicity_from_dir(infile.diagnostic_dir)[0] == \ track.metallicity, 'diag dir met wrong!' diag_plots(track, infile) # save information for imfr if infile.make_imfr is True: M_s = track.data_array['M_star'] imfr_datum = np.array([M_s[0], M_s[-1], float(metallicity)]) imfr_data = np.append(imfr_data, imfr_datum) if out is not None: out.close() logger.info('wrote {}'.format(isofile)) # keep information for tracce file isofiles.append(isofile_rel_name) Ys.append(Y) Zs.append(metallicity) #bigplots(agb_tracks, infile) # make file to link cmd_input to formatted agb tracks make_met_file(infile.tracce_file, Zs, Ys, isofiles) # make cmd_input file cmd_in_kw = {'cmd_input_file': infile.cmd_input_file, 'file_tpagb': infile.tracce_file_rel, 'mass_loss': infile.mass_loss, 'file_isotrack': infile.file_isotrack} write_cmd_input_file(**cmd_in_kw) if infile.make_imfr is True and infile.diagnostic_dir0 is not None: ifmr_file = os.path.join(infile.diagnostic_dir0, infile.agb_mix, infile.set_name, '_'.join(('ifmr', infile.name_conv))) ncols = 3 nrows = imfr_data.size/ncols savetxt(ifmr_file, imfr_data.reshape(nrows, ncols), header='# M_i M_f Z \n') plot_ifmr(ifmr_file) if infile.diagnostic_dir0 is not None and infile.diag_plots is True: lifetime_file = os.path.join(infile.diagnostic_dir0, infile.agb_mix, infile.set_name, '_'.join(('tau_cm', infile.name_conv))) ncols = 4 nrows = lifetime_data.size / ncols savetxt(lifetime_file, lifetime_data.reshape(nrows, ncols), header='# z mass tauc taum\n') plot_cluster_test(lifetime_file) os.chdir(infile.home) return infile.cmd_input_file def agb_setup(infile): '''set up files and directories for TPAGB parsing.''' infile.home = os.getcwd() # Check for Paola's formatted tracks ensure_dir(infile.isotrack_dir) # are we making diagnostic plots, check directory. if infile.diagnostic_dir0: ensure_dir(os.path.join(infile.diagnostic_dir0, infile.agb_mix, infile.set_name + '/')) else: logger.info('not making diagnostic plots') # set name convention: [mix]_[set].dat infile.name_conv = '{}_{}.dat'.format(infile.agb_mix, infile.set_name) # set track search string infile.track_identifier = 'agb_*Z*.dat' # cmd_input_file that links to the track file cmd_input = '_'.join(('cmd', 'input', infile.name_conv)) ensure_dir(os.path.join(infile.home, infile.trilegal_dir)) infile.cmd_input_file = os.path.join(infile.home, infile.trilegal_dir, cmd_input) # track file to link from cmd_input to paola's formatted tracks tracce_fh = '_'.join(('tracce', infile.name_conv)) infile.tracce_file = os.path.join(infile.home, infile.tracce_dir, tracce_fh) infile.tracce_file_rel = os.path.join('isotrack', infile.tracce_dir, tracce_fh) # moving to the the directory with metallicities. infile.working_dir = os.path.join(infile.agbtrack_dir, infile.agb_mix, infile.set_name) os.chdir(infile.working_dir) metal_dirs = [m for m in os.listdir(infile.working_dir) if os.path.isdir(m) and 'Z' in m] if infile.metals_subset is not None: logger.info('doing a subset of metallicities') metal_dirs = [m for m in metal_dirs if metallicity_from_dir(m)[0] in infile.metals_subset] metals = np.argsort([metallicity_from_dir(m)[0] for m in metal_dirs]) infile.metal_dirs = np.array(metal_dirs)[metals] logger.info('found {} metallicities'.format(len(infile.metal_dirs))) def metallicity_from_dir(met): ''' take Z and Y values from string''' if met.endswith('/'): met = met[:-1] if len(os.path.split(met)) > 0: met = os.path.split(met)[1] z = float(met.split('_')[1].replace('Z', '')) y = float(met.split('_')[-1].replace('Y', '')) return z, y class AGBTracks(object): '''AGB data class''' def __init__(self, data_array, col_keys, name): self.data_array = data_array self.key_dict = dict(zip(col_keys, range(len(col_keys)))) self.name = name self.firstname = os.path.split(name)[1] self.mass = float(self.firstname.split('_')[1]) self.metallicity = float(self.firstname.split('_')[2].replace('Z', '')) # initialize: it's a well formatted track with more than one pulse self.bad_track = False # if only one thermal pulse, stop the press. self.check_ntp() self.get_TP_inds() if not self.bad_track: # force the beginning phase to not look like it's quiescent self.fix_phi() # load quiescent tracks self.get_quiescent_inds() # load indices of m and c stars self.m_cstars() # calculate the lifetimes of m and c stars self.tauc_m() # add points to low mass quiescent track for better interpolation self.addpt = [] if len(self.Qs) <= 9 and self.mass < 3.: self.add_points_to_q_track() # find dl/dt of track self.find_dldt() else: logger.error('bad track: {}'.format(name)) def find_dldt(self, order=1): ''' Finds dL/dt of track object by a poly fit of order = 1 (default) ''' TPs = self.TPs qs = list(self.Qs) status = self.data_array['status'] logl = self.data_array['L_star'] logt = self.data_array['T_star'] phi = self.data_array['PHI_TP'] # if a low mass interpolation point was added it will get # the same slope as the rest of the thermal pulse. #dl/dT seems somewhat linear for 0.2 < phi < 0.4 ... lin_rise, = np.nonzero((status == 7) & (phi < 0.4) & (phi > 0.2)) rising = [list(set(TP) & set(lin_rise)) for TP in TPs] fits = [np.polyfit(logt[r], logl[r], order) for r in rising if len(r) > 0] slopes = np.array([]) # first line slope slopes = np.append(slopes, (logl[2] - logl[0]) / (logt[2] - logt[0])) # poly fitted slopes slopes = np.append(slopes, [fits[i][0] for i in range(len(fits))]) # pop in an additional copy of the slope if an interpolation point # was added. if len(self.addpt) > 0: tps_of_addpt = np.array([i for i in range(len(TPs)) if list(set(self.addpt) & set(TPs[i])) > 0]) slopes = np.insert(slopes, tps_of_addpt, slopes[tps_of_addpt]) self.Qs = np.insert(self.Qs, 0, 0) self.rising = rising self.slopes = slopes self.fits = fits def add_points_to_q_track(self): ''' when to add an extra point for low masses if logt[qs+1] is hotter than logt[qs] and there is a point inbetween logt[qs] and logt[qs+1] that is cooler than logt[qs] add the coolest point. ''' addpt = self.addpt qs = list(self.Qs) logt = self.data_array['T_star'] tstep = self.data_array['step'] status = self.data_array['status'] Tqs = logt[qs] # need to use some unique array, not logt, since logt could repeat, # index would find the first one, not necessarily the correct one. Sqs = tstep[qs] - 1. # steps start at 1, not zero # takes the sign of the difference in logt(qs) # if the sign of the difference is more than 0, we're going from cold to hot # finds where the logt goes from getting colder to hotter... ht, = np.nonzero(np.sign(np.diff(Tqs)) > 0) ht = np.append(ht, ht + 1) # between the first and second Sqs_ht = Sqs[ht] # the indices between each hot point. t_mids = [map(int, tstep[int(Sqs_ht[i]): int(Sqs_ht[i + 1])]) for i in range(len(Sqs_ht) - 1)] Sqs_ht = Sqs_ht[: -1] for i in range(len(Sqs_ht) - 1): hot_inds = np.nonzero(logt[int(Sqs_ht[i])] > logt[t_mids[i]])[0] if len(hot_inds) > 0: # index of the min T of the hot index from above. addpt.append(list(logt).index(np.min(logt[[t_mids[i][hi] for hi in hot_inds]]))) if len(addpt) > 0: addpt = np.unique([a for a in addpt if status[a] == 7.]) # hack: if there is more than one point, take the most evolved. if len(addpt) > 1: addpt = [np.max(addpt)] # update Qs with added pts. self.Qs = np.sort(np.concatenate((addpt, qs))) # update mins to take the same point as Qs. self.mins = list(np.sort(np.concatenate((addpt, self.mins)))) self.addpt = addpt def check_ntp(self): '''sets self.bad_track = True if only one thermal pulse.''' ntp = self.data_array['NTP'] if ntp.size == 1: logger.error('no tracks! {}'.format(self.name)) self.bad_track = True def fix_phi(self): '''The first line in the agb track is 1. This isn't a quiescent stage.''' self.data_array['PHI_TP'][0] = -1. def m_cstars(self, mdot_cond=-5, logl_cond=3.3): ''' adds mstar and cstar attribute of indices that are true for: mstar: co <=1 logl >= 3.3 mdot <= -5 cstar: co >=1 mdot <= -5 (by default) adjust mdot with mdot_cond and logl with logl_cond. ''' data = self.data_array self.mstar, = np.nonzero((data['CO'] <= 1) & (data['L_star'] >= logl_cond) & (data['dMdt'] <= mdot_cond)) self.cstar, = np.nonzero((data['CO'] >= 1) & (data['dMdt'] <= mdot_cond)) def tauc_m(self): '''lifetimes of c and m stars''' try: tauc = np.sum(self.data_array['dt'][self.cstar]) / 1e6 except IndexError: tauc = 0. logger.warning('no tauc') try: taum = np.sum(self.data_array['dt'][self.mstar]) / 1e6 except IndexError: taum = 0. logger.warning('no taum') self.taum = taum self.tauc = tauc def get_TP_inds(self): '''find the thermal pulsations of each file''' self.TPs = [] if self.bad_track: return ntp = self.data_array['NTP'] un, iTPs = np.unique(ntp, return_index=True) if un.size == 1: logger.warning('only one themal pulse.') self.TPs = un else: # The indices each TP is just filling values between the iTPs # and the final grid point iTPs = np.append(iTPs, len(ntp)) self.TPs = [np.arange(iTPs[i], iTPs[i+1]) for i in range(len(iTPs) - 1)] if len(self.TPs) == 1: self.bad_track = True def get_quiescent_inds(self): ''' The quiescent phase, Qs, is the the max phase in each TP, i.e., closest to 1. ''' phi = self.data_array['PHI_TP'] logl = self.data_array['L_star'] self.Qs = np.unique([TP[np.argmax(phi[TP])] for TP in self.TPs]) self.mins = np.unique([TP[np.argmin(logl[TP])] for TP in self.TPs]) def get_numeric_data(filename): ''' made to read all of Paola's tracks. It takes away her "lg" meaning log. Returns an AGBTracks object. If there is a problem reading the data, all data are passed as zeros. ''' f = open(filename, 'r') lines = f.readlines() f.close() line = lines[0] if len(lines) == 1: logger.warning('only one line in {}'.format(filename)) return -1 col_keys = line.replace('#', '').replace('lg', '').replace('*', 'star') col_keys = col_keys.strip().split() try: data = np.genfromtxt(filename, missing_values='************', names=col_keys) except ValueError: logger.error('problem with', filename) data = np.zeros(len(col_keys)) return AGBTracks(data, col_keys, filename) def calc_c_o(row): """ C or O excess if (C/O>1): excess = log10 [(YC/YH) - (YO/YH)] + 12 if C/O<1: excess = log10 [(YO/YH) - (YC/YH)] + 12 where YC = X(C12)/12 + X(C13)/13 YO = X(O16)/16 + X(O17)/17 + X(O18)/18 YH = XH/1.00794 """ yh = row['H'] / 1.00794 yc = row['C12'] / 12. + row['C13'] / 13. yo = row['O16'] / 16. + row['O17'] / 17. + row['O18'] / 18. if row['CO'] > 1: excess = np.log10((yc / yh) - (yo / yh)) + 12. else: excess = np.log10((yo / yh) - (yc / yh)) + 12. return excess def make_iso_file(track, isofile, write_header=False): ''' this only writes the quiescent lines and the first line. format of this file is: age : age in yr logl : logL logte : logTe mass : actual mass along track mcore : core mass per : period in days period mode : 1=first overtone, 0=fundamental mode mlr : mass loss rate in Msun/yr x_min : X y_min : Y X_C : X_C X_N : X_N X_O : X_O slope : dTe/dL x_min : Xm at log L min of (the following) TP y_min : Ym at log L min of (the following) TP X_Cm : X_C at log L min of (the following) TP X_Nm : X_N at log L min of (the following) TP X_Om : X_O at log L min of (the following) TP ''' isofile.write('# age(yr) logL logTe m_act mcore period ip') isofile.write(' Mdot(Msun/yr) X Y X_C X_N X_O dlogTe/dlogL Xm Ym X_Cm X_Nm X_Om\n') fmt = '%.4e %.4f %.4f %.5f %.5f %.4e %i %.4e %.6e %.6e %.6e %.6e %.6e %.4f %.6e %.6e %.6e %.6e %.6e\n' # cull agb track to quiescent rows = track.Qs # min of each TP mins = track.data_array[track.mins] if len(rows) - len(mins) > 1: import pdb; pdb.set_trace() keys = track.key_dict.keys() vals = track.key_dict.values() col_keys = np.array(keys)[np.argsort(vals)] #cno = [key for key in col_keys if (key.startswith('C1') or # key.startswith('N1') or # key.startswith('O1'))] isofile.write(' %.4f %i # %s \n' % (track.mass, len(rows), track.firstname)) for i, r in enumerate(rows): slope = 999 xcm = 999 xnm = 999 xom = 999 iminh = 999 iminy = 999 row = track.data_array[r] period = row['P1'] if row['Pmod'] == 0: period = row['P0'] mdot = 10 ** (row['dMdt']) # CNO and excess are no longer used #CNO = np.sum([row[c] for c in cno]) #excess = calc_c_o(row) xc = np.sum([row[c] for c in col_keys if c.startswith('C1')]) xn = np.sum([row[c] for c in col_keys if c.startswith('N1')]) xo = np.sum([row[c] for c in col_keys if c.startswith('O1')]) if r != rows[-1]: imin = mins[i] xcm = np.sum([imin[c] for c in col_keys if c.startswith('C1')]) xnm = np.sum([imin[c] for c in col_keys if c.startswith('N1')]) xom = np.sum([imin[c] for c in col_keys if c.startswith('O1')]) iminh = imin['H'] iminy = imin['Y'] try: slope = 1. / track.slopes[list(rows).index(r)] except: logger.error('bad slope: {}, row: {}'.format(track.firstname, i)) try: isofile.write(fmt % (row['ageyr'], row['L_star'], row['T_star'], row['M_star'], row['M_c'], period, row['Pmod'], mdot, row['H'], row['Y'], xc, xn, xo, slope, iminh, iminy, xcm, xnm, xom)) except IndexError: logger.error('this row: {}'.format(list(rows).index(r))) logger.error('row length: {} slope array length {}'.format(len(rows), len(track.slopes))) logger.error('slope reciprical: {}'.format(1. / slope[list(rows).index(r)])) return class InputFile(object): ''' a class to replace too many kwargs from the input file. does two things: 1. sets a default dictionary (see input_defaults) as attributes 2. unpacks the dictionary from load_input as attributes (overwrites defaults). ''' def __init__(self, filename, default_dict=None): if default_dict is not None: self.set_defaults(default_dict) self.in_dict = load_input(filename) self.unpack_dict() def set_defaults(self, in_def): self.unpack_dict(udict=in_def) def unpack_dict(self, udict=None): if udict is None: udict = self.in_dict [self.__setattr__(k, v) for k, v in udict.items()] def load_input(filename, comment_char='#', list_sep=','): ''' read an input file into a dictionary Ignores all lines that start with # each line in the file has format key value True and False are interpreted as bool converts values to float, string, or list also accepts dictionary with one key and one val e.g: inp_dict {'key': val1} Parameters ---------- filename : string filename to parse comment_char : string skip line if it starts with comment_char list_sep : string within a value, if it's a list, split it by this value if it's numeric, it will make a np.array of floats. Returns ------- d : dict parsed information from filename ''' d = {} with open(filename) as f: # skip comment_char, empty lines, strip out [] lines = [l.strip().translate(None, '[]') for l in f.readlines() if not l.startswith(comment_char) and len(l.strip()) > 0] # fill the dict for line in lines: key, val = line.partition(' ')[0::2] d[key] = is_numeric(val.replace(' ', '')) # check the values for key in d.keys(): # is_numeric already got the floats and ints if type(d[key]) == float or type(d[key]) == int: continue # check for a comma separated list temp = d[key].split(list_sep) if len(temp) > 1: try: # assume list of floats. d[key] = [is_numeric(t) for t in temp] except: d[key] = temp # check for a dictionary elif len(d[key].split(':')) > 1: temp1 = d[key].split(':') d[key] = {is_numeric(temp1[0]): is_numeric(temp1[1])} else: val = temp[0] # check bool true = val.upper().startswith('TRUE') false = val.upper().startswith('FALSE') none = val.title().startswith('None') if true or false or none: val = literal_eval(val) d[key] = val return d def agb_input_defaults(profile=None): ''' # COLIBRI directory structure must be [agbtrack_dir]/[agb_mix]/[set_name] agbtrack_dir /home/rosenfield/research/TP-AGBcalib/AGBTracks agb_mix CAF09 set_name S_NOV13 ### Parameters for TRILEGAL INPUT: # Where input files will go for TRILEGAL trilegal_dir cmd_inputfiles/ # Non-TP-AGB tracks to use file_isotrack isotrack/parsec/CAF09_V1.2S_M36_S12D_NS_NAS.dat # mass_loss parameter (for RGB stars) so far only "Reimers: [float]" mass_loss Reimers: 0.2 # TRILEGAL formatted TP-AGB tracks will go here: # structure: [isotrack_dir]/[agb_mix]/[set_name] isotrack_dir isotrack_agb/ # File to link TRILEGAL formatted TP-AGB tracks to cmd_input: tracce_dir isotrack_agb/ ### Diag plots, extra files: # make initial and final mass relation (and also lifetimes c and m)? # (Need more than one metallicity) make_imfr True # Diagnostic plots base, this will have directory structure: # diagnostic_dir/[agb_mix]_[metallicity]/[set]/ diagnostic_dir0 /home/rosenfield/research/TP-AGBcalib/diagnostics/ # If True, will make HRD or age vs C/O, log L, log Te (takes time!) diag_plots True ### Misc Options: # overwrite TRILEGAL formatted TP-AGB tracks and the output diag plots? over_write True # only do these metallicities (if commented out, do all metallicities) # NB: this functionality has not been tested recently #metals_subset 0.001, 0.004, 0.0005, 0.006, 0.008, 0.01, 0.017 ''' if profile is None: keys = ['over_write', 'agbtrack_dir', 'agb_mix', 'set_name', 'trilegal_dir', 'isotrack_dir', 'tracce_dir', 'diagnostic_dir0', 'make_imfr', 'mass_loss', 'metals_subset'] else: logger.error('only default profile set... must code') in_def = {} for k in keys: in_def[k] = None return in_def def write_cmd_input_file(**kwargs): ''' make a TRILEGAL cmd_input file based on default. Send each parameter that is different than default by: kwargs = { 'kind_tpagb': 4, 'file_tpagb': 'isotrack/tracce_CAF09_S0.dat'} cmd_input_file = write_cmd_input_file(**kwargs) To make the default file: cmd_input_file = write_cmd_input_file() if you don't specify cmd_input_file, output goes to cmd_input_TEMP.dat ''' kind_tracks = kwargs.get('kind_tracks', 2) file_isotrack = kwargs.get('file_isotrack', 'isotrack/parsec/CAF09.dat') file_lowzams = kwargs.get('file_lowzams', 'isotrack/bassazams_fasulla.dat') kind_tpagb = kwargs.get('kind_tpagb', 4) file_tpagb = kwargs.get('file_tpagb') if not file_tpagb: file_tpagb = 'isotrack/isotrack_agb/tracce_CAF09_AFEP02_I1_S1.dat' kind_postagb = kwargs.get('kind_postagb', 0) file_postagb = kwargs.get('file_postagb', 'isotrack/final/pne_wd_test.dat') mass_loss = kwargs.get('mass_loss') if mass_loss: kind_rgbmloss = 1 law_mass_loss, = mass_loss.keys() efficiency_mass_loss, = mass_loss.values() # these are for using cmd2.2: kind_mag = kwargs.get('kind_mag', None) photsys = kwargs.get('photsys', 'wfpc2') file_mag = 'tab_mag_odfnew/tab_mag_%s.dat' % photsys kind_imf = kwargs.get('kind_imf', None) file_imf = kwargs.get('file_imf', 'tab_imf/imf_chabrier_lognormal.dat') # if not using cmd2.2: if kind_imf is None: kind_imfr = kwargs.get('kind_imfr', 0) file_imfr = kwargs.get('file_imfr', 'tab_ifmr/weidemann.dat') track_comments = '# kind_tracks, file_isotrack, file_lowzams' tpagb_comments = '# kind_tpagb, file_tpagb' pagb_comments = '# kind_postagb, file_postagb DA VERIFICARE file_postagb' mag_comments = '# kind_mag, file_mag' imf_comments = '# kind_imf, file_imf' imfr_comments = '# ifmr_kind, file with ifmr' mass_loss_comments = '# RGB mass loss: kind_rgbmloss, law, and efficiency' footer = ( '################################explanation######################', 'kind_tracks: 1= normal file', 'file_isotrack: tracks for low+int mass', 'file_lowzams: tracks for low-ZAMS', 'kind_tpagb:', ' 0 = none', ' 1 = Girardi et al., synthetic on the flight, no dredge up', ' 2 = Marigo & Girardi 2001, from file, includes mcore and C/O', ' 3 = Marigo & Girardi 2007, from file, includes per, mode and mloss', ' 4 = Marigo et al. 2011, from file, includes slope', 'file_tpagb: tracks for TP-AGB', 'kind_postagb:', ' 0 = none', ' 1 = from file', 'file_postagb: PN+WD tracks', 'kind_ifmr:', ' 0 = default', ' 1 = from file\n') cmd_input_file = kwargs.get('cmd_input_file', 'cmd_input_TEMP.dat') fh = open(cmd_input_file, 'w') formatter = ' %i %s %s \n' fh.write(' %i %s %s %s \n' % (kind_tracks, file_isotrack, file_lowzams, track_comments)) fh.write(formatter % (kind_tpagb, file_tpagb, tpagb_comments)) fh.write(formatter % (kind_postagb, file_postagb, pagb_comments)) if kind_mag is not None: fh.write(formatter % (kind_mag, file_mag, mag_comments)) if kind_imf is None: fh.write(formatter % (kind_imfr, file_imfr, imfr_comments)) else: fh.write(formatter % (kind_imf, file_imf, imf_comments)) if mass_loss: fh.write(' %i %s %.3f \n' % (kind_rgbmloss, law_mass_loss, efficiency_mass_loss)) fh.write('\n'.join(footer)) fh.close() logger.info('wrote {}'.format(cmd_input_file)) return cmd_input_file def make_met_file(tracce, Zs, Ys, isofiles): with open(tracce, 'w') as t: t.write(' %i\n' % len(isofiles)) [t.write(' %.4f\t%.3f\t%s\n' % (Zs[i], Ys[i], isofiles[i])) for i in np.argsort(Zs)] logger.info('wrote {}'.format(tracce)) return def get_files(src, search_string): ''' returns a list of files, similar to ls src/search_string ''' if not src.endswith('/'): src += '/' try: files = glob.glob1(src, search_string) except IndexError: logging.error('Can''t find %s in %s' % (search_string, src)) sys.exit(2) files = [os.path.join(src, f) for f in files if ensure_file(os.path.join(src, f), mad=False)] return files def ensure_file(f, mad=True): ''' Parameters ---------- f : string if f is not a file will log warning. mad : bool [True] if mad is True, will exit if f is not a file ''' test = os.path.isfile(f) if test is False: logging.warning('there is no file', f) if mad: sys.exit(2) return test def load_input(filename): ''' reads an input file into a dictionary. file must have key first then value(s) Will make 'True' into a boolean True Will understand if a value is a float, string, or list, etc. Ignores all lines that start with #, but not with # on the same line as key, value. ''' try: literal_eval except NameError: from ast import literal_eval d = {} with open(filename) as f: for line in f.readlines(): if line.startswith('#'): continue if len(line.strip()) == 0: continue key, val = line.strip().partition(' ')[0::2] d[key] = is_numeric(val.replace(' ', '')) # do we have a list? for key in d.keys(): # float if type(d[key]) == float: continue # list: temp = d[key].split(',') if len(temp) > 1: try: d[key] = map(float, temp) except: d[key] = temp # dict: elif len(d[key].split(':')) > 1: temp1 = d[key].split(':') d[key] = {is_numeric(temp1[0]): is_numeric(temp1[1])} else: val = temp[0] # boolean true = val.upper().startswith('TR') false = val.upper().startswith('FA') if true or false: val = literal_eval(val) # string d[key] = val return d def ensure_dir(f): ''' will make all dirs necessary for input to be an existing directory. if input does not end with '/' it will add it, and then make a directory. ''' if not f.endswith('/'): f += '/' d = os.path.dirname(f) if not os.path.isdir(d): os.makedirs(d) logging.info('made dirs: {}'.format(d)) def savetxt(filename, data, fmt='%.4f', header=None): ''' np.savetxt wrapper that adds header. Some versions of savetxt already allow this... ''' with open(filename, 'w') as f: if header is not None: f.write(header) np.savetxt(f, data, fmt=fmt) logger.info('wrote {}'.format(filename)) def is_numeric(lit): """ value of numeric: literal, string, int, float, hex, binary From http://rosettacode.org/wiki/Determine_if_a_string_is_numeric#Python """ # Empty String if len(lit) <= 0: return lit # Handle '0' if lit == '0': return 0 # Hex/Binary if len(lit) > 1: # sometimes just '-' means no data... litneg = lit[1:] if lit[0] == '-' else lit if litneg[0] == '0': if litneg[1] in 'xX': return int(lit, 16) elif litneg[1] in 'bB': return int(lit, 2) else: try: return int(lit, 8) except ValueError: pass # Int/Float/Complex try: return int(lit) except ValueError: pass try: return float(lit) except ValueError: pass try: return complex(lit) except ValueError: pass return lit def setup_multiplot(nplots, xlabel=None, ylabel=None, title=None, subplots_kwargs={}): ''' fyi subplots args: nrows=1, ncols=1, sharex=False, sharey=False, squeeze=True, subplot_kw=None, **fig_kw ''' nx = np.round(
np.sqrt(nplots)
numpy.sqrt
# 練習問題8(7) import numpy as np import seaborn as sns import pandas import matplotlib.pyplot as plt from matplotlib.figure import figaspect from matplotlib.gridspec import GridSpec import mcmc_tools from scipy.stats import norm from scipy.stats import gaussian_kde # id: 個体番号 # pot: 植木鉢番号(A~J) # f: 処理の違い(C or T) # y: 種子数 d1 = pandas.read_csv('d1.csv') print(d1.head()) print(d1.describe()) # モデリング # 線形結合するのは"処理の違い"とし、ほかはノイズとして扱う。 y = d1['y'] N = len(y) # pandasでIDを変更するときはSeriesが使える F2int = pandas.Series([0, 1], index=('C', 'T')) F = F2int[d1['f']] print(F) # こちらもIDを変更するのでSeriesを使う pots = d1['pot'].unique() N_Pot = pots.size Pot2int = pandas.Series(
np.arange(N_Pot)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Tue Apr 27 10:17:43 2021 @author: Hatlab_3 """ import numpy as np import time from scipy.signal import butter, sosfilt, sosfreqz import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable from scipy.optimize import curve_fit from matplotlib.patches import Ellipse from matplotlib import cm from matplotlib.colors import ListedColormap, LinearSegmentedColormap from matplotlib.colors import Normalize as Norm #DO NOT USE, only here for backwards compatibility def demod(signal_data, reference_data, mod_freq = 50e6, sampling_rate = 1e9): ''' #TODO: Parameters ---------- signal_data : np 1D array - float64 signal datapoints reference_data : np 1D array - float64 reference datapoints mod_freq : float64, optional Modulation frequency in Hz. The default is 50e6. sampling_rate : float64, optional sampling rate in samples per second. The default is 1e9. Returns ------- sig_I_summed : np 1D array - float64 Signal multiplied by Sine and integrated over each period. sig_Q_summed : np 1D array - float64 Signal multiplied by Cosine and integrated over each period. ref_I_summed : np 1D array - float64 reference multiplied by sine and integrated over each period. ref_Q_summed : np 1D array - float64 Reference multiplied by Cosine and integrated over each period. ''' '''first pad the arrays to get a multiple of the number of samples in a demodulation period, this will make the last record technically inaccurate but there are thousands being averaged so who cares ''' #first demodulate both channels # print("Signal Data Shape: ",np.shape(signal_data)) # print("Reference Data Shape: ",np.shape(reference_data)) period = int(sampling_rate/mod_freq) print("Integrating over a period of: ", period) signal_data = np.pad(signal_data, (0,int(period-np.size(signal_data)%period))) reference_data = np.pad(reference_data, (0,int(period-np.size(reference_data)%period))) # print("Signal Data Shape: ",np.shape(signal_data)) # print("Reference Data Shape: ",np.shape(reference_data)) point_number = np.arange(np.size(reference_data)) # print('Modulation period: ', period) SinArray = np.sin(2*np.pi/period*point_number) CosArray = np.cos(2*np.pi/period*point_number) sig_I = signal_data*SinArray sig_Q = signal_data*CosArray ref_I = reference_data*SinArray ref_Q = reference_data*CosArray #now you cut the array up into periods of the sin and cosine modulation, then sum within one period #the sqrt 2 is the RMS value of sin and cosine squared, period is to get rid of units of time sig_I_summed = np.sum(sig_I.reshape(np.size(sig_I)//period, period), axis = 1)*(np.sqrt(2)/period) sig_Q_summed = np.sum(sig_Q.reshape(np.size(sig_I)//period, period), axis = 1)*(np.sqrt(2)/period) ref_I_summed = np.sum(ref_I.reshape(np.size(sig_I)//period, period), axis = 1)*(np.sqrt(2)/period) ref_Q_summed = np.sum(ref_Q.reshape(np.size(sig_I)//period, period), axis = 1)*(np.sqrt(2)/period) return (sig_I_summed, sig_Q_summed, ref_I_summed, ref_Q_summed) def demod_period(signal_data, reference_data, period = 20, sampling_rate = 1e9, debug = False): ''' #TODO: Parameters ---------- signal_data : np 1D array - float64 signal datapoints reference_data : np 1D array - float64 reference datapoints mod_freq : float64, optional Modulation frequency in Hz. The default is 50e6. sampling_rate : float64, optional sampling rate in samples per second. The default is 1e9. Returns ------- sig_I_summed : np 1D array - float64 Signal multiplied by Sine and integrated over each period. sig_Q_summed : np 1D array - float64 Signal multiplied by Cosine and integrated over each period. ref_I_summed : np 1D array - float64 reference multiplied by sine and integrated over each period. ref_Q_summed : np 1D array - float64 Reference multiplied by Cosine and integrated over each period. ''' '''first pad the arrays to get a multiple of the number of samples in a demodulation period, this will make the last record technically inaccurate but there are thousands being averaged so who cares ''' #first demodulate both channels # print("Signal Data Shape: ",np.shape(signal_data)) # print("Reference Data Shape: ",np.shape(reference_data)) if debug: print("Integrating over a period of: ", period) print("Implies a demodulation frequency of: ", sampling_rate/period/1e6, "MHz") signal_data = np.pad(signal_data, (0,int(period-np.size(signal_data)%period))) reference_data = np.pad(reference_data, (0,int(period-np.size(reference_data)%period))) # print("Signal Data Shape: ",np.shape(signal_data)) # print("Reference Data Shape: ",np.shape(reference_data)) point_number = np.arange(np.size(reference_data)) # print('Modulation period: ', period) SinArray = np.sin(2*np.pi/period*point_number) CosArray = np.cos(2*np.pi/period*point_number) sig_I = signal_data*SinArray sig_Q = signal_data*CosArray ref_I = reference_data*SinArray ref_Q = reference_data*CosArray #now you cut the array up into periods of the sin and cosine modulation, then sum within one period #the sqrt 2 is the RMS value of sin and cosine squared, period is to get rid of units of time sig_I_summed = np.sum(sig_I.reshape(np.size(sig_I)//period, period), axis = 1)*(np.sqrt(2)/period) sig_Q_summed = np.sum(sig_Q.reshape(np.size(sig_I)//period, period), axis = 1)*(np.sqrt(2)/period) ref_I_summed = np.sum(ref_I.reshape(np.size(sig_I)//period, period), axis = 1)*(np.sqrt(2)/period) ref_Q_summed = np.sum(ref_Q.reshape(np.size(sig_I)//period, period), axis = 1)*(np.sqrt(2)/period) return (sig_I_summed, sig_Q_summed, ref_I_summed, ref_Q_summed) def demod_all_records(s_array: np.ndarray, r_array: np.ndarray, period = 20): ''' Parameters ---------- s_array : np.ndarray array of signal data [R, t] where R is records, t is time r_array : np.ndarray array of reference data [R, t] where R is records, t is time period : int, optional window over which to integrate for demodulation, with 1GS/s the unit is ns. The default is 20ns == 50MHz. Returns ------- s_demod_arr : TYPE array of demodulated r_demod_arr : TYPE DESCRIPTION. ''' sI_arr = [] sQ_arr = [] rI_arr = [] rQ_arr = [] #demodulate each record in windows of (period) width for rec_sig, rec_ref in zip(s_array, r_array): sI, sQ, rI, rQ = demod_period(rec_sig, rec_ref, period = period) sI_arr.append(sI) sQ_arr.append(sQ) rI_arr.append(rI) rQ_arr.append(rQ) #turn everything into numpy arrays for data in [sI_arr, sQ_arr, rI_arr, rQ_arr]: data = np.array(data) return [sI_arr, sQ_arr], [rI_arr, rQ_arr] bpf_func = lambda cfreq, BW, order: butter(order, [cfreq-BW/2, cfreq+BW/2], fs = 1e9, output = 'sos', btype = 'bandpass') def filter_all_records(s_array, r_array, filt): s_filt_arr = [] r_filt_arr = [] #demodulate each record in windows of (period) width for rec_sig, rec_ref in zip(s_array, r_array): s_filt = sosfilt(filt, rec_sig) r_filt = sosfilt(filt, rec_ref) s_filt_arr.append(s_filt) r_filt_arr.append(r_filt) #turn everything into numpy arrays for data in [s_filt_arr, r_filt_arr]: data = np.array(data) return s_filt_arr, r_filt_arr def remove_offset(I, Q, window = [0, 40]): #remove an IQ offset from the data offset_data = I-np.average(I[:, window[0]: window[1]]), Q-np.average(Q[:, window[0]: window[1]]) return offset_data def phase_correction(sigI, sigQ, refI, refQ): ''' Parameters ---------- sigI : np 2D array - (records,samples) float64 demodulated signal - In-phase sigQ : np 2D array - (records,samples) float64 demodulated signal - Quadrature phase refI : np 2D array - (records,samples) float64 demodulated reference - In-phase refQ : np 2D array - (records,samples) float64 demodulated reference - quadrature-phase Note: reference and signal arrays must all be of the same length Returns ------- sigI_corrected : np 2D array - float64 Signal I rotated by reference phase averaged over each record sigQ_corrected : np 2D array - float64 Signal Q rotated by reference phase averaged over each record ''' sigI_corrected = np.zeros(np.shape(sigI)) sigQ_corrected = np.zeros(np.shape(sigQ)) rI_trace = np.zeros(np.shape(sigI)[0]) rQ_trace =np.zeros(np.shape(sigI)[0]) for i, (sI_rec, sQ_rec, rI_rec, rQ_rec) in enumerate(zip(sigI,sigQ,refI,refQ)): rI_avg, rQ_avg = np.average(rI_rec), np.average(rQ_rec) rI_trace[i], rQ_trace[i] = rI_avg, rQ_avg Ref_mag = np.sum(np.sqrt(rI_avg**2 + rQ_avg**2)) sigI_corrected[i] = (sI_rec*rI_avg + sQ_rec*rQ_avg)/Ref_mag sigQ_corrected[i] = (-sI_rec*rQ_avg + sQ_rec*rI_avg)/Ref_mag return sigI_corrected, sigQ_corrected, rI_trace, rQ_trace def generate_matched_weight_funcs(data1, data2, bc = False, bc_window = [50, 150]): d1I, d1Q = data1 d2I, d2Q = data2 if bc == False: WF_I = np.average(d1I, axis = 0)-np.average(d2I, axis = 0) WF_Q = np.average(d1Q, axis = 0)-np.average(d2Q, axis = 0) else: WF_I = np.zeros(
np.shape(d1I)
numpy.shape
import sys import numpy as np from sklearn.ensemble import RandomForestClassifier from sklearn.neural_network import MLPClassifier p0 = np.load("prob_run0.npy") p1 = np.load("prob_run1.npy") p2 = np.load("prob_run2.npy") p3 = np.load("prob_run3.npy") p4 = np.load("prob_run4.npy") p5 = np.load("prob_run5.npy") y_test = np.load("../data/audio/ESC-10/esc10_spect_test_labels.npy") prob = (p0+p1+p2+p3+p4+p5)/6.0 p = np.argmax(prob, axis=1) cc = np.zeros((10,10)) for i in range(len(y_test)): cc[y_test[i],p[i]] += 1 print() print("Ensemble average:") print() if (len(sys.argv) > 1): print(np.array2string(cc.astype("uint32"))) print() cp = 100.0 * cc / cc.sum(axis=1) print(np.array2string(cp, precision=1)) print() print("Overall accuracy = %0.2f%%" % (100.0*np.diag(cc).sum()/cc.sum(),)) print() print() print("Ensemble max:") print() p = np.zeros(len(y_test), dtype="uint8") for i in range(len(y_test)): mx = 0.0 idx = 0 t = np.array([p0[i],p1[i],p2[i],p3[i],p4[i],p5[i]]) p[i] = np.argmax(t.reshape(60)) % 10 cc = np.zeros((10,10)) for i in range(len(y_test)): cc[y_test[i],p[i]] += 1 if (len(sys.argv) > 1): print(np.array2string(cc.astype("uint32"))) print() cp = 100.0 * cc / cc.sum(axis=1) print(np.array2string(cp, precision=1)) print() print("Overall accuracy = %0.2f%%" % (100.0*np.diag(cc).sum()/cc.sum(),)) print() # Voting print() print("Ensemble voting:") print() t = np.zeros((6,len(y_test)), dtype="uint32") t[0,:] = np.argmax(p0, axis=1) t[1,:] =
np.argmax(p1, axis=1)
numpy.argmax
import os import sys import json import torch import pickle import argparse import numpy as np from tqdm import tqdm from copy import deepcopy from torch.utils.data import DataLoader from numpy.linalg import inv #sys.path.append(os.path.join(os.getcwd())) # HACK add the root folder #sys.path.append(os.path.join(os.getcwd(), os.pardir, "openks/models/pytorch/mmd_modules/ThreeDJCG")) # HACK add the lib folder import openks.models.pytorch.mmd_modules.ThreeDJCG.lib.capeval.bleu.bleu as capblue import openks.models.pytorch.mmd_modules.ThreeDJCG.lib.capeval.cider.cider as capcider import openks.models.pytorch.mmd_modules.ThreeDJCG.lib.capeval.rouge.rouge as caprouge import openks.models.pytorch.mmd_modules.ThreeDJCG.lib.capeval.meteor.meteor as capmeteor from openks.models.pytorch.mmd_modules.ThreeDJCG.data.scannet.model_util_scannet import ScannetDatasetConfig from openks.models.pytorch.mmd_modules.ThreeDJCG.lib.config_joint import CONF from openks.models.pytorch.mmd_modules.ThreeDJCG.lib.ap_helper import parse_predictions from openks.models.pytorch.mmd_modules.ThreeDJCG.lib.loss_helper.loss_captioning import get_scene_cap_loss, get_object_cap_loss from openks.models.pytorch.mmd_modules.ThreeDJCG.utils.box_util import box3d_iou_batch_tensor # constants DC = ScannetDatasetConfig() SCANREFER_ORGANIZED = json.load(open(os.path.join(CONF.PATH.DATA, "ScanRefer_filtered_organized.json"))) def prepare_corpus(raw_data, max_len=CONF.TRAIN.MAX_DES_LEN): corpus = {} for data in raw_data: scene_id = data["scene_id"] object_id = data["object_id"] object_name = data["object_name"] token = data["token"][:max_len] description = " ".join(token) # add start and end token description = "sos " + description description += " eos" key = "{}|{}|{}".format(scene_id, object_id, object_name) # key = "{}|{}".format(scene_id, object_id) if key not in corpus: corpus[key] = [] corpus[key].append(description) return corpus def decode_caption(raw_caption, idx2word): decoded = ["sos"] for token_idx in raw_caption: token_idx = token_idx.item() token = idx2word[str(token_idx)] decoded.append(token) if token == "eos": break if "eos" not in decoded: decoded.append("eos") decoded = " ".join(decoded) return decoded def check_candidates(corpus, candidates): placeholder = "sos eos" corpus_keys = list(corpus.keys()) candidate_keys = list(candidates.keys()) missing_keys = [key for key in corpus_keys if key not in candidate_keys] if len(missing_keys) != 0: for key in missing_keys: candidates[key] = [placeholder] return candidates def organize_candidates(corpus, candidates): new_candidates = {} for key in corpus.keys(): new_candidates[key] = candidates[key] return new_candidates def feed_scene_cap(model, device, dataset, dataloader, phase, folder, is_eval=True, max_len=CONF.TRAIN.MAX_DES_LEN, save_interm=False, min_iou=CONF.EVAL.MIN_IOU_THRESHOLD, organized=SCANREFER_ORGANIZED): candidates = {} intermediates = {} for data_dict in tqdm(dataloader): # move to cuda for key in data_dict: data_dict[key] = data_dict[key].cuda() with torch.no_grad(): data_dict = model(data_dict, is_eval) data_dict = get_scene_cap_loss(data_dict, device, DC, weights=dataset.weights, detection=True, caption=False) # unpack captions = data_dict["lang_cap"].argmax(-1) # batch_size, num_proposals, max_len - 1 dataset_ids = data_dict["dataset_idx"] batch_size, num_proposals, _ = captions.shape # post-process # config POST_DICT = { "remove_empty_box": True, "use_3d_nms": True, "nms_iou": 0.25, "use_old_type_nms": False, "cls_nms": True, "per_class_proposal": True, "conf_thresh": 0.05, "dataset_config": DC } # nms mask _ = parse_predictions(data_dict, POST_DICT) nms_masks = torch.LongTensor(data_dict["pred_mask"]).cuda() # objectness mask obj_masks = torch.argmax(data_dict["objectness_scores"], 2).long() # final mask nms_masks = nms_masks * obj_masks # pick out object ids of detected objects detected_object_ids = torch.gather(data_dict["scene_object_ids"], 1, data_dict["object_assignment"]) # bbox corners assigned_target_bbox_corners = torch.gather( data_dict["gt_box_corner_label"].float(), 1, data_dict["object_assignment"].view(batch_size, num_proposals, 1, 1).repeat(1, 1, 8, 3) ) # batch_size, num_proposals, 8, 3 detected_bbox_corners = data_dict["pred_bbox_corner"] # batch_size, num_proposals, 8, 3 # compute IoU between each detected box and each ground truth box ious = box3d_iou_batch_tensor( assigned_target_bbox_corners.view(-1, 8, 3), # batch_size * num_proposals, 8, 3 detected_bbox_corners.view(-1, 8, 3) # batch_size * num_proposals, 8, 3 ).view(batch_size, num_proposals) # find good boxes (IoU > threshold) good_bbox_masks = ious > min_iou # batch_size, num_proposals # dump generated captions object_attn_masks = {} for batch_id in range(batch_size): dataset_idx = dataset_ids[batch_id].item() scene_id = dataset.scanrefer[dataset_idx]["scene_id"] object_attn_masks[scene_id] = np.zeros((num_proposals, num_proposals)) for prop_id in range(num_proposals): if nms_masks[batch_id, prop_id] == 1 and good_bbox_masks[batch_id, prop_id] == 1: object_id = str(detected_object_ids[batch_id, prop_id].item()) caption_decoded = decode_caption(captions[batch_id, prop_id], dataset.vocabulary["idx2word"]) # print(scene_id, object_id) try: ann_list = list(organized[scene_id][object_id].keys()) object_name = organized[scene_id][object_id][ann_list[0]]["object_name"] # store key = "{}|{}|{}".format(scene_id, object_id, object_name) # key = "{}|{}".format(scene_id, object_id) candidates[key] = [caption_decoded] if save_interm: if scene_id not in intermediates: intermediates[scene_id] = {} if object_id not in intermediates[scene_id]: intermediates[scene_id][object_id] = {} intermediates[scene_id][object_id]["object_name"] = object_name intermediates[scene_id][object_id]["box_corner"] = detected_bbox_corners[batch_id, prop_id].cpu().numpy().tolist() intermediates[scene_id][object_id]["description"] = caption_decoded intermediates[scene_id][object_id]["token"] = caption_decoded.split(" ") # attention context # extract attention masks for each object object_attn_weights = data_dict["topdown_attn"][:, :, :num_proposals] # NOTE only consider attention on objects valid_context_masks = data_dict["valid_masks"][:, :, :num_proposals] # NOTE only consider attention on objects cur_valid_context_masks = valid_context_masks[batch_id, prop_id] # num_proposals cur_context_box_corners = detected_bbox_corners[batch_id, cur_valid_context_masks == 1] # X, 8, 3 cur_object_attn_weights = object_attn_weights[batch_id, prop_id, cur_valid_context_masks == 1] # X intermediates[scene_id][object_id]["object_attn_weight"] = cur_object_attn_weights.cpu().numpy().T.tolist() intermediates[scene_id][object_id]["object_attn_context"] = cur_context_box_corners.cpu().numpy().tolist() # cache object_attn_masks[scene_id][prop_id, prop_id] = 1 except KeyError: continue # detected boxes if save_interm: print("saving intermediate results...") interm_path = os.path.join(CONF.PATH.OUTPUT, folder, "interm.json") with open(interm_path, "w") as f: json.dump(intermediates, f, indent=4) return candidates def update_interm(interm, candidates, bleu, cider, rouge, meteor): for i, (key, value) in enumerate(candidates.items()): scene_id, object_id, object_name = key.split("|") if scene_id in interm: if object_id in interm[scene_id]: interm[scene_id][object_id]["bleu_1"] = bleu[1][0][i] interm[scene_id][object_id]["bleu_2"] = bleu[1][1][i] interm[scene_id][object_id]["bleu_3"] = bleu[1][2][i] interm[scene_id][object_id]["bleu_4"] = bleu[1][3][i] interm[scene_id][object_id]["cider"] = cider[1][i] interm[scene_id][object_id]["rouge"] = rouge[1][i] interm[scene_id][object_id]["meteor"] = meteor[1][i] return interm def eval_cap(model, device, dataset, dataloader, phase, folder, is_eval=True, max_len=CONF.TRAIN.MAX_DES_LEN, force=False, mode="scene", save_interm=False, no_caption=False, no_classify=False, min_iou=CONF.EVAL.MIN_IOU_THRESHOLD): if no_caption: bleu = 0 cider = 0 rouge = 0 meteor = 0 if no_classify: cls_acc = 0 else: print("evaluating classification accuracy...") cls_acc = [] for data_dict in tqdm(dataloader): # move to cuda for key in data_dict: data_dict[key] = data_dict[key].to(device) with torch.no_grad(): data_dict = model(data_dict, is_eval) # unpack preds = data_dict["enc_preds"] # (B, num_cls) targets = data_dict["object_cat"] # (B,) # classification acc preds = preds.argmax(-1) # (B,) acc = (preds == targets).sum().float() / targets.shape[0] # dump cls_acc.append(acc.item()) cls_acc =
np.mean(cls_acc)
numpy.mean
""" Large-scale Point Cloud Semantic Segmentation with Superpoint Graphs http://arxiv.org/abs/1711.09869 2017 <NAME>, <NAME> functions for writing and reading features and superpoint graph """ import os import sys import random import glob from plyfile import PlyData, PlyElement import numpy as np #from numpy import genfromtxt import pandas as pd import h5py #import laspy from sklearn.neighbors import NearestNeighbors import laspy DIR_PATH = os.path.dirname(os.path.realpath(__file__)) sys.path.insert(0, os.path.join(DIR_PATH, '..')) from partition.ply_c import libply_c import colorsys from sklearn.decomposition import PCA def partition2ply(filename, xyz, components): """write a ply with random colors for each components""" random_color = random.randint color = np.zeros(xyz.shape) for i_com in range(0, len(components)): color[components[i_com], :] = [random_color(0, 255), random_color(0, 255), random_color(0, 255)] prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] vertex_all = np.empty(len(xyz), dtype=prop) for i in range(0, 3): vertex_all[prop[i][0]] = xyz[:, i] for i in range(0, 3): vertex_all[prop[i+3][0]] = color[:, i] ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def geof2ply(filename, xyz, geof): """write a ply with colors corresponding to geometric features""" color = np.array(255 * geof[:, [0, 1, 3]], dtype='uint8') prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] vertex_all = np.empty(len(xyz), dtype=prop) for i in range(0, 3): vertex_all[prop[i][0]] = xyz[:, i] for i in range(0, 3): vertex_all[prop[i+3][0]] = color[:, i] ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def prediction2ply(filename, xyz, prediction, n_label, dataset): """write a ply with colors for each class""" if len(prediction.shape) > 1 and prediction.shape[1] > 1: prediction = np.argmax(prediction, axis=1) color = np.zeros(xyz.shape) for i_label in range(0, n_label + 1): color[np.where(prediction == i_label), :] = get_color_from_label(i_label, dataset) prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] vertex_all = np.empty(len(xyz), dtype=prop) for i in range(0, 3): vertex_all[prop[i][0]] = xyz[:, i] for i in range(0, 3): vertex_all[prop[i+3][0]] = color[:, i] ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def error2ply(filename, xyz, rgb, labels, prediction): """write a ply with green hue for correct classifcation and red for error""" if len(prediction.shape) > 1 and prediction.shape[1] > 1: prediction = np.argmax(prediction, axis=1) if len(labels.shape) > 1 and labels.shape[1] > 1: labels = np.argmax(labels, axis=1) color_rgb = rgb/255 for i_ver in range(0, len(labels)): color_hsv = list(colorsys.rgb_to_hsv(color_rgb[i_ver, 0], color_rgb[i_ver, 1], color_rgb[i_ver, 2])) if (labels[i_ver] == prediction[i_ver]) or (labels[i_ver] == 0): color_hsv[0] = 0.333333 else: color_hsv[0] = 0 color_hsv[1] = min(1, color_hsv[1] + 0.3) color_hsv[2] = min(1, color_hsv[2] + 0.1) color_rgb[i_ver, :] = list(colorsys.hsv_to_rgb(color_hsv[0], color_hsv[1], color_hsv[2])) color_rgb = np.array(color_rgb*255, dtype='u1') prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] vertex_all = np.empty(len(xyz), dtype=prop) for i in range(0, 3): vertex_all[prop[i][0]] = xyz[:, i] for i in range(0, 3): vertex_all[prop[i+3][0]] = color_rgb[:, i] ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def spg2ply(filename, spg_graph): """write a ply displaying the SPG by adding edges between its centroid""" vertex_prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4')] vertex_val = np.empty((spg_graph['sp_centroids']).shape[0], dtype=vertex_prop) for i in range(0, 3): vertex_val[vertex_prop[i][0]] = spg_graph['sp_centroids'][:, i] edges_prop = [('vertex1', 'int32'), ('vertex2', 'int32')] edges_val = np.empty((spg_graph['source']).shape[0], dtype=edges_prop) edges_val[edges_prop[0][0]] = spg_graph['source'].flatten() edges_val[edges_prop[1][0]] = spg_graph['target'].flatten() ply = PlyData([PlyElement.describe(vertex_val, 'vertex'), PlyElement.describe(edges_val, 'edge')], text=True) ply.write(filename) def scalar2ply(filename, xyz, scalar): """write a ply with an unisgned integer scalar field""" prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('scalar', 'f4')] vertex_all = np.empty(len(xyz), dtype=prop) for i in range(0, 3): vertex_all[prop[i][0]] = xyz[:, i] vertex_all[prop[3][0]] = scalar ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def get_color_from_label(object_label, dataset): """associate the color corresponding to the class""" if dataset == 's3dis': # S3DIS object_label = { 0: [0, 0, 0], # unlabelled .->. black 1: [233, 229, 107], # 'ceiling' .-> .yellow 2: [95, 156, 196], # 'floor' .-> . blue 3: [179, 116, 81], # 'wall' -> brown 4: [81, 163, 148], # 'column' -> bluegreen 5: [241, 149, 131], # 'beam' -> salmon 6: [77, 174, 84], # 'window' -> bright green 7: [108, 135, 75], # 'door' -> dark green 8: [79, 79, 76], # 'table' -> dark grey 9: [41, 49, 101], # 'chair' -> darkblue 10: [223, 52, 52], # 'bookcase' -> red 11: [89, 47, 95], # 'sofa' -> purple 12: [81, 109, 114], # 'board' -> grey 13: [233, 233, 229], # 'clutter' -> light grey }.get(object_label, -1) elif dataset == 'airborne_lidar': # Custom set object_label = { 1: [0, 0, 0], # unlabelled .->. black 2: [255, 0, 0], # Building -> red 3: [0, 255, 0], # Water -> green 4: [0, 0, 255] # Ground -> Blue }.get(object_label, -1) else: raise ValueError(f"Unknown dataset: {dataset}") if object_label == -1: raise ValueError(f"Type not recognized: {object_label}") return object_label def read_s3dis_format(raw_path, label_out=True): """extract data from a room folder. S3DIS specefic""" # room_ver = genfromtxt(raw_path, delimiter=' ') room_ver = pd.read_csv(raw_path, sep=' ', header=None).values xyz = np.ascontiguousarray(room_ver[:, 0:3], dtype='float32') try: rgb = np.ascontiguousarray(room_ver[:, 3:6], dtype='uint8') except ValueError: rgb = np.zeros((room_ver.shape[0], 3), dtype='uint8') print('WARN - corrupted rgb data for file %s' % raw_path) if not label_out: return xyz, rgb n_ver = len(room_ver) del room_ver nn = NearestNeighbors(1, algorithm='kd_tree').fit(xyz) room_labels = np.zeros((n_ver,), dtype='uint8') room_object_indices = np.zeros((n_ver,), dtype='uint32') objects = glob.glob(os.path.dirname(raw_path) + "/Annotations/*.txt") i_object = 1 for single_object in objects: object_name = os.path.splitext(os.path.basename(single_object))[0] print(" adding object " + str(i_object) + " : " + object_name) object_class = object_name.split('_')[0] object_label = object_name_to_label(object_class) # obj_ver = genfromtxt(single_object, delimiter=' ') obj_ver = pd.read_csv(single_object, sep=' ', header=None).values distances, obj_ind = nn.kneighbors(obj_ver[:, 0:3]) room_labels[obj_ind] = object_label room_object_indices[obj_ind] = i_object i_object = i_object + 1 return xyz, rgb, room_labels, room_object_indices def read_airborne_lidar_format(raw_path): """Extract data from a .las file.""" in_file = laspy.file.File(raw_path, mode='r') n_points = len(in_file) x = np.reshape(in_file.x, (n_points, 1)) y = np.reshape(in_file.y, (n_points, 1)) z = np.reshape(in_file.z, (n_points, 1)) intensity = np.reshape(in_file.intensity, (n_points, 1)) nb_return = np.reshape(in_file.num_returns, (n_points, 1)) labels = np.reshape(in_file.classification, (n_points, 1)) labels = format_classes(labels) xyz = np.hstack((x, y, z)).astype('f4') return xyz, nb_return, intensity, labels def format_classes(labels): """Format labels array to match the classes of interest. Specific to airborne_lidar dataset.""" # coi = classses of interest. # Dict containing the mapping of input (from the .las file) and the output classes (for the training part). # 6: Building, 9: water, 2: ground. # All other values have to be set to 1. Details here: https://github.com/loicland/superpoint_graph/issues/83 coi = {'6': 2, '9': 3, '2': 4} labels2 = np.full(shape=labels.shape, fill_value=1, dtype=int) for key, value in coi.items(): labels2[labels == int(key)] = value return labels2 def object_name_to_label(object_class): """convert from object name in S3DIS to an int""" object_label = { 'ceiling': 1, 'floor': 2, 'wall': 3, 'column': 4, 'beam': 5, 'window': 6, 'door': 7, 'table': 8, 'chair': 9, 'bookcase': 10, 'sofa': 11, 'board': 12, 'clutter': 13, 'stairs': 0, }.get(object_class, 0) return object_label def read_ply(filename): """convert from a ply file. include the label and the object number""" # ---read the ply file-------- plydata = PlyData.read(filename) xyz = np.stack([plydata['vertex'][n] for n in['x', 'y', 'z']], axis=1) try: rgb = np.stack([plydata['vertex'][n] for n in ['red', 'green', 'blue']], axis=1).astype(np.uint8) except ValueError: rgb = np.stack([plydata['vertex'][n] for n in ['r', 'g', 'b']], axis=1).astype(np.float32) if np.max(rgb) > 1: rgb = rgb try: object_indices = plydata['vertex']['object_index'] labels = plydata['vertex']['label'] return xyz, rgb, labels, object_indices except ValueError: try: labels = plydata['vertex']['label'] return xyz, rgb, labels except ValueError: return xyz, rgb def read_las(filename): """convert from a las file with no rgb""" in_file = laspy.file.File(filename, mode='r') n_points = len(in_file) x = np.reshape(in_file.x, (n_points, 1)) y = np.reshape(in_file.y, (n_points, 1)) z = np.reshape(in_file.z, (n_points, 1)) xyz = np.hstack((x, y, z)).astype('f4') return xyz def write_ply_obj(filename, xyz, rgb, labels, object_indices): """write into a ply file. include the label and the object number""" prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1'), ('label', 'u1'), ('object_index', 'uint32')] vertex_all = np.empty(len(xyz), dtype=prop) for i_prop in range(0, 3): vertex_all[prop[i_prop][0]] = xyz[:, i_prop] for i_prop in range(0, 3): vertex_all[prop[i_prop+3][0]] = rgb[:, i_prop] vertex_all[prop[6][0]] = labels vertex_all[prop[7][0]] = object_indices ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def embedding2ply(filename, xyz, embeddings): """write a ply with colors corresponding to geometric features""" if embeddings.shape[1] > 3: pca = PCA(n_components=3) # pca.fit(np.eye(embeddings.shape[1])) pca.fit(np.vstack((np.zeros((embeddings.shape[1],)), np.eye(embeddings.shape[1])))) embeddings = pca.transform(embeddings) # value = (embeddings-embeddings.mean(axis=0))/(2*embeddings.std())+0.5 # value = np.minimum(np.maximum(value,0),1) # value = (embeddings)/(3 * embeddings.std())+0.5 value = np.minimum(np.maximum((embeddings+1)/2, 0), 1) color = np.array(255 * value, dtype='uint8') prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] vertex_all = np.empty(len(xyz), dtype=prop) for i in range(0, 3): vertex_all[prop[i][0]] = xyz[:, i] for i in range(0, 3): vertex_all[prop[i+3][0]] = color[:, i] ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def edge_class2ply2(filename, edg_class, xyz, edg_source, edg_target): """write a ply with edge weight color coded into the midway point""" n_edg = len(edg_target) midpoint = (xyz[edg_source, ]+xyz[edg_target, ])/2 color = np.zeros((edg_source.shape[0], 3), dtype='uint8') color[edg_class == 0, ] = [0, 0, 0] color[(edg_class == 1).nonzero(), ] = [255, 0, 0] color[(edg_class == 2).nonzero(), ] = [125, 255, 0] color[(edg_class == 3).nonzero(), ] = [0, 125, 255] prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] vertex_all = np.empty(n_edg, dtype=prop) for i in range(0, 3): vertex_all[prop[i][0]] = np.hstack(midpoint[:, i]) for i in range(3, 6): vertex_all[prop[i][0]] = color[:, i-3] ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def write_ply_labels(filename, xyz, rgb, labels): """write into a ply file. include the label""" prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1'), ('label', 'u1')] vertex_all = np.empty(len(xyz), dtype=prop) for i_prop in range(0, 3): vertex_all[prop[i_prop][0]] = xyz[:, i_prop] for i_prop in range(0, 3): vertex_all[prop[i_prop+3][0]] = rgb[:, i_prop] vertex_all[prop[6][0]] = labels ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def write_ply(filename, xyz, rgb): """write into a ply file""" prop = [('x', 'f4'), ('y', 'f4'), ('z', 'f4'), ('red', 'u1'), ('green', 'u1'), ('blue', 'u1')] vertex_all = np.empty(len(xyz), dtype=prop) for i_prop in range(0, 3): vertex_all[prop[i_prop][0]] = xyz[:, i_prop] for i_prop in range(0, 3): vertex_all[prop[i_prop+3][0]] = rgb[:, i_prop] ply = PlyData([PlyElement.describe(vertex_all, 'vertex')], text=True) ply.write(filename) def write_features(file_name, geof, xyz, rgb, graph_nn, labels, intensity, nb_return): """write the geometric features, labels and clouds in a h5 file""" if os.path.isfile(file_name): os.remove(file_name) data_file = h5py.File(file_name, 'w') data_file.create_dataset('geof', data=geof, dtype='float32') data_file.create_dataset('source', data=graph_nn["source"], dtype='uint32') data_file.create_dataset('target', data=graph_nn["target"], dtype='uint32') data_file.create_dataset('distances', data=graph_nn["distances"], dtype='float32') data_file.create_dataset('xyz', data=xyz, dtype='float32') if len(rgb) > 0: data_file.create_dataset('rgb', data=rgb, dtype='uint8') if len(labels) > 0 and len(labels.shape) > 1 and labels.shape[1] > 1: data_file.create_dataset('labels', data=labels, dtype='uint32') else: data_file.create_dataset('labels', data=labels, dtype='uint8') # Enables the use of intensity if len(intensity) > 0: data_file.create_dataset('intensity', data=intensity, dtype='float32') # Enables the use of the number of return. if len(nb_return) > 0: data_file.create_dataset('nb_return', data=nb_return, dtype='uint8') data_file.close() def read_features(file_name): """read the geometric features, clouds and labels from a h5 file""" data_file = h5py.File(file_name, 'r') # fist get the number of vertices # n_ver = len(data_file["geof"][:, 0]) has_labels = len(data_file["labels"]) # the labels can be empty in the case of a test set if has_labels: labels = np.array(data_file["labels"]) else: labels = [] # ---fill the arrays--- geof = data_file["geof"][:] xyz = data_file["xyz"][:] if 'rgb' in data_file: rgb = data_file["rgb"][:] else: rgb = [] source = data_file["source"][:] target = data_file["target"][:] distance = data_file["distances"][:] # Manage intensity and number of returns if 'intensity' in data_file: intensity = data_file["intensity"][:] else: intensity = [] if 'nb_return' in data_file: nb_return = data_file["nb_return"][:] else: nb_return = [] # ---set the graph--- graph_nn = dict([("is_nn", True)]) graph_nn["source"] = source graph_nn["target"] = target graph_nn["distances"] = distance return geof, xyz, rgb, graph_nn, labels, intensity, nb_return def write_spg(file_name, graph_sp, components, in_component): """save the partition and spg information""" if os.path.isfile(file_name): os.remove(file_name) data_file = h5py.File(file_name, 'w') grp = data_file.create_group('components') n_com = len(components) for i_com in range(0, n_com): grp.create_dataset(str(i_com), data=components[i_com], dtype='uint32') data_file.create_dataset('in_component', data=in_component, dtype='uint32') data_file.create_dataset('sp_labels', data=graph_sp["sp_labels"], dtype='uint32') data_file.create_dataset('sp_centroids', data=graph_sp["sp_centroids"], dtype='float32') data_file.create_dataset('sp_length', data=graph_sp["sp_length"], dtype='float32') data_file.create_dataset('sp_surface', data=graph_sp["sp_surface"], dtype='float32') data_file.create_dataset('sp_volume', data=graph_sp["sp_volume"], dtype='float32') data_file.create_dataset('sp_point_count', data=graph_sp["sp_point_count"], dtype='uint64') data_file.create_dataset('source', data=graph_sp["source"], dtype='uint32') data_file.create_dataset('target', data=graph_sp["target"], dtype='uint32') data_file.create_dataset('se_delta_mean', data=graph_sp["se_delta_mean"], dtype='float32') data_file.create_dataset('se_delta_std', data=graph_sp["se_delta_std"], dtype='float32') data_file.create_dataset('se_delta_norm', data=graph_sp["se_delta_norm"], dtype='float32') data_file.create_dataset('se_delta_centroid', data=graph_sp["se_delta_centroid"], dtype='float32') data_file.create_dataset('se_length_ratio', data=graph_sp["se_length_ratio"], dtype='float32') data_file.create_dataset('se_surface_ratio', data=graph_sp["se_surface_ratio"], dtype='float32') data_file.create_dataset('se_volume_ratio', data=graph_sp["se_volume_ratio"], dtype='float32') data_file.create_dataset('se_point_count_ratio', data=graph_sp["se_point_count_ratio"], dtype='float32') def read_spg(file_name): """read the partition and spg information""" data_file = h5py.File(file_name, 'r') graph = dict([("is_nn", False)]) graph["source"] = np.array(data_file["source"], dtype='uint32') graph["target"] = np.array(data_file["target"], dtype='uint32') graph["sp_centroids"] = np.array(data_file["sp_centroids"], dtype='float32') graph["sp_length"] = np.array(data_file["sp_length"], dtype='float32') graph["sp_surface"] = np.array(data_file["sp_surface"], dtype='float32') graph["sp_volume"] = np.array(data_file["sp_volume"], dtype='float32') graph["sp_point_count"] = np.array(data_file["sp_point_count"], dtype='uint64') graph["se_delta_mean"] = np.array(data_file["se_delta_mean"], dtype='float32') graph["se_delta_std"] =
np.array(data_file["se_delta_std"], dtype='float32')
numpy.array
''' MIT License Copyright (c) 2019 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ''' ''' Created on Apr 9, 2019 @author: <NAME> (<EMAIL>) ''' import os import glob import argparse import time import pickle import platform import shutil from random import shuffle import json import numpy as np import pandas as pd import cv2 as cv from skimage.io import imread, imsave from scipy.linalg import norm import h5py import matplotlib.pyplot as plt import ipyparallel as ipp from keras.models import Model, load_model from keras.layers import Input, Dense, Lambda, ZeroPadding2D from keras.layers import LeakyReLU, Flatten, Concatenate, Reshape, ReLU from keras.layers import Conv2DTranspose, BatchNormalization from keras.layers.merge import add, subtract from keras.utils import multi_gpu_model from keras.utils.data_utils import Sequence import keras.backend as K from keras import optimizers from keras.engine.input_layer import InputLayer from yolov3_detect import make_yolov3_model, BoundBox, WeightReader, draw_boxes_v3 from face_detection import FaceDetector # Constants. DEBUG = True ALPHA = 0.2 RESOURCE_TYPE_UCCS = 'uccs' RESOURCE_TYPE_VGGFACE2 = 'vggface2' def triplet_loss(y_true, y_pred): # Calculate the difference of both face features and judge a same person. x = y_pred return K.mean(K.maximum(K.sqrt(K.sum(K.pow(x[:, 0:64] - x[:, 64:128], 2.0), axis=-1)) \ - K.sqrt(K.sum(K.pow(x[:, 0:64] - x[:, 128:192], 2.0), axis=-1)) + ALPHA, 0.)) def create_db_fi(conf): """Create db for face identifier.""" conf = conf['fi_conf'] if conf['resource_type'] == RESOURCE_TYPE_UCCS: raw_data_path = conf['raw_data_path'] nn_arch = conf['nn_arch'] if not os.path.isdir(os.path.join(raw_data_path, 'subject_faces')): os.mkdir(os.path.join(raw_data_path, 'subject_faces')) else: shutil.rmtree(os.path.join(raw_data_path, 'subject_faces')) os.mkdir(os.path.join(os.path.join(raw_data_path, 'subject_faces'))) gt_df = pd.read_csv(os.path.join(raw_data_path, 'training', 'training.csv')) gt_df_g = gt_df.groupby('SUBJECT_ID') # Collect face region images and create db, by subject ids. db = pd.DataFrame(columns=['subject_id', 'face_file', 'w', 'h']) for k in gt_df_g.groups.keys(): if k == -1: continue df = gt_df_g.get_group(k) for i in range(df.shape[0]): file_name = df.iloc[i, 1] # Load an image. image = imread(os.path.join(raw_data_path, 'training', file_name)) # Check exception. res = df.iloc[i, 3:] > 0 if res.all() == False: continue # Crop a face region. l, t, r, b = (int(df.iloc[i, 3]) , int(df.iloc[i, 4]) , int((df.iloc[i, 3] + df.iloc[i, 5] - 1)) , int((df.iloc[i, 4] + df.iloc[i, 6] - 1))) image = image[(t - 1):(b - 1), (l - 1):(r - 1), :] # Adjust the original image size into the normalized image size according to the ratio of width, height. w = image.shape[1] h = image.shape[0] pad_t, pad_b, pad_l, pad_r = 0, 0, 0, 0 if w >= h: w_p = nn_arch['image_size'] h_p = int(h / w * nn_arch['image_size']) pad = nn_arch['image_size'] - h_p if pad % 2 == 0: pad_t = pad // 2 pad_b = pad // 2 else: pad_t = pad // 2 pad_b = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_NEAREST) image = cv.copyMakeBorder(image, pad_t, pad_b, 0, 0, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? else: h_p = nn_arch['image_size'] w_p = int(w / h * nn_arch['image_size']) pad = nn_arch['image_size'] - w_p if pad % 2 == 0: pad_l = pad // 2 pad_r = pad // 2 else: pad_l = pad // 2 pad_r = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_NEAREST) image = cv.copyMakeBorder(image, 0, 0, pad_l, pad_r, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? # Write a face region image. face_file_name = file_name[:-4] + '_' + str(k) + '_' \ + str(int(df.iloc[i, 3])) + '_' + str(int(df.iloc[i, 4])) + file_name[-4:] print('Save ' + face_file_name) imsave(os.path.join(raw_data_path, 'subject_faces', face_file_name), (image).astype('uint8')) # Add subject face information into db. db = pd.concat([db, pd.DataFrame({'subject_id': [k] , 'face_file': [face_file_name] , 'w': [w] , 'h': [h]})]) # Save db. db.to_csv('subject_image_db.csv') elif conf['resource_type'] == RESOURCE_TYPE_VGGFACE2: raw_data_path = conf['raw_data_path'] nn_arch = conf['nn_arch'] # Collect face region images and create db, by subject ids. pClient = ipp.Client() pView = pClient[:] pView.push({'raw_data_path': raw_data_path, 'nn_arch': nn_arch}) with pView.sync_imports(): import numpy as np import pandas as pd import cv2 as cv from skimage.io import imread, imsave if not os.path.isdir(os.path.join(raw_data_path, 'subject_faces_vggface2')): os.mkdir(os.path.join(raw_data_path, 'subject_faces_vggface2')) else: shutil.rmtree(os.path.join(raw_data_path, 'subject_faces_vggface2')) os.mkdir(os.path.join(os.path.join(raw_data_path, 'subject_faces_vggface2'))) df = pd.read_csv(os.path.join(raw_data_path, 'loose_bb_train.csv')) db = pd.DataFrame(columns=['subject_id', 'face_file', 'w', 'h']) dfs = [df.iloc[i] for i in range(df.shape[0])] #dfs = [df.iloc[i] for i in range(100)] res = pView.map_sync(save_extracted_face, dfs) try: res.remove(None) except: pass db = pd.concat(res) # Save db. db.to_csv('subject_image_vggface2_db.csv') else: raise ValueError('resource type is not valid.') def save_extracted_face(df): global raw_data_path, nn_arch import os cv = cv2 pd = pandas np = numpy id_filename = df.iloc[0].split('/') identity = id_filename[0] file_name = id_filename[1] + '.jpg' x = df.iloc[1] y = df.iloc[2] w = df.iloc[3] h = df.iloc[4] if x < 0 or y < 0 or w <=0 or h <=0: return None # Load an image. image = imread(os.path.join(raw_data_path, 'train', identity, file_name)) # Get a face region. image = image[y:(y + h), x:(x + w), :] # Adjust the original image size into the normalized image size according to the ratio of width, height. w = image.shape[1] h = image.shape[0] pad_t, pad_b, pad_l, pad_r = 0, 0, 0, 0 if w >= h: w_p = nn_arch['image_size'] h_p = int(h / w * nn_arch['image_size']) pad = nn_arch['image_size'] - h_p if pad % 2 == 0: pad_t = pad // 2 pad_b = pad // 2 else: pad_t = pad // 2 pad_b = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_NEAREST) image = cv.copyMakeBorder(image, pad_t, pad_b, 0, 0, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? else: h_p = nn_arch['image_size'] w_p = int(w / h * nn_arch['image_size']) pad = nn_arch['image_size'] - w_p if pad % 2 == 0: pad_l = pad // 2 pad_r = pad // 2 else: pad_l = pad // 2 pad_r = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_NEAREST) image = cv.copyMakeBorder(image, 0, 0, pad_l, pad_r, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? # Write a face region image. face_file_name = identity + '_' + file_name print('Save ' + face_file_name) imsave(os.path.join(raw_data_path, 'subject_faces_vggface2', face_file_name), (image).astype('uint8')) # Add subject face information into db. return pd.DataFrame({'subject_id': [identity] , 'face_file': [face_file_name] , 'w': [w] , 'h': [h]}) class FaceIdentifier(object): """Face identifier to use yolov3.""" # Constants. MODEL_PATH = 'face_identifier.h5' def __init__(self, conf): """ Parameters ---------- conf: dictionary Face detector configuration dictionary. """ # Initialize. self.conf = conf['fi_conf'] self.raw_data_path = self.conf['raw_data_path'] self.hps = self.conf['hps'] self.nn_arch = self.conf['nn_arch'] self.model_loading = self.conf['model_loading'] if self.model_loading: if self.conf['multi_gpu']: self.model = load_model(self.MODEL_PATH, custom_objects={'triplet_loss': triplet_loss}) self.parallel_model = multi_gpu_model(self.model, gpus=self.conf['num_gpus']) opt = optimizers.Adam(lr=self.hps['lr'] , beta_1=self.hps['beta_1'] , beta_2=self.hps['beta_2'] , decay=self.hps['decay']) self.parallel_model.compile(optimizer=opt, loss=triplet_loss) else: self.model = load_model(self.MODEL_PATH, custom_objects={'triplet_loss': triplet_loss}) else: # Design the face identification model. # Inputs. input_a = Input(shape=(self.nn_arch['image_size'], self.nn_arch['image_size'], 3), name='input_a') input_p = Input(shape=(self.nn_arch['image_size'], self.nn_arch['image_size'], 3), name='input_p') input_n = Input(shape=(self.nn_arch['image_size'], self.nn_arch['image_size'], 3), name='input_n') # Load yolov3 as the base model. base = self.YOLOV3Base base.name = 'base' # Get triplet facial ids. xa = base(input_a) # Non-linear. xa = Flatten()(xa) c_dense_layer = Dense(self.nn_arch['dense1_dim'], activation='relu', name='dense1') l2_norm_layer = Lambda(lambda x: K.l2_normalize(x, axis=-1), name='l2_norm_layer') xa = c_dense_layer(xa) xa = l2_norm_layer(xa) xp = base(input_p) xp = Flatten()(xp) xp = c_dense_layer(xp) xp = l2_norm_layer(xp) xn = base(input_n) xn = Flatten()(xn) xn = c_dense_layer(xn) xn = l2_norm_layer(xn) output = Concatenate(name='output')([xa, xp, xn]) #? if self.conf['multi_gpu']: self.model = Model(inputs=[input_a, input_p, input_n], outputs=[output]) opt = optimizers.Adam(lr=self.hps['lr'] , beta_1=self.hps['beta_1'] , beta_2=self.hps['beta_2'] , decay=self.hps['decay']) self.model.compile(optimizer=opt, loss=triplet_loss) self.model.summary() self.parallel_model = multi_gpu_model(Model(inputs=[input_a, input_p, input_n], outputs=[output]) , gpus=self.conf['num_gpus']) self.parallel_model.compile(optimizer=opt, loss=triplet_loss) self.parallel_model.summary() else: self.model = Model(inputs=[input_a, input_p, input_n], outputs=[output]) opt = optimizers.Adam(lr=self.hps['lr'] , beta_1=self.hps['beta_1'] , beta_2=self.hps['beta_2'] , decay=self.hps['decay']) self.model.compile(optimizer=opt, loss=triplet_loss) self.model.summary() # Create face detector. self.fd = FaceDetector(conf['fd_conf']) # Make fid extractor and face identifier. self._make_fid_extractor() def _make_fid_extractor(self): """Make facial id extractor.""" # Design the face identification model. # Inputs. input1 = Input(shape=(self.nn_arch['image_size'], self.nn_arch['image_size'], 3), name='input1') # Load yolov3 as the base model. base = self.model.get_layer('base') # Get facial id. x = base(input1) # Non-linear. x = Flatten()(x) x = self.model.get_layer('dense1')(x) x = self.model.get_layer('l2_norm_layer')(x) facial_id = x self.fid_extractor = Model(inputs=[input1], outputs=[facial_id]) @property def YOLOV3Base(self): """Get yolov3 as a base model. Returns ------- Model of Keras Partial yolo3 model from the input layer to the add_23 layer """ if self.conf['yolov3_base_model_load']: base = load_model('yolov3_base.h5') base.trainable = True return base yolov3 = make_yolov3_model() # Load the weights. weight_reader = WeightReader('yolov3.weights') weight_reader.load_weights(yolov3) # Make a base model. input1 = Input(shape=(self.nn_arch['image_size'], self.nn_arch['image_size'], 3), name='input1') # 0 ~ 1. conv_layer = yolov3.get_layer('conv_' + str(0)) x = ZeroPadding2D(1)(input1) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(0)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) conv_layer = yolov3.get_layer('conv_' + str(1)) x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(1)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) skip = x # 2 ~ 3. for i in range(2, 4, 2): conv_layer = yolov3.get_layer('conv_' + str(i)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) conv_layer = yolov3.get_layer('conv_' + str(i + 1)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i + 1)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) x = add([skip, x]) #? # 5. conv_layer = yolov3.get_layer('conv_' + str(5)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(5)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) skip = x # 6 ~ 10. for i in range(6, 10, 3): conv_layer = yolov3.get_layer('conv_' + str(i)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) conv_layer = yolov3.get_layer('conv_' + str(i + 1)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i + 1)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) x = add([skip, x]) #? skip = x #? # 12. conv_layer = yolov3.get_layer('conv_' + str(12)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(12)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) skip = x # 13 ~ 35. for i in range(13, 35, 3): conv_layer = yolov3.get_layer('conv_' + str(i)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) conv_layer = yolov3.get_layer('conv_' + str(i + 1)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i + 1)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) x = add([skip, x]) #? skip = x #? # 37. conv_layer = yolov3.get_layer('conv_' + str(37)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(37)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) skip = x # 38 ~ 60. for i in range(38, 60, 3): conv_layer = yolov3.get_layer('conv_' + str(i)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) conv_layer = yolov3.get_layer('conv_' + str(i + 1)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i + 1)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) x = add([skip, x]) #? skip = x #? # 62. conv_layer = yolov3.get_layer('conv_' + str(62)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(62)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) skip = x # 63 ~ 73. for i in range(63, 73, 3): conv_layer = yolov3.get_layer('conv_' + str(i)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) conv_layer = yolov3.get_layer('conv_' + str(i + 1)) if conv_layer.kernel_size[0] > 1: x = ZeroPadding2D(1)(x) #? x = conv_layer(x) norm_layer = yolov3.get_layer('bnorm_' + str(i + 1)) x = norm_layer(x) x = LeakyReLU(alpha=0.1)(x) x = add([skip, x]) #? skip = x #? output = x base = Model(inputs=[input1], outputs=[output]) base.trainable = True base.save('yolov3_base.h5') return base def train(self): """Train face detector.""" if self.conf['resource_type'] == RESOURCE_TYPE_UCCS: trGen = self.TrainingSequence(self.raw_data_path, self.hps, self.nn_arch, load_flag=False) elif self.conf['resource_type'] == RESOURCE_TYPE_VGGFACE2: trGen = self.TrainingSequenceVGGFace2(self.raw_data_path, self.hps, self.nn_arch, load_flag=False) else: raise ValueError('resource type is not valid.') if self.conf['multi_gpu']: self.parallel_model.fit_generator(trGen , steps_per_epoch=self.hps['step'] #? , epochs=self.hps['epochs'] , verbose=1 , max_queue_size=400 , workers=8 , use_multiprocessing=True) else: self.model.fit_generator(trGen , steps_per_epoch=self.hps['step'] , epochs=self.hps['epochs'] , verbose=1 , max_queue_size=100 , workers=4 , use_multiprocessing=True) print('Save the model.') self.model.save(self.MODEL_PATH) def make_facial_ids_db(self): """Make facial ids database.""" if self.conf['resource_type'] == RESOURCE_TYPE_UCCS: db = pd.read_csv('subject_image_db.csv') db = db.iloc[:, 1:] db_g = db.groupby('subject_id') with h5py.File('subject_facial_ids.h5', 'w') as f: for subject_id in db_g.groups.keys(): if subject_id == -1: continue # Get face images of a subject id. df = db_g.get_group(subject_id) images = [] for ff in list(df.iloc[:, 1]): image = imread(os.path.join(self.raw_data_path, 'subject_faces', ff)) images.append(image/255) images = np.asarray(images) # Calculate facial ids and an averaged facial id of a subject id. Mean, Mode, Median? facial_ids = self.fid_extractor.predict(images) for k, ff in enumerate(list(df.iloc[:, 1])): f[ff] = facial_ids[k] f[ff].attrs['subject_id'] = subject_id elif self.conf['resource_type'] == RESOURCE_TYPE_VGGFACE2: db = pd.read_csv('subject_image_vggface2_db.csv') db = db.iloc[:, 1:] db_g = db.groupby('subject_id') with h5py.File('subject_facial_vggface2_ids.h5', 'w') as f: for subject_id in db_g.groups.keys(): if subject_id == -1: continue # Get face images of a subject id. df = db_g.get_group(subject_id) images = [] for ff in list(df.iloc[:, 1]): image = imread(os.path.join(self.raw_data_path, 'subject_faces_vggface2', ff)) #? images.append(image/255) images = np.asarray(images) # Calculate facial ids and an averaged facial id of a subject id. Mean, Mode, Median? facial_ids = self.fid_extractor.predict(images) for k, ff in enumerate(list(df.iloc[:, 1])): f[ff] = facial_ids[k] f[ff].attrs['subject_id'] = subject_id else: raise ValueError('resource type is not valid.') def register_facial_ids(self): """Register facial ids.""" if self.conf['resource_type'] == RESOURCE_TYPE_UCCS: db = pd.read_csv('subject_image_db.csv') db = db.iloc[:, 1:] db_g = db.groupby('subject_id') db_facial_id = pd.DataFrame(columns=['subject_id', 'facial_id']) for subject_id in db_g.groups.keys(): if subject_id == -1: continue # Get face images of a subject id. df = db_g.get_group(subject_id) images = [] for ff in list(df.iloc[:, 1]): image = imread(os.path.join(self.raw_data_path, 'subject_faces', ff)) images.append(image/255) images = np.asarray(images) # Calculate facial ids and an averaged facial id of a subject id. Mean, Mode, Median? facial_ids = self.fid_extractor.predict(images) facial_id = np.asarray(pd.DataFrame(facial_ids).mean()) db_facial_id = pd.concat([db_facial_id, pd.DataFrame({'subject_id': [subject_id] , 'facial_id': [facial_id]})]) # Save db. db_facial_id.index = db_facial_id.subject_id db_facial_id = db_facial_id.to_dict()['facial_id'] with open('ref_facial_id_db.pickle', 'wb') as f: pickle.dump(db_facial_id, f) elif self.conf['resource_type'] == RESOURCE_TYPE_VGGFACE2: """Register facial ids.""" db = pd.read_csv('subject_image_vggface2_db.csv') db = db.iloc[:, 1:] db_g = db.groupby('subject_id') db_facial_id = pd.DataFrame(columns=['subject_id', 'facial_id']) for subject_id in db_g.groups.keys(): if subject_id == -1: continue # Get face images of a subject id. df = db_g.get_group(subject_id) images = [] for ff in list(df.iloc[:, 1]): image = imread(os.path.join(self.raw_data_path, 'subject_faces_vggface2', ff)) images.append(image/255) images = np.asarray(images) # Calculate facial ids and an averaged facial id of a subject id. Mean, Mode, Median? facial_ids = self.fid_extractor.predict(images) facial_id = np.asarray(pd.DataFrame(facial_ids).mean()) db_facial_id = pd.concat([db_facial_id, pd.DataFrame({'subject_id': [subject_id] , 'facial_id': [facial_id]})]) # Save db. db_facial_id.index = db_facial_id.subject_id db_facial_id = db_facial_id.to_dict()['facial_id'] with open('ref_facial_id_vggface2_db.pickle', 'wb') as f: pickle.dump(db_facial_id, f) def evaluate(self): """Evaluate.""" test_path = self.conf['test_path'] output_file_path = self.conf['output_file_path'] if not os.path.isdir(os.path.join(test_path, 'results_fi')): os.mkdir(os.path.join(test_path, 'results_fi')) else: shutil.rmtree(os.path.join(test_path, 'results_fi')) os.mkdir(os.path.join(test_path, 'results_fi')) gt_df = pd.read_csv(os.path.join(test_path, 'validation.csv')) gt_df_g = gt_df.groupby('FILE') file_names = glob.glob(os.path.join(test_path, '*.jpg')) with open('ref_facial_id_db.pickle', 'rb') as f: db_facial_id = pickle.load(f) # Get registered facial id data. subject_ids = list(db_facial_id.keys()) facial_ids = [] for subject_id in subject_ids: facial_ids.append(db_facial_id[subject_id]) reg_facial_ids = np.asarray(facial_ids) # Detect faces, identify faces and save results. count1 = 1 with open(output_file_path, 'w') as f: for file_name in file_names: if DEBUG: print(count1, '/', len(file_names), file_name) count1 += 1 # Load an image. image = imread(os.path.join(test_path, file_name)) image_o = image.copy() image = image/255 # Adjust the original image size into the normalized image size according to the ratio of width, height. w = image.shape[1] h = image.shape[0] pad_t, pad_b, pad_l, pad_r = 0, 0, 0, 0 if w >= h: w_p = self.nn_arch['image_size'] h_p = int(h / w * self.nn_arch['image_size']) pad = self.nn_arch['image_size'] - h_p if pad % 2 == 0: pad_t = pad // 2 pad_b = pad // 2 else: pad_t = pad // 2 pad_b = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_CUBIC) image = cv.copyMakeBorder(image, pad_t, pad_b, 0, 0, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? else: h_p = self.nn_arch['image_size'] w_p = int(w / h * self.nn_arch['image_size']) pad = self.nn_arch['image_size'] - w_p if pad % 2 == 0: pad_l = pad // 2 pad_r = pad // 2 else: pad_l = pad // 2 pad_r = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_CUBIC) image = cv.copyMakeBorder(image, 0, 0, pad_l, pad_r, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? image = image[np.newaxis, :] # Detect faces. boxes = self.fd.detect(image) # correct the sizes of the bounding boxes for box in boxes: if w >= h: box.xmin = np.min([box.xmin * w / self.nn_arch['image_size'], w]) box.xmax = np.min([box.xmax * w / self.nn_arch['image_size'], w]) box.ymin = np.min([np.max([box.ymin - pad_t, 0]) * w / self.nn_arch['image_size'], h]) box.ymax = np.min([np.max([box.ymax - pad_t, 0]) * w / self.nn_arch['image_size'], h]) else: box.xmin = np.min([np.max([box.xmin - pad_l, 0]) * h / self.nn_arch['image_size'], w]) box.xmax = np.min([np.max([box.xmax - pad_l, 0]) * h / self.nn_arch['image_size'], w]) box.ymin = np.min([box.ymin * h / self.nn_arch['image_size'], h]) box.ymax = np.min([box.ymax * h / self.nn_arch['image_size'], h]) count = 1 for box in boxes: if count > 60: break # Search for id from registered facial ids. # Crop a face region. l, t, r, b = int(box.xmin), int(box.ymin), int(box.xmax), int(box.ymax) image = image_o[(t - 1):(b - 1), (l - 1):(r - 1), :] image = image/255 # Adjust the original image size into the normalized image size according to the ratio of width, height. w = image.shape[1] h = image.shape[0] pad_t, pad_b, pad_l, pad_r = 0, 0, 0, 0 # Check exception. if w == 0 or h == 0: continue if w >= h: w_p = self.nn_arch['image_size'] h_p = int(h / w * self.nn_arch['image_size']) pad = self.nn_arch['image_size'] - h_p if pad % 2 == 0: pad_t = pad // 2 pad_b = pad // 2 else: pad_t = pad // 2 pad_b = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_CUBIC) image = cv.copyMakeBorder(image, pad_t, pad_b, 0, 0, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? else: h_p = self.nn_arch['image_size'] w_p = int(w / h * self.nn_arch['image_size']) pad = self.nn_arch['image_size'] - w_p if pad % 2 == 0: pad_l = pad // 2 pad_r = pad // 2 else: pad_l = pad // 2 pad_r = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_CUBIC) image = cv.copyMakeBorder(image, 0, 0, pad_l, pad_r, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? # Create anchor facial ids. anchor_facial_id = self.fid_extractor.predict(image[np.newaxis, ...]) anchor_facial_id = np.squeeze(anchor_facial_id) # Calculate similarity distances for each registered face ids. sim_dists = [] for i in range(len(subject_ids)): sim_dists.append(norm(anchor_facial_id - reg_facial_ids[i])) sim_dists = np.asarray(sim_dists) cand = np.argmin(sim_dists) if sim_dists[cand] > self.hps['sim_th']: continue subject_id = subject_ids[cand] box.subject_id = subject_id if platform.system() == 'Windows': f.write(file_name.split('\\')[-1] + ',' + str(subject_id) + ',' + str(box.xmin) + ',' + str(box.ymin) + ',') print(file_name.split('\\')[-1] + ',' + str(subject_id) + ',' + str(box.xmin) + ',' + str(box.ymin) + ',', end=' ') else: f.write(file_name.split('/')[-1] + ',' + str(subject_id) + ',' + str(box.xmin) + ',' + str(box.ymin) + ',') print(file_name.split('/')[-1] + ',' + str(subject_id) + ',' + str(box.xmin) + ',' + str(box.ymin) + ',', end=' ') f.write(str(box.xmax - box.xmin) + ',' + str(box.ymax - box.ymin) + ',' + str(box.get_score()) + '\n') print(str(box.xmax - box.xmin) + ',' + str(box.ymax - box.ymin) + ',' + str(box.get_score())) count +=1 #boxes = [box for box in boxes if box.subject_id != -1] # Draw bounding boxes of ground truth. if platform.system() == 'Windows': file_new_name = file_name.split('\\')[-1] else: file_new_name = file_name.split('/')[-1] try: df = gt_df_g.get_group(file_new_name) except KeyError: continue gt_boxes = [] for i in range(df.shape[0]): # Check exception. res = df.iloc[i, 3:] > 0 #? if res.all() == False: #or df.iloc[i, 2] == -1: continue xmin = int(df.iloc[i, 3]) xmax = int(xmin + df.iloc[i, 5] - 1) ymin = int(df.iloc[i, 4]) ymax = int(ymin + df.iloc[i, 6] - 1) gt_box = BoundBox(xmin, ymin, xmax, ymax, objness=1., classes=[1.0], subject_id=df.iloc[i, 2]) gt_boxes.append(gt_box) # Check exception. if len(gt_boxes) == 0 or len(boxes) == 0: #? continue image1 = draw_boxes_v3(image_o, gt_boxes, self.hps['face_conf_th'], color=(255, 0, 0)) del image_o # Draw bounding boxes on the image using labels. image = draw_boxes_v3(image1, boxes, self.hps['face_conf_th'], color=(0, 255, 0)) del image1 # Write the image with bounding boxes to file. # Draw bounding boxes of ground truth. if platform.system() == 'Windows': file_new_name = file_name.split('\\')[-1] else: file_new_name = file_name.split('/')[-1] file_new_name = file_new_name[:-4] + '_detected' + file_new_name[-4:] print(file_new_name) imsave(os.path.join(test_path, 'results_fi', file_new_name), (image).astype('uint8')) def test(self): """Test.""" test_path = self.conf['test_path'] output_file_path = self.conf['output_file_path'] file_names = glob.glob(os.path.join(test_path, '*.jpg')) with open('ref_facial_id_db.pickle', 'rb') as f: db_facial_id = pickle.load(f) # Get registered facial id data. subject_ids = list(db_facial_id.keys()) facial_ids = [] for subject_id in subject_ids: facial_ids.append(db_facial_id[subject_id]) reg_facial_ids = np.asarray(facial_ids) # Detect faces, identify faces and save results. count1 = 1 with open(output_file_path, 'w') as f: for file_name in file_names: if DEBUG: print(count1, '/', len(file_names), file_name) count1 += 1 # Load an image. image = imread(os.path.join(test_path, file_name)) image_o = image.copy() image = image/255 # Adjust the original image size into the normalized image size according to the ratio of width, height. w = image.shape[1] h = image.shape[0] pad_t, pad_b, pad_l, pad_r = 0, 0, 0, 0 if w >= h: w_p = self.nn_arch['image_size'] h_p = int(h / w * self.nn_arch['image_size']) pad = self.nn_arch['image_size'] - h_p if pad % 2 == 0: pad_t = pad // 2 pad_b = pad // 2 else: pad_t = pad // 2 pad_b = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_CUBIC) image = cv.copyMakeBorder(image, pad_t, pad_b, 0, 0, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? else: h_p = self.nn_arch['image_size'] w_p = int(w / h * self.nn_arch['image_size']) pad = self.nn_arch['image_size'] - w_p if pad % 2 == 0: pad_l = pad // 2 pad_r = pad // 2 else: pad_l = pad // 2 pad_r = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_CUBIC) image = cv.copyMakeBorder(image, 0, 0, pad_l, pad_r, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? image = image[np.newaxis, :] # Detect faces. boxes = self.fd.detect(image) # correct the sizes of the bounding boxes for box in boxes: if w >= h: box.xmin = np.min([box.xmin * w / self.nn_arch['image_size'], w]) box.xmax = np.min([box.xmax * w / self.nn_arch['image_size'], w]) box.ymin = np.min([np.max([box.ymin - pad_t, 0]) * w / self.nn_arch['image_size'], h]) box.ymax = np.min([np.max([box.ymax - pad_t, 0]) * w / self.nn_arch['image_size'], h]) else: box.xmin = np.min([np.max([box.xmin - pad_l, 0]) * h / self.nn_arch['image_size'], w]) box.xmax = np.min([np.max([box.xmax - pad_l, 0]) * h / self.nn_arch['image_size'], w]) box.ymin = np.min([box.ymin * h / self.nn_arch['image_size'], h]) box.ymax = np.min([box.ymax * h / self.nn_arch['image_size'], h]) count = 1 for box in boxes: if count > 60: break # Search for id from registered facial ids. # Crop a face region. l, t, r, b = int(box.xmin), int(box.ymin), int(box.xmax), int(box.ymax) image = image_o[(t - 1):(b - 1), (l - 1):(r - 1), :] image = image/255 # Adjust the original image size into the normalized image size according to the ratio of width, height. w = image.shape[1] h = image.shape[0] pad_t, pad_b, pad_l, pad_r = 0, 0, 0, 0 # Check exception. if w == 0 or h == 0: continue if w >= h: w_p = self.nn_arch['image_size'] h_p = int(h / w * self.nn_arch['image_size']) pad = self.nn_arch['image_size'] - h_p if pad % 2 == 0: pad_t = pad // 2 pad_b = pad // 2 else: pad_t = pad // 2 pad_b = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_CUBIC) image = cv.copyMakeBorder(image, pad_t, pad_b, 0, 0, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? else: h_p = self.nn_arch['image_size'] w_p = int(w / h * self.nn_arch['image_size']) pad = self.nn_arch['image_size'] - w_p if pad % 2 == 0: pad_l = pad // 2 pad_r = pad // 2 else: pad_l = pad // 2 pad_r = pad // 2 + 1 image = cv.resize(image, (w_p, h_p), interpolation=cv.INTER_CUBIC) image = cv.copyMakeBorder(image, 0, 0, pad_l, pad_r, cv.BORDER_CONSTANT, value=[0, 0, 0]) # 416x416? # Create anchor facial ids. anchor_facial_id = self.fid_extractor.predict(image[np.newaxis, ...]) anchor_facial_id = np.squeeze(anchor_facial_id) anchor_facial_ids = np.asarray([anchor_facial_id for _ in range(len(subject_ids))]) # Calculate similarity distances for each registered face ids. sim_dists = [] for i in range(len(subject_ids)): sim_dists.append(norm(anchor_facial_ids[i] - reg_facial_ids[i])) sim_dists = np.asarray(sim_dists) cand = np.argmin(sim_dists) if sim_dists[cand] > self.hps['sim_th']: continue subject_id = subject_ids[cand] if platform.system() == 'Windows': f.write(file_name.split('\\')[-1] + ',' + str(subject_id) + ',' + str(box.xmin) + ',' + str(box.ymin) + ',') else: f.write(file_name.split('/')[-1] + ',' + str(subject_id) + ',' + str(box.xmin) + ',' + str(box.ymin) + ',') f.write(str(box.xmax - box.xmin) + ',' + str(box.ymax - box.ymin) + ',' + str(box.get_score()) + '\n') count +=1 # Check exception. if len(boxes) == 0: continue def create_face_reconst_model(self): """Create the face reconstruction model.""" if hasattr(self, 'model') != True or isinstance(self.model, Model) != True: raise ValueError('A valid model instance doesn\'t exist.') if self.conf['face_vijana_recon_load']: self.recon_model = load_model('face_vijnana_recon.h5') return # Get all layers and extract input layers and output layers. layers = self.model.layers input_layers = [layer for layer in layers if isinstance(layer, InputLayer) == True] output_layer_names = [t.name.split('/')[0] for t in self.model.outputs] output_layers = [layer for layer in layers if layer.name in output_layer_names] # Input. input1 = Input(shape=(int(output_layers[0].output_shape[1]/3), ), name='input1') x = Lambda(lambda x: K.l2_normalize(x, axis=-1), name='l2_norm_layer')(input1) #? x = ReLU()(x) dense_layer = Dense(self.model.get_layer('dense1').input_shape[1] , activation='linear' , name='dense1') x = dense_layer(x) dense_layer.set_weights((self.model.get_layer('dense1').get_weights()[0].T , np.random.rand(self.model.get_layer('dense1').get_weights()[0].shape[0]))) # Yolov3. yolov3 = self.model.get_layer('base') x = Reshape(yolov3.output_shape[1:])(x) skip = x #? # 73 ~ 63. for i in range(73, 63, -3): conv_layer = yolov3.get_layer('conv_' + str(i)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) conv_layer = yolov3.get_layer('conv_' + str(i - 1)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i - 1)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) x = subtract([x, skip]) #? skip = x #? # 62. conv_layer = yolov3.get_layer('conv_' + str(62)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , strides=conv_layer.strides , padding='same' , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(62)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) skip = x # 60 ~ 38. for i in range(60, 38, -3): conv_layer = yolov3.get_layer('conv_' + str(i)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) conv_layer = yolov3.get_layer('conv_' + str(i - 1)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i - 1)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) x = subtract([x, skip]) #? skip = x #?? # 37. conv_layer = yolov3.get_layer('conv_' + str(37)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , strides=conv_layer.strides , padding='same' , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(37)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) skip = x # 35 ~ 13. for i in range(35, 13, -3): conv_layer = yolov3.get_layer('conv_' + str(i)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) conv_layer = yolov3.get_layer('conv_' + str(i - 1)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i - 1)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) x = subtract([x, skip]) #? skip = x #? # 12. conv_layer = yolov3.get_layer('conv_' + str(12)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , strides=conv_layer.strides , padding='same' , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(12)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) skip = x # 10 ~ 6. for i in range(10, 6, -3): conv_layer = yolov3.get_layer('conv_' + str(i)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) conv_layer = yolov3.get_layer('conv_' + str(i - 1)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i - 1)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) x = subtract([x, skip]) #? skip = x #? # 5. conv_layer = yolov3.get_layer('conv_' + str(5)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , strides=conv_layer.strides , padding='same' , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(5)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) skip = x # 4 ~ 2. for i in range(3, 1, -2): conv_layer = yolov3.get_layer('conv_' + str(i)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) conv_layer = yolov3.get_layer('conv_' + str(i - 1)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' #? , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(i - 1)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) x = subtract([x, skip]) #? skip = x #? # 1 ~ 0. conv_layer = yolov3.get_layer('conv_' + str(1)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , strides=conv_layer.strides , padding='same' , use_bias=False , name=conv_layer.name) #? norm_layer = yolov3.get_layer('bnorm_' + str(1)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) x = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) conv_layer = yolov3.get_layer('conv_' + str(0)) deconv_layer = Conv2DTranspose(filters=conv_layer.input_shape[-1] , kernel_size=conv_layer.kernel_size , padding='same' , use_bias=False , name='output') #? norm_layer = yolov3.get_layer('bnorm_' + str(0)) inv_norm_layer = BatchNormalization.from_config(norm_layer.get_config()) x = LeakyReLU(alpha=0.1)(x) x = Lambda(lambda x: K.l2_normalize(x, axis=-1))(x) x = inv_norm_layer(x) output = deconv_layer(x) deconv_layer.set_weights(conv_layer.get_weights()) self.recon_model = Model(inputs=[input1], outputs=[output]) self.recon_model.trainable = True self.recon_model.save('face_vijnana_recon.h5') class TrainingSequence(Sequence): """Training data set sequence.""" def __init__(self, raw_data_path, hps, nn_arch, load_flag=True): if load_flag: with open('img_triplet_pairs.pickle', 'rb') as f: self.img_triplet_pairs = pickle.load(f) self.img_triplet_pairs = self.img_triplet_pairs # Create indexing data of positive and negative cases. self.raw_data_path = raw_data_path self.hps = hps self.nn_arch = nn_arch self.db = pd.read_csv('subject_image_db.csv') self.db = self.db.iloc[:, 1:] self.batch_size = self.hps['batch_size'] self.hps['step'] = len(self.img_triplet_pairs) // self.batch_size if len(self.img_triplet_pairs) % self.batch_size != 0: self.hps['step'] +=1 else: # Create indexing data of positive and negative cases. self.raw_data_path = raw_data_path self.hps = hps self.db = pd.read_csv('subject_image_db.csv') self.db = self.db.iloc[:, 1:] self.t_indexes = np.asarray(self.db.index) self.db_g = self.db.groupby('subject_id') self.img_triplet_pairs = [] valid_indexes = self.t_indexes for i in self.db_g.groups.keys(): df = self.db_g.get_group(i) ex_indexes2 = np.asarray(df.index) ex_inv_idxes = [] for v in valid_indexes: if (ex_indexes2 == v).any(): ex_inv_idxes.append(False) else: ex_inv_idxes.append(True) ex_inv_idxes =
np.asarray(ex_inv_idxes)
numpy.asarray
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import dace as dc import numpy as np @dc.program def indirection_scalar(A: dc.float32[10]): i = 0 return A[i] def test_indirection_scalar(): A = np.random.randn(10).astype(np.float32) res = indirection_scalar(A)[0] assert (res == A[0]) @dc.program def indirection_scalar_assign(A: dc.float32[10]): i = 2 A[i] = 5 return A[i] def test_indirection_scalar_assign(): A = np.random.randn(10).astype(np.float32) res = indirection_scalar_assign(A)[0] assert (res == 5) @dc.program def indirection_scalar_augassign(A: dc.float32[10]): i = 2 j = 3 A[i] += A[j] return A[i] def test_indirection_scalar_augassign(): A = np.random.randn(10).astype(np.float32) res = indirection_scalar_augassign(np.copy(A))[0] assert (np.allclose(res, A[2] + A[3])) @dc.program def indirection_scalar_nsdfg(A: dc.float32[10], x: dc.int32[10]): B = np.empty_like(A) # TODO: This doesn't work with 0:A.shape[0] for i in dc.map[0:10]: a = x[i] B[i] = A[a] return B def test_indirection_scalar_nsdfg(): A = np.random.randn(10).astype(np.float32) x = np.random.randint(0, 10, size=(10,), dtype=np.int32) res = indirection_scalar_nsdfg(A, x) assert (np.allclose(res, A[x])) @dc.program def indirection_scalar_assign_nsdfg(A: dc.float32[10], x: dc.int32[10]): B = np.empty_like(A) # TODO: This doesn't work with 0:A.shape[0] for i in dc.map[0:10]: a = x[i] B[a] = A[a] return B def test_indirection_scalar_assign_nsdfg(): A = np.random.randn(10).astype(np.float32) x = np.random.randint(0, 10, size=(10,), dtype=np.int32) res = indirection_scalar_assign_nsdfg(A, x) assert (np.allclose(res[x], A[x])) @dc.program def indirection_scalar_augassign_nsdfg(A: dc.float32[10], x: dc.int32[10]): B = np.full_like(A, 5) # TODO: This doesn't work with 0:A.shape[0] for i in dc.map[0:10]: a = x[i] B[a] += A[a] return B def test_indirection_scalar_augassign_nsdfg(): A = np.random.randn(10).astype(np.float32) x =
np.random.randint(0, 10, size=(10,), dtype=np.int32)
numpy.random.randint
# -*- coding: utf-8 -*- """Copyright 2019 DScribe developers Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import math import unittest import numpy as np import sparse import scipy.linalg from dscribe.descriptors import ACSF from testbaseclass import TestBaseClass from ase import Atoms from ase.build import molecule from ase.build import bulk H2O = Atoms( cell=[[15.0, 0.0, 0.0], [0.0, 15.0, 0.0], [0.0, 0.0, 15.0]], positions=[ [0, 0, 0], [0.95, 0, 0], [ 0.95 * (1 + math.cos(76 / 180 * math.pi)), 0.95 * math.sin(76 / 180 * math.pi), 0.0, ], ], symbols=["H", "O", "H"], ) H = Atoms( cell=[[15.0, 0.0, 0.0], [0.0, 15.0, 0.0], [0.0, 0.0, 15.0]], positions=[ [0, 0, 0], ], symbols=["H"], ) default_desc = ACSF( rcut=6.0, species=[1, 8], g2_params=[[1, 2], [4, 5]], g3_params=[1, 2, 3, 4], g4_params=[[1, 2, 3], [3, 1, 4], [4, 5, 6], [7, 8, 9]], g5_params=[[1, 2, 3], [3, 1, 4], [4, 5, 6], [7, 8, 9]], ) def cutoff(R, rcut): return 0.5 * (np.cos(np.pi * R / rcut) + 1) class ACSFTests(TestBaseClass, unittest.TestCase): def test_exceptions(self): """Tests different invalid parameters that should raise an exception. """ # Invalid species with self.assertRaises(ValueError): ACSF(rcut=6.0, species=None) # Invalid bond_params with self.assertRaises(ValueError): ACSF(rcut=6.0, species=[1, 6, 8], g2_params=[1, 2, 3]) # Invalid bond_cos_params with self.assertRaises(ValueError): ACSF(rcut=6.0, species=[1, 6, 8], g3_params=[[1, 2], [3, 1]]) # Invalid bond_cos_params with self.assertRaises(ValueError): ACSF(rcut=6.0, species=[1, 6, 8], g3_params=[[1, 2, 4], [3, 1]]) # Invalid ang4_params with self.assertRaises(ValueError): ACSF(rcut=6.0, species=[1, 6, 8], g4_params=[[1, 2], [3, 1]]) # Invalid ang5_params with self.assertRaises(ValueError): ACSF(rcut=6.0, species=[1, 6, 8], g5_params=[[1, 2], [3, 1]]) def test_properties(self): """Used to test that changing the setup through properties works as intended. """ # Test changing species a = ACSF( rcut=6.0, species=[1, 8], g2_params=[[1, 2]], sparse=False, ) nfeat1 = a.get_number_of_features() vec1 = a.create(H2O) a.species = ["C", "H", "O"] nfeat2 = a.get_number_of_features() vec2 = a.create(molecule("CH3OH")) self.assertTrue(nfeat1 != nfeat2) self.assertTrue(vec1.shape[1] != vec2.shape[1]) def test_number_of_features(self): """Tests that the reported number of features is correct.""" species = [1, 8] n_elem = len(species) desc = ACSF(rcut=6.0, species=species) n_features = desc.get_number_of_features() self.assertEqual(n_features, n_elem) desc = ACSF(rcut=6.0, species=species, g2_params=[[1, 2], [4, 5]]) n_features = desc.get_number_of_features() self.assertEqual(n_features, n_elem * (2 + 1)) desc = ACSF(rcut=6.0, species=[1, 8], g3_params=[1, 2, 3, 4]) n_features = desc.get_number_of_features() self.assertEqual(n_features, n_elem * (4 + 1)) desc = ACSF( rcut=6.0, species=[1, 8], g4_params=[[1, 2, 3], [3, 1, 4], [4, 5, 6], [7, 8, 9]], ) n_features = desc.get_number_of_features() self.assertEqual(n_features, n_elem + 4 * 3) desc = ACSF( rcut=6.0, species=[1, 8], g2_params=[[1, 2], [4, 5]], g3_params=[1, 2, 3, 4], g4_params=[[1, 2, 3], [3, 1, 4], [4, 5, 6], [7, 8, 9]], ) n_features = desc.get_number_of_features() self.assertEqual(n_features, n_elem * (1 + 2 + 4) + 4 * 3) def test_sparse(self): """Tests the sparse matrix creation.""" # Sparse default_desc._sparse = True vec = default_desc.create(H2O) self.assertTrue(type(vec) == sparse.COO) # Dense default_desc._sparse = False vec = default_desc.create(H2O) self.assertTrue(type(vec) == np.ndarray) def test_parallel_dense(self): """Tests creating dense output parallelly.""" samples = [molecule("CO"), molecule("NO")] desc = ACSF( rcut=6.0, species=[6, 7, 8], g2_params=[[1, 2], [4, 5]], g3_params=[1, 2, 3, 4], g4_params=[[1, 2, 3], [3, 1, 4], [4, 5, 6], [7, 8, 9]], g5_params=[[1, 2, 3], [3, 1, 4], [4, 5, 6], [7, 8, 9]], ) n_features = desc.get_number_of_features() # Determining number of jobs based on the amount of CPUs desc.create(system=samples, n_jobs=-1, only_physical_cores=False) desc.create(system=samples, n_jobs=-1, only_physical_cores=True) # Multiple systems, serial job, fixed size output = desc.create( system=samples, positions=[[0, 1], [0, 1]], n_jobs=1, ) assumed = np.empty((2, 2, n_features)) assumed[0, 0] = desc.create(samples[0], [0]) assumed[0, 1] = desc.create(samples[0], [1]) assumed[1, 0] = desc.create(samples[1], [0]) assumed[1, 1] = desc.create(samples[1], [1]) self.assertTrue(
np.allclose(output, assumed)
numpy.allclose
############################################################## # COCO dataset Info Loader. Clear unvalid items. ############################################################## import os import numpy as np import scipy.sparse import cv2 import copy import math from pycocotools.coco import COCO import pycocotools.mask as mask_util def annToMask(segm, height, width): """ Convert annotation which can be polygons, uncompressed RLE, or RLE to binary mask. :return: binary mask (numpy 2D array) """ def _annToRLE(segm, height, width): """ Convert annotation which can be polygons, uncompressed RLE to RLE. :return: binary mask (numpy 2D array) """ if isinstance(segm, list): # polygon -- a single object might consist of multiple parts # we merge all parts into one mask rle code rles = mask_util.frPyObjects(segm, height, width) rle = mask_util.merge(rles) elif isinstance(segm['counts'], list): # uncompressed RLE rle = mask_util.frPyObjects(segm, height, width) else: # rle rle = segm return rle rle = _annToRLE(segm, height, width) mask = mask_util.decode(rle) return mask class CocoDatasetInfo(): def __init__(self, ImageRoot, AnnoFile, onlyperson=False, loadimg=True): ''' **Just** loading coco dataset, with necessary pre-process: 1. obj['segmentation'] polygons should have >= 3 points, so require >= 6 coordinates 2. obj['area'] should >= GT_MIN_AREA 3. ignore objs with obj['ignore']==1 4. IOU(bbox, img) should > 0, Area(bbox) should > 0 Attributes: self.category_to_id_map self.classes self.num_classes : 81 self.json_category_id_to_contiguous_id self.contiguous_category_id_to_json_id self.image_ids : <class 'list'> self.keypoints self.keypoint_flip_map self.keypoints_to_id_map self.num_keypoints : 17 Tools: rawdata = self.flip_rawdata(rawdata) ''' self.GT_MIN_AREA = 0 self.loadimg = loadimg self.imgroot = ImageRoot self.COCO = COCO(AnnoFile) # Set up dataset classes if onlyperson: self.category_ids = [1] else: self.category_ids = self.COCO.getCatIds() categories = [c['name'] for c in self.COCO.loadCats(self.category_ids)] self.category_to_id_map = dict(zip(categories, self.category_ids)) self.classes = ['__background__'] + categories self.num_classes = len(self.classes) self.json_category_id_to_contiguous_id = { v: i + 1 for i, v in enumerate(self.category_ids) } self.contiguous_category_id_to_json_id = { v: k for k, v in self.json_category_id_to_contiguous_id.items() } # self.__len__() reference to self.image_ids self.image_ids = self.COCO.getImgIds(catIds=self.category_ids) self.image_ids.sort() # self.image_ids = self.image_ids[0:200] # for debug. # self.image_ids = [9,9,9,9,9] # Initialize COCO keypoint information. self.keypoints = None self.keypoint_flip_map = None self.keypoints_to_id_map = None self.num_keypoints = 0 # Thus far only the 'person' category has keypoints if 'person' in self.category_to_id_map: cat_info = self.COCO.loadCats([self.category_to_id_map['person']]) # Check if the annotations contain keypoint data or not if 'keypoints' in cat_info[0]: keypoints = cat_info[0]['keypoints'] self.keypoints_to_id_map = dict( zip(keypoints, range(len(keypoints)))) self.keypoints = keypoints self.num_keypoints = len(keypoints) self.keypoint_flip_map = { 'left_eye': 'right_eye', 'left_ear': 'right_ear', 'left_shoulder': 'right_shoulder', 'left_elbow': 'right_elbow', 'left_wrist': 'right_wrist', 'left_hip': 'right_hip', 'left_knee': 'right_knee', 'left_ankle': 'right_ankle'} self.roidb = None # Pre-load def __len__(self): return len(self.image_ids) def __getitem__(self, idx): if self.roidb is None: return self.getitem(idx) else: return self.roidb[idx] def getitem(self, idx): ''' **Just** loading coco dataset, with necessary pre-process: 1. obj['segmentation'] polygons should have >= 3 points, so require >= 6 coordinates 2. obj['area'] should >= GT_MIN_AREA 3. ignore objs with obj['ignore']==1 4. IOU(bbox, img) should > 0, Area(bbox) should > 0 Return: rawdata { dataset': self, 'id': image_id, 'image': os.path.join(self.imgroot, datainfo['file_name']), 'width': datainfo['width'], 'height': datainfo['height'], 'flipped': False, 'has_visible_keypoints': False/True, 'boxes': np.empty((GtN, 4), dtype=np.float32), 'segms': [GtN,], 'gt_classes': np.empty((GtN), dtype=np.int32), 'seg_areas': np.empty((GtN), dtype=np.float32), 'gt_overlaps': scipy.sparse.csr_matrix( np.empty((GtN, 81), dtype=np.float32) ), 'is_crowd': np.empty((GtN), dtype=np.bool), 'box_to_gt_ind_map': np.empty((GtN), dtype=np.int32) if self.keypoints is not None: 'gt_keypoints': np.empty((GtN, 3, self.num_keypoints), dtype=np.int32) } ''' # --------------------------- # _prep_roidb_entry() # --------------------------- image_id = self.image_ids[idx] datainfo = self.COCO.loadImgs(image_id)[0] rawdata = { #'dataset': self, #'flickr_url': datainfo['flickr_url'], 'id': image_id, #'coco_url': datainfo['coco_url'], 'image': os.path.join(self.imgroot, datainfo['file_name']), 'data': cv2.imread(os.path.join(self.imgroot, datainfo['file_name'])) if self.loadimg else None, 'width': datainfo['width'], 'height': datainfo['height'], 'flipped': False, 'has_visible_keypoints': False, 'boxes': np.empty((0, 4), dtype=np.float32), 'segms': [], 'gt_classes': np.empty((0), dtype=np.int32), 'seg_areas': np.empty((0), dtype=np.float32), 'gt_overlaps': scipy.sparse.csr_matrix( np.empty((0, self.num_classes), dtype=np.float32) ), 'is_crowd': np.empty((0), dtype=np.bool), # 'box_to_gt_ind_map': Shape is (#rois). Maps from each roi to the index # in the list of rois that satisfy np.where(entry['gt_classes'] > 0) 'box_to_gt_ind_map': np.empty((0), dtype=np.int32), # The only difference between gt_classes v.s. max_classes is about 'crowd' objs. 'max_classes': np.empty((0), dtype=np.int32), 'max_overlaps': np.empty((0), dtype=np.float32), } if self.keypoints is not None: rawdata['gt_keypoints'] = np.empty((0, 3, self.num_keypoints), dtype=np.int32) # --------------------------- # _add_gt_annotations() # --------------------------- # Include ground-truth object annotations """Add ground truth annotation metadata to an roidb entry.""" ann_ids = self.COCO.getAnnIds(imgIds=rawdata['id'], catIds=self.category_ids, iscrowd=None) objs = self.COCO.loadAnns(ann_ids) # Sanitize bboxes -- some are invalid valid_objs = [] valid_segms = [] width = rawdata['width'] height = rawdata['height'] for obj in objs: # crowd regions are RLE encoded and stored as dicts if isinstance(obj['segmentation'], list): # Valid polygons have >= 3 points, so require >= 6 coordinates obj['segmentation'] = [ p for p in obj['segmentation'] if len(p) >= 6 ] if obj['area'] < self.GT_MIN_AREA: continue if 'ignore' in obj and obj['ignore'] == 1: continue # Convert form (x1, y1, w, h) to (x1, y1, x2, y2) x1, y1, bboxw, bboxh = obj['bbox'] x1, y1, x2, y2 = [x1, y1, x1 + bboxw - 1, y1 + bboxh - 1] # Note: -1 for h and w x1 = min(width - 1., max(0., x1)) y1 = min(height - 1., max(0., y1)) x2 = min(width - 1., max(0., x2)) y2 = min(height - 1., max(0., y2)) # Require non-zero seg area and more than 1x1 box size # print(obj['area']) # print(str([x1,x2,y1,y2])) if obj['area'] > 0 and x2 > x1 and y2 > y1: obj['clean_bbox'] = [x1, y1, x2, y2] valid_objs.append(obj) valid_segms.append(obj['segmentation']) num_valid_objs = len(valid_objs) if num_valid_objs==0: ## is_valid # print ('ignore %d'%idx) return self.getitem(idx+1) boxes = np.zeros((num_valid_objs, 4), dtype=rawdata['boxes'].dtype) gt_classes = np.zeros((num_valid_objs), dtype=rawdata['gt_classes'].dtype) gt_overlaps = np.zeros( (num_valid_objs, self.num_classes), dtype=rawdata['gt_overlaps'].dtype ) seg_areas = np.zeros((num_valid_objs), dtype=rawdata['seg_areas'].dtype) is_crowd = np.zeros((num_valid_objs), dtype=rawdata['is_crowd'].dtype) box_to_gt_ind_map = np.zeros( (num_valid_objs), dtype=rawdata['box_to_gt_ind_map'].dtype ) if self.keypoints is not None: gt_keypoints = np.zeros( (num_valid_objs, 3, self.num_keypoints), dtype=rawdata['gt_keypoints'].dtype ) im_has_visible_keypoints = False for ix, obj in enumerate(valid_objs): cls = self.json_category_id_to_contiguous_id[obj['category_id']] boxes[ix, :] = obj['clean_bbox'] gt_classes[ix] = cls seg_areas[ix] = obj['area'] is_crowd[ix] = obj['iscrowd'] box_to_gt_ind_map[ix] = ix if self.keypoints is not None: gt_keypoints[ix, :, :] = self._get_gt_keypoints(obj) if np.sum(gt_keypoints[ix, 2, :]) > 0: im_has_visible_keypoints = True if obj['iscrowd']: # Set overlap to -1 for all classes for crowd objects # so they will be excluded during training gt_overlaps[ix, :] = -1.0 else: gt_overlaps[ix, cls] = 1.0 rawdata['boxes'] = np.append(rawdata['boxes'], boxes, axis=0) rawdata['segms'].extend(valid_segms) # To match the original implementation: # rawdata['boxes'] = np.append( # rawdata['boxes'], boxes.astype(np.int).astype(np.float), axis=0) rawdata['gt_classes'] = np.append(rawdata['gt_classes'], gt_classes) rawdata['seg_areas'] = np.append(rawdata['seg_areas'], seg_areas) rawdata['gt_overlaps'] = np.append( rawdata['gt_overlaps'].toarray(), gt_overlaps, axis=0 ) rawdata['gt_overlaps'] = scipy.sparse.csr_matrix(rawdata['gt_overlaps']) rawdata['is_crowd'] = np.append(rawdata['is_crowd'], is_crowd) rawdata['box_to_gt_ind_map'] = np.append( rawdata['box_to_gt_ind_map'], box_to_gt_ind_map ) if self.keypoints is not None: rawdata['gt_keypoints'] = np.append( rawdata['gt_keypoints'], gt_keypoints, axis=0 ) rawdata['has_visible_keypoints'] = im_has_visible_keypoints ''' The only difference between gt_classes v.s. max_classes is about 'crowd' objs. In max_classes, crowd objs are signed as bg. bg cls1 cls2 cls3 | gt_classes | max_overlaps | max_classes obj1 0.0 1.0 0.0 0.0 | 1(cls1) | 1.0 | 1(cls1) obj2(crowd) -1.0 -1.0 -1.0 -1.0 | 3(cls3) | -1.0 | 0(bg) ibj3 0.0 0.0 1.0 0.0 | 2(cls2) | 1.0 | 2(cls2) ''' gt_overlaps = rawdata['gt_overlaps'].toarray() # max overlap with gt over classes (columns) max_overlaps = gt_overlaps.max(axis=1) # gt class that had the max overlap max_classes = gt_overlaps.argmax(axis=1) rawdata['max_classes'] = max_classes rawdata['max_overlaps'] = max_overlaps return rawdata def _get_gt_keypoints(self, obj): """Return ground truth keypoints.""" if 'keypoints' not in obj: return None kp = np.array(obj['keypoints']) x = kp[0::3] # 0-indexed x coordinates y = kp[1::3] # 0-indexed y coordinates # 0: not labeled; 1: labeled, not inside mask; # 2: labeled and inside mask v = kp[2::3] num_keypoints = len(obj['keypoints']) / 3 assert num_keypoints == self.num_keypoints gt_kps = np.ones((3, self.num_keypoints), dtype=np.int32) for i in range(self.num_keypoints): gt_kps[0, i] = x[i] gt_kps[1, i] = y[i] gt_kps[2, i] = v[i] return gt_kps def transform_rawdata(self, rawdata, matrix, dstwidth, dstheight): ''' See `get_affine_matrix` about the document of `matrix`. Note that the padding strategies for image and segms are both (0,0,0). I recomand you to sub MEAN before this operation. If you have other request, you should overwrite this function. (warning) size_related_keys = ['width', 'height', 'seg_areas', 'data', 'boxes', 'segms', 'gt_keypoints'] ''' assert matrix.shape == (2,3) # image rawdata['data'] = cv2.warpAffine(rawdata['data'], matrix, (dstwidth, dstheight), flags=cv2.INTER_LINEAR, borderMode=cv2.BORDER_CONSTANT, borderValue=(0,0,0)) GtN = len(rawdata['segms']) # segm for i in range(GtN): if isinstance(rawdata['segms'][i], dict): mask = annToMask(rawdata['segms'][i], rawdata['height'], rawdata['width']) mask = cv2.warpAffine(mask, matrix, (dstwidth, dstheight), flags=cv2.INTER_NEAREST, borderMode=cv2.BORDER_CONSTANT, borderValue=0) # or 255 rawdata['segms'][i] = mask_util.encode(np.array(mask, order='F', dtype=np.uint8)) elif isinstance(rawdata['segms'][i], list): for poly_id, poly in enumerate(rawdata['segms'][i]): cors = np.array(poly).reshape(-1, 2) cors_new = np.hstack((cors, np.ones((len(cors), 1), np.float32))).dot(matrix.T) cors_new[:, 0] = np.clip(cors_new[:, 0], 0, dstwidth) cors_new[:, 1] = np.clip(cors_new[:, 1], 0, dstheight) rawdata['segms'][i][poly_id] = cors_new.flatten().tolist()[0] else: print ('segm type error!') # box: (GtN,2) -> (GtN,3)(dot)(3,2) -> (GtN,2) rawdata['boxes'][:, 0:2] = np.hstack((rawdata['boxes'][:, 0:2], np.ones((GtN, 1), np.float32))).dot(matrix.T) rawdata['boxes'][:, 2:4] = np.hstack((rawdata['boxes'][:, 2:4], np.ones((GtN, 1), np.float32))).dot(matrix.T) rawdata['boxes'][:, 0::2] = np.clip(rawdata['boxes'][:, 0::2], 0, dstwidth) # -1 ? rawdata['boxes'][:, 1::2] = np.clip(rawdata['boxes'][:, 1::2], 0, dstheight) if self.keypoints is not None: # gt_keypoint: (GtN,2,NumKpt) -> (GtN,NumKpt,3)(dot)(3,2) -> (GtN,NumKpt,2) -> (GtN,2,NumKpt) rawdata['gt_keypoints'][:, 0:2, :] = \ np.stack((rawdata['gt_keypoints'][:, 0:2, :].transpose((0, 2, 1)), np.ones((GtN, self.num_keypoints, 1), np.float32)), axis=2).dot(matrix.T).transpose((0, 2, 1)) inds = np.where(rawdata['gt_keypoints'][:, 2, :] == 0) rawdata['gt_keypoints'][inds[0], 0, inds[1]] = 0 rawdata['gt_keypoints'][:, 0, :] =
np.clip(rawdata['gt_keypoints'][:, 0, :], 0, dstwidth)
numpy.clip
from itertools import product import numpy as np import scipy.sparse import regreg.api as rr from regreg.identity_quadratic import identity_quadratic as sq import nose.tools as nt def test_centering(): """ This test verifies that the normalized transform of affine correctly implements the linear transform that multiplies first by X, then centers. """ # N - number of data points # P - number of columns in design == number of betas N, P = 40, 30 # an arbitrary positive offset for data and design offset = 50 # design - with ones as last column X = np.ones((N,P)) X[:,:-1] = np.random.normal(size=(N,P-1)) + offset X2 = X - X.mean(axis=0)[np.newaxis,:] L = rr.normalize(X, center=True, scale=False) # coef for loss for _ in range(10): beta = np.random.normal(size=(P,)) v = L.linear_map(beta) v2 = np.dot(X, beta) v2 -= v2.mean() v3 = np.dot(X2, beta) v4 = L.affine_map(beta) np.testing.assert_almost_equal(v, v3) np.testing.assert_almost_equal(v, v2) np.testing.assert_almost_equal(v, v4) y = np.random.standard_normal(N) u1 = L.adjoint_map(y) y2 = y - y.mean() u2 = np.dot(X.T, y2) np.testing.assert_almost_equal(u1, u2) def test_scaling(): """ This test verifies that the normalized transform of affine correctly implements the linear transform that multiplies first by X, then centers. """ # N - number of data points # P - number of columns in design == number of betas N, P = 40, 30 # an arbitrary positive offset for data and design offset = 50 # design - with ones as last column X = np.ones((N,P)) X[:,:-1] = np.random.normal(size=(N,P-1)) + offset L = rr.normalize(X, center=False, scale=True) # coef for loss scalings = np.sqrt((X**2).sum(0) / N) scaling_matrix = np.diag(1./scalings) for _ in range(10): beta = np.random.normal(size=(P,)) v = L.linear_map(beta) v2 = np.dot(X, np.dot(scaling_matrix, beta)) v3 = L.affine_map(beta) np.testing.assert_almost_equal(v, v2) np.testing.assert_almost_equal(v, v3) y = np.random.standard_normal(N) u1 = L.adjoint_map(y) u2 = np.dot(scaling_matrix, np.dot(X.T, y)) np.testing.assert_almost_equal(u1, u2) def test_scaling_and_centering(): """ This test verifies that the normalized transform of affine correctly implements the linear transform that multiplies first by X, then centers. """ # N - number of data points # P - number of columns in design == number of betas N, P = 40, 30 # an arbitrary positive offset for data and design offset = 50 # design - with no colum of ones! X = np.random.normal(size=(N,P)) + offset L = rr.normalize(X, center=True, scale=True) # the default # coef for loss scalings = np.std(X, 0) scaling_matrix = np.diag(1./scalings) for _ in range(10): beta = np.random.normal(size=(P,)) v = L.linear_map(beta) v2 = np.dot(X, np.dot(scaling_matrix, beta)) v2 -= v2.mean() np.testing.assert_almost_equal(v, v2) y = np.random.standard_normal(N) u1 = L.adjoint_map(y) y2 = y - y.mean() u2 = np.dot(scaling_matrix, np.dot(X.T, y2)) np.testing.assert_almost_equal(u1, u2) def test_centering_fit(debug=False): # N - number of data points # P - number of columns in design == number of betas N, P = 40, 30 # an arbitrary positive offset for data and design offset = 50 # design - with ones as last column X = np.ones((N,P)) X = np.random.normal(size=(N,P)) + offset X2 = X - X.mean(axis=0)[np.newaxis,:] # the normalizer L = rr.normalize(X, center=True, scale=False) # data Y = np.random.normal(size=(N,)) + offset # coef for loss coef = 0.5 # lagrange for penalty lagrange = .1 # Loss function (squared difference between fitted and actual data) loss = rr.quadratic.affine(L, -Y, coef=coef) penalties = [rr.constrained_positive_part(25, lagrange=lagrange), rr.nonnegative(5)] groups = [slice(0,25), slice(25,30)] penalty = rr.separable((P,), penalties, groups) initial = np.random.standard_normal(P) composite_form = rr.separable_problem.fromatom(penalty, loss) solver = rr.FISTA(composite_form) solver.debug = debug solver.fit(tol=1.0e-12, min_its=200) coefs = solver.composite.coefs # Solve the problem with X2 loss2 = rr.quadratic.affine(X2, -Y, coef=coef) initial2 = np.random.standard_normal(P) composite_form2 = rr.separable_problem.fromatom(penalty, loss2) for _ in range(10): beta = np.random.standard_normal(P) g1 = loss.smooth_objective(beta, mode='grad') g2 = loss2.smooth_objective(beta, mode='grad') np.testing.assert_almost_equal(g1, g2) b1 = penalty.proximal(sq(1, beta, g1, 0)) b2 = penalty.proximal(sq(1, beta, g1, 0)) np.testing.assert_almost_equal(b1, b2) f1 = composite_form.objective(beta) f2 = composite_form2.objective(beta) np.testing.assert_almost_equal(f1, f2) solver2 = rr.FISTA(composite_form2) solver2.debug = debug solver2.fit(tol=1.0e-12, min_its=200) coefs2 = solver2.composite.coefs np.testing.assert_almost_equal(composite_form.objective(coefs), composite_form.objective(coefs2)) np.testing.assert_almost_equal(composite_form2.objective(coefs), composite_form2.objective(coefs2)) nt.assert_true(np.linalg.norm(coefs - coefs2) / max(np.linalg.norm(coefs),1) < 1.0e-04) def test_scaling_fit(debug=False): # N - number of data points # P - number of columns in design == number of betas N, P = 40, 30 # an arbitrary positive offset for data and design offset = 2 # design - with ones as last column X = np.ones((N,P)) X[:,:-1] = np.random.normal(size=(N,P-1)) + offset X2 = X / (np.sqrt((X**2).sum(0) / N))[np.newaxis,:] L = rr.normalize(X, center=False, scale=True) # data Y = np.random.normal(size=(N,)) + offset # coef for loss coef = 0.5 # lagrange for penalty lagrange = .1 # Loss function (squared difference between fitted and actual data) loss = rr.quadratic.affine(L, -Y, coef=coef) penalties = [rr.constrained_positive_part(25, lagrange=lagrange), rr.nonnegative(5)] groups = [slice(0,25), slice(25,30)] penalty = rr.separable((P,), penalties, groups) initial = np.random.standard_normal(P) composite_form = rr.separable_problem.fromatom(penalty, loss) solver = rr.FISTA(composite_form) solver.debug = debug solver.fit(tol=1.0e-12, min_its=200) coefs = solver.composite.coefs # Solve the problem with X2 loss2 = rr.quadratic.affine(X2, -Y, coef=coef) initial2 = np.random.standard_normal(P) composite_form2 = rr.separable_problem.fromatom(penalty, loss2) solver2 = rr.FISTA(composite_form2) solver2.debug = debug solver2.fit(tol=1.0e-12, min_its=200) coefs2 = solver2.composite.coefs for _ in range(10): beta = np.random.standard_normal(P) g1 = loss.smooth_objective(beta, mode='grad') g2 = loss2.smooth_objective(beta, mode='grad') np.testing.assert_almost_equal(g1, g2) b1 = penalty.proximal(sq(1, beta, g1, 0)) b2 = penalty.proximal(sq(1, beta, g2, 0)) np.testing.assert_almost_equal(b1, b2) f1 = composite_form.objective(beta) f2 = composite_form2.objective(beta) np.testing.assert_almost_equal(f1, f2) np.testing.assert_almost_equal(composite_form.objective(coefs), composite_form.objective(coefs2)) np.testing.assert_almost_equal(composite_form2.objective(coefs), composite_form2.objective(coefs2)) nt.assert_true(np.linalg.norm(coefs - coefs2) / max(np.linalg.norm(coefs),1) < 1.0e-04) def test_scaling_and_centering_fit(debug=False): # N - number of data points # P - number of columns in design == number of betas N, P = 40, 30 # an arbitrary positive offset for data and design offset = 2 # design - with ones as last column X = np.random.normal(size=(N,P)) + offset X2 = X - X.mean(0)[np.newaxis,:] X2 = X2 / np.std(X2,0)[np.newaxis,:] L = rr.normalize(X, center=True, scale=True) # data Y = np.random.normal(size=(N,)) + offset # coef for loss coef = 0.5 # lagrange for penalty lagrange = .1 # Loss function (squared difference between fitted and actual data) loss = rr.quadratic.affine(L, -Y, coef=coef) penalties = [rr.constrained_positive_part(25, lagrange=lagrange), rr.nonnegative(5)] groups = [slice(0,25), slice(25,30)] penalty = rr.separable((P,), penalties, groups) initial = np.random.standard_normal(P) composite_form = rr.separable_problem.fromatom(penalty, loss) solver = rr.FISTA(composite_form) solver.debug = debug solver.fit(tol=1.0e-12, min_its=200) coefs = solver.composite.coefs # Solve the problem with X2 loss2 = rr.quadratic.affine(X2, -Y, coef=coef) initial2 = np.random.standard_normal(P) composite_form2 = rr.separable_problem.fromatom(penalty, loss2) solver2 = rr.FISTA(composite_form2) solver2.debug = debug solver2.fit(tol=1.0e-12, min_its=200) coefs2 = solver2.composite.coefs for _ in range(10): beta = np.random.standard_normal(P) g1 = loss.smooth_objective(beta, mode='grad') g2 = loss2.smooth_objective(beta, mode='grad') np.testing.assert_almost_equal(g1, g2) b1 = penalty.proximal(sq(1, beta, g1, 0)) b2 = penalty.proximal(sq(1, beta, g2, 0)) np.testing.assert_almost_equal(b1, b2) f1 = composite_form.objective(beta) f2 = composite_form2.objective(beta) np.testing.assert_almost_equal(f1, f2) np.testing.assert_almost_equal(composite_form.objective(coefs), composite_form.objective(coefs2)) np.testing.assert_almost_equal(composite_form2.objective(coefs), composite_form2.objective(coefs2)) nt.assert_true(np.linalg.norm(coefs - coefs2) / max(np.linalg.norm(coefs),1) < 1.0e-04) def test_scaling_and_centering_fit_inplace(debug=False): # N - number of data points # P - number of columns in design == number of betas N, P = 40, 30 # an arbitrary positive offset for data and design offset = 2 # design X =
np.random.normal(size=(N,P))
numpy.random.normal
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Summarizers for Score Predictors """ from __future__ import ( print_function, division, absolute_import, unicode_literals) from six.moves import xrange # ============================================================================= # Imports # ============================================================================= import sys import logging import json import numpy as np from sklearn.utils import ( as_float_array, assert_all_finite, check_consistent_length) import sklearn.metrics as skm from . import mean_absolute_error, mean_squared_error, score_histogram # ============================================================================= # Metadata variables # ============================================================================= # ============================================================================= # Public symbols # ============================================================================= __all__ = [] # ============================================================================= # Constants # ============================================================================= # ============================================================================= # Variables # ============================================================================= # ============================================================================= # Functions # ============================================================================= def score_predictor_report(y_true, y_pred, disp=True): """ Report brief summary of prediction performance * mean absolute error * root mean squared error * number of data * mean and standard dev. of true scores * mean and standard dev. of predicted scores Parameters ---------- y_true : array, shape(n_samples,) Ground truth scores y_pred : array, shape(n_samples,) Predicted scores disp : bool, optional, default=True if True, print report Returns ------- stats : dict belief summary of prediction performance """ # check inputs assert_all_finite(y_true) y_true = as_float_array(y_true) assert_all_finite(y_pred) y_pred = as_float_array(y_pred) check_consistent_length(y_true, y_pred) # calc statistics stats = { 'mean absolute error': skm.mean_absolute_error(y_true, y_pred), 'root mean squared error': np.sqrt(np.maximum(skm.mean_squared_error(y_true, y_pred), 0.)), 'n_samples': y_true.size, 'true': {'mean': np.mean(y_true), 'stdev':
np.std(y_true)
numpy.std
# coding: utf-8 """ Misc utility functions """ from __future__ import (division, print_function, absolute_import, unicode_literals) from six import string_types import numpy as np from .robust_polyfit import gaussfit from scipy import interpolate, signal, stats import emcee import time from astropy import units from astropy.stats.biweight import biweight_location, biweight_scale from astropy import coordinates as coord def struct2array(x): """ Convert numpy structured array of simple type to normal numpy array """ Ncol = len(x.dtype) type = x.dtype[0].type assert np.all([x.dtype[i].type == type for i in range(Ncol)]) return x.view(type).reshape((-1,Ncol)) def vac2air(lamvac): """ http://www.astro.uu.se/valdwiki/Air-to-vacuum%20conversion Morton 2000 """ s2 = (1e4/lamvac)**2 n = 1 + 0.0000834254 + 0.02406147 / (130 - s2) + 0.00015998 / (38.9 - s2) return lamvac/n def air2vac(lamair): """ http://www.astro.uu.se/valdwiki/Air-to-vacuum%20conversion Piskunov """ s2 = (1e4/lamair)**2 n = 1 + 0.00008336624212083 + 0.02408926869968 / (130.1065924522 - s2) + 0.0001599740894897 / (38.92568793293 - s2) return lamair*n ##def find_distribution_peak(x, x0, s0=None, bins='auto'): ## """ ## Take a histogram of the data and find the location of the peak closest to x0 ## x: data (no nan's allowed) ## x0: peak location guess ## s0: width of peak guess (default std(x)) ## """ ## h, x = np.histogram(x, bins=bins) ## x = (x[1:]+x[:-1])/2. ## # find positive peak locations based on derivative ## dh = np.gradient(h) ## peaklocs = np.where((dh[:-1] > 0) & (dh[1:] < 0))[0] ## if len(peaklocs)==0: ## raise ValueError("No peaks found!") ## # get the best peak ## xpeaks = x[peaklocs+1] ## bestix = np.argmin(np.abs(xpeaks - x0)) ## xbest = x[bestix] ## ybest = h[bestix] ## if s0 is None: ## s_est = np.std(x) ## else: ## s_est = s0 ## # fit a Gaussian and get the peak ## A, xfit, s = gaussfit(x, h, [ybest, xbest, s_est], maxfev=99999) ## return xfit def get_cdf_raw(x): """ Take a set of points x and find the CDF. Returns xcdf, ycdf, where ycdf = p(x < xcdf) Defined such that p(min(x)) = 1/len(x), p(max(x)) = 1 """ xcdf = np.sort(x) ycdf = np.arange(len(x)).astype(float)/float(len(x)) return xcdf, ycdf def find_distribution_mode(x, percentile=5., full_output=False): """ Find the mode of the PDF of a set of elements. Algorithm inspired by <NAME> """ xcdf, ycdf = get_cdf_raw(x) xval = xcdf[1:] pdf = np.diff(ycdf) # Take the lowest percentile differences, these bunch up near the mode pdfcut = np.percentile(pdf, percentile) # Take the median of the x's where they bunch up return np.median(xval[pdf < pdfcut]) def get_cdf(x, smoothiter=3, window=None, order=1, **kwargs): """ Take a set of points x and find the CDF. Use get_cdf_raw, fit and return an interpolating function. By default we use scipy.interpolate.Akima1DInterpolator kwargs are passed to the interpolating function. (We do not fit a perfectly interpolating spline right now, because if two points have identical x's, you get infinity for the derivative.) Note: scipy v1 has a bug in all splines right now that rejects any distribution of points with exactly equal x's. You can obtain the PDF by taking the first derivative. """ xcdf, ycdf = get_cdf_raw(x) # Smooth the CDF if window is None: window = int(len(xcdf)/100.) else: window = int(window) if window % 2 == 0: window += 1 F = interpolate.PchipInterpolator(xcdf,ycdf,extrapolate=False)#**kwargs) for i in range(smoothiter): ycdf = signal.savgol_filter(F(xcdf), window, order) F = interpolate.PchipInterpolator(xcdf,ycdf,extrapolate=False)#**kwargs) #if "ext" not in kwargs: # kwargs["ext"] = 3 #return the boundary value rather than extrapolating #F = interpolate.UnivariateSpline(xcdf, ycdf, **kwargs) #F = interpolate.Akima1DInterpolator(xcdf,ycdf,**kwargs) return F def find_distribution_peak(x, xtol, full_output=False): """ Finds largest peak from an array of real numbers (x). Algorithm: - Compute the CDF by fitting cubic smoothing spline - find PDF with derivative (2nd order piecewise poly) - Sample the PDF at xtol/2 points - Find peaks in the PDF as the maximum points - Return the biggest PDF peak """ Fcdf = get_cdf(x) fpdf = Fcdf.derivative() xsamp = np.arange(np.min(x), np.max(x)+xtol, xtol/2.) pdf = fpdf(xsamp) ix = np.argmax(pdf) xpeak = xsamp[ix] if full_output: return xpeak, xsamp, pdf else: return xpeak def find_confidence_region(x, p, xtol, full_output=False): """ Finds smallest confidence region from an array of real numbers (x). Algorithm: - use find_distribution_peak to get the peak value and pdf The pdf is uniformly sampled at xtol/2 from min(x) to max(x) - initialize two tracers x1 and x2 on either side of the peak value - step x1 and x2 down (by xtol/2), picking which one locally adds more to the enclosed probability Note this does not work so well with multimodal things. It is also pretty slow, and not so accurate (does not interpolate the PDF or do adaptive stepping) """ assert (p > 0) and (p < 1) xpeak, xsamp, pdf = find_distribution_peak(x, xtol, full_output=True) pdf = pdf / np.sum(pdf) # normalize this to 1 ## Initialize the interval ipeak = np.argmin(np.abs(xsamp-xpeak)) i1 = ipeak-1; i2 = ipeak+1 p1 = pdf[i1]; p2 = pdf[i2] current_prob = pdf[ipeak] def step_left(): current_prob += p1 i1 -= 1 p1 = pdf[i1] def step_right(): current_prob += p2 i2 += 1 p2 = pdf[i2] ## Expand the interval until you get enough probability while current_prob < p: # If you reached the end, expand the left/right until you're done if i1 <= 0: while current_prob < p: step_right() break # If you reached the end, expand the left until you're done if i2 >= len(pdf): while current_prob < p: step_left() break # Step in the direction if p1 > p2: step_left() elif p1 < p2: step_right() else: # Pick a direction at random if exactly equal if np.random.random() > 0.5: step_right() else: step_left() if full_output: return xsamp[i1], xpeak, xsamp[i2], current_prob, xsamp, pdf return xsamp[i1], xpeak, xsamp[i2] def box_select(x,y,topleft,topright,botleft,botright): """ Select x, y within a box defined by the corner points I think this fails if the box is not convex. """ assert len(x) == len(y) x = np.ravel(x) y = np.ravel(y) selection = np.ones_like(x, dtype=bool) # Check the directions all make sense # I think I assume the box is convex assert botleft[1] <= topleft[1], (botleft, topleft) assert botright[1] <= topright[1], (botright, topright) assert topleft[0] <= topright[0], (topleft, topright) assert botleft[0] <= botright[0], (botleft, botright) # left boundary (x1,y1), (x2,y2) = botleft, topleft m = (x2-x1)/(y2-y1) selection[x < m*(y-y1) + x1] = False # right boundary (x1,y1), (x2,y2) = botright, topright m = (x2-x1)/(y2-y1) selection[x > m*(y-y1) + x1] = False # top boundary (x1,y1), (x2,y2) = topleft, topright m = (y2-y1)/(x2-x1) selection[y > m*(x-x1) + y1] = False # bottom boundary (x1,y1), (x2,y2) = botleft, botright m = (y2-y1)/(x2-x1) selection[y < m*(x-x1) + y1] = False return selection def linefit_2d(x, y, ex, ey, fit_outliers=False, full_output=False, nwalkers=20, Nburn=200, Nrun=1000, percentiles=[5,16,50,84,95]): """ Fits a line to a set of data (x, y) with independent gaussian errors (ex, ey) using MCMC. Based on Hogg et al. 2010 Returns simple estimate for m, b, and uncertainties. If fit_outliers=True, fits a background model that is a very flat/wide gaussian. Then also returns estimates for If full_output=True, return the full MCMC sampler y = m x + b """ assert len(x)==len(y)==len(ex)==len(ey) assert np.all(np.isfinite(x)) assert np.all(np.isfinite(y)) X = np.vstack([x,y]).T ex2 = ex**2 ey2 = ey**2 # m = tan(theta) # bt = b cos(theta) if fit_outliers: raise NotImplementedError else: def lnprior(params): theta, bt = params if theta < -np.pi/2 or theta >= np.pi/2: return -np.inf return 0 def lnlkhd(params): theta, bt = params v = np.array([-np.sin(theta), np.cos(theta)]) Delta = X.dot(v) - bt Sigma2 = v[0]*v[0]*ex2 + v[1]*v[1]*ey2 return lnprior(params) - 0.5 * np.sum(Delta**2/Sigma2) # Initialize walkers ymin, ymax = np.min(y), np.max(y) bt0 = np.random.uniform(ymin,ymax,nwalkers) theta0 = np.random.uniform(-np.pi/2,np.pi/2,nwalkers) p0 = np.vstack([theta0,bt0]).T ndim = 2 sampler = emcee.EnsembleSampler(nwalkers,ndim,lnlkhd) sampler.run_mcmc(p0,Nburn) pos = sampler.chain[:,-1,:] sampler.reset() sampler.run_mcmc(pos,Nrun) theta, bt = sampler.flatchain.T m = np.tan(theta) b = bt/np.cos(theta) m_out = np.nanpercentile(m, percentiles) b_out = np.nanpercentile(b, percentiles) if full_output: return m_out, b_out, m, b, sampler return m_out, b_out def parse_m2fs_fibermap(fname): import pandas as pd from astropy.coordinates import SkyCoord def mungehms(hmsstr,sep=':'): h,m,s = hmsstr.split(sep) return h+'h'+m+'m'+s+'s' def mungedms(dmsstr,sep=':'): d,m,s = dmsstr.split(sep) return d+'d'+m+'m'+s+'s' def parse_assignments(cols, assignments): colnames = cols.split() data = [] for line in assignments: data.append(line.split()) return pd.DataFrame(data, columns=colnames) with open(fname,"r") as fp: lines = fp.readlines() center_radec = lines[3] center_radec = center_radec.split() center_ra = mungehms(center_radec[2]) center_dec= mungedms(center_radec[3]) center = SkyCoord(ra=center_ra, dec=center_dec) for i, line in enumerate(lines): if "[assignments]" in line: break lines = lines[i+1:] line = lines[0] cols_assignments = lines[0] assignments = [] for i,line in enumerate(lines[1:]): if "]" in line: break assignments.append(line) lines = lines[i+2:] cols_guides = lines[0] guides = [] for i,line in enumerate(lines[1:]): if "]" in line: break guides.append(line) df1 = parse_assignments(cols_assignments, assignments) df2 = parse_assignments(cols_guides, guides) return df1, df2 def quick_healpix(coo, nside, galactic=False): import healpy as hp from astropy import units as u npix = hp.nside2npix(nside) area = hp.nside2pixarea(nside, degrees=True) hpmap = np.zeros(npix) if galactic: theta, phi = np.pi/2 - coo.b.radian, coo.l.wrap_at(180*u.deg).radian else: theta, phi = np.pi/2 - coo.dec.radian, coo.ra.wrap_at(180*u.deg).radian pixels = hp.ang2pix(nside, theta, phi) np.add.at(hpmap, pixels, 1) hp.mollview(hpmap) return hpmap, area def xbin_yscat(x, y, xbins, q=[2.5,16,50,84,97.5], Nmin=1): """ Take x,y pairs. Bin in x, find percentiles in y. Input: x and y, xbins q : default [2.5, 16, 50, 84, 97.5] percentiles to compute (passed to np.percentile) Nmin : default 1 minimum number of points per bin to be used (otherwise nan) Return: xbins centers, ydata percentiles (Nbin x Npercentile) """ assert len(x) == len(y) xp = (xbins[1:]+xbins[:-1])/2 Nbins = len(xp) ydat = np.zeros((Nbins, len(q))) + np.nan bin_nums = np.digitize(x, xbins) for ibin in range(Nbins): bin_num = ibin + 1 vals = y[bin_nums == bin_num] if len(vals) < Nmin: continue ydat[ibin, :] = np.percentile(vals, q) return xp, ydat def xbin_ybwt(x, y, xbins, Nmin=1): """ Take x,y pairs. Bin in x, find biweight location and scale Input: x and y, xbins Nmin : default 1 minimum number of points per bin to be used (otherwise nan) Return: xbins centers, yloc, yscale """ assert len(x) == len(y) xp = (xbins[1:]+xbins[:-1])/2 Nbins = len(xp) yloc = np.zeros(Nbins) + np.nan yscale = np.zeros(Nbins) + np.nan bin_nums = np.digitize(x, xbins) for ibin in range(Nbins): bin_num = ibin + 1 vals = y[bin_nums == bin_num] if len(vals) < Nmin: continue yloc[ibin] = biweight_location(vals) yscale[ibin] = biweight_scale(vals) return xp, yloc, yscale def xbin_ymean(x, y, xbins, Nmin=1): """ Take x,y pairs. Bin in x, find mean and stdev Input: x and y, xbins Nmin : default 1 minimum number of points per bin to be used (otherwise nan) Return: xbins centers, ymeans, ystdevs """ assert len(x) == len(y) xp = (xbins[1:]+xbins[:-1])/2 Nbins = len(xp) ymeans = np.zeros(Nbins) + np.nan ystdevs = np.zeros(Nbins) + np.nan bin_nums = np.digitize(x, xbins) for ibin in range(Nbins): bin_num = ibin + 1 vals = y[bin_nums == bin_num] if len(vals) < Nmin: continue ymeans[ibin] = np.nanmean(vals) ystdevs[ibin] = np.nanstd(vals) return xp, ymeans, ystdevs def plot_gaussian_distrs(ax, df, xcol, ecol, xplot, plot_individual_stars=True, color='k', lw=5, ls='-', scale_ind=1.0, ls_ind='-', lw_ind=0.5, label=None): """ Plots the distribution assuming all data is sums of individual little Gaussians ax: where to plot df: data frame xcol, ecol: which columns to use for the mean and stdev of each individual datapoint xplot: range of x to compute the total plot_individual_stars: if True, plots little gaussians for everything Other plotting kws: label, color, lw, ls ls_ind, lw_ind (for individual stars) """ x = df[xcol].values err = df[ecol].values finite = np.isfinite(x) & np.isfinite(err) if np.sum(finite) != len(finite): print("Dropping {} stars".format(len(finite)-np.sum(finite))) print(df.index[~finite]) xs, errs = x[finite], err[finite] N = len(xs) all_yplot = np.zeros((len(xplot),N)) print(len(xplot), all_yplot.shape) for i,(x,err) in enumerate(zip(xs,errs)): all_yplot[:,i] = stats.norm.pdf(xplot,loc=x,scale=err) total_yplot = np.ravel(np.nansum(all_yplot,axis=1))/N if plot_individual_stars: for i in range(N): ax.plot(xplot,scale_ind*all_yplot[:,i],'-',ls=ls_ind,lw=lw_ind,color=color,zorder=-9) ax.plot(xplot,total_yplot,'-',ls=ls,lw=lw,color=color,zorder=9,label=label) def get_position_angle(coo1, coo2): """ Based on https://idlastro.gsfc.nasa.gov/ftp/pro/astro/posang.pro """ dRA = coo2.ra - coo1.ra numer = np.sin(dRA) denom = np.cos(coo1.dec)*np.tan(coo2.dec) - np.sin(coo1.dec)*np.cos(dRA) PA = np.arctan2(numer,denom) #print(PA) if PA < 0: PA += 2*np.pi*units.rad return PA def rv_to_gsr(c, v_sun=None): """ Accessed 2020-12-09 https://docs.astropy.org/en/stable/generated/examples/coordinates/rv-to-gsr.html Transform a barycentric radial velocity to the Galactic Standard of Rest (GSR). The input radial velocity must be passed in as a Parameters ---------- c : `~astropy.coordinates.BaseCoordinateFrame` subclass instance The radial velocity, associated with a sky coordinates, to be transformed. v_sun : `~astropy.units.Quantity`, optional The 3D velocity of the solar system barycenter in the GSR frame. Defaults to the same solar motion as in the `~astropy.coordinates.Galactocentric` frame. Returns ------- v_gsr : `~astropy.units.Quantity` The input radial velocity transformed to a GSR frame. """ if v_sun is None: v_sun = coord.Galactocentric().galcen_v_sun.to_cartesian() gal = c.transform_to(coord.Galactic) cart_data = gal.data.to_cartesian() unit_vector = cart_data / cart_data.norm() v_proj = v_sun.dot(unit_vector) return c.radial_velocity + v_proj def reflex_correct(coords): """ https://gala-astro.readthedocs.io/en/latest/_modules/gala/coordinates/reflex.html#reflex_correct """ galactocentric_frame = coord.Galactocentric() c = coord.SkyCoord(coords) v_sun = galactocentric_frame.galcen_v_sun observed = c.transform_to(galactocentric_frame) rep = observed.cartesian.without_differentials() rep = rep.with_differentials(observed.cartesian.differentials['s'] + v_sun) fr = galactocentric_frame.realize_frame(rep).transform_to(c.frame) return coord.SkyCoord(fr) def medscat(x): med = np.median(x) scat = 0.5 * np.sum(np.diff(np.percentile(x, [16, 50, 84]))) return med, scat """ This next part from <NAME> """ import astropy.coordinates as acoo import astropy.units as auni vlsr0 = 232.8 # from mcmillan 2017 def correct_pm(ra, dec, pmra, pmdec, dist, vlsr=vlsr0, vz=0, split=None): if split is None: return correct_pm0(ra, dec, pmra, pmdec, dist, vlsr=vlsr0, vz=vz) else: N = len(ra) n1 = N // split ra1 = np.array_split(ra, n1) dec1 =
np.array_split(dec, n1)
numpy.array_split
#!/bin/python # this python template is used to plot data from ??????.dat files # produced by test_build.sh(Process accuracy test) # it is executed automatically by test_build.sh script # # You can also launch it manually according to readme_python_matplotlib_script # Header import numpy as np import matplotlib.pyplot as plt import matplotlib.lines as lines import matplotlib.offsetbox as offsetbox import sys import glob # Update default matplotlib settings plt.rcParams['mathtext.fontset'] = 'cm' plt.rcParams['mathtext.rm'] = 'serif' plt.rcParams['text.usetex'] = True plt.rcParams['font.family'] = 'serif' plt.rcParams['font.size'] = '22.325' plt.rcParams['xtick.minor.visible'] = True plt.rcParams['ytick.minor.visible'] = True plt.rcParams['xtick.major.pad'] = 15 # distance from axis to Mticks label plt.rcParams['ytick.major.pad'] = 15 # distance from axis to Mticks label plt.rcParams['xtick.major.size'] = 24 plt.rcParams['xtick.minor.size'] = 16 plt.rcParams['ytick.major.size'] = 24 plt.rcParams['ytick.minor.size'] = 16 plt.rcParams['xtick.major.width'] = 1.5 plt.rcParams['xtick.minor.width'] = 1.0 plt.rcParams['ytick.major.width'] = 1.5 plt.rcParams['ytick.minor.width'] = 1.0 plt.rcParams['xtick.direction'] = 'in' plt.rcParams['ytick.direction'] = 'in' plt.rcParams['figure.figsize'] = [3508./300, 2480./300] # A4 at 300 dpi plt.rcParams['savefig.dpi'] = 300 plt.rcParams['figure.dpi'] = 100 plt.rcParams['image.cmap'] = 'jet' plt.rcParams['legend.frameon'] = True plt.rcParams['legend.fancybox'] = False plt.rcParams['legend.framealpha'] = 1 plt.rcParams['legend.edgecolor'] = 'k' plt.rcParams['legend.labelspacing'] = 0 plt.rcParams['legend.handlelength'] = 1.5 plt.rcParams['legend.handletextpad'] = 0.5 plt.rcParams['legend.columnspacing'] = 0.1 plt.rcParams['legend.borderpad'] = 0.1 plt.rcParams['lines.linewidth'] = 2. plt.rcParams['lines.markeredgewidth'] = 2.0 plt.rcParams['lines.markersize'] = 15 plt.rcParams['legend.numpoints'] = 2 # arg1 -> y, arg2 -> H, returns (3.0*(y/(0.5*H))*(1.0-y/H) y_profile = lambda arg1, arg2: np.array(3.0*(arg1/(0.5*arg2))*(1.0-arg1/arg2)); files = np.sort(glob.glob('??????.dat')) # Layout fig, ax = plt.subplots(1, 1) plt.subplots_adjust(left=0.10, right=1.0, top=0.97, bottom=0.09, \ hspace=0.15, wspace=0.15) x_data = np.array([], dtype=np.int64) y_data = np.array([], dtype=np.double) z_data = np.array([], dtype=np.double) # print '{0:<1}{1:>17}{2:>18}{3:>18}'.format('#', 'Ny', 'L2(u)', 'LInf(u)') for fi in range(len(files)): #-Input data y, u = np.loadtxt(files[fi], unpack=True) N_y = np.shape(y)[0] l2_error = np.sqrt(np.sum((u - y_profile(y, 1.0))**2)/N_y) linf_error = np.max(np.abs(u - y_profile(y, 1.0))) # print '{0: 18d}{1: 18.8E}{2: 18.8E}'.format(N_y, l2_error, linf_error) x_data =
np.append(x_data, N_y)
numpy.append
import fractions import logging import networkx as nx import numpy as np import psyneulink as pnl import pytest import types import graph_scheduler from graph_scheduler import Scheduler from psyneulink import _unit_registry from psyneulink.core.components.functions.stateful.integratorfunctions import DriftDiffusionIntegrator, SimpleIntegrator from psyneulink.core.components.functions.nonstateful.transferfunctions import Linear from psyneulink.core.components.mechanisms.processing.integratormechanism import IntegratorMechanism from psyneulink.core.components.mechanisms.processing.transfermechanism import TransferMechanism from psyneulink.core.components.projections.pathway.mappingprojection import MappingProjection from psyneulink.core.compositions.composition import Composition, EdgeType from psyneulink.core.globals.keywords import VALUE from psyneulink.core.scheduling.condition import AfterNCalls, AfterNPasses, AfterNEnvironmentStateUpdates, AfterPass, All, AllHaveRun, Always, Any, AtNCalls, AtPass, BeforeNCalls, BeforePass, EveryNCalls, EveryNPasses, JustRan, TimeInterval, WhenFinished from psyneulink.core.scheduling.time import TimeScale from psyneulink.library.components.mechanisms.processing.integrator.ddm import DDM logger = logging.getLogger(__name__) class TestScheduler: stroop_paths = [ ['Color_Input', 'Color_Hidden', 'Output', 'Decision'], ['Word_Input', 'Word_Hidden', 'Output', 'Decision'], ['Reward'] ] stroop_consideration_queue = [ {'Color_Input', 'Word_Input', 'Reward'}, {'Color_Hidden', 'Word_Hidden'}, {'Output'}, {'Decision'} ] @pytest.mark.parametrize( 'graph, expected_consideration_queue', [ ( pytest.helpers.create_graph_from_pathways(*stroop_paths), stroop_consideration_queue ), ( nx.DiGraph(pytest.helpers.create_graph_from_pathways(*stroop_paths)), stroop_consideration_queue ) ] ) def test_construction(self, graph, expected_consideration_queue): sched = Scheduler(graph) assert sched.consideration_queue == expected_consideration_queue def test_copy(self): pass def test_deepcopy(self): pass def test_create_multiple_contexts(self): graph = {'A': set()} scheduler = Scheduler(graph) scheduler.get_clock(scheduler.default_execution_id)._increment_time(TimeScale.ENVIRONMENT_STATE_UPDATE) eid = 'eid' eid1 = 'eid1' scheduler._init_counts(execution_id=eid) assert scheduler.clocks[eid].time.environment_state_update == 0 scheduler.get_clock(scheduler.default_execution_id)._increment_time(TimeScale.ENVIRONMENT_STATE_UPDATE) assert scheduler.clocks[eid].time.environment_state_update == 0 scheduler._init_counts(execution_id=eid1, base_execution_id=scheduler.default_execution_id) assert scheduler.clocks[eid1].time.environment_state_update == 2 @pytest.mark.psyneulink def test_two_compositions_one_scheduler(self): comp1 = Composition() comp2 = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') comp1.add_node(A) comp2.add_node(A) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp1)) sched.add_condition(A, BeforeNCalls(A, 5, time_scale=TimeScale.LIFE)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(6) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNPasses(1) comp1.run( inputs={A: [[0], [1], [2], [3], [4], [5]]}, scheduler=sched, termination_processing=termination_conds ) output = sched.execution_list[comp1.default_execution_id] expected_output = [ A, A, A, A, A, set() ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) comp2.run( inputs={A: [[0], [1], [2], [3], [4], [5]]}, scheduler=sched, termination_processing=termination_conds ) output = sched.execution_list[comp2.default_execution_id] expected_output = [ A, A, A, A, A, set() ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) @pytest.mark.psyneulink def test_one_composition_two_contexts(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') comp.add_node(A) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, BeforeNCalls(A, 5, time_scale=TimeScale.LIFE)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(6) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNPasses(1) eid = 'eid' comp.run( inputs={A: [[0], [1], [2], [3], [4], [5]]}, scheduler=sched, termination_processing=termination_conds, context=eid, ) output = sched.execution_list[eid] expected_output = [ A, A, A, A, A, set() ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) comp.run( inputs={A: [[0], [1], [2], [3], [4], [5]]}, scheduler=sched, termination_processing=termination_conds, context=eid, ) output = sched.execution_list[eid] expected_output = [ A, A, A, A, A, set(), set(), set(), set(), set(), set(), set() ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) eid = 'eid1' comp.run( inputs={A: [[0], [1], [2], [3], [4], [5]]}, scheduler=sched, termination_processing=termination_conds, context=eid, ) output = sched.execution_list[eid] expected_output = [ A, A, A, A, A, set() ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) @pytest.mark.psyneulink def test_change_termination_condition(self): D = DDM(function=DriftDiffusionIntegrator(threshold=10)) C = Composition(pathways=[D]) D.set_log_conditions(VALUE) def change_termination_processing(): if C.termination_processing is None: C.scheduler.termination_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: WhenFinished(D)} C.termination_processing = {TimeScale.ENVIRONMENT_STATE_UPDATE: WhenFinished(D)} elif isinstance(C.termination_processing[TimeScale.ENVIRONMENT_STATE_UPDATE], AllHaveRun): C.scheduler.termination_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: WhenFinished(D)} C.termination_processing = {TimeScale.ENVIRONMENT_STATE_UPDATE: WhenFinished(D)} else: C.scheduler.termination_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AllHaveRun()} C.termination_processing = {TimeScale.ENVIRONMENT_STATE_UPDATE: AllHaveRun()} change_termination_processing() C.run(inputs={D: [[1.0], [2.0]]}, # termination_processing={TimeScale.ENVIRONMENT_STATE_UPDATE: WhenFinished(D)}, call_after_trial=change_termination_processing, reset_stateful_functions_when=pnl.AtConsiderationSetExecution(0), num_trials=4) # EnvironmentStateUpdate 0: # input = 1.0, termination condition = WhenFinished # 10 passes (value = 1.0, 2.0 ... 9.0, 10.0) # EnvironmentStateUpdate 1: # input = 2.0, termination condition = AllHaveRun # 1 pass (value = 2.0) expected_results = [[np.array([10.]), np.array([10.])], [np.array([2.]), np.array([1.])], [np.array([10.]), np.array([10.])], [np.array([2.]), np.array([1.])]] assert np.allclose(expected_results, np.asfarray(C.results)) @pytest.mark.psyneulink def test_default_condition_1(self): A = pnl.TransferMechanism(name='A') B = pnl.TransferMechanism(name='B') C = pnl.TransferMechanism(name='C') comp = pnl.Composition(pathways=[[A, C], [A, B, C]]) comp.scheduler.add_condition(A, AtPass(1)) comp.scheduler.add_condition(B, Always()) output = list(comp.scheduler.run()) expected_output = [B, A, B, C] assert output == pytest.helpers.setify_expected_output(expected_output) @pytest.mark.psyneulink def test_default_condition_2(self): A = pnl.TransferMechanism(name='A') B = pnl.TransferMechanism(name='B') C = pnl.TransferMechanism(name='C') comp = pnl.Composition(pathways=[[A, B], [C]]) comp.scheduler.add_condition(C, AtPass(1)) output = list(comp.scheduler.run()) expected_output = [A, B, {C, A}] assert output == pytest.helpers.setify_expected_output(expected_output) def test_exact_time_mode(self): sched = Scheduler( {'A': set(), 'B': {'A'}}, mode=graph_scheduler.SchedulingMode.EXACT_TIME ) # these cannot run at same execution set unless in EXACT_TIME sched.add_condition('A', TimeInterval(start=1)) sched.add_condition('B', TimeInterval(start=1)) list(sched.run()) assert sched.mode == graph_scheduler.SchedulingMode.EXACT_TIME assert sched.execution_list[sched.default_execution_id] == [{'A', 'B'}] assert sched.execution_timestamps[sched.default_execution_id][0].absolute == 1 * graph_scheduler._unit_registry.ms def test_run_with_new_execution_id(self): sched = Scheduler({'A': set()}) sched.add_condition('A', graph_scheduler.AtPass(1)) output = list(sched.run(execution_id='eid')) assert output == [set(), {'A'}] assert 'eid' in sched.execution_list assert sched.execution_list['eid'] == output assert sched.get_clock('eid') == sched.get_clock(types.SimpleNamespace(default_execution_id='eid')) def test_delete_counts(self): sched = Scheduler( { 'A': set(), 'B': {'A'}, 'C': {'A'}, 'D': {'C', 'B'} } ) sched.add_condition_set( { 'A': graph_scheduler.EveryNPasses(2), 'B': graph_scheduler.EveryNCalls('A', 2), 'C': graph_scheduler.EveryNCalls('A', 3), 'D': graph_scheduler.AfterNCallsCombined('B', 'C', n=6) } ) eid_delete = 'eid' eid_repeat = 'eid2' del_run_1 = list(sched.run(execution_id=eid_delete)) repeat_run_1 = list(sched.run(execution_id=eid_repeat)) sched._delete_counts(eid_delete) del_run_2 = list(sched.run(execution_id=eid_delete)) repeat_run_2 = list(sched.run(execution_id=eid_repeat)) assert del_run_1 == del_run_2 assert repeat_run_1 == repeat_run_2 assert sched.execution_list[eid_delete] == del_run_1 assert sched.execution_list[eid_repeat] == repeat_run_2 + repeat_run_2 @pytest.mark.psyneulink class TestLinear: @classmethod def setup_class(self): self.orig_is_finished_flag = TransferMechanism.is_finished_flag self.orig_is_finished = TransferMechanism.is_finished TransferMechanism.is_finished_flag = True TransferMechanism.is_finished = lambda self, context: self.is_finished_flag @classmethod def teardown_class(self): del TransferMechanism.is_finished_flag del TransferMechanism.is_finished TransferMechanism.is_finished_flag = self.orig_is_finished_flag TransferMechanism.is_finished = self.orig_is_finished def test_no_termination_conds(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, EveryNCalls(B, 3)) output = list(sched.run()) expected_output = [ A, A, B, A, A, B, A, A, B, C, ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) # tests below are copied from old scheduler, need renaming def test_1(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, EveryNCalls(B, 3)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 4, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, A, B, A, A, B, A, A, B, C, A, A, B, A, A, B, A, A, B, C, A, A, B, A, A, B, A, A, B, C, A, A, B, A, A, B, A, A, B, C, ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) def test_1b(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, Any(EveryNCalls(A, 2), AfterPass(1))) sched.add_condition(C, EveryNCalls(B, 3)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 4, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, A, B, A, B, A, B, C, A, B, A, B, A, B, C, A, B, A, B, A, B, C, A, B, A, B, A, B, C, ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) def test_2(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, EveryNCalls(B, 2)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 1, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, A, B, A, A, B, C] assert output == pytest.helpers.setify_expected_output(expected_output) def test_3(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, All(AfterNCalls(B, 2), EveryNCalls(B, 1))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 4, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, A, B, A, A, B, C, A, A, B, C, A, A, B, C, A, A, B, C ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) def test_6(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, BeforePass(5)) sched.add_condition(B, AfterNCalls(A, 5)) sched.add_condition(C, AfterNCalls(B, 1)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 3) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, A, A, A, A, B, C, B, C, B, C ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) def test_6_two_environment_state_updates(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, BeforePass(5)) sched.add_condition(B, AfterNCalls(A, 5)) sched.add_condition(C, AfterNCalls(B, 1)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(2) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 3) comp.run( inputs={A: [[0], [1], [2], [3], [4], [5]]}, scheduler=sched, termination_processing=termination_conds ) output = sched.execution_list[comp.default_execution_id] expected_output = [ A, A, A, A, A, B, C, B, C, B, C, A, A, A, A, A, B, C, B, C, B, C ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) def test_7(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = Any(AfterNCalls(A, 1), AfterNCalls(B, 1)) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A] assert output == pytest.helpers.setify_expected_output(expected_output) def test_8(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = All(AfterNCalls(A, 1), AfterNCalls(B, 1)) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, A, B] assert output == pytest.helpers.setify_expected_output(expected_output) def test_9(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, WhenFinished(A)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(B, 2) output = [] i = 0 A.is_finished_flag = False for step in sched.run(termination_conds=termination_conds): if i == 3: A.is_finished_flag = True output.append(step) i += 1 expected_output = [A, A, A, A, B, A, B] assert output == pytest.helpers.setify_expected_output(expected_output) def test_9b(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') A.is_finished_flag = False B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, WhenFinished(A)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AtPass(5) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, A, A, A, A] assert output == pytest.helpers.setify_expected_output(expected_output) def test_10(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') A.is_finished_flag = True B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, Any(WhenFinished(A), AfterNCalls(A, 3))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(B, 5) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, B, A, B, A, B, A, B, A, B] assert output == pytest.helpers.setify_expected_output(expected_output) def test_10b(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') A.is_finished_flag = False B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, Any(WhenFinished(A), AfterNCalls(A, 3))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(B, 4) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, A, A, B, A, B, A, B, A, B] assert output == pytest.helpers.setify_expected_output(expected_output) def test_10c(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') A.is_finished_flag = True B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, All(WhenFinished(A), AfterNCalls(A, 3))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(B, 4) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, A, A, B, A, B, A, B, A, B] assert output == pytest.helpers.setify_expected_output(expected_output) def test_10d(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') A.is_finished_flag = False B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, All(WhenFinished(A), AfterNCalls(A, 3))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AtPass(10) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, A, A, A, A, A, A, A, A, A] assert output == pytest.helpers.setify_expected_output(expected_output) ######################################## # tests with linear compositions ######################################## def test_linear_AAB(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNCalls(B, 2, time_scale=TimeScale.ENVIRONMENT_SEQUENCE) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(B, 2, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, A, B, A, A, B] assert output == pytest.helpers.setify_expected_output(expected_output) def test_linear_ABB(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') for m in [A, B]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, Any(AtPass(0), EveryNCalls(B, 2))) sched.add_condition(B, Any(EveryNCalls(A, 1), EveryNCalls(B, 1))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(B, 8, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, B, B, A, B, B, A, B, B, A, B, B] assert output == pytest.helpers.setify_expected_output(expected_output) def test_linear_ABBCC(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, Any(AtPass(0), EveryNCalls(C, 2))) sched.add_condition(B, Any(JustRan(A), JustRan(B))) sched.add_condition(C, Any(EveryNCalls(B, 2), JustRan(C))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 4, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, B, B, C, C, A, B, B, C, C] assert output == pytest.helpers.setify_expected_output(expected_output) def test_linear_ABCBC(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, Any(AtPass(0), EveryNCalls(C, 2))) sched.add_condition(B, Any(EveryNCalls(A, 1), EveryNCalls(C, 1))) sched.add_condition(C, EveryNCalls(B, 1)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 4, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [A, B, C, B, C, A, B, C, B, C] assert output == pytest.helpers.setify_expected_output(expected_output) def test_one_run_twice(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=.5, ) ) c = Composition(pathways=[A]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(A, 2)} stim_list = {A: [[1]]} c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mech = A expected_output = [ np.array([1.]), ] for i in range(len(expected_output)): np.testing.assert_allclose(expected_output[i], terminal_mech.get_output_values(c)[i]) def test_two_AAB(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) B = TransferMechanism( name='B', default_variable=[0], function=Linear(slope=2.0), ) c = Composition(pathways=[A, B]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(B, 1)} stim_list = {A: [[1]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(B, EveryNCalls(A, 2)) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mech = B expected_output = [ np.array([2.]), ] for i in range(len(expected_output)): np.testing.assert_allclose(expected_output[i], terminal_mech.get_output_values(c)[i]) def test_two_ABB(self): A = TransferMechanism( name='A', default_variable=[0], function=Linear(slope=2.0), ) B = IntegratorMechanism( name='B', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) c = Composition(pathways=[A, B]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(B, 2)} stim_list = {A: [[1]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(A, Any(AtPass(0), AfterNCalls(B, 2))) sched.add_condition(B, Any(JustRan(A), JustRan(B))) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mech = B expected_output = [ np.array([2.]), ] for i in range(len(expected_output)): np.testing.assert_allclose(expected_output[i], terminal_mech.get_output_values(c)[i]) ######################################## # tests with small branching compositions ######################################## @pytest.mark.psyneulink class TestBranching: @classmethod def setup_class(self): self.orig_is_finished_flag = TransferMechanism.is_finished_flag self.orig_is_finished = TransferMechanism.is_finished TransferMechanism.is_finished_flag = True TransferMechanism.is_finished = lambda self, context: self.is_finished_flag @classmethod def teardown_class(self): del TransferMechanism.is_finished_flag del TransferMechanism.is_finished TransferMechanism.is_finished_flag = self.orig_is_finished_flag TransferMechanism.is_finished = self.orig_is_finished # triangle: A # / \ # B C def test_triangle_1(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), A, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 1)) sched.add_condition(C, EveryNCalls(A, 1)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 3, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, set([B, C]), A, set([B, C]), A, set([B, C]), ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) def test_triangle_2(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), A, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 1)) sched.add_condition(C, EveryNCalls(A, 2)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 3, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, B, A, set([B, C]), A, B, A, set([B, C]), A, B, A, set([B, C]), ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) def test_triangle_3(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), A, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, EveryNCalls(A, 3)) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 2, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, A, B, A, C, A, B, A, A, set([B, C]) ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) # this is test 11 of original constraint_scheduler.py def test_triangle_4(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), A, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, All(WhenFinished(A), AfterNCalls(B, 3))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 1) output = [] i = 0 A.is_finished_flag = False for step in sched.run(termination_conds=termination_conds): if i == 3: A.is_finished_flag = True output.append(step) i += 1 expected_output = [A, A, B, A, A, B, A, A, set([B, C])] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) def test_triangle_4b(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), A, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, All(WhenFinished(A), AfterNCalls(B, 3))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 1) output = [] i = 0 A.is_finished_flag = False for step in sched.run(termination_conds=termination_conds): if i == 10: A.is_finished_flag = True output.append(step) i += 1 expected_output = [A, A, B, A, A, B, A, A, B, A, A, set([B, C])] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) # inverted triangle: A B # \ / # C # this is test 4 of original constraint_scheduler.py # this test has an implicit priority set of A<B ! def test_invtriangle_1(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, C) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, Any(AfterNCalls(A, 3), AfterNCalls(B, 3))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 4, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, set([A, B]), A, C, set([A, B]), C, A, C, set([A, B]), C ] # pprint.pprint(output) assert output == pytest.helpers.setify_expected_output(expected_output) # this is test 5 of original constraint_scheduler.py # this test has an implicit priority set of A<B ! def test_invtriangle_2(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') for m in [A, B, C]: comp.add_node(m) comp.add_projection(MappingProjection(), A, C) comp.add_projection(MappingProjection(), B, C) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, All(AfterNCalls(A, 3), AfterNCalls(B, 3))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(C, 2, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, set([A, B]), A, set([A, B]), A, set([A, B]), C, A, C ] assert output == pytest.helpers.setify_expected_output(expected_output) # checkmark: A # \ # B C # \ / # D # testing toposort def test_checkmark_1(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') D = TransferMechanism(function=Linear(intercept=.5), name='scheduler-pytests-D') for m in [A, B, C, D]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, D) comp.add_projection(MappingProjection(), C, D) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, Always()) sched.add_condition(B, Always()) sched.add_condition(C, Always()) sched.add_condition(D, Always()) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(D, 1, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ set([A, C]), B, D ] assert output == pytest.helpers.setify_expected_output(expected_output) def test_checkmark_2(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') D = TransferMechanism(function=Linear(intercept=.5), name='scheduler-pytests-D') for m in [A, B, C, D]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), B, D) comp.add_projection(MappingProjection(), C, D) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, EveryNCalls(A, 2)) sched.add_condition(D, All(EveryNCalls(B, 2), EveryNCalls(C, 2))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(D, 1, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, set([A, C]), B, A, set([A, C]), B, D ] assert output == pytest.helpers.setify_expected_output(expected_output) def test_checkmark2_1(self): comp = Composition() A = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='scheduler-pytests-A') B = TransferMechanism(function=Linear(intercept=4.0), name='scheduler-pytests-B') C = TransferMechanism(function=Linear(intercept=1.5), name='scheduler-pytests-C') D = TransferMechanism(function=Linear(intercept=.5), name='scheduler-pytests-D') for m in [A, B, C, D]: comp.add_node(m) comp.add_projection(MappingProjection(), A, B) comp.add_projection(MappingProjection(), A, D) comp.add_projection(MappingProjection(), B, D) comp.add_projection(MappingProjection(), C, D) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition(A, EveryNPasses(1)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, EveryNCalls(A, 2)) sched.add_condition(D, All(EveryNCalls(B, 2), EveryNCalls(C, 2))) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = AfterNCalls(D, 1, time_scale=TimeScale.ENVIRONMENT_STATE_UPDATE) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ A, set([A, C]), B, A, set([A, C]), B, D ] assert output == pytest.helpers.setify_expected_output(expected_output) # multi source: A1 A2 # / \ / \ # B1 B2 B3 # \ / \ / # C1 C2 def test_multisource_1(self): comp = Composition() A1 = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='A1') A2 = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='A2') B1 = TransferMechanism(function=Linear(intercept=4.0), name='B1') B2 = TransferMechanism(function=Linear(intercept=4.0), name='B2') B3 = TransferMechanism(function=Linear(intercept=4.0), name='B3') C1 = TransferMechanism(function=Linear(intercept=1.5), name='C1') C2 = TransferMechanism(function=Linear(intercept=.5), name='C2') for m in [A1, A2, B1, B2, B3, C1, C2]: comp.add_node(m) comp.add_projection(MappingProjection(), A1, B1) comp.add_projection(MappingProjection(), A1, B2) comp.add_projection(MappingProjection(), A2, B1) comp.add_projection(MappingProjection(), A2, B2) comp.add_projection(MappingProjection(), A2, B3) comp.add_projection(MappingProjection(), B1, C1) comp.add_projection(MappingProjection(), B2, C1) comp.add_projection(MappingProjection(), B1, C2) comp.add_projection(MappingProjection(), B3, C2) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) for m in comp.nodes: sched.add_condition(m, Always()) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = All(AfterNCalls(C1, 1), AfterNCalls(C2, 1)) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ set([A1, A2]), set([B1, B2, B3]), set([C1, C2]) ] assert output == pytest.helpers.setify_expected_output(expected_output) def test_multisource_2(self): comp = Composition() A1 = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='A1') A2 = TransferMechanism(function=Linear(slope=5.0, intercept=2.0), name='A2') B1 = TransferMechanism(function=Linear(intercept=4.0), name='B1') B2 = TransferMechanism(function=Linear(intercept=4.0), name='B2') B3 = TransferMechanism(function=Linear(intercept=4.0), name='B3') C1 = TransferMechanism(function=Linear(intercept=1.5), name='C1') C2 = TransferMechanism(function=Linear(intercept=.5), name='C2') for m in [A1, A2, B1, B2, B3, C1, C2]: comp.add_node(m) comp.add_projection(MappingProjection(), A1, B1) comp.add_projection(MappingProjection(), A1, B2) comp.add_projection(MappingProjection(), A2, B1) comp.add_projection(MappingProjection(), A2, B2) comp.add_projection(MappingProjection(), A2, B3) comp.add_projection(MappingProjection(), B1, C1) comp.add_projection(MappingProjection(), B2, C1) comp.add_projection(MappingProjection(), B1, C2) comp.add_projection(MappingProjection(), B3, C2) sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(comp)) sched.add_condition_set({ A1: Always(), A2: Always(), B1: EveryNCalls(A1, 2), B3: EveryNCalls(A2, 2), B2: All(EveryNCalls(A1, 4), EveryNCalls(A2, 4)), C1: Any(AfterNCalls(B1, 2), AfterNCalls(B2, 2)), C2: Any(AfterNCalls(B2, 2), AfterNCalls(B3, 2)), }) termination_conds = {} termination_conds[TimeScale.ENVIRONMENT_SEQUENCE] = AfterNEnvironmentStateUpdates(1) termination_conds[TimeScale.ENVIRONMENT_STATE_UPDATE] = All(AfterNCalls(C1, 1), AfterNCalls(C2, 1)) output = list(sched.run(termination_conds=termination_conds)) expected_output = [ set([A1, A2]), set([A1, A2]), set([B1, B3]), set([A1, A2]), set([A1, A2]), set([B1, B2, B3]), set([C1, C2]) ] assert output == pytest.helpers.setify_expected_output(expected_output) def test_three_ABAC(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) B = TransferMechanism( name='B', default_variable=[0], function=Linear(slope=2.0), ) C = TransferMechanism( name='C', default_variable=[0], function=Linear(slope=2.0), ) c = Composition(pathways=[[A,B],[A,C]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(C, 1)} stim_list = {A: [[1]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(B, Any(AtNCalls(A, 1), EveryNCalls(A, 2))) sched.add_condition(C, EveryNCalls(A, 2)) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mechs = [B, C] expected_output = [ [ np.array([1.]), ], [ np.array([2.]), ], ] for m in range(len(terminal_mechs)): for i in range(len(expected_output[m])): np.testing.assert_allclose(expected_output[m][i], terminal_mechs[m].get_output_values(c)[i]) def test_three_ABAC_convenience(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) B = TransferMechanism( name='B', default_variable=[0], function=Linear(slope=2.0), ) C = TransferMechanism( name='C', default_variable=[0], function=Linear(slope=2.0), ) c = Composition(pathways=[[A,B],[A,C]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(C, 1)} stim_list = {A: [[1]]} c.scheduler.add_condition(B, Any(AtNCalls(A, 1), EveryNCalls(A, 2))) c.scheduler.add_condition(C, EveryNCalls(A, 2)) c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mechs = [B, C] expected_output = [ [ np.array([1.]), ], [ np.array([2.]), ], ] for m in range(len(terminal_mechs)): for i in range(len(expected_output[m])): np.testing.assert_allclose(expected_output[m][i], terminal_mechs[m].get_output_values(c)[i]) def test_three_ABACx2(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) B = TransferMechanism( name='B', default_variable=[0], function=Linear(slope=2.0), ) C = TransferMechanism( name='C', default_variable=[0], function=Linear(slope=2.0), ) c = Composition(pathways=[[A,B],[A,C]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(C, 2)} stim_list = {A: [[1]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(B, Any(AtNCalls(A, 1), EveryNCalls(A, 2))) sched.add_condition(C, EveryNCalls(A, 2)) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mechs = [B, C] expected_output = [ [ np.array([3.]), ], [ np.array([4.]), ], ] for m in range(len(terminal_mechs)): for i in range(len(expected_output[m])): np.testing.assert_allclose(expected_output[m][i], terminal_mechs[m].get_output_values(c)[i]) def test_three_2_ABC(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) B = IntegratorMechanism( name='B', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) C = TransferMechanism( name='C', default_variable=[0], function=Linear(slope=2.0), ) c = Composition(pathways=[[A,C],[B,C]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(C, 1)} stim_list = {A: [[1]], B: [[2]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(C, All(EveryNCalls(A, 1), EveryNCalls(B, 1))) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mechs = [C] expected_output = [ [ np.array([5.]), ], ] for m in range(len(terminal_mechs)): for i in range(len(expected_output[m])): np.testing.assert_allclose(expected_output[m][i], terminal_mechs[m].get_output_values(c)[i]) def test_three_2_ABCx2(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) B = IntegratorMechanism( name='B', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) C = TransferMechanism( name='C', default_variable=[0], function=Linear(slope=2.0), ) c = Composition(pathways=[[A,C],[B,C]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(C, 2)} stim_list = {A: [[1]], B: [[2]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(C, All(EveryNCalls(A, 1), EveryNCalls(B, 1))) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mechs = [C] expected_output = [ [ np.array([10.]), ], ] for m in range(len(terminal_mechs)): for i in range(len(expected_output[m])): np.testing.assert_allclose(expected_output[m][i], terminal_mechs[m].get_output_values(c)[i]) def test_three_integrators(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) B = IntegratorMechanism( name='B', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) C = IntegratorMechanism( name='C', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) c = Composition(pathways=[[A,C],[B,C]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(C, 2)} stim_list = {A: [[1]], B: [[1]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, Any(EveryNCalls(A, 1), EveryNCalls(B, 1))) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) mechs = [A, B, C] expected_output = [ [ np.array([2.]), ], [ np.array([1.]), ], [ np.array([4.]), ], ] for m in range(len(mechs)): for i in range(len(expected_output[m])): np.testing.assert_allclose(expected_output[m][i], mechs[m].get_output_values(c)[i]) def test_four_ABBCD(self): A = TransferMechanism( name='A', default_variable=[0], function=Linear(slope=2.0), ) B = IntegratorMechanism( name='B', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) C = IntegratorMechanism( name='C', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) D = TransferMechanism( name='D', default_variable=[0], function=Linear(slope=1.0), ) c = Composition(pathways=[[A,B,D],[A,C,D]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(D, 1)} stim_list = {A: [[1]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(B, EveryNCalls(A, 1)) sched.add_condition(C, EveryNCalls(A, 2)) sched.add_condition(D, Any(EveryNCalls(B, 3), EveryNCalls(C, 3))) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mechs = [D] expected_output = [ [ np.array([4.]), ], ] for m in range(len(terminal_mechs)): for i in range(len(expected_output[m])): np.testing.assert_allclose(expected_output[m][i], terminal_mechs[m].get_output_values(c)[i]) def test_four_integrators_mixed(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) B = IntegratorMechanism( name='B', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) C = IntegratorMechanism( name='C', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) D = IntegratorMechanism( name='D', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) c = Composition(pathways=[[A,C],[A,D],[B,C],[B,D]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: All(AfterNCalls(C, 1), AfterNCalls(D, 1))} stim_list = {A: [[1]], B: [[1]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, EveryNCalls(A, 1)) sched.add_condition(D, EveryNCalls(B, 1)) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) mechs = [A, B, C, D] expected_output = [ [ np.array([2.]), ], [ np.array([1.]), ], [ np.array([4.]), ], [ np.array([3.]), ], ] for m in range(len(mechs)): for i in range(len(expected_output[m])): np.testing.assert_allclose(expected_output[m][i], mechs[m].get_output_values(c)[i]) def test_five_ABABCDE(self): A = TransferMechanism( name='A', default_variable=[0], function=Linear(slope=2.0), ) B = TransferMechanism( name='B', default_variable=[0], function=Linear(slope=2.0), ) C = IntegratorMechanism( name='C', default_variable=[0], function=SimpleIntegrator( rate=.5 ) ) D = TransferMechanism( name='D', default_variable=[0], function=Linear(slope=1.0), ) E = TransferMechanism( name='E', default_variable=[0], function=Linear(slope=2.0), ) c = Composition(pathways=[[A,C,D],[B,C,E]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: AfterNCalls(E, 1)} stim_list = {A: [[1]], B: [[2]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(C, Any(EveryNCalls(A, 1), EveryNCalls(B, 1))) sched.add_condition(D, EveryNCalls(C, 1)) sched.add_condition(E, EveryNCalls(C, 1)) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) terminal_mechs = [D, E] expected_output = [ [ np.array([3.]), ], [ np.array([6.]), ], ] for m in range(len(terminal_mechs)): for i in range(len(expected_output[m])): np.testing.assert_allclose(expected_output[m][i], terminal_mechs[m].get_output_values(c)[i]) # # A B # |\/| # C D # |\/| # E F # def test_six_integrators_threelayer_mixed(self): A = IntegratorMechanism( name='A', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) B = IntegratorMechanism( name='B', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) C = IntegratorMechanism( name='C', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) D = IntegratorMechanism( name='D', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) E = IntegratorMechanism( name='E', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) F = IntegratorMechanism( name='F', default_variable=[0], function=SimpleIntegrator( rate=1 ) ) c = Composition(pathways=[[A,C,E],[A,C,F],[A,D,E],[A,D,F],[B,C,E],[B,C,F],[B,D,E],[B,D,F]]) term_conds = {TimeScale.ENVIRONMENT_STATE_UPDATE: All(AfterNCalls(E, 1), AfterNCalls(F, 1))} stim_list = {A: [[1]], B: [[1]]} sched = pnl.Scheduler(**pytest.helpers.composition_to_scheduler_args(c)) sched.add_condition(B, EveryNCalls(A, 2)) sched.add_condition(C, EveryNCalls(A, 1)) sched.add_condition(D, EveryNCalls(B, 1)) sched.add_condition(E, EveryNCalls(C, 1)) sched.add_condition(F, EveryNCalls(D, 2)) c.scheduler = sched c.run( inputs=stim_list, termination_processing=term_conds ) # Intermediate consideration set executions # # 0 1 2 3 # # A 1 2 3 4 # B 1 2 # C 1 4 8 14 # D 3 9 # E 1 8 19 42 # F 23 # expected_output = { A: [
np.array([4.])
numpy.array
import numpy as np from .unet import UNet from pathlib import Path from random import sample import pdb import math from math import ceil import pickle import cv2 from ..tools.pytorch_batchsize import * from ..tools.heatmap_to_points import * from ..tools.helper import * from ..tools.image_tools import * from .basic import * from .unet_revised import SE_Res_UNet from PIL import Image import glob import sys from fastprogress.fastprogress import master_bar, progress_bar from torch.utils.data import Dataset, DataLoader from torchvision import transforms #from .basic import * from torch import nn import random import platform import matplotlib.pyplot as plt import pickle import os import sys import warnings from .hourglass import hg __all__ = ["DataAugmentation", "HeatmapLearner", "HeatLoss_OldGen_0", "HeatLoss_OldGen_1", "HeatLoss_OldGen_2", "HeatLoss_OldGen_3", "HeatLoss_OldGen_4", "HeatLoss_NextGen_0", "HeatLoss_NextGen_1", "HeatLoss_NextGen_2", "HeatLoss_NextGen_3", "Loss_weighted"] class UnNormalize(object): def __init__(self, mean, std): self.mean = mean self.std = std def __call__(self, tensor): """ Args: tensor (Tensor): Tensor image of size (C, H, W) to be normalized. Returns: Tensor: Normalized image. """ for t, m, s in zip(tensor, self.mean, self.std): t.mul_(s).add_(m) # The normalize code -> t.sub_(m).div_(s) return tensor class CustomHeatmapDataset(Dataset): "CustomImageDataset with `image_files`,`y_func`, `convert_mode` and `size(height, width)`" def __init__(self, data, hull_path, size=(512,512), grayscale=False, normalize_mean=None, normalize_std=None, data_aug=None, is_valid=False, do_normalize=True, clahe=True): self.data = data self.size = size if normalize_mean is None: if grayscale: normalize_mean = [0.131] else: normalize_mean = [0.485, 0.456, 0.406] if normalize_std is None: if grayscale: normalize_std = [0.308] else: normalize_std = [0.229, 0.224, 0.225] self.normalize = transforms.Normalize(normalize_mean,normalize_std) self.un_normalize = UnNormalize(mean=normalize_mean, std=normalize_std) self.hull_path = hull_path self.convert_mode = "L" if grayscale else "RGB" self.data_aug = data_aug self.to_t = transforms.ToTensor() self.is_valid = is_valid self.do_normalize = do_normalize self.clahe = cv2.createCLAHE(clipLimit=20.0,tileGridSize=(30,30)) if clahe else None def __len__(self): return len(self.data) def load_labels(self,idx): heatmaps = [] for fname in self.data[idx][1]: mask_file = fname.parent/(fname.stem + "_mask"+ fname.suffix) heatmaps.append([load_heatmap(fname, size=self.size),load_heatmap(mask_file, size=self.size)]) return heatmaps def load_hull(self, idx): return load_heatmap(self.hull_path/self.data[idx][0].name, size=self.size) def apply_clahe(self,img): if self.clahe == None: return img img = np.asarray(img) img = self.clahe.apply(img) return Image.fromarray(img) def __getitem__(self, idx): image = load_image(self.data[idx][0], size=self.size, convert_mode=self.convert_mode, to_numpy=False) labels = self.load_labels(idx) hull = self.load_hull(idx) image = self.apply_clahe(image) if (not self.is_valid) and (self.data_aug is not None): image, labels, hull = self.data_aug.transform(image, labels, hull) hull = torch.squeeze(self.to_t(hull),dim=0).type(torch.bool) labels_extraced = [label[0] for label in labels] masks_extraced = [label[1] for label in labels] labels_extraced = self.to_t(np.stack(labels_extraced, axis=2)) masks_extraced = self.to_t(np.stack(masks_extraced, axis=2)).type(torch.bool) image = self.to_t(image) if self.do_normalize: image = self.normalize(image) return self.data[idx][0].stem, image, labels_extraced, masks_extraced, hull class RandomRotationImageTarget(transforms.RandomRotation): def __call__(self, img, targets, hull): angle = self.get_params(self.degrees) img = transforms.functional.rotate(img, angle, self.resample, self.expand, self.center) hull = transforms.functional.rotate(hull, angle, self.resample, self.expand, self.center) for idx in range(len(targets)): targets[idx][0] = transforms.functional.rotate(targets[idx][0], angle, self.resample, self.expand, self.center) targets[idx][1] = transforms.functional.rotate(targets[idx][1], angle, self.resample, self.expand, self.center) return img, targets, hull class RandomHorizontalFlipImageTarget(transforms.RandomHorizontalFlip): def __call__(self, img, targets, hull): if random.random() < self.p: img = transforms.functional.hflip(img) hull = transforms.functional.hflip(hull) for idx in range(len(targets)): targets[idx][0] = transforms.functional.hflip(targets[idx][0]) targets[idx][1] = transforms.functional.hflip(targets[idx][1]) return img,targets,hull class RandomVerticalFlipImageTarget(transforms.RandomVerticalFlip): def __call__(self, img, targets, hull): if random.random() < self.p: img = transforms.functional.vflip(img) hull = transforms.functional.vflip(hull) for idx in range(len(targets)): targets[idx][0] = transforms.functional.vflip(targets[idx][0]) targets[idx][1] = transforms.functional.vflip(targets[idx][1]) return img,targets,hull class RandomPerspectiveImageTarget(transforms.RandomPerspective): def __call__(self, img, targets, hull): if not transforms.functional._is_pil_image(img): raise TypeError('img should be PIL Image. Got {}'.format(type(img))) if random.random() < self.p: with warnings.catch_warnings(): warnings.filterwarnings("ignore", message="torch.lstsq") width, height = img.size startpoints, endpoints = self.get_params(width, height, self.distortion_scale) img = transforms.functional.perspective(img, startpoints, endpoints, self.interpolation, self.fill) hull = transforms.functional.perspective(hull, startpoints, endpoints, self.interpolation, self.fill) for idx in range(len(targets)): targets[idx][0] = transforms.functional.perspective(targets[idx][0], startpoints, endpoints, self.interpolation, self.fill) targets[idx][1] = transforms.functional.perspective(targets[idx][1], startpoints, endpoints, self.interpolation, self.fill) return img,targets,hull class ComposeImageTarget(transforms.Compose): def __call__(self, img, targets, hull): for t in self.transforms: img,targets,hull = t(img, targets, hull) return img,targets,hull class DataAugmentation: "DataAugmentation class with `size(height,width)`" def __init__(self, rotation=20,horizontal_flip_p=0.5, vertical_flip_p=0.5,warp=0.3,warp_p=0.5, zoom=0.8, brightness=0.6, contrast=0.6, GaussianBlur=1): self.lightning_transforms = transforms.Compose([transforms.ColorJitter(brightness=brightness,contrast=contrast), #transforms.GaussianBlur(kernel_size=GaussianBlur) ]) self.affine_transforms = ComposeImageTarget([ RandomRotationImageTarget(degrees=(-rotation,rotation)), RandomHorizontalFlipImageTarget(p=horizontal_flip_p), RandomVerticalFlipImageTarget(p=vertical_flip_p), RandomPerspectiveImageTarget(distortion_scale=warp, p=warp_p), #transforms.RandomResizedCrop(size=size,scale=(zoom,1.0),ratio=(1.0,1.0)) ]) def transform(self,features,labels, hull): #do lighting transforms for features features = self.lightning_transforms(features) #do affine transforms for features and labels features,labels,hull = self.affine_transforms(features, labels, hull) return features,labels,hull class heatmap_metric(LearnerCallback): def __init__(self, features, true_positive_threshold=10, metric_counter=1): self.__counter_epoch = 0 self.__metric_counter = metric_counter self.__custom_metrics = {"metrics":[],"types":[]} self.__features = features self.__true_positive_threshold = true_positive_threshold self.numeric_metric = 1 self.accuracy_metric = 2 for item in self.__features.keys(): self.__custom_metrics["metrics"].append(item+"_pos_train") self.__custom_metrics["types"].append(self.numeric_metric) self.__custom_metrics["metrics"].append(item+"_pos_valid") self.__custom_metrics["types"].append(self.numeric_metric) self.__custom_metrics["metrics"].append(item+"_accuracy_train") self.__custom_metrics["types"].append(self.accuracy_metric) self.__custom_metrics["metrics"].append(item+"_accuracy_valid") self.__custom_metrics["types"].append(self.accuracy_metric) def get_metric_names(self): return self.__custom_metrics["metrics"] def __calc_metrics(self, targets, outputs, metric_values, train): ext = "train" if train else "valid" for target,output,feature in zip(targets, outputs, list(self.__features.keys())): type_of = self.__features[feature]["type"] if (type_of == "circle"): points_target = heatmap_to_circle(target) points_output = heatmap_to_circle(output) if (points_target is not None): metric_values[feature+"_accuracy_"+ext]["total_targets"] += 1 if (points_target is not None) and (points_output is not None): mid_point_output = np.round(np.sum(points_output, axis=0)/len(points_output)).astype(np.int) mid_point_target = np.round(np.sum(points_target, axis=0)/len(points_target)).astype(np.int) diff_circle_midpoint = np.sqrt(np.sum((mid_point_output - mid_point_target)**2)) metric_values[feature+"_pos_"+ext].append(diff_circle_midpoint) if diff_circle_midpoint < self.__true_positive_threshold: metric_values[feature+"_accuracy_"+ext]["total_true_positives"] += 1 elif type_of == "single_point": center_point_target = heatmap_to_max_confidence_point(target) center_point_output = heatmap_to_max_confidence_point(output) if (center_point_target is not None): metric_values[feature+"_accuracy_"+ext]["total_targets"] += 1 if (center_point_target is not None) and (center_point_output is not None): diff_center = np.sqrt(np.sum((center_point_output - center_point_target)**2)) metric_values[feature+"_pos_"+ext].append(diff_center) if diff_center < self.__true_positive_threshold: metric_values[feature+"_accuracy_"+ext]["total_true_positives"] += 1 elif type_of == "multi_point": all_peaks_target = heatmap_to_multiple_points(target) all_peaks_output = heatmap_to_multiple_points(output) if (all_peaks_target is not None): metric_values[feature+"_accuracy_"+ext]["total_targets"] += len(all_peaks_target) if (all_peaks_target is not None) and (all_peaks_output is not None): diffs = [] for peak_target in all_peaks_target: if len(all_peaks_output) == 0: break s = np.argmin(np.sqrt(np.sum((all_peaks_output - peak_target)**2, axis=1))) diffs.append(np.sqrt(np.sum((all_peaks_output[s] - peak_target)**2))) if diffs[-1] < self.__true_positive_threshold: metric_values[feature+"_accuracy_"+ext]["total_true_positives"] += 1 all_peaks_output = np.delete(all_peaks_output, s, axis=0) diff_nut_edges = np.array(diffs).mean() metric_values[feature+"_pos_"+ext].append(diff_nut_edges) else: raise("The Heatmaptype " + type_of + " is not implemented yet.") return metric_values def on_batch_end(self, last_output, last_target, train): if self.__counter_epoch % self.__metric_counter == 0: last_target = last_target.numpy() last_output = last_output.numpy() for target_batch,output_batch in zip(last_target, last_output): self.metrics_values = self.__calc_metrics(target_batch,output_batch, self.metrics_values, train) def on_epoch_begin(self): if self.__counter_epoch % self.__metric_counter == 0: self.metrics_values = {} for idx,metric in enumerate(self.__custom_metrics["metrics"]): if self.__custom_metrics["types"][idx] == self.numeric_metric: self.metrics_values[metric] = [] else: self.metrics_values[metric] = {"total_targets":0,"total_true_positives":0} def on_epoch_end(self): metrics = list(np.zeros(len(self.__custom_metrics["metrics"]), dtype=np.float32)) if self.__counter_epoch % self.__metric_counter == 0: for idx,metric in enumerate(self.__custom_metrics["metrics"]): if self.__custom_metrics["types"][idx] == self.numeric_metric: if len(self.metrics_values[metric]) == 0: metrics[idx] = 0 else: metrics[idx] = np.array(self.metrics_values[metric]).mean() else: if self.metrics_values[metric]["total_targets"] != 0: metrics[idx] = self.metrics_values[metric]["total_true_positives"] / self.metrics_values[metric]["total_targets"] else: metrics[idx] = 0 self.__counter_epoch += 1 return metrics class HeatLoss_OldGen_0(nn.Module): def __init__(self): super().__init__() r"""Class for HeatLoss calculation. This variant includes no masks, simple Mean absolute error over all pixles: """ def forward(self, input, target, masks, hull): return torch.mean(torch.abs(input - target)) class HeatLoss_OldGen_1(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for HeatLoss calculation. This variant includes the masks of following objects: - specific features """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): m1 = (target > 0.0) ret1 = torch.abs(input[m1] - target[m1]) mean1 = torch.mean(ret1) if self.print_out_losses: print("specific features:",mean1.item(), end="\r") return mean1 class HeatLoss_OldGen_2(nn.Module): def __init__(self, print_out_losses=False): r"""Class for HeatLoss calculation. This variant includes the masks of following objects: - Background (no heat at all) - specific features """ super().__init__() self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): m1 = (target > 0.0) m2 = torch.logical_not(m1) ret1 = torch.abs(input[m1] - target[m1]) ret2 = torch.abs(input[m2] - target[m2]) mean1 = torch.mean(ret1) mean2 = torch.mean(ret2) if self.print_out_losses: print("specific features:",mean1.item(), "background:",mean2.item(), end="\r") return (mean1+mean2)/2 class HeatLoss_OldGen_3(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for HeatLoss calculation. This variant includes the masks of following objects: - specific feature - all features in a image """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): m1 = (target > 0.0) m2 = torch.zeros(m1.shape, dtype=torch.bool, device=input.device) for dset in range(input.shape[0]): logor = torch.zeros((input.shape[2], input.shape[3]), dtype=torch.bool, device=input.device) for i in range(input.shape[1]): logor = logor | m1[dset,i,:,:] for i in range(input.shape[1]): m2[dset,i,:,:] = logor ret1 = torch.abs(input[m1] - target[m1]) ret2 = torch.abs(input[m2] - target[m2]) mean1 = torch.mean(ret1) mean2 = torch.mean(ret2) if self.print_out_losses: print("specific feature:",mean1.item(), "all features:",mean2.item(), end="\r") return (mean1+mean2)/2 class HeatLoss_OldGen_4(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for HeatLoss calculation. This variant includes the masks of following objects: - specific feature - all features in a image - background """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): m1 = (target > 0.0) m2 = torch.zeros(m1.shape, dtype=torch.bool, device=input.device) m3 = torch.logical_not(m1) for dset in range(input.shape[0]): logor = torch.zeros((input.shape[2], input.shape[3]), dtype=torch.bool, device=input.device) for i in range(input.shape[1]): logor = logor | m1[dset,i,:,:] for i in range(input.shape[1]): m2[dset,i,:,:] = logor ret1 = torch.abs(input[m1] - target[m1]) ret2 = torch.abs(input[m2] - target[m2]) ret3 = torch.abs(input[m3] - target[m3]) mean1 = torch.mean(ret1) mean2 = torch.mean(ret2) mean3 = torch.mean(ret3) if self.print_out_losses: print("specific feature:",mean1.item(), "all features:",mean2.item(), "background:",mean3.item(), end="\r") return (mean1+mean2+mean3)/3 class HeatLoss_NextGen_0(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for Next Generation HeatLoss calculation. This variant includes offline generated masks of following objects: - specific feature with mask dilation (single loss calculation for every feature) - convex hull of all featureswith maks dilation - background """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): hull_not = torch.logical_not(hull) feature_count = target.shape[1] loss_items = torch.zeros(feature_count, dtype=torch.float32, device=input.device) for idx in range(feature_count): diff = torch.abs(input[:,idx,:,:][masks[:,idx,:,:]] - target[:,idx,:,:][masks[:,idx,:,:]]) if len(diff) > 0: loss_items[idx] = torch.mean(diff) loss_hull = torch.mean(torch.abs(input[hull] - target[hull])) loss_backgrond = torch.mean(torch.abs(input[hull_not] - target[hull_not])) if self.print_out_losses: # print loss begin out_str = "" print_items_loss = [] sum_items_loss = torch.zeros(1, dtype=torch.float32, device=input.device) for idx in range(len(loss_items)): out_str = out_str + "loss_item_"+str(idx) + " {:.4f} " print_items_loss.append(round(loss_items[idx].item(),4)) sum_items_loss += loss_items[idx] print_items_loss.append(round(loss_hull.item(),4)) print_items_loss.append(round(loss_backgrond.item(),4)) print((out_str+" loss_hull {:.4f} loss_backgrond {:.4f}").format(*print_items_loss), end="\r") # print loss end return (sum_items_loss+loss_hull+loss_backgrond)/(feature_count+2) class HeatLoss_NextGen_1(nn.Module): def __init__(self): super().__init__(print_out_losses=False) r"""Class for Next Generation HeatLoss calculation. This variant includes offline generated masks of following objects: - specific feature with mask dilation (calculation of feature loss all the same) - convex hull of all featureswith maks dilation - background """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): hull_not = torch.logical_not(hull) loss_features = torch.mean(torch.abs(input[masks] - target[masks])) loss_hull = torch.mean(torch.abs(input[hull] - target[hull])) loss_backgrond = torch.mean(torch.abs(input[hull_not] - target[hull_not])) if self.print_out_losses: print(("loss_features {:.4f} loss_hull {:.4f} loss_backgrond {:.4f}").format(loss_features,loss_hull,loss_backgrond), end="\r") return (loss_features+loss_hull+loss_backgrond)/3 class HeatLoss_NextGen_2(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for Next Generation HeatLoss calculation. This variant includes offline generated masks of following objects: - specific feature with mask dilation (calculation of feature loss all the same) - all features in a image (calculation of feature loss all the same) - background (calculation of feature loss all the same) """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): all_mask = torch.any(masks,dim=1)[:,None].repeat(1,target.shape[1],1,1) mask_not = torch.logical_not(masks) loss_features = torch.mean(torch.abs(input[masks] - target[masks])) loss_all_features = torch.mean(torch.abs(input[all_mask] - target[all_mask])) loss_backgrond = torch.mean(torch.abs(input[mask_not] - target[mask_not])) if self.print_out_losses: print(("loss_features {:.4f} loss_all_features {:.4f} loss_backgrond {:.4f}").format(loss_features.item(),loss_all_features.item(),loss_backgrond.item()), end="\r") return (loss_features+loss_all_features+loss_backgrond)/3 class HeatLoss_NextGen_3(nn.Module): def __init__(self, print_out_losses=False): super().__init__() r"""Class for Next Generation HeatLoss calculation. This variant includes offline generated masks of following objects: - specific feature with mask dilation (single loss calculation for every feature) - all features in a image (single loss calculation for every feature) - background (single loss calculation for every feature) """ self.print_out_losses = print_out_losses def forward(self, input, target, masks, hull): feature_count = target.shape[1] mask_not = torch.logical_not(masks) all_mask = torch.any(masks,dim=1)[:,None].repeat(1,target.shape[1],1,1) loss_features = torch.zeros(feature_count, dtype=torch.float32, device=input.device) loss_backgrond = torch.zeros(feature_count, dtype=torch.float32, device=input.device) loss_all_features = torch.zeros(feature_count, dtype=torch.float32, device=input.device) for idx in range(feature_count): diff = torch.abs(input[:,idx,:,:][masks[:,idx,:,:]] - target[:,idx,:,:][masks[:,idx,:,:]]) diff_not = torch.abs(input[:,idx,:,:][mask_not[:,idx,:,:]] - target[:,idx,:,:][mask_not[:,idx,:,:]]) diff_all = torch.abs(input[:,idx,:,:][all_mask[:,idx,:,:]] - target[:,idx,:,:][all_mask[:,idx,:,:]]) if len(diff) > 0: loss_features[idx] = torch.mean(diff) if len(diff_not) > 0: loss_backgrond[idx] = torch.mean(diff_not) if len(diff_all) > 0: loss_all_features[idx] = torch.mean(diff_all) loss_features = torch.mean(loss_features) loss_backgrond = torch.mean(loss_backgrond) loss_all_features = torch.mean(loss_all_features) if self.print_out_losses: print(("loss_features {:.4f} loss_all_features {:.4f} loss_backgrond {:.4f}").format(loss_features.item(),loss_all_features.item(),loss_backgrond.item()), end="\r") return (loss_features+loss_all_features+loss_backgrond)/3 class AWing(nn.Module): def __init__(self, alpha=2.1, omega=14, epsilon=1, theta=0.5): super().__init__() self.alpha = float(alpha) self.omega = float(omega) self.epsilon = float(epsilon) self.theta = float(theta) def forward(self, y_pred , y): lossMat = torch.zeros_like(y_pred) A = self.omega * (1/(1+(self.theta/self.epsilon)**(self.alpha-y)))*(self.alpha-y)*((self.theta/self.epsilon)**(self.alpha-y-1))/self.epsilon C = self.theta*A - self.omega*torch.log(1+(self.theta/self.epsilon)**(self.alpha-y)) case1_ind = torch.abs(y-y_pred) < self.theta case2_ind = torch.abs(y-y_pred) >= self.theta lossMat[case1_ind] = self.omega*torch.log(1+torch.abs((y[case1_ind]-y_pred[case1_ind])/self.epsilon)**(self.alpha-y[case1_ind])) lossMat[case2_ind] = A[case2_ind]*torch.abs(y[case2_ind]-y_pred[case2_ind]) - C[case2_ind] return lossMat class Loss_weighted(nn.Module): def __init__(self, W=10, alpha=2.1, omega=14, epsilon=1, theta=0.5): super().__init__() self.W = float(W) self.Awing = AWing(alpha, omega, epsilon, theta) def forward(self, y_pred , y, M, hull): #pdb.set_trace() M = M.float() Loss = self.Awing(y_pred,y) weighted = Loss * (self.W * M + 1.) return weighted.mean() class HeatmapLearner: def __init__(self, features, root_path, images_path, hull_path, size=(512,512), bs=-1, items_count=-1, gpu_id=0, norm_stats=None, data_aug=None, preload=False, sample_results_path="sample_results", unet_init_features=16, valid_images_store="valid_images.npy", image_convert_mode="L", metric_counter=1, sample_img=None, true_positive_threshold=0.02, ntype="unet", lr=1e-03, file_filters_include=None, file_filters_exclude=None, clahe=False, disable_metrics=False, file_prefix="", loss_func=None, weight_decay=0, num_load_workers=None, dropout=True, dropout_rate=0.15, save_counter=10): r"""Class for train an Unet-style Neural Network, for heatmap based image recognition Args: features : Heatmap features for the neural net. This must be a dict. The Keys must be the folder names for the heatmap features. Every entry is a dict with the feature types: single_point, multi_point, circle Example: {"feature_1":{"type":"single_point"}, "feature_2":{"type":"multi_point"}, "feature_3":{"type":"circle"}} root_path : The root path, where image files and label files are located images_path : The path, where the images are located, in relation to the root_path size : Size of images to pass through the neural network. The sizes must be a power of two with the dimensions of (Heigth, Width). bs : The Batch Size norm_stats : Normalize values for images in the form (mean,std). file_filters_incluce : incluce file filter in images_path, must be a list with include search strings file_filters_exclude : exclude file filter in images_path, must be a list with exclude search strings Example: """ # check assertions assert power_of_2(size), "size must be a power of 2, to work with this class" #static variables (they are fix) heatmap_paths = list(features.keys()) for idx in range(len(heatmap_paths)): heatmap_paths[idx] = Path(heatmap_paths[idx]) self.features = features self.__size = size self.save_counter = save_counter self.__num_load_workers = num_load_workers self.__root_path = Path(root_path) self.__images_path = Path(images_path) self.__hull_path = self.__root_path/Path(hull_path) self.__sample_results_path = Path(sample_results_path) (self.__root_path/self.__sample_results_path).mkdir(parents=True, exist_ok=True) self.stacked_net = True if ntype=="stacked_hourglass" else False self.__gpu_id = gpu_id self.__file_prefix = file_prefix data_aug = DataAugmentation() if data_aug is None else data_aug if norm_stats is None: norm_stats = ([0.131],[0.308]) if image_convert_mode == "L" else ([0.485, 0.456, 0.406],[0.229, 0.224, 0.225]) if sample_img is None: t_img_files = glob.glob(str(self.__root_path/self.__images_path/"*")) idx = random.randint(0, len(t_img_files)-1) self.__sample_img = self.__root_path/self.__images_path/Path(t_img_files[idx]).name else: self.__sample_img = self.__root_path/self.__images_path/sample_img true_positive_threshold = round(true_positive_threshold*self.__size[0]) # dynamic variables (they can change during learning) self.__epochs = 0 self.__train_losses = None self.__valid_losses = None self.__metrics = None file_filters_include = np.array(file_filters_include) if file_filters_include is not None else None file_filters_exclude = np.array(file_filters_exclude) if file_filters_exclude is not None else None self.__create_learner(file_filters_include=file_filters_include, file_filters_exclude=file_filters_exclude, valid_images_store=valid_images_store, items_count=items_count, features=features, bs=bs, data_aug=data_aug,image_convert_mode=image_convert_mode, heatmap_paths=heatmap_paths, true_positive_threshold=true_positive_threshold, metric_counter=metric_counter, lr=lr, clahe=clahe, norm_stats=norm_stats, unet_init_features=unet_init_features, ntype=ntype, disable_metrics=disable_metrics, loss_func=loss_func, weight_decay = weight_decay, dropout=dropout, dropout_rate=dropout_rate) def __create_learner(self, file_filters_include, file_filters_exclude, valid_images_store, items_count, features, bs, data_aug, image_convert_mode, heatmap_paths, true_positive_threshold, metric_counter, lr, clahe, norm_stats, unet_init_features, ntype, disable_metrics, loss_func, weight_decay, dropout, dropout_rate): training_data, valid_data = self.__load_data(features=features,file_filters_include=file_filters_include, file_filters_exclude = file_filters_exclude, valid_images_store=valid_images_store, items_count=items_count) self.__unet_in_channels = 1 if image_convert_mode == "L" else 3 self.__unet_out_channls = len(heatmap_paths) heatmap_files_sample = [] for feat in features.keys(): heatmap_files_sample.append(self.__root_path/feat/self.__sample_img.name) self.sample_dataset = CustomHeatmapDataset(data=[[self.__sample_img,heatmap_files_sample]], hull_path=self.__hull_path, grayscale=image_convert_mode == "L", normalize_mean=norm_stats[0],normalize_std=norm_stats[1], is_valid=True, clahe=clahe, size=self.__size) self.train_dataset = CustomHeatmapDataset(data=training_data, hull_path=self.__hull_path, grayscale=image_convert_mode == "L", normalize_mean=norm_stats[0],normalize_std=norm_stats[1], data_aug=data_aug, clahe=clahe, size=self.__size) self.valid_dataset = CustomHeatmapDataset(data=valid_data, hull_path=self.__hull_path, grayscale=image_convert_mode == "L", normalize_mean=norm_stats[0],normalize_std=norm_stats[1], is_valid=True, clahe=clahe, size=self.__size) sample_img = None if self.__sample_img is not None: to_t = transforms.ToTensor() img = to_t(load_image(self.__root_path/self.__images_path/self.__sample_img, convert_mode=image_convert_mode, size=self.__size, to_numpy=False)) masks = [] for idx in range(len(heatmap_paths)): heat = to_t(load_heatmap(self.__root_path/heatmap_paths[idx]/self.__sample_img)) masks.append(heat) sample_img = (img,masks) metric = None if disable_metrics else heatmap_metric(features = features, true_positive_threshold = true_positive_threshold, metric_counter = metric_counter) net = self.__get_net(ntype, unet_init_features, dropout, dropout_rate).to(torch.device("cuda:"+str(self.__gpu_id))) opt = torch.optim.Adam(net.parameters(), lr=lr, weight_decay=weight_decay) loss_func = HeatLoss_NextGen_1() if loss_func is None else loss_func loss_func = loss_func.to(torch.device("cuda:"+str(self.__gpu_id))) if bs == -1: batch_estimator = Batch_Size_Estimator(net=net, opt=opt, loss_func=loss_func, gpu_id=self.__gpu_id, dataset = self.train_dataset) bs = batch_estimator.find_max_bs() train_dl = DataLoader(self.train_dataset, batch_size=bs, shuffle=True, num_workers=num_workers() if self.__num_load_workers is None else self.__num_load_workers, pin_memory=False) valid_dl = DataLoader(self.valid_dataset, batch_size=bs, shuffle=True, num_workers=num_workers() if self.__num_load_workers is None else self.__num_load_workers, pin_memory=False) self.learner = Learner(model=net,loss_func=loss_func, train_dl=train_dl, valid_dl=valid_dl, optimizer=opt, learner_callback= metric,gpu_id= self.__gpu_id, predict_smaple_func=self.predict_sample, save_func=self.save_func, stacked_net= self.stacked_net) def __get_net(self, ntype, unet_init_features, dropout, dropout_rate): if ntype == "res_unet++": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=True, squeeze_excite=True, aspp=True, attention=True, bn_relu_at_first=True, bn_relu_at_end=False) elif ntype == "res_unet_bn_relu_end": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=True, squeeze_excite=False, aspp=False, attention=False, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "attention_unet": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=False, squeeze_excite=False, aspp=False, attention=True, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "aspp_unet": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=False, squeeze_excite=False, aspp=True, attention=False, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "squeeze_excite_unet": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=False, squeeze_excite=True, aspp=False, attention=False, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "res_unet_bn_relu_first": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=True, squeeze_excite=False, aspp=False, attention=False, bn_relu_at_first=True, bn_relu_at_end=False) elif ntype == "unet": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=False, squeeze_excite=False, aspp=False, attention=False, bn_relu_at_first=False, bn_relu_at_end=True) elif ntype == "res34": net = UNet(in_channels = self.__unet_in_channels, out_channels = self.__unet_out_channls, init_features = unet_init_features, resblock=True, squeeze_excite=False, aspp=False, attention=False, bn_relu_at_first=True, bn_relu_at_end=False, block_sizes_down = res34_downsample, downsample_method=downsample_stride, blocksize_bottleneck = 2, block_sizes_up=[2,2,2,2]) elif ntype == "sp_unet": net = SE_Res_UNet(n_channels=self.__unet_in_channels, n_classes= self.__unet_out_channls, init_features=unet_init_features, dropout=dropout, rate=dropout_rate) elif ntype == "stacked_hourglass": net = hg(num_stacks=4,num_blocks=2,num_classes=self.__unet_out_channls, input_features=self.__unet_in_channels) else: raise("Net type ´"+ ntype+"´ is not implemented!") return net def __load_data(self, features, file_filters_include, file_filters_exclude, valid_images_store, items_count): def find_valid_imgs_func(all_image_files): if not (self.__root_path/valid_images_store).is_file(): valid_images = [img for img in sample(list(all_image_files), int(len(all_image_files)*0.2))] np.save(self.__root_path/valid_images_store, valid_images, allow_pickle=True) return list(np.load(self.__root_path/valid_images_store, allow_pickle=True)) def filter_files(all_image_files): if file_filters_include is not None: new_filenames = [] for filename in all_image_files: for ffilter in file_filters_include: if filename.find((ffilter)) != -1: new_filenames.append(filename) break all_image_files =
np.array(new_filenames)
numpy.array
import numpy as np from .weightedLSByState import _weighted_LS_by_state from .collectWLSInfo import _collect_WLS_info from .waveletTransform import _w_corr from .fastASD import _fast_ASD_weighted_group def _fit_analog_filters(stim, analog_symb, gamma, xi, analog_emit_w, options, train_data): new_stim = [] analog_emit_std = np.array([]) num_analog_params = analog_symb[0].shape[0] ar_corr1 = np.zeros((options['num_states'], num_analog_params)) ar_corr2 = np.zeros(num_analog_params) if options['evaluate'] == True: for analog_num in range(0, num_analog_params): for trial in range(0, len(train_data)): new_stim.append({'gamma' : gamma[train_data[trial]], 'xi' : xi[train_data[trial]], 'num_states' : options['num_emissions']}) new_stim[trial]['symb'] = analog_symb[train_data[trial]][analog_num, :] new_stim[trial]['good_emit'] = ~np.isnan(analog_symb[train_data[trial]][analog_num, :]) [these_stim, these_symb, these_gamma] = _collect_WLS_info(new_stim) for states in range(0, options['num_states']): ar_corr1[states, analog_num] = _w_corr(these_stim * analog_emit_w[states, analog_num, :], these_symb, these_gamma[states, :].T) ar_corr2[analog_num] = np.sum(np.mean(these_gamma, axis = 1) * ar_corr1[:, analog_num], axis = 0) else: for analog_num in range(0, num_analog_params): for trial in range(0, len(train_data)): new_stim.append({'num_states' : options['num_emissions']}) new_stim[trial]['symb'] = analog_symb[train_data[trial]][analog_num, :] new_stim[trial]['good_emit'] = ~np.isnan(analog_symb[train_data[trial]][analog_num, :]) [these_stim, these_symb, these_gamma] = _collect_WLS_info(new_stim) # If more than this, loop until we have gone through all of them. How to deal with e.g. ~1k over this max? Overlapping subsets? Could just do e.g. 4 sub-samples, or however many depending on amount >15k max_good_pts = 15000 num_analog_iter = np.ceil(these_stim.shape[0] / max_good_pts) if num_analog_iter > 1: analog_offset = (these_stim.shape[0] - max_good_pts) / (num_analog_iter - 1) iter_stim = np.zeros((num_analog_iter, 2)) for nai in range(0, num_analog_iter): iter_stim[nai, :] = np.floor(analog_offset * (nai - 1)) + [1, max_good_pts] else: iter_stim = [1, these_stim.shape[0]] randomized_stim = np.random.permutation(these_stim.shape[0]) ae_w = np.zeros((num_analog_iter, options['num_states'], analog_emit_w.shape[2])) ae_std =
np.zeros((num_analog_iter, options['num_states'], analog_emit_w.shape[2]))
numpy.zeros
"""Tests for models.""" import time import numpy as np from predicators.src.torch_models import (NeuralGaussianRegressor, MLPClassifier, MLPRegressor) from predicators.src import utils def test_basic_mlp_regressor(): """Tests for MLPRegressor.""" utils.reset_config({ "mlp_regressor_max_itr": 100, "mlp_regressor_clip_gradients": True }) input_size = 3 output_size = 2 num_samples = 5 model = MLPRegressor() X = np.ones((num_samples, input_size)) Y = np.zeros((num_samples, output_size)) model.fit(X, Y) x = np.ones(input_size) predicted_y = model.predict(x) expected_y = np.zeros(output_size) assert predicted_y.shape == expected_y.shape assert np.allclose(predicted_y, expected_y, atol=1e-2) # Test with nonzero outputs. Y = 75 * np.ones((num_samples, output_size)) model.fit(X, Y) x = np.ones(input_size) predicted_y = model.predict(x) expected_y = 75 * np.ones(output_size) assert predicted_y.shape == expected_y.shape assert np.allclose(predicted_y, expected_y, atol=1e-2) def test_neural_gaussian_regressor(): """Tests for NeuralGaussianRegressor.""" utils.reset_config({"neural_gaus_regressor_max_itr": 100}) input_size = 3 output_size = 2 num_samples = 5 model = NeuralGaussianRegressor() X = np.ones((num_samples, input_size)) Y = np.zeros((num_samples, output_size)) model.fit(X, Y) x = np.ones(input_size) mean = model.predict_mean(x) expected_y = np.zeros(output_size) assert mean.shape == expected_y.shape assert np.allclose(mean, expected_y, atol=1e-2) rng = np.random.default_rng(123) sample = model.predict_sample(x, rng) assert sample.shape == expected_y.shape def test_mlp_classifier(): """Tests for MLPClassifier.""" utils.reset_config() input_size = 3 num_class_samples = 5 X = np.concatenate([ np.zeros((num_class_samples, input_size)), np.ones((num_class_samples, input_size)) ]) y = np.concatenate( [np.zeros((num_class_samples)), np.ones((num_class_samples))]) model = MLPClassifier(input_size, 100) model.fit(X, y) prediction = model.classify(np.zeros(input_size)) assert not prediction prediction = model.classify(np.ones(input_size)) assert prediction # Test for early stopping start_time = time.time() utils.reset_config({ "mlp_classifier_n_iter_no_change": 1, "learning_rate": 1e-2 }) model = MLPClassifier(input_size, 10000) model.fit(X, y) assert time.time() - start_time < 3, "Didn't early stop" # Test with no positive examples. num_class_samples = 1000 X = np.concatenate([ np.zeros((num_class_samples, input_size)), np.ones((num_class_samples, input_size)) ]) y = np.zeros(len(X)) model = MLPClassifier(input_size, 10000) start_time = time.time() model.fit(X, y) assert time.time() - start_time < 1, "Fitting was not instantaneous" prediction = model.classify(np.zeros(input_size)) assert not prediction prediction = model.classify(np.ones(input_size)) assert not prediction # Test with no negative examples. y = np.ones(len(X)) model = MLPClassifier(input_size, 10000) start_time = time.time() model.fit(X, y) assert time.time() - start_time < 1, "Fitting was not instantaneous" prediction = model.classify(np.zeros(input_size)) assert prediction prediction = model.classify(
np.ones(input_size)
numpy.ones
# -*- coding: utf-8 -*- """ Tools for diffraction and FEMTO analysis Created on Tue Apr 12 14:28:22 2016 @author: esposito_v """ import numpy as np import diffractionAngles_modes as diff_mode def hklFromAngles(E, delta, gamma, omega, alpha, U, B): """ Calculate the hkl vector for a given set of angles. For horizontal geometry """ wavelength = 12.3984/E; K = 2*np.pi/wavelength; delta = np.deg2rad(delta) gamma = -np.deg2rad(gamma) #sign convention omega = np.deg2rad(omega) alpha = np.deg2rad(alpha) """rotation matrices""" Delta = np.array([[1, 0, 0], [0, np.cos(delta), -np.sin(delta)], [0, np.sin(delta), np.cos(delta)]]) Gamma = np.array([[np.cos(gamma), -np.sin(gamma), 0], [np.sin(gamma), np.cos(gamma), 0], [0, 0, 1]]) Omega = np.array([[np.cos(omega), -np.sin(omega), 0], [np.sin(omega), np.cos(omega), 0], [0, 0, 1]]) Alpha = np.array([[1, 0, 0], [0, np.cos(alpha), -np.sin(alpha)], [0, np.sin(alpha), np.cos(alpha)]]) """ calculate H """ UBH =
np.dot(Gamma, Delta)
numpy.dot
import tensorflow as tf from tensorflow import keras import numpy as np import matplotlib.pyplot as plt from matplotlib import cm from matplotlib import colors from matplotlib.ticker import AutoLocator from matplotlib.transforms import Bbox import py21cmfast as p21c from py21cmfast import plotting from tf_keras_vis.saliency import Saliency import os # Change the sigmoid activation of the last layer to a linear one. This is required for creating saliency maps def model_modifier(m): m.layers[-1].activation = tf.keras.activations.linear return m # Read light-cones from tfrecords files def parse_function(files): keys_to_features = {"label":tf.io.FixedLenFeature((6),tf.float32), "image":tf.io.FixedLenFeature((),tf.string), "tau":tf.io.FixedLenFeature((),tf.float32), "gxH":tf.io.FixedLenFeature((92),tf.float32), "z":tf.io.FixedLenFeature((92),tf.float32),} parsed_features = tf.io.parse_example(files, keys_to_features) image = tf.io.decode_raw(parsed_features["image"],tf.float16) image = tf.reshape(image,(140,140,2350)) return image, parsed_features["label"] # Image, m_WDM,Omega_m,L_X,E_0,T_vir,zeta # Plot the saliency maps over the light-cones. Axis scales depend on the value of Omega_m. This function expects all light-cones to have the same Omega_m def plot(filename,sim_lightcone,mock_lightcone,parameters,saliency_maps=False): # Define parameter names, ranges and latex code parameter_list=[["WDM",0.3,10,"$m_{WDM}$"],["OMm",0.2,0.4,"$\Omega_m$"],["LX",38,42,"$L_X$"],["E0",100,1500,"$E_0$"],["Tvir",4,5.3,"$T_{vir}$"],["Zeta",10,250,"$\zeta$"]] fig, ax = plt.subplots( 2*len(parameters), 1, sharex=False, sharey=False, figsize=( 2350 * (0.007) + 0.5 , 140*0.02*len(parameters) ), ) # Create opt mock and bare simulation saliency maps for each of the requested parameters for x,para in enumerate(parameters+parameters): # Plot bare simulations in the first half if x<len(parameters): fig, ax[x]=plotting.lightcone_sliceplot(sim_lightcone,slice_axis=0,slice_index=70,fig=fig,ax=ax[x],zticks="frequency") ax[x].images[-1].colorbar.remove() # Plot opt mocks in the second half else: fig, ax[x]=plotting.lightcone_sliceplot(mock_lightcone,slice_axis=0,slice_index=70,fig=fig,ax=ax[x]) ax[x].images[-1].colorbar.remove() # Plot saliency maps if saliency_maps is not False: extent = ( 0, 2350*200/140, 0, 200, ) ax[x].imshow(saliency_maps[x],origin="lower",cmap=cm.hot,alpha=0.7,extent=extent) # Adjust the design if x>0 and x<2*len(parameters)-1: ax[x].set_xticks([]) ax[x].set_xlabel("") ax[x].tick_params(labelsize=12) ax[x].text(10,10,"$\delta "+parameter_list[para][3][1:],color="w",fontsize=14) ax[x].set_ylabel("") fig.text(0.01,0.62+0.02*len(parameters),"y-axis [Mpc]",rotation="vertical",fontsize=12) fig.text(0.01,0.23-0.005*len(parameters),"y-axis [Mpc]",rotation="vertical",fontsize=12) ax[0].xaxis.tick_top() ax[0].set_xlabel('Frequency [MHz]',fontsize=12) ax[0].xaxis.set_label_position('top') ax[x].set_xlabel("Redshift",fontsize=12) plt.tight_layout() for y in range(len(parameters)): pos1=ax[x-y].get_position().get_points()+[[0.02,0.08/len(parameters)-0.02],[0.02,0.08/len(parameters)-0.02]] pos2=ax[y].get_position().get_points()+[[0.02,0.08/len(parameters)-0.03],[0.02,0.08/len(parameters)-0.03]] ax[x-y].set_position(Bbox(pos1-[[0,0.018],[0,0.018]])) ax[y].set_position(Bbox(pos2+[[0,0.018],[0,0.018]])) ax[y].text(10,150,"Sim",color="w",fontsize=14) ax[x-y].text(10,150,"Opt Mock",color="w",fontsize=14) # Use a colorbar with the "EoR" cmap from 21cmFAST cbar = fig.colorbar(cm.ScalarMappable(norm=colors.Normalize(vmin=-150,vmax=30), cmap="EoR"), ax=ax,aspect=10*len(parameters)) cbar_label = r"$\delta T_B$ [mK]" cbar.ax.set_ylabel(cbar_label,fontsize=12) cbar.ax.tick_params(labelsize=12) os.makedirs(os.path.dirname(filename),exist_ok=True) plt.savefig(filename) plt.close() def create_saliency_maps(filename,sim_lightcones,sim_model,mock_lightcones,mock_model,parameters,OMm): sim_saliency_maps=False mock_saliency_maps=False sim_saliency = Saliency(sim_model, model_modifier=model_modifier, clone=True) mock_saliency = Saliency(mock_model, model_modifier=model_modifier, clone=True) # Generate saliency maps for the requested parameters for para in parameters: def loss(output): return output[0][para] combined_sim_saliency=np.zeros((140,2350)) combined_mock_saliency=
np.zeros((140,2350))
numpy.zeros
import numpy as np from scipy.interpolate import interp1d from scipy import ndimage import scipy.constants as sc import astropy.constants as const import astropy.units as u default_cmap = "inferno" sigma_to_FWHM = 2.0 * np.sqrt(2.0 * np.log(2)) FWHM_to_sigma = 1.0 / sigma_to_FWHM arcsec = np.pi / 648000 def bin_image(im, n, func=np.sum): # bin an image in blocks of n x n pixels # return a image of size im.shape/n nx = im.shape[0] nx_new = nx // n x0 = (nx - nx_new * n) // 2 ny = im.shape[1] ny_new = ny // n y0 = (ny - ny_new * n) // 2 return np.reshape( np.array( [ func(im[x0 + k1 * n : (k1 + 1) * n, y0 + k2 * n : (k2 + 1) * n]) for k1 in range(nx_new) for k2 in range(ny_new) ] ), (nx_new, ny_new), ) def Wm2_to_Jy(nuFnu, nu): ''' Convert from W.m-2 to Jy nu [Hz] ''' return 1e26 * nuFnu / nu def Jy_to_Wm2(Fnu, nu): ''' Convert from Jy to W.m-2 nu [Hz] ''' return 1e-26 * Fnu * nu def Jybeam_to_Tb(Fnu, nu, bmaj, bmin): ''' Convert Flux density in Jy/beam to brightness temperature [K] Flux [Jy] nu [Hz] bmaj, bmin in [arcsec] T [K] ''' beam_area = bmin * bmaj * arcsec ** 2 * np.pi / (4.0 * np.log(2.0)) exp_m1 = 1e26 * beam_area * 2.0 * sc.h / sc.c ** 2 * nu ** 3 / Fnu hnu_kT = np.log1p(np.maximum(exp_m1, 1e-10)) Tb = sc.h * nu / (hnu_kT * sc.k) return Tb def Jy_to_Tb(Fnu, nu, pixelscale): ''' Convert Flux density in Jy/pixel to brightness temperature [K] Flux [Jy] nu [Hz] bmaj, bmin in [arcsec] T [K] ''' pixel_area = (pixelscale * arcsec) ** 2 exp_m1 = 1e16 * pixel_area * 2.0 * sc.h / sc.c ** 2 * nu ** 3 / Fnu hnu_kT = np.log1p(exp_m1 + 1e-10) Tb = sc.h * nu / (hnu_kT * sc.k) return Tb def Wm2_to_Tb(nuFnu, nu, pixelscale): """Convert flux converted from Wm2/pixel to K using full Planck law. Convert Flux density in Jy/beam to brightness temperature [K] Flux [W.m-2/pixel] nu [Hz] bmaj, bmin, pixelscale in [arcsec] """ pixel_area = (pixelscale * arcsec) ** 2 exp_m1 = pixel_area * 2.0 * sc.h * nu ** 4 / (sc.c ** 2 * nuFnu) hnu_kT = np.log1p(exp_m1) Tb = sc.h * nu / (sc.k * hnu_kT) return Tb def telescope_beam(wl,D): """ wl and D in m, returns FWHM in arcsec""" return 0.989 * wl/D / 4.84814e-6 def make_cut(z, x0,y0,x1,y1,num=None,plot=False): """ Make a cut in image 'z' along a line between (x0,y0) and (x1,y1) x0, y0,x1,y1 are pixel coordinates """ if plot: vmax = np.max(z) vmin = vmax * 1e-6 norm = colors.LogNorm(vmin=vmin, vmax=vmax, clip=True) plt.imshow((test.last_image[:,:]),origin="lower", norm=norm) plt.plot([x0,x1],[y0,y1]) if num is not None: # Extract the values along the line, using cubic interpolation x, y = np.linspace(x0, x1, num), np.linspace(y0, y1, num) zi = ndimage.map_coordinates(z, np.vstack((y,x))) else: # Extract the values along the line at the pixel spacing length = int(np.hypot(x1-x0, y1-y0)) x, y = np.linspace(x0, x1, length), np.linspace(y0, y1, length) zi = z[y.astype(np.int), x.astype(np.int)] return zi class DustExtinction: import os __dirname__ = os.path.dirname(__file__) wl = [] kext = [] _extinction_dir = __dirname__ + "/extinction_laws" _filename_start = "kext_albedo_WD_MW_" _filename_end = "_D03.all" V = 5.47e-1 # V band wavelength in micron def __init__(self, Rv=3.1, **kwargs): self.filename = ( self._extinction_dir + "/" + self._filename_start + str(Rv) + self._filename_end ) self._read(**kwargs) def _read(self): with open(self.filename, 'r') as file: f = [] for line in file: if (not line.startswith("#")) and ( len(line) > 1 ): # Skipping comments and empty lines line = line.split() self.wl.append(float(line[0])) kpa = float(line[4]) albedo = float(line[1]) self.kext.append(kpa / (1.0 - albedo)) # Normalize extinction in V band kext_interp = interp1d(self.wl, self.kext) kextV = kext_interp(self.V) self.kext /= kextV def redenning(self, wl, Av): """ Computes extinction factor to apply for a given Av Flux_red = Flux * redenning wl in micron """ kext_interp = interp1d(self.wl, self.kext) kext = kext_interp(wl) tau_V = 0.4 * np.log(10.0) * Av return np.exp(-tau_V * kext) def Hill_radius(): pass #d * (Mplanet/3*Mstar)**(1./3) def splash2mcfost(anglex, angley, anglez): #Convert the splash angles to mcfost angles # Base unit vector x0 = [1,0,0] y0 = [0,1,0] z0 = [0,0,1] # Splash rotated vectors x = _rotate_splash_axes(x0,-anglex,-angley,-anglez) y = _rotate_splash_axes(y0,-anglex,-angley,-anglez) z = _rotate_splash_axes(z0,-anglex,-angley,-anglez) # MCFOST angles mcfost_i = np.arccos(np.dot(z,z0)) * 180./np.pi if abs(mcfost_i) > 1e-30: print("test1") # angle du vecteur z dans le plan (-y0,x0) mcfost_az = (np.arctan2(np.dot(z,x0), -np.dot(z,y0)) ) * 180./np.pi # angle du vecteur z0 dans le plan x_image, y_image (orientation astro + 90deg) mcfost_PA = -( np.arctan2(np.dot(x,z0), np.dot(y,z0)) ) * 180./np.pi else: print("test2") mcfost_az = 0. # angle du vecteur y dans le plan x0, y0 mcfost_PA = (np.arctan2(np.dot(y,x0),np.dot(y,y0)) ) * 180./np.pi print("anglex =",anglex, "angley=", angley, "anglez=", anglez,"\n") print("Direction to oberver=",z) print("x-image=",x) print("y_image = ", y,"\n") print("MCFOST parameters :") print("inclination =", mcfost_i) print("azimuth =", mcfost_az) print("PA =", mcfost_PA) return [mcfost_i, mcfost_az, mcfost_PA] def _rotate_splash(xyz, anglex, angley, anglez): # Defines rotations as in splash # This function is to rotate the data x = xyz[0] y = xyz[1] z = xyz[2] # rotate about z if np.abs(anglez) > 1e-30: r = np.sqrt(x**2+y**2) phi = np.arctan2(y,x) phi -= anglez/180*np.pi x = r*np.cos(phi) y = r*np.sin(phi) # rotate about y if np.abs(angley) > 1e-30: r = np.sqrt(z**2+x**2) phi = np.arctan2(z,x) phi -= angley/180*np.pi x = r*np.cos(phi) z = r*np.sin(phi) # rotate about x if np.abs(anglex) > 1e-30: r = np.sqrt(y**2+z**2) phi = np.arctan2(z,y) phi -= anglex/180*np.pi y = r*np.cos(phi) z = r*np.sin(phi) return np.array([x,y,z]) def _rotate_splash_axes(xyz, anglex, angley, anglez): # Defines rotations as in splash, but in reserve order # as we rotate the axes instead of the data x = xyz[0] y = xyz[1] z = xyz[2] # rotate about x if np.abs(anglex) > 1e-30: r = np.sqrt(y**2+z**2) phi = np.arctan2(z,y) phi -= anglex/180*np.pi y = r*np.cos(phi) z = r*np.sin(phi) # rotate about y if np.abs(angley) > 1e-30: r = np.sqrt(z**2+x**2) phi = np.arctan2(z,x) phi -= angley/180*np.pi x = r*np.cos(phi) z = r*np.sin(phi) # rotate about z if np.abs(anglez) > 1e-30: r = np.sqrt(x**2+y**2) phi =
np.arctan2(y,x)
numpy.arctan2
import os import pickle import numpy as np from keras.losses import categorical_crossentropy from keras.optimizers import Adam from sklearn.model_selection import train_test_split import codes.my_helper as helper import codes.my_models as my_models def main(): # DATA # Train images: read from images folder, resize, normalize to 0..1 range data_path = 'datas/' images_camvid = helper.read_images(data_path + 'images_camvid/image/') size = (320, 256) images_camvid = helper.resize_images(images_camvid, size) images_camvid = np.array(images_camvid) / 255 images_roma = helper.read_images(data_path + 'images_roma/image/') images_roma = helper.resize_images(images_roma, size) images_roma /
np.array(images_roma)
numpy.array
# -*- coding: utf-8 -*- """ Created on Tue Jun 06 16:20:36 2017 @author: marcus """ from psychopy import visual from collections import deque import numpy as np from psychopy.tools.monitorunittools import cm2deg, deg2pix import copy from matplotlib.patches import Ellipse import sys import warnings if sys.version_info[0] == 2: # if Python 2: range = xrange pass #%% def tobii2norm(pos): ''' Converts from Tobiis coordinate system [0, 1] to PsychoPy's 'norm' (-1, 1). Note that the Tobii coordinate system start in the upper left corner and the PsychoPy coordinate system in the center. y = -1 in PsychoPy coordinates means bottom of screen Args: pos: N x 2 array with positions ''' pos_temp = copy.deepcopy(pos) # To avoid that the called parameter is changed # Convert between coordinate system pos_temp[:, 0] = 2.0 * (pos_temp[:, 0] - 0.5) pos_temp[:, 1] = 2.0 * (pos_temp[:, 1] - 0.5) * -1 return pos_temp def norm2tobii(pos): ''' Converts from PsychoPy's 'norm' (-1, 1) to Tobiis coordinate system [0, 1]. Note that the Tobii coordinate system start in the upper left corner and the PsychoPy coordinate system in the center. y = -1 in PsychoPy coordinates means bottom of screen Args: pos: N x 2 array with positions ''' pos_temp = copy.deepcopy(pos) # To avoid that the called parameter is changed # Convert between coordinate system pos_temp[:, 0] = pos_temp[:, 0] / 2.0 + 0.5 pos_temp[:, 1] = pos_temp[:, 1]/ -2.0 + 0.5 return pos_temp def tobii2deg(pos, mon): ''' Converts Tobiis coordinate system [0, 1 to degrees. Note that the Tobii coordinate system start in the upper left corner and the PsychoPy coordinate system in the center Assumes pixels are square Args: pos: N x 2 array with calibratio position in [0, 1] screen_height: height of screen in cm ''' pos_temp = copy.deepcopy(pos) # To avoid that the called parameter is changed # Center pos_temp[:, 0] = pos_temp[:, 0] - 0.5 pos_temp[:, 1] = (pos_temp[:, 1] - 0.5) * -1 # Cenvert to psychopy coordinates (center) pos_temp[:, 0] = pos_temp[:, 0] * mon.getWidth() pos_temp[:, 1] = pos_temp[:, 1] * mon.getWidth() * (float(mon.getSizePix()[1]) / \ float(mon.getSizePix()[0])) # Convert to deg. pos_deg = cm2deg(pos_temp, mon, correctFlat=False) return pos_deg def deg2tobii(pos, mon): ''' Converts from degrees to Tobiis coordinate system [0, 1]. Note that the Tobii coordinate system start in the upper left corner and the PsychoPy coordinate system in the center ''' # First convert from deg to pixels pos[:, 0] = deg2pix(pos[:, 0], mon, correctFlat=False) pos[:, 1] = deg2pix(pos[:, 1], mon, correctFlat=False) # Then normalize data -1,1 pos[:, 0] = pos[:, 0] / float(mon.getSizePix()[0])/2 pos[:, 1] = pos[:, 1] / float(mon.getSizePix()[1])/2 #.. finally shift to tobii coordinate system return norm2tobii(pos) def tobii2pix(pos, mon): ''' Converts from Tobiis coordinate system [0, 1] to pixles. Note that the Tobii coordinate system start in the upper left corner and screen coordinate in the upper left corner Args: pos: N x 2 array with calibratio position in [0, 1] screen_height: height of screen in cm ''' # Center pos[:, 0] = pos[:, 0] * mon.getSizePix()[0] pos[:, 1] = pos[:, 1] * mon.getSizePix()[1] # Convert to deg. return pos def pix2tobii(pos, mon): ''' Converts from PsychoPy pixels to Tobiis coordinate system [0, 1]. Note that the Tobii coordinate system start in the upper left corner and the PsychoPy coordinate system in the center ''' # Normalize data -1,1 pos[:, 0] = pos[:, 0] / (float(mon.getSizePix()[0]) / 2.0) pos[:, 1] = pos[:, 1] / (float(mon.getSizePix()[1]) / 2.0) #.. finally shift to tobii coordinate system return norm2tobii(pos) #%% class MyDot2: ''' Generates the best fixation target according to Thaler et al. (2013) ''' def __init__(self, win, outer_diameter=0.5, inner_diameter=0.1, outer_color = 'black', inner_color = 'white',units = 'deg'): ''' Class to generate a stimulus dot with units are derived from the window ''' # Set propertis of dot outer_dot = visual.Circle(win,fillColor = outer_color, radius = outer_diameter/2, units = units) inner_dot = visual.Circle(win,fillColor = outer_color, radius = inner_diameter/2, units = units) line_vertical = visual.Rect(win, width=inner_diameter, height=outer_diameter, fillColor=inner_color, units = units) line_horizontal = visual.Rect(win, width=outer_diameter, height=inner_diameter, fillColor=inner_color, units = units) self.outer_dot = outer_dot self.inner_dot = inner_dot self.line_vertical = line_vertical self.line_horizontal = line_horizontal def set_size(self, size): ''' Sets the size of the stimulus as scaled by 'size' That is, if size == 1, the size is not altered. ''' self.outer_dot.radius = size / 2 self.line_vertical.height = size self.line_horizontal.width = size def set_pos(self, pos): ''' sets position of dot pos = [x,y] ''' self.outer_dot.pos = pos self.inner_dot.pos = pos self.line_vertical.pos = pos self.line_horizontal.pos = pos def get_pos(self): ''' get position of dot ''' pos = self.outer_dot.pos return pos def get_size(self): ''' get size of dot ''' return self.outer_dot.size def draw(self): ''' draws the dot ''' self.outer_dot.draw() self.line_vertical.draw() self.line_horizontal.draw() self.inner_dot.draw() def invert_color(self): ''' inverts the colors of the dot ''' temp = self.outer_dot.fillColor self.outer_dot.fillColor = self.inner_dot.fillColor self.inner_dot.fillColor = temp def set_color(self, color): self.outer_dot.lineColor = 'blue' self.outer_dot.fillColor = 'blue' self.inner_dot.fillColor = 'blue' self.inner_dot.lineColor = 'blue' self.line_vertical.lineColor = 'red' self.line_horizontal.fillColor = 'red' self.line_vertical.fillColor = 'red' self.line_horizontal.lineColor = 'red' #%% class RingBuffer(object): """ A simple ring buffer based on the deque class""" def __init__(self, maxlen=200): # Create que with maxlen self.maxlen = maxlen self._b = deque(maxlen=maxlen) def clear(self): """ Clears buffer """ return(self._b.clear()) def get_all(self): """ Returns all samples from buffer and empties the buffer""" lenb = len(self._b) return([self._b.popleft() for i in range(lenb)]) def peek(self): """ Returns all samples from buffer without emptying the buffer First remove an element, then add it again """ b_temp = copy.copy(self._b) c = [] if len(b_temp) > 0: for i in range(len(b_temp)): c.append(b_temp.pop()) return(c) def append(self, L): self._b.append(L) """"Append buffer with the most recent sample (list L)""" #%% def ellipse(xy = (0, 0), width=1, height=1, angle=0, n_points=50): ''' Generates edge points for an ellipse Args: xy - center of ellipse width - width of ellipse height - height of ellipse angle - angular rotation of ellipse (in radians) n_points - number of points to generate Return: points - n x 2 array with ellipse points ''' xpos,ypos=xy[0], xy[1] radm,radn=width,height an=angle co,si=np.cos(an),np.sin(an) the=np.linspace(0,2*np.pi,n_points) X=radm*np.cos(the)*co-si*radn*np.sin(the)+xpos Y=radm*np.cos(the)*si+co*radn*np.sin(the)+ypos points = np.vstack((X, Y)).T return points #%% class EThead(object): """ A class to handle head animation in Titta The animated head should reflect a mirror image of the participants head. """ def __init__(self, win): ''' Args: win - psychopy window handle ''' self.win = win # Define colors blue = tuple(np.array([37, 97, 163]) / 255.0 * 2 - 1) green = tuple(np.array([0, 120, 0]) / 255.0 * 2 - 1) red = tuple(np.array([150, 0, 0]) / 255.0 * 2 - 1) yellow = tuple(np.array([255, 255, 0]) / 255.0 * 2 - 1) yellow_linecolor = tuple(np.array([255, 255, 0]) / 255.0 * 2 - 1) # Head parameters HEAD_POS_CIRCLE_FIXED_COLOR = blue HEAD_POS_CIRCLE_FIXED_RADIUS = 0.20 self.HEAD_POS_ELLIPSE_MOVING_HEIGHT = 0.20 self.HEAD_POS_ELLIPSE_MOVING_MIN_HEIGHT = 0.05 # Eye parameters self.EYE_SIZE = 0.03 # Setup control circles for head position self.static_circ = visual.Circle(win, radius = HEAD_POS_CIRCLE_FIXED_RADIUS, lineColor = HEAD_POS_CIRCLE_FIXED_COLOR, lineWidth=4, units='height') self.moving_ellipse = visual.ShapeStim(win, lineColor = yellow_linecolor, lineWidth=4, units='height', fillColor=yellow, opacity=0.1) # Ellipses for eyes self.eye_l = visual.ShapeStim(win, lineColor = 'white', fillColor='white', lineWidth=2, units='height') self.eye_r = visual.ShapeStim(win, lineColor = 'white', fillColor='white', lineWidth=2, units='height') # Ellipses for pupils self.pupil_l = visual.ShapeStim(win, fillColor = 'black', lineColor = 'black', units='height') self.pupil_r = visual.ShapeStim(win, fillColor = 'black', lineColor = 'black', units='height') self.eye_l_closed = visual.Rect(win, fillColor=(1,1,1), lineColor=(1,1,1), units='height') self.eye_r_closed = visual.Rect(win, fillColor=(1,1,1), lineColor=(1,1,1), units='height') self.head_width = 0.25 self.head_height = 0.25 def update(self, sample, sample_user_pos, latest_valid_binocular_avg, previous_binocular_sample_valid, latest_valid_roll, latest_valid_yaw, offset, eye='both'): ''' Args: sample - a dict containing information about the sample relevant info in sample is 'left_gaze_origin_in_user_coordinate_system' 'right_gaze_origin_in_user_coordinate_system' 'left_gaze_origin_in_trackbox_coordinate_system' 'right_gaze_origin_in_trackbox_coordinate_system' 'left_pupil_diameter' 'right_pupil_diameter' sample_user_pos - a dict containing information about the user positioning. relevant info in sample is 'left_user_position' 'left_user_position_validity' 'right_user_position' 'right_user_position_validity' eye - track, both eyes, left eye, or right eye the non-tracked eye will be indicated by a cross latest_binocular_avg ''' self.eye = eye # Which eye(s) should be tracked self.latest_valid_roll = latest_valid_roll * 180 / np.pi * -1 # Indicate that eye is not used by red color if 'right' in self.eye: self.eye_l_closed.fillColor = (1, -1, -1) # Red if 'left' in self.eye: self.eye_r_closed.fillColor = (1, -1, -1) #%% 1. Compute the average position of the head ellipse xyz_pos_eye_l = sample_user_pos['left_user_position'] xyz_pos_eye_r = sample_user_pos['right_user_position'] # Valid data from the eyes? self.right_eye_valid = np.sum(np.isnan(xyz_pos_eye_r)) == 0 # boolean self.left_eye_valid = np.sum(np.isnan(xyz_pos_eye_l)) == 0 # Compute the average position of the eyes with warnings.catch_warnings(): warnings.simplefilter("ignore", category=RuntimeWarning) avg_pos = np.nanmean([xyz_pos_eye_l, xyz_pos_eye_r], axis=0) # print('avg pos {:f} {:f} {:f}'.format(avg_pos[0], avg_pos[1], avg_pos[2])) # If one eye is closed, the center of the circle is moved, # Try to prevent this by compensating by an offset if eye == 'both': if self.left_eye_valid and self.right_eye_valid: # if both eyes are open latest_valid_binocular_avg = avg_pos[:] previous_binocular_sample_valid = True offset = np.array([0, 0, 0]) elif self.left_eye_valid or self.right_eye_valid: if previous_binocular_sample_valid: offset = latest_valid_binocular_avg - avg_pos previous_binocular_sample_valid = False #(0.5, 0.5, 0.5) means the eye is in the center of the box self.moving_ellipse.pos = ((avg_pos[0] - 0.5) * -1 - offset[0] , (avg_pos[1] - 0.5) * -1 - offset[1]) self.moving_ellipse.height = (avg_pos[2] - 0.5)*-1 * 0.5 + self.HEAD_POS_ELLIPSE_MOVING_HEIGHT # Control min size of head ellipse if self.moving_ellipse.height < self.HEAD_POS_ELLIPSE_MOVING_MIN_HEIGHT: self.moving_ellipse.height = self.HEAD_POS_ELLIPSE_MOVING_MIN_HEIGHT # Compute roll and yaw data from 3D information about the eyes # in the headbox (if both eyes are valid) if self.left_eye_valid and self.right_eye_valid: roll = np.math.tan((xyz_pos_eye_l[1] - xyz_pos_eye_r[1]) / \ (xyz_pos_eye_l[0] - xyz_pos_eye_r[0])) yaw = np.math.tan((xyz_pos_eye_l[2] - xyz_pos_eye_r[2]) / \ (xyz_pos_eye_l[0] - xyz_pos_eye_r[0])) *-1 latest_valid_roll = roll latest_valid_yaw = yaw else: # Otherwise use latest valid measurement roll = latest_valid_roll yaw = latest_valid_roll # print('test', latest_valid_binocular_avg, roll, yaw) # Compute the ellipse height and width # The width should be zero if yaw = pi/2 rad (90 deg) # The width should be equal to the height if yaw = 0 self.head_width = self.moving_ellipse.height - \ np.abs(yaw) / np.pi * (self.moving_ellipse.height) # print(self.moving_ellipse.pos, self.moving_ellipse.height, # self.head_width, roll, yaw) # Get head ellipse points to draw ellipse_points_head = ellipse(xy = (0, 0), width= self.head_width, height=self.moving_ellipse.height, angle=roll) # update position and shape of head ellipse self.moving_ellipse.vertices = ellipse_points_head #%% Compute the position and size of the eyes (roll) eye_head_distance = self.head_width / 2 self.eye_l.pos = (self.moving_ellipse.pos[0] -
np.cos(roll)
numpy.cos
""" main training script """ import os import math from decimal import Decimal import utility import numpy as np from math import floor import torch import torch.nn.utils as utils from tqdm import tqdm import torch.nn.functional as F class Trainer(): def __init__(self, args, loader, my_model, my_loss, ckp): self.args = args self.scale = args.scale self.ckp = ckp self.loader_train = loader.loader_train self.loader_test = loader.loader_test self.model = my_model self.loss = my_loss self.losstype = args.loss self.task = args.task self.noise_eval = args.noise_eval self.optimizer = utility.make_optimizer(args, self.model) if self.args.load != '': self.optimizer.load(ckp.dir, epoch=len(ckp.log)) self.noiseL_B = [0, 55] # ingnored when opt.mode=='S' self.error_last = 1e8 self.ckp.write_log("-------options----------") self.ckp.write_log(args) def train(self): self.loss.step() epoch = self.optimizer.get_last_epoch() + 1 lr = self.optimizer.get_lr() self.ckp.write_log( '[Epoch {}]\tLearning rate: {:.2e}'.format(epoch, Decimal(lr)) ) self.loss.start_log() self.model.train() timer_data, timer_model, timer_backward = utility.timer(), utility.timer(), utility.timer() # TEMP self.loader_train.dataset.set_scale(0) for batch, (lr, hr, mask, _,) in enumerate(self.loader_train): if self.args.debug: print("into train loop") print(lr.shape,hr.shape,mask.shape) if self.task =='denoise' and (not self.args.real_isp): #if self.args.compute_grads or self.args.predict_groups: noise = torch.randn(lr.size())*(self.noise_eval) lr = torch.clamp((lr + noise),0,255) lr, hr, mask = self.prepare(lr, hr, mask) # lr = lr.to(self.model.device) # hr = hr.to(self.model.device) # mask = mask.to(self.model.device) mask.requires_grad_(False) if self.args.debug: print('lr shape:', lr.shape) print("hr shape: ", hr.shape) print("mask shape", mask.shape) timer_data.hold() timer_model.tic() self.optimizer.zero_grad() sr = self.model(lr, mask, 0) if self.args.debug: print("training forwarded: ") print(lr.shape,hr.shape,mask.shape) print(mask.dtype) print(mask[:,10:12,10:12]) if self.args.compute_grads: loss = self.loss(sr, mask) elif self.args.predict_groups: mask = mask.long() loss = self.loss_expand(sr[0],mask[:,0,:,:])+self.loss_expand(sr[1],mask[:,1,:,:])+self.loss_expand(sr[2],mask[:,2,:,:]) else: if 'WeightedL1' in self.losstype: loss = self.loss(sr, hr, mask) else: loss = self.loss(sr, hr) timer_backward.tic() loss.backward() timer_backward.hold() if self.args.debug: print("loss backwarded: ") if self.args.gclip > 0: utils.clip_grad_value_( self.model.parameters(), self.args.gclip ) self.optimizer.step() timer_model.hold() if (batch + 1) % self.args.print_every == 0: if self.args.timer: self.ckp.write_log('[{}/{}]\t{}\t{:.3f}+{:.3f}+{:.3f}s\t{:.3f}+{:.3f}+{:.3f}s'.format( (batch + 1) * self.args.batch_size, len(self.loader_train.dataset), self.loss.display_loss(batch), timer_model.release(), timer_data.release(), timer_backward.release(), self.args.timer_total_forward.release(), self.args.timer_embedding_forward.release(), self.args.timer_kconv_forward.release(), )) else: self.ckp.write_log('[{}/{}]\t{}\t{:.1f}+{:.1f}+{:.1f}s'.format( (batch + 1) * self.args.batch_size, len(self.loader_train.dataset), self.loss.display_loss(batch), timer_model.release(), timer_data.release(), timer_backward.release())) timer_data.tic() self.loss.end_log(len(self.loader_train)) self.error_last = self.loss.log[-1, -1] self.optimizer.schedule() def loss_expand(self,pred,ground): if self.args.debug: print("loss expand function:") print(pred.shape, ground.shape) pred = pred.permute(0, 2, 3, 1) ncs = pred.shape[3] pred = pred.view(-1, ncs) mask_flat = ground.view(-1) lossp = self.loss(pred, mask_flat) return lossp """ def merge_grads(self,grads_tensor): stre = np.linspace(0, 0.2, self.args.Qstr + 1)[1:-1] cohe = np.linspace(0, 1, self.args.Qcohe + 1)[1:-1] grads = grads_tensor.cpu().numpy() H, W, C = grads.shape if self.args.debug: print('merging grads:') print(stre, cohe) print(grads.shape, grads.dtype) grad_map = np.zeros((H, W), dtype=np.int32) for i in range(H): for j in range(W): if self.args.debug: print('grads:') print(grads[i,j,0],grads[i,j,1],grads[i,j,2]) tempu = floor(grads[i, j, 0] * self.args.Qangle) if tempu < 0: tempu = 0 if tempu > self.args.Qangle - 1: tempu = self.args.Qangle - 1 if self.args.debug: print('tempu:') print(tempu) lamda = np.searchsorted(stre, grads[i, j, 1]) mu = np.searchsorted(cohe, grads[i, j, 2]) if self.args.debug: print('lamda&mu:') print(lamda, mu) grad_map[i,j] = (tempu * self.args.Qstr * self.args.Qcohe) + lamda * self.args.Qcohe + mu if self.args.debug: print('grad_map:') print(grad_map[10:12,10:12]) return grad_map """ def merge_grads(self,grads_tensor): """ :param grads_tensor: of shape (H,W,3) :return: """ if self.args.Qstr ==2: stre = np.array([0.05],dtype=np.float32) else: stre = np.linspace(0, 0.2, self.args.Qstr + 1)[1:-1] if self.args.Qcohe ==2: cohe = np.array([0.3], dtype=np.float32) else: cohe = np.linspace(0, 1, self.args.Qcohe + 1)[1:-1] grads = grads_tensor.cpu().numpy() H, W, C = grads.shape if self.args.debug: print('merging grads:') print(stre, cohe) print(grads.shape, grads.dtype) tempus = np.clip(np.floor(grads[:,:,0]*self.args.Qangle),0,self.args.Qangle-1) lamdas = np.clip(np.searchsorted(stre,grads[:,:,1]),0,self.args.Qstr) mus = np.clip(np.searchsorted(cohe,grads[:,:,2]),0,self.args.Qcohe) grad_map = (tempus * self.args.Qstr * self.args.Qcohe) + lamdas * self.args.Qcohe + mus if self.args.debug: print('grad_map:') print(grad_map.shape) print(grad_map[10:12,10:12]) return grad_map def stride_cut(self,lr,hr,mask=None, split_size=400, overlap_size=100): if self.args.debug: print('stride cutting the following tensors: ') print('lr: ',lr.shape) print('hr: ',hr.shape) if mask is not None: print('mask: ',mask.shape) print('split_size: ',split_size,' overlap_size: ',overlap_size) stride = split_size - overlap_size ## 构建图像块的索引 orig_shape = (lr.shape[2], lr.shape[3]) imhigh = lr.shape[2] imwidth = lr.shape[3] range_y = np.arange(0, imhigh - split_size, stride) range_x = np.arange(0, imwidth - split_size, stride) if self.args.debug: print(range_x) print(range_y) if range_y[-1] != imhigh - split_size: range_y = np.append(range_y, imhigh - split_size) if range_x[-1] != imwidth - split_size: range_x = np.append(range_x, imwidth - split_size) sz = len(range_y) * len(range_x) ## 图像块的数量 if self.args.debug: print('sz: ',sz) res_lr= torch.zeros((sz,lr.shape[1], split_size,split_size),dtype=lr.dtype) res_hr = torch.zeros((sz, hr.shape[1], split_size, split_size), dtype = hr.dtype) res_mask = torch.zeros((sz, split_size, split_size), dtype = mask.dtype) if self.args.debug: print(range_x) print(range_y) print('sz: ',sz, res_lr.shape,res_lr.dtype,res_hr.shape,res_mask.shape,res_mask.dtype) index = 0 for y in range_y: for x in range_x: res_lr[index,:,:,:] = lr[0,:,y:y + split_size, x:x + split_size] res_hr[index, :, :, :] = hr[0, :, y:y + split_size, x:x + split_size] res_mask[index, :, :] = mask[0, y:y + split_size, x:x + split_size] index = index + 1 if self.args.debug: print('finished cutting: ', res_lr.shape,res_hr.shape,res_mask.shape) return res_lr,res_hr,res_mask def recon_from_cols(self,sr_cols,imsize, stride=300,split_size=400): sr_recon = torch.zeros((1,sr_cols.shape[1],imsize[0],imsize[1]),dtype = sr_cols.dtype) w = torch.zeros((1,sr_cols.shape[1],imsize[0],imsize[1]),dtype = sr_cols.dtype) if self.args.debug: print('reconstructing patches: ', sr_recon.shape, w.shape) range_y = np.arange(0, imsize[0] - split_size, stride) range_x = np.arange(0, imsize[1] - split_size, stride) if range_y[-1] != imsize[0] - split_size: range_y =
np.append(range_y, imsize[0] - split_size)
numpy.append
import random import numpy as np def approx_entropy(x, m=2, r=20.0, use_std_r=False): N = x.shape[0] def _d(x_i, x_j): return np.max(np.abs(x_i - x_j), 1) def _phi(N, m, r, x): s = np.empty((N - m + 1, m)) for i in range(N - m + 1): s[i,:] = x[i:i+m] C = np.zeros((N - m + 1,)) for i in range(N - m +1): C += np.less_equal(_d(s, np.roll(s, i, axis=0)), r) C /= (N - m + 1.0) return (N - m + 1.0)**(-1) * np.sum(np.log(C)) if use_std_r: r = r * np.std(x) return abs(_phi(N, m + 1, r, x) - _phi(N, m, r, x)) def id_scale(y): return y def get_approx_entropy(m, r, scale=id_scale): def custom_approx_entropy(x): x = scale(x) N = x.shape[0] def _d(x_i, x_j): return np.max(np.abs(x_i - x_j), 1) def _phi(N, m, r, x): s = np.empty((N - m + 1, m)) for i in range(N - m + 1): # try: s[i,:] = x[i:i+m] # except Exception as e: # print(s[i, :].shape, x[i:i+m].shape, i, m) # raise e C = np.zeros((N - m + 1,)) for i in range(N - m +1): C += np.less_equal(_d(s, np.roll(s, i, axis=0)), r) C /= (N - m + 1.0) return (N - m + 1.0)**(-1) * np.sum(np.log(C)) return abs(_phi(N, m + 1, r, x) - _phi(N, m, r, x)) return custom_approx_entropy def sample_entropy(x, m=2, r=0.15, use_std_r=True): N = x.shape[0] def _d(x_i, x_j): return np.max(np.abs(x_i - x_j), 1) def _C(N, m, r, x): s = np.empty((N - m + 1, m)) for i in range(N - m + 1): s[i,:] = x[i:i+m] C = np.zeros((N - m + 1,)) for i in range(1, N - m +1): C += np.less_equal(_d(s, np.roll(s, i, axis=0)), r) C /= (N - m - 1.0) return np.sum(C) / (N - m) if use_std_r: r = r * np.std(x) A = _C(N, m+1, r, x) B = _C(N, m, r, x) return -np.log(A / B) def triangle_noise(data, pts=1, dx=3): max_noise = np.std(data) noised = np.copy(data) inds = np.random.choice(range(0, noised.size - 1), pts) for ind in inds: noise = (random.random() - 0.5) * 2.0 * max_noise for i in range(max(ind-dx, 0), min(ind+dx+1, noised.size)): noised[i] += noise * (1.0 - (abs((ind - i))/(dx+1.0))) return noised def get_scale(h, w): def curry_scale(y): try: y2 = np.interp(np.linspace(0, y.size-1, w), np.arange(y.size), y) except Exception as e: print('error on y: '+str(y)) raise e y3 = y2 - np.min(y2) y4 = y3 * (h/np.max(y3)) return y4 return curry_scale def scale(y, h, w): try: y2 = np.interp(np.linspace(0, y.size-1, w), np.arange(y.size), y) except Exception as e: print('error on y: '+str(y)) raise e y3 = y2 - np.min(y2) y4 = y3 * (h/np.max(y3)) return y4 def step_noise_cb(i): step_size = 1 dx = 3 if i > 0: x5 = i // 5 x10 = i // 10 x20 = i // 20 step_size += x5 + x10 + x20 if i > 50: dx = 2 if i > 100: dx = 1 if i > 200: dx = 0 return (step_size, dx) def add_entropy(data, entropy_to_add, entropy_fcn=sample_entropy, noise_fcn=triangle_noise, scale=id_scale, step_cb=None, step_size=1, max_steps=300, verbose=False): meas_entropy = approx_entropy(scale(data)) target_entropy = meas_entropy + entropy_to_add return noise_to_entropy(data, target_entropy, meas_entropy, entropy_fcn, noise_fcn, scale, step_cb, step_size, max_steps, verbose) def noise_to_entropy(data, target_entropy, meas_entropy=None, entropy_fcn=approx_entropy, noise_fcn=triangle_noise, step_cb=None, max_steps=300, verbose=False): if meas_entropy is None: meas_entropy = entropy_fcn(data) noised = np.copy(data) i = 0 noise_args = () while (meas_entropy < target_entropy): if (i >= max_steps): if verbose: print('exceeded max iterations!') break if step_cb is not None: noise_args = step_cb(i) new_noised = noise_fcn(noised, *noise_args) new_meas_entropy = entropy_fcn(new_noised) if new_meas_entropy > meas_entropy: meas_entropy = new_meas_entropy noised = new_noised i += 1 if verbose: print('noise iters: {}'.format(i)) return noised # def smooth(data, w): def smooth(data, window_width, smooth_factor): # w = np.array([w_edge, 1.0, w_edge]) w = np.hamming(window_width) + smooth_factor w = w/w.sum() tiles = len(w) // 2 # print(tiles) startpad = np.tile(data[0], tiles) endpad = np.tile(data[-1], tiles) # print(startpad.shape, data.shape, endpad.shape) smoothed = np.convolve(
np.concatenate([startpad, data, endpad])
numpy.concatenate
from __future__ import print_function from numpy.random import seed seed(1) import sys import numpy as np import matplotlib matplotlib.use('Agg') from matplotlib import pyplot as plt import os from PIL import Image import io from sklearn.model_selection import StratifiedShuffleSplit from vgg16module import VGG16 from keras.models import Model, model_from_json, model_from_yaml, Sequential from keras.layers import Input, Convolution2D, MaxPooling2D, LSTM, Reshape, Merge, TimeDistributed, Flatten, Activation, Dense, Dropout, merge, AveragePooling2D, ZeroPadding2D, Lambda from keras.optimizers import Adam, SGD from keras.layers.normalization import BatchNormalization from keras import backend as K K.set_image_dim_ordering('th') from keras.utils import np_utils from sklearn.metrics import confusion_matrix, accuracy_score from skimage.io import imsave from keras.callbacks import Callback, ModelCheckpoint, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler from keras.utils.np_utils import to_categorical import json from scipy.ndimage import minimum, maximum, imread import math import numpy.ma as ma import matplotlib.cm as cm import h5py import random from collections import OrderedDict import scipy.io as sio import cv2 import glob import gc from scipy.stats import mode from collections import Counter from sklearn import svm from sklearn.metrics import roc_curve, auc from sklearn.model_selection import KFold from keras.layers.advanced_activations import ELU def plot_training_info(case, metrics, save, history): # summarize history for accuracy plt.ioff() if 'accuracy' in metrics: fig = plt.figure() plt.plot(history['acc']) plt.plot(history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'val'], loc='upper left') if save == True: plt.savefig(case + 'accuracy.png') plt.gcf().clear() else: plt.show() plt.close(fig) # summarize history for loss if 'loss' in metrics: fig = plt.figure() plt.plot(history['loss']) plt.plot(history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') #plt.ylim(1e-3, 1e-2) plt.yscale("log") plt.legend(['train', 'val'], loc='upper left') if save == True: plt.savefig(case + 'loss.png') plt.gcf().clear() else: plt.show() plt.close(fig) def step_decay(epoch): initial_lrate = 0.005 drop = 0.5 epochs_drop = 10.0 lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/epochs_drop)) return lrate def generator(folder1,folder2): for x,y in zip(folder1,folder2): yield x,y def saveFeatures(param, max_label, batch_size, phase, save_features, feature_extractor, classifier, features_file, labels_file, train_split, test_split): #data_folder = '/ssd_drive/data/' data_folder = '/ssd_drive/MultiCam_OF2/' mean_file = '/ssd_drive/flow_mean.mat' L = 10 class0 = 'Falls' class1 = 'NotFalls' # TRANSFORMACIONES flip = False crops = False rotate = False translate = False #i, j = 0, 0 # substract mean d = sio.loadmat(mean_file) flow_mean = d['image_mean'] num_features = 4096 # =============================================== print('Starting the loading') mult = 1 if flip: mult = 2 if flip and crops: mult = 10 if flip and crops and rotate and translate: mult = 39 #size = 0 #folders, classes = [], [] #fall_videos = [f for f in os.listdir(data_folder + class0) if os.path.isdir(os.path.join(data_folder + class0, f))] #fall_videos.sort() #for fall_video in fall_videos: # x_images = glob.glob(data_folder + class0 + '/' + fall_video + '/flow_x*.jpg') # if int(len(x_images)) >= 10: # folders.append(data_folder + class0 + '/' + fall_video) # classes.append(0) #not_fall_videos = [f for f in os.listdir(data_folder + class1) if os.path.isdir(os.path.join(data_folder + class1, f))] #not_fall_videos.sort() #for not_fall_video in not_fall_videos: # if int(len(x_images)) >= 10: # x_images = glob.glob(data_folder + class1 + '/' + not_fall_video + '/flow_x*.jpg') # folders.append(data_folder + class1 + '/' + not_fall_video) # classes.append(1) h5features = h5py.File(features_file,'w') h5labels = h5py.File(labels_file,'w') # Get all folders and classes i = 0 idx = 0 #nb_total_stacks = 0 #for folder in folders: # x_images = glob.glob(folder + '/flow_x*.jpg') # nb_total_stacks += int(len(x_images))-L+1 #size_test *= mult #dataset_features_train = h5features.create_dataset('train', shape=(size_train, num_features), dtype='float64') #dataset_features_test = h5features.create_dataset('test', shape=(size_test, num_features), dtype='float64') #dataset_labels_train = h5labels.create_dataset('train', shape=(size_train, 1), dtype='float64') #dataset_labels_test = h5labels.create_dataset('test', shape=(size_test, 1), dtype='float64') #print(size_train, size_test) #a = np.zeros((20,10)) #b = range(20) #nb_stacks=20-10+1 #for i in range(len(b)): # for s in list(reversed(range(min(10,i+1)))): # print(i,s) # a[i-s,s] = b[i] #ind_fold = 0 fall_videos = np.zeros((24,2), dtype=np.int) i = 0 while i < 3: fall_videos[i,:] = [i*7, i*7+7] i += 1 fall_videos[i,:] = [i*7, i*7+14] i += 1 while i < 23: fall_videos[i,:] = [i*7, i*7+7] i += 1 fall_videos[i,:] = [i*7, i*7] not_fall_videos = np.zeros((24,2), dtype=np.int) i = 0 while i < 23: not_fall_videos[i,:] = [i*7, i*7+14] i += 1 not_fall_videos[i,:] = [i*7, i*7+7] stages = [] for i in [24] + range(1,24): stages.append('chute{:02}'.format(i)) black = np.zeros((224,224)) idx_falls, idx_nofalls = 0, 0 for stage, nb_stage in zip(stages, range(len(stages))): print(nb_stage, stage) h5features.create_group(stage) h5labels.create_group(stage) #h5features[stage].create_group('augmented') h5features[stage].create_group('not_augmented') #h5labels[stage].create_group('augmented') h5labels[stage].create_group('not_augmented') cameras = glob.glob(data_folder + stage + '/cam*') cameras.sort() for camera, nb_camera in zip(cameras, range(1, len(cameras)+1)): print('Cam {}'.format(nb_camera)) #h5features[stage]['augmented'].create_group('cam{}'.format(nb_camera)) h5features[stage]['not_augmented'].create_group('cam{}'.format(nb_camera)) #h5labels[stage]['augmented'].create_group('cam{}'.format(nb_camera)) h5labels[stage]['not_augmented'].create_group('cam{}'.format(nb_camera)) #not_falls = [f for f in os.listdir(data_folder + stage + '/cam{}/NotFalls/'.format(nb_camera)) if os.path.isdir(os.path.join(data_folder + stage + '/cam{}/NotFalls/'.format(nb_camera), f))] not_falls = glob.glob(camera + '/NotFalls/notfall*'.format(nb_camera)) not_falls.sort() h5features.close() h5labels.close() h5features = h5py.File(features_file,'a') h5labels = h5py.File(labels_file,'a') for not_fall in not_falls: print(not_fall) label = 1 x_images = glob.glob(not_fall + '/flow_x*.jpg') x_images.sort() y_images = glob.glob(not_fall + '/flow_x*.jpg') y_images.sort() nb_stacks = int(len(x_images))-L+1 #features_aug_notfall = h5features[stage]['augmented']['cam{}'.format(nb_camera)].create_dataset('notfall{:04}'.format(idx_nofalls), shape=(nb_stacks*2, num_features), dtype='float64') features_notfall = h5features[stage]['not_augmented']['cam{}'.format(nb_camera)].create_dataset('notfall{:04}'.format(idx_nofalls), shape=(nb_stacks, num_features), dtype='float64') #labels_aug_notfall = h5labels[stage]['augmented']['cam{}'.format(nb_camera)].create_dataset('notfall{:04}'.format(idx_nofalls), shape=(nb_stacks*2, 1), dtype='float64') labels_notfall = h5labels[stage]['not_augmented']['cam{}'.format(nb_camera)].create_dataset('notfall{:04}'.format(idx_nofalls), shape=(nb_stacks, 1), dtype='float64') idx_nofalls += 1 if stage == 'chute24' or stage == 'chute23': flow = np.zeros(shape=(224,224,2*L,nb_stacks), dtype=np.float64) gen = generator(x_images,y_images) for i in range(len(x_images)): flow_x_file, flow_y_file = gen.next() img_x = cv2.imread(flow_x_file, cv2.IMREAD_GRAYSCALE) img_y = cv2.imread(flow_y_file, cv2.IMREAD_GRAYSCALE) for s in list(reversed(range(min(10,i+1)))): if i-s < nb_stacks: flow[:,:,2*s, i-s] = img_x flow[:,:,2*s+1,i-s] = img_y del img_x,img_y gc.collect() flow = flow - np.tile(flow_mean[...,np.newaxis], (1, 1, 1, flow.shape[3])) flow = np.transpose(flow, (3, 2, 0, 1)) predictions = np.zeros((flow.shape[0], num_features), dtype=np.float64) truth = np.zeros((flow.shape[0], 1), dtype=np.float64) for i in range(flow.shape[0]): prediction = feature_extractor.predict(np.expand_dims(flow[i, ...],0)) predictions[i, ...] = prediction truth[i] = label features_notfall[:,:] = predictions labels_notfall[:,:] = truth del predictions, truth, flow, features_notfall, labels_notfall gc.collect() #flow_aug = np.zeros(shape=(224,224,2*L,nb_stacks*2), dtype=np.float64) #gen = generator(x_images,y_images) #for i in range(len(x_images)): # flow_x_file, flow_y_file = gen.next() # img_x = cv2.imread(flow_x_file, cv2.IMREAD_GRAYSCALE) # img_y = cv2.imread(flow_y_file, cv2.IMREAD_GRAYSCALE) # flip_x = 255 - img_x[:, ::-1] # flip_y = img_y[:, ::-1] # for s in list(reversed(range(min(10,i+1)))): # if i-s < nb_stacks: # flow_aug[:,:,2*s, i-s] = img_x # flow_aug[:,:,2*s+1,i-s] = img_y # flow_aug[:,:,2*s, i-s+nb_stacks] = flip_x # flow_aug[:,:,2*s+1,i-s+nb_stacks] = flip_y # del img_x,img_y,flip_x,flip_y # gc.collect() #flow_aug = flow_aug - np.tile(flow_mean[...,np.newaxis], (1, 1, 1, flow_aug.shape[3])) #flow_aug = np.transpose(flow_aug, (3, 2, 0, 1)) #predictions = np.zeros((flow_aug.shape[0], num_features), dtype=np.float64) #truth = np.zeros((flow_aug.shape[0], 1), dtype=np.float64) #for i in range(flow_aug.shape[0]): # prediction = feature_extractor.predict(np.expand_dims(flow_aug[i, ...],0)) # predictions[i, ...] = prediction # truth[i] = label #features_aug_notfall[:,:] = predictions #labels_aug_notfall[:,:] = truth #del predictions, truth, flow_aug, features_aug_notfall, labels_aug_notfall, #gc.collect() # NOT CHUTE24 ================== else: flow = np.zeros(shape=(224,224,2*L,nb_stacks), dtype=np.float64) #flow_aug = np.zeros(shape=(224,224,2*L,nb_stacks*2), dtype=np.float64) gen = generator(x_images,y_images) for i in range(len(x_images)): flow_x_file, flow_y_file = gen.next() img_x = cv2.imread(flow_x_file, cv2.IMREAD_GRAYSCALE) img_y = cv2.imread(flow_y_file, cv2.IMREAD_GRAYSCALE) flip_x = 255 - img_x[:, ::-1] flip_y = img_y[:, ::-1] for s in list(reversed(range(min(10,i+1)))): if i-s < nb_stacks: flow[:,:,2*s, i-s] = img_x flow[:,:,2*s+1,i-s] = img_y #flow_aug[:,:,2*s, i-s] = img_x #flow_aug[:,:,2*s+1,i-s] = img_y #flow_aug[:,:,2*s, i-s+nb_stacks] = flip_x #flow_aug[:,:,2*s+1,i-s+nb_stacks] = flip_y del img_x,img_y,flip_x,flip_y gc.collect() flow = flow - np.tile(flow_mean[...,np.newaxis], (1, 1, 1, flow.shape[3])) flow = np.transpose(flow, (3, 2, 0, 1)) predictions = np.zeros((flow.shape[0], num_features), dtype=np.float64) truth = np.zeros((flow.shape[0], 1), dtype=np.float64) for i in range(flow.shape[0]): prediction = feature_extractor.predict(np.expand_dims(flow[i, ...],0)) predictions[i, ...] = prediction truth[i] = label features_notfall[:,:] = predictions labels_notfall[:,:] = truth del predictions, truth, flow, features_notfall, labels_notfall gc.collect() #flow_aug = flow_aug - np.tile(flow_mean[...,np.newaxis], (1, 1, 1, flow_aug.shape[3])) #flow_aug = np.transpose(flow_aug, (3, 2, 0, 1)) #predictions = np.zeros((flow_aug.shape[0], num_features), dtype=np.float64) #truth = np.zeros((flow_aug.shape[0], 1), dtype=np.float64) #for i in range(flow_aug.shape[0]): # prediction = feature_extractor.predict(np.expand_dims(flow_aug[i, ...],0)) # predictions[i, ...] = prediction # truth[i] = label #features_aug_notfall[:,:] = predictions #labels_aug_notfall[:,:] = truth #del predictions, truth, flow_aug, features_aug_notfall, labels_aug_notfall, #gc.collect() del x_images, y_images, nb_stacks gc.collect() if stage == 'chute24': idx += 2 continue falls = glob.glob(camera + '/Falls/fall*'.format(nb_camera)) falls.sort() h5features.close() h5labels.close() h5features = h5py.File(features_file,'a') h5labels = h5py.File(labels_file,'a') for fall in falls: print(fall) label = 0 x_images = glob.glob(fall + '/flow_x*.jpg') x_images.sort() y_images = glob.glob(fall + '/flow_y*.jpg') y_images.sort() nb_stacks = int(len(x_images))-L+1 #features_aug_fall = h5features[stage]['augmented']['cam{}'.format(nb_camera)].create_dataset('fall{:04}'.format(idx_falls), shape=(nb_stacks*2, num_features), dtype='float64') features_fall = h5features[stage]['not_augmented']['cam{}'.format(nb_camera)].create_dataset('fall{:04}'.format(idx_falls), shape=(nb_stacks, num_features), dtype='float64') #labels_aug_fall = h5labels[stage]['augmented']['cam{}'.format(nb_camera)].create_dataset('fall{:04}'.format(idx_falls), shape=(nb_stacks*2, 1), dtype='float64') labels_fall = h5labels[stage]['not_augmented']['cam{}'.format(nb_camera)].create_dataset('fall{:04}'.format(idx_falls), shape=(nb_stacks, 1), dtype='float64') idx_falls += 1 flow = np.zeros(shape=(224,224,2*L,nb_stacks), dtype=np.float64) #flow_aug = np.zeros(shape=(224,224,2*L,nb_stacks*2), dtype=np.float64) gen = generator(x_images,y_images) for i in range(len(x_images)): flow_x_file, flow_y_file = gen.next() img_x = cv2.imread(flow_x_file, cv2.IMREAD_GRAYSCALE) img_y = cv2.imread(flow_y_file, cv2.IMREAD_GRAYSCALE) flip_x = 255 - img_x[:, ::-1] flip_y = img_y[:, ::-1] for s in list(reversed(range(min(10,i+1)))): if i-s < nb_stacks: flow[:,:,2*s, i-s] = img_x flow[:,:,2*s+1,i-s] = img_y #flow_aug[:,:,2*s, i-s] = img_x #flow_aug[:,:,2*s+1,i-s] = img_y #flow_aug[:,:,2*s, i-s+nb_stacks] = flip_x #flow_aug[:,:,2*s+1,i-s+nb_stacks] = flip_y del img_x,img_y,flip_x,flip_y gc.collect() flow = flow - np.tile(flow_mean[...,np.newaxis], (1, 1, 1, flow.shape[3])) flow = np.transpose(flow, (3, 2, 0, 1)) predictions = np.zeros((flow.shape[0], num_features), dtype=np.float64) truth = np.zeros((flow.shape[0], 1), dtype=np.float64) for i in range(flow.shape[0]): prediction = feature_extractor.predict(np.expand_dims(flow[i, ...],0)) predictions[i, ...] = prediction truth[i] = label features_fall[:,:] = predictions labels_fall[:,:] = truth del predictions, truth, flow, features_fall, labels_fall gc.collect() #flow_aug = flow_aug - np.tile(flow_mean[...,np.newaxis], (1, 1, 1, flow_aug.shape[3])) #flow_aug = np.transpose(flow_aug, (3, 2, 0, 1)) #predictions = np.zeros((flow_aug.shape[0], num_features), dtype=np.float64) #truth = np.zeros((flow_aug.shape[0], 1), dtype=np.float64) #for i in range(flow_aug.shape[0]): # prediction = feature_extractor.predict(np.expand_dims(flow_aug[i, ...],0)) # predictions[i, ...] = prediction # truth[i] = label #features_aug_fall[:,:] = predictions #labels_aug_fall[:,:] = truth #del predictions, truth, features_fall, labels_aug_fall, labels_fall, flow_aug, features_aug_fall, #gc.collect() h5features.close() h5labels.close() sys.exit() for folder, label in zip(folders, classes): print(folder) h5features.create_group(folder) h5labels.create_group(folder) #os.makedirs('/home/anunez/imagenes/' + folder) x_images = glob.glob(folder + '/flow_x*.jpg') x_images.sort() y_images = glob.glob(folder + '/flow_y*.jpg') y_images.sort() nb_stacks = int(len(x_images))-(2*L)+1 flow = np.zeros(shape=(224,224,2*L,nb_stacks), dtype=np.float64) flow_aug = np.zeros(shape=(224,224,2*L,nb_stacks*mult), dtype=np.float64) gen = generator(x_images,y_images) for i in range(len(x_images)): flow_x_file, flow_y_file = gen.next() img_x = cv2.imread(flow_x_file, cv2.IMREAD_GRAYSCALE) img_y = cv2.imread(flow_y_file, cv2.IMREAD_GRAYSCALE) flip_x = 255 - img_x[:, ::-1] flip_y = img_y[:, ::-1] for s in list(reversed(range(min(10,i+1)))): flow[:,:,2*s, i-s] = img_x flow[:,:,2*s+1,i-s] = img_y flow_aug[:,:,2*s, i-s] = img_x flow_aug[:,:,2*s+1,i-s] = img_y flow_aug[:,:,2*s, i-s+nb_stacks] = flip_x flow_aug[:,:,2*s+1,i-s+nb_stacks] = flip_y del img_x,img_y,flip_x,flip_y gc.collect() flow = flow - np.tile(flow_mean[...,np.newaxis], (1, 1, 1, flow.shape[3])) flow = np.transpose(flow, (3, 2, 0, 1)) predictions = np.zeros((flow.shape[0], num_features), dtype=np.float64) truth = np.zeros((flow.shape[0], 1), dtype=np.float64) #print('flow shape {}'.format(flow.shape[0])) #print(flow.shape) for i in range(flow.shape[0]): prediction = feature_extractor.predict(np.expand_dims(flow[i, ...],0)) predictions[i, ...] = prediction truth[i] = label dataset_features_train[cont_train:cont_train+flow.shape[0], :] = predictions dataset_labels_train[cont_train:cont_train+flow.shape[0]] = truth cont_train += flow.shape[0] flow_aug = flow_aug - np.tile(flow_mean[...,np.newaxis], (1, 1, 1, flow_aug.shape[3])) flow_aug = np.transpose(flow_aug, (3, 2, 0, 1)) predictions = np.zeros((flow.shape[0], num_features), dtype=np.float64) truth = np.zeros((flow_aug.shape[0], 1), dtype=np.float64) for i in range(flow_aug.shape[0]): prediction = feature_extractor.predict(np.expand_dims(flow_aug[i, ...],0)) predictions[i, ...] = prediction truth[i] = label dataset_features_train[cont_train:cont_train+flow.shape[0], :] = predictions dataset_labels_train[cont_train:cont_train+flow.shape[0]] = truth cont_train += flow.shape[0] #print(cont, flow.shape[0]) #features[cont:cont+flow.shape[0], :] = predictions #all_labels[cont:cont+flow.shape[0], :] = truth #cont += flow.shape[0] #dataset_features2[...] = predictions2 #dataset_labels2[...] = truth del flow, predictions, truth gc.collect() #is_testing = False #if p == 0: # np.save(features_file + '2_train.npy', features) # np.save(labels_file + '2_train.npy', all_labels) #else: # np.save(features_file + '2_test.npy', features) # np.save(labels_file + '2_test.npy', all_labels) h5features.close() h5labels.close() def main(learning_rate, batch_size, dropout, batch_norm, weight_0, weight_1, nb_neurons, exp, model_file, weights_file): best_model = 'best_weights/best_weights_{}.hdf5'.format(exp) print(exp) num_features = 4096 with open(parameter_file) as data_file: param = json.load(data_file) # VGG16 ===================================================== model = Sequential() model.add(ZeroPadding2D((1, 1), input_shape=(param['input_channels'], param['input_width'], param['input_height']))) model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(64, 3, 3, activation='relu', name='conv1_2')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(128, 3, 3, activation='relu', name='conv2_2')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_2')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(256, 3, 3, activation='relu', name='conv3_3')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_2')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu', name='conv4_3')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_1')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_2')) model.add(ZeroPadding2D((1, 1))) model.add(Convolution2D(512, 3, 3, activation='relu', name='conv5_3')) model.add(MaxPooling2D((2, 2), strides=(2, 2))) model.add(Flatten()) model.add(Dense(4096, name='fc6', init='glorot_uniform')) extracted_features = Input(shape=(4096,), dtype='float32', name='input') #x = Dense(4096, activation='relu', name='fc1')(extracted_features) #if batch_norm: # x = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(extracted_features) # x = ELU(alpha=1.0)(x) x = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(extracted_features) x = Activation('relu')(x) x = Dropout(0.9)(x) x = Dense(nb_neurons, name='fc2', init='glorot_uniform')(x) #if batch_norm: # x = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(x) x = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(x) x = Activation('relu')(x) x = Dropout(0.8)(x) x = Dense(1, name='predictions', init='glorot_uniform')(x) x = Activation('sigmoid')(x) classifier = Model(input=extracted_features, output=x, name='classifier') layerskeras = ['block1_conv1', 'block1_conv2', 'block2_conv1', 'block2_conv2', 'block3_conv1', 'block3_conv2', 'block3_conv3', 'block4_conv1', 'block4_conv2', 'block4_conv3', 'block5_conv1', 'block5_conv2', 'block5_conv3', 'fc1', 'fc2', 'predictions'] layerscaffe = ['conv1_1', 'conv1_2', 'conv2_1', 'conv2_2', 'conv3_1', 'conv3_2', 'conv3_3', 'conv4_1', 'conv4_2', 'conv4_3', 'conv5_1', 'conv5_2', 'conv5_3', 'fc6', 'fc7', 'fc8'] i = 0 h5 = h5py.File('/home/anunez/project/caffedata.h5') layer_dict = dict([(layer.name, layer) for layer in model.layers]) for layer in layerscaffe[:-3]: w2, b2 = h5['data'][layer]['0'], h5['data'][layer]['1'] w2 = np.transpose(np.asarray(w2), (0,1,2,3)) w2 = w2[:, :, ::-1, ::-1] b2 = np.asarray(b2) #model.get_layer(layerskeras[i]).W.set_value(w2) #model.get_layer(layerskeras[i]).b.set_value(b2) layer_dict[layer].W.set_value(w2) layer_dict[layer].b.set_value(b2) i += 1 layer = layerscaffe[-3] w2, b2 = h5['data'][layer]['0'], h5['data'][layer]['1'] w2 = np.transpose(np.asarray(w2), (1,0)) b2 = np.asarray(b2) #model.get_layer(layerskeras[i]).W.set_value(w2) #model.get_layer(layerskeras[i]).b.set_value(b2) layer_dict[layer].W.set_value(w2) layer_dict[layer].b.set_value(b2) i += 1 copy_dense_weights = False if copy_dense_weights: print('Copiando pesos de capas densas') #for layer in layerscaffe[-2:]: layer = layerscaffe[-2] w2, b2 = h5['data'][layer]['0'], h5['data'][layer]['1'] w2 = np.transpose(w2,(1,0)) b2 = np.asarray(b2) print(layerskeras[i]) classifier.get_layer('fc2').W.set_value(w2) classifier.get_layer('fc2').b.set_value(b2) i += 1 for layer in classifier.layers: layer.trainable = True w,b = classifier.get_layer('fc2').get_weights() #print(np.allclose(w, w)) #classifier.load_weights(best_model) #plot_model(model, to_file='model.png', show_shapes=False, show_layer_names=True) #plot_model(classifier, to_file='classifier.png', show_shapes=False, show_layer_names=True) adam = Adam(lr=learning_rate, beta_1=param['beta_1'], beta_2=param['beta_2'], epsilon=param['adam_eps'], decay=param['decay']) #sgd = SGD(lr=learning_rate, momentum=0.0, decay=param['decay'], nesterov=False) #if True == 'adam': model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=param['metrics']) #elif optimizer == 'sgd': # model.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=param['metrics']) c = ModelCheckpoint(filepath=best_model, monitor='val_acc', verbose=1, save_best_only=True, save_weights_only=False, mode='auto') #e = EarlyStopping(monitor='loss', min_delta=0, patience=0, verbose=0, mode='auto') #r = ReduceLROnPlateau(monitor='val_loss', factor=0.1, patience=10, verbose=0, mode='auto', epsilon=0.0001, cooldown=0, min_lr=0) #l = LearningRateScheduler(step_decay) #pb = printbatch() #callbacks = [c] amount_of_data, parts = [],[] #validationGenerator = getDataChinese(param, param['classes'], param['batch_size'], training_parts, amount_of_data, training_parts, validation_parts, test_parts) if not os.path.isdir('train_history_results'): os.mkdir('train_history_results') #model.load_weights(best_model) # ============================================================================================================= # FEATURE EXTRACTION # ============================================================================================================= #features_file = '/home/anunez/project/features/features_multicam_final.h5' #labels_file = '/home/anunez/project/labels/labels_multicam_final.h5' features_file = '/home/anunez/project/features/features_multicam_final2.h5' labels_file = '/home/anunez/project/labels/labels_multicam_final2.h5' features_file2 = '/home/anunez/project/features/features_urfall_final3.h5' labels_file2 = '/home/anunez/project/labels/labels_urfall_final3.h5' features_file3 = '/home/anunez/project/features/features_fdd_final3.h5' labels_file3 = '/home/anunez/project/labels/labels_fdd_final3.h5' #features_file = '/home/anunez/project/features/features_multicam.h5' #labels_file = '/home/anunez/project/labels/labels_multicam.h5' save_features = False if save_features: print('Saving features') #saveFeatures(param, param['classes'], param['batch_size'], 0, amount_of_data, parts, save_features, model, model2, classifier, features_file + '1.h5', labels_file + '1.h5', train_splits[0], test_splits[0]) saveFeatures(param, param['classes'], param['batch_size'], 0, amount_of_data, parts, save_features, model, classifier, features_file, labels_file, [], []) #saveFeatures(param, param['classes'], param['batch_size'], 0, amount_of_data, parts, save_features, model, model2, classifier, features_file + '3.h5', labels_file + '3.h5', train_splits[2], test_splits[2]) #saveFeatures(param, param['classes'], param['batch_size'], 1, amount_of_data, parts, save_features, model, model2, classifier, features_file + 'validation.h5', labels_file + 'validation.h5', features_file2 + 'validation.h5', labels_file2 + 'validation.h5') #saveFeatures(param, param['classes'], param['batch_size'], 2, amount_of_data, parts, save_features, model, model2, classifier, features_file + 'testing.h5', labels_file + 'testing.h5', features_file2 + 'testing.h5', labels_file2 + 'testing.h5') print('Feature extraction finished') #sys.exit() # ============================================================================================================= # TRAINING # ============================================================================================================= #if optimizer == 'adam': adam = Adam(lr=learning_rate, beta_1=param['beta_1'], beta_2=param['beta_2'], epsilon=param['adam_eps'], decay=param['decay']) #elif True or optimizer == 'sgd': # classifier.compile(optimizer=sgd, loss='categorical_crossentropy', metrics=param['metrics']) do_training = True do_training_with_features = True do_training_normal = not do_training_with_features compute_metrics = False compute_roc_curve = False threshold = 0.5 e = EarlyStopping(monitor='val_loss', min_delta=0, patience=100, verbose=0, mode='auto') if do_training: if do_training_with_features: h5features = h5py.File(features_file, 'r') h5labels = h5py.File(labels_file, 'r') h5features2 = h5py.File(features_file2, 'r') h5labels2 = h5py.File(labels_file2, 'r') h5features3 = h5py.File(features_file3, 'r') h5labels3 = h5py.File(labels_file3, 'r') stages = [] for i in range(1,25): stages.append('chute{:02}'.format(i)) use_aug = False aug = 'not_augmented' if use_aug: aug = 'augmented' cams_x = [] cams_y = [] for stage, nb_stage in zip(stages, range(len(stages))): for cam, nb_cam in zip(h5features[stage][aug].keys(), range(8)): temp_x = [] temp_y = [] for key in h5features[stage][aug][cam].keys(): #print(h5features[stage][aug][cam][key].shape) temp_x.append(np.asarray(h5features[stage][aug][cam][key])) temp_y.append(np.asarray(h5labels[stage][aug][cam][key])) #temp_x = np.asarray(temp_x) #temp_y = np.asarray(temp_y) temp_x = np.concatenate(temp_x,axis=0) temp_y = np.concatenate(temp_y,axis=0) if nb_stage == 0: cams_x.append(temp_x) cams_y.append(temp_y) else: cams_x[nb_cam] = np.concatenate([cams_x[nb_cam], temp_x], axis=0) cams_y[nb_cam] = np.concatenate([cams_y[nb_cam], temp_y], axis=0) sensitivities_general = [] specificities_general = [] sensitivities_urfall = [] specificities_urfall = [] sensitivities_multicam = [] specificities_multicam = [] sensitivities_fdd = [] specificities_fdd = [] X = np.asarray(np.concatenate(cams_x,axis=0)) _y = np.asarray(np.concatenate(cams_y,axis=0)) X2 = np.asarray(h5features2['features']) #fdd _y2 = np.asarray(h5labels2['labels']) X3 = np.asarray(h5features3['train']) #fdd _y3 = np.asarray(h5labels3['train']) size_0 = np.asarray(np.where(_y2==0)[0]).shape[0] size_1 = np.asarray(np.where(_y2==1)[0]).shape[0] all0_1 = np.asarray(np.where(_y==0)[0]) all1_1 = np.asarray(np.where(_y==1)[0]) all0_2 = np.asarray(np.where(_y2==0)[0]) all1_2 = np.asarray(np.where(_y2==1)[0]) all0_3 = np.asarray(np.where(_y3==0)[0]) all1_3 = np.asarray(np.where(_y3==1)[0]) print(all0_1.shape[0], all1_1.shape[0]) print(all0_2.shape[0], all1_2.shape[0]) print(all0_3.shape[0], all1_3.shape[0]) all0_1 = np.random.choice(all0_1, size_0, replace=False) all1_1 = np.random.choice(all1_1, size_0, replace=False) all0_2 = np.random.choice(all0_2, size_0, replace=False) all1_2 = np.random.choice(all1_2, size_0, replace=False) all0_3 = np.random.choice(all0_3, size_0, replace=False) all1_3 = np.random.choice(all1_3, size_0, replace=False) slice_size = size_0/5 # LEAVE-ONE-OUT for fold in range(5): #print('='*30) #print('LEAVE-ONE-OUT STEP {}/8'.format(cam)) #print('='*30) #test_x = cams_x[cam] #test_y = cams_y[cam] #train_x = cams_x[0:cam] + cams_x[cam+1:] #train_y = cams_y[0:cam] + cams_y[cam+1:] #sss = StratifiedShuffleSplit(n_splits=2, test_size=0.2, random_state=777) #sss.get_n_splits(train_x, train_y) #train_index, test_index = [], [] #for a, b in sss.split(train_x, train_y): # train_index = a # test_index = b #train_index = np.asarray(train_index) #test_index = np.asarray(test_index) #train_x, test_x = train_x[train_index], train_x[test_index] #train_y, test_y = train_y[train_index], train_y[test_index] # print(all0_1.shape[0], fold*slice_size, (fold+1)*slice_size) print(all0_1[0:fold*slice_size].shape, all0_1[(fold+1)*slice_size:].shape) temp = np.concatenate(( np.hstack(( all0_1[0:fold*slice_size],all0_1[(fold+1)*slice_size:])), np.hstack(( all1_1[0:fold*slice_size],all1_1[(fold+1)*slice_size:])))) X1_train = X[temp] _y1_train = _y[temp] temp = np.concatenate(( np.hstack(( all0_2[0:fold*slice_size],all0_2[(fold+1)*slice_size:])), np.hstack(( all1_2[0:fold*slice_size],all1_2[(fold+1)*slice_size:])))) X2_train = X2[temp] _y2_train = _y2[temp] temp = np.concatenate(( np.hstack(( all0_3[0:fold*slice_size],all0_3[(fold+1)*slice_size:])), np.hstack(( all1_3[0:fold*slice_size],all1_3[(fold+1)*slice_size:])))) X3_train = X3[temp] _y3_train = _y3[temp] # TEST temp = np.concatenate(( np.hstack(( all0_1[fold*slice_size:(fold+1)*slice_size])), np.hstack(( all1_1[fold*slice_size:(fold+1)*slice_size])))) X1_test = X[temp] _y1_test = _y[temp] temp = np.concatenate(( np.hstack(( all0_2[fold*slice_size:(fold+1)*slice_size])), np.hstack(( all1_2[fold*slice_size:(fold+1)*slice_size])))) X2_test = X2[temp] _y2_test = _y2[temp] temp = np.concatenate(( np.hstack(( all0_3[fold*slice_size:(fold+1)*slice_size])), np.hstack(( all1_3[fold*slice_size:(fold+1)*slice_size])))) X3_test = X3[temp] _y3_test = _y3[temp] #print(_y.shape, _y2.shape, _y3.shape) recortar = False if recortar: all1_1 = np.random.choice(all1_1, size_0, replace=False) allin = np.concatenate((all0_1.flatten(),all1_1.flatten())) allin.sort() X = X[allin,...] _y = _y[allin] all1_2 = np.random.choice(all1_2, size_0, replace=False) allin = np.concatenate((all0_2.flatten(),all1_2.flatten())) allin.sort() X2 = X2[allin,...] _y2 = _y2[allin] all1_3 = np.random.choice(all1_3, size_0, replace=False) allin = np.concatenate((all0_3.flatten(),all1_3.flatten())) allin.sort() X3 = X3[allin,...] _y3 = _y3[allin] #sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=777) #sss.get_n_splits(X, _y) #train_index, test_index = [], [] #for a, b in sss.split(X, _y): # train_index = a # test_index = b #train_index = np.asarray(train_index) #test_index = np.asarray(test_index) #X1_train, X1_test = X[train_index], X[test_index] #_y1_train, _y1_test = _y[train_index], _y[test_index] # #sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=777) #sss.get_n_splits(X2, _y2) #train_index, test_index = [], [] #for a, b in sss.split(X2, _y2): # train_index = a # test_index = b #train_index = np.asarray(train_index) #test_index = np.asarray(test_index) #X2_train, X2_test = X2[train_index], X2[test_index] #_y2_train, _y2_test = _y2[train_index], _y2[test_index] # #sss = StratifiedShuffleSplit(n_splits=1, test_size=0.2, random_state=777) #sss.get_n_splits(X3, _y3) #train_index, test_index = [], [] #for a, b in sss.split(X3, _y3): # train_index = a # test_index = b #train_index = np.asarray(train_index) #test_index = np.asarray(test_index) #X3_train, X3_test = X3[train_index], X3[test_index] #_y3_train, _y3_test = _y3[train_index], _y3[test_index] # X_train = np.concatenate((X1_train, X2_train, X3_train), axis=0) _y_train = np.concatenate((_y1_train, _y2_train, _y3_train), axis=0) X_test = np.concatenate((X1_test, X2_test, X3_test), axis=0) _y_test = np.concatenate((_y1_test, _y2_test, _y3_test), axis=0) all0 = np.asarray(np.where(_y==0)[0]) all1 = np.asarray(np.where(_y==1)[0]) print('Train Falls/NoFalls in dataset: {}/{}, total data: {}'.format(len(all0), len(all1), X_train.shape[0])) all0 = np.asarray(np.where(_y2==0)[0]) all1 = np.asarray(np.where(_y2==1)[0]) print('Test Falls/NoFalls in dataset: {}/{}, total data: {}'.format(len(all0), len(all1), X_test.shape[0])) extracted_features = Input(shape=(4096,), dtype='float32', name='input') #x = ELU(alpha=1.0)(extracted_features) x = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(extracted_features) x = Activation('relu')(x) x = Dropout(0.9)(x) x = Dense(nb_neurons, name='fc2', init='glorot_uniform')(x) #x = ELU(alpha=1.0)(x) x = BatchNormalization(axis=-1, momentum=0.99, epsilon=0.001)(x) x = Activation('relu')(x) x = Dropout(0.8)(x) x = Dense(1, name='predictions', init='glorot_uniform')(x) x = Activation('sigmoid')(x) classifier = Model(input=extracted_features, output=x, name='classifier') classifier.compile(optimizer=adam, loss='binary_crossentropy', metrics=param['metrics']) class_weight = {0:weight_0, 1:weight_1} #print('Data after stratify: {} + {} = {}'.format(a.shape[0], c.shape[0], a.shape[0]+c.shape[0])) #print(class_weight) history = classifier.fit(X_train, _y_train, validation_data=(X_test, _y_test), batch_size=1024, nb_epoch=3000, shuffle=True, class_weight=class_weight, callbacks=[e]) #predicted = classifier.predict(X2) #for i in range(len(predicted)): # if predicted[i] < threshold: # predicted[i] = 0 # else: # predicted[i] = 1 #predicted = np.asarray(predicted).astype(int) #cm = confusion_matrix(_y2, predicted,labels=[0,1]) #tp = cm[0][0] #fn = cm[0][1] #fp = cm[1][0] #tn = cm[1][1] #tpr = tp/float(tp+fn) ##fpr = fp/float(fp+tn) #fnr = fn/float(fn+tp) #tnr = tn/float(tn+fp) #print('TP: {}, TN: {}, FP: {}, FN: {}'.format(tp,tn,fp,fn)) #print('TPR: {}, TNR: {}, FPR: {}, FNR: {}'.format(tpr,tnr,fpr,fnr)) #recall = tp/float(tp+fn) #specificity = tn/float(tn+fp) #print('Sensitivity/Recall: {}'.format(recall)) #print('Specificity: {}'.format(specificity)) #sensitivities.append(recall) #specificities.append(specificity) #precision = tp/float(tp+fp) #print('Precision: {}'.format(precision)) #print('F1-measure: {}'.format(2*float(precision*recall)/float(precision+recall))) #fpr, tpr, _ = roc_curve(_y2, predicted) #roc_auc = auc(fpr, tpr) #aucs.append(roc_auc) #print('AUC: {}'.format(roc_auc)) #print(classifier.predict(_X[0:1])) plot_training_info('prueba', param['metrics'] + ['loss'], param['save_plots'], history.history) #print(classifier.evaluate(_X2,_y2, batch_size=batch_size)) print('======= CALCULO SCIKIT GENERAL') # Confusion matrix predicted = classifier.predict(X_test) for i in range(len(predicted)): if predicted[i] < threshold: predicted[i] = 0 else: predicted[i] = 1 predicted = np.asarray(predicted).astype(int) cm = confusion_matrix(_y_test, predicted,labels=[0,1]) tp = cm[0][0] fn = cm[0][1] fp = cm[1][0] tn = cm[1][1] tpr = tp/float(tp+fn) fpr = fp/float(fp+tn) fnr = fn/float(fn+tp) tnr = tn/float(tn+fp) print('TP: {}, TN: {}, FP: {}, FN: {}'.format(tp,tn,fp,fn)) print('TPR: {}, TNR: {}, FPR: {}, FNR: {}'.format(tpr,tnr,fpr,fnr)) print('Sensitivity/Recall: {}'.format(tp/float(tp+fn))) print('Specificity: {}'.format(tn/float(tn+fp))) print('Accuracy: {}'.format(accuracy_score(_y_test, predicted))) sensitivities_general.append(tp/float(tp+fn)) specificities_general.append(tn/float(tn+fp)) print('======= CALCULO SCIKIT URFALL') predicted = classifier.predict(X2_test) for i in range(len(predicted)): if predicted[i] < threshold: predicted[i] = 0 else: predicted[i] = 1 predicted = np.asarray(predicted).astype(int) cm = confusion_matrix(_y2_test, predicted,labels=[0,1]) tp = cm[0][0] fn = cm[0][1] fp = cm[1][0] tn = cm[1][1] tpr = tp/float(tp+fn) fpr = fp/float(fp+tn) fnr = fn/float(fn+tp) tnr = tn/float(tn+fp) print('TP: {}, TN: {}, FP: {}, FN: {}'.format(tp,tn,fp,fn)) print('TPR: {}, TNR: {}, FPR: {}, FNR: {}'.format(tpr,tnr,fpr,fnr)) print('Sensitivity/Recall: {}'.format(tp/float(tp+fn))) print('Specificity: {}'.format(tn/float(tn+fp))) print('Accuracy: {}'.format(accuracy_score(_y2_test, predicted))) sensitivities_urfall.append(tp/float(tp+fn)) specificities_urfall.append(tn/float(tn+fp)) print('======= CALCULO SCIKIT MULTICAM') predicted = classifier.predict(X1_test) for i in range(len(predicted)): if predicted[i] < threshold: predicted[i] = 0 else: predicted[i] = 1 predicted = np.asarray(predicted).astype(int) cm = confusion_matrix(_y1_test, predicted,labels=[0,1]) tp = cm[0][0] fn = cm[0][1] fp = cm[1][0] tn = cm[1][1] tpr = tp/float(tp+fn) fpr = fp/float(fp+tn) fnr = fn/float(fn+tp) tnr = tn/float(tn+fp) print('TP: {}, TN: {}, FP: {}, FN: {}'.format(tp,tn,fp,fn)) print('TPR: {}, TNR: {}, FPR: {}, FNR: {}'.format(tpr,tnr,fpr,fnr)) print('Sensitivity/Recall: {}'.format(tp/float(tp+fn))) print('Specificity: {}'.format(tn/float(tn+fp))) print('Accuracy: {}'.format(accuracy_score(_y1_test, predicted))) sensitivities_multicam.append(tp/float(tp+fn)) specificities_multicam.append(tn/float(tn+fp)) print('======= CALCULO SCIKIT FDD') predicted = classifier.predict(X3_test) for i in range(len(predicted)): if predicted[i] < threshold: predicted[i] = 0 else: predicted[i] = 1 predicted = np.asarray(predicted).astype(int) cm = confusion_matrix(_y3_test, predicted,labels=[0,1]) tp = cm[0][0] fn = cm[0][1] fp = cm[1][0] tn = cm[1][1] tpr = tp/float(tp+fn) fpr = fp/float(fp+tn) fnr = fn/float(fn+tp) tnr = tn/float(tn+fp) print('TP: {}, TN: {}, FP: {}, FN: {}'.format(tp,tn,fp,fn)) print('TPR: {}, TNR: {}, FPR: {}, FNR: {}'.format(tpr,tnr,fpr,fnr)) print('Sensitivity/Recall: {}'.format(tp/float(tp+fn))) print('Specificity: {}'.format(tn/float(tn+fp))) print('Accuracy: {}'.format(accuracy_score(_y3_test, predicted))) sensitivities_fdd.append(tp/float(tp+fn)) specificities_fdd.append(tn/float(tn+fp)) # FIN DEL BUCLE print('LEAVE-ONE-OUT RESULTS ===================') print("Sensitivity General: %.2f%% (+/- %.2f%%)" % (np.mean(sensitivities_general), np.std(sensitivities_general))) print("Specificity General: %.2f%% (+/- %.2f%%)\n" % (np.mean(specificities_general), np.std(specificities_general))) print("Sensitivity UR Fall: %.2f%% (+/- %.2f%%)" % (np.mean(sensitivities_urfall), np.std(sensitivities_urfall))) print("Specificity UR Fall: %.2f%% (+/- %.2f%%)\n" % (
np.mean(specificities_urfall)
numpy.mean
from copy import deepcopy import graphviz import numpy as np def get_prev_nodes(matrix, node): """ Returns the list of the nodes arriving at the given node :param matrix: adjacency matrix of the graph :param node: given node index :return: """ n_nodes = matrix.shape[0] assert 0 <= node < n_nodes return np.where(matrix[:node, node])[0] def get_next_nodes(matrix, node): """ Returns the list of the nodes leaving the given node :param matrix: adjacency matrix of the graph :param node: given node index :return: """ n_nodes = matrix.shape[0] assert 0 <= node < n_nodes return
np.where(matrix[node, node:])
numpy.where
import numpy as np from sklearn.utils import resample from sklearn.preprocessing import StandardScaler from sklearn.utils.validation import check_memory from .stat_tools import pval_from_cb from .desparsified_lasso import desparsified_lasso, desparsified_group_lasso def _subsampling(n_samples, train_size, groups=None, seed=0): """Random subsampling: computes a list of indices""" if groups is None: n_subsamples = int(n_samples * train_size) train_index = resample(np.arange(n_samples), n_samples=n_subsamples, replace=False, random_state=seed) else: unique_groups =
np.unique(groups)
numpy.unique
from parafermions.MPO import MPO import time import numpy as np import scipy as sp class CommutatorOp(MPO): """ Class for MPO representations of commutators. """ def __init__(self, N, t, D, mu, U, Nw, Pw, dtype=np.dtype('complex128')): """ Constructor of MPO commutator class. Parameters ------------ N: int The length of the system. t: float array Hopping parameters same length as system. D: float array Pairing term (delta) same length as system. mu: float array Chemical potential same length as system. U: float array Interaction term same length as system. Nw: float array Number weighting same length as system. Pw: float Parity weighting. """ self.L = 2*N d=2; self.N = d M=13; self.chi = M self.dtype = dtype self.shape = (self.N**self.L, self.N**self.L) # for mat vec routine self.dim = self.N**self.L X = np.asarray([[0, 1],[1, 0]], dtype=dtype) Y = np.asarray([[0, -1j],[1j, 0]], dtype=dtype) Z = np.asarray([[1, 0],[0, -1]], dtype=dtype) I = np.eye(d, dtype=dtype) b = np.zeros((1,N), dtype=dtype); self.b = b # empty row p=np.reshape(np.vstack([t+D, b]).T, [2*N,1])/2.0 ; self.p = p r=np.reshape(np.vstack([mu,-(t-D)]).T,[2*N,1])/2.0; self.r = r u=np.reshape(np.vstack([U, b]).T, [2*N,1])/2.0; self.u = u padding = np.reshape(np.asarray([0.0,0.0]),(2,1)) p=np.vstack([padding, p]); self.p = p # r=[r]; # looks redundant u=np.vstack([padding, u]); self.u = u Nw=np.reshape(np.vstack([Nw,Nw]).T,[1,2*N]); self.Nw = Nw Ws = {} #H=cell(1,2*N); H1 = np.zeros((1,M,d,d), dtype=dtype) #H1 = zeros(1,d,M,d); H1[0,0,:,:] = I #H1(1,:,1,:) = I; H1[0,1,:,:] = -Y #H1(1,:,2,:) = -Y; H1[0,2,:,:] = X #H1(1,:,3,:) = X; H1[0,3,:,:] = -Y*r[0] #H1(1,:,4,:) = -Y*r(1); H1[0,4,:,:] = X*r[0] #H1(1,:,5,:) = X*r(1); H1[0,11,:,:] = Pw*Z #H1(1,:,12,:)=Pw*Z; H1[0,12,:,:] = -Nw[0,0]*Z/2.0 #H1(1,:,13,:)= -Nw(1)/2*(Z); Ws[0] = H1 #H{1,1} = (H1); for n in range(1, 2*N-1): #for n=2:2*N-1 Hn = np.zeros((M,M,d,d), dtype=dtype) #Hn = zeros(M,d,M,d); Hn[0,0,:,:] = I #Hn(1,:,1,:) = I; Hn[0,1,:,:] = -Y #Hn(1,:,2,:) = -Y; Hn[0,2,:,:] = X #Hn(1,:,3,:) = X; Hn[0,3,:,:] = -Y*r[n] #Hn(1,:,4,:) = -Y*r(n); Hn[0,4,:,:] = X*r[n] #Hn(1,:,5,:) = X*r(n); Hn[11,11,:,:] = Z #Hn(12,:,12,:)=Z; Hn[0,12,:,:] = -Nw[0,n]*(Z-I)/2.0 #Hn(1,:,13,:) = -Nw(n)/2*(Z-I); Hn[1,5,:,:] = X #Hn(2,:,6,:) = X; Hn[1,6,:,:] = Z #Hn(2,:,7,:) = Z; Hn[2,7,:,:] = Z #Hn(3,:,8,:) = Z; Hn[2,8,:,:] = Y #Hn(3,:,9,:) = Y; Hn[3,12,:,:] = X #Hn(4,:,13,:) = X; Hn[4,12,:,:] = Y #Hn(5,:,13,:) = Y; Hn[5,9,:,:] = Y*u[n] #Hn(6,:,10,:) = Y*u(n);%;1i*sy; Hn[6,9,:,:] = p[n]*Z #Hn(7,:,10,:) = p(n)*Z; Hn[7,10,:,:] = p[n]*Z #Hn(8,:,11,:) = p(n)*Z; Hn[8,10,:,:] = X*u[n] #Hn(9,:,11,:) = X*u(n); Hn[9,12,:,:] = X #Hn(10,:,13,:) = X; Hn[10,12,:,:] = Y #Hn(11,:,13,:) = Y;%;1i*sy; Hn[12,12,:,:] = I #Hn(13,:,13,:) = I; Ws[n] = Hn HN = np.zeros((M,1,d,d), dtype=dtype) #HN = zeros(M,d,1,d); HN[0,0,:,:] = -Nw[0,2*N-1]/2*(Z)+Pw*I #HN(1,:,1,:) = -Nw(2*N)/2*(Z-I)+Pw*I;% Only put in -I when using zero Nw at site 1 HN[3,0,:,:] = X #HN(4,:,1,:) = X; HN[4,0,:,:] = Y #HN(5,:,1,:) = Y; HN[9,0,:,:] = X #HN(10,:,1,:) = X; HN[10,0,:,:] = Y #HN(11,:,1,:) = Y; HN[12,0,:,:] = I #HN(13,:,1,:) = I; HN[11,0,:,:] = Z #HN(12,:,1,:)=Z; Ws[2*N-1] = HN self.Ws = Ws self.Lp = np.ones(1, dtype=dtype) self.Rp =
np.ones(1, dtype=dtype)
numpy.ones
from __future__ import print_function import numpy as np import os import threading from navrep.tools.rings import generate_rings from navrep.models.rnn import reset_graph, sample_hps_params, MDNRNN, get_pi_idx, MAX_GOAL_DIST from navrep.models.vae2d import ConvVAE _Z = 32 _G = 2 class DreamEnv(object): def __init__(self, temperature=0.25, initial_z_path=os.path.expanduser( "~/navrep/datasets/M/ian/000_mus_logvars_robotstates_actions_rewards_dones.npz" ), rnn_model_path=os.path.expanduser("~/navrep/models/M/rnn.json"), vae_model_path=os.path.expanduser("~/navrep/models/V/vae.json"), ): # constants self.TEMPERATURE = temperature self.DT = 0.5 # should be the same as data rnn was trained with # V + M Models reset_graph() self.rnn = MDNRNN(sample_hps_params, gpu_mode=False) self.vae = ConvVAE(batch_size=1, is_training=False) self.vae.load_json(vae_model_path) self.rnn.load_json(rnn_model_path) # load initial image encoding arrays = np.load(initial_z_path) initial_mu = arrays["mus"][0] initial_logvar = arrays["logvars"][0] initial_robotstate = arrays["robotstates"][0] ini_lidar_z = initial_mu + np.exp(initial_logvar / 2.0) * np.random.randn( *(initial_mu.shape) ) ini_goal_z = initial_robotstate[:2] / MAX_GOAL_DIST self.initial_z = np.concatenate([ini_lidar_z, ini_goal_z], axis=-1) # other tools self.rings_def = generate_rings(64, 64) self.viewer = None # environment state variables self.reset() # hot-start the rnn state for i in range(20): self.step(np.array([0,0,0]), override_next_z=self.initial_z) def step(self, action, override_next_z=None): feed = { self.rnn.input_z: np.reshape(self.prev_z, (1, 1, _Z+_G)), self.rnn.input_action: np.reshape(action, (1, 1, 3)), self.rnn.input_restart: np.reshape(self.prev_restart, (1, 1)), self.rnn.initial_state: self.rnn_state, } [logmix, mean, logstd, logrestart, next_state] = self.rnn.sess.run( [ self.rnn.out_logmix, self.rnn.out_mean, self.rnn.out_logstd, self.rnn.out_restart_logits, self.rnn.final_state, ], feed, ) OUTWIDTH = _Z+_G if self.TEMPERATURE == 0: # deterministically pick max of MDN distribution mixture_idx = np.argmax(logmix, axis=-1) chosen_mean = mean[(range(OUTWIDTH), mixture_idx)] chosen_logstd = logstd[(range(OUTWIDTH), mixture_idx)] next_z = chosen_mean else: # sample from modelled MDN distribution mixprob = np.copy(logmix) / self.TEMPERATURE # adjust temperatures mixprob -= mixprob.max() mixprob = np.exp(mixprob) mixprob /= mixprob.sum(axis=1).reshape(OUTWIDTH, 1) mixture_idx = np.zeros(OUTWIDTH) chosen_mean = np.zeros(OUTWIDTH) chosen_logstd = np.zeros(OUTWIDTH) for j in range(OUTWIDTH): idx = get_pi_idx(np.random.rand(), mixprob[j]) mixture_idx[j] = idx chosen_mean[j] = mean[j][idx] chosen_logstd[j] = logstd[j][idx] rand_gaussian = np.random.randn(OUTWIDTH) * np.sqrt(self.TEMPERATURE) next_z = chosen_mean + np.exp(chosen_logstd) * rand_gaussian if sample_hps_params.differential_z: next_z = self.prev_z + next_z next_restart = 0 # if logrestart[0] > 0: # next_restart = 1 self.prev_z = next_z if override_next_z is not None: self.prev_z = override_next_z self.prev_restart = next_restart self.rnn_state = next_state # logging-only vars, used for rendering self.prev_action = action self.episode_step += 1 return next_z, None, next_restart, {} def reset(self): self.prev_z = self.initial_z self.prev_restart = np.array([1]) self.rnn_state = self.rnn.sess.run(self.rnn.zero_state) # logging vars self.prev_action = np.array([0.0, 0.0, 0.0]) self.episode_step = 0 def render(self, mode="human", close=False): if close: if self.viewer is not None: self.viewer.close() return # get last z decoding rings_pred = ( self.vae.decode(self.prev_z.reshape(1, _Z+_G)[:, :_Z]) * self.rings_def["rings_to_bool"] ) predicted_ranges = self.rings_def["rings_to_lidar"](rings_pred, 1080) goal_pred = self.prev_z.reshape((_Z+_G,))[_Z:] * MAX_GOAL_DIST if mode == "rgb_array": raise NotImplementedError elif mode == "human": # Window and viewport size WINDOW_W = 256 WINDOW_H = 256 M_PER_PX = 25.6 / WINDOW_H VP_W = WINDOW_W VP_H = WINDOW_H from gym.envs.classic_control import rendering import pyglet from pyglet import gl # Create viewer if self.viewer is None: self.viewer = rendering.Viewer(WINDOW_W, WINDOW_H) self.score_label = pyglet.text.Label( "0000", font_size=12, x=20, y=WINDOW_H * 2.5 / 40.00, anchor_x="left", anchor_y="center", color=(255, 255, 255, 255), ) # self.transform = rendering.Transform() self.currently_rendering_iteration = 0 self.image_lock = threading.Lock() # Render in pyglet def make_circle(c, r, res=10): thetas = np.linspace(0, 2 * np.pi, res + 1)[:-1] verts = np.zeros((res, 2)) verts[:, 0] = c[0] + r * np.cos(thetas) verts[:, 1] = c[1] + r * np.sin(thetas) return verts with self.image_lock: self.currently_rendering_iteration += 1 self.viewer.draw_circle(r=10, color=(0.3, 0.3, 0.3)) win = self.viewer.window win.switch_to() win.dispatch_events() win.clear() gl.glViewport(0, 0, VP_W, VP_H) # colors bgcolor = np.array([0.4, 0.8, 0.4]) nosecolor =
np.array([0.3, 0.3, 0.3])
numpy.array