prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
import numpy as np import torch from sklearn.gaussian_process.kernels import ( Hyperparameter, Kernel as KernelSklearn, StationaryKernelMixin, NormalizedKernelMixin, ) from neuralprocess.data.base import FunctionGenerator class Kernel: """ A simple base class for kernels that exposes construction arguments as attributes. """ def __init__(self, **kwargs): self._params = dict() self.params = kwargs @property def params(self): return self._params.copy() @params.setter def params(self, kwargs): for key, val in kwargs.items(): setattr(self, key, val) self._params.update(kwargs) def __setattr__(self, key, val): super().__setattr__(key, val) if key not in ("params", "_params"): self._params.update({key: val}) def __call__(self, a, b): raise NotImplementedError class GaussianKernel(Kernel): def __init__(self, lengthscale=0.5, amplitude=1.0): super().__init__(lengthscale=lengthscale, amplitude=amplitude) def __call__(self, a, b): """a, b assumed to be of shape (N,1)""" sqdist = (a - b.T) ** 2 l = self.lengthscale ** 2 return self.amplitude *
np.exp(-0.5 / l * sqdist)
numpy.exp
import pandas import numpy as np import datetime import duckdb df = pandas.DataFrame([{"col1":"val1","col2":1.05},{"col1":"val3","col2":np.NaN}]) df["newcol1"] = np.where(df["col1"] == "val1",np.NaN,df["col1"]) current_time = datetime.datetime.now().replace(microsecond=0) df['datetest'] = current_time df.loc[0,'datetest'] = pandas.NaT conn = duckdb.connect(':memory:') conn.register('testing_null_values', df) results = conn.execute('select * from testing_null_values').fetchall() assert results[0][0] == 'val1' assert results[0][1] == 1.05 assert results[0][2] == None assert results[0][3] == None assert results[1][0] == 'val3' assert results[1][1] == None assert results[1][2] == 'val3' assert results[1][3] == current_time result_df = conn.execute('select * from testing_null_values').fetchdf() assert result_df['col1'][0] == df['col1'][0] assert result_df['col1'][1] == df['col1'][1] assert result_df['col2'][0] == df['col2'][0] assert
np.isnan(result_df['col2'][1])
numpy.isnan
"""apply color transformation to an area of an image use output data of filter_rois.py to apply color transformation """ import pandas as pd import numpy as np import cv2 import argparse parser = argparse.ArgumentParser(description='Apply color transformations to an area of an image') parser.add_argument('-i', '--image', dest='image_path', help='Path to input image to be modified', required=True) parser.add_argument('-d', '--data', dest='data_path', help='Path to csv specifying regions to be modified', required=True) parser.add_argument('-c', '--colors', dest='colors', help='Path to csv specifying new colors (in rgb) to apply to regions') args = parser.parse_args() # recolor labeled areas buy single rgb value new_colors_rgb = pd.read_csv(args.colors).to_dict() for k in new_colors_rgb.keys(): new_colors_rgb[k] = list(new_colors_rgb[k].values()) # read in image and recolor data image = cv2.imread(args.image_path) recolor_data = pd.read_csv(args.data_path) # copy image for safe keeping and blur image_og = np.copy(image) blurred = cv2.GaussianBlur(image, (3, 3), 0, 0) # get image dims im_h, im_w = image.shape[:2] def scale_between(arr, a, b): return (b - a) * (arr - arr.min()) / (arr.max() - arr.min()) for i, row in recolor_data.iterrows(): if row['label'] in new_colors_rgb.keys(): new_color_patch = cv2.cvtColor(np.zeros((10, 10), dtype='uint8'), cv2.COLOR_GRAY2BGR) new_color_patch[:] = new_colors_rgb[row['label']][::-1] else: continue # mask to roi x, y, w, h = row['box_x'], row['box_y'], row['box_w'], row['box_h'] mask = np.zeros((im_h, im_w), dtype="uint8") mask = cv2.rectangle(mask, (x, y), (x + w, y + h), 255, -1) masked = cv2.bitwise_and(blurred, blurred, mask=mask) # perform color filter hsv = cv2.cvtColor(blurred, cv2.COLOR_BGR2HSV) lower_thresh = (row['low_h'], row['low_s'], row['low_v']) upper_thresh = (row['hi_h'], row['hi_s'], row['hi_v']) color_mask = cv2.inRange(hsv, lower_thresh, upper_thresh) # clean up salt/pepper color filtering noise kernel = np.ones((5, 5), np.uint8) color_mask = cv2.morphologyEx(color_mask, cv2.MORPH_OPEN, kernel) color_mask = cv2.morphologyEx(color_mask, cv2.MORPH_CLOSE, kernel) color_mask = cv2.dilate(color_mask,
np.ones((3, 3), np.uint8)
numpy.ones
from os.path import join import torch import matplotlib.pyplot as plt import numpy as np from tqdm import tqdm from scipy.spatial import distance_matrix import model import data cinn = model.ColorizationCINN(0) cinn.cuda() cinn.eval() state_dict = {k:v for k,v in torch.load('output/lsun_cinn.pt').items() if 'tmp_var' not in k} cinn.load_state_dict(state_dict) def colorize_test_set(temp=1., postfix=0, img_folder='images'): '''Colorize the whole test set once. temp: Sampling temperature postfix: Has to be integer. Append to file name (e.g. to make 10 diverse colorizations of test set) ''' counter = 0 with torch.no_grad(): for Lab in tqdm(data.test_loader): Lab = Lab.cuda() z = temp * torch.randn(Lab.shape[0], model.ndim_total).cuda() L, ab = Lab[:, :1], Lab[:, 1:] ab_gen = cinn.reverse_sample(z, L) rgb_gen = data.norm_lab_to_rgb(L.cpu(), ab_gen.cpu()) for im in rgb_gen: im =
np.transpose(im, (1,2,0))
numpy.transpose
import abc import numpy as np import math import random import itertools as it from hklearn_genetic.board_conflicts import conflict from deap import tools, gp class ProblemInterface(metaclass=abc.ABCMeta): @classmethod def __subclasshook__(cls, subclass): return (hasattr(subclass, 'evaluate') and callable(subclass.evaluate) and hasattr(subclass, 'stop_criteria') and callable(subclass.stop_criteria) and hasattr(subclass, 'populate') and callable(subclass.populate) and hasattr(subclass, 'decode') and callable(subclass.decode) and hasattr(subclass, 'crossover') and callable(subclass.crossover) and hasattr(subclass, 'mutate') and callable(subclass.mutate)) @ProblemInterface.register class IProblem: """Evalua las soluciones potenciales del problema""" def evaluate(self, X): pass """Regresa si la población ha llegado al criterio de paro""" def stop_criteria(self, X_eval): pass """Crea una poblacion inicial de posibles soluciones""" def populate(self, n_individuals): pass """Pasa a la población del genotipo al fenotipo""" def decode(self, X_encoded): pass """Efectúa la cruza con los elementos de la población""" def crossover(self, X, pc, elitism): pass """Efectúa la mutación con los elementos de la población""" def mutate(self, X, pm, elitism): pass class BaseProblem(IProblem): def get_crossover_probs(self, n_cross): return np.random.rand(1 , n_cross)[0,:] def get_crossover_points(self, length): return
np.random.randint(0, length)
numpy.random.randint
import os import numpy as np import pandas as pd import scipy.sparse as sp from scipy.interpolate import interp1d import scipy.signal as signal import multiprocess as mp import cooler import cooltools.snipping as snipping from cooltools.lib.numutils import logbins import bioframe from mirnylib.numutils import zoomArray import DNA_info def clean_up_loops(loop_list, arms): '''Removes items for loop_list that are either not in any of the regions contained in arms or is contained in a region between two of the regions in arms. Use this to clean up a new list of loops and save the modified list for future use.''' for each in ['chrom1', 'chrom2', 'pos1', 'pos2']: assert each in loop_list.columns features = loop_list.copy(deep=True) features['index1'] = -1 features['index2'] = -1 for i, arm in enumerate(arms): chrom = arm[0] start = arm[1] end = arm[2] features['index1'] = features.apply(lambda x: i if (x['chrom1']==chrom and x['pos1'] > start) and x['pos1'] < end else x['index1'], axis=1) features['index2'] = features.apply(lambda x: i if (x['chrom2']==chrom and x['pos2'] > start) and x['pos2'] < end else x['index2'], axis=1) features = features[np.logical_or(features.index1 != -1, features.index2 != -1)] features = features[features.index1 == features.index2] features = features[['chrom1', 'pos1', 'chrom2', 'pos2']] return features def sparseSymmetricOOE(matrix, mask, log_binning=True): '''Quick OOE operation for sparse symmetric matrices. This will be used by the LocalObsOverExp object to compute OOE on support regions.''' if matrix.shape[0] == 1: return matrix #Finding number of valid bins per diagonal using FFT convolve count_per_diag = signal.fftconvolve(mask, mask[::-1], mode='full') count_per_diag = np.round(count_per_diag[len(count_per_diag)//2:]) count_per_diag = count_per_diag.astype(int) row, col, data = matrix.row, matrix.col, matrix.data nan_indices = ~np.isfinite(data) data[nan_indices]=0 diff = abs(row-col) #Summing by diagonal scaling = np.bincount(diff, weights=data, minlength=len(count_per_diag))/2 assert len(scaling)==len(count_per_diag) if log_binning: hi = len(scaling) lo = 1 ratio = 1.2 N = int(np.log(hi / lo) / np.log(ratio)) bins = logbins(1, len(scaling), N=N) bin_mids = np.sqrt(bins[1:]*bins[0:-1]) lab = np.concatenate(tuple((i+1)*np.ones(bins[i+1]-bins[i], dtype=int) for i in range(len(bins)-1))) log_scaling = np.bincount(lab,weights=scaling[1:]) log_count = np.bincount(lab, weights=count_per_diag[1:]) coarse_expected = log_scaling[1:]/log_count[1:] f = interp1d(np.log10(bin_mids), np.log10(coarse_expected), kind='linear') y = f(np.log10(np.arange(2,np.floor(bin_mids[-1])))) x = np.log10(np.arange(2,np.floor(bin_mids[-1]))) xremaining = np.log10(np.arange(np.round(10**x[-1]+1),len(scaling))) yremaining = y[-1] + ((y[-1]-y[-2])/(x[-1]-x[-2]))*(xremaining - x[-1]) x = np.append(x,xremaining) y = np.append(y,yremaining) fine_expected = 10**y fine_bins = np.round(10**x) for i in range(1,-1,-1): fine_expected = np.insert(fine_expected,0,scaling[i]/count_per_diag[i]) fine_bins = np.insert(fine_bins,0,i).astype(int) assert np.all((fine_bins[1:]-fine_bins[0:-1])==1) else: fine_expected = scaling/count_per_diag matrix.data = data/fine_expected[diff] # matrix.data[nan_indices] = np.nan return matrix class LocalObsExpSnipper: '''Object whose methods are fed to cooltools.snipping.pileup function. Only works if regions that are fed to the select method are the same i.e. region1 MUST BE SAME AS region2.''' def __init__(self, clr, cooler_opts=None, log_binning=True): self.clr = clr self.log_binning = log_binning self.binsize = self.clr.binsize self.offsets = {} self.pad = True self.cooler_opts = {} if cooler_opts is None else cooler_opts self.cooler_opts.setdefault('sparse', True) def select(self, region1, region2): print(region1, region2) self.offsets[region1] = self.clr.offset(region1) - self.clr.offset(region1[0]) self.offsets[region2] = self.clr.offset(region2) - self.clr.offset(region2[0]) matrix = (self.clr.matrix(**self.cooler_opts) .fetch(region1, region2)) mask = self.clr.bins().fetch(region1) mask = np.isfinite(mask['weight'].values).astype(int) matrix = sparseSymmetricOOE(matrix, mask, log_binning=self.log_binning) if self.cooler_opts['sparse']: matrix = matrix.tocsr() return matrix def snip(self, matrix, region1, region2, tup): s1, e1, s2, e2 = tup offset1 = self.offsets[region1] offset2 = self.offsets[region2] binsize = self.binsize lo1, hi1 = (s1 // binsize) - offset1, (e1 // binsize) - offset1 lo2, hi2 = (s2 // binsize) - offset2, (e2 // binsize) - offset2 if hi1 < 0 or hi2 < 0: print(region1, s1, e1, region2, s2, e2) print(offset1, offset2) print(lo1, hi1, lo2, hi2) assert hi1 >= 0 assert hi2 >= 0 m, n = matrix.shape dm, dn = hi1 - lo1, hi2 - lo2 out_of_bounds = False pad_left = pad_right = pad_bottom = pad_top = None if lo1 < 0: pad_bottom = -lo1 out_of_bounds = True if lo2 < 0: pad_left = -lo2 out_of_bounds = True if hi1 > m: pad_top = dm - (hi1 - m) out_of_bounds = True if hi2 > n: pad_right = dn - (hi2 - n) out_of_bounds = True if out_of_bounds: i0 = max(lo1, 0) i1 = min(hi1, m) j0 = max(lo2, 0) j1 = min(hi2, n) snippet = np.full((dm, dn), 0.0) snippet[pad_bottom:pad_top, pad_left:pad_right] = matrix[i0:i1, j0:j1].toarray().astype(float) # print(m,n) # print(i0, i1, j0, j1) # print(matrix[i0:i1, j0:j1].toarray().astype(float).shape) # print(snippet[pad_bottom:pad_top, pad_left:pad_right].shape) else: snippet = matrix[lo1:hi1, lo2:hi2].toarray().astype(float) nan_rows = np.sum(snippet, axis=0) == 0 nan_cols = np.sum(snippet, axis=1) == 0 snippet[nan_rows, :] = np.nan snippet[:, nan_cols] = np.nan return snippet class DifferenceSnipper: '''Object whose methods are fed to cooltools.snipping.pileup function. Only works if regions that are fed to the select method are the same i.e. region1 MUST BE SAME AS region2.''' def __init__(self, clr1, clr2, cooler_opts=None, log_binning=True): self.clr1 = clr1 self.clr2 = clr2 self.log_binning = log_binning assert clr1.binsize == clr2.binsize self.binsize = self.clr1.binsize self.offsets = {} self.pad = True self.cooler_opts = {} if cooler_opts is None else cooler_opts self.cooler_opts.setdefault('sparse', True) def select(self, region1, region2): print(region1, region2) self.offsets[region1] = self.clr1.offset(region1) - self.clr1.offset(region1[0]) self.offsets[region2] = self.clr1.offset(region2) - self.clr1.offset(region2[0]) matrix1 = (self.clr1.matrix(**self.cooler_opts) .fetch(region1, region2)) matrix2 = (self.clr2.matrix(**self.cooler_opts) .fetch(region1, region2)) mask1 = self.clr1.bins().fetch(region1) mask1 = np.isfinite(mask1['weight'].values).astype(int) mask2 = self.clr2.bins().fetch(region1) mask2 = np.isfinite(mask2['weight'].values).astype(int) matrix1 = sparseSymmetricOOE(matrix1, mask1, log_binning=self.log_binning) matrix2 = sparseSymmetricOOE(matrix2, mask2, log_binning=self.log_binning) matrix = sp.coo_matrix(matrix1.todense() - matrix2.todense()) if self.cooler_opts['sparse']: matrix = matrix.tocsr() return matrix def snip(self, matrix, region1, region2, tup): s1, e1, s2, e2 = tup offset1 = self.offsets[region1] offset2 = self.offsets[region2] binsize = self.binsize lo1, hi1 = (s1 // binsize) - offset1, (e1 // binsize) - offset1 lo2, hi2 = (s2 // binsize) - offset2, (e2 // binsize) - offset2 if hi1 < 0 or hi2 < 0: print(region1, s1, e1, region2, s2, e2) print(offset1, offset2) print(lo1, hi1, lo2, hi2) assert hi1 >= 0 assert hi2 >= 0 m, n = matrix.shape dm, dn = hi1 - lo1, hi2 - lo2 out_of_bounds = False pad_left = pad_right = pad_bottom = pad_top = None if lo1 < 0: pad_bottom = -lo1 out_of_bounds = True if lo2 < 0: pad_left = -lo2 out_of_bounds = True if hi1 > m: pad_top = dm - (hi1 - m) out_of_bounds = True if hi2 > n: pad_right = dn - (hi2 - n) out_of_bounds = True if out_of_bounds: i0 = max(lo1, 0) i1 = min(hi1, m) j0 = max(lo2, 0) j1 = min(hi2, n) snippet = np.full((dm, dn), 0.0) snippet[pad_bottom:pad_top, pad_left:pad_right] = matrix[i0:i1, j0:j1].toarray().astype(float) # print(m,n) # print(i0, i1, j0, j1) # print(matrix[i0:i1, j0:j1].toarray().astype(float).shape) # print(snippet[pad_bottom:pad_top, pad_left:pad_right].shape) else: snippet = matrix[lo1:hi1, lo2:hi2].toarray().astype(float) nan_rows = np.sum(snippet, axis=0) == 0 nan_cols = np.sum(snippet, axis=1) == 0 snippet[nan_rows, :] = np.nan snippet[:, nan_cols] = np.nan return snippet class RatioSnipper: '''Object whose methods are fed to cooltools.snipping.pileup function. Only works if regions that are fed to the select method are the same i.e. region1 MUST BE SAME AS region2.''' def __init__(self, clr1, clr2, cooler_opts=None, log_binning=True): self.clr1 = clr1 self.clr2 = clr2 self.log_binning = log_binning assert clr1.binsize == clr2.binsize self.binsize = self.clr1.binsize self.offsets = {} self.pad = True self.cooler_opts = {} if cooler_opts is None else cooler_opts self.cooler_opts.setdefault('sparse', True) def select(self, region1, region2): print(region1, region2) self.offsets[region1] = self.clr1.offset(region1) - self.clr1.offset(region1[0]) self.offsets[region2] = self.clr1.offset(region2) - self.clr1.offset(region2[0]) matrix1 = (self.clr1.matrix(**self.cooler_opts) .fetch(region1, region2)) matrix2 = (self.clr2.matrix(**self.cooler_opts) .fetch(region1, region2)) mask1 = self.clr1.bins().fetch(region1) mask1 = np.isfinite(mask1['weight'].values).astype(int) mask2 = self.clr2.bins().fetch(region1) mask2 = np.isfinite(mask2['weight'].values).astype(int) matrix1 = sparseSymmetricOOE(matrix1, mask1, log_binning=self.log_binning) matrix2 = sparseSymmetricOOE(matrix2, mask2, log_binning=self.log_binning) matrix1 = matrix1.todense() matrix1[matrix1==0] = 1 matrix2 = matrix2.todense() matrix2[matrix2==0] = 1 matrix = matrix1/matrix2 # if self.cooler_opts['sparse']: # matrix = matrix.tocsr() return matrix def snip(self, matrix, region1, region2, tup): s1, e1, s2, e2 = tup offset1 = self.offsets[region1] offset2 = self.offsets[region2] binsize = self.binsize lo1, hi1 = (s1 // binsize) - offset1, (e1 // binsize) - offset1 lo2, hi2 = (s2 // binsize) - offset2, (e2 // binsize) - offset2 if hi1 < 0 or hi2 < 0: print(region1, s1, e1, region2, s2, e2) print(offset1, offset2) print(lo1, hi1, lo2, hi2) assert hi1 >= 0 assert hi2 >= 0 m, n = matrix.shape dm, dn = hi1 - lo1, hi2 - lo2 out_of_bounds = False pad_left = pad_right = pad_bottom = pad_top = None if lo1 < 0: pad_bottom = -lo1 out_of_bounds = True if lo2 < 0: pad_left = -lo2 out_of_bounds = True if hi1 > m: pad_top = dm - (hi1 - m) out_of_bounds = True if hi2 > n: pad_right = dn - (hi2 - n) out_of_bounds = True if out_of_bounds: i0 = max(lo1, 0) i1 = min(hi1, m) j0 = max(lo2, 0) j1 = min(hi2, n) snippet = np.full((dm, dn), 0.0) snippet[pad_bottom:pad_top, pad_left:pad_right] = np.asarray(matrix[i0:i1, j0:j1]).astype(float) # print(m,n) # print(i0, i1, j0, j1) # print(matrix[i0:i1, j0:j1].toarray().astype(float).shape) # print(snippet[pad_bottom:pad_top, pad_left:pad_right].shape) else: snippet = np.asarray(matrix[lo1:hi1, lo2:hi2]).astype(float) nan_rows = np.sum(snippet, axis=0) == 0 nan_cols = np.sum(snippet, axis=1) == 0 snippet[nan_rows, :] = np.nan snippet[:, nan_cols] = np.nan return snippet class DifferenceSnipper: '''Object whose methods are fed to cooltools.snipping.pileup function. Only works if regions that are fed to the select method are the same i.e. region1 MUST BE SAME AS region2.''' def __init__(self, clr1, clr2, cooler_opts=None, log_binning=True): self.clr1 = clr1 self.clr2 = clr2 self.log_binning = log_binning assert clr1.binsize == clr2.binsize self.binsize = self.clr1.binsize self.offsets = {} self.pad = True self.cooler_opts = {} if cooler_opts is None else cooler_opts self.cooler_opts.setdefault('sparse', True) def select(self, region1, region2): print(region1, region2) self.offsets[region1] = self.clr1.offset(region1) - self.clr1.offset(region1[0]) self.offsets[region2] = self.clr1.offset(region2) - self.clr1.offset(region2[0]) matrix1 = (self.clr1.matrix(**self.cooler_opts) .fetch(region1, region2)) matrix2 = (self.clr2.matrix(**self.cooler_opts) .fetch(region1, region2)) mask1 = self.clr1.bins().fetch(region1) mask1 = np.isfinite(mask1['weight'].values).astype(int) mask2 = self.clr2.bins().fetch(region1) mask2 = np.isfinite(mask2['weight'].values).astype(int) matrix1 = sparseSymmetricOOE(matrix1, mask1, log_binning=self.log_binning) matrix2 = sparseSymmetricOOE(matrix2, mask2, log_binning=self.log_binning) matrix1 = matrix1.todense() matrix1[matrix1==0] = 1 matrix2 = matrix2.todense() matrix2[matrix2==0] = 1 matrix = matrix1 - matrix2 # if self.cooler_opts['sparse']: # matrix = matrix.tocsr() return matrix def snip(self, matrix, region1, region2, tup): s1, e1, s2, e2 = tup offset1 = self.offsets[region1] offset2 = self.offsets[region2] binsize = self.binsize lo1, hi1 = (s1 // binsize) - offset1, (e1 // binsize) - offset1 lo2, hi2 = (s2 // binsize) - offset2, (e2 // binsize) - offset2 if hi1 < 0 or hi2 < 0: print(region1, s1, e1, region2, s2, e2) print(offset1, offset2) print(lo1, hi1, lo2, hi2) assert hi1 >= 0 assert hi2 >= 0 m, n = matrix.shape dm, dn = hi1 - lo1, hi2 - lo2 out_of_bounds = False pad_left = pad_right = pad_bottom = pad_top = None if lo1 < 0: pad_bottom = -lo1 out_of_bounds = True if lo2 < 0: pad_left = -lo2 out_of_bounds = True if hi1 > m: pad_top = dm - (hi1 - m) out_of_bounds = True if hi2 > n: pad_right = dn - (hi2 - n) out_of_bounds = True if out_of_bounds: i0 = max(lo1, 0) i1 = min(hi1, m) j0 = max(lo2, 0) j1 = min(hi2, n) snippet = np.full((dm, dn), 0.0) snippet[pad_bottom:pad_top, pad_left:pad_right] = np.asarray(matrix[i0:i1, j0:j1]).astype(float) # print(m,n) # print(i0, i1, j0, j1) # print(matrix[i0:i1, j0:j1].toarray().astype(float).shape) # print(snippet[pad_bottom:pad_top, pad_left:pad_right].shape) else: snippet = np.asarray(matrix[lo1:hi1, lo2:hi2]).astype(float) nan_rows = np.sum(snippet, axis=0) == 0 nan_cols =
np.sum(snippet, axis=1)
numpy.sum
""" Module containing manifolds of n-dimensional rotations """ from __future__ import division import numpy as np import numpy.linalg as la import numpy.random as rnd from scipy.linalg import expm, logm from scipy.special import comb from pymanopt.tools.multi import multiprod, multitransp, multisym, multiskew from pymanopt.manifolds.manifold import Manifold class Rotations(Manifold): """ Returns a manifold structure to optimize over rotation matrices. manifold = Rotations(n) manifold = Rotations(n, k) Special orthogonal group (the manifold of rotations): deals with matrices X of size k x n x n (or n x n if k = 1, which is the default) such that each n x n matrix is orthogonal, with determinant 1, i.e., dot(X.T, X) = eye(n) if k = 1, or dot(X[i].T, X[i]) = eye(n) if k > 1. This is a description of SO(n)^k with the induced metric from the embedding space (R^nxn)^k, i.e., this manifold is a Riemannian submanifold of (R^nxn)^k endowed with the usual trace inner product. Tangent vectors are represented in the Lie algebra, i.e., as skew symmetric matrices. Use the function manifold.tangent2ambient(X, H) to switch from the Lie algebra representation to the embedding space representation. This is often necessary when defining problem.ehess(X, H). By default, the retraction is only a first-order approximation of the exponential. To force the use of a second-order approximation, call manifold.retr = manifold.retr2 after creating M. This switches from a QR-based computation to an SVD-based computation. By default, k = 1. Example. Based on the example found at: http://www.manopt.org/manifold_documentation_rotations.html >>> import numpy as np >>> from pymanopt import Problem >>> from pymanopt.solvers import TrustRegions >>> from pymanopt.manifolds import Rotations Generate the problem data. >>> n = 3 >>> m = 10 >>> A = np.random.randn(n, m) >>> B = np.random.randn(n, m) >>> ABt = np.dot(A,B.T) Create manifold - SO(n). >>> manifold = Rotations(n) Define the cost function. >>> cost = lambda X : -np.tensordot(X, ABt, axes=X.ndim) Define and solve the problem. >>> problem = Problem(manifold=manifold, cost=cost) >>> solver = TrustRegions() >>> X = solver.solve(problem) See also: Stiefel This file is based on rotationsfactory from Manopt: www.manopt.org Ported by: <NAME> Original author: <NAME>, Dec. 30, 2012. """ def __init__(self, n, k=1): if k == 1: self._name = 'Rotations manifold SO({n})'.format(n=n) elif k > 1: self._name = 'Rotations manifold SO({n})^{k}'.format(n=n, k=k) else: raise RuntimeError("k must be an integer no less than 1.") self._n = n self._k = k def __str__(self): return self._name @property def dim(self): return self._k * comb(self._n, 2) def inner(self, X, U, V): return np.tensordot(U, V, axes=U.ndim) def norm(self, X, U): return la.norm(U) @property def typicaldist(self): return np.pi * np.sqrt(self._n * self._k) def proj(self, X, H): return multiskew(multiprod(multitransp(X), H)) def tangent(self, X, H): return multiskew(H) def tangent2ambient(self, X, U): return multiprod(X, U) egrad2rgrad = proj def ehess2rhess(self, X, egrad, ehess, H): Xt = multitransp(X) Xtegrad = multiprod(Xt, egrad) symXtegrad = multisym(Xtegrad) Xtehess = multiprod(Xt, ehess) return multiskew(Xtehess - multiprod(H, symXtegrad)) def retr(self, X, U): def retri(Y): Q, R = la.qr(Y) return np.dot(Q, np.diag(np.sign(np.sign(np.diag(R)) + 0.5))) Y = X + multiprod(X, U) if self._k == 1: return retri(Y) else: for i in range(self._k): Y[i] = retri(Y[i]) return Y def retr2(self, X, U): def retr2i(Y): U, _, Vt =
la.svd(Y)
numpy.linalg.svd
#!/usr/bin/env python from scipy import interpolate import numpy as np from numpy.lib.recfunctions import append_fields import scipy.signal as sig import scipy.stats as st import time, os import pandas as pd import math #import report_ctd import ctdcal.report_ctd as report_ctd import warnings import ctdcal.fit_ctd as fit_ctd import datetime from decimal import Decimal import settings import sys sys.path.append('ctdcal/') import oxy_fitting import gsw warnings.filterwarnings("ignore", 'Mean of empty slice.') def cast_details(stacast, log_file, p_col, time_col, b_lat_col, b_lon_col, alt_col, inMat=None): ''' We determine the cast details using pandas magic. First find alternating periods of pumps on and pumps off, then select the pumps on period with the highest pressure. Get values from the row with the highest pressure, and return all values to be sent to log. Input: stacast - integer, the station and cast, as SSSCC format log_file - file handle or string, log_file p_col - string, name of the pressure column time_col - string, name of the time column b_lat_col - string, name of the latitude column b_lon_col - string, name of the longitude column alt_col - string, name of the altimeter column inMat - pandas dataframe, the dataframe to come in Output: start_cast_time - float, unix epoch seconds?, start of cast time, to be reported to log file end_cast_time - float, unix epoch seconds?, end of cast time, to be reported to log file bottom_cast_time - float, unix epoch seconds?, bottom of cast time, to be reported to log file start_pressure - float, pressure at which cast started, to be reported to log file max_pressure - float, bottom of the cast pressure, to be reported to log file b_lat - float, latitude at bottom of cast b_lon - float, longitude at bottom of cast b_alti - float, altimeter reading at bottom of cast - volts only! inMat - the dataframe that came in, with soak period trimmed off don't need end_cast_time, max_pressure inMat is trimmed to start and end of cast ''' df_test = pd.DataFrame.from_records(inMat) dfs = find_pump_on_off_dfs(df_test) dfs_1 = find_pumps_on_dfs(dfs) df_cast = find_max_pressure_df(dfs_1) df_cast1 = find_last_soak_period(df_cast) df_cast2 = trim_soak_period_from_df(df_cast1) start_cast_time = float(df_cast2['scan_datetime'].head(1)) start_pressure = float(df_cast2['CTDPRS'].head(1)) end_cast_time = float(df_cast2['scan_datetime'].tail(1)) max_pressure = float(df_cast2['CTDPRS'].max()) bottom_cast_time = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['scan_datetime']) b_lat = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['GPSLAT']) b_lon = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['GPSLON']) b_alti = float(df_cast2.loc[df_cast2['CTDPRS'].idxmax()]['ALT']) #last two lines must be in to return the same as old - change to slices of df later report_ctd.report_cast_details(stacast, log_file, start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_alti, b_lat, b_lon) #reconvert to ndarray - might need to be altered to remove second index # inMat = df_cast2.loc[:df_cast2['CTDPRS'].idxmax()].to_records(index=False) inMat = df_cast2.loc[:df_cast2['CTDPRS'].idxmax()] return start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_lat, b_lon, b_alti, inMat #Move next four functions to a library or class(?) Clean up module def find_pump_on_off_dfs(df): '''Find pump_on patterns of dataframes, and return a list(?) of dataframes to iterate over. ''' return [g for i,g in df.groupby(df['pump_on'].ne(df['pump_on'].shift()).cumsum())] def find_max_pressure_df(dfs): '''Giving a list of data frames, return a reference to the frame with which contians the highest pressure value ''' max_pressure_df = dfs[0] max_pressure = max_pressure_df['CTDPRS'].max() #TODO make into config var for df in dfs: if df['CTDPRS'].max() > max_pressure: max_pressure_df = df return max_pressure_df def find_pumps_on_dfs(dfs): '''given a list of dataframes, remove all the frames with one or more rows containing a "false" pump on flag ''' return list(filter(lambda df: df['pump_on'].all(), dfs)) def trim_soak_period_from_df(df): '''Look for minimum pressure in dataframe, then return everything after minimum pressure/top of cast. ''' test = int(df.iloc[1:int((len(df)/4))]['CTDPRS'].idxmin()) return df.loc[test:] def find_last_soak_period(df_cast, surface_pressure=2, time_bin=8, downcast_pressure=50): """Find the soak period before the downcast starts. The algorithm is tuned for repeat hydrography work, specifically US GO-SHIP parameters. This assumes the soak depth will be somewhere between 10 and 30 meters, the package will sit at the soak depth for at least 20 to 30 seconds before starting ascent to the surface and descent to target depth. Parameters ---------- df_cast : DataFrame DataFrame of the entire cast surface_pressure : integer Minimum surface pressure threshold required to look for soak depth. 2 dbar was chosen as an average rosette is roughly 1.5 to 2 meters tall. time_bin : integer Time, in whole seconds. downcast_pressure : integer Minimum pressure threshold required to assume downcast has started. 50 dbar has been chosen as double the deep soak depth of 20-30 dbar. Returns ------- df_cast_ret : DataFrame DataFrame starting within time_bin seconds of the last soak period. The algorithm is not guaranteed to catch the exact start of the soak period, but within a minimum period of time_bin seconds(?) from end of the soak if the soak period assumption is valid. This should be shorter than the total soak period time, and able to catch the following rise and descent of the package that signals the start of the cast. The algorithm has been designed to handle four general cases of casts: * A routine cast with pumps turning on in water and normal soak * A cast where the pumps turn on in air/on deck * A cast where the pumps turn on and off due to rosette coming out of water * A cast where there are multiple stops on the downcast to the target depth """ #Validate user input if time_bin <= 0: raise ValueError('Time bin value should be positive whole seconds.') if downcast_pressure <=0: raise ValueError('Starting downcast pressure threshold must be positive integers.') if downcast_pressure < surface_pressure: raise ValueError(f'Starting downcast pressure threshold must be greater \ than surface pressure threshold.') # If pumps have not turned on until in water, return DataFrame if df_cast.iloc[0]['CTDPRS'] > surface_pressure: return df_cast #Bin the data by time, and compute the average rate of descent df_blah = df_cast.loc[:,:] df_blah['bin'] = pd.cut(df_blah.loc[:,'index'], range(df_blah.iloc[0]['index'],df_blah.iloc[-1]['index'],time_bin*24), labels=False, include_lowest=True) df_blah2 = df_blah.groupby('bin').mean() #Compute difference of descent rates and label bins df_blah2['prs_diff'] = df_blah2['CTDPRS'].diff().fillna(0).round(0) df_blah2['movement'] = pd.cut(df_blah2['prs_diff'], [-1000,-0.5,0.5,1000], labels=['up','stop','down']) #Find all periods where the rosette is not moving df_stop = df_blah2.groupby('movement').get_group('stop') groupby_test = df_blah2.groupby(df_blah2['movement'].ne(df_blah2['movement'].shift()).cumsum()) list_test = [g for i,g in groupby_test] #Find a dataframe index of the last soak period before starting descent def poop(list_obj, downcast_pressure): """ Return dataframe index in the last soak period before starting descent to target depth. """ for i, x in zip(range(len(list_test)),list_test): if x['CTDPRS'].max() < downcast_pressure: if x.max()['movement'] == 'stop': index = i if x['CTDPRS'].max() > downcast_pressure: return index return index #Truncate dataframe to new starting index : end of dataframe start_index = np.around(list_test[poop(list_test, downcast_pressure)].head(1)['index']) df_cast = df_cast.set_index('index') df_cast = df_cast.loc[int(start_index):,:] df_cast_ret = df_cast.reset_index() return df_cast_ret #End move four functions # def cast_details_old(stacast, log_file, p_col, time_col, b_lat_col, b_lon_col, alt_col, inMat=None): # """cast_details function # # Function takes full NUMPY ndarray with predefined dtype array # and adjusts ndarray to remove all extraneous surface data. # Function returns cast start time, end time, bottom time and # cleaned up matrix. # # Args: # param1 (str): stacast, station cast input # param2 (str): log_file, log file to write cast data. # param3 (str): p_col, pressure data column name # param4 (str): time_col, time data column name # param5 (ndarray): inMat, numpy ndarray with dtype array # # Returns: # Narray: The return value is ndarray with adjusted time of parameter # specified. # # """ # # # if inMat is None: # print("In cast_details: No data") # return # else: # # Top of cast time, bottom of cast time, end of cast time, # start_cast_time = 0.0 # bottom_cast_time = 0.0 # end_cast_time = 0.0 # # Test cycle time constant # fl = 24 # # starting P # start_pressure = 2.0 # # Max P # max_pressure = 10000.0 # lm = len(inMat)-1 # rev = np.arange(int(lm/4),0,-1) # # # Find starting top of cast # # Smallest P from reverse array search # for i in rev: # if start_pressure < inMat[p_col][i]: # tmp = i # elif start_pressure > inMat[p_col][i]: # start_pressure = inMat[p_col][i] # tmp = abs(i - 24) #patched to not break through the c(sea)-floor, can be made cleaner # break # start_cast_time = inMat[time_col][tmp] # # # Remove everything before cast start # inMat = inMat[tmp:] # # # Max P and bottom time # max_pressure = max(inMat[p_col]) # tmp = np.argmax((inMat[p_col])) # bottom_cast_time = inMat[time_col][tmp] # b_lat = inMat[b_lat_col][tmp] # b_lon = inMat[b_lon_col][tmp] # b_alti = inMat[alt_col][tmp] # # tmp = len(inMat) # # Find ending top of cast time # for i in range(int(tmp/2),tmp): # if start_pressure > inMat[p_col][i]: # end_cast_time = inMat[time_col][i] # if i < tmp: tmp = i + 24 # break # # # Remove everything after cast end # inMat = inMat[:tmp] # # report_ctd.report_cast_details(stacast, log_file, start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_alti, b_lat, b_lon) # # return start_cast_time, end_cast_time, bottom_cast_time, start_pressure, max_pressure, b_lat, b_lon, b_alti, inMat def ctd_align(inMat=None, col=None, time=0.0): """ctd_align function Function takes full NUMPY ndarray with predefined dtype array and adjusts time of sensor responce and water flow relative to the time frame of temperature sensor. Args: param1 (ndarray): inMat, numpy ndarray with dtype array param2 (float): col, column to apply time advance to. param3 (float): time, advance in seconds to apply to raw data. Returns: Narray: The return value is ndarray with adjusted time of parameter specified. """ # Num of frames per second. fl = 24 if (inMat is not None) & (col is not None) & ( time > 0.0): # Time to advance advnc = int(fl * time) tmp = np.arange(advnc, dtype=np.float) last = inMat[col][len(inMat)-1] tmp.fill(float(last)) inMat[col] = np.concatenate((inMat[col][advnc:],tmp)) return inMat def ctd_quality_codes(column=None, p_range=None, qual_code=None, oxy_fit=False, p_qual_col=None, qual_one=None, inMat=None): """ctd_quality_codes function Function takes full NUMPY ndarray with predefined dtype array Args: param1 (ndarray): param2 (float): Returns: Narray: The return value is ndarray with adjusted time of parameter specified. """ #If p_range set apply qual codes to part of array and return if p_range is not None: print("Some algoirythm for formatting qual codes per pressure range") return else: q_df = pd.DataFrame(index=np.arange(len(inMat)), columns=p_qual_col) for pq in p_qual_col: if pq in list(qual_one): q_df[pq] = q_df[pq].fillna(1) elif oxy_fit and pq is column: q_df[pq] = q_df[pq].fillna(2) else: q_df[pq] = q_df[pq].fillna(2) q_nd = q_df.as_matrix(columns=q_df.columns) return q_nd def formatTimeEpoc(time_zone='UTC', time_pattern='%Y-%m-%d %H:%M:%S', input_time = None): """formatTimeEpoc function Function takes pattern of time input, relative time zone, and date time data array and returns array of epoc time. title and the second row are the units for each column. Args: param1 (str): relative time zone for data. param2 (str): pattern of incoming data. param3 (ndarray): input_time, numpy 1d ndarray time array Returns: 1D ndarray: The return array of epoch time """ if input_time is None: print("In formatTimeEpoc: No data entered.") return else: os.environ['TZ'] = 'UTC' epoch_time = input_time for i in range(0,len(input_time)): epoch_time[i] = int(time.mktime(time.strptime(str(input_time[i], "utf-8"), time_pattern))) return epoch_time def dataToDataFrame(inFile): """dataToDataFrame function Function takes full file path to csv type data file and returns a PANDAS dataframe for data treatment with a two row header. Data file should have a two row header. The first row being the column title and the second row are the units for each column. Args: param1 (str): Full path to data file. Returns: DataFrame: The return value is a full dataframe with header. .. REF PAGE: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.read_csv.html#pandas.read_csv """ #df = pd.read_csv(inFile, header=[0,2]) df = pd.read_csv(inFile) return df def dataToNDarray(inFile, dtype=None, names=None, separator=',', skip=None): """dataToNDarray function Function takes full file path to csv type data file and returns NUMPY ndarray type ndarray for data manipulation with a two row header. Data file should have a two row header. The first row being the column title and the second row are the units for each column. Args: param1 (str): inFile, full path to csv file param2 (arr): dtype list param3 (str): separator, default comma ',' Returns: Narray: The return value is a full data ndarray with two row header. Reference Page: https://scipy.github.io/old-wiki/pages/Cookbook/InputOutput.html """ try: return pd.read_pickle(inFile).to_records() except: if skip is None: arr = np.genfromtxt(inFile, delimiter=separator, dtype=dtype, names=names) else: arr = np.genfromtxt(inFile, delimiter=separator, dtype=dtype, names=names, skip_header=skip) return arr def hysteresis_correction(H1=-0.033, H2=5000, H3=1450, inMat = None): """Hysteresis Correction function Function takes data ndarray and hysteresis coefficiants and returns hysteresis corrected oxygen data. Args: param1 (float): H1, hysteresis correction coefficiant 1 param2 (float): H2, hysteresis correction coefficiant 2 param3 (float): H3, hysteresis correction coefficiant 3 param5 (array): inMat, raw ctd data. Returns: array: Return dissolved oxygen hysteresis corrected data. .. REF PAGE: http://http://www.seabird.com/document/an64-3-sbe-43-dissolved-oxygen-do-sensor-hysteresis-corrections """ Oxnewconc = np.arange(0,len(inMat),1) Oxnewconc[0] = inMat['o1_mll'][1] if inMat is None: print("Hysteresis Correction function: No data") return else: for i in range(1,len(inMat)-1): D = 1 + H1 * (math.exp(inMat['p_dbar'][i] / H2) - 1) C = math.exp(-1 * 0.04167/ H3) Oxnewconc[i] = ((inMat['o1_mll'][i] + (Oxnewconc[i-1] * C * D)) - (inMat['o1_mll'][i-1] * C)) / D inMat['o1_mll'][:] = Oxnewconc[:] return inMat def data_interpolater(inArr): """data_interpolater to handle indices and logical indices of NaNs. Input: - inArr, 1d numpy array with return True np.isnans() Output: - nans, logical indices of NaNs - index, a function, with signature indices= index(logical_indices), to convert logical indices of NaNs to 'equivalent' indices - interpolated array Example: >>> # linear interpolation of NaNs >>> outArray = data_interpolater(inArr) """ nans, tmp= np.isnan(inArr), lambda z: z.nonzero()[0] inArr[nans] = np.interp(tmp(nans), tmp(~nans), inArr[~nans]) return inArr def o2pl2pkg(p_col, t_col, sal_col, dopl_col, dopkg_col, lat_col, lon_col, inMat): """o2pl2pkg convert ml/l dissolved oxygen to umol/kg Input: - t_col, temperature column header deg c. - sal_col, salinity column header psu. - dopl_col, dissolved column header ml/l. - dopkg_col, dissolved column header umol/kg - lat_col, latitude for entire cast deg. - lon_col, longitude for entire cast deg. - inMat, dtype ndarray processed ctd time data. Output: - Converted Oxygen column umol/kg Example: >>> # linear interpolation of NaNs >>> outArray = o2pl2kg(inArr) """ pkg = np.ndarray(shape=len(inMat), dtype=[(dopkg_col, np.float)]) # Absolute sailinity from Practical salinity. SA = gsw.SA_from_SP(inMat[sal_col], inMat[p_col], inMat[lat_col], inMat[lon_col]) # Conservative temperature from insitu temperature. CT = gsw.CT_from_t(SA, inMat[t_col], inMat[p_col]) s0 = gsw.sigma0(SA, CT) # Potential density from Absolute Salinity g/Kg Conservative temperature deg C. # Convert DO ml/l to umol/kg for i in range(0,len(inMat[dopl_col])): pkg[i] = inMat[dopl_col][i] * 44660 / (s0[i] + 1000) return pkg def oxy_to_umolkg(df_sal, df_pressure, df_lat, df_lon, df_temp, df_oxy): '''Rewritten from Courtney's method to use array-likes (aka use dataframes and ndarrays). ''' # Absolute salinity from Practical salinity. SA = gsw.SA_from_SP(df_sal, df_pressure, df_lat, df_lon) # Conservative temperature from insitu temperature. CT = gsw.CT_from_t(SA, df_temp, df_pressure) s0 = gsw.sigma0(SA, CT) # Potential density from Absolute Salinity g/Kg Conservative temperature deg C. series = df_oxy * 44660 / (s0 + 1000) return series def raw_ctd_filter(input_array=None, filter_type='triangle', win_size=24, parameters=None): """raw_ctd_filter function Function takes NUMPY array of raw ctd data and returns filtered data. This function also needs one of three filter types (boxcar, gaussian, triangle) as well as window size. Args: param1 (ndarray): Numpy ndarray with predefined header with at param2 (str): One of three tested filter types boxcar, gaussian_std, triangle. default is triangle param3 (int): A window size for the filter. Default is 24, which is the number of frames per second from a SBE9+/11 CTD/Dech unit. param4 (ndarray): parameters the dtype names used in filtering the analytical inputs. Returns: Narray: The return value is a matrix of filtered ctd data with the above listed header values. """ if input_array is None: print("In raw_ctd_filter: No data array.") return else: return_array = input_array if parameters is None: print("In raw_ctd_filter: Empty parameter list.") else: for p in parameters: if filter_type is 'boxcar': win = sig.boxcar(win_size) return_array[str(p)] = sig.convolve(input_array[str(p)], win, mode='same')/len(win) elif filter_type is 'gaussian': sigma = np.std(arr) win = sig.general_gaussian(win_size, 1.0, sigma) return_array[str(p)] = sig.convolve(input_array[str(p)], win, mode='same')/(len(win)) elif filter_type is 'triangle': win = sig.triang(win_size) return_array[p] = 2*sig.convolve(input_array[p], win, mode='same')/len(win) return return_array def ondeck_pressure(stacast, p_col, c1_col, c2_col, time_col, inMat=None, conductivity_startup=20.0, log_file=None): """ondeck_pressure function Function takes full NUMPY ndarray with predefined dtype array of filtered ctd raw data the stores, analizes and removes ondeck values from data. Args: param1 (str): stacast, station cast info param1 (str): p_col, pressure data column name param2 (str): c1_col, cond1 data column name param3 (str): c2_col, cond2 data column name param4 (str): time_col, time data column name param5 (ndarray): numpy ndarray with dtype array param6 (float): conductivity_startup, threshold value param7 (str): log_file, log file name Returns: Narray: The return ndarray with ondeck data removed. Also output start/end ondeck pressure. """ start_pressure = [] tmpMat = [] outMat = [] tmp = 0 start_p = 0.0 n = 0 ep = [] end_p = 0.0 # Frequency fl = 24 fl2 = fl*2 # One minute mt = 60 # Half minute ms = 30 time_delay = fl*ms if inMat is None: print("Ondeck_pressure function: No data.") return else: # Searches first quarter of matrix, uses conductivity # threshold min to capture startup pressure for j in range(0,int(len(inMat)/4)): if ((inMat[c1_col][j] < conductivity_startup) and (inMat[c2_col][j] < conductivity_startup)): tmp = j start_pressure.append(inMat[p_col][j]) # Evaluate starting pressures if not start_pressure: start_p = "Started in Water" else: n = len(start_pressure) if (n > time_delay): start_p = np.average(start_pressure[fl2:n-(time_delay)]) else: start_p = np.average(start_pressure[fl2:n]) # Remove on-deck startup inMat = inMat[tmp:] tmp = len(inMat); # Searches last half of NDarray for conductivity threshold if len(inMat) % 2 == 0: inMat_2 = inMat.copy() else: inMat_2 = inMat.iloc[1:].copy() inMat_half1, inMat_half2 =
np.split(inMat_2,2)
numpy.split
'''This module provices an abstract class whose purpose is fitting a 1D curve using several different methods (polynomial, splines, Gaussian processes), but providing a consistent API for evalutation and computing derivatives, extrama, etc.''' from __future__ import print_function import numpy as num from snpy.utils import fit_spline from scipy.interpolate import splrep,splev,sproot from scipy.optimize import brentq, newton from scipy.misc import derivative as deriv import six try: from snpy.spline2 import spline2, evalsp,eval_extrema,eval_x except: spline2 = None try: from numpy import polynomial except: polynomial = None # Both pymc and sklearn take a long time to import, so we'll start doing it # on-demand. We'll check for their existence, but that's it. gp = None if six.PY2: import pkgutil loader = pkgutil.find_loader('pymc') if loader is not None: gp = 'pymc' else: loader = pkgutil.find_loader('sklearn') if loader is not None: gp = 'sklearn' else: import importlib spec = importlib.util.find_spec('pymc') if spec is not None: gp = 'pymc' else: spec = importlib.util.find_spec('sklearn') if spec is not None: gp = 'sklearn' # try: # import pymc # from pymc import gp as GP # import os # if 'OMP_NUM_THREADS' not in os.environ: # os.environ['OMP_NUM_THREADS'] = '1' # gp = 'pymc' # except: # try: # from sklearn.gaussian_process import GaussianProcessRegressor # from sklearn.gaussian_process.kernels import Matern # gp = 'sklearn' # except: # pass try: from . import InteractiveFit except: InteractiveFit = None functions = {} def regularize(x, y, ey): '''Given x,y,dy data, make sure the data is strictly monatonic with respect to x and elimitate repeated values. Args: x (float array): input independent variable y (float array): input dependent variable ey (float array): input error in dependent variable Returns: 3-tuple: (x,y,ey) output values of x,y,ey, where duplicate x are averaged and x is strictly monotonically increasing.''' # x-values need to be strictly ascending. if x.shape[0] < 2: return x,y,ey sids = num.argsort(x) x = x[sids] y = y[sids] ey = ey[sids] # here's some Numeric magic. first, find where we have repeating x-values Nmatrix = num.equal(x[:,num.newaxis], x[num.newaxis,:]) val_matrix = y[:,num.newaxis]*Nmatrix e_matrix = ey[:,num.newaxis]*Nmatrix average = num.sum(val_matrix, axis=0)/sum(Nmatrix) e_average = num.sum(e_matrix, axis=0)/sum(Nmatrix) # at this point, average is the original data, but with repeating data points # replaced with their average. Now, we just pick out the unique x's and # the first of any repeating points: gids = num.concatenate([[True], num.greater(x[1:] - x[:-1], 0.)]) x = x[gids] y = average[gids] ey = e_average[gids] return x,y,ey class oneDcurve: '''Base class for 1D interpolators. Each subclass inherits the basic structure defined below, but is responstible for implementing the different methods.''' num_real_keep = 100 def __init__(self, x, y, ey, mask=None, **args): '''Instantiate a new interpolator. Args: x (float array): independent variable y (float array): dependent variable ey (float array): error in dependent variable mask (bool array): True where data is good, False to omit from fit args (optional args): extra arguments are handled by each subclass ''' x = num.atleast_1d(x) y = num.atleast_1d(y) ey = num.atleast_1d(ey) if not len(x.shape) == 1: raise ValueError("x, y, ey must be 1D arrays") if not x.shape == y.shape: raise ValueError("x, y must have same shape") if not y.shape == ey.shape: raise ValueError("y, ey must have same shape") self.xdata = x self.ydata = y self.eydata = ey self.vardata = num.power(ey,2) if mask is None: self.mask = num.ones(x.shape, dtype=bool) # mask for the data else: self.mask = mask if len(self.xdata[self.mask]) < 2: raise ValueError("(masked) data must have more than one point!") self.realization = None self.realizations = [] self.pars = {} self.setup = False self.ifit = None def __getattr__(self, key): if 'pars' in self.__dict__: if key in self.pars: return self.pars[key] if key == 'x': return self.xdata[self.mask] if key == 'y': return self.ydata[self.mask] if key == 'ey': return self.eydata[self.mask] if key == 'var': return self.vardata[self.mask] raise AttributeError("Instance has not attribute %s" % (key)) def __setattr__(self, key, value): if 'pars' in self.__dict__: if key in self.__dict__['pars']: self.__dict__['pars'][key] = value self.__dict__['setup'] = False if self.ifit is not None: self.ifit.redraw() return else: self.__dict__[key] = value return self.__dict__[key] = value def _regularize(self): '''Given a data set, we make sure that the independent variable is strinctly increasing, elminiating repeated values by an average.''' # x-values need to be strictly ascending. sids = num.argsort(self.x) x = self.x[sids] y = self.y[sids] ey = self.ey[sids] # here's some Numeric magic. first, find where we have repeating x-values Nmatrix = num.equal(x[:,num.newaxis], x[num.newaxis,:]) val_matrix = y[:,num.newaxis]*Nmatrix e_matrix = ey[:,num.newaxis]*Nmatrix average = num.sum(val_matrix, axis=0)/sum(Nmatrix) e_average = num.sum(e_matrix, axis=0)/sum(Nmatrix) # at this point, average is the original data, but with repeating data points # replaced with their average. Now, we just pick out the unique x's and # the first of any repeating points: gids = num.concatenate([[True], num.greater(x[1:] - x[:-1], 0.)]) x = x[gids] y = average[gids] ey = e_average[gids] return x,y,ey def maskpoint(self, x, y): '''Mask the point closest to (x,y). Args: x (float): (x,y) point to mask out y (float): (x,y) point to mask out Returns: None Effects: self.mask is updated ''' id = num.argmin(num.power(self.x-x,2) + num.power(self.y-y,2)) self.mask[id] = False self.setup = False def maskid(self, i): '''Mask the point based on index. Args: i (int): index of point to mask. Returns: None Effects: self.mask is updated ''' self.mask[id] = False self.setup = False def maskresids(self, absclip=None, sigclip=None): '''Mask data outside a range of residuals. Args: absclip (float): mask out data with residuals > absclip sigclip (float): mask out data with residuals > sigclip*sigma Returns: None Effects: self.mask is updated ''' absdev = num.aboslute(self.residuals()) if absclip is not None: self.mask *= num.greater(absdev, absclip) self.setup = False elif sigclip is not None: sigma = 1.49*num.median(absdev) self.mask *= num.greater(absdev, sigclip*sigma) self.setup = False def __call__(self, x): '''Return the interpolation at point(s) x. Args: x (float array or scalar): Location at which to compute interpolant Returns: 2-tuple: (y, mask) - y (float array or scalar): interpolant. type matches input x - mask (float array or scalar): False indicates extrapolation ''' raise NotImplementedError('Derived class must overide') def error(self, x, N=50): '''Estimate the error in the interpolant at the point x. Args: x (float array or scalar): location at which to compute error N (int): If bootstrap is required, number of iterations. Returns: float array or scalar: the error (type matches input x) ''' scalar = (len(num.shape(x)) == 0) x = num.atleast_1d(x) if len(self.realizations) < N: for i in range(N-len(self.realizations)): self.draw() self.reset_mean() earr = [] for i in range(N): self.realization = self.realizations[i] earr.append(self.__call__(x)[0]) self.realization = None earr = num.array(earr) err = num.std(earr, axis=0) if scalar: return err[0] else: return err def draw(self): '''Generate a Monte Carlo realization of the data. Interpolator will now give values based on this realization.''' raise NotImplementedError('Derived class must overide') def reset_mean(self): '''Reset to the original data after using draw()''' raise NotImplementedError('Derived class must overide') def residuals(self, mask=True): '''Compute the residuals (data - model) for current parameters. Args: mask (bool): If True, omit masked values from residuals Returns: float array: residuals ''' if mask: return self.y - self.__call__(self.x)[0] else: return self.ydata - self.__call__(self.xdata)[0] def rms(self): '''Returns RMS of residuals for current parameters.''' return num.sqrt(num.mean(num.power(self.residuals(),2))) def chisquare(self): '''Returns the chi-square statistic for current parameters.''' return num.sum(num.power(self.residuals(),2)*num.power(self.var,-1)) def rchisquare(self): '''Returns the reduced chi-square statistic for current parameters.''' raise NotImplementedError('Derived class must overide') def DW(self): '''Returns the Durvin-Watson statistic for current parameters.''' r = self.residuals() return num.sum(num.power(r[1:] - r[:-1],2))/num.sum(num.power(r,2)) def deriv(self, x, n=1): '''Returns the nth derivative of the function at x. Args: x (float array or scalar): location at which to compute derivative n (int): order of the derivative to compute Returns: float array or scalar: derivative at x (type matches input x) ''' raise NotImplementedError('Derived class must overide') def find_extrema(self, xmin=None, xmax=None): '''Find the position and values of the maxima/minima. Args: xmin (float): only consider extrema on interval (xmin,xmax) xmax (float): only consider extrema on interval (xmin,xmax) Returns: 3-tuple: (roots,vals,curvs) - roots (float array or None): locations where derivative is zero or None if no extrma on interval - vals (float array or None): interpolant at roots - curvs (float array or None): sign of curvature at roots. -1 if concave down (maximum), +1 if concave up (minimum) ''' raise NotImplementedError('Derived class must overide') def intercept(self, y): '''Find the value of x for which the interpolator goes through y Args: y (float): value of y for which we wish to know x Returns: float array or None: value(s) of x at y or None if function does not cross y on domain ''' raise NotImplementedError('Derived class must overide') def domain(self): '''Return the valid domain for this model Returns: 2-tuple: (xmin, xmax): the domain of the function. ''' def interact(self): '''If we have the InteractiveFit module, spawn an interactive fitter. Returns: InteractiveFit.InteractiveFit instance or None ''' if InteractiveFit is not None: return InteractiveFit.InteractiveFit(self) else: print("Sorry, you need to have matplotlib installed to use this feature") return None def help(self): '''Provide a help string.''' raise NotImplementedError('Derived class must overide') polytypes = {'polynomial':polynomial.Polynomial, 'chebyshev':polynomial.Chebyshev, 'laguerre':polynomial.Laguerre, 'hermite':polynomial.Hermite, 'hermiteE':polynomial.HermiteE} if polynomial is not None: class Polynomial(oneDcurve): def __init__(self, x, y, dy, mask=None, **args): '''Fit an Nth order polynomial to the data. The only arguments are [n], the order, [x0] the zero-point, xmin and xmax the lower and upper limits of the fit, respectively.''' oneDcurve.__init__(self, x, y, dy, mask) self.pars = { 'n':3, 'type':'poly', 'xmin':None, 'xmax':None} for key in args: if key not in self.pars: raise TypeError("%s is an invalid keyword argument for this method" % key) self.pars[key] = args[key] if self.xmin is None: self.xmin = self.x.min() if self.xmax is None: self.xmax = self.x.max() # no need to regularize self._setup() self.realization = None def help(self): print('n: order of the polynomial') print('xmin: lower bound on data to interpolate') print('xmax: upper bound on data to interpolate') def __str__(self): return self.type + " polynomial" def _setup(self): '''Given the current set of params, setup the interpolator.''' mask = self.mask*num.greater_equal(self.xdata, self.xmin)*\ num.less_equal(self.xdata, self.xmax) if self.type not in polytypes: raise ValueError("Error: the polynomial type must be one of " +\ ",".join(list(polytypes.keys()))) self.poly = polytypes[self.type].fit(self.xdata[mask], self.ydata[mask], deg=self.n, w=num.power(self.eydata[mask],-1)) self.setup = True self.realization = None def __call__(self, x): '''Interpolate at point [x]. Returns a 3-tuple: (y, mask) where [y] is the interpolated point, and [mask] is a boolean array with the same shape as [x] and is True where interpolated and False where extrapolated''' if not self.setup: self._setup() if self.realization is not None: res = self.realization(x) else: res = self.poly(x) return res, num.greater_equal(x, self.poly.domain[0])*\ num.less_equal(x, self.poly.domain[1]) def draw(self): '''Generate a random realization of the spline, based on the data.''' y_draw = num.random.normal(self.y, self.ey) self.realizations.append(\ polytypes[self.type].fit(self.x, y_draw, deg=self.n, w=num.power(self.ey,-1))) if len(self.realizations) > self.num_real_keep: self.realizations = self.realizations[1:] self.realization = self.realizations[-1] def reset_mean(self): self.realization = None def rchisquare(self): chisq = self.chisquare() return chisq/(len(self.x) - 1 - len(self.poly.coef)) def deriv(self, x, n=1): '''Returns the nth derivative of the function at x.''' if not self.setup: self._setup() dpoly = self.poly.deriv(m=n) return dpoly(x) def domain(self): '''Returns the valid domain of the polynomial.''' if not self.setup: self._setup() dom = self.poly.domain return (dom[0],dom[1]) def find_extrema(self, xmin=None, xmax=None): '''Find the position and values of the maxima/minima. Returns a tuple: (roots,vals,ypps) where roots are the x-values where the extrema occur, vals are the y-values at these points, and ypps are the 2nd derivatives. optionally, restrict roots to between xmin, and xmax''' if self.realization is not None: poly = self.realization else: poly = self.poly if xmin is None: xmin = self.poly.domain[0] if xmax is None: xmax = self.poly.domain[1] if not self.setup: self._setup() d1 = poly.deriv(m=1) d2 = poly.deriv(m=2) roots = d1.roots() # Roots can be complex. Want only the real ones gids = num.iscomplex(roots) roots = num.real(roots[num.logical_not(gids)]) gids = num.greater_equal(roots, xmin)*num.less_equal(roots, xmax) roots = roots[gids] if len(roots) == 0: return num.array([]), num.array([]), num.array([]) vals = self.__call__(roots) curvs = d2(roots) curvs = num.where(curvs < 0, -1, curvs) curvs = num.where(curvs > 0, 1, curvs) return roots,vals[0],curvs def intercept(self, y): '''Find the value of x for which the interpolator goes through [y]''' if self.realization is not None: poly = self.realization - y else: poly = self.poly - y # Roots can be complex. Want only real ones roots = poly.roots() gids = num.isreal(roots) roots = num.real(roots[gids]) gids = num.greater_equal(roots, self.poly.domain[0])*\ num.less_equal(roots, self.poly.domain[1]) roots = roots[gids] if len(roots) == 0: return None else: return roots for t in polytypes: if t == 'polynomial': functions[t] = (Polynomial, "Nth order simple polynomial (numpy.Polynomial)") else: functions[t] = (Polynomial, "Nth order %s polynomial (numpy.Polynomial)" % t) if spline2 is not None: class HyperSpline(oneDcurve): def __init__(self, x, y, dy, mask=None, **args): '''Fit a spline2 (Thijsse) to the data. [args] can be any argument recognized by spline2.spline2()''' oneDcurve.__init__(self, x, y, dy, mask) self.pars = { 'xrange':None, 'degree':3, 'acfsearch':0, 'acffunc':'exp', 'ksi':None, 'n':None, 'allownonopt':1, 'lopt':None, 'rejlev':0.05, 'xlog':0} for key in args: if key not in self.pars: raise TypeError("%s is an invalid keyword argument for this method" % key) self.pars[key] = args[key] # Make sure the data conform to the spine requirements #self._regularize() self._setup() self.realization = None def __str__(self): return "Hyperspline" def help(self): print("xrange: tuple of (xmin,xmax) over which to fit") print("lopt: Force knot optimization to start with lopt knots") print("degree: order of the spline (default 3)") print("xlog: 0/1, apply log10() to the x values before fitting?") print("rejlev: Use rejection level on statistical tests of rejlev") print("allownonopt: 0/1 Allow splines with non-optimized breakpoints?") print("acfsearch: 0/1, weather to search for auto-correlation") print("acffunc: functional form of autocorrelation (default exp)") print("ksi: specify auto-correlation length") print("n: only search for autocorrelation on index scale n") print() print("see help(spline2) for info on these parameters") def _setup(self): '''Given the current set of params, setup the interpolator.''' x,y,ey = self._regularize() self.tck = spline2(x, y, w=1.0/ey, **self.pars) self.setup = True self.realization = None def __call__(self, x): '''Interpolate at point [x]. Returns a 3-tuple: (y, mask) where [y] is the interpolated point, and [mask] is a boolean array with the same shape as [x] and is True where interpolated and False where extrapolated''' if not self.setup: self._setup() if len(num.shape(x)) < 1: scalar = True else: scalar = False x = num.atleast_1d(x) if self.realization: evm = num.atleast_1d(evalsp(x, self.realization)) mask = num.greater_equal(x, self.realization[0][0])*\ num.less_equal(x,self.realization[0][-1]) else: evm = num.atleast_1d(evalsp(x, self.tck)) mask = num.greater_equal(x, self.tck[0][0])*num.less_equal(x,self.tck[0][-1]) if scalar: return evm[0],mask[0] else: return evm,mask def domain(self): return (self.tck[0][0], self.tck[0][-1]) def draw(self): '''Generate a random realization of the spline, based on the data.''' y_draw = num.random.normal(self.y, self.ey) self.realizations.append(\ spline2(self.x, y_draw, w=1.0/self.ey, **self.pars)) if len(self.realizations) > self.num_real_keep: self.realizations = self.realizations[1:] self.realization = self.realizations[-1] def reset_mean(self): self.realization = None def rchisquare(self): chisq = self.chisquare() return chisq/(len(self.x) - len(self.tck[0]) - 1) def deriv(self, x, n=1): '''Returns the nth derivative of the function at x.''' if self.realization: tck = self.realization else: tck = self.tck if len(num.shape(x)) < 1: scalar = True else: scalar = False x = num.atleast_1d(x) if self.realization: evm = num.atleast_1d(evalsp(x, self.realization, deriv=n)) else: evm = num.atleast_1d(evalsp(x, self.tck, deriv=n)) if scalar: return evm[0] else: return evm def find_extrema(self, xmin=None, xmax=None): '''Find the position and values of the maxima/minima. Returns a tuple: (roots,vals,ypps) where roots are the x-values where the extrema occur, vals are the y-values at these points, and ypps are the 2nd derivatives. Optionally specify the range over which maxima are valid.''' if self.realization: vals = eval_extrema(self.realization) else: vals = eval_extrema(self.tck) gids = num.ones(vals[0].shape, dtype=num.bool) if xmin is not None: gids = gids*num.greater_equal(vals[0],xmin) if xmax is not None: gids = gids*num.less_equal(vals[0],xmax) return (vals[0][gids], vals[1][gids], vals[2][gids]) def intercept(self, y): '''Find the value of x for which the interpolator goes through [y]''' if self.realization: return eval_x(y, self.realization) else: return eval_x(y, self.tck) functions['hyperspline'] = (HyperSpline, "B. Thijsse style spline (snpy.spline2)") functions['spline2'] = (HyperSpline, "B. Thijsse style spline (snpy.spline2)") class Spline(oneDcurve): def __init__(self, x, y, dy, mask=None, **args): '''Fit a scipy (Dierkx) spline to the data. [args] can be any argument recognized by scipy.interpolate.splrep.''' oneDcurve.__init__(self, x, y, dy, mask) self.pars = { 't':None, 'k':3, 's':None, 'xb':None, 'xe':None, 'task':0} for key in args: if key not in self.pars: raise TypeError("%s is an invalid keyword argument for this method" % key) self.pars[key] = args[key] # Make sure the data conform to the spine requirements #self._regularize() self._setup() self.realization = None def __str__(self): return "Spline" def help(self): print("k: order of the spline (default 3)") print("task: 0,1,-1 (see scipy.interpolate.splrep)") print("s: Smoothing length") print("t: specify array of knots (task=-1)") print("xb lower bound on x for fitting") print("xe upper bound on x for fitting") def _regularize(self): # x-values need to be strictly ascending. sids = num.argsort(self.x) self.x = self.x[sids] self.y = self.y[sids] self.ey = self.ey[sids] # here's some Numeric magic. first, find where we have repeating x-values Nmatrix = num.equal(self.x[:,num.newaxis], self.x[num.newaxis,:]) val_matrix = self.y[:,num.newaxis]*Nmatrix e_matrix = self.ey[:,num.newaxis]*Nmatrix average = num.sum(val_matrix, axis=0)/sum(Nmatrix) e_average = num.sum(e_matrix, axis=0)/sum(Nmatrix) # at this point, average is the original data, but with repeating data points # replaced with their average. Now, we just pick out the unique x's and # the first of any repeating points: gids = num.concatenate([[True], num.greater(self.x[1:] - self.x[:-1], 0.)]) self.x = self.x[gids] self.y = average[gids] self.ey = e_average[gids] def _setup(self): '''Given the current set of params, setup the interpolator.''' self.tck = splrep(self.x, self.y, 1.0/self.ey, **self.pars) # Check for NaN's in the tck. if num.sometrue(num.isnan(self.tck[1])): raise ValueError("The Spline is invalid. It is possible the data are too noisy, or smoothing is too low. Try increasing 's' or fixing your errors") self.setup = True self.realization = None def add_knot(self, x): '''Add a knot point at x. The task parameter is automatically set to -1 as a result.''' if x <= self.tck[0][3] or x >= self.tck[0][-3]: return old_knots = self.tck[0][4:-4] knots = num.concatenate([[x],old_knots]) knots = num.sort(knots) self.pars['task'] = -1 self.pars['t'] = knots try: self._setup() except: print("Adding knot failed, reverting to old knots") self.pars['t'] = old_knots self.setup = False return def delete_knot(self, x): '''Delete knot closest to x. The task parameter is automatically set to -1 as a result.''' old_knots = self.tck[0][4:-4] ds = num.absolute(old_knots - x) id = num.argmin(ds) l = old_knots.tolist() del l[id] self.pars['task'] = -1 self.pars['t'] = num.array(l) try: self._setup() except: print("Deleting knot failed, reverting to old knots") self.pars['t'] = old_knots self.setup = False return def move_knot(self, x, xnew): '''Move knot closest to x to new location xnew. The task parameter is automatically set to -1 as a result.''' old_knots = self.tck[0][4:-4] ds = num.absolute(old_knots - x) id = num.argmin(ds) self.pars['task'] = -1 self.pars['t'] = old_knots*1 self.pars['t'][id] = xnew self.pars['t'] = num.sort(self.pars['t']) try: self._setup() except: self.pars['t'] = old_knots self.setup = False def __call__(self, x): '''Interpolate at point [x]. Returns a 3-tuple: (y, mask) where [y] is the interpolated point, and [mask] is a boolean array with the same shape as [x] and is True where interpolated and False where extrapolated''' if not self.setup: self._setup() if len(num.shape(x)) < 1: scalar = True else: scalar = False x = num.atleast_1d(x) if self.realization: evm = num.atleast_1d(splev(x, self.realization)) mask = num.greater_equal(x, self.realization[0][0])*\ num.less_equal(x,self.realization[0][-1]) else: evm = num.atleast_1d(splev(x, self.tck)) mask = num.greater_equal(x, self.tck[0][0])*num.less_equal(x,self.tck[0][-1]) if scalar: return evm[0],mask[0] else: return evm,mask def domain(self): return (self.tck[0][0], self.tck[0][-1]) def draw(self): '''Generate a random realization of the spline, based on the data.''' k = self.tck[2] y_draw = num.random.normal(self.y, self.ey) args = self.pars.copy() args['task'] = -1 args['t'] = self.tck[0][k+1:-(k+1)] self.realizations.append(splrep(self.x, y_draw, self.ey, **args)) if len(self.realizations) > self.num_real_keep: self.realizations = self.realizations[1:] self.realization = self.realizations[-1] def reset_mean(self): self.realization = None def rchisquare(self): chisq = self.chisquare() return chisq/(len(self.x) - len(self.tck[0]) - 1) def deriv(self, x, n=1): '''Returns the nth derivative of the function at x.''' if self.realization: tck = self.realization else: tck = self.tck if len(num.shape(x)) < 1: scalar = True else: scalar = False x = num.atleast_1d(x) if self.realization: evm = num.atleast_1d(splev(x, self.realization, der=n)) else: evm = num.atleast_1d(splev(x, self.tck, der=n)) if scalar: return evm[0] else: return evm def find_extrema(self, xmin=None, xmax=None): '''Find the position and values of the maxima/minima. Returns a tuple: (roots,vals,ypps) where roots are the x-values where the extrema occur, vals are the y-values at these points, and ypps are the 2nd derivatives. Optionall, search only betwwen xmin and xmax.''' #evaluate the 1st derivative at k+1 intervals between the knots if self.realization: t,c,k = self.realization else: t,c,k = self.tck if xmax is None: xmax = t[-1] if xmin is None: xmin = t[0] x0s = t[k:-k] xs = [] for i in range(len(x0s)-1): xs.append(num.arange(x0s[i],x0s[i+1],(x0s[i+1]-x0s[i])/(k+1))) xs = num.concatenate(xs) yps = self.deriv(xs, n=1) # now find the roots of the 1st derivative tck2 = splrep(xs, yps, k=3, s=0) roots = sproot(tck2) curvs = [] vals = [] for root in roots: vals.append(self.__call__(root)[0]) curvs.append(self.deriv(root, n=2)) gids = num.greater_equal(roots,xmin)*num.less_equal(roots,xmax) curvs = num.where(num.equal(curvs,0), 0, curvs/num.absolute(curvs)) return roots[gids],num.array(vals)[gids],num.array(curvs)[gids] def intercept(self, y): '''Find the value of x for which the interpolator goes through [y]''' # use a fun little trick: if self.realization: tck = self.realization[0][::],self.realization[1]-y,\ self.realization[2] else: tck = self.tck[0][::],self.tck[1]-y,self.tck[2] roots = sproot(tck) gids = num.greater_equal(roots,tck[0][0])*num.less_equal(roots,tck[0][-1]) return sproot(tck) functions['spline'] = (Spline, "Dierckx style splines (FITPACK)") if gp == 'pymc': class GaussianProcess(oneDcurve): def __init__(self, x, y, dy, mask=None, **args): '''Fit a GP (Gaussian Process) spline to the data. [args] can be any argument recognized by scipy.interpolate.splrep.''' oneDcurve.__init__(self, x, y, dy, mask) self.pars = { 'diff_degree':None, 'scale':None, 'amp':None} for key in args: if key not in self.pars and key != "mean": raise TypeError("%s is an invalid keyword argument for this method" % key) if key != "mean": self.pars[key] = args[key] if 'mean' in args: self.mean = args['mean'] else: self.mean = lambda x: x*0 + num.median(self.y) # Make sure the data conform to the spine requirements self.median = num.median(self.y) self._setup() self.realization = None def __str__(sef): return "Gaussian Process" #def func(self, x): # return x*0 + self.median def __getstate__(self): # we need to define this because Mean and Cov are not pickleable dict = self.__dict__.copy() if 'M' in dict: del dict['M'] if 'C' in dict: del dict['C'] if 'mean' in dict: dict['mean'] = None # Setting setup to None will force re-generation of M and C # when we are unpickled dict['setup'] = False return dict def help(self): print("scale: Scale over which the function varies") print("amp: Amplitude of typical function variations") print("diff_degree: Roughly, the degree of differentiability") def _setup(self): '''Given the current set of params, setup the interpolator.''' import pymc.gp as GP globals()['GP'] = GP x,y,dy = self._regularize() if self.diff_degree is None: self.diff_degree = 3 if self.amp is None: self.amp = num.std(y - self.mean(x)) if self.scale is None: #self.scale = (self.x.max() - self.x.min())/2 self.scale = 30 self.M = GP.Mean(self.mean) self.C = GP.Covariance(GP.matern.euclidean, diff_degree=self.diff_degree, amp=self.amp, scale=self.scale) GP.observe(self.M, self.C, obs_mesh=x, obs_vals=y, obs_V=num.power(dy,2)) self.setup = True self.realization = None def __call__(self, x): '''Interpolate at point [x]. Returns a 3-tuple: (y, mask) where [y] is the interpolated point, and [mask] is a boolean array with the same shape as [x] and is True where interpolated and False where extrapolated''' if not self.setup: self._setup() if len(num.shape(x)) < 1: scalar = True else: scalar = False x = num.atleast_1d(x) if self.realization is not None: res = self.realization(x) else: res = self.M(x) if scalar: return res[0],self.x.min() <= x[0] <= self.x.max() else: return res,num.greater_equal(x, self.x.min())*\ num.less_equal(x, self.x.max()) def domain(self): return (self.x.min(),self.x.max()) def error(self, x): '''Returns the error in the interpolator at points [x].''' if not self.setup: self._setup() if len(num.shape(x)) < 1: scalar = True else: scalar = False x = num.atleast_1d(x) res = num.sqrt(self.C(x)) if scalar: return res[0] else: return res def draw(self): '''Generate a random realization of the spline, based on the data.''' if not self.setup: self._setup() self.realization = GP.Realization(self.M, self.C) def reset_mean(self): self.realization = None def rchisquare(self): chisq = self.chisquare() if len(self.x) < 5: return -1 return chisq/(len(self.x) - 4) def deriv(self, x, n=1): '''Returns the nth derivative of the function at x.''' if len(num.shape(x)) < 1: scalar = True else: scalar = False xs = num.atleast_1d(x) f = lambda x: self.__call__(x)[0] res = deriv(f, xs, dx=self.scale/100., n=n) if scalar: return res[0] else: return res def find_extrema(self, xmin=None, xmax=None): '''Find the position and values of the maxima/minima. Returns a tuple: (roots,vals,ypps) where roots are the x-values where the extrema occur, vals are the y-values at these points, and ypps are the 2nd derivatives. Optionally, only search for roots between xmin and xmax''' #evaluate the 1st derivative at sacle/10 intervals (that should be # enough) if xmin is None: xmin = self.x.min() if xmax is None: xmax = self.x.max() dx = min(self.scale*1.0/20, (xmax-xmin)/5.0) xs = num.arange(xmin, xmax, dx) #f = lambda x: self.__call__(x)[0] dys = self.deriv(xs, n=1) #dys = num.diff(self.__call__(xs)[0]) #adys = (dys[1:] + dys[:-1])/2 #dys = num.concatenate([[dys[0]],adys,[dys[-1]]]) pids = num.greater(dys, 0) # Find indeces where go from True->False or False->True: XOR inds = num.nonzero(num.logical_xor(pids[1:],pids[:-1]))[0] if len(inds) == 0: return (num.array([]), num.array([]), num.array([])) ret = [] for i in range(len(inds)): try: res = brentq(self.deriv, xs[inds[i]], xs[inds[i]+1]) ret.append(res) except: continue if len(ret) == 0: return (num.array([]), num.array([]), num.array([])) ret = num.array(ret) vals = self.__call__(ret)[0] curvs = self.deriv(ret, n=2) curvs = num.where(curvs > 0, 1, curvs) curvs = num.where(curvs < 0, -1, curvs) return ret,vals,curvs def intercept(self, y): '''Find the value of x for which the interpolator goes through [y]''' xs = num.arange(self.x.min(), self.x.max(), self.scale/10) f = lambda x: self.__call__(x)[0] - y ys = f(xs) pids = num.greater(ys, 0) if num.alltrue(pids) or num.alltrue(-pids): return None ret = [] inds =
num.nonzero(pids[1:] - pids[:-1])
numpy.nonzero
import logging from unittest.mock import Mock import grpc import numpy import numpy.random import pytest from google.protobuf import any_pb2 from google.rpc import error_details_pb2, status_pb2, code_pb2 from grpc_status import rpc_status from grpc4bmi.bmi_grpc_server import BmiServer from grpc4bmi.bmi_grpc_client import BmiClient, RemoteException, handle_error from grpc4bmi.reserve import reserve_values, reserve_grid_shape, reserve_grid_padding from test.fake_models import SomeException, FailingModel, Rect3DGridModel, UnstructuredGridBmiModel, UniRectGridModel, \ Rect2DGridModel, Structured3DQuadrilateralsGridModel, Structured2DQuadrilateralsGridModel, Float32Model, Int32Model, \ BooleanModel from test.flatbmiheat import FlatBmiHeat logging.basicConfig(level=logging.DEBUG) """ Unit tests for the BMI client class. Every test performs cross-checking with a local instance of the BMI heat toy model. """ class MyRpcError(grpc.RpcError): def trailing_metadata(self): return [] class ServerWrapper(object): def __init__(self, server): self.server = server self.context = Mock(grpc.ServicerContext) def forward(status): raise MyRpcError(status.details) self.context.abort_with_status.side_effect = forward def __getattr__(self, item): orig_attr = self.server.__getattribute__(item) if callable(orig_attr): def add_context(*args, **kwargs): kwargs["context"] = self.context return orig_attr(*args, **kwargs) return add_context return orig_attr def make_bmi_classes(init=False): client = BmiClient(stub=ServerWrapper(BmiServer(FlatBmiHeat()))) local = FlatBmiHeat() if init: numpy.random.seed(0) client.initialize(None) numpy.random.seed(0) local.initialize(None) return client, local def test_server_start(): client, local = make_bmi_classes() assert client is not None del client def test_component_name(): client, local = make_bmi_classes() assert client.get_component_name() == local.get_component_name() del client def test_input_item_count(): client, local = make_bmi_classes() assert client.get_input_item_count() == local.get_input_item_count() del client def test_output_item_count(): client, local = make_bmi_classes() assert client.get_output_item_count() == local.get_output_item_count() del client def test_input_var_names(): client, local = make_bmi_classes() assert client.get_input_var_names() == local.get_input_var_names() del client def test_output_var_names(): client, local = make_bmi_classes() assert client.get_output_var_names() == local.get_output_var_names() del client def test_initialize(): client, local = make_bmi_classes(True) assert client is not None client.finalize() del client def test_update(): client, local = make_bmi_classes(True) client.update() assert client is not None client.finalize() del client def test_update_until(): client, local = make_bmi_classes(True) until = local.get_start_time() + local.get_time_step() + local.get_time_step() client.update_until(until) assert client.get_current_time() == until client.finalize() del client def test_get_time_unit(): client, local = make_bmi_classes() assert client.get_time_units() == local.get_time_units() client.finalize() del client def test_get_time_step(): client, local = make_bmi_classes(True) assert client.get_time_step() == local.get_time_step() client.finalize() del client def test_get_current_time(): client, local = make_bmi_classes(True) assert client.get_current_time() == local.get_current_time() client.finalize() del client def test_get_updated_time(): client, local = make_bmi_classes(True) client.update() assert client.get_current_time() != local.get_current_time() local.update() assert client.get_current_time() == local.get_current_time() client.finalize() del client def test_get_start_end_time(): client, local = make_bmi_classes(True) assert client.get_start_time() == local.get_start_time() assert client.get_end_time() == local.get_end_time() client.finalize() del client def test_get_var_grid(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] assert client.get_var_grid(varname) == local.get_var_grid(varname) del client def test_get_var_type(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] assert client.get_var_type(varname) == local.get_var_type(varname) del client def test_get_var_units(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] assert client.get_var_units(varname) == local.get_var_units(varname) del client def test_get_var_nbytes(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] assert client.get_var_nbytes(varname) == local.get_var_nbytes(varname) del client def test_get_var_location(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] assert client.get_var_location(varname) == local.get_var_location(varname) del client def test_get_var_value(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] actual = client.get_value(varname, reserve_values(client, varname)) expected = local.get_value(varname, reserve_values(local, varname)) numpy.testing.assert_allclose(actual, expected) del client def test_get_value_ptr(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] with pytest.raises(NotImplementedError): client.get_value_ptr(varname) def test_get_vals_indices(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] indices = numpy.array([29, 8, 19, 81]) result = numpy.empty(len(indices), dtype=client.get_var_type(varname)) result = client.get_value_at_indices(varname, result, indices) expected = numpy.empty(len(indices), dtype=local.get_var_type(varname)) expected = local.get_value_at_indices(varname, expected, indices) numpy.testing.assert_allclose(result, expected) def test_set_var_value(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] values = 0.123 * local.get_value(varname, reserve_values(local, varname)) client.set_value(varname, values) numpy.testing.assert_allclose(client.get_value(varname, reserve_values(client, varname)), values) def test_set_values_indices(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] indices = numpy.array([1, 11, 21]) values = numpy.array([0.123, 4.567, 8.901], dtype=numpy.float64) client.set_value_at_indices(varname, indices, values) expected = numpy.empty(len(indices), dtype=client.get_var_type(varname)) expected = client.get_value_at_indices(varname, expected, indices) numpy.testing.assert_allclose(expected, values) def test_get_grid_size(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] grid_id = local.get_var_grid(varname) assert client.get_grid_size(grid_id) == local.get_grid_size(grid_id) def test_get_grid_rank(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] grid_id = local.get_var_grid(varname) assert client.get_grid_rank(grid_id) == local.get_grid_rank(grid_id) def test_get_grid_type(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] grid_id = local.get_var_grid(varname) assert client.get_grid_type(grid_id) == local.get_grid_type(grid_id) def test_get_grid_shape(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] grid_id = local.get_var_grid(varname) result = client.get_grid_shape(grid_id, reserve_grid_shape(client, grid_id)) expected = local.get_grid_shape(grid_id, reserve_grid_shape(local, grid_id)) numpy.testing.assert_allclose(result, expected) def test_get_grid_spacing(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] grid_id = local.get_var_grid(varname) result = client.get_grid_spacing(grid_id, reserve_grid_padding(client, grid_id)) expected = local.get_grid_spacing(grid_id, reserve_grid_padding(local, grid_id)) numpy.testing.assert_allclose(result, expected) def test_get_grid_origin(): client, local = make_bmi_classes(True) varname = local.get_output_var_names()[0] grid_id = local.get_var_grid(varname) result = client.get_grid_origin(grid_id, reserve_grid_padding(client, grid_id)) expected = local.get_grid_origin(grid_id, reserve_grid_padding(local, grid_id)) numpy.testing.assert_allclose(result, expected) @pytest.mark.parametrize("client_method,client_request", [ ('initialize', ('config.ini',)), ('update', ()), ('update_until', (42,)), ('finalize', ()), ('get_component_name', ()), ('get_input_item_count', ()), ('get_output_item_count', ()), ('get_input_var_names', ()), ('get_output_var_names', ()), ('get_time_units', ()), ('get_time_step', ()), ('get_current_time', ()), ('get_start_time', ()), ('get_end_time', ()), ('get_var_grid', ('something',)), ('get_var_type', ('something',)), ('get_var_itemsize', ('something',)), ('get_var_units', ('something',)), ('get_var_nbytes', ('something',)), ('get_var_location', ('something',)), ('get_value', ('something', numpy.empty(0))), ('get_value_at_indices', ('something', numpy.empty(0), numpy.array([42]))), ('set_value', ('something', numpy.array([1234]))), ('set_value_at_indices', ('something', numpy.array([42]), numpy.array([1234]))), ('get_grid_size', (42,)), ('get_grid_type', (42,)), ('get_grid_rank', (42,)), ('get_grid_x', (42, numpy.empty(0))), ('get_grid_y', (42, numpy.empty(0))), ('get_grid_z', (42, numpy.empty(0))), ('get_grid_shape', (42, numpy.empty(0))), ('get_grid_spacing', (42, numpy.empty(0))), ('get_grid_origin', (42, numpy.empty(0))), ('get_grid_node_count', (42,)), ('get_grid_edge_count', (42,)), ('get_grid_face_count', (42,)), ('get_grid_edge_nodes', (42, numpy.empty(0))), ('get_grid_face_nodes', (42, numpy.empty(0))), ('get_grid_face_edges', (42, numpy.empty(0))), ('get_grid_nodes_per_face', (42, numpy.empty(0))), ]) def test_method_exception(client_method, client_request): exc = SomeException('bmi method always fails') model = FailingModel(exc) client = BmiClient(stub=ServerWrapper(BmiServer(model))) with pytest.raises(Exception) as excinfo: getattr(client, client_method)(*client_request) assert "bmi method always fails" in str(excinfo.value) class TestUniRectGridModel: @pytest.fixture def bmiclient(self): model = UniRectGridModel() client = BmiClient(stub=ServerWrapper(BmiServer(model))) yield client del client def test_grid_type(self, bmiclient): assert bmiclient.get_grid_type(0) == 'uniform_rectilinear' def test_grid_size(self, bmiclient): assert bmiclient.get_grid_size(0) == 24 def test_grid_rank(self, bmiclient): assert bmiclient.get_grid_rank(0) == 3 def test_grid_shape(self, bmiclient): result = bmiclient.get_grid_shape(0, numpy.empty(3)) expected = (2, 3, 4) numpy.testing.assert_allclose(result, expected) def test_grid_origin(self, bmiclient): result = bmiclient.get_grid_origin(0, numpy.empty(3)) expected = (0.1, 1.1, 2.1) numpy.testing.assert_allclose(result, expected) def test_grid_spacing(self, bmiclient): result = bmiclient.get_grid_spacing(0, numpy.empty(3)) expected = (0.1, 0.2, 0.3) numpy.testing.assert_allclose(result, expected) class TestRect3DGridModel: @pytest.fixture def bmiclient(self): model = Rect3DGridModel() client = BmiClient(stub=ServerWrapper(BmiServer(model))) yield client del client def test_grid_size(self, bmiclient): assert bmiclient.get_grid_size(0) == 24 def test_grid_rank(self, bmiclient): assert bmiclient.get_grid_rank(0) == 3 def test_grid_x(self, bmiclient): result = bmiclient.get_grid_x(0, numpy.empty(4)) expected = [0.1, 0.2, 0.3, 0.4] numpy.testing.assert_allclose(result, expected) def test_grid_y(self, bmiclient): result = bmiclient.get_grid_y(0, numpy.empty(3)) expected = [1.1, 1.2, 1.3] numpy.testing.assert_allclose(result, expected) def test_grid_z(self, bmiclient): result = bmiclient.get_grid_z(0, numpy.empty(2)) expected = [2.1, 2.2] numpy.testing.assert_allclose(result, expected) class TestRect2DGridModel: @pytest.fixture def bmiclient(self): model = Rect2DGridModel() client = BmiClient(stub=ServerWrapper(BmiServer(model))) yield client del client def test_grid_size(self, bmiclient): assert bmiclient.get_grid_size(0) == 12 def test_grid_rank(self, bmiclient): assert bmiclient.get_grid_rank(0) == 2 def test_grid_x(self, bmiclient): result = bmiclient.get_grid_x(0, numpy.empty(4)) expected = [0.1, 0.2, 0.3, 0.4] numpy.testing.assert_allclose(result, expected) def test_grid_y(self, bmiclient): result = bmiclient.get_grid_y(0, numpy.empty(3)) expected = [1.1, 1.2, 1.3] numpy.testing.assert_allclose(result, expected) def test_grid_z(self, bmiclient): with pytest.raises(MyRpcError) as excinfo: bmiclient.get_grid_z(0, numpy.empty(4)) assert 'out of bounds' in str(excinfo.value) class TestStructured3DQuadrilateralsGridModel: @pytest.fixture def bmiclient(self): model = Structured3DQuadrilateralsGridModel() client = BmiClient(stub=ServerWrapper(BmiServer(model))) yield client del client def test_grid_size(self, bmiclient): assert bmiclient.get_grid_size(0) == 4 def test_grid_rank(self, bmiclient): assert bmiclient.get_grid_rank(0) == 3 def test_grid_shape(self, bmiclient): result = bmiclient.get_grid_shape(0, numpy.empty(3)) expected = [1, 2, 2] numpy.testing.assert_allclose(result, expected) def test_grid_x(self, bmiclient): result = bmiclient.get_grid_x(0, numpy.empty(4)) expected = [1.1, 0.1, 1.1, 2.1] numpy.testing.assert_allclose(result, expected) def test_grid_y(self, bmiclient): result = bmiclient.get_grid_y(0, numpy.empty(4)) expected = [2.2, 1.2, 0.2, 2.2] numpy.testing.assert_allclose(result, expected) def test_grid_z(self, bmiclient): result = bmiclient.get_grid_z(0, numpy.empty(4)) expected = [1.1, 2.2, 3.3, 4.4] numpy.testing.assert_allclose(result, expected) class TestStructured2DQuadrilateralsGridModel: @pytest.fixture def bmiclient(self): model = Structured2DQuadrilateralsGridModel() client = BmiClient(stub=ServerWrapper(BmiServer(model))) yield client del client def test_grid_size(self, bmiclient): assert bmiclient.get_grid_size(0) == 4 def test_grid_rank(self, bmiclient): assert bmiclient.get_grid_rank(0) == 2 def test_grid_shape(self, bmiclient): result = bmiclient.get_grid_shape(0, numpy.empty(2)) expected = [2, 2] numpy.testing.assert_allclose(result, expected) def test_grid_x(self, bmiclient): result = bmiclient.get_grid_x(0, numpy.empty(4)) expected = [1.1, 0.1, 1.1, 2.1] numpy.testing.assert_allclose(result, expected) def test_grid_y(self, bmiclient): result = bmiclient.get_grid_y(0, numpy.empty(4)) expected = [2.2, 1.2, 0.2, 2.2] numpy.testing.assert_allclose(result, expected) def test_grid_z(self, bmiclient): with pytest.raises(MyRpcError) as excinfo: bmiclient.get_grid_z(0, numpy.empty(4)) assert 'Do not know what z is' in str(excinfo.value) class TestUnstructuredGridBmiModel: @pytest.fixture def bmiclient(self): model = UnstructuredGridBmiModel() client = BmiClient(stub=ServerWrapper(BmiServer(model))) yield client del client def test_get_grid_shape(self, bmiclient): with pytest.raises(MyRpcError) as excinfo: bmiclient.get_grid_shape(0, numpy.empty(3)) assert 'Do not know what shape is' in str(excinfo.value) def test_grid_size(self, bmiclient): assert bmiclient.get_grid_size(0) == 6 def test_grid_rank(self, bmiclient): assert bmiclient.get_grid_rank(0) == 2 def test_get_grid_node_count(self, bmiclient): result = bmiclient.get_grid_node_count(0) assert result == 6 def test_get_grid_edge_count(self, bmiclient): result = bmiclient.get_grid_edge_count(0) assert result == 8 def test_get_grid_face_count(self, bmiclient): result = bmiclient.get_grid_face_count(0) assert result == 3 def test_get_grid_edge_nodes(self, bmiclient): placeholder = numpy.empty(16, dtype=numpy.int) result = bmiclient.get_grid_edge_nodes(0, placeholder) expected = (0, 1, 1, 2, 2, 3, 3, 0, 1, 4, 4, 5, 5, 2, 5, 3) numpy.testing.assert_allclose(result, expected) def test_grid_face_nodes(self, bmiclient): placeholder = numpy.empty(11, dtype=numpy.int) result = bmiclient.get_grid_face_nodes(0, placeholder) expected = (0, 1, 2, 3, 1, 4, 5, 2, 2, 5, 3) numpy.testing.assert_allclose(result, expected) def test_grid_face_edges(self, bmiclient): placeholder = numpy.empty(11, dtype=numpy.int) result = bmiclient.get_grid_face_edges(0, placeholder) expected = (0, 1, 2, 3, 4, 5, 6, 1, 6, 7, 2) numpy.testing.assert_allclose(result, expected) def test_grid_nodes_per_face(self, bmiclient): placeholder = numpy.empty(3, dtype=numpy.int) result = bmiclient.get_grid_nodes_per_face(0, placeholder) expected = (4, 4, 3) numpy.testing.assert_allclose(result, expected) def test_grid_x(self, bmiclient): result = bmiclient.get_grid_x(0, numpy.empty(6)) expected = [0., 1., 2., 1., 3., 4.] numpy.testing.assert_allclose(result, expected) def test_grid_y(self, bmiclient): result = bmiclient.get_grid_y(0, numpy.empty(6)) expected = [3., 1., 2., 4., 0., 3.] numpy.testing.assert_allclose(result, expected) def test_grid_z(self, bmiclient): with pytest.raises(MyRpcError) as excinfo: bmiclient.get_grid_z(0, numpy.empty(4)) assert 'Do not know what z is' in str(excinfo.value) class TestFloat32Model: name = 'plate_surface__temperature' @pytest.fixture def bmimodel(self): return Float32Model() @pytest.fixture def bmiclient(self, bmimodel): client = BmiClient(stub=ServerWrapper(BmiServer(bmimodel))) yield client del client def test_get_value(self, bmiclient): result = bmiclient.get_value(self.name, numpy.empty(3)) expected = numpy.array((1.1, 2.2, 3.3), dtype=numpy.float32) numpy.testing.assert_allclose(result, expected) def test_get_value_at_indices(self, bmiclient): result = bmiclient.get_value_at_indices(self.name, numpy.empty(1), numpy.array([1])) expected = numpy.array([2.2], dtype=numpy.float32) numpy.testing.assert_allclose(result, expected) def test_set_value(self, bmimodel, bmiclient): value = numpy.array((2.1, 3.2, 4.3), dtype=numpy.float32) bmiclient.set_value(self.name, value) numpy.testing.assert_allclose(value, bmimodel.value) def test_set_value_at_indices(self, bmimodel, bmiclient): value = numpy.array([8.8], dtype=numpy.float32) bmiclient.set_value_at_indices(self.name, numpy.array([1]), value) expected = numpy.array((1.1, 8.8, 3.3), dtype=numpy.float32) numpy.testing.assert_allclose(expected, bmimodel.value) class TestInt32Model: name = 'plate_surface__temperature' @pytest.fixture def bmimodel(self): model = Int32Model() yield model del model @pytest.fixture def bmiclient(self, bmimodel): client = BmiClient(stub=ServerWrapper(BmiServer(bmimodel))) yield client del client def test_get_value(self, bmiclient): result = bmiclient.get_value(self.name, numpy.empty(3)) expected = numpy.array((12, 24, 36), dtype=numpy.int32) numpy.testing.assert_allclose(result, expected) def test_get_value_at_indices(self, bmiclient): result = bmiclient.get_value_at_indices(self.name, numpy.empty(1), numpy.array([1])) expected = numpy.array([24], dtype=numpy.int32) numpy.testing.assert_allclose(result, expected) def test_set_value(self, bmimodel, bmiclient): value = numpy.array((48, 50, 62), dtype=numpy.int32) bmiclient.set_value(self.name, value) numpy.testing.assert_allclose(value, bmimodel.value) def test_set_value_at_indices(self, bmimodel, bmiclient): value = numpy.array([88], dtype=numpy.int32) bmiclient.set_value_at_indices(self.name, numpy.array([1]), value) expected = numpy.array((12, 88, 36), dtype=numpy.int32) numpy.testing.assert_allclose(expected, bmimodel.value) class TestBooleanModel: name = 'plate_surface__temperature' @pytest.fixture def bmimodel(self): return BooleanModel() @pytest.fixture def bmiclient(self, bmimodel): client = BmiClient(stub=ServerWrapper(BmiServer(bmimodel))) yield client del client def test_get_value(self, bmiclient): with pytest.raises(MyRpcError): bmiclient.get_value(self.name,
numpy.empty(3)
numpy.empty
import numpy as np from tentacle.board import Board from tentacle.dnn3 import DCNN3 from tentacle.strategy import Strategy, Auditor from tentacle.utils import attemper from builtins import (super) class StrategyDNN(Strategy, Auditor): def __init__(self, is_train=False, is_revive=True, is_rl=False, from_file=None, part_vars=True): super().__init__() self.init_exp = 0.3 # initial exploration prob self.final_exp = 0.001 # final exploration prob self.anneal_steps = 90 * 1000 # N steps for annealing exploration self.absorb_progress = 0 self.exploration = self.init_exp self.temperature = 0.02 self.win_ratio = 1. self.brain = DCNN3(is_train, is_revive, is_rl) self.brain.run(from_file, part_vars) def update_at_end(self, old, new): if not self.needs_update(): return def update(self, old, new): pass def _update_impl(self, old, new, reward): pass def board_value(self, board, context): pass def explore_strategy1(self, probs, legal, top1, **kwargs): if np.random.rand() < self.exploration: top_n = np.argsort(probs)[-2:] if legal[top_n[-1]] != 1 or legal[top_n[-2]] != 1: return top1, False if probs[top_n[-1]] - probs[top_n[-2]] < 0.2: rand_loc = np.random.choice(top_n) return rand_loc, rand_loc != top1 return top1, False def explore_strategy2(self, probs, legal, top1, **kwargs): if self.win_ratio is not None: if self.win_ratio > 1.1: self.temperature += 0.002 elif self.win_ratio < 1/1.1: self.temperature -= 0.002 self.temperature = min(max(0.001, self.temperature), 100) probs = attemper(probs, self.temperature, legal) rand_loc = np.random.choice(Board.BOARD_SIZE_SQ, 1, p=probs) # rand_loc = np.random.multinomial(1, probs).argmax() return rand_loc, rand_loc != top1 def explore_strategy3(self, probs, legal, top1, **kwargs): if np.random.rand() < self.exploration: rand_loc = np.random.choice(np.where(legal == 1)[0], 1)[0] return rand_loc, rand_loc != top1 return top1, False def explore_strategy4(self, probs, legal, top1, **kwargs): ''' stat action distributin, encourage action with small prob move first ''' return top1, False def explore_strategy5(self, probs, legal, top1, **kwargs): ''' one chance of explore per game ''' game = kwargs['game'] if game.exploration_counter == 0: NUM_ACTIONS = Board.BOARD_SIZE_SQ x = np.random.randint(NUM_ACTIONS - game.step_counter) if x < 2: rand_loc = np.random.choice(np.where(legal == 1)[0], 1)[0] return rand_loc, rand_loc != top1 return top1, False def preferred_move(self, board, game=None): v = board.stones state, legal = self.get_input_values(v) probs, raw_pred = self.brain.get_move_probs(state) probs = probs[0] if np.allclose(probs, 0.): print('output probs all 0') probs *= legal rand_loc =
np.argmax(probs)
numpy.argmax
# -*- coding: utf-8 -*- """ Module for evaluating the factor of safety against sliding by using the limit equilibrium method through the General Limit Equilibrium (GLE) method presented by `Fredlund & Krahn (1977) <https://doi.org/10.1139/t77-045>`_. """ # %% class SlopeStabl: """Creates an instance of an object that allows to evaluate the factor of safety against sliding of a slope. :: SlopeStabl(slices, seedFS=1, Kh=0, maxIter=50, tol=1e-3, interSlcFunc='halfsine', maxLambda=0.6) Attributes: slices (`Slices` object): object that contains the data structure of the slices in which the sliding mass has been divided. seedFS (`float` or `int`): Initial value of factor of safety for starting the iterarive algorithm. ``1`` is the default value. lambda_ (`float` or `int`): Factor that multiplies the interlice function to determine the interslices horizontal forces. ``0`` is the default value. Kh (`float`): horizontal seismic coefficient for the pseudostatic analysis. Its positive value represents the force is directed out of the slope (i.e. in the direction of failure). ``0`` is the default value. maxIter (`int`): Maximum number of iterations for stoping the algorithm in case the tolerance is not reached. ``50`` is the default value. tol (`float`): Required tolerace to stop the iterations. Is the diference between the 2 last values gotten of factor of safety and lambda, it means, two tolerances have to be reached. ``1e-3`` is the default value. interSlcFunc (`str` or 'float'): Interslice function that relates the normal interslice forces and the parameter lambda to obtain the shear interslice forces. ``halfsine`` is the default value and corresponds to Morgenstern and Price method, but a constant number may be input, for example ``interSlcFunc=1``, corresponds to Spencer method. maxLambda (`float`): Maximum value the lambda parameter can get. ``0.6`` is the default value. nLambda (`float`): Number of value the lambda parameter can get from zero to ``maxLambda``. ``6`` is the default value. slices, seedFS=1, Kh=0, maxIter=50, tol=1e-3, interSlcFunc='halfsine', maxLambda=0.6, nLambda=6 Note: The class ``Slices`` requires `numpy <http://www.numpy.org/>`_, `scipy <https://www.scipy.org/>`_, `matplotlib <https://matplotlib.org/>`_ and `shapely <https://pypi.python.org/pypi/Shapely>`_. Examples: >>> from numpy import array >>> from pybimstab.slope import AnthropicSlope >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.watertable import WaterTable >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> slope = AnthropicSlope(slopeHeight=40, slopeDip=[2, 1], >>> crownDist=60, toeDist=30, depth=20) >>> surface = CircularSurface(slopeCoords=slope.coords, >>> dist1=45.838, dist2=158.726, radius=80) >>> material = MaterialParameters( >>> cohesion=600, frictAngle=20, unitWeight=120, wtUnitWeight=62.4) >>> watertable = WaterTable(slopeCoords=slope.coords, watertabDepths=array([[0, 140], [20, 0]])) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=50, >>> watertabCoords=watertable.coords, bim=None) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0) >>> stabAnalysis.__dict__.keys() dict_keys(['slices', 'Kh', 'seedFS', 'maxIter', 'tol', 'interSlcFunc', 'minLambda', 'maxLambda', 'nLambda', 'fsBishop', 'fsFellenius', 'fsMoment', 'fsForces', 'lambda_', 'adjustment', 'FS']) """ def __init__(self, slices, seedFS=1, Kh=0, maxIter=50, tol=1e-3, interSlcFunc='halfsine', minLambda=-0.6, maxLambda=0.6, nLambda=10): ''' SlopeStabl(slices, seedFS=1, Kh=0, maxIter=50, tol=1e-3, interSlcFunc='halfsine', minLambda=-0.6, maxLambda=0.6, nLambda=10) ''' self.slices = slices self.Kh = Kh self.seedFS = seedFS self.maxIter = maxIter self.tol = tol self.interSlcFunc = interSlcFunc self.minLambda = minLambda self.maxLambda = maxLambda self.nLambda = nLambda # Setting the values of the interslice force function self.intersliceForceFunct() # Calculating the arms for the moments self.calculateArms() # Forces that do not vary in each iteration self.calculateBasicForces() # Get factors of safety for several values of lambda_a self.iterateGLE() return def intersliceForceFunct(self, v=1, u=1): ''' Method for calculating the interslice function which is a component of the interslice forces; this is done by using the Equation [11] of `Zhu et al (2015) <https://doi.org/10.1139/t04-072>`_, with v = u = 1 for a simetric and non-narrowed halfsine function. When the object is instanced with the clases with a constant interslice function, then, all the values are equal to that constant value. Args: v (`int` or `float`): shape parameter. Controls the symmetry. ``1`` is the defaut value. u (`int` or `float`): shape parameter. Controls the kurtosis. ``1`` is the defaut value. Returns: (`list`): Values of the all insterslice force function values. Examples: >>> import matplotlib.pyplot as plt >>> from pybimstab.slope import AnthropicSlope >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> slope = AnthropicSlope(slopeHeight=40, slopeDip=[2, 1], >>> crownDist=60, toeDist=30, depth=20) >>> surface = CircularSurface(slopeCoords=slope.coords, >>> dist1=45.838, dist2=158.726, >>> radius=80) >>> material = MaterialParameters(cohesion=600, frictAngle=20, >>> unitWeight=120, >>> wtUnitWeight=62.4) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=50) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0) >>> interslcForceFunc = stabAnalysis.intersliceForceFunct(u=1) >>> plt.plot(interslcForceFunc, 'k') .. figure:: https://rawgit.com/eamontoyaa/pybimstab/master/examples/figures/slopestabl_interSlcFunct_example.svg :alt: slopestabl_interSlcFunct_example .. only:: html :download:`example script<../examples/figuresScripts/slopestabl_interSlcFunct_example.py>`. ''' from numpy import sin, pi # Getting the ends of the slip surface a = self.slices.slices[0].terrainCoords[0].min() # leftmost point b = self.slices.slices[-1].terrainCoords[0].max() # rightmost point interslcForceFunc = list() # Calculate the interslice functions values (f_i = fL, f_{i-1} = fR) for slice_ in self.slices.slices: lf = slice_.xMin # leftmost slice point rt = slice_.xMax # rightmost slice point # Evaluating the half-sine function on the sides of the slice if self.interSlcFunc == 'halfsine': halfSineL = sin(pi * ((lf - a) / (b - a)) ** v) ** u halfSineR = sin(pi * ((rt - a) / (b - a)) ** v) ** u else: # if not a half-sine, then use the input constant value halfSineL = self.interSlcFunc halfSineR = self.interSlcFunc interslcForceFunc.append(halfSineL) setattr(slice_, 'fL', halfSineL) setattr(slice_, 'fR', halfSineR) interslcForceFunc.append(halfSineR) return interslcForceFunc def calculateArms(self): ''' Method for calculating the arms required for getting the momments of each slice with respect to a rotation point. This function does not return any output, just modifies the structure of each slice by setting new attributes. ''' import numpy as np from numpy import radians as rad from shapely.geometry import LineString for n, slice_ in enumerate(self.slices.slices): setattr(slice_, 'n', n) # Vertical linestring that splits the slice through the cetroid xMean = (slice_.xMin + slice_.xMax) / 2 vertLine = LineString([(xMean, -self.slices.rotationPt[1]), (xMean, self.slices.rotationPt[1])]) # Arms for external loads loadPt1 = np.array(slice_.terrainLS.intersection(vertLine)) theta = np.arctan((self.slices.rotationPt[1] - loadPt1[1]) / (self.slices.rotationPt[0] - loadPt1[0])) % np.pi alpha = abs(rad(slice_.w) - theta) loadPt2RotPt = np.linalg.norm(self.slices.rotationPt - loadPt1) proy = loadPt2RotPt * abs(np.cos(alpha)) d = (loadPt2RotPt ** 2 - proy ** 2) ** 0.5 if rad(slice_.w) < theta: d *= -1 setattr(slice_, 'd', d) # Arms for normal loads at the base loadPt2 = slice_.slipSurfLS.intersection(vertLine) if loadPt2.type is not 'Point': loadPt2 = [xMean, loadPt1[1] - slice_.midHeight] loadPt2 = np.array(loadPt2) theta = np.arctan((self.slices.rotationPt[1] - loadPt2[1]) / (self.slices.rotationPt[0] - loadPt2[0])) % np.pi alpha = abs(0.5*np.pi - rad(slice_.alpha) - theta) loadPt2RotPt = np.linalg.norm(self.slices.rotationPt - loadPt2) proy = loadPt2RotPt * abs(np.cos(alpha)) f = (loadPt2RotPt ** 2 - proy ** 2) ** 0.5 if 0.5*np.pi - rad(slice_.alpha) < theta: f *= -1 setattr(slice_, 'f', f) setattr(slice_, 'R', proy) # Arm for the mobilized shear force # Arms for horizontal seismic force e = self.slices.rotationPt[1] - (loadPt2[1] + 0.5*slice_.midHeight) setattr(slice_, 'e', e) # Arms for the weight of the slice x = self.slices.rotationPt[0] - xMean setattr(slice_, 'x', x) return def calculateBasicForces(self): ''' Method for calculating the forces that do not vary in each iteration or lambda value. This function does not return any output, just modifies the structure of each slice by setting new attributes. ''' for slice_ in self.slices.slices: if self.slices.bim is not None: # blocks and matrix areas to get slice weight blocksArea = slice_.numBlocks * slice_.localBIM.tileSize**2 mtxArea = slice_.area - blocksArea weight = slice_.material.blocksUnitWeight * \ blocksArea + mtxArea*slice_.material.unitWeight else: weight = slice_.area * slice_.material.unitWeight setattr(slice_, 'weight', weight) # Average water pressure (mu) and the resultant water force (U) mu = slice_.material.wtUnitWeight * slice_.midWatTabHeight setattr(slice_, 'mu', mu) U = mu * slice_.l setattr(slice_, 'U', U) # Setting interslices forces equal to zero setattr(slice_, 'Xl', 0) setattr(slice_, 'Xr', 0) setattr(slice_, 'El', 0) setattr(slice_, 'Er', 0) return def calculateNormalForce(self, seedFS): ''' Method for calculating the normal force to the base; this is done by using the Equation [16] of `<NAME> (1977) <https://doi.org/10.1139/t77-045>`_. Since the normal forces are updated with each iteration, is necessary to input a factor of safety as a seed. Args: seedFS (`int` or `float`): Seed factor of safety. Returns: (`list`): Values of all the normal forces at the slice's bases Examples: >>> from numpy import array >>> import matplotlib.pyplot as plt >>> from pybimstab.slope import AnthropicSlope >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.watertable import WaterTable >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> slope = AnthropicSlope(slopeHeight=40, slopeDip=[2, 1], >>> crownDist=60, toeDist=30, depth=20) >>> surface = CircularSurface(slopeCoords=slope.coords, >>> dist1=45.838, dist2=158.726, >>> radius=80) >>> material = MaterialParameters(cohesion=600, frictAngle=20, >>> unitWeight=120, >>> wtUnitWeight=62.4) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=5) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0) >>> stabAnalysis.calculateNormalForce(stabAnalysis.FS['fs']) [45009.409630951726, 68299.77910530512, 70721.13554871723, 57346.7578530581, 22706.444365285253] ''' from numpy import sin, cos, tan from numpy import radians as rad listP = list() for slice_ in self.slices.slices: # Calculating the normal force 'P' at the base of the slice_. c = slice_.material.cohesion phi = rad(slice_.material.frictAngle) if seedFS == 0: seedFS = 1 mAlpha = cos(rad(slice_.alpha)) + sin(rad(slice_.alpha)) * \ sin(rad(slice_.material.frictAngle)) / seedFS P = (slice_.weight + slice_.Xr - slice_.Xl - (c * slice_.l - slice_.U * tan(phi)) * sin(rad(slice_.alpha)) / seedFS + slice_.extL * sin(rad(slice_.w))) / mAlpha setattr(slice_, 'P', P) listP.append(P) return listP def getFm(self, seedFS, lambda_=0): ''' Method for getting the factor of safety with respect to the moments equilimrium; this is done by using the Equation [22] of `Fredlund & Krahn (1977) <https://doi.org/10.1139/t77-045>`_. Since the factor of safety is updated with each iteration, is necessary to input a factor of safety as a seed and the current value of lambda to relate the interslice normal force and the interslice force function with respect to the interslice shear force (Eq. [16] of `Fredlund & Krahn (1977) <https://doi.org/10.1139/t77-045>`_). Args: seedFS (`int` or `float`): Seed factor of safety. lambda_ (`int` or `float`): Seed value of lambda. ``0`` is the default value. Returns: (`dict`): Dictionary with the value of the factor of safety and a\ tuple with the boolean that indicated if the toleranfe was\ reached and the number of the iteration. Examples: >>> # Example Case 1 - Fig. 9 (Fredlund & Krahn, 1977) >>> from pybimstab.slope import AnthropicSlope >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> slope = AnthropicSlope(slopeHeight=40, slopeDip=[2, 1], >>> crownDist=60, toeDist=30, depth=20) >>> surface = CircularSurface(slopeCoords=slope.coords, >>> dist1=45.838, dist2=158.726, >>> radius=80) >>> material = MaterialParameters(cohesion=600, frictAngle=20, >>> unitWeight=120, >>> wtUnitWeight=62.4) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=50, >>> watertabCoords=None, bim=None) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0, minLambda=0, >>> interSlcFunc=1, nLambda=10) >>> stabAnalysis.getFm(stabAnalysis.FS['fs'], >>> stabAnalysis.FS['lambda']) (2.0750390044795854, True) ''' from numpy import tan from numpy import radians as rad # Doing the iteration toleraceReached = False fs = [seedFS] for i in range(self.maxIter): # Calculating the normal force at each base slice_. self.calculateNormalForce(fs[-1]) num = 0 den1, den2, den3, den4 = 0, 0, 0, 0 for slice_ in self.slices.slices: c = slice_.material.cohesion phi = rad(slice_.material.frictAngle) num += c * slice_.l * slice_.R + \ (slice_.P - slice_.U) * slice_.R * tan(phi) den1 += slice_.weight * slice_.x den2 += slice_.P * slice_.f den3 += slice_.extL * slice_.d den4 += self.Kh * slice_.weight * slice_.e fs.append(num / (den1 - den2 + den3 + den4)) # Recalculating the interslice forces self.intersliceForces(fs[-1], lambda_) self.calculateNormalForce(fs[-1]) self.intersliceForces(fs[-1], lambda_) # Verifying if the tolerance is reached if i > 5 and all((fs[-1] - fs[-2], fs[-2] - fs[-3])) <= self.tol: toleraceReached = True break return fs[-1], toleraceReached def getFf(self, seedFS, lambda_=0): ''' Method for getting the factor of safety with respect to the forces equilimrium; this is done by using the Equation [23] of `Fredlund & Krahn (1977) <https://doi.org/10.1139/t77-045>`_. Since the factor of safety is updated with each iteration, is necessary to input a factor of safety as a seed and the current value of lambda to relate the interslice normal force and the interslice force function with respect to the interslice shear force (Eq. [16] of `Fredlund & Krahn (1977) <https://doi.org/10.1139/t77-045>`_). Args: seedFS (`int` or `float`): Seed factor of safety. lambda_ (`int` or `float`): Seed value of lambda. ``0`` is the default value. Returns: (`dict`): Dictionary with the value of the factor of safety and a\ tuple with the boolean that indicated if the toleranfe was\ reached and the number of the iteration. Examples: >>> # Example Case 1 - Fig. 9 (Fredlund & Krahn, 1977) >>> from pybimstab.slope import AnthropicSlope >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> slope = AnthropicSlope(slopeHeight=40, slopeDip=[2, 1], >>> crownDist=60, toeDist=30, depth=20) >>> surface = CircularSurface(slopeCoords=slope.coords, >>> dist1=45.838, dist2=158.726, >>> radius=80) >>> material = MaterialParameters(cohesion=600, frictAngle=20, >>> unitWeight=120, >>> wtUnitWeight=62.4) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=50, >>> watertabCoords=None, bim=None) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0, minLambda=0, >>> interSlcFunc=1, nLambda=10) >>> stabAnalysis.getFf(stabAnalysis.FS['fs'], >>> stabAnalysis.FS['lambda']) (2.0741545445738296, True) ''' from numpy import tan, cos, sin from numpy import radians as rad # Doing the iteration toleraceReached = False fs = [seedFS] for i in range(self.maxIter): # Calculating the normal force at each base slice_. self.calculateNormalForce(fs[-1]) num = 0 den1, den2, den3 = 0, 0, 0 for slice_ in self.slices.slices: c = slice_.material.cohesion phi = rad(slice_.material.frictAngle) num += c * slice_.width + (slice_.P - slice_.U) * tan(phi) * \ cos(rad(slice_.alpha)) den1 += slice_.P * sin(rad(slice_.alpha)) den2 += slice_.extL * cos(rad(slice_.w)) den3 += self.Kh * slice_.weight fs.append(num / (den1 - den2 + den3)) # Recalculating the interslice forces self.intersliceForces(fs[-1], lambda_) self.calculateNormalForce(fs[-1]) self.intersliceForces(fs[-1], lambda_) # Verifying if the tolerance is reached if i > 5 and all((fs[-1] - fs[-2], fs[-2] - fs[-3])) <= self.tol: toleraceReached = True break return fs[-1], toleraceReached def intersliceForces(self, seedFS, lambda_): ''' Method for getting the shear and normal interslice forces, ; this is done by using the Equation of section 14.8 of `GeoSlope (2015) <http://downloads.geo-slope.com/geostudioresources/books/8/15/slope%20modeling.pdf>`_ for the rigth normal force and the Equation [16] of `Fredlund & Krahn (1977) <https://doi.org/10.1139/t77-045>`_ for the shear force. Since the interslice forces are updated with each iteration, is necessary to input a factor of safety as a seed and the current value of lambda to relate the interslice normal force and the interslice force function with respect to the interslice shear force (Eq. [16] of `Fredlund & Krahn (1977) <https://doi.org/10.1139/t77-045>`_). Args: seedFS (`int` or `float`): Seed factor of safety. lambda_ (`int` or `float`): Seed value of lambda. ``0`` is the default value. Returns: (`tuple`): tuple with the interslice forces. the first element\ contains the normal interslice forces and the second contains\ the shear interslice forces. Examples: >>> from numpy import array >>> import matplotlib.pyplot as plt >>> from pybimstab.slope import AnthropicSlope >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.watertable import WaterTable >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> slope = AnthropicSlope(slopeHeight=40, slopeDip=[2, 1], >>> crownDist=60, toeDist=30, depth=20) >>> surface = CircularSurface(slopeCoords=slope.coords, >>> dist1=45.838, dist2=158.726, >>> radius=80) >>> material = MaterialParameters(cohesion=600, frictAngle=20, >>> unitWeight=120, >>> wtUnitWeight=62.4) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=5) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0) >>> stabAnalysis.intersliceForces(stabAnalysis.FS['fs'], >>> stabAnalysis.FS['lambda']) ([0, -24561.260979675248, -42085.32887504204, -38993.844201424305, -18464.723052348225, -61.4153504520018], [0, -5511.202498703704, -15279.673506543182, -14157.266298947989, -4143.22489013017, -2.8712090198929304e-15]) ''' from numpy import tan, cos, sin from numpy import radians as rad forcesE = [self.slices.slices[0].El] forcesX = [self.slices.slices[0].Xl] for i in range(self.slices.numSlices): slice_ = self.slices.slices[i] c = slice_.material.cohesion phi = rad(slice_.material.frictAngle) Sm = (c * slice_.l + (slice_.P - slice_.U) * tan(phi))/seedFS setattr(slice_, 'Sm', Sm) # Eq. [19] of Fredlund & Kranh (1977) does not work for now # slice_.Er = slice_.El + (slice_.weight - slice_.Xr + slice_.Xl) *\ # tan(rad(slice_.alpha)) - Sm / cos(rad(slice_.alpha)) + \ # self.Kh * slice_.weight # Eq. gotten from the section 14.8 of GEO-SLOPE (2015) slice_.Er = slice_.El - slice_.P * sin(rad(slice_.alpha)) + \ Sm * cos(rad(slice_.alpha)) - self.Kh * slice_.weight + \ slice_.extL * cos(rad(slice_.w)) slice_.Xr = slice_.Er * lambda_ * slice_.fR if i < self.slices.numSlices - 1: nextSlice = self.slices.slices[i+1] nextSlice.El = slice_.Er nextSlice.Xl = slice_.Xr forcesE.append(slice_.Er) forcesX.append(slice_.Xr) return (forcesE, forcesX) def iterateGLE(self): ''' Method for getting the factor of safety against sliding through the algorithm of the General Limit Equilibrium (GLE) proposed by `<NAME> (1977) <https://doi.org/10.1139/t77-045>`_). Returns: (`tuple` or `None`): factor of safety against sliding is the\ solution exists. Examples: >>> from numpy import array >>> import matplotlib.pyplot as plt >>> from pybimstab.slope import AnthropicSlope >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.watertable import WaterTable >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> slope = AnthropicSlope(slopeHeight=40, slopeDip=[2, 1], >>> crownDist=60, toeDist=30, depth=20) >>> surface = CircularSurface(slopeCoords=slope.coords, >>> dist1=45.838, dist2=158.726, >>> radius=80) >>> material = MaterialParameters(cohesion=600, frictAngle=20, >>> unitWeight=120, >>> wtUnitWeight=62.4) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=5) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0) >>> stabAnalysis.iterateGLE() {'fs': 2.0258090954552275, 'lambda': 0.38174822248691215} >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0, nLambda=0) >>> stabAnalysis.iterateGLE() {'fsBishop': 2.0267026043637175, 'fsFellenius': 1.770864711650081} ''' import numpy as np from pybimstab.tools import getIntersect from pybimstab.smoothcurve import SmoothCurve if self.nLambda > 0: # Getting the values of lambda to iterate GLE lambdaVal = np.unique(list(np.linspace( self.minLambda, self.maxLambda, self.nLambda)) + [0]) # Iteration for moments fsBishop, tol = self.getFm(self.seedFS, lambda_=0) # Moment equil. setattr(self, 'fsBishop', fsBishop) fsMoment, tolM = [fsBishop], list() for lambda_ in lambdaVal: fsM, tol = self.getFm(fsMoment[-1], lambda_) if max(fsM, fsMoment[-1]) / min(fsM, fsMoment[-1]) > 1.5: tol = False fsMoment.append(fsM) tolM.append(tol) self.intersliceForces(fsMoment[-1], lambda_) self.calculateNormalForce(fsMoment[-1]) fsMoment.pop(0) for slice_ in self.slices.slices: slice_.Er, slice_.El, slice_.Xr, slice_.Xl = 0, 0, 0, 0 # Iteration for forces fsFellenius, tol = self.getFf(self.seedFS, lambda_=0) # Force eq. setattr(self, 'fsFellenius', fsFellenius) fsForces, tolF = [fsFellenius], list() for lambda_ in lambdaVal: fsF, tol = self.getFf(fsForces[-1], lambda_) if max(fsF, fsForces[-1]) / min(fsF, fsForces[-1]) > 1.5: tol = False fsForces.append(fsF) tolF.append(tol) self.intersliceForces(fsMoment[-1], lambda_) self.calculateNormalForce(fsMoment[-1]) fsForces.pop(0) # Creating the attributes idx2interp = np.where(tolM and tolF) setattr(self, 'fsMoment', list(np.array(fsMoment)[idx2interp])) setattr(self, 'fsForces', list(np.array(fsForces)[idx2interp])) setattr(self, 'lambda_', list(np.array(lambdaVal)[idx2interp])) # Get intersection of factors of safety momentLine = SmoothCurve( x=self.lambda_, y=self.fsMoment, k=3, n=100) forcesLine = SmoothCurve( x=self.lambda_, y=self.fsForces, k=3, n=100) x, momentsY = momentLine.smoothing forcesY = forcesLine.smoothing[1] setattr(self, 'adjustment', (x, momentsY, forcesY)) intersect = getIntersect(x=x, y1=momentsY, y2=forcesY) if intersect is None: root, fs = None, None setattr(self, 'FS', {'fs': None, 'lambda': None}) else: root, fs = intersect setattr(self, 'FS', {'fs': fs, 'lambda': root}) # Slices forces when full equilibrium is found (lambda=root) if fs is not None: self.getFf(fs, root) return {'fs': fs, 'lambda': root} else: fsBishop, tol = self.getFm(self.seedFS, lambda_=0) setattr(self, 'fsBishop', fsBishop) fsFellenius, tol = self.getFf(self.seedFS, lambda_=0) setattr(self, 'fsFellenius', fsFellenius) return {'fsBishop': fsBishop, 'fsFellenius': fsFellenius} def plot(self): '''Method for generating a graphic of the slope stability analysis, including the plot of the convergences Returns: (`matplotlib.figure.Figure`): object with the matplotlib structure\ of the plot. You might use it to save the figure for example. Examples: >>> # Example Case 1 - Fig. 9 (Fredlund & Krahn, 1977) >>> from pybimstab.slope import AnthropicSlope >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> slope = AnthropicSlope(slopeHeight=40, slopeDip=[2, 1], >>> crownDist=60, toeDist=30, depth=20) >>> surface = CircularSurface(slopeCoords=slope.coords, >>> dist1=45.838, dist2=158.726, >>> radius=80) >>> material = MaterialParameters(cohesion=600, frictAngle=20, >>> unitWeight=120, >>> wtUnitWeight=62.4) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=50, >>> watertabCoords=None, bim=None) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0, minLambda=0, >>> interSlcFunc=1, nLambda=10) >>> fig = stabAnalysis.plot() .. figure:: https://rawgit.com/eamontoyaa/pybimstab/master/examples/figures/slopestabl_example1.svg :alt: slopestabl_example1 .. only:: html :download:`example script<../examples/figuresScripts/slopestabl_example1.py>`. >>> # Example Case 5 (Fredlund & Krahn, 1977) >>> from numpy import array >>> from pybimstab.slope import AnthropicSlope >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.watertable import WaterTable >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> slope = AnthropicSlope(slopeHeight=40, slopeDip=[2, 1], >>> crownDist=60, toeDist=30, depth=20) >>> surface = CircularSurface(slopeCoords=slope.coords, >>> dist1=45.838, dist2=158.726, >>> radius=80) >>> material = MaterialParameters(cohesion=600, frictAngle=20, >>> unitWeight=120, >>> wtUnitWeight=62.4) >>> watertable = WaterTable(slopeCoords=slope.coords, >>> watertabDepths=array([[0, 140], >>> [20, 0]])) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=50, >>> watertabCoords=watertable.coords, bim=None) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0, minLambda=0) >>> fig = stabAnalysis.plot() .. figure:: https://rawgit.com/eamontoyaa/pybimstab/master/examples/figures/slopestabl_example2.svg :alt: slopestabl_example2 .. only:: html :download:`example script<../examples/figuresScripts/slopestabl_example2.py>`. >>> from numpy import array >>> from pybimstab.slope import NaturalSlope >>> from pybimstab.watertable import WaterTable >>> from pybimstab.bim import BlocksInMatrix >>> from pybimstab.slipsurface import CircularSurface >>> from pybimstab.slipsurface import TortuousSurface >>> from pybimstab.slices import MaterialParameters, Slices >>> from pybimstab.slopestabl import SlopeStabl >>> terrainCoords = array( >>> [[-2.49, 0.1, 1.7, 3.89, 5.9, 8.12, 9.87, 13.29, 20.29, >>> 21.43, 22.28, 23.48, 24.65, 25.17], >>> [18.16, 17.88, 17.28, 15.73, 14.31, 13.58, 13, 3.61, 3.61, >>> 3.32, 2.71, 2.23, 1.21, 0.25]]) >>> slope = NaturalSlope(terrainCoords) >>> bim = BlocksInMatrix(slopeCoords=slope.coords, blockProp=0.2, >>> tileSize=0.35, seed=3210) >>> watertabDepths = array([[0, 5, 10, 15], >>> [8, 7, 3, 0]]) >>> watertable = WaterTable(slopeCoords=slope.coords, >>> watertabDepths=watertabDepths, >>> smoothFactor=3) >>> preferredPath = CircularSurface( >>> slopeCoords=slope.coords, dist1=5, dist2=15.78, radius=20) >>> surface = TortuousSurface( >>> bim, dist1=4, dist2=15.5, heuristic='euclidean', >>> reverseLeft=False, reverseUp=False, smoothFactor=2, >>> preferredPath=preferredPath.coords, prefPathFact=2) >>> material = MaterialParameters( >>> cohesion=15, frictAngle=23, unitWeight=17, >>> blocksUnitWeight=21, wtUnitWeight=9.8) >>> slices = Slices( >>> material=material, slipSurfCoords=surface.coords, >>> slopeCoords=slope.coords, numSlices=20, >>> watertabCoords=watertable.coords, bim=bim) >>> stabAnalysis = SlopeStabl(slices, seedFS=1, Kh=0, nLambda=13, >>> minLambda=0) >>> fig = stabAnalysis.plot() .. figure:: https://rawgit.com/eamontoyaa/pybimstab/master/examples/figures/slopestabl_example3.svg :alt: slopestabl_example3 .. only:: html :download:`example script<../examples/figuresScripts/slopestabl_example3.py>`. ''' import numpy as np from matplotlib import pyplot as plt from matplotlib.colors import LinearSegmentedColormap as newcmap from matplotlib import gridspec # Variables to control the color map and its legend if self.slices.bim is not None: if
np.any(self.slices.bim.grid == -1)
numpy.any
import numpy as np import os import argparse import os.path as osp def check_size(submission_file): max_size = 60*1024*1024 if osp.getsize(submission_file) > max_size: raise IOError #File size exceeds the specified maximum size, which is 60M for the server. def judge_overlap(pbox,ignore_box): overlap=[] delete=[] for p in pbox: pl=min(p[0],p[2]) pr=max(p[0],p[2]) pb=min(p[1],p[3]) pt=max(p[1],p[3]) s_p=(pr-pl)*(pt-pb) s_lap=-0.01 for c in ignore_box: cl=min(c[0],c[2]) cr=max(c[0],c[2]) cb=min(c[1],c[3]) ct=max(c[1],c[3]) if not (cr<pl or cl>pr or ct<pb or cb>pt): s_lap+=(min(cr,pr)-max(cl,pl))*(min(ct,pt)-max(cb,pb)) if s_lap>0: overlap.append([p,s_lap/s_p]) for o in overlap: if o[1]>0.5: delete.append(o[0]) remain_id = [p for p in pbox if p not in delete] return remain_id def parse_ignore_file(ignore_file): with open(ignore_file,'r') as f: lines = f.readlines() ig = [x.strip().split() for x in lines] ignore = {} for item in ig: key = item[0] ignore_num = (len(item)-1)/4 bbox = [] for i in range(int(ignore_num)): b = [] b.append(int(item[1+4*i])) b.append(int(item[2+4*i])) b.append(int(item[1+4*i])+int(item[3+4*i])) b.append(int(item[2+4*i])+int(item[4+4*i])) bbox.append(b) ignore[key] = bbox return ignore def parse_submission(submission_file,ignore_file): ignore_zone = parse_ignore_file(ignore_file) ignore_keys = ignore_zone.keys() with open(submission_file, 'r') as f: lines = f.readlines() splitlines = [x.strip().split() for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = [] for x in splitlines: bb = [] bb.append(float(x[2])) bb.append(float(x[3])) bb.append(float(x[2])+float(x[4])) bb.append(float(x[3])+float(x[5])) BB.append(bb) sub_key = [] for x in image_ids: if x not in sub_key: sub_key.append(x) final_confidence = [] final_ids = [] final_BB = [] for key in sub_key: find = [i for i,v in enumerate(image_ids) if v == key] BB_sub = [BB[i] for i in find] confid_sub = [confidence[i] for i in find] if key in ignore_keys: ignore_bbox = ignore_zone[key] bbox_remain = judge_overlap(BB_sub,ignore_bbox) find_remain = [] for i,v in enumerate(BB_sub): if v in bbox_remain: find_remain.append(i) confid_remain = [confid_sub[i] for i in find_remain] BB_sub = bbox_remain confid_sub = confid_remain ids_sub = [key]*len(BB_sub) final_ids.extend(ids_sub) final_confidence.extend(confid_sub) final_BB.extend(BB_sub) final_BB = np.array(final_BB) final_confidence = np.array(final_confidence) sorted_ind = np.argsort(-final_confidence) final_BB = final_BB[sorted_ind, :] final_ids = [final_ids[x] for x in sorted_ind] return final_ids, final_BB def parse_gt_annotation(gt_file,ignore_file): ignore_zone = parse_ignore_file(ignore_file) ignore_keys = ignore_zone.keys() with open(gt_file, 'r') as f: lines = f.readlines() info = [x.strip().split() for x in lines] gt = {} for item in info: bbox = [] bbox_num = (len(item)-1)/5 for i in range(int(bbox_num)): b = [] b.append(int(item[2+5*i])) b.append(int(item[3+5*i])) b.append(int(item[2+5*i])+int(item[4+5*i])) b.append(int(item[3+5*i])+int(item[5+5*i])) bbox.append(b) if item[0] in ignore_keys: ignore_bbox = ignore_zone[item[0]] bbox_remain = judge_overlap(bbox,ignore_bbox) else: bbox_remain = bbox gt[item[0]] = np.array(bbox_remain) return gt def compute_ap(rec, prec): mrec = np.concatenate(([0.], rec, [1.])) mpre = np.concatenate(([0.], prec, [0.])) for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) i = np.where(mrec[1:] != mrec[:-1])[0] ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def pedestrian_eval(input, gt_file, ignore_file, ovthresh): gt = parse_gt_annotation(gt_file,ignore_file) image_ids, BB = parse_submission(input,ignore_file) npos = 0 recs = {} for key in gt.keys(): det = [False]*len(gt[key]) recs[key] = {'bbox': gt[key], 'det': det} npos += len(gt[key]) nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): if image_ids[d] not in recs.keys(): raise KeyError("Can not find image {} in the groundtruth file, did you submit the result file for the right dataset?".format(image_ids[d])) for d in range(nd): R = recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R['bbox'].astype(float) if BBGT.size > 0: ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax = np.minimum(BBGT[:, 2], bb[2]) iymax = np.minimum(BBGT[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1., 0.) ih = np.maximum(iymax - iymin + 1., 0.) inters = iw * ih uni = ((bb[2] - bb[0] + 1.) * (bb[3] - bb[1] + 1.) + (BBGT[:, 2] - BBGT[:, 0] + 1.) * (BBGT[:, 3] - BBGT[:, 1] + 1.) - inters) overlaps = inters / uni ovmax = np.max(overlaps) jmax = np.argmax(overlaps) if ovmax > ovthresh: if not R['det'][jmax]: tp[d] = 1. R['det'][jmax] = 1 else: fp[d] = 1. else: fp[d] = 1. fp = np.cumsum(fp) tp = np.cumsum(tp) rec = tp / float(npos+1e-8) prec = tp / np.maximum(tp + fp, np.finfo(np.float64).eps) ap = compute_ap(rec, prec) return ap def wider_ped_eval(input, gt,ignore_file): aap = [] for ove in
np.arange(0.5, 1.0, 0.05)
numpy.arange
import numpy as np import pytest import xarray as xr from scipy.stats import pearsonr, spearmanr from sklearn.metrics import ( mean_absolute_error, mean_squared_error, median_absolute_error as sklearn_med_abs, r2_score, ) from xskillscore.core.deterministic import ( mae, mape, median_absolute_error, mse, pearson_r, pearson_r_p_value, r2, rmse, smape, spearman_r, spearman_r_p_value, ) @pytest.fixture def a(): time = xr.cftime_range('2000-01-01', '2000-01-03', freq='D') da = xr.DataArray(np.random.rand(len(time)), dims=['time'], coords=[time]) return da @pytest.fixture def b(a): b = a.copy() b.values = np.random.rand(b.shape[0]) return b def test_pearsonr_same_as_scipy(a, b): """Tests that pearson r correlation and pvalue is same as computed from scipy.""" xs_corr = pearson_r(a, b, 'time') xs_p = pearson_r_p_value(a, b, 'time') scipy_corr, scipy_p = pearsonr(a, b) assert np.allclose(xs_corr, scipy_corr) assert np.allclose(xs_p, scipy_p) def test_r2_same_as_sklearn(a, b): """Tests that r2 is same as computed from sklearn.""" xs_r2 = r2(a, b, 'time') sklearn_r2 = r2_score(a, b) assert np.allclose(xs_r2, sklearn_r2) def test_spearmanr_same_as_scipy(a, b): """Tests that spearman r correlation and pvalue is same as computed from scipy.""" xs_corr = spearman_r(a, b, 'time') xs_p = spearman_r_p_value(a, b, 'time') scipy_corr, scipy_p = spearmanr(a, b) assert np.allclose(xs_corr, scipy_corr) assert
np.allclose(xs_p, scipy_p)
numpy.allclose
''' Route script used for running Control-based continuation. ''' # import required packages import numpy as np import scipy.linalg as la import math import dtLib.nonlinearcbc.nonlinearcbc2 as cbc2 from flask import render_template, request, redirect, Response, url_for, flash, send_file from dtApp import app from dtApp import date import plotly import plotly.graph_objs as go import json from plotly.subplots import make_subplots from scipy.integrate import odeint from pathlib import Path @app.route('/nonlinearcbc', methods=['GET', 'POST']) #@app.route('/bristolcbc', methods=['GET', 'POST']) def bristolcbc(): # define input data pars_file = Path('dtApp/dtData/bris_pars.npy') if pars_file.is_file(): # file exists pars = np.load('dtApp/dtData/bris_pars.npy') m1, m2, m3 = pars[0], pars[1], pars[2] b1, b2, b3 = pars[3], pars[4], pars[5] s1, s2, s3 = pars[6], pars[7], pars[8] s13 = pars[9] else: m1, m2, m3 = 0.2, 0.2, 0.2 #masses s1, s2, s3, s13 = 200.0, 200.0, 200.0, 200.0 #stiffnesses b1, b2, b3 = 0.1, 0.1, 0.1 #viscous damping sweep_file = Path('dtApp/dtData/sweep_pars.npy') if sweep_file.is_file(): # file exists sweep_pars = np.load('dtApp/dtData/sweep_pars.npy') else: sweep_pars = np.array([1.0, 50.0, 1.0, 80.0, 0.945]) #Mass, damping and stiffness matrices MM = np.array([[m1, 0.0, 0.0], [0.0, m2, 0.0], [0.0, 0.0, m3]]) BB = np.array([[b1+b2, -b2, 0.0], [-b2, b2+b3, -b3], [0.0, -b3, b3]]) SS = np.array([[s1+s2, -s2, 0.0], [-s2, s2+s3, -s3], [0.0, -s3, s3]]) Minv = la.inv(MM) IC = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0]) Minfreq = sweep_pars[0] Maxfreq = sweep_pars[1] Freq_list_def = np.linspace(Minfreq, Maxfreq, 200) Min_exc_amp = sweep_pars[2] Max_exc_amp = sweep_pars[3] Exc_amp_list_def = np.linspace(Min_exc_amp, Max_exc_amp, 40) Freq_list_up = np.empty(shape=(0)) Freq_list_down = np.empty(shape=(0)) Amplist_up = np.empty(shape=(0)) Amplist_down = np.empty(shape=(0)) Amplist_up2 = np.empty(shape=(0)) Amplist_down2 = np.empty(shape=(0)) Amplist_up3 = np.empty(shape=(0)) Amplist_down3 = np.empty(shape=(0)) Exc_amp_list_incr = np.empty(shape=(0)) Exc_amp_list_decr = np.empty(shape=(0)) Amplist_incr = np.empty(shape=(0)) Amplist_decr = np.empty(shape=(0)) Amplist_incr2 = np.empty(shape=(0)) Amplist_decr2 = np.empty(shape=(0)) Amplist_incr3 = np.empty(shape=(0)) Amplist_decr3 = np.empty(shape=(0)) branch_cont = np.empty(shape=(0, 4)) IC = np.zeros(6) status = np.array([1.0]) np.save('dtApp/dtData/CBC/Freq_list_def.npy', Freq_list_def) np.save('dtApp/dtData/CBC/Freq_list_up.npy', Freq_list_up) np.save('dtApp/dtData/CBC/Freq_list_down.npy', Freq_list_down) np.save('dtApp/dtData/CBC/Amplist_up.npy', Amplist_up) np.save('dtApp/dtData/CBC/Amplist_down.npy', Amplist_down) np.save('dtApp/dtData/CBC/Amplist_up2.npy', Amplist_up2) np.save('dtApp/dtData/CBC/Amplist_down2.npy', Amplist_down2) np.save('dtApp/dtData/CBC/Amplist_up3.npy', Amplist_up3) np.save('dtApp/dtData/CBC/Amplist_down3.npy', Amplist_down3) np.save('dtApp/dtData/CBC/Exc_amp_list_def.npy', Exc_amp_list_def) np.save('dtApp/dtData/CBC/Exc_amp_list_incr.npy', Exc_amp_list_incr) np.save('dtApp/dtData/CBC/Exc_amp_list_decr.npy', Exc_amp_list_decr) np.save('dtApp/dtData/CBC/Amplist_incr.npy', Amplist_incr) np.save('dtApp/dtData/CBC/Amplist_decr.npy', Amplist_decr) np.save('dtApp/dtData/CBC/Amplist_incr2.npy', Amplist_incr2) np.save('dtApp/dtData/CBC/Amplist_decr2.npy', Amplist_decr2) np.save('dtApp/dtData/CBC/Amplist_incr3.npy', Amplist_incr3) np.save('dtApp/dtData/CBC/Amplist_decr3.npy', Amplist_decr3) np.save('dtApp/dtData/CBC/branch_cont.npy', branch_cont) np.save('dtApp/dtData/CBC/IC.npy', IC) np.save('dtApp/dtData/CBC/mode.npy', status) np.save('dtApp/dtData/CBC/Exc_amp_list_incr_cbc.npy', Exc_amp_list_incr) np.save('dtApp/dtData/CBC/Exc_amp_list_decr_cbc.npy', Exc_amp_list_decr) np.save('dtApp/dtData/CBC/Amplist_incr_cbc.npy', Amplist_incr) np.save('dtApp/dtData/CBC/Amplist_decr_cbc.npy', Amplist_decr) graph1 = cbc_dataplot(Freq_list_up, Freq_list_down, Amplist_up, Amplist_down, Exc_amp_list_incr, Exc_amp_list_decr, Amplist_incr, Amplist_decr, branch_cont, Exc_amp_list_incr, Exc_amp_list_decr, Amplist_incr, Amplist_decr) return render_template("nonlinearcbc.html", plot=graph1,date=date) @app.route("/par_submit", methods=['GET', 'POST']) def par_submit(): if request.method=='POST': req = request.form # print(req) m1 = float(req.get("m1")) m2 = float(req.get("m2")) m3 = float(req.get("m3")) s1 = float(req.get("s1")) s2 = float(req.get("s2")) s3 = float(req.get("s3")) b1 = float(req.get("b1")) b2 = float(req.get("b2")) b3 = float(req.get("b3")) s13 = float(req.get("s13")) F0 = float(req.get("F0")) om0 = float(req.get("om0")) kp = float(req.get("kp")) kd = float(req.get("kd")) om_min = float(req.get("om_min")) om_max = float(req.get("om_max")) F_min = float(req.get("F_min")) F_max = float(req.get("F_max")) A_max = float(req.get("A_max")) fsw_per = int(req.get("fsw_per")) asw_per = int(req.get("asw_per")) cbc_per = int(req.get("cbc_per")) cbc_maxiter = int(req.get("cbc_maxiter")) cbc_etol = float(req.get("cbc_etol")) pars = np.array([m1, m2, m3, b1, b2, b3, s1, s2, s3, s13, F0, om0, kp, kd]) np.save('dtApp/dtData/CBC/pars.npy', pars) sweep_pars = np.array([om_min, om_max, F_min, F_max, A_max]) np.save('dtApp/dtData/CBC/sweep_pars.npy', sweep_pars) np.save('dtApp/dtData/CBC/fsw_per.npy', fsw_per) np.save('dtApp/dtData/CBC/asw_per.npy', asw_per) np.save('dtApp/dtData/CBC/cbc_per.npy', cbc_per) np.save('dtApp/dtData/CBC/cbc_maxiter.npy', cbc_maxiter) np.save('dtApp/dtData/CBC/cbc_etol.npy', cbc_etol) Freq_list_def = np.load('dtApp/dtData/CBC/Freq_list_def.npy') Freq_list_up = np.load('dtApp/dtData/CBC/Freq_list_up.npy') Freq_list_down = np.load('dtApp/dtData/CBC/Freq_list_down.npy') Amplist_up = np.load('dtApp/dtData/CBC/Amplist_up.npy') Amplist_down = np.load('dtApp/dtData/CBC/Amplist_down.npy') Exc_amp_list_def = np.load('dtApp/dtData/CBC/Exc_amp_list_def.npy') Exc_amp_list_incr = np.load('dtApp/dtData/CBC/Exc_amp_list_incr.npy') Exc_amp_list_decr = np.load('dtApp/dtData/CBC/Exc_amp_list_decr.npy') Amplist_incr = np.load('dtApp/dtData/CBC/Amplist_incr.npy') Amplist_decr = np.load('dtApp/dtData/CBC/Amplist_decr.npy') branch_cont = np.load('dtApp/dtData/CBC/branch_cont.npy') IC = np.load('dtApp/dtData/CBC/IC.npy') Exc_amp_list_incr_cbc = np.load('dtApp/dtData/CBC/Exc_amp_list_incr_cbc.npy') Exc_amp_list_decr_cbc = np.load('dtApp/dtData/CBC/Exc_amp_list_decr_cbc.npy') Amplist_incr_cbc = np.load('dtApp/dtData/CBC/Amplist_incr_cbc.npy') Amplist_decr_cbc = np.load('dtApp/dtData/CBC/Amplist_decr_cbc.npy') Minfreq = sweep_pars[0] Maxfreq = sweep_pars[1] Freq_list_def = np.linspace(Minfreq, Maxfreq, 200) Min_exc_amp = sweep_pars[2] Max_exc_amp = sweep_pars[3] Exc_amp_list_def = np.linspace(Min_exc_amp, Max_exc_amp, 40) np.save('dtApp/dtData/CBC/Freq_list_def.npy', Freq_list_def) np.save('dtApp/dtData/CBC/Exc_amp_list_def.npy', Exc_amp_list_def) graph1 = cbc_dataplot(Freq_list_up, Freq_list_down, Amplist_up, Amplist_down, Exc_amp_list_incr, Exc_amp_list_decr, Amplist_incr, Amplist_decr, branch_cont, Exc_amp_list_incr_cbc, Exc_amp_list_decr_cbc, Amplist_incr_cbc, Amplist_decr_cbc) return render_template("nonlinearcbc2.html", plot=graph1, m1=m1, m2=m2, m3=m3, s1=s1, s2=s2, s3=s3, b1=b1, b2=b2, b3=b3, s13=s13, F0=F0, om0=om0, kp=kp, kd=kd, fsw_per=fsw_per, asw_per=asw_per, cbc_per=cbc_per, cbc_maxiter=cbc_maxiter, cbc_etol=cbc_etol, om_min=om_min, om_max=om_max, F_min=F_min, F_max=F_max, A_max=A_max,date=date) @app.route('/download') def downloadFile (): #For windows you need to use drive name [ex: F:/Example.pdf] path = "dtApp/dtData/CBC/data_download.txt" path_d = "dtData/CBC/data_download.txt" Freq_list_def = np.load('dtApp/dtData/CBC/Freq_list_def.npy') Freq_list_up = np.load('dtApp/dtData/CBC/Freq_list_up.npy') Freq_list_down =
np.load('dtApp/dtData/CBC/Freq_list_down.npy')
numpy.load
import copy import os from functools import partial import joblib import numpy as np import optuna import pandas as pd import lightgbm as lgbm from .enums import ProblemType from .logger import logger from .metrics import Metrics from .params import get_params optuna.logging.set_verbosity(optuna.logging.INFO) def reduce_memory_usage(df, verbose=True): # NOTE: Original author of this function is unknown # if you know the *original author*, please let me know. numerics = ["int8", "int16", "int32", "int64", "float16", "float32", "float64"] start_mem = df.memory_usage().sum() / 1024 ** 2 for col in df.columns: col_type = df[col].dtypes if col_type in numerics: c_min = df[col].min() c_max = df[col].max() if str(col_type)[:3] == "int": if c_min > np.iinfo(np.int8).min and c_max < np.iinfo(np.int8).max: df[col] = df[col].astype(np.int8) elif c_min > np.iinfo(np.int16).min and c_max < np.iinfo(np.int16).max: df[col] = df[col].astype(np.int16) elif c_min > np.iinfo(np.int32).min and c_max < np.iinfo(np.int32).max: df[col] = df[col].astype(np.int32) elif c_min > np.iinfo(np.int64).min and c_max < np.iinfo(np.int64).max: df[col] = df[col].astype(np.int64) else: if c_min > np.finfo(np.float16).min and c_max <
np.finfo(np.float16)
numpy.finfo
""" First created on Mon Aug 13 10:01:03 2018 Module used for analysis of the image created from Zernike analysis Versions: Oct 31, 2019: 0.22 -> 0.22b introduced verbosity Mar 10, 2020: 0.22b -> 0.23 if std too small, disregard error calculation Apr 01, 2020: 0.23 -> 0.24 added options to create_basic_comparison_plot Apr 29, 2020: 0.24 -> 0.24a added check for image for both side of defocus in create_solution Jun 17, 2020: 0.24a -> 0.24b cleaned the STAMPS_FOLDER specification Jun 25, 2020: 0.24b -> 0.25 improved create_res_data Jul 03, 2020: 0.25 -> 0.26 included multi analysis Jul 15, 2020: 0.26 -> 0.26a modified to include PSF_DIRECTORY Sep 08, 2020: 0.26a -> 0.26b small changed around create_chains functions Dec 07, 2020: 0.26b -> 0.26c added dataset=6 Feb 04, 2021: 0.26c -> 0.26d finalAr_Feb2020.pkl to finalAr_Feb2020 Feb 25, 2021: 0.26d -> 0.26e different folder for dataset=6 for tiger Mar 10, 2021: 0.26e -> 0.26f added mask options for create_basic_comparison_plot Mar 24, 2021: 0.26f -> 0.26g updated create_res_data and find_centroid Apr 02, 2021: 0.26g -> 0.26h added option to save in create_basic_comparison_plot Apr 21, 2021: 0.26h -> 0.26i expanded support for Tiger Jul 26, 2021: 0.26i -> 0.26j changed default directory on loca, to point to Saturn_USA Sep 28. 2021: 0.26j -> 0.26k modified parameters in plot_1D_residual Nov 20. 2021: 0.26k -> 0.26l Hilo modifications @author: <NAME> @contact: <EMAIL> @web: www.ncaplar.com """ ######################################## # standard library imports from __future__ import absolute_import, division, print_function import os # import time # import sys # import math import socket # os.environ["MKL_NUM_THREADS"] = "1" # os.environ["NUMEXPR_NUM_THREADS"] = "1" # os.environ["OMP_NUM_THREADS"] = "1" import numpy as np # print(np.__config__) # from multiprocessing import current_process # from functools import lru_cache # from tqdm import tqdm # import pyfftw # import pandas as pd ######################################## # Related third party imports # none at the moment ######################################## # Local application/library specific imports # galsim import galsim # astropy # import astropy # import astropy.convolution # from astropy.convolution import Gaussian2DKernel from astropy.stats import bootstrap # scipy and skimage import scipy.misc # import skimage.transform import scipy.optimize as optimize # from scipy.ndimage.filters import gaussian_filter # pickle import pickle # lmfit # import lmfit # matplotlib import matplotlib import matplotlib.pyplot as plt from matplotlib.colors import LogNorm # pandas import pandas as pd # needed for resizing routines from typing import Tuple, Iterable np.set_printoptions(suppress=True) np.seterr(divide='ignore', invalid='ignore') galsim.GSParams.maximum_fft_size = 12000 ######################################## __all__ = ['Zernike_Analysis', 'Zernike_result_analysis', 'create_mask', 'resize', 'create_res_data'] __version__ = "0.26l" ############################################################ # name your directory where you want to have files! if socket.gethostname() == 'IapetusUSA': PSF_DIRECTORY = '/Volumes/Saturn_USA/PFS/' elif socket.gethostname() == 'pfsa-usr01-gb.subaru.nao.ac.jp' or \ socket.gethostname() == 'pfsa-usr02-gb.subaru.nao.ac.jp': PSF_DIRECTORY = '/work/ncaplar/' else: PSF_DIRECTORY = '/tigress/ncaplar/' ############################################################ TESTING_FOLDER = PSF_DIRECTORY + 'Testing/' TESTING_PUPIL_IMAGES_FOLDER = TESTING_FOLDER + 'Pupil_Images/' TESTING_WAVEFRONT_IMAGES_FOLDER = TESTING_FOLDER + 'Wavefront_Images/' TESTING_FINAL_IMAGES_FOLDER = TESTING_FOLDER + 'Final_Images/' class Zernike_Analysis(object): """Class for analysing results of the cluster run """ def __init__(self, date, obs, single_number, eps, arc=None, dataset=None, multi_var=False, list_of_defocuses=None, verbosity=1): """! @param[in] date date @param[in] obs observatio @param[in] single_number single number determining which spot we are analyzing @param[in] eps analysis parameter @param[in] arc arc-lamp used @param[in] dataset dataset number @param[in] multi_var is this multi analysis @param[in] list_of_defocuses at which defocuses we are analyzing """ ############ # initializing ########### if arc is None: arc = '' self.date = date self.obs = obs self.single_number = single_number self.eps = eps self.arc = arc self.multi_var = multi_var self.list_of_defocuses = list_of_defocuses method = 'P' self.method = method self.verbosity = verbosity ############# # where are poststamps of spots located if dataset == 0: STAMPS_FOLDER = PSF_DIRECTORY+"Data_Nov_14/Stamps_cleaned/" if dataset == 1: STAMPS_FOLDER = PSF_DIRECTORY+"ReducedData/Data_Feb_5/Stamps_cleaned/" if dataset == 2: STAMPS_FOLDER = PSF_DIRECTORY+"ReducedData/Data_May_28/Stamps_cleaned/" if dataset == 3: STAMPS_FOLDER = PSF_DIRECTORY+"ReducedData/Data_Jun_25/Stamps_cleaned/" if dataset == 4 or dataset == 5: STAMPS_FOLDER = PSF_DIRECTORY+"ReducedData/Data_Aug_14/Stamps_cleaned/" if dataset == 6: if socket.gethostname() == 'IapetusUSA': STAMPS_FOLDER = PSF_DIRECTORY+"ReducedData/Data_Nov_20_2020/Stamps_cleaned/" elif socket.gethostname() == 'pfsa-usr01-gb.subaru.nao.ac.jp' or \ socket.gethostname() == 'pfsa-usr02-gb.subaru.nao.ac.jp': STAMPS_FOLDER = '/work/ncaplar/ReducedData/Data_Nov_20/Stamps_cleaned/' else: STAMPS_FOLDER = PSF_DIRECTORY+"ReducedData/Data_Nov_20/Stamps_cleaned/" if dataset == 7: STAMPS_FOLDER = PSF_DIRECTORY+"ReducedData/Data_May_21_2021/Stamps_cleaned/" if dataset == 8: if socket.gethostname() == 'IapetusUSA': STAMPS_FOLDER = '/Volumes/Saturn_USA/PFS/'+"ReducedData/Data_May_21/Stamps_cleaned/" elif socket.gethostname() == 'pfsa-usr01-gb.subaru.nao.ac.jp' or \ socket.gethostname() == 'pfsa-usr02-gb.subaru.nao.ac.jp': STAMPS_FOLDER = '/work/ncaplar/ReducedData/Data_May_25_2021/Stamps_cleaned/' else: STAMPS_FOLDER = '/tigress/ncaplar/ReducedData/Data_May_25_2021/Stamps_cleaned/' print('STAMPS_FOLDER: '+str(STAMPS_FOLDER)) # which observation numbers associated with each dataset if dataset == 0: if arc is not None: if arc == "HgAr": single_number_focus = 8603 elif arc == "Ne": single_number_focus = 8693 if dataset == 1: # F/3.4 stop if arc is not None: if arc == "HgAr": single_number_focus = 11748 obs_possibilites = np.array([11796, 11790, 11784, 11778, 11772, 11766, 11760, 11754, 11748, 11748, 11694, 11700, 11706, 11712, 11718, 11724, 11730, 11736]) elif arc == "Ne": single_number_focus = 11748+607 obs_possibilites = np.array([12403, 12397, 12391, 12385, 12379, 12373, 12367, 12361, 12355, 12355, 12349, 12343, 12337, 12331, 12325, 12319, 12313, 12307]) if dataset == 2: # F/2.8 stop if arc is not None: if arc == "HgAr": single_number_focus = 17017+54 obs_possibilites = np.array([17023, 17023+6, 17023+12, 17023+18, 17023+24, 17023+30, 17023+36, 17023+42, -99, 17023+48, 17023+54, 17023+60, 17023+66, 17023+72, 17023+78, 17023+84, 17023+90, 17023+96, 17023+48]) if arc == "Ne": single_number_focus = 16292 obs_possibilites = np.array([16238+6, 16238+12, 16238+18, 16238+24, 16238+30, 16238+36, 16238+42, 16238+48, -99, 16238+54, 16238+60, 16238+66, 16238+72, 16238+78, 16238+84, 16238+90, 16238+96, 16238+102, 16238+54]) if arc == "Kr": single_number_focus = 17310+54 obs_possibilites = np.array([17310+6, 17310+12, 17310+18, 17310+24, 17310+30, 17310+36, 17310+42, 17310+48, -99, 17310+54, 17310+60, 17310+66, 17310+72, 17310+78, 17310+84, 17310+90, 17310+96, 17310+102, 17310+54]) if dataset == 3: # F/2.5 stop if arc is not None: if arc == "HgAr": single_number_focus = 19238+54 obs_possibilites = np.array([19238, 19238+6, 19238+12, 19238+18, 19238+24, 19238+30, 19238+36, 19238+42, -99, 19238+48, 19238+54, 19238+60, 19238+66, 19238+72, 19238+78, 19238+84, 19238+90, 19238+96, 19238+48]) elif arc == "Ne": single_number_focus = 19472 obs_possibilites = np.array([19472+6, 19472+12, 19472+18, 19472+24, 19472+30, 19472+36, 19472+42, 19472+48, -99, 19472+54, 19472+60, 19472+66, 19472+72, 19472+78, 19472+84, 19472+90, 19472+96, 19472+102, 19472+54]) if dataset == 4: # F/2.8 stop, July LAM data, full defocus if arc is not None: if arc == "HgAr": single_number_focus = 21346+54 obs_possibilites = np.array([21346+6, 21346+12, 21346+18, 21346+24, 21346+30, 21346+36, 21346+42, 21346+48, -99, 21346+54, 21346+60, 21346+66, 21346+72, 21346+78, 21346+84, 21346+90, 21346+96, 21346+102, 21346+48]) if arc == "Ne": single_number_focus = 21550+54 obs_possibilites = np.array([21550+6, 21550+12, 21550+18, 21550+24, 21550+30, 21550+36, 21550+42, 21550+48, -99, 21550+54, 21550+60, 21550+66, 21550+72, 21550+78, 21550+84, 21550+90, 21550+96, 21550+102, 21550+54]) if str(arc) == "Kr": single_number_focus = 21754+54 obs_possibilites = np.array([21754+6, 21754+12, 21754+18, 21754+24, 21754+30, 21754+36, 21754+42, 21754+48, -99, 21754+54, 21754+60, 21754+66, 21754+72, 21754+78, 21754+84, 21754+90, 21754+96, 21754+102, 21754+54]) if dataset == 5: # F/2.8 stop, July LAM data, fine defocus if arc == 'HgAr': obs_possibilites = np.arange(21280, 21280+11*6, 6) if arc == 'Ne': obs_possibilites = np.arange(21484, 21484+11*6, 6) if arc == 'Kr': obs_possibilites = np.arange(21688, 21688+11*6, 6) if dataset == 6: if arc == 'Ar': single_number_focus = 34341+48 obs_possibilites = np.array([34341, 34341+6, 34341+12, 34341+18, 34341+24, 34341+30, 34341+36, 34341+42, 34341+48, 34341+48, 34341+54, 34341+60, 34341+66, 34341+72, 34341+78, 34341+84, 34341+90, 34341+96, 21346+48]) if arc == 'Ne': single_number_focus = 34217+48 obs_possibilites = np.array([34217, 34217+6, 34217+12, 34217+18, 34217+24, 34217+30, 34217+36, 34217+42, 34217+48, 34217+48, 34217+54, 34217+60, 34217+66, 34217+72, 34217+78, 34217+84, 34217+90, 34217+96, 34217+48]) if arc == 'Kr': single_number_focus = 34561+48 obs_possibilites = np.array([34561, 34561+6, 34561+12, 34561+18, 34561+24, 34561+30, 34561+36, 34561+42, 34561+48, 34561+48, 34561+54, 34561+60, 34561+66, 34561+72, 34561+78, 34561+84, 34561+90, 34561+96, 34561+48]) if dataset == 7: # if str(arc) == "Ar": # single_number_focus=34341+48 if str(arc) == "Ne": single_number_focus = 27677 if multi_var is True: obs_multi = 27719 obs_possibilites = np.array([27713, -999, 27683, -999, -999, -999, -999, -999, 27677, -999, -999, -999, -999, -999, -999, 27698, -999, 27719, -999]) if dataset == 8: if arc == 'Ar': single_number_focus = 51485+8*12 obs_possibilites = np.array([51485, 51485+12, 51485+2*12, 51485+3*12, 51485+4*12, 51485+5*12, 51485+6*12, 51485+7*12, 51485+8*12, 52085+8*12, 51485+9*12, 51485+10*12, 51485+11*12, 51485+12*12, 51485+13*12, 51485+14*12, 51485+15*12, 51485+16*12, 51485+8*12]) if arc == 'Ne': single_number_focus = 59655+8*12 obs_possibilites = np.array([59655, 59655+12, 59655+2*12, 59655+3*12, 59655+4*12, 59655+5*12, 59655+6*12, 59655+7*12, 59655+8*12, 52085+8*12, 59655+9*12, 59655+10*12, 59655+11*12, 59655+12*12, 59655+13*12, 59655+14*12, 59655+15*12, 59655+16*12, 59655+8*12]) if arc == 'Kr': single_number_focus = 52085+8*12 obs_possibilites = np.array([52085, 52085+12, 52085+2*12, 52085+3*12, 52085+4*12, 52085+5*12, 52085+6*12, 52085+7*12, 52085+8*12, 52085+8*12, 52085+9*12, 52085+10*12, 52085+11*12, 52085+12*12, 52085+13*12, 52085+14*12, 52085+15*12, 52085+16*12, 52085+8*12]) # elif str(arc)=="Kr": # single_number_focus=34561+48 # if multi ?? if multi_var is True and dataset < 7: obs_multi = single_number_focus + 48 # if multi ?? if multi_var is True and dataset == 8: obs_multi = single_number_focus + 96 if multi_var is True: self.obs_multi = obs_multi obs_single = obs self.obs_single = obs_single label = ['m4', 'm35', 'm3', 'm25', 'm2', 'm15', 'm1', 'm05', '0', '0d', 'p05', 'p1', 'p15', 'p2', 'p25', 'p3', 'p35', 'p4', '0p'] label_fine_defocus = ['m05ff', 'm04ff', 'm03ff', 'm02ff', 'm01ff', '0ff', 'p01ff', 'p02ff', 'p03ff', 'p04ff', 'p05ff'] if type(obs) == str: labelInput = obs obs = obs_possibilites[label.index(labelInput)] obs_int = int(obs) if dataset in [0, 1, 2, 3, 4, 6, 7]: labelInput = label[list(obs_possibilites).index(obs_int)] if dataset in [5]: labelInput = label_fine_defocus[list(obs_possibilites).index(obs_int)] if multi_var is True: if self.verbosity == 1: print('labelInput: ' + str(labelInput)) print('self.single_number: '+str(self.single_number)) index_of_single_image_in_list_of_images = self.list_of_defocuses.index(labelInput) self.index_of_single_image_in_list_of_images = index_of_single_image_in_list_of_images list_of_obs = [] if multi_var is True: for labelInput in self.list_of_defocuses: if dataset in [0, 1, 2, 3, 4, 6, 7, 8]: obs_single = obs_possibilites[label.index(labelInput)] if dataset in [5]: obs_single = obs_possibilites[label_fine_defocus.index(labelInput)] list_of_obs.append(obs_single) else: list_of_obs.append(obs_single) ########################## # import data ########################## if multi_var is True: list_of_sci_images = [] list_of_mask_images = [] list_of_var_images = [] if self.verbosity == 1: print('list_of_defocuses: ' + str(self.list_of_defocuses)) print('list_of_obs: ' + str(list_of_obs)) # for obs_v in list_of_obs: # if obs_v>0: # sci_image =np.load(STAMPS_FOLDER+'sci'+str(obs_v)+str(single_number)+ # str(arc)+'_Stacked.npy') # mask_image =np.load(STAMPS_FOLDER+'mask'+str(obs_v)+str(single_number)+ # str(arc)+'_Stacked.npy') # var_image =np.load(STAMPS_FOLDER+'var'+str(obs_v)+str(single_number)+ # str(arc)+'_Stacked.npy') # else: # # if the image is not avaliable (has obs_v negative) make some dummy images # sci_image=np.ones((20,20)) # mask_image=np.ones((20,20)) # var_image=np.ones((20,20)) for obs_v in list_of_obs: try: sci_image = np.load(STAMPS_FOLDER+'sci'+str(obs_v)+ str(single_number)+str(arc)+'_Stacked.npy') mask_image = np.load(STAMPS_FOLDER+'mask'+str(obs_v)+ str(single_number)+str(arc)+'_Stacked.npy') var_image = np.load(STAMPS_FOLDER+'var'+str(obs_v)+ str(single_number)+str(arc)+'_Stacked.npy') except: # if the image is not avaliable (has obs_v negative) make some dummy images sci_image = np.ones((20,20)) mask_image = np.ones((20,20)) var_image = np.ones((20,20)) list_of_sci_images.append(sci_image) list_of_mask_images.append(mask_image) list_of_var_images.append(var_image) sci_image =np.load(STAMPS_FOLDER+'sci'+str(obs)+str(single_number)+str(arc)+'_Stacked.npy') mask_image =np.load(STAMPS_FOLDER+'mask'+str(obs)+str(single_number)+str(arc)+'_Stacked.npy') var_image =np.load(STAMPS_FOLDER+'var'+str(obs)+str(single_number)+str(arc)+'_Stacked.npy') try: sci_image_focus_large =np.load(STAMPS_FOLDER+'sci'+str(single_number_focus)+str(single_number)+str(arc)+'_Stacked_large.npy') var_image_focus_large =np.load(STAMPS_FOLDER+'var'+str(single_number_focus)+str(single_number)+str(arc)+'_Stacked_large.npy') except: pass self.list_of_sci_images=list_of_sci_images self.list_of_mask_images=list_of_mask_images self.list_of_var_images=list_of_var_images self.sci_image=sci_image self.var_image=var_image self.mask_image=mask_image self.STAMPS_FOLDER=STAMPS_FOLDER if dataset==1: if arc=="HgAr": finalArc=finalHgAr_Feb2019 elif arc=="Ne": finalArc=finalNe_Feb2019 else: print("Not recognized arc-line") if dataset==2: with open(PSF_DIRECTORY+'ReducedData/Data_May_28/Dataframes/finalNe_May2019.pkl', 'rb') as f: finalNe_May2019=pickle.load(f) with open(PSF_DIRECTORY+'ReducedData/Data_May_28/Dataframes/finalHgAr_May2019.pkl', 'rb') as f: finalHgAr_May2019=pickle.load(f) with open(PSF_DIRECTORY+'ReducedData/Data_May_28/Dataframes/finalKr_May2019.pkl', 'rb') as f: finalKr_May2019=pickle.load(f) if arc=="HgAr": finalArc=finalHgAr_May2019 elif arc=="Ne": finalArc=finalNe_May2019 elif arc=="Kr": finalArc=finalKr_May2019 else: print("Not recognized arc-line") if dataset==3: with open(PSF_DIRECTORY+'ReducedData/Data_Jun_25/Dataframes/finalNe_May2019.pkl', 'rb') as f: finalNe_May2019=pickle.load(f) with open(PSF_DIRECTORY+'ReducedData/Data_Jun_25/Dataframes/finalHgAr_May2019.pkl', 'rb') as f: finalHgAr_May2019=pickle.load(f) with open(PSF_DIRECTORY+'ReducedData/Data_Jun_25/Dataframes/finalKr_May2019.pkl', 'rb') as f: finalKr_May2019=pickle.load(f) if arc=="HgAr": finalArc=finalHgAr_May2019 elif arc=="Ne": finalArc=finalNe_May2019 else: print("Not recognized arc-line") if dataset==4 or dataset==5: with open(PSF_DIRECTORY+'ReducedData/Data_Aug_14/Dataframes/finalHgAr_Feb2020', 'rb') as f: print(f) finalHgAr_Feb2020_dataset=pickle.load(f) with open(PSF_DIRECTORY+'ReducedData/Data_Aug_14/Dataframes/finalNe_Feb2020', 'rb') as f: finalNe_Feb2020_dataset=pickle.load(f) with open(PSF_DIRECTORY+'ReducedData/Data_Aug_14/Dataframes/finalKr_Feb2020', 'rb') as f: finalKr_Feb2020_dataset=pickle.load(f) if arc=="HgAr": finalArc=finalHgAr_Feb2020_dataset elif arc=="Ne": finalArc=finalNe_Feb2020_dataset elif arc=="Kr": finalArc=finalKr_Feb2020_dataset else: print("Not recognized arc-line") if dataset==6 or dataset==7: if socket.gethostname()=='IapetusUSA': with open(PSF_DIRECTORY+'ReducedData/Data_Nov_20_2020/Dataframes/finalHgAr_Feb2020', 'rb') as f: finalHgAr_Feb2020_dataset=pickle.load(f) with open(PSF_DIRECTORY+'ReducedData/Data_Nov_20_2020/Dataframes/finalNe_Feb2020', 'rb') as f: finalNe_Feb2020_dataset=pickle.load(f) with open(PSF_DIRECTORY+'ReducedData/Data_Nov_20_2020/Dataframes/finalKr_Feb2020', 'rb') as f: finalKr_Feb2020_dataset=pickle.load(f) with open(PSF_DIRECTORY+'ReducedData/Data_Nov_20_2020/Dataframes/finalAr_Feb2020', 'rb') as f: finalAr_Feb2020_dataset=pickle.load(f) else: #with open(PSF_DIRECTORY+'ReducedData/Data_Nov_20/Dataframes/finalHgAr_Feb2020', 'rb') as f: # finalHgAr_Feb2020_dataset=pickle.load(f) #with open(PSF_DIRECTORY+'ReducedData/Data_Nov_20/Dataframes/finalNe_Feb2020', 'rb') as f: # finalNe_Feb2020_dataset=pickle.load(f) #with open(PSF_DIRECTORY+'ReducedData/Data_Nov_20/Dataframes/finalKr_Feb2020', 'rb') as f: # finalKr_Feb2020_dataset=pickle.load(f) #with open(PSF_DIRECTORY+'ReducedData/Data_Nov_20/Dataframes/finalAr_Feb2020', 'rb') as f: # finalAr_Feb2020_dataset=pickle.load(f) finalHgAr_Feb2020_dataset = np.load(PSF_DIRECTORY + 'ReducedData/Data_Nov_20/Dataframes/finalHgAr_Feb2020', allow_pickle=True) finalNe_Feb2020_dataset = np.load(PSF_DIRECTORY + 'ReducedData/Data_Nov_20/Dataframes/finalNe_Feb2020', allow_pickle=True) finalKr_Feb2020_dataset = np.load(PSF_DIRECTORY + 'ReducedData/Data_Nov_20/Dataframes/finalKr_Feb2020', allow_pickle=True) finalAr_Feb2020_dataset = np.load(PSF_DIRECTORY + 'ReducedData/Data_Nov_20/Dataframes/finalAr_Feb2020', allow_pickle=True) if arc=="HgAr": finalArc=finalHgAr_Feb2020_dataset elif arc=="Ne": finalArc=finalNe_Feb2020_dataset elif arc=="Kr": finalArc=finalKr_Feb2020_dataset elif arc=="Ar": finalArc=finalAr_Feb2020_dataset else: print("Not recognized arc-line") if dataset==8: if socket.gethostname()=='IapetusUSA': with open('/Volumes/Saturn_USA/PFS/'+'ReducedData/Data_May_21/DataFrames/finalNe_Jul2021', 'rb') as f: finalArc=pickle.load(f) with open('/Volumes/Saturn_USA/PFS/'+'ReducedData/Data_May_21/DataFrames/finalKr_Jul2021', 'rb') as f: finalArc=pickle.load(f) with open('/Volumes/Saturn_USA/PFS/'+'ReducedData/Data_May_21/DataFrames/finalAr_Jul2021', 'rb') as f: finalArc=pickle.load(f) else: finalNe_Feb2020_dataset=np.load(PSF_DIRECTORY+'ReducedData/Data_May_25_2021/Dataframes/finalNe_Jul2021') finalKr_Feb2020_dataset=np.load(PSF_DIRECTORY+'ReducedData/Data_May_25_2021/Dataframes/finalKr_Jul2021') finalAr_Feb2020_dataset=np.load(PSF_DIRECTORY+'ReducedData/Data_May_25_2021/Dataframes/finalAr_Jul2021') if arc=="Ne": finalArc=finalNe_Feb2020_dataset elif arc=="Kr": finalArc=finalKr_Feb2020_dataset elif arc=="Ar": finalArc=finalAr_Feb2020_dataset else: print("Not recognized arc-line") ########################## # import column names ########################## """ columns=['z4','z5','z6','z7','z8','z9','z10','z11', 'hscFrac','strutFrac','dxFocal','dyFocal','slitFrac','slitFrac_dy', 'radiometricEffect','radiometricExponent', 'x_ilum','y_ilum', 'x_fiber','y_fiber','effective_ilum_radius','frd_sigma','det_vert','slitHolder_frac_dx', 'grating_lines','scattering_radius','scattering_slope','scattering_amplitude', 'pixel_effect','fiber_r','flux'] columns22=['z4','z5','z6','z7','z8','z9','z10','z11', 'z12','z13','z14','z15','z16','z17','z18','z19','z20','z21','z22', 'hscFrac','strutFrac','dxFocal','dyFocal','slitFrac','slitFrac_dy', 'radiometricEffect','radiometricExponent','x_ilum','y_ilum', 'x_fiber','y_fiber','effective_radius_illumination', 'frd_sigma','frd_lorentz_factor','det_vert','slitHolder_frac_dx', 'grating_lines','scattering_slope','scattering_amplitude', 'pixel_effect','fiber_r','flux'] """ columns=['z4','z5','z6','z7','z8','z9','z10','z11', 'hscFrac','strutFrac','dxFocal','dyFocal','slitFrac','slitFrac_dy', 'wide_0','wide_23','wide_43','misalign', 'x_fiber','y_fiber','effective_ilum_radius','frd_sigma','det_vert','slitHolder_frac_dx', 'grating_lines','scattering_radius','scattering_slope','scattering_amplitude', 'pixel_effect','fiber_r','flux'] columns22=['z4','z5','z6','z7','z8','z9','z10','z11', 'z12','z13','z14','z15','z16','z17','z18','z19','z20','z21','z22', 'hscFrac','strutFrac','dxFocal','dyFocal','slitFrac','slitFrac_dy', 'wide_0','wide_23','wide_43','misalign', 'x_fiber','y_fiber','effective_radius_illumination', 'frd_sigma','frd_lorentz_factor','det_vert','slitHolder_frac_dx', 'grating_lines','scattering_slope','scattering_amplitude', 'pixel_effect','fiber_r','flux'] columns22_analysis=columns22+['chi2','chi2max'] self.columns=columns self.columns22=columns22 self.columns22_analysis=columns22_analysis ########################## # where are results from Tiger placed ########################## ############################################################ # name your directory where you want to have files! if socket.gethostname()=='IapetusUSA': RESULT_FOLDER=PSF_DIRECTORY+'TigerAnalysis/ResultsFromTiger/'+date+'/' if os.path.exists(RESULT_FOLDER): pass else: RESULT_FOLDER='/Volumes/My Passport for Mac/Old_Files/PFS/TigerAnalysis/ResultsFromTiger/'+date+'/' if os.path.exists(RESULT_FOLDER): pass else: RESULT_FOLDER='/Volumes/Saturn_USA/PFS/TigerAnalysis/ResultsFromTiger/'+date+'/' else: # if the analysis is done on Tiger RESULT_FOLDER='/tigress/ncaplar/Results/' self.RESULT_FOLDER=RESULT_FOLDER ############################################################ IMAGES_FOLDER=PSF_DIRECTORY+'/Images/'+date+'/' if not os.path.exists(IMAGES_FOLDER): os.makedirs(IMAGES_FOLDER) self.IMAGES_FOLDER=IMAGES_FOLDER #print('finalArc[close].loc[int(single_number)]'+str(finalArc['close'].loc[int(single_number)])) if finalArc['close'].loc[int(single_number)]=='1' or finalArc['close'].loc[int(single_number)]==1: double_sources=False else: double_sources=True #print('double_sources'+str(double_sources)) self.double_sources=double_sources double_sources_positions_ratios=finalArc.loc[int(single_number)][['second_offset','second_ratio']].values self.double_sources_positions_ratios=double_sources_positions_ratios if self.verbosity==1: print('analyzing label: '+str(obs)) print('double_sources_positions_ratios for this spot is: '+str(double_sources_positions_ratios)) def return_double_sources(self): return self.double_sources,self.double_sources_positions_ratios def return_lists_of_images(self): assert self.multi_var==True return self.list_of_sci_images,self.list_of_var_images,self.list_of_mask_images def return_index_of_single_image_in_list_of_images(self): return self.index_of_single_image_in_list_of_images def return_columns(self): return self.columns,self.columns22,self.columns22_analysis def create_list_of_var_or_ln_sums(self,sigma_offset=0): """ gives likelihood for chi**2 =1 """ list_of_var_sums=[] for i in range(len(self.list_of_var_images)): # taking from create_chi_2_almost function in LN_PFS_single mask_image=self.list_of_mask_images[i] var_image=self.list_of_var_images[i] # array that has True for values which are good and False for bad values inverted_mask=~mask_image.astype(bool) # var_image_masked=var_image*inverted_mask var_image_masked_without_nan = var_image_masked.ravel()[var_image_masked.ravel()>0] var_sum=-(1/2)*(len(var_image_masked_without_nan)*sigma_offset+np.sum(np.log(2*np.pi*var_image_masked_without_nan))) list_of_var_sums.append(var_sum) array_of_var_sums=np.array(list_of_var_sums) return array_of_var_sums def create_likelihood(self): if self.multi_var is True: self.obs = self.obs_multi # self.len_of_chains() # Swarm1 # likechain_Swarm1=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+str(self.method)+ # '_'+str(self.obs)+str(self.single_number)+str(self.eps)+str(self.arc)+'Swarm1.npy') likechain_Swarm1 = self.likechain_Swarm1 like_min_swarm1 = [] for i in range(likechain_Swarm1.shape[0]): like_min_swarm1.append(np.min(np.abs(likechain_Swarm1[i]))) # if self.chain_Emcee2 is not None: # Emcee1 # likechain_Emcee2=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+ # str(self.method)+'_'+str(self.obs)+str(self.single_number)+str(self.eps)+ # str(self.arc)+'Emcee2.npy') likechain_Emcee1 = self.likechain_Emcee1 like_min_Emcee1 = [] for i in range(likechain_Emcee1.shape[1]): like_min_Emcee1.append(np.min(np.abs(likechain_Emcee1[:, i]))) # Swarm2 likechain_Swarm2 = np.load(self.RESULT_FOLDER + 'likechain' + str(self.date) + '_Single_' + str(self.method) + '_'+str(self.obs) + str(self.single_number) + str(self.eps) + str(self.arc)+'Swarm2.npy') likechain_Swarm2 = self.likechain_Swarm2 like_min_swarm2 = [] for i in range(likechain_Swarm2.shape[0]): like_min_swarm2.append(np.min(np.abs(likechain_Swarm2[i]))) # Emcee 2 # chain_Emcee3=np.load(self.RESULT_FOLDER+'chain'+str(self.date)+'_Single_'+str(self.method)+ # '_'+str(self.obs)+str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee3.npy') # likechain_Emcee3=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+ # str(self.method)+'_'+str(self.obs)+str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee3.npy') chain_Emcee2 = self.chain_Emcee2 likechain_Emcee2 = self.likechain_Emcee2 # get chain number 0, which is has lowest temperature # if len(likechain_Emcee3)<=4: # likechain0_Emcee3=likechain_Emcee3[0] # chain0_Emcee3=chain_Emcee3[0] # else: # likechain0_Emcee3=likechain_Emcee3 # chain0_Emcee3=chain_Emcee3 # check the shape of the chain (number of walkers, number of steps, number of parameters) if self.verbosity == 1: print('(number of walkers, number of steps, number of parameters for Emcee): ' + str(chain_Emcee2.shape)) # see the best chain minchain = chain_Emcee2[np.abs(likechain_Emcee2) == np.min(np.abs(likechain_Emcee2))][0] # print(minchain) self.minchain = minchain like_min_Emcee2 = [] for i in range(likechain_Emcee2.shape[1]): like_min_Emcee2.append(np.min(np.abs(likechain_Emcee2[:, i]))) like_min = like_min_swarm1 + like_min_Emcee1+like_min_swarm2 + like_min_Emcee2 else: # see the best chain minchain = self.chain_Swarm1[np.abs(self.likechain_Swarm1) == np.min(np.abs(self.likechain_Swarm1))][0] # print(minchain) self.minchain = minchain like_min = like_min_swarm1 list_of_var_sums = self.create_list_of_var_or_ln_sums(0) # print('list_of_var_sums: '+str(list_of_var_sums)) array_of_var_sum = np.array(list_of_var_sums) max_of_array_of_var_sum = np.max(array_of_var_sum) renormalization_of_var_sum = array_of_var_sum/max_of_array_of_var_sum zero_sigma_ln = np.mean(list_of_var_sums/renormalization_of_var_sum) self.zero_sigma_ln = zero_sigma_ln list_of_var_sums_1 = self.create_list_of_var_or_ln_sums(1) one_sigma_ln = np.mean(list_of_var_sums_1/renormalization_of_var_sum) self.one_sigma_ln = one_sigma_ln # print(len(like_min)) if self.verbosity == 1: print('minimal likelihood is: '+str(np.min(like_min))) min_like_min = np.min(like_min) self.min_like_min = min_like_min # chi2 = (np.array(like_min)*(2)-np.sum(np.log(2*np.pi*self.var_image)))/(self.sci_image.shape[0])**2 # min_chi2 = -(min_like_min+zero_sigma_ln)/(one_sigma_ln-zero_sigma_ln) # print('average chi2 reduced is: ' + str(min_chi2)) return minchain, like_min def len_of_chains(self): if self.multi_var==True: self.obs=self.obs_multi self.create_chains_Emcee_1() self.create_chains_Emcee_2() self.create_chains_swarm_1() self.create_chains_swarm_2() # (number of walkers, number of steps, number of parameters) for Emcee # (number of steps, number of walkers, number of parameters) for Swarm if self.chain_Emcee2 is None: print(self.chain_Swarm1.shape) return [len(self.chain_Swarm1),0,0,0] else: print(self.chain_Swarm1.shape,self.chain_Emcee2.shape,self.chain_Swarm2.shape,self.chain_Emcee3.shape) return [len(self.chain_Swarm1),(self.chain_Emcee2).shape[1],len(self.chain_Swarm2),(self.chain_Emcee3).shape[1]] def create_chains(self): #chain_Emcee1=np.load(self.RESULT_FOLDER+'chain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+str(self.single_number)+str(self.eps)+'Emcee1.npy') #likechain_Emcee1=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+str(self.single_number)+str(self.eps)+'Emcee1.npy') # get chain number 0, which is has lowest temperature #likechain0_Emcee1=likechain_Emcee1[0] #chain0_Emcee1=chain_Emcee1[0] #chain_Emcee2=np.load(self.RESULT_FOLDER+'chain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+str(self.single_number)+str(self.eps)+'Emcee2.npy') #likechain_Emcee2=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+str(self.single_number)+str(self.eps)+'Emcee2.npy') #likechain0_Emcee2=likechain_Emcee2[0] #chain0_Emcee2=chain_Emcee2[0] if self.multi_var==True: self.obs=self.obs_multi chain_Emcee3=np.load(self.RESULT_FOLDER+'chain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee3.npy') likechain_Emcee3=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee3.npy') # get chain number 0, which is has lowest temperature likechain0_Emcee3=likechain_Emcee3 chain0_Emcee3=chain_Emcee3 self.chain0_Emcee3=chain0_Emcee3 self.likechain0_Emcee3=likechain0_Emcee3 return chain0_Emcee3,likechain0_Emcee3 def create_chains_Emcee_1(self): """ get chain and likelihood chain for first run of Emcee unfortunately the file name is ``Emcee2'', because of historical reasons Returns ------- chain0_Emcee1 : chain likechain0_Emcee1 : likelihood chain """ if self.multi_var==True: self.obs=self.obs_multi try: chain_Emcee1=np.load(self.RESULT_FOLDER+'chain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+\ str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee2.npy') likechain_Emcee1=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+\ str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee2.npy') self.chain_Emcee1=chain_Emcee1 self.likechain_Emcee1=likechain_Emcee1 except: self.chain_Emcee1=None self.likechain_Emcee1=None return self.chain_Emcee1,self.likechain_Emcee1 def create_chains_Emcee_2(self): """ get chain and likelihood chain for the second run of Emcee unfortunately the file name is ``Emcee3'', because of historical reasons """ if self.multi_var==True: self.obs=self.obs_multi try: chain_Emcee2=np.load(self.RESULT_FOLDER+'chain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+\ str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee3.npy') likechain_Emcee2=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+\ str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee3.npy') self.chain_Emcee2=chain_Emcee2 self.likechain_Emcee2=likechain_Emcee2 except: self.chain_Emcee2=None self.likechain_Emcee2=None return self.chain_Emcee2,self.likechain_Emcee2 def create_Emcee2_stack(self): if self.multi_var==True: self.obs=self.obs_multi chain0_Emcee2=np.load(self.RESULT_FOLDER+'chain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+\ str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee3.npy') likechain0_Emcee2=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+\ str(self.single_number)+str(self.eps)+str(self.arc)+'Emcee3.npy') for i in range(chain0_Emcee2.shape[1]): if i==0: chain0_Emcee2_reshaped=chain0_Emcee2[:,0] likechain0_Emcee2_reshaped=likechain0_Emcee2[:,0] else: chain0_Emcee2_reshaped=np.vstack((chain0_Emcee2_reshaped,chain0_Emcee2[:,i])) likechain0_Emcee2_reshaped=np.vstack((likechain0_Emcee2_reshaped,likechain0_Emcee2[:,i])) chain0_stack=chain0_Emcee2_reshaped likechain0_stack=likechain0_Emcee2_reshaped.ravel() likechain0_stack=likechain0_stack-np.max(likechain0_stack) return chain0_stack,likechain0_stack def create_chains_swarm_1(self): """get chain and likelihood chain from the swarm analysis """ if self.multi_var is True: self.obs = self.obs_multi try: chain_Swarm1 = np.load(self.RESULT_FOLDER+'chain' + str(self.date) + '_Single_' + str(self.method) + '_' + str(self.obs) + str(self.single_number) + str(self.eps) + str(self.arc)+'Swarm1.npy') likechain_Swarm1 = np.load(self.RESULT_FOLDER + 'likechain' + str(self.date) + '_Single_' + str(self.method) + '_' + str(self.obs) + str(self.single_number) + str(self.eps) + str(self.arc)+'Swarm1.npy') print('create_chains_swarm_1: Swarm1 and likechainSwarm1 found') print('Path searched was: ' + str(self.RESULT_FOLDER+'chain' + str(self.date) + '_Single_' + str(self.method) + '_' + str(self.obs) + str(self.single_number) + str(self.eps) + str(self.arc) + 'Swarm1.npy')) except : # noqa print('Swarm1 or likechainSwarm1 not found') print('Path searched for chain was: ' + str(self.RESULT_FOLDER + 'chain' + str(self.date) + '_Single_' + str(self.method)+'_' + str(self.obs) + str(self.single_number) + str(self.eps) + str(self.arc) + 'Swarm1.npy')) print('Path searched for likechain was: ' + str(self.RESULT_FOLDER + 'likechain' + str(self.date) + '_Single_' + str(self.method)+'_' + str(self.obs) + str(self.single_number) + str(self.eps) + str(self.arc) + 'Swarm1.npy')) self.chain_Swarm1 = chain_Swarm1 self.likechain_Swarm1 = likechain_Swarm1 return chain_Swarm1, likechain_Swarm1 def create_chains_swarm_2(self): """ get chain and likelihood chain for the second run of cosmoHammer optimizer """ if self.multi_var==True: self.obs=self.obs_multi try: chain_Swarm2=np.load(self.RESULT_FOLDER+'chain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+\ str(self.single_number)+str(self.eps)+str(self.arc)+'Swarm2.npy') likechain_Swarm2=np.load(self.RESULT_FOLDER+'likechain'+str(self.date)+'_Single_'+str(self.method)+'_'+str(self.obs)+\ str(self.single_number)+str(self.eps)+str(self.arc)+'Swarm2.npy') self.chain_Swarm2=chain_Swarm2 self.likechain_Swarm2=likechain_Swarm2 except: self.chain_Swarm2=None self.likechain_Swarm2=None return self.chain_Swarm2,self.likechain_Swarm2 def create_allparameters_single(self,mm,array_of_polyfit_1_parameterizations,zmax=None): """ copied from multi transfroms linear fits as a function of defocus of parametrizations into form acceptable for creating single images workhorse function used by create_list_of_allparameters @param mm [float] defocus of the slit @param array_of_polyfit_1_parameterizations parametrs describing linear fit for the parameters as a function of focus @param zmax largerst Zernike used """ if zmax==None: zmax=11 #for single case, up to z11 if zmax==11: z_parametrizations=array_of_polyfit_1_parameterizations[:8] g_parametrizations=array_of_polyfit_1_parameterizations[8:] allparameters_proposal_single=np.zeros((8+len(g_parametrizations))) for i in range(0,8,1): allparameters_proposal_single[i]=self.value_at_defocus(mm,z_parametrizations[i][0],z_parametrizations[i][1]) for i in range(len(g_parametrizations)): allparameters_proposal_single[i+8]=g_parametrizations[i][1] if zmax==22: z_parametrizations=array_of_polyfit_1_parameterizations[:19] g_parametrizations=array_of_polyfit_1_parameterizations[19:] allparameters_proposal_single=np.zeros((19+len(g_parametrizations))) for i in range(0,19,1): #print(str([i,mm,z_parametrizations[i]])) allparameters_proposal_single[i]=self.value_at_defocus(mm,z_parametrizations[i][0],z_parametrizations[i][1]) for i in range(len(g_parametrizations)): allparameters_proposal_single[19+i]=g_parametrizations[i][1] return allparameters_proposal_single def entrance_exit_pupil_plot(self): ilum=np.load(TESTING_PUPIL_IMAGES_FOLDER+'ilum.npy') radiometricEffectArray=np.load(TESTING_PUPIL_IMAGES_FOLDER+'radiometricEffectArray.npy') ilum_radiometric=np.load(TESTING_PUPIL_IMAGES_FOLDER+'ilum_radiometric.npy') plt.figure(figsize=(30,8)) plt.subplot(131) plt.imshow(ilum,origin='lower',vmax=1,vmin=0) plt.title('entrance pupil') plt.colorbar() plt.subplot(132) plt.title('ent->exit pupil') plt.imshow(radiometricEffectArray,origin='lower',vmax=1,vmin=0) plt.colorbar() plt.subplot(133) plt.title('exit pupil') plt.imshow(ilum_radiometric,origin='lower',vmax=1,vmin=0) plt.colorbar() def wavefront_plot(self): wf_full = np.load(TESTING_WAVEFRONT_IMAGES_FOLDER + 'wf_full.npy') plt.figure(figsize=(36, 6)) plt.subplot(141) plt.imshow(wf_full) plt.colorbar() plt.subplot(142) plt.imshow(np.real(np.exp(2j*np.pi * wf_full/800))) plt.colorbar() plt.subplot(143) plt.imshow(np.imag(np.exp(2j*np.pi * wf_full/800))) plt.colorbar() def illumination_wavefront_plot(self,return_Images=False): ilum=np.load(TESTING_PUPIL_IMAGES_FOLDER+'ilum.npy') wf_full=np.load(TESTING_WAVEFRONT_IMAGES_FOLDER+'wf_full.npy') wf_full_fake_0=np.load(TESTING_WAVEFRONT_IMAGES_FOLDER+'wf_full_fake_0.npy') midpoint=int(len(ilum)/2) ilum_zoom=ilum[int(midpoint-len(ilum)/4):int(midpoint+len(ilum)/4),int(midpoint-len(ilum)/4):int(midpoint+len(ilum)/4)] plt.figure(figsize=(28,8)) plt.subplot(131) plt.imshow(ilum_zoom,origin='lower',vmax=1,vmin=0) plt.title('illumination of the pupil',fontsize=25) plt.subplot(132) ilum_1=np.copy(ilum) ilum_1[ilum_1>0.01]=1 wavefront=ilum_1*wf_full wavefront=wavefront/800 wavefront_zoom=wavefront[int(midpoint-len(ilum)/4):int(midpoint+len(ilum)/4),int(midpoint-len(ilum)/4):\ int(midpoint+len(ilum)/4)] plt.imshow(wavefront_zoom,cmap=plt.get_cmap('bwr'),vmax=np.max(np.abs(wavefront))*0.75,vmin=-np.max(np.abs(wavefront))*0.75) plt.colorbar(fraction=0.046, pad=0.04) plt.title('wavefront [units of waves]',fontsize=25) plt.subplot(133) ilum_1=np.copy(ilum) ilum_1[ilum_1>0.01]=1 wavefront=ilum_1*wf_full_fake_0 wavefront=wavefront/800 wavefront_0_zoom=wavefront[int(midpoint-len(ilum)/4):int(midpoint+len(ilum)/4),int(midpoint-len(ilum)/4):int(midpoint+len(ilum)/4)] plt.imshow(wavefront_0_zoom,cmap=plt.get_cmap('bwr'),vmax=np.max(np.abs(wavefront))*0.75,vmin=-np.max(np.abs(wavefront))*0.75) plt.colorbar(fraction=0.046, pad=0.04) plt.title('wavefront w.o. defocus [u. of waves]',fontsize=25) if return_Images==True: return ilum_zoom,wavefront_zoom,wavefront_0_zoom def wavefront_gradient_plot(self): wf_full=np.load(TESTING_WAVEFRONT_IMAGES_FOLDER+'wf_full.npy') plt.figure(figsize=(30,8)) plt.subplot(131) vgrad = np.gradient(wf_full) fulgrad = np.sqrt(vgrad[0]**2 + vgrad[1]**2) plt.title('gradient (magnitude)') plt.imshow(fulgrad,cmap=plt.get_cmap('hot'), vmin = np.amin(fulgrad),vmax = np.amax(fulgrad)) plt.colorbar() plt.subplot(132) x, y = range(0, len(wf_full)), range(0,len(wf_full)) xi, yi = np.meshgrid(x, y) plt.title('gradient (direction)') plt.streamplot(xi, yi, vgrad[0], vgrad[1]) plt.subplot(133) laplace_of_wf = scipy.ndimage.filters.laplace(wf_full) plt.title('Laplacian') plt.imshow(laplace_of_wf,cmap=plt.get_cmap('hot'), vmin = -1,vmax = 1) plt.colorbar() def create_basic_data_image(self,return_Images=False): sci_image=self.sci_image var_image=self.var_image mask_image=self.mask_image plt.figure(figsize=(30,8)) plt.subplot(131) plt.imshow(sci_image,norm=LogNorm(vmin=1,vmax=np.max(sci_image)),origin='lower') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('sci_image') plt.subplot(132) plt.imshow(var_image,norm=LogNorm(vmin=1,vmax=np.max(sci_image)),origin='lower') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('var_image') plt.subplot(133) plt.imshow(sci_image,norm=LogNorm(vmin=1,vmax=np.max(sci_image)),origin='lower') cbar=plt.colorbar(fraction=0.046, pad=0.04) plt.imshow(mask_image,origin='lower',vmin=0,vmax=np.max(mask_image),alpha=0.2) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('sci+mask_image') if return_Images==True: return sci_image,var_image,mask_image def create_fitting_evolution_plot(self): minchain, like_min = self.create_likelihood() len_of_chains = self.len_of_chains() # chain0_Emcee3,likechain0_Emcee3=self.create_chains() # size=self.chain_swarm1.shape[1] matplotlib.rcParams.update({'font.size': 18}) plt.figure(figsize=(24, 12)) plt.subplot(211) plt.plot(np.linspace(0, len(like_min)-1, len(like_min)), like_min, 'blue', ls='-', marker='o') plt.ylabel('likelihood') plt.xlabel('steps') plt.axvline(np.sum(len_of_chains[:1])+0.5, ls='--') if np.min(like_min) < -self.zero_sigma_ln: plt.ylim(np.min(like_min) * 0.95, 1.05 * np.max(like_min)) else: plt.ylim(-self.zero_sigma_ln, 1.05 * np.max(like_min)) plt.axhline(self.min_like_min, ls='--') # plt.axhline(-self.one_sigma_ln, ls='--', color='black') plt.subplot(212) plt.plot(np.linspace(0, len(like_min)-1, len(like_min)), np.log10(like_min), 'blue', ls='-', marker='o') plt.ylabel('log10(likelihood)') plt.xlabel('steps') plt.axvline(np.sum(len_of_chains[:1])+0.5, ls='--') def create_basic_comparison_plot(self, custom_model_image=None, custom_mask=None, custom_sci_image=None, custom_var_image=None, use_max_chi_scaling=False, use_max_flux_scaling=False, show_flux_mask=False, show_impact_pixels_mask=False, save=False, multi_background_factor=3): if custom_model_image is None: optPsf_cut_fiber_convolved_downsampled = np.load(TESTING_FINAL_IMAGES_FOLDER + 'optPsf_cut_fiber_convolved_downsampled.npy') res_iapetus = optPsf_cut_fiber_convolved_downsampled else: res_iapetus = custom_model_image if custom_sci_image is None: sci_image = self.sci_image else: sci_image = custom_sci_image if custom_var_image is None: var_image = self.var_image else: var_image = custom_var_image mean_value_of_background_via_var = np.mean([np.median(var_image[0]), np.median(var_image[-1]), np.median(var_image[:, 0]), np.median(var_image[:, -1])]) *\ multi_background_factor mean_value_of_background_via_sci = np.mean([np.median(sci_image[0]), np.median(sci_image[-1]), np.median(sci_image[:, 0]), np.median(sci_image[:, -1])]) *\ multi_background_factor mean_value_of_background = np.max([mean_value_of_background_via_var, mean_value_of_background_via_sci]) print(str(multi_background_factor) + 'x mean_value_of_background via sci is estimated to be: ' + str(mean_value_of_background)) if type(show_flux_mask) == bool: flux_mask = sci_image > (mean_value_of_background) else: flux_mask = sci_image > (show_flux_mask) show_flux_mask = True size = sci_image.shape[0] # if size==40: # dithering=2 # else: # dithering=1 # dithering=1 if size == 20: x_center = find_centroid_of_flux(res_iapetus)[0] else: x_center = (size/2) left_limit = np.round(x_center-3.5)+0.5 right_limit = np.round(x_center+3.5)-0.5 chi2_image = (sci_image-res_iapetus)**2/((1)*var_image) if show_impact_pixels_mask is True: mask_most_impactful_pixels = np.zeros(sci_image.shape) mask_most_impactful_pixels[chi2_image > (np.quantile(chi2_image[flux_mask].ravel(), 0.99))] = 1 value_of_chi2_1 = np.sum(chi2_image[flux_mask].ravel() [chi2_image[flux_mask].ravel() > np.quantile(chi2_image[flux_mask].ravel(), 0.99)]) total_chi2 = np.sum(chi2_image[flux_mask].ravel()) print('fraction of chi2 due to 1% of pixels: ' + str(value_of_chi2_1/total_chi2)) plt.figure(figsize=(20, 20)) plt.subplot(221) plt.imshow(res_iapetus, origin='lower', vmax=np.max(np.abs(sci_image))) plt.plot(np.ones(len(sci_image))*(left_limit), np.array(range(len(sci_image))), '--', color='white') plt.plot(np.ones(len(sci_image))*(right_limit), np.array(range(len(sci_image))), '--', color='white') plt.colorbar(fraction=0.046, pad=0.04) if show_flux_mask is True: plt.imshow(flux_mask, origin='lower', alpha=0.4) if show_impact_pixels_mask is True: plt.imshow(mask_most_impactful_pixels, origin='lower', alpha=0.35, cmap='magma') plt.title('Model') plt.grid(False) plt.subplot(222) plt.imshow(sci_image, origin='lower', vmax=np.max(np.abs(sci_image))) plt.plot(np.ones(len(sci_image))*(left_limit), np.array(range(len(sci_image))), '--', color='white') plt.plot(np.ones(len(sci_image))*(right_limit), np.array(range(len(sci_image))), '--', color='white') plt.colorbar(fraction=0.046, pad=0.04) if show_flux_mask is True: plt.imshow(flux_mask, alpha=0.4, origin='lower',) if show_impact_pixels_mask is True: plt.imshow(mask_most_impactful_pixels, alpha=0.35, cmap='magma', origin='lower',) plt.title('Data') plt.grid(False) plt.subplot(223) if use_max_flux_scaling is False: plt.imshow(sci_image-res_iapetus, origin='lower', cmap='bwr', vmin=-np.max(np.abs(sci_image))/20, vmax=np.max(np.abs(sci_image))/20) else: max_flux = np.max(np.abs(sci_image-res_iapetus)) plt.imshow((sci_image-res_iapetus), origin='lower', cmap='bwr', vmax=-max_flux*0.75, vmin=max_flux*0.75) plt.colorbar(fraction=0.046, pad=0.04) plt.plot(np.ones(len(sci_image))*(left_limit), np.array(range(len(sci_image))), '--', color='black') plt.plot(np.ones(len(sci_image))*(right_limit), np.array(range(len(sci_image))), '--', color='black') if show_flux_mask is True: plt.imshow(flux_mask, alpha=0.55, vmin=0, vmax=1, origin='lower',) if custom_mask is None: pass else: if np.sum(custom_mask) == 0: alpha_value = 0 else: alpha_value = 0.25 plt.imshow(custom_mask, origin='lower', alpha=alpha_value) if show_impact_pixels_mask is True: plt.imshow(mask_most_impactful_pixels, alpha=0.55, cmap='magma', origin='lower',) plt.title('Residual (data - model)') plt.grid(False) plt.subplot(224) if use_max_chi_scaling is False: plt.imshow((sci_image-res_iapetus)/np.sqrt(var_image), origin='lower', cmap='bwr', vmax=5, vmin=-5) else: max_chi = np.max(np.abs((sci_image-res_iapetus)/np.sqrt(var_image))) * 0.75 plt.imshow((sci_image-res_iapetus)/np.sqrt(var_image), origin='lower', cmap='bwr', vmax=-max_chi, vmin=max_chi) plt.plot(np.ones(len(sci_image))*(left_limit), np.array(range(len(sci_image))), '--', color='black') plt.plot(np.ones(len(sci_image))*(right_limit), np.array(range(len(sci_image))), '--', color='black') plt.colorbar(fraction=0.046, pad=0.04) plt.title('chi map') plt.tight_layout(pad=0.0, w_pad=1.8, h_pad=-10.0) if show_flux_mask is True: plt.imshow(flux_mask, alpha=0.55, origin='lower') if show_impact_pixels_mask is True: plt.imshow(mask_most_impactful_pixels, alpha=0.55, cmap='magma', origin='lower') chi2_max_reduced = np.sum((res_iapetus)**2/((var_image.shape[0]*var_image.shape[1])*var_image)) chi2_reduced = np.sum((res_iapetus-sci_image)**2/((var_image.shape[0]*var_image.shape[1])*var_image)) chi_max_reduced = np.sum(np.abs(res_iapetus)**1/((var_image.shape[0]*var_image.shape[1]) * np.sqrt(var_image))) chi_reduced = np.sum(np.abs(res_iapetus-sci_image)**1/((var_image.shape[0]*var_image.shape[1]) * np.sqrt(var_image))) print('---------------------') print('chi**2 max reduced is: '+str(chi2_max_reduced)) print('chi**2 reduced is: '+str(chi2_reduced) + ' for log improvement: ' + str(np.log10(chi2_reduced/chi2_max_reduced))) print('chi max reduced is: '+str(chi_max_reduced)) print('chi reduced is: '+str(chi_reduced) + ' for log improvement: ' + str(np.log10(chi_reduced/chi_max_reduced))) print('---------------------') if custom_mask is None: pass else: custom_mask = ~custom_mask.astype('bool') print('chi**2 reduced within custom mask area is: ' + str(np.mean((res_iapetus[custom_mask]-sci_image[custom_mask])**2/(var_image[custom_mask])))) chi2_max_flux_reduced = np.sum((res_iapetus[flux_mask])**2/(len(var_image[flux_mask]) * var_image[flux_mask])) chi2_flux_reduced = np.mean((res_iapetus[flux_mask]-sci_image[flux_mask])**2/(var_image[flux_mask])) chi_max_flux_reduced = np.sum(np.abs(res_iapetus[flux_mask])**1/(len(var_image[flux_mask]) * np.sqrt(var_image)[flux_mask])) chi_flux_reduced = np.mean(np.abs(res_iapetus[flux_mask] - sci_image[flux_mask])**1/np.sqrt(var_image[flux_mask])) print('---------------------') print('chi**2 max reduced within flux mask area is: ' + str(chi2_max_flux_reduced)) print('chi**2 reduced within flux mask area is: ' + str(chi2_flux_reduced) + ' for log improvement: ' + str(np.log10(chi2_flux_reduced/chi2_max_flux_reduced))) print('chi max reduced within flux mask area is: ' + str(chi_max_flux_reduced)) print('chi reduced within flux mask area is: ' + str(chi_flux_reduced) + ' for log improvement: ' + str(np.log10(chi_flux_reduced/chi_max_flux_reduced))) print('---------------------') print('Abs of residual divided by total flux is: ' + str(np.sum(np.abs((res_iapetus-sci_image)))/np.sum((res_iapetus)))) print('Abs of residual divided by largest value of a flux in the image is: ' + str(np.max(np.abs((res_iapetus-sci_image)/np.max(res_iapetus))))) if save is not False: plt.savefig('/Users/nevencaplar/Documents/PFS/Images/Jan2921/Spot_figures/spot_'+save) plt.clf() def create_basic_comparison_plot_log(self,custom_model_image=None,custom_mask=None,custom_sci_image=None,custom_var_image=None,use_max_chi_scaling=False,\ show_flux_mask=False): if custom_model_image is None: optPsf_cut_fiber_convolved_downsampled=np.load(TESTING_FINAL_IMAGES_FOLDER+'optPsf_cut_fiber_convolved_downsampled.npy') res_iapetus=optPsf_cut_fiber_convolved_downsampled else: res_iapetus=custom_model_image if custom_sci_image is None: sci_image=self.sci_image else: sci_image=custom_sci_image if custom_var_image is None: var_image=self.var_image else: var_image=custom_var_image mean_value_of_background_via_var=np.mean([np.median(var_image[0]),np.median(var_image[-1]),\ np.median(var_image[:,0]),np.median(var_image[:,-1])])*3 mean_value_of_background_via_sci=np.mean([np.median(sci_image[0]),np.median(sci_image[-1]),\ np.median(sci_image[:,0]),np.median(sci_image[:,-1])])*3 mean_value_of_background=np.max([mean_value_of_background_via_var,mean_value_of_background_via_sci]) flux_mask=sci_image>(mean_value_of_background) size=sci_image.shape[0] if size==40: dithering=2 else: dithering=1 if size==20: x_center=find_centroid_of_flux(res_iapetus)[0] else: x_center=(size/2) left_limit=np.round(x_center-3.5)+0.5 right_limit=np.round(x_center+3.5)-0.5 chi2_image=(sci_image-res_iapetus)**2/((1)*var_image) plt.figure(figsize=(20,20)) plt.subplot(221) plt.imshow(res_iapetus,origin='lower',vmin=1,vmax=np.max(np.abs(sci_image)),norm=LogNorm()) plt.plot(np.ones(len(sci_image))*(left_limit),np.array(range(len(sci_image))),'--',color='white') plt.plot(np.ones(len(sci_image))*(right_limit),np.array(range(len(sci_image))),'--',color='white') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('Model') if show_flux_mask==True: plt.imshow(flux_mask,alpha=0.55) plt.grid(False) plt.subplot(222) plt.imshow(sci_image,origin='lower',vmin=1,vmax=np.max(np.abs(sci_image)),norm=LogNorm()) plt.plot(np.ones(len(sci_image))*(left_limit),np.array(range(len(sci_image))),'--',color='white') plt.plot(np.ones(len(sci_image))*(right_limit),np.array(range(len(sci_image))),'--',color='white') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('Data') if show_flux_mask==True: plt.imshow(flux_mask,alpha=0.55) plt.grid(False) plt.subplot(223) plt.imshow(np.abs(sci_image-res_iapetus),origin='lower',vmax=np.max(np.abs(sci_image))/20,norm=LogNorm()) plt.plot(np.ones(len(sci_image))*(left_limit),np.array(range(len(sci_image))),'--',color='white') plt.plot(np.ones(len(sci_image))*(right_limit),np.array(range(len(sci_image))),'--',color='white') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('abs(Residual ( data-model))') if show_flux_mask==True: plt.imshow(flux_mask,alpha=0.55) plt.grid(False) plt.subplot(224) plt.imshow(chi2_image,origin='lower',vmin=1,norm=LogNorm()) plt.plot(np.ones(len(sci_image))*(left_limit),np.array(range(len(sci_image))),'--',color='white') plt.plot(np.ones(len(sci_image))*(right_limit),np.array(range(len(sci_image))),'--',color='white') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) if show_flux_mask==True: plt.imshow(flux_mask,alpha=0.55) plt.title('chi**2 map') print('chi**2 max reduced is: '+str(np.sum((res_iapetus)**2/((var_image.shape[0]*var_image.shape[1])*var_image)))) np.sum(np.abs((res_iapetus-sci_image)))/np.sum((res_iapetus)) plt.tight_layout(pad=0.0, w_pad=1.8, h_pad=-7.0) print('chi**2 reduced is: '+str(np.sum((res_iapetus-sci_image)**2/((var_image.shape[0]*var_image.shape[1])*var_image)))) print('Abs of residual divided by total flux is: '+str(np.sum(np.abs((res_iapetus-sci_image)))/np.sum((res_iapetus)))) print('Abs of residual divided by largest value of a flux in the image is: '+str(np.max(np.abs((res_iapetus-sci_image)/np.max(res_iapetus))))) def create_basic_comparison_plot_log_artifical(self,custom_model_image=None,custom_mask=None,custom_sci_image=None,custom_var_image=None,use_max_chi_scaling=False): # need to update for multivar if custom_model_image is None: optPsf_cut_fiber_convolved_downsampled=np.load(TESTING_FINAL_IMAGES_FOLDER+'optPsf_cut_fiber_convolved_downsampled.npy') res_iapetus=optPsf_cut_fiber_convolved_downsampled else: res_iapetus=custom_model_image noise=self.create_artificial_noise(custom_model_image=custom_model_image,custom_var_image=custom_var_image) if custom_sci_image is None: sci_image=self.sci_image else: sci_image=custom_sci_image if custom_var_image is None: var_image=self.var_image else: var_image=custom_var_image size=sci_image.shape[0] if size==40: dithering=2 else: dithering=1 if size==20: x_center=find_centroid_of_flux(res_iapetus)[0] else: x_center=(size/2) left_limit=np.round(x_center-3.5)+0.5 right_limit=np.round(x_center+3.5)-0.5 plt.figure(figsize=(20,20)) plt.subplot(221) plt.imshow(res_iapetus+noise,origin='lower',vmin=1,vmax=np.max(np.abs(sci_image)),norm=LogNorm()) plt.plot(np.ones(len(sci_image))*(left_limit),np.array(range(len(sci_image))),'--',color='white') plt.plot(np.ones(len(sci_image))*(right_limit),np.array(range(len(sci_image))),'--',color='white') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('Model with artifical noise') plt.grid(False) plt.subplot(222) plt.imshow(sci_image,origin='lower',vmin=1,vmax=np.max(np.abs(sci_image)),norm=LogNorm()) plt.plot(np.ones(len(sci_image))*(left_limit),np.array(range(len(sci_image))),'--',color='white') plt.plot(np.ones(len(sci_image))*(right_limit),np.array(range(len(sci_image))),'--',color='white') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('Data') plt.grid(False) plt.subplot(223) plt.imshow(np.abs(res_iapetus-sci_image),origin='lower',vmax=np.max(np.abs(sci_image))/20,norm=LogNorm()) plt.plot(np.ones(len(sci_image))*(left_limit),np.array(range(len(sci_image))),'--',color='white') plt.plot(np.ones(len(sci_image))*(right_limit),np.array(range(len(sci_image))),'--',color='white') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('abs(Residual (model - data))') plt.grid(False) plt.subplot(224) plt.imshow((res_iapetus-sci_image)**2/((1)*var_image),origin='lower',vmin=1,norm=LogNorm()) plt.plot(np.ones(len(sci_image))*(left_limit),np.array(range(len(sci_image))),'--',color='white') plt.plot(np.ones(len(sci_image))*(right_limit),np.array(range(len(sci_image))),'--',color='white') cbar=plt.colorbar(fraction=0.046, pad=0.04) cbar.set_ticks([10,10**2,10**3,10**4,10**5]) plt.title('chi**2 map') print(np.sum((res_iapetus-sci_image)**2/((var_image.shape[0]*var_image.shape[1])*var_image))) np.sum(np.abs((res_iapetus-sci_image)))/np.sum((res_iapetus)) plt.tight_layout(pad=0.0, w_pad=1.8, h_pad=-7.0) print('chi**2 reduced is: '+str(np.sum((res_iapetus-sci_image)**2/((var_image.shape[0]*var_image.shape[1])*var_image)))) print('Abs of residual divided by total flux is: '+str(np.sum(np.abs((res_iapetus-sci_image)))/np.sum((res_iapetus)))) print('Abs of residual divided by largest value of a flux in the image is: '+str(np.max(np.abs((res_iapetus-sci_image)/np.max(res_iapetus))))) def create_artificial_noise(self, custom_model_image=None,custom_var_image=None): if custom_var_image is None: var_image=self.var_image else: var_image=custom_var_image if custom_model_image is None: optPsf_cut_fiber_convolved_downsampled=np.load(TESTING_FINAL_IMAGES_FOLDER+'optPsf_cut_fiber_convolved_downsampled.npy') res_iapetus=optPsf_cut_fiber_convolved_downsampled else: res_iapetus=custom_model_image artifical_noise=np.zeros_like(res_iapetus) artifical_noise=np.array(artifical_noise) for i in range(len(artifical_noise)): for j in range(len(artifical_noise)): artifical_noise[i,j]=np.random.randn()*np.sqrt(var_image[i,j]+40) return artifical_noise def create_cut_plots(self): var_image=self.var_image artifical_noise=self.create_artificial_noise() sci_image=self.sci_image optPsf_cut_fiber_convolved_downsampled=np.load(TESTING_FINAL_IMAGES_FOLDER+'optPsf_cut_fiber_convolved_downsampled.npy') res_iapetus=optPsf_cut_fiber_convolved_downsampled mid_point_of_sci_image=int(sci_image.shape[0]/2) plt.figure(figsize=(25,10)) plt.subplot(121) plt.title('horizontal direction') plt.plot(np.array(range(len(res_iapetus))),np.log10(res_iapetus[mid_point_of_sci_image]),'blue',linestyle='--',label='model') plt.plot(np.array(range(len(res_iapetus))),np.log10(np.abs(sci_image[mid_point_of_sci_image])),'orange',linestyle='--',label='data') plt.plot(np.array(range(len(res_iapetus))),np.ones(len(res_iapetus))*np.log10(np.max(sci_image[:,mid_point_of_sci_image])*(1/2)),'--',color='black') plt.legend(fontsize=25) plt.subplot(122) plt.title('wavelength direction') plt.plot(np.array(range(len(res_iapetus))),np.log10(res_iapetus[:,mid_point_of_sci_image]),'blue',linestyle='--',label='model') plt.plot(np.array(range(len(res_iapetus))),np.log10(np.abs(sci_image[:,mid_point_of_sci_image])),'orange',linestyle='--',label='data') plt.plot(np.array(range(len(res_iapetus))),np.ones(len(res_iapetus))*np.log10(np.max(sci_image[:,mid_point_of_sci_image])*(1/2)),'--',color='black') plt.legend(fontsize=20) plt.figure(figsize=(30,10)) plt.subplot(121) plt.title('horizontal direction, with noise') plt.plot(np.array(range(len(res_iapetus))),np.log10(res_iapetus[mid_point_of_sci_image]+artifical_noise[mid_point_of_sci_image]),'blue',linestyle='--',label='model') plt.plot(np.array(range(len(res_iapetus))),np.log10(
np.abs(sci_image[mid_point_of_sci_image])
numpy.abs
import numpy as np import pandas as pd import sys, os, pdb from .jindlib import JindLib from sklearn.manifold import TSNE from sklearn.decomposition import PCA import umap import matplotlib.pyplot as plt import multiprocessing from functools import partial import pickle import seaborn as sns class JindVis: def __init__(self, mat, labels, libobj, direc): self.class2num = libobj.class2num self.num2class = libobj.num2class self.reduce_method = libobj.reduce_method self.model = None self.preprocess = False self.dir = direc self.obj = libobj os.system('mkdir -p {}'.format(self.dir)) self.gene_names = libobj.gene_names self.classes = libobj.classes self.shortclasses = [i[:3] + "-" + i[-3:] for i in self.classes] self.n_classes = libobj.n_classes libobj.path = self.dir if libobj.val_stats is None: print("The library object doesn't have validation stats") sys.exit() self.val_stats = libobj.val_stats self.mat = mat self.labels = labels self.embeddings = {} def evaluate(self, mat, labels): predictions = self.obj.evaluate(mat, labels) return predictions def setup(self, test=False): self.y_pred = self.obj.predict(self.mat, test=test) self.y_true = np.array([self.class2num[i] for i in self.labels]) # Freeze the predictions and labels self.y_pred.flags.writeable = False self.y_true.flags.writeable = False print("Setup Complete") def display_mean_prob(self): probs_train = self.val_stats['pred'] y_train = self.val_stats['true'] probs_test = self.y_pred y_test = self.y_true # Using for Loop for klass in range(self.n_classes): self.plot_prob(probs_train, y_train, probs_test, y_test, klass) # Using multiple cores # pool = multiprocessing.Pool(processes=6) # func = partial(self.plot_prob, probs_train, y_train, probs_test, y_test) # pool.map(func, (i for i in range(self.n_classes))) def plot_prob(self, probs_train, y_train, probs_test, y_test, klass): factor = 1 + self.n_classes//10 fig = plt.figure(figsize=(6*factor, 6)) indices = np.argmax(probs_train, axis=1)==klass probs = probs_train[indices] y_klass = y_train[indices] class_name = self.classes[klass] plt.subplot(2, 2, 1) if len(indices) != 0: probs_TP = probs[y_klass==klass] if len(probs_TP) != 0: mean = np.mean(probs_TP, axis=0) std = np.std(probs_TP, axis=0) plt.bar(np.arange(0, len(mean)), mean, yerr=std) plt.xticks(np.arange(0, len(self.shortclasses), 1.0), labels=self.shortclasses, rotation=60, ha='right') plt.xlabel("Class") plt.ylabel("Probability") plt.title("Val TP Frac {:.4f}".format(len(probs_TP)/(len(probs)+1e-8))) plt.subplot(2, 2, 2) probs_FP = probs[y_klass!=klass] if len(probs_FP) != 0: mean = np.mean(probs_FP, axis=0) std = np.std(probs_FP, axis=0) plt.bar(np.arange(0, len(mean)), mean, yerr=std) plt.xticks(np.arange(0, len(self.shortclasses), 1.0), labels=self.shortclasses, rotation=60, ha='right') plt.xlabel("Class") plt.ylabel("Probability") plt.title("Val FP Frac {:.4f}".format(len(probs_FP)/(len(probs)+1e-8))) indices = np.argmax(probs_test, axis=1)==klass plt.subplot(2, 2, 3) if len(indices) != 0: probs = probs_test[indices] y_klass = y_test[indices] probs_TP = probs[y_klass==klass] if len(probs_TP) != 0: mean = np.mean(probs_TP, axis=0) std = np.std(probs_TP, axis=0) plt.bar(np.arange(0, len(mean)), mean, yerr=std) plt.xticks(np.arange(0, len(self.shortclasses), 1.0), labels=self.shortclasses, rotation=60, ha='right') plt.xlabel("Class") plt.ylabel("Probability") plt.title("Test TP Frac {:.4f}".format(len(probs_TP)/(len(probs)+1e-8))) plt.subplot(2, 2, 4) probs_FP = probs[y_klass!=klass] if len(probs_FP) != 0: mean = np.mean(probs_FP, axis=0) std =
np.std(probs_FP, axis=0)
numpy.std
# -*- coding: utf-8 -*- """ Created on Sun Feb 7 22:04:28 2021 @author: DELL """ import torch.utils.data as D from torchvision import transforms as T import gdal import random import numpy as np import torch DEVICE = 'cuda:0' if torch.cuda.is_available() else 'cpu' # 读取图像像素矩阵 # fileName 图像路径 def imgread(fileName, addNDVI=False): dataset = gdal.Open(fileName) width = dataset.RasterXSize height = dataset.RasterYSize data = dataset.ReadAsArray(0, 0, width, height) # 如果是image的话,因为label是单通道 if(len(data.shape) == 3): # 添加归一化植被指数NDVI特征 if(addNDVI): nir, r = data[3], data[0] ndvi = (nir - r) / (nir + r + 0.00001) * 1.0 # 和其他波段保持统一,归到0-255,后面的totensor会/255统一归一化 # 统计了所有训练集ndvi的值,最小值为0,最大值很大但是数目很少,所以我们取了98%处的25 ndvi = (ndvi - 0) / (25 - 0) * 255 ndvi = np.clip(ndvi, 0, 255) data_add_ndvi =
np.zeros((5, 256, 256), np.uint8)
numpy.zeros
#! /bin/python import json from PIL import Image import numpy as np import torch import torchvision from torch.utils.data import Dataset, DataLoader device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') base_path = "../../../../data/vgg_2000/" def load_json(filename='data.json'): with open(filename, 'r') as outfile: data = json.load(outfile) return data def write_to_json(data, filename='data.json'): with open(filename, 'w') as outfile: json.dump(data, outfile) class GANDL(Dataset): def __init__(self, tuple_set, spk_feats): self.tuple_set = tuple_set self.voice_embeds = spk_feats def __len__(self): return len(self.tuple_set) def __getitem__(self, index): utt_id, face_path, label = self.tuple_set[index][0], self.tuple_set[index][1], self.tuple_set[index][2] voice_embed = torch.from_numpy(
np.array(self.voice_embeds[utt_id])
numpy.array
""" Notes ----- Important attributes of continuous (order > 0) :class:`Field` and :class:`SurfaceField` instances: - `vertex_remap` : `econn[:, :n_vertex] = vertex_remap[conn]` - `vertex_remap_i` : `conn = vertex_remap_i[econn[:, :n_vertex]]` where `conn` is the mesh vertex connectivity, `econn` is the region-local field connectivity. """ from __future__ import absolute_import import numpy as nm from sfepy.base.base import output, get_default, assert_ from sfepy.base.base import Struct from sfepy.discrete.common.fields import parse_shape, Field from sfepy.discrete.fem.mesh import Mesh from sfepy.discrete.fem.meshio import convert_complex_output from sfepy.discrete.fem.utils import (extend_cell_data, prepare_remap, invert_remap, get_min_value) from sfepy.discrete.fem.mappings import VolumeMapping, SurfaceMapping from sfepy.discrete.fem.poly_spaces import PolySpace from sfepy.discrete.fem.fe_surface import FESurface from sfepy.discrete.integrals import Integral from sfepy.discrete.fem.linearizer import (get_eval_dofs, get_eval_coors, create_output) import six def set_mesh_coors(domain, fields, coors, update_fields=False, actual=False, clear_all=True, extra_dofs=False): if actual: if not hasattr(domain.mesh, 'coors_act'): domain.mesh.coors_act = nm.zeros_like(domain.mesh.coors) domain.mesh.coors_act[:] = coors[:domain.mesh.n_nod] else: domain.cmesh.coors[:] = coors[:domain.mesh.n_nod] if update_fields: for field in six.itervalues(fields): field.set_coors(coors, extra_dofs=extra_dofs) field.clear_mappings(clear_all=clear_all) def eval_nodal_coors(coors, mesh_coors, region, poly_space, geom_poly_space, econn, only_extra=True): """ Compute coordinates of nodes corresponding to `poly_space`, given mesh coordinates and `geom_poly_space`. """ if only_extra: iex = (poly_space.nts[:,0] > 0).nonzero()[0] if iex.shape[0] == 0: return qp_coors = poly_space.node_coors[iex, :] econn = econn[:, iex].copy() else: qp_coors = poly_space.node_coors ## # Evaluate geometry interpolation base functions in (extra) nodes. bf = geom_poly_space.eval_base(qp_coors) bf = bf[:,0,:].copy() ## # Evaluate extra coordinates with 'bf'. cmesh = region.domain.cmesh conn = cmesh.get_incident(0, region.cells, region.tdim) conn.shape = (econn.shape[0], -1) ecoors = nm.dot(bf, mesh_coors[conn]) coors[econn] = nm.swapaxes(ecoors, 0, 1) def _interp_to_faces(vertex_vals, bfs, faces): dim = vertex_vals.shape[1] n_face = faces.shape[0] n_qp = bfs.shape[0] faces_vals = nm.zeros((n_face, n_qp, dim), nm.float64) for ii, face in enumerate(faces): vals = vertex_vals[face,:dim] faces_vals[ii,:,:] = nm.dot(bfs[:,0,:], vals) return(faces_vals) def get_eval_expression(expression, fields, materials, variables, functions=None, mode='eval', term_mode=None, extra_args=None, verbose=True, kwargs=None): """ Get the function for evaluating an expression given a list of elements, and reference element coordinates. """ from sfepy.discrete.evaluate import eval_in_els_and_qp def _eval(iels, coors): val = eval_in_els_and_qp(expression, iels, coors, fields, materials, variables, functions=functions, mode=mode, term_mode=term_mode, extra_args=extra_args, verbose=verbose, kwargs=kwargs) return val[..., 0] return _eval def create_expression_output(expression, name, primary_field_name, fields, materials, variables, functions=None, mode='eval', term_mode=None, extra_args=None, verbose=True, kwargs=None, min_level=0, max_level=1, eps=1e-4): """ Create output mesh and data for the expression using the adaptive linearizer. Parameters ---------- expression : str The expression to evaluate. name : str The name of the data. primary_field_name : str The name of field that defines the element groups and polynomial spaces. fields : dict The dictionary of fields used in `variables`. materials : Materials instance The materials used in the expression. variables : Variables instance The variables used in the expression. functions : Functions instance, optional The user functions for materials etc. mode : one of 'eval', 'el_avg', 'qp' The evaluation mode - 'qp' requests the values in quadrature points, 'el_avg' element averages and 'eval' means integration over each term region. term_mode : str The term call mode - some terms support different call modes and depending on the call mode different values are returned. extra_args : dict, optional Extra arguments to be passed to terms in the expression. verbose : bool If False, reduce verbosity. kwargs : dict, optional The variables (dictionary of (variable name) : (Variable instance)) to be used in the expression. min_level : int The minimum required level of mesh refinement. max_level : int The maximum level of mesh refinement. eps : float The relative tolerance parameter of mesh adaptivity. Returns ------- out : dict The output dictionary. """ field = fields[primary_field_name] vertex_coors = field.coors[:field.n_vertex_dof, :] ps = field.poly_space gps = field.gel.poly_space vertex_conn = field.econn[:, :field.gel.n_vertex] eval_dofs = get_eval_expression(expression, fields, materials, variables, functions=functions, mode=mode, extra_args=extra_args, verbose=verbose, kwargs=kwargs) eval_coors = get_eval_coors(vertex_coors, vertex_conn, gps) (level, coors, conn, vdofs, mat_ids) = create_output(eval_dofs, eval_coors, vertex_conn.shape[0], ps, min_level=min_level, max_level=max_level, eps=eps) mesh = Mesh.from_data('linearized_mesh', coors, None, [conn], [mat_ids], field.domain.mesh.descs) out = {} out[name] = Struct(name='output_data', mode='vertex', data=vdofs, var_name=name, dofs=None, mesh=mesh, level=level) out = convert_complex_output(out) return out class FEField(Field): """ Base class for finite element fields. Notes ----- - interps and hence node_descs are per region (must have single geometry!) Field shape information: - ``shape`` - the shape of the base functions in a point - ``n_components`` - the number of DOFs per FE node - ``val_shape`` - the shape of field value (the product of DOFs and base functions) in a point """ def __init__(self, name, dtype, shape, region, approx_order=1): """ Create a finite element field. Parameters ---------- name : str The field name. dtype : numpy.dtype The field data type: float64 or complex128. shape : int/tuple/str The field shape: 1 or (1,) or 'scalar', space dimension (2, or (2,) or 3 or (3,)) or 'vector', or a tuple. The field shape determines the shape of the FE base functions and is related to the number of components of variables and to the DOF per node count, depending on the field kind. region : Region The region where the field is defined. approx_order : int or tuple The FE approximation order. The tuple form is (order, has_bubble), e.g. (1, True) means order 1 with a bubble function. Notes ----- Assumes one cell type for the whole region! """ shape = parse_shape(shape, region.domain.shape.dim) if not self._check_region(region): raise ValueError('unsuitable region for field %s! (%s)' % (name, region.name)) Struct.__init__(self, name=name, dtype=dtype, shape=shape, region=region) self.domain = self.region.domain self._set_approx_order(approx_order) self._setup_geometry() self._setup_kind() self._setup_shape() self.surface_data = {} self.point_data = {} self.ori = None self._create_interpolant() self._setup_global_base() self.setup_coors() self.clear_mappings(clear_all=True) self.clear_qp_base() self.basis_transform = None self.econn0 = None self.unused_dofs = None self.stored_subs = None def _set_approx_order(self, approx_order): """ Set a uniform approximation order. """ if isinstance(approx_order, tuple): self.approx_order = approx_order[0] self.force_bubble = approx_order[1] else: self.approx_order = approx_order self.force_bubble = False def get_true_order(self): """ Get the true approximation order depending on the reference element geometry. For example, for P1 (linear) approximation the true order is 1, while for Q1 (bilinear) approximation in 2D the true order is 2. """ gel = self.gel if (gel.dim + 1) == gel.n_vertex: order = self.approx_order else: order = gel.dim * self.approx_order if self.force_bubble: bubble_order = gel.dim + 1 order = max(order, bubble_order) return order def is_higher_order(self): """ Return True, if the field's approximation order is greater than one. """ return self.force_bubble or (self.approx_order > 1) def _setup_global_base(self): """ Setup global DOF/base functions, their indices and connectivity of the field. Called methods implemented in subclasses. """ self._setup_facet_orientations() self._init_econn() self.n_vertex_dof, self.vertex_remap = self._setup_vertex_dofs() self.vertex_remap_i = invert_remap(self.vertex_remap) aux = self._setup_edge_dofs() self.n_edge_dof, self.edge_dofs, self.edge_remap = aux aux = self._setup_face_dofs() self.n_face_dof, self.face_dofs, self.face_remap = aux aux = self._setup_bubble_dofs() self.n_bubble_dof, self.bubble_dofs, self.bubble_remap = aux self.n_nod = self.n_vertex_dof + self.n_edge_dof \ + self.n_face_dof + self.n_bubble_dof self._setup_esurface() def _setup_esurface(self): """ Setup extended surface entities (edges in 2D, faces in 3D), i.e. indices of surface entities into the extended connectivity. """ node_desc = self.node_desc gel = self.gel self.efaces = gel.get_surface_entities().copy() nd = node_desc.edge if nd is not None: efs = [] for eof in gel.get_edges_per_face(): efs.append(nm.concatenate([nd[ie] for ie in eof])) efs = nm.array(efs).squeeze() if efs.ndim < 2: efs = efs[:,nm.newaxis] self.efaces = nm.hstack((self.efaces, efs)) efs = node_desc.face if efs is not None: efs = nm.array(efs).squeeze() if efs.ndim < 2: efs = efs[:,nm.newaxis] self.efaces = nm.hstack((self.efaces, efs)) if gel.dim == 3: self.eedges = gel.edges.copy() efs = node_desc.edge if efs is not None: efs = nm.array(efs).squeeze() if efs.ndim < 2: efs = efs[:,nm.newaxis] self.eedges = nm.hstack((self.eedges, efs)) def set_coors(self, coors, extra_dofs=False): """ Set coordinates of field nodes. """ # Mesh vertex nodes. if self.n_vertex_dof: indx = self.vertex_remap_i self.coors[:self.n_vertex_dof] = nm.take(coors, indx.astype(nm.int32), axis=0) n_ex_dof = self.n_bubble_dof + self.n_edge_dof + self.n_face_dof # extra nodes if n_ex_dof: if extra_dofs: if self.n_nod != coors.shape[0]: raise NotImplementedError self.coors[:] = coors else: gps = self.gel.poly_space ps = self.poly_space eval_nodal_coors(self.coors, coors, self.region, ps, gps, self.econn) def setup_coors(self): """ Setup coordinates of field nodes. """ mesh = self.domain.mesh self.coors = nm.empty((self.n_nod, mesh.dim), nm.float64) self.set_coors(mesh.coors) def get_vertices(self): """ Return indices of vertices belonging to the field region. """ return self.vertex_remap_i def _get_facet_dofs(self, rfacets, remap, dofs): facets = remap[rfacets] return dofs[facets[facets >= 0]].ravel() def get_data_shape(self, integral, integration='volume', region_name=None): """ Get element data dimensions. Parameters ---------- integral : Integral instance The integral describing used numerical quadrature. integration : 'volume', 'surface', 'surface_extra', 'point' or 'custom' The term integration type. region_name : str The name of the region of the integral. Returns ------- data_shape : 4 ints The `(n_el, n_qp, dim, n_en)` for volume shape kind, `(n_fa, n_qp, dim, n_fn)` for surface shape kind and `(n_nod, 0, 0, 1)` for point shape kind. Notes ----- - `n_el`, `n_fa` = number of elements/facets - `n_qp` = number of quadrature points per element/facet - `dim` = spatial dimension - `n_en`, `n_fn` = number of element/facet nodes - `n_nod` = number of element nodes """ region = self.domain.regions[region_name] shape = region.shape dim = region.dim if integration in ('surface', 'surface_extra'): sd = self.surface_data[region_name] # This works also for surface fields. key = sd.face_type weights = self.get_qp(key, integral).weights n_qp = weights.shape[0] if integration == 'surface': data_shape = (sd.n_fa, n_qp, dim, sd.n_fp) else: data_shape = (sd.n_fa, n_qp, dim, self.econn.shape[1]) elif integration in ('volume', 'custom'): _, weights = integral.get_qp(self.gel.name) n_qp = weights.shape[0] data_shape = (shape.n_cell, n_qp, dim, self.econn.shape[1]) elif integration == 'point': dofs = self.get_dofs_in_region(region, merge=True) data_shape = (dofs.shape[0], 0, 0, 1) else: raise NotImplementedError('unsupported integration! (%s)' % integration) return data_shape def get_dofs_in_region(self, region, merge=True): """ Return indices of DOFs that belong to the given region and group. """ node_desc = self.node_desc dofs = [] vdofs = nm.empty((0,), dtype=nm.int32) if node_desc.vertex is not None: vdofs = self.vertex_remap[region.vertices] vdofs = vdofs[vdofs >= 0] dofs.append(vdofs) edofs = nm.empty((0,), dtype=nm.int32) if node_desc.edge is not None: edofs = self._get_facet_dofs(region.edges, self.edge_remap, self.edge_dofs) dofs.append(edofs) fdofs = nm.empty((0,), dtype=nm.int32) if node_desc.face is not None: fdofs = self._get_facet_dofs(region.faces, self.face_remap, self.face_dofs) dofs.append(fdofs) bdofs = nm.empty((0,), dtype=nm.int32) if (node_desc.bubble is not None) and region.has_cells(): els = self.bubble_remap[region.cells] bdofs = self.bubble_dofs[els[els >= 0]].ravel() dofs.append(bdofs) if merge: dofs = nm.concatenate(dofs) return dofs def clear_qp_base(self): """ Remove cached quadrature points and base functions. """ self.qp_coors = {} self.bf = {} def get_qp(self, key, integral): """ Get quadrature points and weights corresponding to the given key and integral. The key is 'v' or 's#', where # is the number of face vertices. """ qpkey = (integral.order, key) if qpkey not in self.qp_coors: if (key[0] == 's') and not self.is_surface: dim = self.gel.dim - 1 n_fp = self.gel.surface_facet.n_vertex geometry = '%d_%d' % (dim, n_fp) else: geometry = self.gel.name vals, weights = integral.get_qp(geometry) self.qp_coors[qpkey] = Struct(vals=vals, weights=weights) return self.qp_coors[qpkey] def substitute_dofs(self, subs, restore=False): """ Perform facet DOF substitutions according to `subs`. Modifies `self.econn` in-place and sets `self.econn0`, `self.unused_dofs` and `self.basis_transform`. """ if restore and (self.stored_subs is not None): self.econn0 = self.econn self.econn, self.unused_dofs, basis_transform = self.stored_subs else: if subs is None: self.econn0 = self.econn return else: self.econn0 = self.econn.copy() self._substitute_dofs(subs) self.unused_dofs =
nm.setdiff1d(self.econn0, self.econn)
numpy.setdiff1d
""" Mutual Information Least-Dependent Component Analysis (MILCA) Reference: <NAME>.; <NAME>.; <NAME>.; <NAME>. Phys. Rev. E, 2004, 70, 066123. https://doi.org/10.1103/PhysRevE.70.066123 https://arxiv.org/abs/physics/0405044 """ # Author: <NAME> (<EMAIL>) # License: BSD 3 clause import numpy as np import scipy as sp from sklearn.feature_selection import mutual_info_ as mi from joblib import Parallel, delayed class MILCA: def __init__(self, n_components=None, n_neighbours=None, n_angles = None, smoothing_band = None, n_jobs=None): self.n_components = n_components self.n_jobs = n_jobs self.n_neighbours = n_neighbours self.n_angles = n_angles self.smoothing_band = smoothing_band self.parallelizer = Parallel(n_jobs = self.n_jobs) def fit(self, X, y=None): if self.n_components is None: self.n_components = X.shape[1] if self.n_neighbours is None: self.n_neighbours = 10 if self.n_angles is None: self.n_angles = 128 if self.smoothing_band is None: self.smoothing_band = int(self.n_angles/4) d, E = np.linalg.eigh(np.cov(X.T)) indx = np.argsort(d)[::-1][:self.n_components] d, E = d[indx], E[:, indx] D =
np.diag(d)
numpy.diag
from time import time import numpy as np import copy from multiprocessing import Process, Queue from .mp_corr3_err import mp_corr # from scipy.optimize import leastsq from collections.abc import Iterable from ..misc.progressbar import progress from .xpcsmethods import ttc_to_g2, bin_multitau import pdb def rebin(a, newshape): """Rebin an array to a new shape.""" assert len(a.shape) == len(newshape) slices = [slice(0, old, float(old) / new) for old, new in zip(a.shape, newshape)] coordinates = np.mgrid[slices] indices = coordinates.astype("i") return a[tuple(indices)] def errfunc(pa, xdata, ydata): """Fit function for fitting the variance of the two-time correlation function.""" return (pa[0] + pa[1] * xdata - ydata) / np.sqrt(ydata * 1e-8) def avr(saxs, ctr=-1, mask=None): """Old version of normalization function""" dim1, dim2 = np.shape(saxs) if mask is None: mask = np.ones((dim1, dim2)) saxs = saxs * mask if ctr == -1: return np.ones((dim1, dim2)) * np.mean(saxs) cx, cy = ctr [X, Y] = np.mgrid[1 - cy : dim1 + 1 - cy, 1 - cx : dim2 + 1 - cx] q = np.round(np.sqrt(X ** 2 + Y ** 2)).astype(np.int64) q = q.ravel() mask = mask.flatten() saxs = saxs.flatten() qm = list(range(int(q.max() + 1))) qr = list(range(len(qm))) for i in qm: qr[i] = [] for i in range(len(q)): if mask[i]: qr[q[i]].append(i) while [] in qr: qr.remove([]) for i in qr: saxs[i] = np.mean(saxs[i]) return saxs.reshape(dim1, dim2) def avr_better(saxs, ctr, mask): """Return an average saxs image for normalization of images.""" cx, cy = ctr dim1, dim2 = np.shape(saxs) [X, Y] = np.mgrid[1 - cy : dim1 + 1 - cy, 1 - cx : dim2 + 1 - cx] q = np.float32(np.sqrt(X ** 2 + Y ** 2)) n = np.int16(q + 0.5) q[mask == 0] = 0 n[mask == 0] = 0 max_n = n.max() + 1 mean_saxs = np.zeros(max_n + 1, np.float32) new_saxs = np.zeros_like(saxs, np.float32) for i in range(max_n): ind = np.where((n == i) & (mask == 1)) if ind[0].size: mean_saxs[i] = np.mean(saxs[ind]) for i in range(dim1): for j in range(dim2): if q[i, j] > 0: par = int(q[i, j]) f1 = q[i, j] - par if mean_saxs[par + 1] > 0 and mean_saxs[par] > 0: new_saxs[i, j] = mean_saxs[par + 1] * f1 + mean_saxs[par] * (1 - f1) if mean_saxs[par + 1] > 0 and mean_saxs[par] == 0: new_saxs[i, j] = mean_saxs[par + 1] if mean_saxs[par + 1] == 0 and mean_saxs[par] > 0: new_saxs[i, j] = mean_saxs[par] return new_saxs def get_norm_saxs(saxs, qroi, qsec, ctr, mask, verbose=False): """Get an average SAXS for normalization""" if verbose: print("Start computing SAXS for normalization.") dim2, dim1 = np.shape(saxs) saxs_img = saxs.copy() ctr = (ctr[0] - qsec[1], ctr[1] - qsec[0]) saxs_img = saxs_img * mask saxs_img = avr_better(saxs_img, ctr, mask) saxs_imgc = np.ones((dim2, dim1)) saxs_img[saxs_img == 0] = 1.0 for i in range(len(qroi)): q0 = qroi[i][0] - qsec[0] q1 = qroi[i][1] - qsec[1] saxs_imgc[q0, q1] = np.mean(saxs_img[q0, q1]) / saxs_img[q0, q1] # saxs_imgc[np.where(np.isinf(saxs_imgc))] = 1.0 if verbose: print("Done") print("Shape of saxs_img:", np.shape(saxs_img)) print("Sum of saxs_img:", np.sum(saxs_img)) return saxs_imgc def calc_twotime_cf(ttdata, tt_max_images=5000, crossttdata=None): """Calculate two-time correlation function of a large data set. Args: ttdata (list): list of arrays each of shape (nimages, npixels). """ def trc(matr): """Calculate the two-time correlation function.""" meanmatr = np.mean(matr, axis=1) meanmatr[meanmatr <= 0] = 1.0 tmp, lenmatr = np.shape(matr) meanmatr.shape = 1, tmp trcm = np.dot(matr, matr.T) / lenmatr / np.dot(meanmatr.T, meanmatr) return trcm def crosstrc(matr1, matr2): """Calculate the cross-two-time correlation function.""" meanmatr1 = np.mean(matr1, axis=1) meanmatr1[meanmatr1 <= 0] = 1.0 meanmatr2 = np.mean(matr2, axis=1) meanmatr2[meanmatr2 <= 0] = 1.0 tmp, lenmatr = np.shape(matr1) meanmatr1 = meanmatr1.reshape(1, tmp) meanmatr2 = meanmatr2.reshape(1, tmp) trcm = np.dot(matr1, matr2.T) / lenmatr / np.dot(meanmatr1.T, meanmatr2) return trcm def vartrc(ttc): """Calculate the variance of the two-time correlation function.""" # pc0 = [1.0, 0.1] n, tmp = np.shape(ttc) vtmp = [] for it in range(1, n - 1): # ydata=diag(ttc,it) # xdata=arange(1,len(ydata)+1) # p1,success=leastsq(errfuncc,pc0,args=(xdata,ydata)) # vtmp.append(var(ydata/(p1[0]+p1[1]*xdata))) vtmp.append(np.var(np.diag(ttc, it))) return vtmp def recurf(ll): """Helper function used for calculating the two-time correlation function.""" # global l, y, v y[ll + 1].append((y[ll][0] + y[ll][1]) * 0.5) y[ll] = [] v[ll + 1].append(vartrc(y[ll + 1][-1])) if l[ll + 1] == 1: recurf(ll + 1) else: l[ll + 1] += 1 l[ll] = 0 crossdata_avail = False if crossttdata is None else True nbins = len(ttdata) output_ttc = [] output_z = [] for ibin in range(nbins): data = ttdata[ibin] if crossdata_avail: cdata = crossttdata[ibin] nf, lind = data.shape if nf > tt_max_images: ttchunk = nf // tt_max_images nfnew = ttchunk * tt_max_images print( "Reducing two-time correlation data from " "{} to {} images by rebinning.".format(nf, tt_max_images) ) data = np.mean(data[:nfnew].reshape(ttchunk, -1, lind, order="F"), 0) lind2 = lind // 16 l = np.zeros(5) y = [] v = [] for i in range(5): y.append([]) v.append([]) ib = 0 for i in range(16): ie = ib + lind2 if not crossdata_avail: y[0].append(trc(data[:, ib:ie])) else: c1 = crosstrc(data[:, ib:ie], cdata[:, ib:ie]) c2 = crosstrc(cdata[:, ib:ie], data[:, ib:ie]) y[0].append((c1 + c2) / 2.0) v[0].append(vartrc(y[0][-1])) if l[0] == 1: recurf(0) else: l[0] += 1 ib += lind2 vm = [] for i in range(4, -1, -1): vm.append(np.mean(v[i], 0)) vm = np.array(vm) del data del v ttcf = y[4][-1] dia1 = np.mean(np.diag(ttcf, 1)) t = np.arange(np.shape(ttcf)[0]) ttcf[t, t] = dia1 N = np.array([1, 2, 4, 8, 16]) / float(lind) z = vm.T / N # p0=[0,1] # it=range(len(ttcf[1:,0])) # p1=zeros((len(ttcf[1:,0]),len(p0)+1)) # p1[:,0]=(asfarray(it)+1.0)*dt # xdata=ttcf[0,:] # for i in it: # ydata=ttcf[i+1,:] # p1[i,1:], success = leastsq(errfunc, p0, args=(xdata,ydata)) output_ttc.append(ttcf) output_z.append(z) return output_ttc, output_z def norm_qdata(chunk, trace_slice, q0, q1, lin_mask, norm): if norm == "symmetric_bins": normfactor = trace_slice normfactor[normfactor == 0] = 1.0 data_loop = chunk[:, q0, q1] / normfactor[:, None] elif norm == "symmetric_frame": data_loop = ( chunk[:, q0, q1] / np.mean(chunk[:, lin_mask[0], lin_mask[1]], axis=1)[:, None] ) elif norm == "symmetric": data_loop = chunk[:, q0, q1] elif norm == "corrcoef": tmp_mat = chunk[:, q0, q1] / trace_slice[:, None] data_loop = (tmp_mat - tmp_mat.mean(-1)[:, None]) / np.sqrt( np.var(tmp_mat, -1) )[:, None] elif norm == "corrcoef_frame": tmp_mat = ( chunk[:, q0, q1] / np.mean(chunk[:, lin_mask[0], lin_mask[1]], axis=1)[:, None] ) data_loop = (tmp_mat - tmp_mat.mean(-1)[:, None]) / np.sqrt( np.var(tmp_mat, -1) )[:, None] else: raise ValueError(f"{norm} is not a valid normalization method.") return data_loop ####################### # ---MAIN FUNCTION--- # ####################### def pyxpcs( data, qroi=None, dt=1.0, qv=None, saxs=None, mask=None, crossdata=None, ctr=(0, 0), twotime_par=None, qsec=(0, 0), norm="symmetric", nprocs=1, time_spacing=None, verbose=True, chn=16, tt_max_images=5000, use_multitau="auto", rebin_g2="auto", ): """Calculate g2 correlation functions. Args: data (np.ndarray, dict): If data is an array, time is the first dimension followed by x and y. A dictionary is passed by Xana containing multiprocessing queues. dt (float, iterable): The spacing of the time between frames. In case of unequally spaced data, a 1D vector must be passed. """ time0 = time() crossdata_avail = False if isinstance(data, np.ndarray): if data.ndim == 1: # handling 1D data data = data.reshape(-1, 1, 1) qroi = [ (np.array([0]), np.array([0])), ] nf, *dim = np.shape(data) def get_chunk(): return (0, data) if crossdata is not None: assert crossdata.shape == data.shape crossdata_avail = True use_multitau = False elif isinstance(data, dict): use_mp = True # make sure that multiprocessing is available nf = data["nimages"] dim = data["dim"] def get_chunk(): return data["dataQ"].get() else: raise ValueError(f"Cannot process data of type {type(data)}") # q-bins lqv = len(qroi) rlqv = range(lqv) if qv is None: qv = np.arange(lqv) # check time spacing if isinstance(dt, (float, int)) and not isinstance(time_spacing, Iterable): equally_spaced = True tvec = np.arange(1, nf + 1) * dt elif isinstance(time_spacing, Iterable): if len(np.unique(np.diff(time_spacing))) == 1: equally_spaced = True else: equally_spaced = False tvec = np.asarray(time_spacing) * dt nprocs = 1 print("Switching off multiprocessing due to " "unequally spaced lag times.") assert nf == len(tvec), "Time vector does not match data shape" else: raise ValueError( "Time axis variable `time_spacing` must not be of " f"type {type(time_spacing)}" ) # computation modes if use_multitau == "auto": use_multitau = True if equally_spaced else False if use_multitau is False: if twotime_par is None: twotime_par = np.arange(lqv) print( "With multitau being disabled, TTCs are required for the g2 " "calculation;\nhowever, the twotime_par argument was not " "provided.\nDefault is to calculate the TTC for each q-bin." ) use_mp = True if nprocs > 1 and use_multitau else False if rebin_g2 == "auto": rebin_g2 = True if equally_spaced and not use_multitau else False if verbose: print("Number of images is:", nf) print("shape of image section is:", dim) if not isinstance(mask, np.ndarray): mask =
np.ones(dim, "int8")
numpy.ones
#--> This code was developed using Anaconda3 installed as #--> administrator and with PATH option selected during the install so #--> that python can be used from a Windows command line. NOTE: to #--> get command line arguments passed, which is essential for this #--> code, you need need to edit registry to make # Computer\HKEY_CLASSES_ROOT\Applications\python.exe\shell\open\command # "C:\ProgramData\Anaconda3\python.exe" "%1" %* # Thanks to # https://stackoverflow.com/questions/29540541/executable-python-script-not-take-sys-argv-in-windows # Alternately, you can just call python (with the full path to python # if needed) and then specify the full path to the module and then the # module's arguments import importlib import sys import os import socket import time import subprocess import argparse import json import numpy as np from scipy import signal from astropy import log from astropy import wcs from astropy.io import fits from astropy import units as u from astropy.time import Time, TimeDelta if sys.platform == 'win32': # --> also check out pythonnet try: import win32com.client except: log.info('You are missing the win32com.client. This should be in the Anaconda package. MaxIm/telescope control will not work.') else: # http://timgolden.me.uk/pywin32-docs/html/com/win32com/HTML/QuickStartClientCom.html # Use makepy.py -i to poke around in what might be useful try: # 'ASCOM Master Interfaces for .NET and COM' constants. # Use example: win32com.client.constants.shutterOpen win32com.client.gencache.EnsureModule('{76618F90-032F-4424-A680-802467A55742}', 0, 1, 0) except: log.info('ASCOM does not seem to be installed. MaxIm/telescope control will not work.') else: try: # MaxIm constants. The long string is the GUID of MaxIm found by makepy.py win32com.client.gencache.EnsureModule('{B4955EC7-F7F2-11D2-AA9C-444553540000}', 0, 1, 0) except: log.info('MaxIm not found. MaxIm/telescope control will not work.') else: log.info('You are not on a Windows system. The MaxIm/telescope control features of this package will not work unless you are on a Windows system.') import define as D # --> these are things that eventually I would want to store in a # --> configuration file # --> CHANGE ME BACK TO 1s(or 7s) and filter 0 (0.7s or 0.3 on # --> Vega filter 1 works for day) default_exptime = 1 default_filt = 0 default_cent_tol = 5 # Pixels default_guider_exptime = 1 # chage back to 1 for night, 0.2 for day # In principle, it is possible to use only MaxIm guiding stuff for # this, alleviating the need for us to connect directly to the # telescope. In practice, with a GEM and for setting DEC conveniently # in the guider, MaxImControl really needs to be connected to the scope. # Since unexpected behavior may result if there is not a hard failure # when a GEM is not connected, indicate here whether or not you want # that hard failure telescope_must_be_connectable = True # These are necessary for GEMs because MaxIm does not reveal the # contents of the Camera Control -> Guide Tab -> Settings dialog box # -> Advanced Tab -> Guider Motor Control radio buttons to the # scripting interface. As explained in guider_motor_reverse_setup, # when using ACP or otherwise not having MaxIm connected to the # telescope, we need to manage motor reversal ourselves guider_motor_control_reverseX = True guider_motor_control_reverseY = False # Misalignment in deg guider_cal_astrometry_max_misalignment = 10 horizon_limit = 8.5 # --> I may improve this location or the technique of message passing hostname = socket.gethostname() if hostname == "snipe" or hostname == "byted": raw_data_root = '/data/io/IoIO/raw' elif hostname == "greyhound" or hostname == "gigabyte": # --> This doesn't work. I need Unc? #raw_data_root = '//snipe/data/io/IoIO/raw' raw_data_root = r'\\snipe\data\io\IoIO\raw' default_telescope = 'ScopeSim.Telescope' elif socket.gethostname() == "IoIO1U1": raw_data_root = r'C:\Users\PLANETARY SCIENCE\Desktop\IoIO\data' # --> Eventually, it would be nice to have this in a chooser default_telescope = 'AstroPhysicsV2.Telescope' # For weather synchronization with ACP ACPUtil = 'ACP.Util' default_guide_box_command_file = os.path.join(raw_data_root, 'GuideBoxCommand.txt') default_guide_box_log_file = os.path.join(raw_data_root, 'GuideBoxLog.txt') run_level_main_astrometry = os.path.join( raw_data_root, '2021-04_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2021-03_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2020-09_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2020-03_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2019-04_Astrometry/Main_Astrometry_East_of_Pier.fit') #raw_data_root, '2019-04_Astrometry/Main_Astrometry_West_of_Pier.fit') #raw_data_root, '2019-02_Astrometry/PinPointSolutionEastofPier.fit') #raw_data_root, '2019-02_Astrometry/PinPointSolutionWestofPier.fit') #raw_data_root, '2018-04_Astrometry/PinPointSolutionEastofPier.fit') # --> Currently only guider WestofPier (looking east) works properly, # --> which might indicate that calculations need to be made with true # --> north of CCD aligned with true north button on mount. Although # --> pier flip doesn't affect N/S because tube rolls over too, E/W is # --> affected run_level_guider_astrometry = os.path.join( raw_data_root, '2021-04_Astrometry/Guider_Astrometry_East_of_Pier.fit') #raw_data_root, '2021-03_Astrometry/Guider_Astrometry_East_of_Pier.fit') #raw_data_root, '2020-09_Astrometry/Guider_Astrometry_East_of_Pier.fit') #raw_data_root, '2020-03_Astrometry/Guider_Astrometry_East_of_Pier.fit') #raw_data_root, '2019-04_Astrometry/Guider_Astrometry_West_of_Pier.fit') #raw_data_root, '2019-02_Astrometry/GuiderPinPointSolutionWestofPier.fit') #raw_data_root, '2019-02_Astrometry/GuiderPinPointSolutionEastofPier.fit') #raw_data_root, '2018-04_Astrometry/GuiderPinPointSolutionWestofPier.fit') #raw_data_root, '2018-01_Astrometry//GuiderPinPointSolutionEastofPier.fit') def angle_norm(angle, maxang): """Normalize an angle to run up to maxang degrees""" angle += 360 angle %= 360 if angle > maxang: # handles 180 case angle -= 360 return angle def iter_linfit(x, y, max_resid=None): """Performs least squares linear fit iteratively to discard bad points If you actually know the statistical weights on the points, just use polyfit directly. """ # Let polyfit report errors in x and y coefs = np.polyfit(x, y, 1) # We are done if we have just two points if len(x) == 2: return coefs # Our first fit may be significantly pulled off by bad # point(s), particularly if the number of points is small. # Construct a repeat until loop the Python way with # while... break to iterate to squeeze bad points out with # low weights last_redchi2 = None iterations = 1 while True: # Calculate weights roughly based on chi**2, but not going # to infinity yfit = x * coefs[0] + coefs[1] resid = (y - yfit) if resid.all == 0: break # Add 1 to avoid divide by zero error resid2 = resid**2 + 1 # Use the residual as the variance + do the algebra redchi2 = np.sum(1/(resid2)) coefs = np.polyfit(x, y, 1, w=1/resid2) # Converge to a reasonable epsilon if last_redchi2 and last_redchi2 - redchi2 < np.finfo(float).eps*10: break last_redchi2 = redchi2 iterations += 1 # The next level of cleanliness is to exclude any points above # max_resid from the fit (if specified) if max_resid is not None: goodc = np.where(np.abs(resid) < max_resid) # Where returns a tuple of arrays! if len(goodc[0]) >= 2: coefs = iter_linfit(x[goodc], y[goodc]) return coefs # I am either phasing this out or I could potentially make it work # with __enter__ and __exit__ for a context manager def get_HDUList(HDUList_im_or_fname): """Returns an astropy.fits.HDUList given a filename, image or HDUList. If you have a set of HDUs, you'll need to put them together into an HDUList yourself, since this can't guess how to do that""" if isinstance(HDUList_im_or_fname, fits.HDUList): return HDUList_im_or_fname elif isinstance(HDUList_im_or_fname, str): return fits.open(HDUList_im_or_fname) elif isinstance(HDUList_im_or_fname, np.ndarray): hdu = fits.PrimaryHDU(HDUList_im_or_fname) return fits.HDUList(hdu) else: raise ValueError('Not a valid input, HDUList_im_or_fname, expecting, fits.HDUList, string, or np.ndarray') def pier_flip_astrometry(header_in): """Adjust FITS astrometry CD* keywords to emulate a pier flip (rotate FOV 180 deg) header_in : input FITS header return value : copy of header_in with CD* keywords adjusted""" header = header_in.copy() header['CDELT1'] *= -1 header['CDELT2'] *= -1 header['CD1_1'] *= -1 header['CD1_2'] *= -1 header['CD2_1'] *= -1 header['CD2_2'] *= -1 if header.get('PIERSIDE'): if header['PIERSIDE'] == 'EAST': header['PIERSIDE'] = 'WEST' else: header['PIERSIDE'] = 'EAST' header['FLIPAPPL'] = (True, 'Artificially flipped pier side') header['HISTORY'] = 'Artificially flipped pier side, modified CD* and PIERSIDE' return header # --> Really what I think I want is a PGData for all of the center and # --> rate stuff. That will clean up the ObsData property and # --> __init__ class ObsData(): """Base class for observations, enabling object centering, etc. This is intended to work in an active obsering setting, so generally an image array will be received, the desired properties will be calculated from it and those properties will be read by the calling code. """ def __init__(self, HDUList_im_or_fname=None, desired_center=None, recalculate=False, readnoise=5): if HDUList_im_or_fname is None: raise ValueError('No HDUList_im_or_fname provided') self.recalculate = recalculate self.readnoise = readnoise # Set up our basic FITS image info self.header = None self._binning = None self._subframe_origin = None self._HDU_unbinned = None self._we_opened_file = None # Keep property for later use/speedy access self._hist_of_im = None self._back_level = None # These are in pixels self._obj_center = None self._desired_center = desired_center if not self._desired_center is None: self._desired_center = np.asarray(self._desired_center) # --> Work with these self.obj_center_err = np.asarray((1.,1.)) self.desired_center_tolerance = np.asarray((5.,5.)) # 0 -- 10 scale indicating quality of obj_center and # desired_center calculations self.quality = 0 # astropy time object for calc_flex_pix_rate self.TRateChange = None self.Tmidpoint = None # Amount of guide box motion since first observation # units=main camera pixels self.total_flex_dpix = None # one-time motion, just before exposure self.delta_pix = None # Make the guts of __init__ methods that can be overridden # --> Here is where I would make the division between ObsData # and PGData. PGData would init the rates and stuff + read # the ObsData. The ObsData would have a cleanup method that # otherwise would not be called # Read our image self.read_im(HDUList_im_or_fname) # Populate our object self.populate_obj() self.cleanup() def populate_obj(self): """Calculate quantities that will be stored long-term in object""" # Note that if MaxIm is not configured to write IRAF-complient # keywords, IMAGETYP gets a little longer and is capitalized # http://diffractionlimited.com/wp-content/uploads/2016/11/sbfitsext_1r0.pdf kwd = self.header['IMAGETYP'].upper() if 'DARK' in kwd or 'BIAS' in kwd or 'FLAT' in kwd: raise ValueError('Not able to process IMAGETYP = ' + self.header['IMAGETYP']) # Do our work & leave the results in the property self.obj_center self.desired_center # --> CHANGE ME BACK self._desired_center = np.asarray((1100, 1150)) def cleanup(self): """Close open file, deference large arrays""" if self._we_opened_file: self.close_fits() del self.HDUList del self._HDU_unbinned def read_im(self, HDUList_im_or_fname=None): """Populate ObsData with HDUList and associated info""" self.HDUList = get_HDUList(HDUList_im_or_fname) # Store the original shape of our image so we can do # coordinate calculations without it self.oshape = np.asarray(self.HDUList[0].data.shape) if isinstance(HDUList_im_or_fname, np.ndarray): # We don't have any metadata return self.HDUList # All other options should have HDUList already populated with # stuff we need. Copy stuff into our local property as needed if isinstance(HDUList_im_or_fname, str): self._we_opened_file = True # Store the header in our object. This is just a # reference at first, but after HDUList is deleted, this # becomes the only copy # https://stackoverflow.com/questions/22069727/python-garbage-collector-behavior-on-compound-objects self.header = self.HDUList[0].header # Calculate an astropy Time object for the midpoint of the # observation for ease of time delta calculations. # Account for darktime, if available try: exptime = self.header.get('DARKTIME') if exptime is None: exptime = self.header['EXPTIME'] # Use units to help with astropy.time calculations exptime *= u.s self.Tmidpoint = (Time(self.header['DATE-OBS'], format='fits') + exptime/2) except: log.warning('Cannot read DARKTIME and/or EXPTIME keywords from FITS header') try: # Note Astropy Pythonic transpose Y, X order self._binning = (self.header['YBINNING'], self.header['XBINNING']) self._binning = np.asarray(self._binning) # This is in binned coordinates self._subframe_origin = (self.header['YORGSUBF'], self.header['XORGSUBF']) self._subframe_origin = np.asarray(self._subframe_origin) except: log.warning('Could not read binning or subframe origin from image header. Did you pass a valid MaxIm-recorded image and header? Assuming binning = 1, subframe_origin = 0,0') self._binning = np.asarray((1,1)) self._subframe_origin = (0,0) if self.recalculate == True: # We don't want to use values stored in the file, this # forces recalculate return self.HDUList try: cx = self.header['OBJ_CR0'] cy = self.header['OBJ_CR1'] self._obj_center = np.asarray((cy, cx)) dx = self.header['DES_CR0'] dy = self.header['DES_CR1'] self._desired_center = np.asarray((dy, dx)) except: # It was worth a try pass return self.HDUList def unbinned(self, coords): """Returns coords referenced to full CCD given internally stored binning/subim info""" coords = np.asarray(coords) return np.asarray(self._binning * coords + self._subframe_origin) def binned(self, coords): """Assuming coords are referenced to full CCD, return location in binned coordinates relative to the subframe origin""" coords = np.asarray(coords) return np.asarray((coords - self._subframe_origin) / self._binning) def im_unbinned(self, a): """Returns an unbinned version of a. a must be same shape as the primary HDU image """ assert a.shape == self.HDUList[0].data.shape # Don't bother if we are already unbinned if np.sum(self._binning) == 2: return a newshape = self._binning * a.shape # From http://scipy-cookbook.readthedocs.io/items/Rebinning.html assert len(a.shape) == len(newshape) slices = [ slice(0,old, float(old)/new) for old,new in zip(a.shape,newshape) ] coordinates = np.mgrid[slices] indices = coordinates.astype('i') #choose the biggest smaller integer index unbinned = a[tuple(indices)] # Check to see if we need to make a larger array into which to # plop unbinned array if np.sum(self._subframe_origin) > 0: # Note subframe origin reads in binned pixels origin = self.unbinned(self._subframe_origin) full_unbinned = np.zeros(origin + unbinned.shape) full_unbinned[origin[0]:, origin[1]:] = unbinned unbinned = full_unbinned return unbinned @property def HDU_unbinned(self): """Returns an unbinned version of the primary HDU image or the primary HDU image if it is not binned. """ if self._HDU_unbinned is not None: return self._HDU_unbinned self._HDU_unbinned = self.im_unbinned(self.HDUList[0].data) return self._HDU_unbinned def close_fits(self): if self.HDUList.fileinfo is not None: self.HDUList.close() self._we_opened_file = None def imshow(self, im=None): if im is None: im = self.HDUList[0].data plt.imshow(im) plt.show() @property def obj_center(self): """Returns pixel coordinate of the brightests object in the image in UNBINNED Y, X coordinates. Does basic median filtering to get rid of cosmic rays. It is assumed this will be overridden with better object finders, such as one that uses PinPoint astrometry. """ if self._obj_center is not None: return self._obj_center # Take the median to get rid of cosmic rays im = self.HDUList[0].data im = signal.medfilt(im, kernel_size=3) im_center = np.unravel_index(np.argmax(im), im.shape) # Pretty-print our object center before we unbin log.debug('Object center (X, Y; binned) = ' + str(im_center[::-1])) self._obj_center = self.unbinned(im_center) # Set quality just above the border, since we haven't done # much work on this self.quality = 6 self.header['OBJ_CR0'] = (self._obj_center[1], 'Object center X') self.header['OBJ_CR1'] = (self._obj_center[0], 'Object center Y') self.header['QUALITY'] = (self.quality, 'Quality on 0-10 scale of center determination') return self._obj_center @property def desired_center(self): """If desired_center hasn't been explicitly set, this returns the geometric center of image. NOTE: The return order of indices is astropy FITS Pythonic: Y, X """ if self._desired_center is not None: return self._desired_center im = self.HDUList[0].data im_center = np.asarray(im.shape)/2 self._desired_center = self.unbinned(im_center) self.header['DES_CR0'] = (self._desired_center[1], 'Desired center X') self.header['DES_CR1'] = (self._desired_center[0], 'Desired center Y') return self._desired_center # Allow user to move desired center around @desired_center.setter def desired_center(self, value): self._desired_center = value # --> I don't think I need these ## World coordinates may be calculated by of some subclasses. ## Worst case scenario, we calculate them with MaxImControl.scope_wcs ## when we need them #@property #def w_obj_center(self): # """World coordinates of object center""" # return self._w_obj_center # #@w_obj_<EMAIL> #def w_obj_center(self, value): # self._w_obj_center = value # #@property #def w_desired_center(self): # """World coordinates of object center""" # return self._w_desired_center # #@w_desired_center.setter #def w_desired_center(self, value): # self._w_desired_center = value # #@property #def dra_ddec(self): # if self._dra_ddec is not None: # return self._dra_ddec # # This will raise its own error if the world coordinates have # # not been calculated # self._dra_ddec = self.w_obj_center - self.w_desired_center # return self._dra_ddec #Daniel if True: class MakeList(): def __init__(self, mlist=None): if mlist is None: self._mlist = [] else: if isinstance(mlist, list): self._mlist = mlist else: raise TypeError('Input must be a list.') def append(self, item): self._mlist.append(item) #Daniel class FakeWeather(): def __init__(self): self.Safe = True class MaxImControl(): """Controls MaxIm DL via ActiveX/COM events. Notes: MaxIm camera, guide camera, and telescope must be set up properly first (e.g. you have used the setup for interactive observations). Even so, the first time this is run, keep an eye out for MaxIm dialogs, as this program will hang until they are answered. To fix this, a wathdog timer would need to be used. Technical note for downstream object use: we don't have access to the MaxIm CCDCamera.ImageArray, but we do have access to similar information (and FITS keys) in the Document object. The CCDCamera object is linked to the actual last image read, where the Document object is linked to the currently active window. This means the calling routine could potentially expect the last image read in but instead get the image currently under focus by the user. The solution to this is to (carefully) use notify events to interrupt MaxIm precisely when the event you expect happens (e.g. exposure or guide image acuired). Then you are sure the Document object has the info you expect. Beware that while you have control, MaxIm is stuck and bad things may happen, like the guider might get lost, etc. If your program is going to take a long time to work with the information it just got, figure out a way to do so asynchronously """ def __init__(self, main_astrometry=None, guider_astrometry=None, default_filt=default_filt): if sys.platform != 'win32': raise EnvironmentError('Can only control camera and telescope from Windows platform') self.main_astrometry = main_astrometry if self.main_astrometry is None: self.main_astrometry = run_level_main_astrometry if isinstance(self.main_astrometry, str): with fits.open(self.main_astrometry) as HDUList: self.main_astrometry = HDUList[0].header self.guider_astrometry = guider_astrometry if self.guider_astrometry is None: self.guider_astrometry = run_level_guider_astrometry if isinstance(self.guider_astrometry, str): with fits.open(self.guider_astrometry) as HDUList: self.guider_astrometry = HDUList[0].header self.default_filt = default_filt self.alignment_mode = None self.guider_cal_pierside = None self.pier_flip_on_side = None # Pattern this after Telescope.GuideRateRightAscension and # Telescope.GuideRateDeclination, which are the telescope # guide rates in deg/s, assuming they can be read from the # telescope. Here we can store them as an np.array self.guide_rates = None # degrees/s self.guider_exptime = None self.guider_commanded_running = None # --> Eventually make this some sort of configurable # --> thing, since not all filter wheels need it self.main_filt_change_time = 10 # seconds it takes to guarantee filter change # Don't move the guide box too fast self.guide_box_steps_per_pix = 2 self.guider_settle_cycle = 5 self.guider_settle_tolerance = 0.5 self.loop_sleep_time = 0.2 self.guider_max_settle_time = 120 # seconds # --> Kind of a hack to have this here. Eventually want to # --> integrate MaxImControl object with ACP better self.ACPUtil = None self.weather_server = None # Create containers for all of the objects that can be # returned by MaxIm. We'll only populate them when we need # them. Some of these we may never use or write code for self.Application = None self.CCDCamera = None self.Document = None self.Telescope = None # This helps with logic that I don't use yet self.telescope_connectable = None # This helps PrecisionGuide dance around ACP controlling the # focuser directly self.focuser_previously_connected = None self.previous_guider_filter = None self.original_GuiderAutoPierFlip = None # There is no convenient way to get the FITS header from MaxIm # unless we write the file and read it in. Instead allow for # getting a selection of FITS keys to pass around in a # standard astropy fits HDUList self.FITS_keys = None self.HDUList = None self.required_FITS_keys = ('DATE-OBS', 'EXPTIME', 'EXPOSURE', 'XBINNING', 'YBINNING', 'XORGSUBF', 'YORGSUBF', 'FILTER', 'IMAGETYP', 'OBJECT') # We can use the CCDCamera.GuiderMaxMove[XY] property for an # indication of how long it is safe to press the guider # movement buttons, but "Max" is not very much -- 0.1 - 3.0s # according to MaxIm documentation, so be liberal with this self.guider_max_move_multiplier = 20 # --> Too little motion seems to freeze the system, at # least sometimes self.horizon_limit_value = horizon_limit self.max_guide_num_steps = 8 self.connect() if self.telescope_connectable: self.alignment_mode = self.Telescope.AlignmentMode else: # --> Eventually this warning might go away as we might # --> use some property of our own to track the mount type log.error("Mount is not connected -- did you specify one in setup [currently the software source code]? If you have a German equatorial mount (GEM), this software will likely not work properly upon pier flips [because code has not yet been written to let you specify the mode of your telescope on the fly]. Other mount types will work OK, but you should keep track of the Scope Dec. box in MaxIm's Guide tab.") # This sets self.pier_flip_on_side and makes sure the guider # astrometry is aligned with the guider cal self.guider_motor_reverse_setup() # Now line up our main astrometry with the guider in case it # was recorded on the opposite side of a GEM flip main_astrometry_pierside = self.main_astrometry.get('PIERSIDE') if self.alignment_mode == win32com.client.constants.algGermanPolar: if main_astrometry_pierside is None: raise EnvironmentError('Connected to GEM mount yet no PIERSIDE was recorded in main astrometry FITS header. Was MaxIm connected to the telescope when the astrometry was recorded?') if main_astrometry_pierside != self.guider_cal_pierside: self.main_astrometry \ = pier_flip_astrometry(self.main_astrometry) self.check_guider_speeds() self.previous_GuiderReverseX = self.CCDCamera.GuiderReverseX self.previous_GuiderReverseY = self.CCDCamera.GuiderReverseY def __enter__(self): return(self) def __exit__(self, exception_type, exception_value, traceback): # --> Try to get telescope disconnected properly so APCC can # --> exit without having to kill it if self.telescope_connectable: self.Telescope.Connected = False # This kills the link to the CCD camera unless # self.CCDCamera.DisableAutoShutdown = True by someone. ACP # sets this to True but FocusMax does not. See notes in # IoIO.notebk about C-c dance if you want to have # CCDCamera.DisableAutoShutdown = False and not kill camera # link if self.CCDCamera: self.guider_stop() # --> consider putting this back to 0 instead of previous # --> and really this should be in the coronagraph # --> subclass instead of here, but that is a project for # --> a later date self.CCDCamera.GuiderFilter = self.previous_guider_filter #self.CCDCamera.LinkEnabled = False # Put the MaxIm focuser connection back to its previous state self.Application.FocuserConnected = self.focuser_previously_connected self.CCDCamera.GuiderAutoPierFlip = self.original_GuiderAutoPierFlip # --> Not sure if I need to do these or if they mess it up worse self.Application = None self.CCDCamera = None self.Telescope = None def connect(self): """Link to weather safety monitor, telescope, CCD camera(s), filter wheels, etc.""" try: self.ACPUtil = win32com.client.Dispatch(ACPUtil) self.weather_server = self.ACPUtil.Weather test = self.ACPUtil.Weather.Safe except Exception as e: log.error('Received the following error: ' + str(e)) log.warning('Seems to be an ACP weather server problem, forging ahead with no weather protection!') self.weather_server = FakeWeather() # MaxIm can connect to the telescope and use things like # pier side to automatically adjust guiding calculations, # but it doesn't make the telescope pier side available to # the user. That means we need to connect separately for # our calculations. Furthermore, ACP doesn't like to have # MaxIm connected to the telescope while guiding (except # through the ASCOM guide ports or relays), so we need to # do everything out-of-band self.getTelescope() if self.telescope_connectable: self.Telescope.Connected = True if self.Telescope.Connected == False: raise EnvironmentError('Link to telescope failed. Is the power on to the mount?') self.getApplication() ## --> ACP doesn't like MaxIm being connected to the ## --> telescope. We will have to use the property of ## --> telecsope and copy over to appropriate places in ## --> MaxIm, as if we were operating by hand #self.Application.TelescopeConnected = True #if self.Application.TelescopeConnected == False: # raise EnvironmentError('MaxIm link to telescope failed. Is the power on to the mount?') # --> ACP doesn't like MaxIm being connected to the focuser, # but some of my IoIO things do need that for the time being # --> This is really at the wrong level -- I should have # ACP_IPT_Na_R take care of this as an object self.focuser_previously_connected = self.Application.FocuserConnected self.getCCDCamera() self.CCDCamera.LinkEnabled = True if self.CCDCamera.LinkEnabled == False: raise EnvironmentError('Link to camera hardware failed. Is the power on to the CCD (including any connection hardware such as USB hubs)?') # Let the guider filter and AutoPierFlip be put back to # previous states after we use it self.previous_guider_filter = self.CCDCamera.GuiderFilter self.original_GuiderAutoPierFlip = self.CCDCamera.GuiderAutoPierFlip # Keep CCD link up after script exits (thanks to Daniel!) self.CCDCamera.DisableAutoShutdown = True def getTelescope(self): if self.Telescope is not None: return try: self.Telescope = win32com.client.Dispatch(default_telescope) self.telescope_connectable = True except: if telescope_must_be_connectable: raise EnvironmentError('Error instantiating telescope control object ' + default_telescope + '. Is the telescope on and installed?') else: log.warning('Not able to connect to telescope. Some features like auto pier flip for German equatorial mounts (GEMs) and automatic declination compensation for RA motions will not be available. --> eventually make some sort of menu to select mount type or grep that from ACP config') self.telescope_connectable = False else: # Catch any other weird errors assert isinstance(self.Telescope, win32com.client.CDispatch) def getApplication(self): if self.Application is not None: return True try: self.Application = win32com.client.Dispatch("MaxIm.Application") except: raise EnvironmentError('Error creating MaxIM application object. Is MaxIM installed?') # Catch any other weird errors assert isinstance(self.Application, win32com.client.CDispatch) def getCCDCamera(self): if self.CCDCamera is not None: return True try: self.CCDCamera = win32com.client.Dispatch("MaxIm.CCDCamera") #win32com.client.WithEvents(self.CCDCamera, # self.CCDCameraEventHandler) except: raise EnvironmentError('Error creating CCDCamera object. Is there a CCD Camera set up in MaxIm?') # Catch any other weird errors assert isinstance(self.CCDCamera, win32com.client.CDispatch) # --> This is an event handler that doesn't work class CCDCameraEventHandler(): #"""This hopefully magically receives the names of events from the client""" # https://vlasenkov.blogspot.ru/2017/03/python-win32com-multithreading.html def CCDCamera_Notify(self, event_code): log.debug('Received event_code = ' + str(event_code)) def getDocument(self): """Gets the document object of the last CCD camera exposure""" #"""Gets the document object of the current window""" # The CurrentDocument object gets refreshed when new images # are taken, so all we need is to make sure we are connected # to begin with # NOTE: the Application.CurrentDocument is not what we # want, since that depends on which windows has focus. if self.Document is not None: return True self.getCCDCamera() try: self.Document = self.CCDCamera.Document except: raise EnvironmentError('Error retrieving document object') #self.getApplication() #try: # self.Document = self.Application.CurrentDocument #except: # raise EnvironmentError('Error retrieving document object') # Catch any other weird errors assert isinstance(self.Document, win32com.client.CDispatch) def guider_motor_reverse_setup(self): """Set up property for guiding and moving the telescope with guider slews. Details: Set up property so guiding works regardless of whether or not MaxIm is connected to the telescope and regardless of how the guider was calibrated. Also set up property so we can use use MaxIm's control of the guider inputs of the mount to do small motions to center our target. To briefly review how autoguiding works, MaxIm measures the current X and Y position of the guide star and calculates the number of pixels it needs to move to get to the desired guide position. Of course, MaxIm doesn't physically move pixels in the camera, it moves the telescope. So there needs to be some sort of calibration that goes between the two. GuiderXSpeed, GuiderYSpeed, and GuiderAngle is that calibration. MaxIm calibrates the guider by finding the brightest star in the FOV. The +X and +Y buttons are operated such that the star is moved in an "L" shape. First in the +-X direction and then in the +/-Y direction. It is up to the user to connect the X and Y leads that MaxIm is operating to the RA and DEC leads of the mount. Generally +X is considered +RA, which is E, or *left* as you look at the sky with no camera mirroring or rotation effects and the +Y lead is north. Because it is the mount that moves E and N, the star, which is fixed on the sky, appears to move W and S. MaxIm, of course, knows this and applies the appropriate minus sign when calculating the GuiderXSpeed and GuiderYSpeed quantities. These are the speed in guider camera pixels per second the mount moves when X and Y are pressed. Note some confusion may arise because MaxIm pixel coordinates (0,0) are at the *top* left of the image, which is the up/down mirror from normal Cartesian coordinates. Thus, if N is up as displayed by MaxIm, +N ends up being -Y in MaxIm GuiderYSpeed. A final quantity is necessary: GuiderAngle, the angle CCW from N of the +Y telescope motion direction. Whew! Now add the complication of a GEM. A GEM effectively operates in two modes because it has to carry the telescope on one side or the other of the pier to be able to view all of the sky https://ascom-standards.org/Help/Platform/html/P_ASCOM_DeviceInterface_ITelescopeV3_SideOfPier.htm has a discussion of how this is somewhat awkwardly implemented in ASCOM. Add to this the complication that different GEM mounts do different things to their coordinate systems when the mount is on the two different sides. RA is generally left alone, since on either side of the pier, the RA axis still has to rotate toward the west. But DEC conventions vary. When the mount flips and points the telscope at the same place on the sky (issues of counterweight up aside), RA flips 180 and DEC flips 180, resulting in the telescope tube *rotating* 180. Some mounts, like my Astro-Physics 1100, leave the DEC motors connected in the same sense on both sides of the mount. This results in somewhat counter-intuitive behavior of the telescope tube when you press N. When near the equator, on one side of the mount (ASCOM pierWest, looking east), N moves you torward N, on the other (e.g. when I am in Park 4), it moves you toward S. Other mounts (Paramount, I think) define the preferred N goes N side as ASCOM pierEast. Still other mounts (PlaneWave, I think) flip N and S when you flip the mount, so N always moves the tube N. No matter what the mount does with N/S, one thing never changes on pier flip: the tube rotates 180 degrees such that if N was up before, it is now down. And if E was left in the camera, it is now right. When doing absolute astrometry, this matters a lot, but when guiding, it gets a little simpler. On mounts that don't reverse the N/S motor sense on flip (e.g. Astro-Physics, Paramount), because both astrometric N/S and motion N/S have flipped, the guider can blithly press the same N or S button to get the star to move the expected direction in camera Y coordinates. X is not so lucky. RA has really flipped in the camera but not on the mount. Someone needs to keep track of that flip. As described below, MaxIm has that capacity both for interactive and scripted use. For interactive use, MaxIm uses the Pier Flip box in the Camera->Guide tab together with the Guider Motor Control On Pier Flip radio buttons in the Guide -> Settings -> Advanced tab to let the user fix guider pier flip issues. These controls tell MaxIm to swap the RA and/or DEC connections on pier flip. For mounts that properly report their pier flip state via ASCOM, the Auto Pier Flip box can be checked, which basically keeps track of checking the Pier Flip box for you. For scripting use, the GuiderReverseX and GuiderReverseY property can be used. More on those later. The problem with the "Pier Flip" nomenclature is, of course, that it is not absolute. "Pier Flip" relative to what? At some level it doesn't matter. If you calibrated the guider on one side of the pier and then do a pier flip, then you need to tell the guider you have pier flipped. Fiddle with the Pier Flip radio buttons in the Guider Settings Advanced tab until guiding works and you are done. This also works for AutoPierFlip, but it happens to have an absolute: MaxIm "Pier Flip" is ASCOM pierWest looking east (through the pole). MaxIm normal (no pier flip) is pierEast looking west So if your mount reports its pierside state properly via ASCOM, it is probably best to do your first guider calibration on pierEast looking west (normal). Then enable MaxIm's AutoPierFlip, do a pier flip, guide, and poke the radio buttons in Guider Settings Advanced until guiding works. Once you have those radio buttons set, you can recalibrate the guider on any side of the mount because MaxIm will automatically reverse the motor connections as per your specifications as it is doing the calibration. Sure you will get GuiderAngle of +180 on opposite sides of the mount, but if you take that into consideration with the guider speeds, everything will end up looking like it is calibrated relative to the normal ASCOM pointing state. Whew! Now enter ACP. It is not clearly stated why but http://acp.dc3.com/RotatedGuiding.pdf explains that ACP has chosen the opposite of the mount from MaxIm to act as the guider calibration standard. ACP users are instructed to put the mount on pierWest looking east, turn AutoPierFlip off, and calibrate. This is unfortunate, since it completely breaks MaxIm guiding. Furthermore, MaxIM profiles can't be used to fully change between ACP guiding mode and MaxIm guiding mode since the profile doesn't preserve the AutoPierFlip state button state. Since the ACP rotated guiding document states that the ACP pierWest guider calibration standard is not going to change, we need to deal with it here. We also want to make it convenient to be used in normal MaxIm mode. Fortunately, we can use the hints summarized below to let us figure out which mode we are in. We can then use the GuiderReverseX and GuiderReverseY property to manually reverse the sense of the guider motor conenctions. Before describing how we can figure out what side of the mount the guider was calibrated on and what mode of guiding we are in, we need to describe the other thing we do with this software: move the mount so that in the main camera, our target is centered where we want it. The main camera pixel coordinates of these quantities are stored in the obj_center and desired_center property of the ObsData object or its subclass (e.g. CorObsData). Using the main camera PinPoint sample astrometry solution, run_level_main_astrometry, we can translate these pixel coordinates into absolute astrometric coordinates and figure out how far to move the mount to get our target centered. There are several ways we can move the mount: enter in new coordinates, push mount motion buttons with ASCOM direct, or push mount motion buttons with whatever MaxIm uses for the guider. Since we the user has already figured out how to connect MaxIm to the mount to make the guider work and there is an easy way to command MaxIm to use that connection via the scripting interface (CCDCamera.GuiderMove()), we will do the later. The problem with this is that motor reverse commands effect these motor control commands. So if we want to move the telescope in astrometric coordinate space, we need to keep track of the motor flips and undo them when. --> Alternately, we could translate our astrometric coordinates into guider pixel space, apply a guider speed and angle coordinate translation and the flips would take care of themselves. Whew! Now we can write down the various cases of what mode we are in, how the guider was calibrated, how pier flipping is tracked and how we need to track that pier flipping to reverse its effect when we want to use the MaxIm guider motion commands. (1) MaxIm guiding mode: Telescope connected to MaxIm AutoPierFlip enabled if cal pierEast, directions match astrometry rotated to pierEast [Guider motor connections can be grepped in this configuration] if cal pierWest, E/W and/or N/S will be flipped, depending on Guider Motor Control state MaxIm will manage all pier flip for the guider Observing pierWest, unflip E/W and/or N/S for guider moves (1a) MaxIm guiding mode but scope not connected for some reason We have to manage all pier flip stuff for the guider via GuiderReverseX and GuiderReverseY Observing pierWest, unflip E/W and/or N/S for guider moves (2) ACP guiding mode: telescope should not be connected AutoPierFlip probably disabled Astrometry directions flipped to pierWest should match guider cal directions We have to manage all pier flip stuff for the guider via GuiderReverseX and GuiderReverseY Observing pierEast, unflip E/W and/or N/S for guider moves The MaxIm scripting interface does not provide any property for the Guider Motor Control radio buttons, so we duplicate them here as global variables (guider_motor_control_reverse[XY]), though there is one case when we can grep them out of the guider cal. If this gets closely integrated with ACP, we might also be able to get these from its configuration options. """ # The guider astrometry calibration gives us absolute knowledge # of which directions are which in the guide camera, assuming # the images were recorded with MaxIm connected to the telescope # and the telecsope reports pier side. The side on which guider # calibration is done is not noted by MaxIm. However, we can # compare the GuiderAngle and the north angle in the guider # astrometry and use the guider astrometry PIERSIDE to tell us # exactly which side the guider was calibrated on. With the # guider astrometry lined up with the guider calibration, we can # see which way the cal directions point to figure out whether # or not MaxIm was doing any motor reversing while the guider # calibration was being done # This will be None if the mount is not a GEM or was not # connected when astrometry was recorded. Save it for later... guider_astrometry_pierside = self.guider_astrometry.get('PIERSIDE') # Find the angle of N in the astrometry image relative to # MaxIm's N = -Y convention. This is very confusing because # for MaxIm, in a nominal N up, E left configuration, N is # toward -Y, since MaxIm plots Y increasing down. In the FITS # standard, if the cardinal directions are aligned to pixel X, # Y, increasing Y means moving N. Ultimately, which direction # N is plotted doesn't really matter: the user tweaks things # so N is up for them and the FITS CDELT will adjust. If # plotted in Cartesian coordinates (e.g. IDL, IRAF), the user # will align N up so CDELT2 is positive. For MaxIm and other # (0,0) top left oriented displays the user will align N up so # CDELT2 is negative. But here it matters! We need to # emulate a MaxIm N vector with the FITS standard so we can # compare our astrometry image to MaxIm's guider calibration. # Start with the regular FITS WCS standard, using a # healthy-size angle to avoid numeric problems dp = self.scope_wcs((0, 10.), to_pix=True, astrometry=self.guider_astrometry, absolute=True, delta=True) # Now negate Y to align with MaxIm's -Y = up standard, keeping # in mind that scope_wcs returns Y,X. dp[0] *= -1 # arctan2 takes y, x and uses the normal math angle definition # (+X axis = 0 deg) aang = np.degrees(np.arctan2(dp[0], dp[1])) # Convert angle to N up, +/-180 (already increasing CCW) aang = angle_norm(aang-90, 180) # Now compare to guider calibration N up angle. This has yet # to match precisely on, probably because Bob has private # distortions gang = angle_norm(self.CCDCamera.GuiderAngle, 180) log.debug("PinPoint solution angle: " + repr(aang)) log.debug("GuiderAngle: " + repr(gang)) dang = abs(angle_norm(gang - aang, 180)) if ((dang < 90 and dang > guider_cal_astrometry_max_misalignment) or ((dang > 90) and dang < 180 - guider_cal_astrometry_max_misalignment)): raise EnvironmentError('Angle mismatch between Guider PinPoint solution and guider calibration is too large. Record them both at the same time to ensure match') if dang < 90: guider_cal_astrometry_aligned = True else: # In the case that guider cal and guider pinpoint solution # are on opposite sides of the pier, we can check for some # errors if not self.telescope_connectable: raise EnvironmentError('GEM pier flip between guider calibration and guider PinPoint solution detected, yet telescope is not connectable. GEM mounts really need to be connected for all of this to work. Alternately, you could calibrate on one side and just stick to that side, or I may write code to specify GEM flips on the fly like MaxIm does') if self.alignment_mode != win32com.client.constants.algGermanPolar: raise EnvironmentError('GEM pier flip between guider calibration and guider PinPoint solution detected yet mount is not reporting that it is a GEM') if guider_astrometry_pierside is None: raise EnvironmentError('GEM pier flip between guider calibration and guider PinPoint solution detected, yet no PIERSIDE was recorded in guider astrometry FITS header. Was MaxIm connected to the telescope when the astrometry was recorded?') # If we made it here, there are no errors and we know that # the guider cal and guider pinpoint solution are on # opposite sides of the pier guider_cal_astrometry_aligned = False if self.alignment_mode != win32com.client.constants.algGermanPolar: log.debug('non-GEM mount, guider astrometry and guider cal are lined up') return # If we made it here, we are a GEM Rotate our guider # astrometry to line up with the guider calibration direction if guider_astrometry_pierside is None: raise EnvironmentError('Currently connected mount reports it is a GEM, but PIERSIDE was not recorded in guider astrometry FITS header. Was MaxIm connected to the telescope when the astrometry was recorded?') if guider_cal_astrometry_aligned: log.debug('Guider astrometry and calibration performed on same side of pier') self.guider_cal_pierside = guider_astrometry_pierside else: log.debug('Guider astrometry and calibration performed on opposite side of pier. Flipping guider astrometry to line up with guider cal') if guider_astrometry_pierside == 'EAST': self.guider_cal_pierside = 'WEST' if guider_astrometry_pierside == 'WEST': self.guider_cal_pierside = 'EAST' # --> this tweaks our guider image header in memory self.guider_astrometry \ = pier_flip_astrometry(self.guider_astrometry) # Don't forget to flip aang, our astrometry N angle, since # it is used below aang = angle_norm(aang+180, 180) log.debug('guider calibrated on pier ' + self.guider_cal_pierside) # Now see what direction E turns out to be relative to N. dp = self.scope_wcs((10., 0), to_pix=True, astrometry=self.guider_astrometry, absolute=True, delta=True) # Just in case there is a sizable component of up/down in E, # make sure we cast our synthetic E vector onto our MaxIm # coordinate system, where Y is in the opposite sense from the # WCS conventions dp[0] *= -1 eang = np.degrees(np.arctan2(dp[0], dp[1])) # Convert angle to N up, +/-180 (already increasing CCW) eang = angle_norm(eang-90, 180) # Rotate into N up coordinate eang = angle_norm(eang - aang, 180) log.debug('aang, eang = ' + repr((aang, eang))) # At this point eang will be +90 if E goes left on the camera, # -90 if it goes W. ASSUMING GUIDER +X CONNECTED TO E if np.sign(eang*self.CCDCamera.GuiderXSpeed) == -1: guider_cal_Xflip = False else: guider_cal_Xflip = True # ASSUMING GUIDER +Y CONNECTED TO N and keeping in mind +Y is # _down_ in MaxIm if np.sign(self.CCDCamera.GuiderYSpeed) == -1: guider_cal_Yflip = False else: guider_cal_Yflip = True # Now do the best we can with our table of what mode we are in if self.guider_cal_pierside == 'WEST': if guider_cal_Xflip or guider_cal_Yflip: log.debug('Assuming normal motor connections of E = -X, N = +Y, motor reversal(s) detected on pierWest guider cal. Setting to pier flip on pierWest. This is almost certainly MaxIm mode.') self.pier_flip_on_side = win32com.client.constants.pierWest else: log.debug('Assuming normal motor connections of E = -X, N = +Y, no motor reversals were detected on pierWest guider cal. Setting to pier flip on pierEast. This is almost certainly ACP mode.') self.pier_flip_on_side = win32com.client.constants.pierEast if self.guider_cal_pierside == 'EAST': if guider_cal_Xflip or guider_cal_Yflip: log.warning('Pier flip detected for pierEast guider cal. This is not a valid MaxIm pier flip state and ACP does not allow calibration on pierEast. Do you have your motor control leads hooked up in the normal way: E = -X, N = +Y? For now I will assume the connections are normal and just set pier_flip_onside pierEast. If the guider pushes the star out or precision guide moves the telecsope in the wrong way and it is not possible for you to change the motor control leads, contact the developer and ask for an abstraction layer to be added') self.pier_flip_on_side = win32com.client.constants.pierEast else: log.debug('Assuming normal motor connections of E = -X, N = +Y, no motor reversal(s) detected on pierEast guider cal. Setting to pier flip on pierWest. This is almost certainly MaxIm mode.') self.pier_flip_on_side = win32com.client.constants.pierWest def set_guider_motor_reverse_and_DEC(self): # --> I am not sure the effect of this if the telescope is # --> connected and Auto Scope Dec is selected self.CCDCamera.GuiderDeclination = self.Telescope.Declination if self.alignment_mode != win32com.client.constants.algGermanPolar: log.debug('Not GEM, no motor reversal') return if self.pier_flip_on_side == win32com.client.constants.pierEast: log.debug("ACP guider calibration mode detected. Don't let MaxIm manage pier flip...") self.CCDCamera.GuiderAutoPierFlip = False elif (self.Application.TelescopeConnected and self.CCDCamera.GuiderAutoPierFlip): # ACP does pier flips on east side log.debug('Let MaxIm manage pier flip state: guider calibrated in MaxIm mode, MaxIm is connected to the telescope and Auto Pier Flip is on.') # Set these to False, since otherwise they would confuse # us and MaxIm self.CCDCamera.GuiderReverseX = False self.CCDCamera.GuiderReverseY = False return else: log.debug("MaxIm is not managing pier flip...") if self.Telescope.SideOfPier == self.pier_flip_on_side: self.CCDCamera.GuiderReverseX = guider_motor_control_reverseX self.CCDCamera.GuiderReverseY = guider_motor_control_reverseY log.debug("... flip detected...") else: self.CCDCamera.GuiderReverseX = False self.CCDCamera.GuiderReverseY = False log.debug("... no flip detected...") log.debug("CCDCamera.GuiderReverseXY = " + repr((self.CCDCamera.GuiderReverseX, self.CCDCamera.GuiderReverseY))) def guider_motor_reverse_state(self): """Return np.array indicating motor reverse state""" # See guider_motor_reverse_setup for explanation revXY = np.asarray([1,1]) if self.alignment_mode != win32com.client.constants.algGermanPolar: log.debug('Not GEM, no motor reversal') return revXY if self.Application.TelescopeConnected: log.debug("MaxIm is connected to the telescope...") if self.pier_flip_on_side == win32com.client.constants.pierEast: log.debug("... but guider calibrated in ACP mode, so inspecting GuiderReverseXY...") elif self.CCDCamera.GuiderAutoPierFlip: log.debug("...and managing pier flip...") if (self.Telescope.SideOfPier == win32com.client.constants.pierEast): log.debug("...but telescope is on pierEast, so no motor reversal") elif (self.Telescope.SideOfPier == win32com.client.constants.pierWest): log.debug("... and reversing motor motion because the telescope is on pierWest") if guider_motor_control_reverseX: revXY *= np.asarray([-1,1]) if guider_motor_control_reverseY: revXY *= np.asarray([1,-1]) else: raise EnvironmentError('Inconsistent Telescope.SideofPier ' + repr(self.Telescope.SideOfPier)) else: log.debug('... but not managing pier flip, so inspecting GuiderReverseXY...') else: log.debug('MaxIm is not connected to the telescope, so inspecting GuiderReverseXY...') if self.CCDCamera.GuiderReverseX: log.debug('... GuiderReverseX is set') revXY *= np.asarray([-1,1]) if self.CCDCamera.GuiderReverseY: log.debug('... GuiderReverseY is set') revXY *= np.asarray([1,-1]) log.debug('Motor reversal state = ' + repr(revXY)) return revXY def check_guider_speeds(self): """Check guider X and Y speeds against telescope guide rates. This also sets the self.guide_rates property""" # Do this by creating synthetic guider calibrations. CDELT* # are the same regardless of DEC, but DEC must be considered # when doing coordinate transformation from pixels to world, # so just set the guider astrometry DEC to 0, saving current # value so we can put it back later save_crval2 = self.guider_astrometry['CRVAL2'] self.guider_astrometry['CRVAL2'] = 0 # Create a notional time to move in pixel space. It would be # great to use the actual guider cal times, which defaults to # 10s, but MaxIm does not make those available. So just use # 10s dt = 10 dx = self.CCDCamera.GuiderXSpeed * dt dy = self.CCDCamera.GuiderYSpeed * dt # Transpose, since we are in pix dra_ddec = self.scope_wcs((dy, dx), to_world=True, astrometry=self.guider_astrometry, absolute=True, delta=True) guider_cal_guide_rates = dra_ddec/dt # Use cal speeds by default but see if we can refine them with # scope rates self.guide_rates = guider_cal_guide_rates if self.telescope_connectable and self.Telescope.CanSetGuideRates: # Always assume telescope reported guide rates are # correct, but warn if guider rates are off by 10%, # keeping in mind that MaxIm seems to consider a pixel # size to be its diameter self.guide_rates \ = np.asarray((self.Telescope.GuideRateRightAscension, self.Telescope.GuideRateDeclination)) dgrp = np.linalg.norm(self.guide_rates) dgcgrp = np.linalg.norm(guider_cal_guide_rates) dr = np.abs(dgrp - dgcgrp) if dr > 0.1 * dgrp: log.warning('Guider calibration rate is off by more than 10% of the scope reported rate: ' + repr((self.guide_rates, np.abs(guider_cal_guide_rates))) + '. Norm of these: ' + repr((np.linalg.norm(self.guide_rates), np.linalg.norm(guider_cal_guide_rates))) + '. Have you specified the correct guider astrometery image? Have you changed the guide rates changed since calibrating the guider? Assuming reported telescope guide rates are correct.') self.guider_astrometry['CRVAL2'] = save_crval2 def horizon_limit(self): return (not self.Telescope.Tracking or self.Telescope.Altitude < self.horizon_limit_value) # For now use self.Application.ShutDownObservatory() #def do_shutdown(self): # self.Telescope.Park() # return True # #def check_shutdown(self): # # if weather: AstroAlert.Weather # # self.do_shutdown() #def set_GuiderReverse_and_DEC(self): # # --> Eventually, I could include GuiderReverseY # # Tell MaxIm about pier flip and scope DEC manually in case we # # are in ACP-mode. # if self.ACP_mode: # self.CCDCamera.GuiderReverseX \ # = (self.Telescope.SideOfPier # == win32com.client.constants.pierEast) # log.debug("GuiderReverseX set to " + repr(self.CCDCamera.GuiderReverseX)) # self.CCDCamera.GuiderDeclination = self.Telescope.Declination # log.debug("Guider DEC set to " + repr(self.CCDCamera.GuiderDeclination)) def guider_cycle(self, n=1): """Returns average and RMS guider error magnitude after n guider cycles Parameters ---------- n : int like Number of guider cycles. Default = 1 norm : boolean Return norm of guider error. Default False """ if not self.CCDCamera.GuiderRunning: log.warning('Guider not running') return None this_norm = 0 running_total = 0 running_sq = 0 for i in range(n): assert self.weather_server.Safe, ('Weather is not safe!') # --> Need a timeout while self.CCDCamera.GuiderNewMeasurement is False: time.sleep(self.loop_sleep_time) # As per MaxIm documentation, reading these clears # GuiderNewMeasurement this_norm = np.linalg.norm( (self.CCDCamera.GuiderYError, self.CCDCamera.GuiderXError)) running_total += this_norm running_sq += this_norm**2 return (running_total/n, (running_sq/n)**0.5) def guider_settle(self): """Wait for guider to settle""" if not self.CCDCamera.GuiderRunning: log.warning('Guider not running') return False start = time.time() now = start av = self.guider_settle_tolerance + 1 rms = av while (rms > self.guider_settle_tolerance and av > self.guider_settle_tolerance and time.time() <= start + self.guider_max_settle_time): if self.horizon_limit(): log.error('Horizon limit reached') return False av, rms = self.guider_cycle(self.guider_settle_cycle) log.debug('guider AV, RMS = ' + str((av, rms))) if time.time() > start + self.guider_max_settle_time: log.warning('Guider failed to settle after ' + str(self.guider_max_settle_time) + 's') return False log.debug('GUIDER SETTLED TO ' + str(self.guider_settle_tolerance) + ' GUIDER PIXELS') return True def move_with_guide_box(self, dra_ddec, dec=None, guider_astrometry=None): """Moves the telescope by moving the guide box. Guide box position is moved gradually relative to instantaneous guide box position, resulting in a delta move relative to any other guide box motion. NOTE: use guider_stop to make sure guider position is properly set after guider is stopped (see that function's documentation). Parameters ---------- dra_ddec : tuple-like array delta move in RA and DEC in DEGREES guider_astrometry : filename, HDUList, or FITS header Input method for providing an HDUList with WCS parameters appropriate for the guider (mainly CDELT*). Defaults to guider_astrometry property """ # --> Don't bother checking to see if we have commanded if not self.CCDCamera.GuiderRunning: log.error('Guider not running, move not performed') return False if guider_astrometry is None: guider_astrometry = self.guider_astrometry # Get the rough RA and DEC of our current ("old") guide box # position. !!! Don't forget that pixel coordinates are # in !!! TRANSPOSE !!! op_coords = (self.CCDCamera.GuiderYStarPosition, self.CCDCamera.GuiderXStarPosition) D.say('old guidebox coords: ' + repr(op_coords[::-1])) w_coords = self.scope_wcs(op_coords, to_world=True, astrometry=guider_astrometry) D.say('world coords of old guidebox: ' + repr(w_coords)) # In world coords, we know how far we want to move our guide # box. Calculate the new guidebox position # --> I think this is where the MaxIm people and I differ by a minus # sign in MaxIm 6.20 p_coords = self.scope_wcs(w_coords + dra_ddec, to_pix=True, astrometry=guider_astrometry) D.say('New code p_coords: ' + repr(p_coords[::-1])) # Now we are in pixel coordinates on the guider. # Calculate how far we need to move. # There is some implicit type casting here since op_coords # is a tuple, but p_coords is an np.array dp_coords = p_coords - op_coords # Calculate the length in pixels of our move and the unit # vector in that direction norm_dp = np.linalg.norm(dp_coords) uv = dp_coords / norm_dp # Move the guide box slowly but have a threshold if norm_dp < self.guider_settle_tolerance: num_steps = 1 else: # Guard against guide_box_steps_per_pix < 1 (fast moving) num_steps = max((1, int(self.guide_box_steps_per_pix * norm_dp))) step_dp = dp_coords / num_steps log.debug('move_with_guide_box: total guider dpix (X, Y): ' + str(dp_coords[::-1])) log.debug('norm_dp: ' + str(norm_dp)) log.debug('Number of steps: ' + str(num_steps)) if num_steps > self.max_guide_num_steps: # We can't do this, so just bomb with a False return # and let the caller (usually center) handle it log.error('Maximum number of steps (' + str(self.max_guide_num_steps) + ') exceeded: ' + str(num_steps)) return False log.debug('Delta per step (X, Y): ' + str(step_dp[::-1])) for istep in range(num_steps): # Just in case someone else is commanding the guide # box to move, use its instantaneous position as the # starting point of our move !!! TRANSPOSE !!! cp_coords = np.asarray((self.CCDCamera.GuiderYStarPosition, self.CCDCamera.GuiderXStarPosition)) tp_coords = cp_coords + step_dp log.debug('Setting to: ' + str(tp_coords[::-1])) # !!! TRANSPOSE !!! self.CCDCamera.GuiderMoveStar(tp_coords[1], tp_coords[0]) if self.horizon_limit(): log.error('Horizon limit reached') return False self.guider_settle() ## Give it a few extra cycles to make sure it has stuck ## (though even this might be too short) #for i in range(self.guide_box_steps_per_pix): # if self.check_guiding() is False: # return False return True #def check_guiding(self): # # --> the guider doesn't turn off when the star fades # # --> This algorithm could use improvement with respect to # # slowing itself down by looking at the guide errors, but # # it works for now # if self.guider_exptime is None: # # If we didn't start the guider, take a guess at its # # exposure time, since MaxIm doesn't give us that info # exptime = default_guider_exptime # else: # exptime = self.guider_exptime # # --> This needs to include the guide box read time or # # else loop which uses it gets guide box position confused # time.sleep(exptime*3) # if self.CCDCamera.GuiderRunning: # return True # else: # log.error('Guider stopped running while performing move') # return False def astrometry_pier_flip_state(self): """Return -1 if the telecsope is pier flipped relative to astrometry, 1 otherwise""" if self.alignment_mode != win32com.client.constants.algGermanPolar: return 1 log.debug('self.Telescope.SideOfPier: ' + repr(self.Telescope.SideOfPier)) if self.guider_cal_pierside == self.Telescope.SideOfPier: log.debug('Telescope is on same side as astrometry') return 1 log.debug('Telescope is on opposite side from astrometry') return -1 def move_with_guider_slews(self, dra_ddec, guider_astrometry=None): """Moves the telescope using guider slews. Parameters ---------- dra_ddec : tuple-like array delta move in RA and DEC in DEGREES guider_astrometry : FITS header. Defaults to guider astrometry in object """ log.debug('Preparing to move with guider slews by dRA, dDEC = ' + repr(dra_ddec)) if self.CCDCamera.GuiderRunning: log.warning('Guider was running, turning off') self.CCDCamera.GuiderStop # Use our guide rates to change to time to press E/W, N/S. # Note that we deal with sign below dt = dra_ddec/self.guide_rates # Do a sanity check to make sure we are not moving too much max_t = (self.guider_max_move_multiplier * np.asarray((self.CCDCamera.GuiderMaxMoveX, self.CCDCamera.GuiderMaxMoveY))) if np.any(np.abs(dt) > max_t): log.warning('requested move of ' + str(dra_ddec) + ' arcsec translates into move times of ' + str(np.abs(dt)) + ' seconds. Limiting move in one or more axes to max t of ' + str(max_t)) dt = np.minimum(max_t, abs(dt)) * np.sign(dt) # Or too little bad_idx = np.where(np.abs(dt) < np.asarray((self.CCDCamera.guiderMinMoveX, self.CCDCamera.guiderMinMoveY))) dt[bad_idx] = 0 log.debug('Seconds to move guider in RA and DEC: ' + str(dt)) # Now we need to translate this into how long to command MaxIm # to operate the + or - X and Y motors. self.guide_rates gets # us the right absolute time to push the buttons, but we have # to work with the sign of the X and Y speed calibrations and # any pier flips to get the directions right XYsign = np.sign(np.asarray((self.CCDCamera.GuiderXSpeed, self.CCDCamera.GuiderYSpeed))) # First assume we are on the same side of the pier as the # guider calibration. Recall from guider_motor_reverse_setup # documentation that +RA is typically connected to the +X # motor, but +RA is east, east is left on the sky and left is # -X in a nominally oriented MaxIm camera. Hence the nominal # GuiderXSpeed is negative for a properly connected +RA to +X # motor. To have a +RA command the +X motor, we therefore # need to negate the X part of XYsign. Similarly +DEC is # connected to the +Y motor, but Y increases down in MaxIm, so # GuiderYSpeed often comes out negative. Thus: XYsign = -XYsign # Now apply our pier flip, since after all that is said and # done, MaxIm (or we) may be doing some motor reversals. self.set_guider_motor_reverse_and_DEC() dt *= XYsign * self.guider_motor_reverse_state() log.debug('Seconds to command MaxIm to move X and Y guider motors, where +X connects to +RA (nominally -X on the CCD) and +Y connects to +DEC (nominally -Y on the CCD): ' + str(dt)) if dt[0] > 0: RA_success = self.CCDCamera.GuiderMove(win32com.client.constants.gdPlusX, dt[0]) elif dt[0] < 0: RA_success = self.CCDCamera.GuiderMove(win32com.client.constants.gdMinusX, -dt[0]) else: # No need to move RA_success = True if not RA_success: raise EnvironmentError('RA guide slew command failed') # MaxIm seems to be able to press RA and DEC buttons # simultaneously, but we can't! while self.CCDCamera.GuiderMoving: assert self.weather_server.Safe, ('Weather is not safe!') time.sleep(0.1) if dt[1] > 0: DEC_success = self.CCDCamera.GuiderMove(win32com.client.constants.gdPlusY, dt[1]) elif dt[1] < 0: DEC_success = self.CCDCamera.GuiderMove(win32com.client.constants.gdMinusY, -dt[1]) else: # No need to move DEC_success = True if not DEC_success: raise EnvironmentError('DEC guide slew command failed') while self.CCDCamera.GuiderMoving: assert self.weather_server.Safe, ('Weather is not safe!') time.sleep(0.1) def scope_wcs(self, coords_in, to_world=False, to_pix=False, astrometry=None, absolute=False, delta=False): """Computes WCS coordinate transformations to/from UNBINNED PIXELS, using scope coordinates if necessary Parameters ---------- coords_in : tuple-like array (List of) coordinates to transform. Pixel coordinates are in Y, X order, UNBINNED. World coordinates are in RA, DEC order to_world : Boolean perform pix to world transformation to_pix : Boolean perform world to pix transformation astrometry : scope name, filename, HDUList, or FITS header Input method for providing an HDUList with WCS parameters appropriate for the CCD being used (mainly CDELT*). If scope name provided ("main" or "guide"), the appropriate run level default file will be used. Can also be a FITS filename or HDUList object. Default: "main." If astrometry image was taken with binned pixels, the header keys will be adjusted so the WCS transformations will be to/from unbinned pixels absolute : ignore scope position and use position from astrometry delta : assume coords_in are delta from center of CCD """ coords_in = np.asarray(coords_in) if coords_in.shape[-1] != 2: raise ValueError('coordinates must be specified in pairs') if to_world + to_pix != 1: raise ValueError('Specify one of to_world or to_pix') # Set up our astrometry we_opened_file = False if astrometry is None: astrometry = 'main' if isinstance(astrometry, str): if astrometry.lower() == 'main': astrometry = self.main_astrometry elif astrometry.lower() == 'guide': astrometry = self.guider_astrometry if isinstance(astrometry, str): if not os.path.isfile(astrometry): raise ValueError(astrometry + ' file not found') # If we made it here, we have a file to open to get # our astrometry from. Opening it puts the header # into a dictionary we can access at any time astrometry = fits.open(astrometry) we_opened_file = True if isinstance(astrometry, fits.HDUList): astrometry = astrometry[0].header if not isinstance(astrometry, fits.Header): raise ValueError('astrometry must be a string, FITS HDUList, or FITS header') # Make sure we don't mess up original header = astrometry.copy() if we_opened_file: astrometry.close() if header.get('CTYPE1') is None: raise ValueError('astrometry header does not contain a FITS header with valid WCS keys.') if absolute: # In the case of absolute astrometry, we don't have to # mess with the astrometry pointing keyword or pier flip # relative to our main or guider reference astrometry images pier_flip_sign = 1 else: # The non-absolute case means we are going to use the # scope's rough RA and DEC to fix the center of the FOV. # This is most useful for relative astrometry between two # points in the the image try: RA = self.Telescope.RightAscension DEC = self.Telescope.Declination except: # If, for some reason the telescope doesn't report # its RA and DEC, we can use the DEC reported by # the user in the Scope Dec. box of the Guide tab, # since DEC is really all we care about for the # cosine effect in calculating deltas RA = 0 DEC = self.CCDCamera.GuiderDeclination log.warning('Telescope is not reporting RA and/or DEC. Setting RA = ' + str(RA) + ' and DEC = ' + str(DEC) + ', which was read from the Scope Dec. box of the Guide tab.') # Check to see if we are pointed on the other side of the # mount from our astrometry images # --> this is going to change if self.astrometry_pier_flip_state() == -1: header = pier_flip_astrometry(header) # Make sure RA is on correct axis and in the correct units if 'RA' in header['CTYPE1']: header['CRVAL1'] = RA / 24*360 header['CRVAL2'] = DEC elif 'DEC' in header['CTYPE1']: header['CRVAL2'] = RA / 24*360 header['CRVAL1'] = DEC # Fix binning and subframing. More pixels to the center, but # they are smaller. Also apply pier_flip_sign header['CRPIX1'] = header['XBINNING'] * header['CRPIX1'] + header['XORGSUBF'] header['CRPIX2'] = header['YBINNING'] * header['CRPIX2'] + header['YORGSUBF'] header['CDELT1'] /= header['XBINNING'] header['CDELT2'] /= header['YBINNING'] header['CD1_1'] /= header['XBINNING'] header['CD1_2'] /= header['YBINNING'] header['CD2_1'] /= header['XBINNING'] header['CD2_2'] /= header['YBINNING'] # Put our binning and subframe to unbinned values so we # don't tweak things again! header['XORGSUBF'] = 0 header['YORGSUBF'] = 0 header['XBINNING'] = 1 header['YBINNING'] = 1 header['FLIPAPPL'] = (True, 'Applied pier_flip_sign') header['HISTORY'] = 'Modified CRPIX*, CD*, XORG*, and *BINNING keywords' # Do our desired transformations, only the WCS parts, not # distortions, since I haven't mucked with those parameters w = wcs.WCS(header) if to_world: # Our pix coords are in Y, X order. Transpose using # negative striding. Use the Ellipsis trick to get # to the last coordinate, which is, in a row major # language, where the coordinate into the pairs # resides (would be in the first coordinate in a # column major language) # https://stackoverflow.com/questions/12116830/numpy-slice-of-arbitrary-dimensions coords = coords_in[..., ::-1] if delta: # We have left transpose space c0 = np.asarray((header['CRPIX1'], header['CRPIX2'])) #log.debug('coords before: ' + str(coords)) coords += c0.astype(float) #log.debug('coords after: ' + str(coords)) # Decide to leave in RA DEC, since we are no longer in # our image when we are RA and DEC # The 0 is because we number our pixels from 0, unlike # FORTRAN which does so from 1 # ACK! The WCS package is not smart about checking # for single tuple input, so I have to <sigh> if coords.size == 2: w_coords = w.wcs_pix2world(coords[0], coords[1], 0) else: w_coords = w.wcs_pix2world(coords, 0) if delta: w0_coords = w.wcs_pix2world(c0[0], c0[1], 0) #log.debug('w_coords before: ' + str(w_coords)) w_coords = (np.asarray(w_coords) - np.asarray(w0_coords)) #log.debug('w_coords after: ' + str(w_coords)) # for debugging purposes #coords -= c0 #log.debug('coords_in[..., ::-1]: ' + str(coords)) #log.debug('plate scale: ' + # str(3600*w_coords/coords)) return w_coords if to_pix: # --> This might need to be fixed if delta: coords_in += np.asarray((header['CRVAL1'], header['CRVAL2'])) if coords_in.size == 2: pix = np.asarray( w.wcs_world2pix(coords_in[0], coords_in[1], 0)) else: pix = w.wcs_world2pix(coords_in, 0) if delta: # Note we have yet to leave transpose space pix -= np.asarray((header['CRPIX1'], header['CRPIX2'])) # Put out pix back into Y, X order, UNBINNED return pix[..., ::-1] def rot(self, vec, theta): """Rotates vector counterclockwise by theta degrees""" np.asarray(vec) theta = np.radians(theta) c, s =
np.cos(theta)
numpy.cos
import copy import pickle import numpy as np from ...ops.roiaware_pool3d import roiaware_pool3d_utils from ...utils import box_utils, common_utils from ..dataset import DatasetTemplate class PlusAIMultiframeDataset(DatasetTemplate): def __init__(self, dataset_cfg, class_names, training=True, root_path=None, logger=None): """ Args: root_path: dataset_cfg: class_names: training: logger: """ super().__init__( dataset_cfg=dataset_cfg, class_names=class_names, training=training, root_path=root_path, logger=logger ) self.split = self.dataset_cfg.DATA_SPLIT[self.mode] print('root_path: ', self.root_path.resolve()) self.root_split_path = self.root_path split_dir = self.root_path / 'ImageSets' / (self.split + '.txt') self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None # TODO: should read from dataset_cfg self.stack_frame_size = 3 self.base_frame_idx = 1 self.plusai_infos = [] self.include_plusai_data(self.mode) def include_plusai_data(self, mode): if self.logger is not None: self.logger.info('Loading PlusAI dataset ...') plusai_infos = [] for info_path in self.dataset_cfg.INFO_PATH[mode]: info_path = self.root_path / info_path if not info_path.exists(): continue with open(info_path, 'rb') as f: infos = pickle.load(f) plusai_infos.extend(infos) self.plusai_infos.extend(plusai_infos) if self.logger is not None: self.logger.info('Total samples for PlusAI dataset: %d' % (len(plusai_infos))) def set_split(self, split): super().__init__( dataset_cfg=self.dataset_cfg, class_names=self.class_names, training=self.training, root_path=self.root_path, logger=self.logger ) self.split = split self.root_split_path = self.root_path split_dir = self.root_path / 'ImageSets' / (self.split + '.txt') self.sample_id_list = [x.strip() for x in open(split_dir).readlines()] if split_dir.exists() else None def get_lidar(self, idx): lidar_file = self.root_split_path / idx assert lidar_file.exists() lidar_data = np.fromfile(str(lidar_file), dtype=np.float32).reshape(-1, 5) return lidar_data def get_label(self, idx): [scene_name, _, frame] = idx.split('/') label_file = self.root_split_path / scene_name / 'label' / (frame[:-4] + '.pkl') try: assert label_file.exists() except AssertionError: print('[ERROR] get label failed:', label_file) with open(label_file, 'rb') as f: labels = pickle.load(f) return labels def get_infos(self, num_workers=4, has_label=True, count_inside_pts=True, sample_id_list=None): import concurrent.futures as futures def process_single_scene(sample_idx): # print('%s sample_idx: %s' % (self.split, sample_idx)) info = {} pc_info = {'num_features': 5, 'lidar_idx': sample_idx} info['point_cloud'] = pc_info image_info = {'image_idx': sample_idx, 'image_shape': np.array([1920, 1080])} info['image'] = image_info calib_info = {'P2': np.eye(4), 'R0_rect': np.eye(4), 'Tr_velo_to_cam': np.eye(4)} info['calib'] = calib_info if has_label: obj_labels = self.get_label(sample_idx) obj_labels = obj_labels['obstacles'] annotations = {} if len(obj_labels) > 0: annotations['name'] = np.array([label[self.base_frame_idx]['class'] for label in obj_labels]) annotations['truncated'] = np.array([0 for label in obj_labels]) annotations['occluded'] = np.array([0 for label in obj_labels]) annotations['alpha'] = np.array([0 for label in obj_labels]) annotations['bbox'] = np.array([[1, 1, 1, 1] for label in obj_labels]) annotations['dimensions'] = np.array([label[self.base_frame_idx]['size'] for label in obj_labels]) # lwh(lidar) format annotations['location'] = np.array([label[self.base_frame_idx]['location'] for label in obj_labels]) annotations['rotation_y'] = np.array([label[self.base_frame_idx]['heading'] for label in obj_labels]) annotations['score'] = np.array([1 for label in obj_labels]) annotations['difficulty'] = np.array([0 for label in obj_labels], np.int32) # multi-frame data annotations['locations'] = np.array([[label['location'] for label in obj] for obj in obj_labels]) annotations['rotations_y'] = np.array([[label['heading'] for label in obj] for obj in obj_labels]) annotations['velocities'] = np.array([[label['velocity'] for label in obj] for obj in obj_labels]) # num_objects = len([label['name'] for label in obj_labels if label['name'] != 'DontCare']) num_objects = len([name for name in annotations['name'] if name != 'DontCare']) num_gt = len(annotations['name']) index = list(range(num_objects)) + [-1] * (num_gt - num_objects) annotations['index'] =
np.array(index, dtype=np.int32)
numpy.array
#!/usr/bin/env python """ Python implementation of common model fitting operations to analyse protein folding data. Simply automates some fitting and value calculation. Will be extended to include phi-value analysis and other common calculations. Allows for quick model evaluation and plotting. Also tried to make this somewhat abstract and modular to enable more interesting calculations, such as Ising models and such. Requirements (recommended python 2.7+): - numpy - scipy - matplotlib Lowe, A.R. 2015 """ import sys import inspect import numpy as np import scipy as sp from . import core from . import constants __author__ = "<NAME>" __email__ = "<EMAIL>" def list_models(): """ List the kinetic of equilibrium models defined in this module. Returns a list of the names of the models, whose parent class is FitModel. """ clsmembers = inspect.getmembers(sys.modules[__name__], inspect.isclass) verif = lambda cls: 'Verified: {0}'.format(cls[1]().verified) fit_models = [ (cls[0], verif(cls)) for cls in clsmembers if cls[1].__bases__[0] == core.FitModel ] return fit_models class TemplateModel(core.FitModel): """ A template model for expansion """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([]) def fit_func(self, x): raise NotImplementedError @property def equation(self): return r'F=f(x)' # F = \frac{\exp( m(x-d_{50})) / RT} { 1+\exp(m(x-d_{50}))/RT} """ ========================================================== EQUILIBRIUM FOLDING models ========================================================== """ class TwoStateEquilibrium(core.FitModel): """ Two state equilibrium denaturation curve - No sloping baseline. Folding Scheme: N <-> D Params: F = Fraction unfolded m = m-value x = denaturant concentration (M) d50 = denaturant midpoint (M) R = Universal Gas Constant (kcal.mol-1.K-1) T = Temperature (Kelvin) Reference: Clarke and Fersht. Engineered disulfide bonds as probes of the folding pathway of barnase: Increasing the stability of proteins against the rate of denaturation. Biochemistry (1993) vol. 32 (16) pp. 4322-4329 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([1.5, 5.]) self.verified = True def fit_func(self, x, m, d50): F = ( np.exp((m*(x-d50))/core.temperature.RT)) / (1.+np.exp((m*(x-d50))/core.temperature.RT)) return F @property def equation(self): return r'F = \frac{\exp( m(x-d_{50})) / RT} { 1+\exp(m(x-d_{50}))/RT}' class TwoStateEquilibriumSloping(core.FitModel): """ Two state equilibrium denaturation curve - Sloping baseline. Folding Scheme: N <-> D Params: F = Fraction unfolded alpha f = intercept of the native baseline at low denaturation concentrations beta f = slope/gradient of the native baseline at low denaturation concentrations alpha u = intercept of the denatured baseline at high denaturation concentrations beta u = slope/gradient of the denatured baseline at high denaturation concentrations m = m-value x = denaturant concentration (M) d50 = denaturant midpoint (M) R = Universal Gas Constant (kcal.mol-1.K-1) T = Temperature (Kelvin) Reference: Clarke and Fersht. Engineered disulfide bonds as probes of the folding pathway of barnase: Increasing the stability of proteins against the rate of denaturation. Biochemistry (1993) vol. 32 (16) pp. 4322-4329 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([1., 0.1, 0.0, 0.1, 1.5, 5.]) self.verified = True def fit_func(self, x, alpha_f, beta_f, alpha_u, beta_u, m, d50): F = (alpha_f+beta_f*x) + (alpha_u+beta_u*x) * (\ ( np.exp((m*(x-d50))/core.temperature.RT)) / (1.+np.exp((m*(x-d50))/core.temperature.RT))) return F @property def equation(self): return r'F = (\alpha_f+\beta_f x) + (\alpha_u+\beta_u x) \cdot \frac{\exp( m(x-d_{50})) / RT} { 1+\exp(m(x-d_{50}))/RT}' # NOTE (ergm) added on 30/8/2017 and corrected incorrect asscii for running on PC 8/9/2017 class ThreeStateEquilibrium (core.FitModel): """ Three state equilbrium denaturation curve. Folding Scheme: N <-> I <-> D Params: Y_obs = The spectroscopic signal maximum as a function of denaturant concentration Y_N = spectroscopic signals of the native state Y_D = spectroscopic signals of the denatured state F_D = fraction denatured F_N = fraction native F_I = fraction intermediate Kni = equilibrium contstant of unfolding native to intermediate state Kid = equilibrium contstant of unfolding intermediate to denatured state DGni = stability of native state relative to intermediate state m_ni = m-value of native to intermediate transition DGid = stability of intermediate state relative to denatured state m_id = m-value of intermediate to denatured transition x = denaturant concentration (M) R = Universal Gas Constant (kcal.mol-1.K-1) T = Temperature (Kelvin) Reference: <NAME>, <NAME>. Structural Perturbation and Compensation by Directed Evolution at Physiological Temperature Leads to Thermostabilization of beta-Lactamase. (2005) Biochemistry 44. pp. 12640-12654 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([1., 0.5, 0.0, 5., 1.5, 5., 1]) # NOTE (ergm) added on 3/11/2017 self.verified = True def fit_func(self, x, Y_N, Y_I, Y_D, DGni, m_ni, DGid, m_id): F = (Y_N + Y_I*np.exp((-DGni + m_ni*x)/core.temperature.RT) + Y_D*np.exp((-DGni + m_ni*x)/core.temperature.RT) * np.exp((-DGid + m_id*x)/core.temperature.RT)) \ / (1 + np.exp((-DGni + m_ni*x)/core.temperature.RT) + np.exp((-DGni + m_ni*x)/core.temperature.RT) * np.exp((-DGid + m_id*x)/core.temperature.RT)) return F @property def equation(self): return r'\begin{equation} \ \begin{aligned} \ & \Upsilon_{obs} = \Upsilon_N F_N + \Upsilon_I F_I + \Upsilon_D F_D \ \\ \ \text{where:} \\ \ & F_N = \frac{1} {1 + K_{NI} + K_{NI} K_{ID}}\\ \ & F_I = \frac{K_{NI}} {1 + K_{NI} + K_{NI} K_{ID}}\\ \ & F_D = \frac{K_{NI} K_{ID}} {1 + K_{NI} + K_{NI} K_{ID}}\\ \ \text{and:} \\ \ & K_{NI} = \exp \frac{\Delta G_{NI}^{H_2O} + m_{NI} x} {RT}\\ \ & K_{ID} = \exp \frac{\Delta G_{ID}^{H_2O} + m_{ID} x} {RT}\\ \ \\ \ \text{thus:} \\ \ & \Upsilon_{obs} = \frac{ \Upsilon_N + \Upsilon_I \exp \frac {\Delta G_{NI}^{H_2O} + m_{NI} x} {RT} + \ \Upsilon_D \exp \frac{\Delta G_{NI}^{H_2O} + m_{NI} x} {RT} \cdot \exp \frac{\Delta G_{ID}^{H_2O} + m_{ID} x} {RT}} {1 + \exp \ \frac{\Delta G_{NI}^{H_2O} + m_{NI} x} {RT} + \exp \frac{\Delta G_{NI}^{H_2O} + m_{NI} x} {RT} \cdot \ \exp \frac{\Delta G_{ID}^{H_2O} + m_{ID} x} {RT}}\ \end{aligned}\ \end{equation}' # NOTE (ergm) added on 1/8/2017 class TwoStateDimerEquilibrium(core.FitModel): """ Two State model for a dimer denaturation Equilibrium - No Intermediate. Folding Scheme: N2 <-> 2D Params: Y_obs = spectroscopic signal at a given concentration of urea Y_N = spectroscopic signal for native monomeric subunits at a concentration of Pt Y_D = spectroscopic signal for denatured monomeric subunits at a concentration of Pt alpha_N = intercept of the native baseline at low denaturation concentrations beta_N = slope/gradient of the native baseline at low denaturation concentrations alpha_D = intercept of the denatured baseline at high denaturation concentrations beta_D = slope/gradient of the denatured baseline at high denaturation concentrations F_D = fraction of unfolded monomers K_U = Equilibrium Constant for Unfolding of dimer. Pt = total protein concentration. This variable needs to be set per denaturation curve. m = m-value x = denaturant concentration (M) d50 = denaturant midpoint (M) R = Universal Gas Constant (kcal.mol-1.K-1) T = Temperature (Kelvin) Reference: Mallam and Jackson. Folding studies on a knotted protein. Journal of Molecular Biology (2005) vol. 346 (5) pp. 1409-1421 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([1., 0.1, 0.0, 0.1, 1.5, 5., 1e-6]) self.constants = (('Pt',1e-6),) # NOTE (ergm) added on 3/11/2017 self.verified = True # NOTE (ergm) added on 25/8/2017 def fit_func(self, x, alpha_N, beta_N, alpha_D, beta_D, m, d50, Pt): K_U = np.exp(((core.temperature.RT * np.log(Pt))-m*(d50-x)) / core.temperature.RT) F_D = (np.sqrt((np.square(K_U) + (8 * K_U * Pt))) - K_U) / (4*Pt) Y_0 = ((alpha_N + beta_N*x)*(1-F_D)) + ((alpha_D + beta_D*x)*(F_D)) return Y_0 @property def equation(self): return r'\begin{equation} \ \begin{aligned} \ & \Upsilon_{obs} = \Upsilon_N \cdot (1-F_D) + \Upsilon_D \cdot F_D \\ \ \text{where} \\ \ & \Upsilon_N = \alpha_N+\beta_N x \\ \ & \Upsilon_D = \alpha_D+\beta_D x \\ \ & F_D = \frac{\sqrt{((K_U^2 + (8 K_U Pt)) - K_U}} {4 Pt} \\ \ & K_U = \exp \frac{(RT \ln(Pt - m(d_{50} - x))} {RT}\ \end{aligned}\ \end{equation}' # NOTE (ergm) added on 1/8/2017 # NOTE (ergm) updated Folding Scheme - was wrong 7/9/2017 class ThreeStateMonoIEquilibrium(core.FitModel): """ Three State model for a dimer denaturation Equilibrium - Monomeric intermediate. Folding Scheme: N2 <-> 2I <-> 2D Params: Y_rel = spectroscopic signal at a given concentration of urea Y_N = spectroscopic signal for native state Y_D = spectroscopic signal for denatured state Y_I = spectroscopic signal for intermediate state F_D = fraction denatured monomers F_N = fraction native dimers F_I = fraction intermediate dimers Pt = total protein concentration. This variable needs to be set per denaturation curve. K1 = equilibrium constant of unfolding for native to intermediate state K2 = equilibrium constant of unfolding for intermediate to denatured state DG1 = stability of native state relative to intermediate state m1 = m-value of native to intermediate transition DG2 = stability of intermediate state relative to denatured state m2 = m-value of intermediate to denatured transition x = denaturant concentration (M) R = Universal Gas Constant (kcal.mol-1.K-1) T = Temperature (Kelvin) Reference: <NAME> Jackson. Folding studies on a knotted protein. Journal of Molecular Biology (2005) vol. 346 (5) pp. 1409-1421 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([1., 0.1, 1.0, 0.1, 1.5, 5., 3., 1e-6]) self.constants = (('Pt',1e-6),) # NOTE (ergm) added on 3/11/2017 self.verified = True def fit_func(self, x, DG1, m1, DG2, m2, Y_N, Y_I, Y_D, Pt): K1 = np.exp((-DG1 + (m1*x)) / core.temperature.RT) K2 = np.exp((-DG2 + (m2*x)) / core.temperature.RT) F_I = -(K1*(1+K2) + (np.sqrt(np.square(K1) * np.square(1+K2) +(8*Pt*K1)))) / (4*Pt) Y_rel = (Y_N * ((2 * Pt * np.square(F_I))/K1)) + (Y_I * F_I) + (Y_D * (K2*F_I)) return Y_rel @property def equation(self): return r'\begin{equation} \ \begin{aligned} \ & \Upsilon_{rel} = \Upsilon_N F_N + \Upsilon_I F_I + \Upsilon_D F_D \\ \ \text{expanded:} \\ \ & \Upsilon_{rel} = \Upsilon_N \cdot \frac{2PtF_I^2} {K_1} + \Upsilon_I F_I + \Upsilon_D * K_2F_I \\ \ \\ \ \text{where:} \\ \ & F_I = \frac {- K_1 (1+K_2) + \sqrt{(K_1^2 (1+K_2)^2 + (8 Pt K_1))}} {4Pt} \\ \ & K_1 = \exp \frac{-\Delta G_{H_20}^1 + m_1 x} {RT} \\ \ & K_2 = \exp \frac{-\Delta G_{H_20}^2 + m_2 x} {RT}\ \end{aligned}\ \end{equation}' # NOTE (ergm) added on 1/8/2017 # NOTE (ergm) updated Folding Scheme - was wrong 7/9/2017 class ThreeStateDimericIEquilibrium(core.FitModel): """ Three State model for a dimer denaturation Equilibrium - Dimeric Intermediate. Folding Scheme: N2 <-> I2 <-> 2D Params: Y_rel = spectroscopic signal at a given concentration of urea Y_N = spectroscopic signal for native state Y_D = spectroscopic signal for denatured state Y_I = spectroscopic signal for intermediate state F_D = fraction denatured monomers F_N = fraction native dimers F_I = fraction intermediate dimers Pt = total protein concentration. This variable needs to be set per denaturation curve. K1 = equilibrium contstant of unfolding native to intermediate state K2 = equilibrium contstant of unfolding intermediate to denatured state DG1 = stability of native state relative to intermediate state m1 = m-value of native to intermediate transition DG2 = stability of intermediate state relative to denatured state m2 = m-value of intermediate to denatured transition x = denaturant concentration (M) R = Universal Gas Constant (kcal.mol-1.K-1) T = Temperature (Kelvin) Reference: Mallam and Jackson. Folding studies on a knotted protein. Journal of Molecular Biology (2005) vol. 346 (5) pp. 1409-1421 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([1., 0.1, 0.0, 0.1, 1.5, 5., 2., 1e-6]) self.constants = (('Pt',1e-6),) # NOTE (ergm) added on 3/11/2017 self.verified = True def fit_func(self, x, DG1, m1, DG2, m2, Y_N, Y_I, Y_D, Pt): K1 = np.exp((-DG1 + (m1*x)) / core.temperature.RT) K2 = np.exp((-DG2 + (m2*x)) / core.temperature.RT) F_D = (-(K1*K2) + np.sqrt(np.square(K1*K2) + 8*(1+K1)*(K1*K2)*Pt)) / (4*Pt*(1+K1)) Y_rel = (Y_N * ((2 * Pt * np.square(F_D))/(K1*K2))) + (Y_I * ((2 * Pt * np.square(F_D))/K2)) + (Y_D * F_D) return Y_rel @property def equation(self): return r'\begin{equation} \ \begin{aligned} \ & \Upsilon_{rel} = \Upsilon_N F_N + \Upsilon_I F_I + \Upsilon_D F_D \\ \ \text{expanded:} \\ \ & \Upsilon_{rel} = \Upsilon_N \cdot \frac{2PtF_D^2} {K_1 K_2} + \Upsilon_I \frac{2PtF_D^2} {K_2} + \Upsilon_D * (F_D) \\ \ \\ \ \text{where:} \\ \ & F_D = \frac {- K_1 K_2 + \sqrt{((K_1 K_2)^2 + 8(1+K_1)(K_1 K_2)Pt)}} {4Pt (1 + K_1)} \\ \ & K_1 = \exp \frac{-\Delta G_{H_20}^1 + m_1 x} {RT} \\ \ & K_2 = \exp \frac{-\Delta G_{H_20}^2 + m_2 x} {RT}\ \end{aligned}\ \end{equation}' class HomozipperIsingEquilibrium(core.FitModel): """ Homopolymer Zipper Ising model Params: q = partition function f = fraction of folded protein Kappa = equilibrium constant of folding for a given repeating unit Tau = equilibrium constant of association between 2 repeating units n = number of repeating units x = denaturant concentration (M) Gi = intrinsic stability (folding energy) of a repeating unit i mi = denaturant sensitivity of the intrinsic stability of a repeating unit i Gi,i+1 = interface interaction energy between 2 repeating units R = Universal Gas Constant (kcal.mol-1.K-1) T = Temperature (Kelvin) Reference: Aksel and Barrick. Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models. Methods in enzymology (2009) vol. 455 pp. 95-125 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([7, 0.1, -.53, -4.6]) self.constants = (('n',7),) self.verified = True def fit_func(self, x, n, DG_intrinsic, m_intrinsic, DG_interface): # # clamp to prevent instability # if DG_intrinsic<0. or DG_interface>0.: # return core.FIT_ERROR(x) k = np.exp(-(DG_intrinsic - m_intrinsic*x) / core.temperature.RT ) #t = np.exp(-(DG_interface - m_interface*x) / core.temperature.RT ) t = np.exp(-(DG_interface) / core.temperature.RT ) pre_factor = (k/(n*(k*t-1))) numerator = n*(k*t)**(n+2) - (n+2)*(k*t)**(n+1) + (n+2)*k*t-n denominator = (k*t-1)**2 + k*((k*t)**(n+1) - (n+1)*k*t+n ) theta = pre_factor * (numerator / denominator) return 1.-theta # NOTE (ergm) changed on 4/9/2017 @property def equation(self): return r'\text{the partition function } (q) \text{ and thus fraction of folded protein } (f) \text{ of n arrayed repeats are given by:}\\ \ \begin{equation} \\ \ \begin{aligned} \ & q = 1 + \frac{\kappa([\kappa \tau]^{n+1} - [n+1]\kappa \tau - n)} {(\kappa \tau + 1)^2} \\ \ \\ \ & f = \frac{1} {n} \sum^{n}_{i=0}i\frac{(n-i+1)\kappa^i\tau^{i-1}} {q} \\ \ \\ \ \text{where:} \\ \ & \kappa (x) = \exp\frac{-G_i} {RT} = \exp\frac{-G_{i,H_20} + m_i x} {RT} \\ \ \\ \ & \tau (x) = \exp\frac{-G_{i,i+1}} {RT} \ \end{aligned}\ \end{equation}' class HeteropolymerIsingEquilibrium(core.FitModel): """ Heteropolymer Ising model Params: q = partition function f = fraction of folded protein Kappa = equilibrium constant of folding for a given repeating unit Tau = equilibrium constant of association between 2 repeating units n = number of repeating units x = denaturant concentration (M) DG_intrinsic = intrinsic stability (folding energy) of a repeating unit i m_intrinsic = denaturant sensitivity of the intrinsic stability of a repeating unit i DG_interface = interface interaction energy between 2 repeating units R = Universal Gas Constant (kcal.mol-1.K-1) T = Temperature (Kelvin) Reference: Aksel and Barrick. Analysis of repeat-protein folding using nearest-neighbor statistical mechanical models. Methods in enzymology (2009) vol. 455 pp. 95-125 """ def __init__(self): core.FitModel.__init__(self) def fit_func(self, x): raise NotImplementedError('This is a dummy model.') # NOTE (ergm) changed on 4/9/2017 @property def equation(self): return r'\text{the partition function } (q) \text{ and thus fraction of folded protein } (f) \text{ of n arrayed repeats are given by:} \\ \ \begin{equation} \\ \ \begin{aligned} \\ \ \kappa(x) &= \exp(-(\Delta G_{intrinsic} - m_{intrinsic}x) / RT) \\ \ \tau(x) &= \exp(-\Delta G_{interface}) / RT) \\ \ q(i) &= \ \begin{bmatrix} 0 & 1\end{bmatrix} \ \begin{bmatrix} \kappa_1\tau_{-1} & 1\\ \kappa & 1 \end{bmatrix} \ \ldots \ \begin{bmatrix} \kappa_n\tau_{n-1} & 1\\ \kappa & 1 \end{bmatrix} \ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \ \theta &= \frac{1}{nq(n)} \sum_{i=0}^{n}{q(i)} \ \end{aligned} \ \end{equation}' """ ========================================================== KINETIC FOLDING models ========================================================== """ class TwoStateChevron(core.FitModel): """ Two state chevron plot. Folding Scheme: N <-> D Params: k obs = rate constant of unfolding or refolding at a particular denaturant concentration kf = rate constant of refolding at a particular denaturant concentration mf = the gradient of refolding arm of the chevron ku = rate constant of unfolding at a a particular denaturant concentration mu = the gradient of unfolding arm of the chevron x = denaturant concentration (M) Reference: Jackson SE and Fersht AR. Folding of chymotrypsin inhibitor 2. 1. Evidence for a two-state transition. Biochemistry (1991) 30(43):10428-10435. """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([100., 1.3480, 5e-4, 1.]) #self.constants = (('mf',1.76408),('mu',1.13725)) self.verified = True def fit_func(self, x, kf, mf, ku, mu): k_obs = kf*np.exp(-mf*x) + ku*np.exp(mu*x) return k_obs def error_func(self, y): return np.log(y) # NOTE (ergm) added on 24/8/2017 # def components(self, x, kf, mf, ku, mu): # k_f = kf*np.exp(-mf*x) # k_u = ku*np.exp(mu*x) # k_obs = k_f + k_u # return {'k_f':k_f, 'k_u':k_u} @property def equation(self): return r'\begin{equation} \ \begin{aligned} \ & k_{obs} = k_f + k_u \\ \ \\ \ \text{where:} \\ \ & k_f = k_f^{H_2O}\exp(-m_{kf}x)\\ \ & k_u = k_u^{H_2O}\exp(m_{ku}x) \\ \ \text{thus:} \\ \ & k_{obs} = k_f^{H_2O}\exp(-m_{kf}x) + k_u^{H_2O}\exp(m_{ku}x)\\ \ \end{aligned} \ \end{equation}' class ThreeStateChevron(core.FitModel): """ Three state chevron with single intermediate. Folding Scheme: N <-> I <-> D Params: k obs = rate constant of unfolding or refolding at a particular denaturant concentration kfi = microscopic rate constant for the conversion of folded to intermediate kif = microscopic rate constant for the conversion of intermediate to folded i.e. k_if = kif(H20) * exp((mi - mif)*x) Kiu = equilibrium constant for the rapid equilibration between intermediate & unfolded i.e. Kiu = Kiu(H2O) * exp((mu-mi)*x) mif = m-value associated with the kinetic transition between intermediate & folded mi = m-value associated with the equilibrium transition between intermediate & folded mu = m-value associated with the equilibrium transition between unfolded & folded x = denaturant concentration (M) Reference: Parker et al. An integrated kinetic analysis of intermediates and transition states in protein folding reactions. Journal of molecular biology (1995) vol. 253 (5) pp. 771-86 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([4.5e-4, -9.5e-1, 1.3e9, -6.9, 1.4e-8, -1.6]) #self.constants = (('mif',-0.97996),('mi',-6.00355),('mu',-1.66154)) self.verified = True def fit_func(self, x, kfi, mif, kif, mi, Kiu, mu): k_fi = kfi*np.exp(-mif*x) k_if = kif*np.exp((mi - mif)*x) K_iu = Kiu*np.exp((mu - mi)*x) k_obs = k_fi + k_if / (1.+1./K_iu) return k_obs def error_func(self, y): return np.log(y) def components(self, x, kfi, mif, kif, mi, Kiu, mu): k_fi = kfi*np.exp(-mif*x) k_if = kif*np.exp((mi - mif)*x) k_obs_I = k_fi + k_if return {'kobs_I':k_obs_I} @property def equation(self): return r'\begin{equation} \ \begin{aligned} \ & k_{obs} = \frac{k_{fi} + k_{if}} {(1+1/K_{iu})} \\ \ \\ \ \text{where:} \\ \ & k_{fi} = k_{fi}^{H_2O}\exp(-m_{fi}x)\\ \ & k_{if} = k_{if}^{H_2O}\exp((m_i - m_{if})x)\\ \ & K_{iu} = K_{iu}^{H_2O}\exp((m_u - m_i)x)\\ \ \text{thus:} \\ \ & k_{obs} = k_{fi}^{H_2O}\exp(-m_{if}x) + k_{if}^{H_2O}\exp((m_i - m_{if})x) /(1 + 1 / (K_{iu}^{H_2O}\exp((m_u-m_i)x)))\\ \ \end{aligned} \ \end{equation}' class ThreeStateFastPhaseChevron(core.FitModel): """ Three state chevron with single intermediate. Folding Scheme: N <-> I <-> D Params: k obs = rate constant of unfolding or refolding at a particular denaturant concentration kfi = microscopic rate constant for the conversion of folded to intermediate kif = microscopic rate constant for the conversion of intermediate to folded kiu = microscopic rate constant for the conversion of intermediate to unfolded kui = microscopic rate constant for the conversion of unfolded to intermediate Kiu = equilibrium constant for the rapid equilibration between intermediate & unfolded mfi = m-value associated with the kinetic transition between folded & intermediate mif = m-value associated with the kinetic transition between intermediate & folded miu = m-value associated with the kinetic transition between intermediate & unfolded mui = m-value associated with the kinetic transition between unfolded & intermediate x = denaturant concentration (M) Reference: Parker et al. An integrated kinetic analysis of intermediates and transition states in protein folding reactions. Journal of molecular biology (1995) vol. 253 (5) pp. 771-86 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([172., 1.42, .445, .641, 1e4, 2.71313, 1.83e-3, 1.06]) #self.constants = (('kui',172.), ('mui',1.42), ('kiu',.445), ('miu',.641), ('mif',-2.71313),('mfi',1.06534)) self.verified = True def fit_func(self, x, kui, mui, kiu, miu, kif, mif, kfi, mfi): k_iu = kiu*np.exp(miu*x) k_ui = kui*np.exp(-mui*x) k_if = kif*np.exp(-mif*x) k_fi = kfi*np.exp(mfi*x) K_iu = k_iu / (k_iu+k_ui) k_obs = k_fi + k_if / (1.+1./K_iu) return k_obs def error_func(self, y): return np.log(y) def components(self, x, kui, mui, kiu, miu, kif, mif, kfi, mfi): k_iu = kiu*np.exp(miu*x) k_ui = kui*np.exp(-mui*x) k_if = kif*np.exp(-mif*x) k_fi = kfi*np.exp(mfi*x) k_obs_I = k_iu + k_ui k_obs_N = k_fi + k_if return {'kobs_I':k_obs_I} #, 'kobs_N':k_obs_N} # NOTE (ergm) added on 23/8/2017 @property def equation(self): return r'\begin{equation} \ \begin{aligned} \ & k_{obs} = \frac{k_{fi} + k_{if}} {(1+1/K_{iu})} \\ \ \\ \ \text{where:} \\ \ & k_{fi} = k_{fi}^{H_2O}\exp(m_{fi}x)\\ \ & k_{if} = k_{if}^{H_2O}\exp(-m_{if}x)\\ \ & k_{iu} = k_{iu}^{H_2O}\exp(m_{iu}x)\\ \ & k_{ui} = k_{ui}^{H_2O}\exp(-m_{ui}x)\\ \ & K_{iu} = \frac{k_{iu}} {k_{iu} + k_{ui}}\\ \ \end{aligned} \ \end{equation}' class ThreeStateSequentialChevron(core.FitModel): """ Three state metastable intermediate chevron plot. Folding Scheme: N <-> I <-> D Params: k obs = rate constant of unfolding or refolding at a particular denaturant concentration kfi = microscopic rate constant for the conversion of folded to intermediate kif = microscopic rate constant for the conversion of intermediate to folded kiu = microscopic rate constant for the conversion of intermediate to unfolded kui = microscopic rate constant for the conversion of unfolded to intermediate mfi = m-value associated with the kinetic transition between folded & intermediate mif = m-value associated with the kinetic transition between intermediate & folded miu = m-value associated with the kinetic transition between intermediate & unfolded mui = m-value associated with the kinetic transition between unfolded & intermediate x = denaturant concentration (M) Reference: Bachmann and Kiefhaber. Apparent two-state tendamistat folding is a sequential process along a defined route. J Mol Biol (2001) vol. 306 (2) pp. 375-386 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([2e4, 0.3480, 1e4, 0, 20.163, 1.327, 0.3033, 0.2431]) # NOTE (ergm) changed constants on 3/10/2017 self.constants = (('kiu', 1.e4),('miu',0.)) self.verified = True def fit_func(self, x, kui, mui, kiu, miu, kif, mif, kfi, mfi): k_ui = kui*np.exp(-mui*x) k_iu = kiu*np.exp(miu*x) k_if = kif*np.exp(-mif*x) k_fi = kfi*np.exp(mfi*x) lam_1 = -(k_ui + k_iu + k_if + k_fi) lam_2 = k_ui * (k_if+k_fi) + k_iu*k_fi k_obs = 0.5 * (-lam_1 - np.sqrt(lam_1**2 - 4*lam_2)) return k_obs def error_func(self, y): return np.log(y) def components(self, x, kui, mui, kiu, miu, kif, mif, kfi, mfi): k_ui = kui*np.exp(-mui*x) k_iu = kiu*np.exp(miu*x) k_if = kif*np.exp(-mif*x) k_fi = kfi*np.exp(mfi*x) k_TS1 = k_ui + (k_fi/kif)*k_iu k_TS2 = (k_ui/k_iu)*k_if + k_fi return {'kTS1':k_TS1, 'kTS2':k_TS2} @property def equation(self): return r'\begin{equation} \ \begin{aligned} \ & k_{obs} = 0.5(-A_2 \pm \sqrt{A_2^2 - 4A_1}) \\ \ \\ \ \text{where:}\\ \ & A_1 = -(k_{ui} + k_{iu} + k_{if} + k_{fi}) \\ \ & A_2 = k_{ui}(k_{if} + k_{fi}) + k_{iu}k_{if} \\ \ \text{and:} \\ \ & k_{fi} = k_{fi}^{H_2O}\exp(m_{fi}x)\\ \ & k_{if} = k_{if}^{H_2O}\exp(-m_{if}x)\\ \ & k_{iu} = k_{iu}^{H_2O}\exp(m_{iu}x)\\ \ & k_{ui} = k_{ui}^{H_2O}\exp(-m_{ui}x)\\ \ \end{aligned} \ \end{equation}' class ParallelTwoStateChevron(core.FitModel): """ Parallel Two state chevron plot. Folding Scheme: N <-> D ^ ^ |_____| Params: k obs = rate constant of unfolding or refolding at a particular denaturant concentration k_obs_A = rate constant of unfolding or refolding of pathway A at a particular denaturant concentration k_obs_B = rate constant of unfolding or refolding of pathway B at a particular denaturant concentration mf_A = the gradient of refolding arm of pathway A mf_B = the gradient of refolding arm of pathway B mu_A = the gradient of unfolding arm of pathway A mu_B = the gradient of unfolding arm of pathway B x = denaturant concentration (M) Reference: Lowe & Itzhaki. Rational redesign of the folding pathway of a modular protein. PNAS (2007) vol. 104 (8) pp. 2679-2684 """ def __init__(self): core.FitModel.__init__(self) fit_args = self.fit_func_args self.params = tuple( [(fit_args[i],i) for i in range(len(fit_args))] ) self.default_params = np.array([50., 1.3480, 5e-4, 1., 150., 3.5]) def fit_func(self, x, kf_A, mf_A, ku_A, mu_A, kf_B, mf_B): if mf_A < 0. or mf_B < 0. or mu_A < 0.: return core.FIT_ERROR(x) if kf_A <0. or ku_A <0. or kf_B < 0.: return core.FIT_ERROR(x) deltaG_A = kf_A / ku_A ku_B = kf_B / deltaG_A mu_B = np.abs(mf_A + mu_A) - np.abs(mf_B) k_obs_A = kf_A*np.exp(-mf_A*x) + ku_A*np.exp(mu_A*x) k_obs_B = kf_B*
np.exp(-mf_B*x)
numpy.exp
# encoding: utf-8 """ A script for running the following zero-shot domain transfer experiments: * dataset: Overnight * model: BART encoder + vanilla Transformer decoder for LF * lexical token representations are computed based on lexicon * training: normal (CE on teacher forced target) """ import faulthandler import itertools import json import math import random import string from copy import deepcopy from functools import partial from typing import Callable, Set import fire # import wandb import qelos as q # branch v3 import numpy as np import torch from nltk import Tree from torch.utils.data import DataLoader from parseq.datasets import OvernightDatasetLoader, pad_and_default_collate, autocollate, Dataset from parseq.decoding import merge_metric_dicts from parseq.eval import SeqAccuracies, TreeAccuracy, make_array_of_metrics, CELoss from parseq.grammar import tree_to_lisp_tokens, lisp_to_tree from parseq.vocab import SequenceEncoder, Vocab from transformers import AutoTokenizer, AutoModel, BartConfig, BartModel, BartForConditionalGeneration, BertLayer, \ BertModel from transformers.activations import ACT2FN from transformers.modeling_bart import SinusoidalPositionalEmbedding, DecoderLayer, SelfAttention, LayerNorm UNKID = 3 DATA_RESTORE_REVERSE = False def get_labels_from_tree(x:Tree): ret = {x.label()} for child in x: ret |= get_labels_from_tree(child) return ret def get_maximum_spanning_examples(examples, mincoverage=1, loadedex=None): """ Sort given examples by the degree they span their vocabulary. First examples maximally increase how much least seen tokens are seen. :param examples: :param mincoverage: the minimum number of times every token must be covered. If the token occurs less than 'mincoverage' number of times in given 'examples', all examples with that token are included but the 'mincoverage' criterion is not satisfied! :return: """ tokencounts = {} uniquetokensperexample = [] examplespertoken = {} # reverse index from token to example number for i, example in enumerate(examples): exampletokens = set(get_labels_from_tree(example[1])) uniquetokensperexample.append(exampletokens) for token in exampletokens: if token not in tokencounts: tokencounts[token] = 0 tokencounts[token] += 1 if token not in examplespertoken: examplespertoken[token] = set() examplespertoken[token].add(i) scorespertoken = {k: len(examples) / len(examplespertoken[k]) for k in examplespertoken.keys()} selectiontokencounts = {k: 0 for k, v in tokencounts.items()} if loadedex is not None: for i, example in enumerate(loadedex): exampletokens = set(get_labels_from_tree(example[1])) for token in exampletokens: if token in selectiontokencounts: selectiontokencounts[token] += 1 def get_example_score(i): minfreq = min(selectiontokencounts.values()) ret = 0 for token in uniquetokensperexample[i]: ret += 1/8 ** (selectiontokencounts[token] - minfreq) return ret exampleids = set(range(len(examples))) outorder = [] i = 0 while len(exampleids) > 0: sortedexampleids = sorted(exampleids, key=get_example_score, reverse=True) outorder.append(sortedexampleids[0]) exampleids -= {sortedexampleids[0]} # update selection token counts for token in uniquetokensperexample[sortedexampleids[0]]: selectiontokencounts[token] += 1 minfreq = np.infty for k, v in selectiontokencounts.items(): if tokencounts[k] < mincoverage and selectiontokencounts[k] >= tokencounts[k]: pass else: minfreq = min(minfreq, selectiontokencounts[k]) i += 1 if minfreq >= mincoverage: break out = [examples[i] for i in outorder] print(f"{len(out)}/{len(examples)} examples loaded from domain") return out def get_lf_abstract_transform(examples): """ Receives examples from different domains in the format (_, out_tokens, split, domain). Returns a function that transforms a sequence of domain-specific output tokens into a sequence of domain-independent tokens, abstracting domain-specific tokens/subtrees. :param examples: :return: """ # get shared vocabulary domainspertoken = {} domains = set() for i, example in enumerate(examples): if "train" in example[2]: exampletokens = set(example[1]) for token in exampletokens: if token not in domainspertoken: domainspertoken[token] = set() domainspertoken[token].add(example[3]) domains.add(example[3]) sharedtokens = set([k for k, v in domainspertoken.items() if len(v) == len(domains)]) sharedtokens.add("@ABS@") sharedtokens.add("@END@") sharedtokens.add("@START@") sharedtokens.add("@META@") sharedtokens.add("@UNK@") sharedtokens.add("@PAD@") sharedtokens.add("@METARARE@") replacement = "@ABS@" def example_transform(x): abslf = [xe if xe in sharedtokens else replacement for xe in x] abslf = ["@ABSSTART@"] + abslf[1:] return abslf return example_transform def load_ds(traindomains=("restaurants",), testdomain="housing", min_freq=1, mincoverage=1, top_k=np.infty, batsize=10, nl_mode="bert-base-uncased", fullsimplify=False, add_domain_start=True, supportsetting="lex", # "lex" or "min" ): """ :param traindomains: :param testdomain: :param min_freq: :param mincoverage: :param top_k: :param nl_mode: :param fullsimplify: :param add_domain_start: :param onlyabstract: :param pretrainsetting: "all": use all examples from every domain "lex": use only lexical examples "all+lex": use both :param finetunesetting: "lex": use lexical examples "all": use all training examples "min": use minimal lexicon-covering set of examples ! Test is always over the same original test set. ! Validation is over a fraction of training data :return: """ def tokenize_and_add_start(t, _domain, meta=False): tokens = tree_to_lisp_tokens(t) if not meta: starttok = f"@START/{_domain}@" if add_domain_start else "@START@" tokens = [starttok] + tokens else: starttok = f"@META/{_domain}@" if add_domain_start else "@META@" tokens = [starttok] + tokens return tokens domains = {} alltrainex = [] for domain in list(traindomains) + [testdomain]: ds = OvernightDatasetLoader(simplify_mode="light" if not fullsimplify else "full", simplify_blocks=True, restore_reverse=DATA_RESTORE_REVERSE, validfrac=.10)\ .load(domain=domain) domainexamples = [(a, b, c) for a, b, c in ds.examples] if supportsetting == "lex": domainexamples = [(a, b, "finetune" if c == "lexicon" else c) for a, b, c in domainexamples] else: domainexamples = [(a, b, c) for a, b, c in domainexamples if c != "lexicon"] if domain != testdomain: alltrainex += [(a, b, c, domain) for a, b, c in domainexamples if c == "train"] domains[domain] = domainexamples if supportsetting == "min": for domain, domainexamples in domains.items(): mindomainexamples = get_maximum_spanning_examples([(a, b, c) for a, b, c in domainexamples if c == "train"], mincoverage=mincoverage, loadedex=[a for a in alltrainex if a[3] != domain]) domains[domain] = domains[domain] + [(a, b, "finetune") for a, b, c in mindomainexamples] for domain in domains: domains[domain] = [(a, tokenize_and_add_start(b, domain, meta=c=="finetune"), c) for a, b, c in domains[domain]] # sourceex += ds[(None, None, lambda x: x in ("train", "valid", "lexicon"))].examples # don't use test examples allex = [] for domain in domains: allex += [(a, b, c, domain) for a, b, c in domains[domain]] ds = Dataset(allex) et = get_lf_abstract_transform(ds[lambda x: x[3] != testdomain].examples) ds = ds.map(lambda x: (x[0], x[1], et(x[1]), x[2], x[3])) abstracttokens = set() # abstracttokens.add("@META@") abstracttokens.add("@START@") abstracttokens.add("@END@") abstracttokens.add("@UNK@") abstracttokens.add("@PAD@") abstracttokens.add("@ABS@") abstracttokens.add("@ABSSTART@") abstracttokens.add("@METARARE@") seqenc_vocab = Vocab(padid=0, startid=1, endid=2, unkid=UNKID) seqenc_vocab.add_token("@ABS@", seen=np.infty) seqenc_vocab.add_token("@ABSSTART@", seen=np.infty) seqenc_vocab.add_token("@METARARE@", seen=np.infty) seqenc = SequenceEncoder(vocab=seqenc_vocab, tokenizer=lambda x: x, add_start_token=False, add_end_token=True) for example in ds.examples: abstracttokens |= set(example[2]) seqenc.inc_build_vocab(example[1], seen=example[3] in ("train", "finetune") if example[4] != testdomain else example[3] == "finetune") seqenc.inc_build_vocab(example[2], seen=example[3] in ("train", "finetune") if example[4] != testdomain else example[3] == "finetune") seqenc.finalize_vocab(min_freq=min_freq, top_k=top_k) abstracttokenids = {seqenc.vocab[at] for at in abstracttokens} nl_tokenizer = AutoTokenizer.from_pretrained(nl_mode) def tokenize(x): ret = (nl_tokenizer.encode(x[0], return_tensors="pt")[0], seqenc.convert(x[1], return_what="tensor"), seqenc.convert(x[2], return_what="tensor"), x[3], x[0], x[1], x[2], x[3]) return ret sourceret = {} targetret = {} for domain in domains: finetuneds = ds[lambda x: x[3] == "finetune" and x[4] == domain].map(tokenize) trainds = ds[lambda x: x[3] == "train" and x[4] == domain].map(tokenize) validds = ds[lambda x: x[3] == "valid" and x[4] == domain].map(tokenize) testds = ds[lambda x: x[3] == "test" and x[4] == domain].map(tokenize) if domain == testdomain: ret = targetret else: ret = sourceret ret[domain] = { "finetune":DataLoader(finetuneds, batch_size=batsize, shuffle=True, collate_fn=partial(autocollate, pad_value=0)), "train": DataLoader(trainds, batch_size=batsize, shuffle=True, collate_fn=partial(autocollate, pad_value=0)), "valid": DataLoader(validds, batch_size=batsize, shuffle=False, collate_fn=partial(autocollate, pad_value=0)), "test": DataLoader(testds, batch_size=batsize, shuffle=False, collate_fn=partial(autocollate, pad_value=0)) } # populate the "all" domain allsourceret = { "finetune": DataLoader(ds[lambda x: x[3] == "finetune" and x[4] in traindomains].map(tokenize), batch_size=batsize, shuffle=True, collate_fn=partial(autocollate, pad_value=0)), "train": DataLoader(ds[lambda x: x[3] == "train" and x[4] in traindomains].map(tokenize), batch_size=batsize, shuffle=True, collate_fn=partial(autocollate, pad_value=0)), "valid": DataLoader(ds[lambda x: x[3] == "valid" and x[4] in traindomains].map(tokenize), batch_size=batsize, shuffle=False, collate_fn=partial(autocollate, pad_value=0)), "test": DataLoader(ds[lambda x: x[3] == "test" and x[4] in traindomains].map(tokenize), batch_size=batsize, shuffle=False, collate_fn=partial(autocollate, pad_value=0)), } return sourceret, targetret, allsourceret, nl_tokenizer, seqenc, abstracttokenids def apply_withpath(m:torch.nn.Module, fn:Callable, mpath=None): """ Apply function 'fn' recursively on 'm' and its submodules, where 'fn' gets 'm' and 'mpath' as argument """ fn(m, mpath) for name, child in m.named_children(): apply_withpath(child, fn, f"{mpath}.{name}" if mpath is not None else f"{name}") class TransformerLayerAdapter(torch.nn.Module): def __init__(self, dim, hdim, **kw): super(TransformerLayerAdapter, self).__init__(**kw) self.fc1 = torch.nn.Linear(dim, hdim) self.fc2 = torch.nn.Linear(hdim, dim) self.layernorm = torch.nn.LayerNorm(dim) def forward(self, x): innerresidual = x x = self.fc1(x) x = torch.nn.functional.relu(x) x = self.fc2(x) x = x + innerresidual x = self.layernorm(x) return x class GatedTransformerLayerAdapter(TransformerLayerAdapter): def __init__(self, dim, hdim, biasoffset=-3, **kw): super(GatedTransformerLayerAdapter, self).__init__(dim, hdim, **kw) self.fc3 = torch.nn.Linear(hdim, dim) self.biasoffset = biasoffset def forward(self, x): innerresidual = x h = self.fc1(x) h = torch.relu(h) x = self.fc2(h) z = self.fc3(h) z = torch.sigmoid(z + self.biasoffset) x = x * z + innerresidual * (1 - z) x = self.layernorm(x) return x class AdaptedBartDecoderLayer(torch.nn.Module): def __init__(self, decoderlayer:DecoderLayer=None, compression=2, ): super().__init__() self.core = decoderlayer self.adapter = GatedTransformerLayerAdapter(self.core.embed_dim, self.core.embed_dim//compression) def forward( self, x, encoder_hidden_states, encoder_attn_mask=None, layer_state=None, causal_mask=None, decoder_padding_mask=None, ): x, self_attn_weights, layer_state = self.core(x, encoder_hidden_states, encoder_attn_mask=encoder_attn_mask, layer_state=layer_state, causal_mask=causal_mask, decoder_padding_mask=decoder_padding_mask) x = self.adapter(x) return ( x, self_attn_weights, layer_state, ) # just self_attn weights for now, following t5, layer_state = cache for decoding class AdaptedBertEncoderLayer(torch.nn.Module): def __init__(self, core:BertLayer, compression=2): super(AdaptedBertEncoderLayer, self).__init__() self.core = core self.dim = core.output.dense.out_features self.hdim = self.dim // compression self.adapter = GatedTransformerLayerAdapter(self.dim, self.hdim) def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, ): outputs = self.core(hidden_states, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask) adapted = self.adapter(outputs[0]) outputs = (adapted,) + outputs[1:] return outputs class BartGenerator(BartForConditionalGeneration): def __init__(self, config:BartConfig, emb=None, outlin=None): super(BartGenerator, self).__init__(config) if emb is not None: self.model.shared = emb self.model.decoder.embed_tokens = emb if outlin is not None: self.outlin = outlin else: self.outlin = torch.nn.Linear(config.d_model, config.vocab_size) self.outlin.apply(self._init_weights) def _init_weights(self, module): std = self.config.init_std if isinstance(module, torch.nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, SinusoidalPositionalEmbedding): pass elif isinstance(module, torch.nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def forward( self, input_ids, attention_mask=None, encoder_outputs=None, decoder_input_ids=None, decoder_attention_mask=None, decoder_cached_states=None, use_cache=False, **unused ): outputs = self.model( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, encoder_outputs=encoder_outputs, decoder_attention_mask=decoder_attention_mask, decoder_cached_states=decoder_cached_states, use_cache=use_cache, ) lm_logits = self.outlin(outputs[0]) outputs = (lm_logits,) + outputs[1:] # Add hidden states and attention if they are here return outputs class BartGeneratorTrain(torch.nn.Module): def __init__(self, model:BartGenerator, smoothing=0., tensor2tree:Callable=None, orderless:Set[str]=set(), maxlen:int=100, numbeam:int=1, **kw): super(BartGeneratorTrain, self).__init__(**kw) self.model = model # CE loss self.ce = CELoss(ignore_index=model.config.pad_token_id, smoothing=smoothing) # accuracies self.accs = SeqAccuracies() self.accs.padid = model.config.pad_token_id self.accs.unkid = UNKID self.tensor2tree = tensor2tree self.orderless = orderless self.maxlen, self.numbeam = maxlen, numbeam self.treeacc = TreeAccuracy(tensor2tree=tensor2tree, orderless=orderless) self.metrics = [self.ce, self.accs, self.treeacc] def forward(self, input_ids, output_ids, *args, **kwargs): ret = self.model(input_ids, attention_mask=input_ids!=self.model.config.pad_token_id, decoder_input_ids=output_ids) probs = ret[0] _, predactions = probs.max(-1) outputs = [metric(probs, predactions, output_ids[:, 1:]) for metric in self.metrics] outputs = merge_metric_dicts(*outputs) return outputs, ret def get_test_model(self, maxlen:int=None, numbeam:int=None): maxlen = self.maxlen if maxlen is None else maxlen numbeam = self.numbeam if numbeam is None else numbeam ret = BartGeneratorTest(self.model, maxlen=maxlen, numbeam=numbeam, tensor2tree=self.tensor2tree, orderless=self.orderless) return ret class AbstractBartGeneratorTrain(torch.nn.Module): def __init__(self, model:BartGenerator, smoothing=0., tensor2tree:Callable=None, orderless:Set[str]=set(), tokenmask=None, **kw): super(AbstractBartGeneratorTrain, self).__init__(**kw) self.model = model # CE loss self.ce = CELoss(ignore_index=model.config.pad_token_id, smoothing=smoothing) # accuracies self.accs = SeqAccuracies() self.accs.padid = model.config.pad_token_id self.accs.unkid = UNKID self.treeacc = TreeAccuracy(tensor2tree=tensor2tree, orderless=orderless) self.register_buffer("tokenmask", tokenmask) self.metrics = [self.ce, self.accs, self.treeacc] def forward(self, input_ids, _, output_ids, *args, **kwargs): ret = self.model(input_ids, attention_mask=input_ids!=self.model.config.pad_token_id, decoder_input_ids=output_ids) probs = ret[0] # (batsize, seqlen, vocsize) if self.tokenmask is not None: # (vocsize,) probs += torch.log(self.tokenmask[None, None, :]) _, predactions = probs.max(-1) outputs = [metric(probs, predactions, output_ids[:, 1:]) for metric in self.metrics] outputs = merge_metric_dicts(*outputs) return outputs, ret class BartGeneratorTest(BartGeneratorTrain): def __init__(self, model:BartGenerator, maxlen:int=5, numbeam:int=None, tensor2tree:Callable=None, orderless:Set[str]=set(), **kw): super(BartGeneratorTest, self).__init__(model, **kw) self.maxlen, self.numbeam = maxlen, numbeam # accuracies self.accs = SeqAccuracies() self.accs.padid = model.config.pad_token_id self.accs.unkid = UNKID self.treeacc = TreeAccuracy(tensor2tree=tensor2tree, orderless=orderless) self.metrics = [self.accs, self.treeacc] def forward(self, input_ids, output_ids, *args, **kwargs): ret = self.model.generate(input_ids, decoder_input_ids=output_ids[:, 0:1], attention_mask=input_ids!=self.model.config.pad_token_id, max_length=self.maxlen, num_beams=self.numbeam) outputs = [metric(None, ret[:, 1:], output_ids[:, 1:]) for metric in self.metrics] outputs = merge_metric_dicts(*outputs) return outputs, ret class SpecialEmbedding(torch.nn.Embedding): def __init__(self, num_embeddings, embedding_dim, padding_idx=None, metarare_targets=None, init_std=0.02): super(SpecialEmbedding, self).__init__(num_embeddings, embedding_dim, padding_idx=padding_idx) self.register_buffer("metarare_targets", metarare_targets) # self.metarare = self.weight[self.metarare_source, :] # self.base_emb = torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx) self.extra_emb = torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx) self.metarare_emb = torch.nn.Embedding(1, embedding_dim) self.init_std = init_std self.apply(self._init_weights) self.extra_emb.weight.data.fill_(0) def _init_weights(self, module): std = self.init_std if isinstance(module, torch.nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, SinusoidalPositionalEmbedding): pass elif isinstance(module, torch.nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def forward(self, input: torch.Tensor) -> torch.Tensor: # metarare_targets are 1 for domain-specific tokens base_emb = super(SpecialEmbedding, self).forward(input) metarare_emb = self.metarare_emb(torch.zeros_like(input)) extra_emb = self.extra_emb(input) switch = self.metarare_targets[input] emb = switch[:, :, None] * (extra_emb + metarare_emb) \ + (1 - switch[:, :, None]) * base_emb return emb class SpecialOutlin(torch.nn.Linear): def __init__(self, dim, vocsize, metarare_targets=None, bias=True, init_std=0.02): super(SpecialOutlin, self).__init__(dim, vocsize, bias=bias) self.register_buffer("metarare_targets", metarare_targets) # self.metarare = self.weight[self.metarare_source, :] # self.base_emb = torch.nn.Embedding(num_embeddings, embedding_dim, padding_idx) self.extra_lin = torch.nn.Linear(dim, vocsize, bias=bias) self.metarare_lin = torch.nn.Linear(dim, 1, bias=bias) self.init_std = init_std self.apply(self._init_weights) self.extra_lin.weight.data.fill_(0) self.extra_lin.bias.data.fill_(0) def _init_weights(self, module): std = self.init_std if isinstance(module, torch.nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, SinusoidalPositionalEmbedding): pass elif isinstance(module, torch.nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() def forward(self, input: torch.Tensor) -> torch.Tensor: base_logits = super(SpecialOutlin, self).forward(input) extra_logits = self.extra_lin(input) metarare_logits = self.metarare_lin(input) switch = self.metarare_targets.expand_as(base_logits) logits = switch * (extra_logits + metarare_logits) + (1 - switch) * base_logits return logits def create_model(encoder_name="bert-base-uncased", dec_vocabsize=None, dec_layers=6, dec_dim=640, dec_heads=8, dropout=0., maxlen=20, smoothing=0., numbeam=1, tensor2tree=None, abstract_token_ids=set(), metarare="no", useadapters=False): if encoder_name != "bert-base-uncased": raise NotImplementedError(f"encoder '{encoder_name}' not supported yet.") pretrained = BertModel.from_pretrained(encoder_name) # replace layers with adapted layers if useadapters: for i, layer in enumerate(pretrained.encoder.layer): pretrained.encoder.layer[i] = AdaptedBertEncoderLayer(layer, compression=4) encoder = pretrained class BertEncoderWrapper(torch.nn.Module): def __init__(self, model, dropout=0., **kw): super(BertEncoderWrapper, self).__init__(**kw) self.model = model self.proj = torch.nn.Linear(pretrained.config.hidden_size, dec_dim, bias=False) self.dropout = torch.nn.Dropout(dropout) def forward(self, input_ids, attention_mask=None): ret, _ = self.model(input_ids, attention_mask=attention_mask) if pretrained.config.hidden_size != dec_dim: ret = self.proj(ret) ret = self.dropout(ret) ret = (ret, None, None) return ret encoder = BertEncoderWrapper(encoder, dropout=dropout) decoder_config = BartConfig(d_model=dec_dim, pad_token_id=0, bos_token_id=1, vocab_size=dec_vocabsize, decoder_attention_heads=dec_heads//2, decoder_layers=dec_layers, dropout=dropout, attention_dropout=min(0.1, dropout/2), decoder_ffn_dim=dec_dim*4, encoder_attention_heads=dec_heads, encoder_layers=dec_layers, encoder_ffn_dim=dec_dim*4, ) isabstracttokenmask = torch.zeros(dec_vocabsize) for abstract_token_id in abstract_token_ids: isabstracttokenmask[abstract_token_id] = 1 # create special embeddings and output layer if metarare == "no": emb, outlin = None, None else: if "emb" in metarare.split("+"): # emb = torch.nn.Embedding(decoder_config.vocab_size, decoder_config.d_model, decoder_config.pad_token_id) emb = SpecialEmbedding(decoder_config.vocab_size, decoder_config.d_model, decoder_config.pad_token_id, metarare_targets=1-isabstracttokenmask) else: emb = None if "outlin" in metarare.split("+"): # outlin = torch.nn.Linear(decoder_config.d_model, decoder_config.vocab_size) outlin = SpecialOutlin(decoder_config.d_model, decoder_config.vocab_size, metarare_targets=1-isabstracttokenmask) else: outlin = None # # def _init_weights(module): # std = 0.02 # if isinstance(module, torch.nn.Linear): # module.weight.data.normal_(mean=0.0, std=std) # if module.bias is not None: # module.bias.data.zero_() # elif isinstance(module, SinusoidalPositionalEmbedding): # pass # elif isinstance(module, torch.nn.Embedding): # module.weight.data.normal_(mean=0.0, std=std) # if module.padding_idx is not None: # module.weight.data[module.padding_idx].zero_() # emb.apply(_init_weights) # outlin.apply(_init_weights) # print("using special embs and linouts") # else: # emb = torch.nn.Embedding(decoder_config.vocab_size, decoder_config.d_model, decoder_config.pad_token_id) # outlin = torch.nn.Linear(decoder_config.d_model, decoder_config.vocab_size) # emb = None # outlin = None model = BartGenerator(decoder_config, emb, outlin) model.model.encoder = encoder if useadapters: for i, layer in enumerate(model.model.decoder.layers): model.model.decoder.layers[i] = AdaptedBartDecoderLayer(layer) orderless = {"op:and", "SW:concat"} trainmodel = BartGeneratorTrain(model, smoothing=smoothing, tensor2tree=tensor2tree, orderless=orderless, maxlen=maxlen, numbeam=numbeam) abstracttrainmodel = AbstractBartGeneratorTrain(model, smoothing=smoothing, tensor2tree=tensor2tree, orderless=orderless, tokenmask=isabstracttokenmask) # testmodel = BartGeneratorTest(model, maxlen=maxlen, numbeam=numbeam, tensor2tree=tensor2tree, orderless=orderless) return trainmodel, abstracttrainmodel def _tensor2tree(x, D:Vocab=None): # x: 1D int tensor x = list(x.detach().cpu().numpy()) x = [D(xe) for xe in x] x = [xe for xe in x if xe != D.padtoken] # find first @END@ and cut off parentheses_balance = 0 for i in range(len(x)): if x[i] ==D.endtoken: x = x[:i] break elif x[i] == "(" or x[i][-1] == "(": parentheses_balance += 1 elif x[i] == ")": parentheses_balance -= 1 else: pass # balance parentheses while parentheses_balance > 0: x.append(")") parentheses_balance -= 1 i = len(x) - 1 while parentheses_balance < 0 and i > 0: if x[i] == ")": x.pop(i) parentheses_balance += 1 i -= 1 # convert to nltk.Tree try: tree, parsestate = lisp_to_tree(" ".join(x), None) except Exception as e: tree = None return tree def move_grad(source=None, target=None): source_params = {k: v for k, v in source.named_parameters()} for k, v in target.named_parameters(): assert(v.size() == source_params[k].size()) if source_params[k].grad is not None: if v.grad is None: v.grad = source_params[k].grad else: v.grad += source_params[k].grad source.zero_grad() def reset_special_grads_inner(_m:torch.nn.Module, mode="none"): # for paramname, param in _m.named_parameters(): # if paramname not in ["model.model.decoder.embed_tokens.extra_emb.weight", # "model.outlin.extra_lin.weight", "model.outlin.extra_lin.weight"]: # param.grad = None if mode == "metarare": # train everything pass elif mode == "split" or mode == "metararetokensonly" \ or "inner:onlyemb" in mode.split("+"): # train only embeddings and output layer for paramname, param in _m.named_parameters(): dotrain = False for e in ["model.model.decoder.embed_tokens", "model.outlin"]: if paramname.startswith(e): dotrain = dotrain or True if not dotrain: param.grad = None elif mode == "adapter" or mode == "adaptersplit" or mode == "adapterinner": # finetune only adapters and embeddings and output layers for paramname, param in _m.named_parameters(): isadapterparam = False m = _m namesplits = paramname.split(".") for namepiece in namesplits: m = getattr(m, namepiece) if isinstance(m, TransformerLayerAdapter): isadapterparam = True break dotrain = False if isadapterparam: dotrain = dotrain or True else: for e in ["model.model.decoder.embed_tokens", "model.outlin"]: if paramname.startswith(e): dotrain = dotrain or True if not dotrain: param.grad = None elif "inner:all" in mode.split("+"): pass # else: # if isinstance(_m.model.model.decoder.embed_tokens, SpecialEmbedding): # _m.model.model.decoder.embed_tokens.weight.grad = None # _m.model.model.decoder.metarare_emb.weight.grad = None # if isinstance(_m.model.outlin, SpecialOutlin): # _m.model.outlin.weight.grad = None # _m.model.outlin.metarare_lin.weight.grad = None # if _m.model.outlin.bias is not None: # _m.model.outlin.bias.grad = None # _m.model.outlin.metarare_lin.bias.grad = None def reset_special_grads_outer(_m, mode="none"): # if mode == "metararetokensonly": # if isinstance(_m.model.model.decoder.embed_tokens, SpecialEmbedding): # _m.model.model.decoder.embed_tokens.extra_emb.weight.grad = None # if isinstance(_m.model.outlin, SpecialOutlin): # _m.model.outlin.extra_lin.weight.grad = None # _m.model.outlin.extra_lin.bias.grad = None if mode == "metarare" or mode == "metararetokensonly": # train everything except Special layers's, extra vectors if isinstance(_m.model.model.decoder.embed_tokens, SpecialEmbedding): _m.model.model.decoder.embed_tokens.extra_emb.weight.grad = None if isinstance(_m.model.outlin, SpecialOutlin): _m.model.outlin.extra_lin.weight.grad = None _m.model.outlin.extra_lin.bias.grad = None elif mode == "split" or "outer:noemb" in mode.split("+"): # don't train any embeddings/output layer for paramname, param in _m.named_parameters(): for e in ["model.model.decoder.embed_tokens", "model.outlin"]: if paramname.startswith(e): param.grad = None elif mode == "adapter": # don't train original bert weights for paramname, param in _m.named_parameters(): isadapterparam = False m = _m namesplits = paramname.split(".") for namepiece in namesplits: m = getattr(m, namepiece) if isinstance(m, TransformerLayerAdapter): isadapterparam = True break dotrain = False if paramname.startswith("model.model.encoder"): if isadapterparam: dotrain = dotrain or True else: dotrain = dotrain or True if not dotrain: param.grad = None elif mode == "adaptersplit": # finetune only adapters and embeddings and output layers for paramname, param in _m.named_parameters(): isadapterparam = False m = _m namesplits = paramname.split(".") for namepiece in namesplits: m = getattr(m, namepiece) if isinstance(m, TransformerLayerAdapter): isadapterparam = True break donttrain = False if paramname.startswith("model.model.encoder"): donttrain = donttrain or True # don't train anything in encoder else: if isadapterparam: donttrain = donttrain or True else: for e in ["model.model.decoder.embed_tokens", "model.outlin"]: if paramname.startswith(e): donttrain = donttrain or True if donttrain: param.grad = None elif "outer:all" in mode.split("+") or mode == "adapter" or mode == "adapterinner": pass def infiter(a): while True: for ae in a: yield ae def cat_batches(*x, pad_value=0): y = list(zip(*x)) for i, yi in enumerate(y): if isinstance(yi[0], torch.Tensor): y[i] = q.pad_tensors(yi, 1, pad_value) for i, yi in enumerate(y): if isinstance(yi[0], torch.Tensor): y[i] = torch.cat(yi, 0) elif isinstance(yi, tuple): _yi = yi[0] for yij in yi[1:]: _yi = _yi + yij y[i] = _yi return y def meta_train_epoch(model=None, absmodel=None, data=None, allsourcedata=None, injecttraindata=False, optim=None, get_ft_model=None, get_ft_optim=None, losses=None, abslosses=None, ftlosses=None, device=torch.device("cpu"), tt=q.ticktock(" -"), current_epoch=0, max_epochs=0, finetunesteps=1, gradmode="none", # "none", "metarare", ... on_start=tuple(), on_end=tuple(), print_every_batch=False, clipgradnorm=None, gradacc=1, abstract_contrib=0.): """ Performs an epoch of training on given model, with data from given dataloader, using given optimizer, with loss computed based on given losses. :param model: :param data: dictionary from domains to dicts of dataloaders :param optim: :param losses: list of loss wrappers :param device: device to put batches on :param tt: :param current_epoch: :param max_epochs: :param _train_batch: train batch function, default is train_batch :param on_start: :param on_end: :return: """ for loss in losses: loss.push_epoch_to_history(epoch=current_epoch-1) loss.reset_agg() loss.loss.to(device) model.to(device) absmodel.to(device) [e() for e in on_start] q.epoch_reset(model) optim.zero_grad() numbatsperdomain = {k: len(data[k]["train"]) for k in data} totalnumtrainbats = sum(numbatsperdomain.values()) probbatsperdomain = {k: numbatsperdomain[k] / totalnumtrainbats for k in numbatsperdomain} # iter-ize training dataloaders in data for k, v in data.items(): v["_train"] = iter(v["train"]) outerstep_i = 0 while True: outerbatch = None exhausted_domains = set() while outerbatch is None and len(exhausted_domains) < len(data): ks, vs = zip(*probbatsperdomain.items()) chosendomain = np.random.choice(ks, p=vs) try: outerbatch = next(data[chosendomain]["_train"]) except StopIteration as e: # print(f"stopping iteration - outerstep_i: {outerstep_i}") exhausted_domains.add(chosendomain) outerbatch = None if outerbatch is None: break # perform K number of inner steps ftmodel = get_ft_model(model) ftoptim = get_ft_optim(ftmodel) inneriter = infiter(data[chosendomain]["finetune"]) extra_inneriter = infiter(allsourcedata["train"]) oldemb = ftmodel.model.model.decoder.embed_tokens.weight + 0 oldlin = ftmodel.model.outlin.weight + 0 for loss in ftlosses: loss.push_epoch_to_history(epoch=str(current_epoch - 1)+"."+chosendomain) loss.reset_agg() loss.loss.to(device) for innerstep_i in range(finetunesteps): innerbatch = next(inneriter) if injecttraindata: extra_innerbatch = next(extra_inneriter) innerbatch = cat_batches(innerbatch, extra_innerbatch) ttmsg = q.train_batch(batch=innerbatch, model=ftmodel, optim=ftoptim, losses=ftlosses, device=device, batch_number=innerstep_i, max_batches=finetunesteps, current_epoch=current_epoch, max_epochs=max_epochs, on_before_optim_step=[ partial(clipgradnorm, _m=ftmodel), partial(reset_special_grads_inner, _m=ftmodel, mode=gradmode)]) if print_every_batch: tt.msg(ttmsg) else: tt.live(ttmsg) # after K inner updates # perform outer update on main model weights # do outer update: # 1. obtain gradient on inner-updated model using outerbatch, # 2. apply gradient on main model weights ttmsg = q.train_batch(batch=outerbatch, model=ftmodel, optim=None, losses=losses, device=device, batch_number=outerstep_i, max_batches=totalnumtrainbats, current_epoch=current_epoch, max_epochs=max_epochs, gradient_accumulation_steps=gradacc) # , on_before_optim_step=[ # partial(clipgradnorm, _m=model), # partial(copy_grad, source=ftmodel, target=model)]) move_grad(ftmodel, model) reset_special_grads_outer(model, mode=gradmode) # do abstract prediction if abstract_contrib > 0.: abs_ttmsg = q.train_batch(batch=outerbatch, model=absmodel, optim=None, losses=abslosses, device=device, batch_number=outerstep_i, max_batches=totalnumtrainbats, current_epoch=current_epoch, max_epochs=max_epochs, gradient_accumulation_steps=gradacc, loss_scale=abstract_contrib) else: abs_ttmsg = "N/A" clipgradnorm(_m=model) # do optim step _do_optim_step = ((outerstep_i+1) % gradacc) == 0 _do_optim_step = _do_optim_step or (outerstep_i+1) == totalnumtrainbats # force optim step at the end of epoch if _do_optim_step: optim.step() optim.zero_grad() if print_every_batch: tt.msg(ttmsg + " -- " + abs_ttmsg) else: tt.live(ttmsg + " -- " + abs_ttmsg) outerstep_i += 1 tt.stoplive() [e() for e in on_end] ttmsg = q.pp_epoch_losses(*losses) + " -- " + q.pp_epoch_losses(*abslosses) return ttmsg def meta_test_epoch(model=None, data=None, allsourcedata=None, injecttraindata=False, get_ft_model=None, get_ft_optim=None, gradmode="none", losses=None, ftlosses=None, finetunesteps=1, bestfinetunestepsvar=None, bestfinetunestepswhichmetric=None, bestfinetunelowerisbetter=False, evalinterval=-1, mode="valid", # "valid" or "test" device=torch.device("cpu"), clipgradnorm=None, current_epoch=0, max_epochs=0, print_every_batch=False, on_start=tuple(), on_start_batch=tuple(), on_end_batch=tuple(), on_end=tuple(), on_outer_start=tuple(), on_outer_end=tuple()): if evalinterval < 0: evalinterval = 1 """ Performs a test epoch. If run=True, runs, otherwise returns partially filled function. :param model: :param dataloader: :param losses: :param device: :param current_epoch: :param max_epochs: :param on_start: :param on_start_batch: :param on_end_batch: :param on_end: :return: """ tt = q.ticktock(" -") model.to(device) q.epoch_reset(model) [e() for e in on_outer_start] lossesperdomain = {} stepperevals = [] for domain in data: stepperevals.append([]) lossesperdomain[domain] = [] # doing one domain domaindata = data[domain] # perform fine-tuning (with early stopping if valid is given ftmodel = get_ft_model(model) ftoptim = get_ft_optim(ftmodel) ftmodel.train() inneriter = infiter(domaindata["finetune"]) extra_inneriter = infiter(allsourcedata["train"]) for loss in ftlosses: loss.push_epoch_to_history(epoch=str(current_epoch - 1)+"."+domain) loss.reset_agg() loss.loss.to(device) for innerstep_i in range(finetunesteps): innerbatch = next(inneriter) if injecttraindata: extra_innerbatch = next(extra_inneriter) innerbatch = cat_batches(innerbatch, extra_innerbatch) ttmsg = q.train_batch(batch=innerbatch, model=ftmodel, optim=ftoptim, losses=ftlosses, device=device, batch_number=innerstep_i, max_batches=finetunesteps, current_epoch=current_epoch, max_epochs=max_epochs, on_before_optim_step=[partial(clipgradnorm, _m=ftmodel), partial(reset_special_grads_inner, _m=ftmodel, mode=gradmode)]) if print_every_batch: tt.msg(ttmsg) else: tt.live(ttmsg) test_ftmodel = ftmodel.get_test_model() if (mode == "valid" and (innerstep_i+1) % evalinterval == 0) \ or (mode == "test"): #"(innerstep_i+1 == finetunesteps): _losses = deepcopy(losses) dataname = "valid" if mode == "valid" else "test" q.test_epoch(test_ftmodel, dataloader=domaindata[dataname], losses=_losses, device=device, current_epoch=current_epoch, max_epochs=max_epochs, print_every_batch=print_every_batch, on_start=on_start, on_end=on_end, on_start_batch=on_start_batch, on_end_batch=on_end_batch) lossesperdomain[domain].append(_losses) stepperevals[-1].append(innerstep_i) # find best number of steps metricsmatrix = np.zeros((len(lossesperdomain), math.ceil(finetunesteps / evalinterval), len(losses))) for i, domain in enumerate(sorted(lossesperdomain.keys())): for j, steplosses in enumerate(lossesperdomain[domain]): for k, lossval in enumerate(steplosses): metricsmatrix[i, j, k] = lossval.get_epoch_error() metricsmatrix = metricsmatrix.mean(0) # (numevals, numlosses) if mode == "valid": critvals = metricsmatrix[:, bestfinetunestepswhichmetric] # (numevals) critvals = critvals * (1 if bestfinetunelowerisbetter is False else -1) k = np.argmax(critvals) evalstep = stepperevals[0][k] bestfinetunestepsvar.v = evalstep else: print("metricsmatrix:") print(metricsmatrix) evalstep = q.v(bestfinetunestepsvar) k = q.v(bestfinetunestepsvar) for loss, _loss in zip(losses, metricsmatrix[k, :]): loss.epoch_agg_values.append(_loss) loss.epoch_agg_sizes.append(1) tt.stoplive() [e() for e in on_outer_end] ttmsg = q.pp_epoch_losses(*losses) + f" [@{evalstep+1}]" return ttmsg def run(traindomains="ALL", domain="restaurants", mincoverage=2, lr=0.0001, enclrmul=0.1, numbeam=1, ftlr=0.0001, cosinelr=False, warmup=0., batsize=30, epochs=100, finetunesteps=5, maxfinetunesteps=4, evalinterval=2, dropout=0.1, wreg=1e-9, gradnorm=3, gradacc=1, smoothing=0., patience=20, gpu=-1, seed=123456789, encoder="bert-base-uncased", numlayers=6, hdim=600, numheads=8, maxlen=30, fullsimplify=True, domainstart=False, supportsetting="lex", # "lex" or "min" metarare="no", abscontrib=1., gradmode="none", # "none", "metarare", "metarareonly", "split" injecttraindata=False, useadapters=False, ): settings = locals().copy() print(json.dumps(settings, indent=4)) # wandb.init(project=f"overnight_joint_pretrain_fewshot_{pretrainsetting}-{finetunesetting}-{domain}", # reinit=True, config=settings) if traindomains == "ALL": alldomains = {"recipes", "restaurants", "blocks", "calendar", "housing", "publications"} traindomains = alldomains - {domain, } else: traindomains = set(traindomains.split("+")) random.seed(seed) torch.manual_seed(seed)
np.random.seed(seed)
numpy.random.seed
import pickle import os import numpy as np import time import matplotlib.pyplot as plt from math import sqrt, ceil from random import randrange def rel_error(x, y): """ returns relative error """ return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y)))) def load_one_cifar_batch(file): """ load one batch training set """ with open(file, 'rb') as file: dict = pickle.load(file, encoding='bytes') X = dict[b'data'] Y = dict[b'labels'] X = X.reshape(10000, 3, 32, 32).transpose(0, 2, 3, 1).astype("float") Y = np.array(Y) return X, Y def load_all_cifar(root): """ load 5 batches training set and 1 test set """ x_all = [] y_all = [] for i in range(1, 6): filepath = os.path.join(root, "data_batch_%d" % (i,)) X, Y = load_one_cifar_batch(filepath) x_all.append(X) y_all.append(Y) Xtrain = np.concatenate(x_all) Ytrain = np.concatenate(y_all) del X, Y Xtest, Ytest = load_one_cifar_batch(os.path.join(root, "test_batch")) return Xtrain, Ytrain, Xtest, Ytest def showimages(X_train, y_train, sample_per_class=8): """ plot images in category """ # define class name list class_list = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] num_classes = len(class_list) # print some pictures from training set for class_index, class_name in enumerate(class_list): # get indexes in the label list that are equal to the index of the class list y_train_indexes = np.flatnonzero(y_train == class_index) # randomly pick sample indexes from the class y_train_indexes = np.random.choice( y_train_indexes, sample_per_class, replace=False) # show images for i, y_index in enumerate(y_train_indexes): plt_idx = i * num_classes + class_index + 1 plt.subplot(sample_per_class, num_classes, plt_idx) plt.imshow(X_train[y_index].astype('uint8')) plt.axis('off') if i == 0: plt.title(class_name) plt.show() def time_elapse(function, *args): """ Call a function with args and return the time (in seconds) that it took to execute. """ tic = time.time() function(*args) toc = time.time() return toc - tic def load_data(dir, num_training=49000, num_validation=1000, num_test=1000, num_dev=500, bias=False, row=False): """ Load cifar data and preprocess data """ # load data X_train, y_train, X_test, y_test = load_all_cifar(dir) # get the validation set mask = range(num_training, num_training + num_validation) X_val = X_train[mask] y_val = y_train[mask] # get the training set mask = range(num_training) X_train = X_train[mask] y_train = y_train[mask] # get a development set as the subset of training set mask = range(num_dev) X_dev = X_train[mask] y_dev = y_train[mask] # get a sub test set mask = range(num_test) X_test = X_test[mask] y_test = y_test[mask] """ preprocess data """ # Mean substraction mean_image = np.mean(X_train, axis=0) X_train -= mean_image X_val -= mean_image X_test -= mean_image X_dev -= mean_image """ # visualize the mean image """ # plt.figure(figsize=(4, 4)) # plt.imshow(mean_image.reshape((32, 32, 3)).astype('uint8')) # plt.show() # reshape the image data into rows if row: X_train = np.reshape(X_train, (X_train.shape[0], -1)) X_val = np.reshape(X_val, (X_val.shape[0], -1)) X_test = np.reshape(X_test, (X_test.shape[0], -1)) X_dev = np.reshape(X_dev, (X_dev.shape[0], -1)) # if need to add a bias 1 to the last column if bias: X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))]) X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))]) X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))]) X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))]) else: # Retain the input shape and change the channel to the first X_train = X_train.transpose(0, 3, 1, 2).copy() X_val = X_val.transpose(0, 3, 1, 2).copy() X_test = X_test.transpose(0, 3, 1, 2).copy() X_dev = X_dev.transpose(0, 3, 1, 2).copy() print('Train data shape: ', X_train.shape) print('Train labels shape: ', y_train.shape) print('Validation data shape: ', X_val.shape) print('Validation labels shape: ', y_val.shape) print('Test data shape: ', X_test.shape) print('Test labels shape: ', y_test.shape) return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev def eval_numerical_gradient(f, x, verbose=True, h=0.00001): """ a naive implementation of numerical gradient of f at x - f should be a function that takes a single argument - x is the point (numpy array) to evaluate the gradient at """ fx = f(x) # evaluate function value at original point grad = np.zeros_like(x) # iterate over all indexes in x it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: # evaluate function at x+h ix = it.multi_index oldval = x[ix] x[ix] = oldval + h # increment by h fxph = f(x) # evalute f(x + h) x[ix] = oldval - h fxmh = f(x) # evaluate f(x - h) x[ix] = oldval # restore # compute the partial derivative with centered formula grad[ix] = (fxph - fxmh) / (2 * h) # the slope if verbose: print(ix, grad[ix]) it.iternext() # step to next dimension return grad def eval_numerical_gradient_array(f, x, df, h=1e-5): """ Evaluate a numeric gradient for a function that accepts a numpy array and returns a numpy array. """ grad = np.zeros_like(x) it = np.nditer(x, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: ix = it.multi_index oldval = x[ix] x[ix] = oldval + h pos = f(x).copy() x[ix] = oldval - h neg = f(x).copy() x[ix] = oldval grad[ix] = np.sum((pos - neg) * df) / (2 * h) it.iternext() return grad def eval_numerical_gradient_blobs(f, inputs, output, h=1e-5): """ Compute numeric gradients for a function that operates on input and output blobs. We assume that f accepts several input blobs as arguments, followed by a blob into which outputs will be written. For example, f might be called like this: f(x, w, out) where x and w are input Blobs, and the result of f will be written to out. Inputs: - f: function - inputs: tuple of input blobs - output: output blob - h: step size """ numeric_diffs = [] for input_blob in inputs: diff = np.zeros_like(input_blob.diffs) it = np.nditer(input_blob.vals, flags=['multi_index'], op_flags=['readwrite']) while not it.finished: idx = it.multi_index orig = input_blob.vals[idx] input_blob.vals[idx] = orig + h f(*(inputs + (output,))) pos = np.copy(output.vals) input_blob.vals[idx] = orig - h f(*(inputs + (output,))) neg = np.copy(output.vals) input_blob.vals[idx] = orig diff[idx] = np.sum((pos - neg) * output.diffs) / (2.0 * h) it.iternext() numeric_diffs.append(diff) return numeric_diffs def eval_numerical_gradient_net(net, inputs, output, h=1e-5): return eval_numerical_gradient_blobs(lambda *args: net.forward(), inputs, output, h=h) def grad_check_sparse(f, x, analytic_grad, num_checks=10, h=1e-5): """ sample a few random elements and only return numerical in this dimensions. """ for i in range(num_checks): ix = tuple([randrange(m) for m in x.shape]) oldval = x[ix] x[ix] = oldval + h # increment by h fxph = f(x) # evaluate f(x + h) x[ix] = oldval - h # increment by h fxmh = f(x) # evaluate f(x - h) x[ix] = oldval # reset grad_numerical = (fxph - fxmh) / (2 * h) grad_analytic = analytic_grad[ix] rel_error = abs(grad_numerical - grad_analytic) / \ (abs(grad_numerical) + abs(grad_analytic)) print('numerical: %f analytic: %f, relative error: %e' % (grad_numerical, grad_analytic, rel_error)) def visualize_grid(Xs, ubound=255.0, padding=1): """ Reshape a 4D tensor of image data to a grid for easy visualization. Inputs: - Xs: Data of shape (N, H, W, C) - ubound: Output grid will have values scaled to the range [0, ubound] - padding: The number of blank pixels between elements of the grid """ (N, H, W, C) = Xs.shape grid_size = int(ceil(sqrt(N))) grid_height = H * grid_size + padding * (grid_size - 1) grid_width = W * grid_size + padding * (grid_size - 1) grid = np.zeros((grid_height, grid_width, C)) next_idx = 0 y0, y1 = 0, H for y in range(grid_size): x0, x1 = 0, W for x in range(grid_size): if next_idx < N: img = Xs[next_idx] low, high = np.min(img), np.max(img) grid[y0:y1, x0:x1] = ubound * (img - low) / (high - low) # grid[y0:y1, x0:x1] = Xs[next_idx] next_idx += 1 x0 += W + padding x1 += W + padding y0 += H + padding y1 += H + padding # grid_max = np.max(grid) # grid_min = np.min(grid) # grid = ubound * (grid - grid_min) / (grid_max - grid_min) return grid def vis_grid(Xs): """ visualize a grid of images """ (N, H, W, C) = Xs.shape A = int(ceil(sqrt(N))) G = np.ones((A*H+A, A*W+A, C), Xs.dtype) G *=
np.min(Xs)
numpy.min
import os import logging import numpy as np from numpy.testing import assert_allclose import trackpy as tp from trackpy.artificial import (draw_features_brightfield, gen_nonoverlapping_locations, gen_connected_locations) from trackpy.tests.common import sort_positions, StrictTestCase from trackpy.feature import locate from trackpy.locate_functions.brightfield_ring import locate_brightfield_ring from trackpy.refine.brightfield_ring import (_min_edge, _fit_circle) path, _ = os.path.split(os.path.abspath(__file__)) # we need to use a low value for min_percentile because the artificial # edge is very sharp MIN_PERC = 0.5 def draw_artificial_image(shape, pos, radius, noise_level, dip=False, traditional=False, **kwargs): radius = tp.utils.validate_tuple(radius, len(shape)) # tp.locate ignores a margin of size radius, take 1 px more to be safe diameter = tuple([(r * 2) + 1 for r in radius]) size = [d / 2 for d in diameter] cols = ['x', 'y', 'z'][:len(shape)][::-1] image = draw_features_brightfield(shape, pos, size, noise_level, dip=dip) if not traditional: kwargs.update({'min_percentile': MIN_PERC}) result = locate_brightfield_ring(image, diameter, **kwargs) else: result = locate(image, diameter, **kwargs) # For some reason, sorting the DataFrame gives wrong orders in some cases result = np.sort(result[cols].astype(float).values, axis=0) expected = np.sort(pos, axis=0) return result, expected def artificial_image(shape, count, radius, noise_level, dip=False, traditional=False, **kwargs): radius = tp.utils.validate_tuple(radius, len(shape)) margin = tuple([r + 1 for r in radius]) separation = tuple([2.5*r for r in radius]) pos = gen_nonoverlapping_locations(shape, count, separation, margin) return draw_artificial_image(shape, pos, radius, noise_level, dip, traditional, **kwargs) def artificial_cluster(shape, count, radius, noise_level, dip=False, traditional=False, **kwargs): radius = tp.utils.validate_tuple(radius, len(shape)) margin = tuple([r + 1 for r in radius]) separation = tuple([1.4*r for r in radius]) pos = gen_connected_locations(shape, count, separation, margin) return draw_artificial_image(shape, pos, radius, noise_level, dip, traditional, **kwargs) def generate_random_circle(r, x, y, num_samples=500, noise=0): np.random.seed(1) theta = np.random.rand(num_samples) * (2 * np.pi) if noise > 0: mini = r-noise maxi = r+noise r_rand = np.random.rand(num_samples) * (maxi-mini) + mini else: r_rand = r xc = r_rand * np.cos(theta) + x yc = r_rand * np.sin(theta) + y return np.squeeze(np.dstack((xc, yc))).T class TestLocateBrightfieldRing(StrictTestCase): def setUp(self): mpl_logger = logging.getLogger('matplotlib') mpl_logger.setLevel(logging.WARNING) self.pixel_tolerance = 0.9 self.n_feat_sparse = 5 self.n_feat_cluster = 3 self.n_feat_dense = 30 self.image_size = (250, 350) self.radius = 13 self.cluster_sep = 1.0*self.radius def test_multiple_simple_sparse(self): actual, expected = artificial_image(self.image_size, self.n_feat_sparse, self.radius, noise_level=0) assert_allclose(actual, expected, atol=self.pixel_tolerance) def test_multiple_simple_sparse_no_multiprocessing(self): actual, expected = artificial_image(self.image_size, self.n_feat_sparse, self.radius, noise_level=0, processes=0)
assert_allclose(actual, expected, atol=self.pixel_tolerance)
numpy.testing.assert_allclose
# ============================================================================ # # LINEAR REGRESSION # # ============================================================================ # # Renders stacked line charts showing convex and non-convex obj function #%% import pandas as pd import plotly.offline as po import plotly.graph_objs as go import numpy as np from sklearn import datasets from sklearn.linear_model import SGDRegressor from ml_studio.supervised_learning.regression import LinearRegression from ml_studio.supervised_learning.training.metrics import R2 from ml_studio.utils.data_manager import StandardScaler, data_split from ml_studio.visual.animations import SingleModelFit2D, SingleModelSearch3D directory = "./content/figures/" # ---------------------------------------------------------------------------- # # DATA # # ---------------------------------------------------------------------------- # #%% # Data X, y, coef = datasets.make_regression(n_samples=1000, n_features=1, bias=10, noise=40, coef=True, random_state=50) X_train, X_test, y_train, y_test = data_split(X,y, test_size=0.3, seed=50) # ---------------------------------------------------------------------------- # # SCATTER PLOT # # ---------------------------------------------------------------------------- # #%% # Linear Regression Scatterplot data = go.Scatter( x=X_train.flatten(), y=y_train, mode='markers', marker=dict(color='steelblue') ) layout = go.Layout(title='Simulated Data', height=400, width=800, showlegend=False, xaxis_title="X", yaxis_title="Y", margin=dict(l=10,r=10,t=40,b=10), template='plotly_white' ) fig = go.Figure(data=data, layout=layout) fig.show() po.plot(fig, filename = "./content/figures/simulated_training_data.html", auto_open=False) # ---------------------------------------------------------------------------- # # LINEAR REGRESSION # # ---------------------------------------------------------------------------- # #%% # Linear Regression scaler = StandardScaler() scaler.fit(X_train) X_train = scaler.transform(X_train) lr = LinearRegression(epochs=1000, learning_rate=0.01, val_size=0.2, patience=40, early_stop=True, metric='r2', verbose=True, checkpoint=100) lr.fit(X_train,y_train) print(lr.intercept_) print(lr.coef_.shape) # ---------------------------------------------------------------------------- # # ANIMATIONS # # ---------------------------------------------------------------------------- # #%% # Animations plot = SingleModelSearch3D() plot.search(lr, directory=directory, filename="linear_regression_search_test.gif") plot = SingleModelFit2D() plot.fit(lr, directory=directory, filename="linear_regression_fit_test.gif") #%% # ---------------------------------------------------------------------------- # # TEST # # ---------------------------------------------------------------------------- # scaler.fit(X_test) X_test = scaler.transform(X_test) # %% # ---------------------------------------------------------------------------- # # PREDICTED VS ACTUAL ON TEST DATA # # ---------------------------------------------------------------------------- # def f_actual(x): y = (10 +
np.dot(coef, x)
numpy.dot
import os import unittest import warnings from io import BytesIO from pathlib import Path import h5py import numpy as np from h5py import SoftLink, HardLink, ExternalLink, File from h5py import filters as h5py_filters from hdmf.backends.hdf5 import H5DataIO from hdmf.backends.hdf5.h5tools import HDF5IO, ROOT_NAME, SPEC_LOC_ATTR from hdmf.backends.io import HDMFIO, UnsupportedOperation from hdmf.backends.warnings import BrokenLinkWarning from hdmf.build import (GroupBuilder, DatasetBuilder, BuildManager, TypeMap, ObjectMapper, OrphanContainerBuildError, LinkBuilder) from hdmf.container import Container, Data from hdmf.data_utils import DataChunkIterator, InvalidDataIOError from hdmf.spec.catalog import SpecCatalog from hdmf.spec.namespace import NamespaceCatalog from hdmf.spec.namespace import SpecNamespace from hdmf.spec.spec import (AttributeSpec, DatasetSpec, GroupSpec, LinkSpec, ZERO_OR_MANY, ONE_OR_MANY, ZERO_OR_ONE, RefSpec, DtypeSpec) from hdmf.testing import TestCase from hdmf.utils import docval, getargs from tests.unit.utils import (Foo, FooBucket, CORE_NAMESPACE, get_temp_filepath, CustomGroupSpec, CustomDatasetSpec, CustomSpecNamespace) class FooFile(Container): @docval({'name': 'buckets', 'type': list, 'doc': 'the FooBuckets in this file', 'default': list()}, {'name': 'foo_link', 'type': Foo, 'doc': 'an optional linked Foo', 'default': None}, {'name': 'foofile_data', 'type': 'array_data', 'doc': 'an optional dataset', 'default': None}, {'name': 'foo_ref_attr', 'type': Foo, 'doc': 'a reference Foo', 'default': None}, ) def __init__(self, **kwargs): buckets, foo_link, foofile_data, foo_ref_attr = getargs('buckets', 'foo_link', 'foofile_data', 'foo_ref_attr', kwargs) super().__init__(name=ROOT_NAME) # name is not used - FooFile should be the root container self.__buckets = {b.name: b for b in buckets} # note: collections of groups are unordered in HDF5 for f in buckets: f.parent = self self.__foo_link = foo_link self.__foofile_data = foofile_data self.__foo_ref_attr = foo_ref_attr def __eq__(self, other): return (self.buckets == other.buckets and self.foo_link == other.foo_link and self.foofile_data == other.foofile_data) def __str__(self): return ('buckets=%s, foo_link=%s, foofile_data=%s' % (self.buckets, self.foo_link, self.foofile_data)) @property def buckets(self): return self.__buckets def add_bucket(self, bucket): self.__buckets[bucket.name] = bucket bucket.parent = self def remove_bucket(self, bucket_name): bucket = self.__buckets.pop(bucket_name) if bucket.parent is self: self._remove_child(bucket) return bucket @property def foo_link(self): return self.__foo_link @foo_link.setter def foo_link(self, value): if self.__foo_link is None: self.__foo_link = value else: raise ValueError("can't reset foo_link attribute") @property def foofile_data(self): return self.__foofile_data @foofile_data.setter def foofile_data(self, value): if self.__foofile_data is None: self.__foofile_data = value else: raise ValueError("can't reset foofile_data attribute") @property def foo_ref_attr(self): return self.__foo_ref_attr @foo_ref_attr.setter def foo_ref_attr(self, value): if self.__foo_ref_attr is None: self.__foo_ref_attr = value else: raise ValueError("can't reset foo_ref_attr attribute") class H5IOTest(TestCase): """Tests for h5tools IO tools""" def setUp(self): self.path = get_temp_filepath() self.io = HDF5IO(self.path, mode='a') self.f = self.io._file def tearDown(self): self.io.close() os.remove(self.path) ########################################## # __chunked_iter_fill__(...) tests ########################################## def test__chunked_iter_fill(self): """Matrix test of HDF5IO.__chunked_iter_fill__ using a DataChunkIterator with different parameters""" data_opts = {'iterator': range(10), 'numpy': np.arange(30).reshape(5, 2, 3), 'list': np.arange(30).reshape(5, 2, 3).tolist(), 'sparselist1': [1, 2, 3, None, None, None, None, 8, 9, 10], 'sparselist2': [None, None, 3], 'sparselist3': [1, 2, 3, None, None], # note: cannot process None in ndarray 'nanlist': [[[1, 2, 3, np.nan, np.nan, 6], [np.nan, np.nan, 3, 4, np.nan, np.nan]], [[10, 20, 30, 40, np.nan, np.nan], [np.nan, np.nan, np.nan, np.nan, np.nan, np.nan]]]} buffer_size_opts = [1, 2, 3, 4] # data is divisible by some of these, some not for data_type, data in data_opts.items(): iter_axis_opts = [0, 1, 2] if data_type == 'iterator' or data_type.startswith('sparselist'): iter_axis_opts = [0] # only one dimension for iter_axis in iter_axis_opts: for buffer_size in buffer_size_opts: with self.subTest(data_type=data_type, iter_axis=iter_axis, buffer_size=buffer_size): with warnings.catch_warnings(record=True) as w: dci = DataChunkIterator(data=data, buffer_size=buffer_size, iter_axis=iter_axis) if len(w) <= 1: # init may throw UserWarning for iterating over not-first dim of a list. ignore here pass dset_name = '%s, %d, %d' % (data_type, iter_axis, buffer_size) my_dset = HDF5IO.__chunked_iter_fill__(self.f, dset_name, dci) if data_type == 'iterator': self.assertListEqual(my_dset[:].tolist(), list(data)) elif data_type == 'numpy': self.assertTrue(np.all(my_dset[:] == data)) self.assertTupleEqual(my_dset.shape, data.shape) elif data_type == 'list' or data_type == 'nanlist': data_np = np.array(data) np.testing.assert_array_equal(my_dset[:], data_np) self.assertTupleEqual(my_dset.shape, data_np.shape) elif data_type.startswith('sparselist'): # replace None in original data with default hdf5 fillvalue 0 data_zeros = np.where(np.equal(np.array(data), None), 0, data) np.testing.assert_array_equal(my_dset[:], data_zeros) self.assertTupleEqual(my_dset.shape, data_zeros.shape) ########################################## # write_dataset tests: scalars ########################################## def test_write_dataset_scalar(self): a = 10 self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTupleEqual(dset.shape, ()) self.assertEqual(dset[()], a) def test_write_dataset_string(self): a = 'test string' self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTupleEqual(dset.shape, ()) # self.assertEqual(dset[()].decode('utf-8'), a) read_a = dset[()] if isinstance(read_a, bytes): read_a = read_a.decode('utf-8') self.assertEqual(read_a, a) ########################################## # write_dataset tests: lists ########################################## def test_write_dataset_list(self): a = np.arange(30).reshape(5, 2, 3) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a.tolist(), attributes={})) dset = self.f['test_dataset'] self.assertTrue(np.all(dset[:] == a)) def test_write_dataset_list_compress_gzip(self): a = H5DataIO(np.arange(30).reshape(5, 2, 3), compression='gzip', compression_opts=5, shuffle=True, fletcher32=True) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTrue(np.all(dset[:] == a.data)) self.assertEqual(dset.compression, 'gzip') self.assertEqual(dset.compression_opts, 5) self.assertEqual(dset.shuffle, True) self.assertEqual(dset.fletcher32, True) @unittest.skipIf("lzf" not in h5py_filters.encode, "LZF compression not supported in this h5py library install") def test_write_dataset_list_compress_lzf(self): warn_msg = ("lzf compression may not be available on all installations of HDF5. Use of gzip is " "recommended to ensure portability of the generated HDF5 files.") with self.assertWarnsWith(UserWarning, warn_msg): a = H5DataIO(np.arange(30).reshape(5, 2, 3), compression='lzf', shuffle=True, fletcher32=True) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTrue(np.all(dset[:] == a.data)) self.assertEqual(dset.compression, 'lzf') self.assertEqual(dset.shuffle, True) self.assertEqual(dset.fletcher32, True) @unittest.skipIf("szip" not in h5py_filters.encode, "SZIP compression not supported in this h5py library install") def test_write_dataset_list_compress_szip(self): warn_msg = ("szip compression may not be available on all installations of HDF5. Use of gzip is " "recommended to ensure portability of the generated HDF5 files.") with self.assertWarnsWith(UserWarning, warn_msg): a = H5DataIO(np.arange(30).reshape(5, 2, 3), compression='szip', compression_opts=('ec', 16), shuffle=True, fletcher32=True) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTrue(np.all(dset[:] == a.data)) self.assertEqual(dset.compression, 'szip') self.assertEqual(dset.shuffle, True) self.assertEqual(dset.fletcher32, True) def test_write_dataset_list_compress_available_int_filters(self): a = H5DataIO(np.arange(30).reshape(5, 2, 3), compression=1, shuffle=True, fletcher32=True, allow_plugin_filters=True) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTrue(np.all(dset[:] == a.data)) self.assertEqual(dset.compression, 'gzip') self.assertEqual(dset.shuffle, True) self.assertEqual(dset.fletcher32, True) def test_write_dataset_list_enable_default_compress(self): a = H5DataIO(np.arange(30).reshape(5, 2, 3), compression=True) self.assertEqual(a.io_settings['compression'], 'gzip') self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTrue(np.all(dset[:] == a.data)) self.assertEqual(dset.compression, 'gzip') def test_write_dataset_list_disable_default_compress(self): with warnings.catch_warnings(record=True) as w: a = H5DataIO(np.arange(30).reshape(5, 2, 3), compression=False, compression_opts=5) self.assertEqual(len(w), 1) # We expect a warning that compression options are being ignored self.assertFalse('compression_ops' in a.io_settings) self.assertFalse('compression' in a.io_settings) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTrue(np.all(dset[:] == a.data)) self.assertEqual(dset.compression, None) def test_write_dataset_list_chunked(self): a = H5DataIO(np.arange(30).reshape(5, 2, 3), chunks=(1, 1, 3)) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTrue(np.all(dset[:] == a.data)) self.assertEqual(dset.chunks, (1, 1, 3)) def test_write_dataset_list_fillvalue(self): a = H5DataIO(np.arange(20).reshape(5, 4), fillvalue=-1) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', a, attributes={})) dset = self.f['test_dataset'] self.assertTrue(np.all(dset[:] == a.data)) self.assertEqual(dset.fillvalue, -1) ########################################## # write_dataset tests: tables ########################################## def test_write_table(self): cmpd_dt = np.dtype([('a', np.int32), ('b', np.float64)]) data = np.zeros(10, dtype=cmpd_dt) data['a'][1] = 101 data['b'][1] = 0.1 dt = [{'name': 'a', 'dtype': 'int32', 'doc': 'a column'}, {'name': 'b', 'dtype': 'float64', 'doc': 'b column'}] self.io.write_dataset(self.f, DatasetBuilder('test_dataset', data, attributes={}, dtype=dt)) dset = self.f['test_dataset'] self.assertEqual(dset['a'].tolist(), data['a'].tolist()) self.assertEqual(dset['b'].tolist(), data['b'].tolist()) def test_write_table_nested(self): b_cmpd_dt = np.dtype([('c', np.int32), ('d', np.float64)]) cmpd_dt = np.dtype([('a', np.int32), ('b', b_cmpd_dt)]) data = np.zeros(10, dtype=cmpd_dt) data['a'][1] = 101 data['b']['c'] = 202 data['b']['d'] = 10.1 b_dt = [{'name': 'c', 'dtype': 'int32', 'doc': 'c column'}, {'name': 'd', 'dtype': 'float64', 'doc': 'd column'}] dt = [{'name': 'a', 'dtype': 'int32', 'doc': 'a column'}, {'name': 'b', 'dtype': b_dt, 'doc': 'b column'}] self.io.write_dataset(self.f, DatasetBuilder('test_dataset', data, attributes={}, dtype=dt)) dset = self.f['test_dataset'] self.assertEqual(dset['a'].tolist(), data['a'].tolist()) self.assertEqual(dset['b'].tolist(), data['b'].tolist()) ########################################## # write_dataset tests: Iterable ########################################## def test_write_dataset_iterable(self): self.io.write_dataset(self.f, DatasetBuilder('test_dataset', range(10), attributes={})) dset = self.f['test_dataset'] self.assertListEqual(dset[:].tolist(), list(range(10))) def test_write_dataset_iterable_multidimensional_array(self): a = np.arange(30).reshape(5, 2, 3) aiter = iter(a) daiter = DataChunkIterator.from_iterable(aiter, buffer_size=2) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', daiter, attributes={})) dset = self.f['test_dataset'] self.assertListEqual(dset[:].tolist(), a.tolist()) def test_write_multi_dci_oaat(self): """ Test writing multiple DataChunkIterators, one at a time """ a = np.arange(30).reshape(5, 2, 3) b = np.arange(30, 60).reshape(5, 2, 3) aiter = iter(a) biter = iter(b) daiter1 = DataChunkIterator.from_iterable(aiter, buffer_size=2) daiter2 = DataChunkIterator.from_iterable(biter, buffer_size=2) builder = GroupBuilder("root") dataset1 = DatasetBuilder('test_dataset1', daiter1) dataset2 = DatasetBuilder('test_dataset2', daiter2) builder.set_dataset(dataset1) builder.set_dataset(dataset2) self.io.write_builder(builder) dset1 = self.f['test_dataset1'] self.assertListEqual(dset1[:].tolist(), a.tolist()) dset2 = self.f['test_dataset2'] self.assertListEqual(dset2[:].tolist(), b.tolist()) def test_write_multi_dci_conc(self): """ Test writing multiple DataChunkIterators, concurrently """ a = np.arange(30).reshape(5, 2, 3) b = np.arange(30, 60).reshape(5, 2, 3) aiter = iter(a) biter = iter(b) daiter1 = DataChunkIterator.from_iterable(aiter, buffer_size=2) daiter2 = DataChunkIterator.from_iterable(biter, buffer_size=2) builder = GroupBuilder("root") dataset1 = DatasetBuilder('test_dataset1', daiter1) dataset2 = DatasetBuilder('test_dataset2', daiter2) builder.set_dataset(dataset1) builder.set_dataset(dataset2) self.io.write_builder(builder) dset1 = self.f['test_dataset1'] self.assertListEqual(dset1[:].tolist(), a.tolist()) dset2 = self.f['test_dataset2'] self.assertListEqual(dset2[:].tolist(), b.tolist()) def test_write_dataset_iterable_multidimensional_array_compression(self): a = np.arange(30).reshape(5, 2, 3) aiter = iter(a) daiter = DataChunkIterator.from_iterable(aiter, buffer_size=2) wrapped_daiter = H5DataIO(data=daiter, compression='gzip', compression_opts=5, shuffle=True, fletcher32=True) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', wrapped_daiter, attributes={})) dset = self.f['test_dataset'] self.assertEqual(dset.shape, a.shape) self.assertListEqual(dset[:].tolist(), a.tolist()) self.assertEqual(dset.compression, 'gzip') self.assertEqual(dset.compression_opts, 5) self.assertEqual(dset.shuffle, True) self.assertEqual(dset.fletcher32, True) ############################################# # write_dataset tests: data chunk iterator ############################################# def test_write_dataset_data_chunk_iterator(self): dci = DataChunkIterator(data=np.arange(10), buffer_size=2) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', dci, attributes={}, dtype=dci.dtype)) dset = self.f['test_dataset'] self.assertListEqual(dset[:].tolist(), list(range(10))) self.assertEqual(dset[:].dtype, dci.dtype) def test_write_dataset_data_chunk_iterator_with_compression(self): dci = DataChunkIterator(data=np.arange(10), buffer_size=2) wrapped_dci = H5DataIO(data=dci, compression='gzip', compression_opts=5, shuffle=True, fletcher32=True, chunks=(2,)) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', wrapped_dci, attributes={})) dset = self.f['test_dataset'] self.assertListEqual(dset[:].tolist(), list(range(10))) self.assertEqual(dset.compression, 'gzip') self.assertEqual(dset.compression_opts, 5) self.assertEqual(dset.shuffle, True) self.assertEqual(dset.fletcher32, True) self.assertEqual(dset.chunks, (2,)) def test_pass_through_of_recommended_chunks(self): class DC(DataChunkIterator): def recommended_chunk_shape(self): return (5, 1, 1) dci = DC(data=np.arange(30).reshape(5, 2, 3)) wrapped_dci = H5DataIO(data=dci, compression='gzip', compression_opts=5, shuffle=True, fletcher32=True) self.io.write_dataset(self.f, DatasetBuilder('test_dataset', wrapped_dci, attributes={})) dset = self.f['test_dataset'] self.assertEqual(dset.chunks, (5, 1, 1)) self.assertEqual(dset.compression, 'gzip') self.assertEqual(dset.compression_opts, 5) self.assertEqual(dset.shuffle, True) self.assertEqual(dset.fletcher32, True) def test_dci_h5dataset(self): data = np.arange(30).reshape(5, 2, 3) dci1 = DataChunkIterator(data=data, buffer_size=1, iter_axis=0) HDF5IO.__chunked_iter_fill__(self.f, 'test_dataset', dci1) dset = self.f['test_dataset'] dci2 = DataChunkIterator(data=dset, buffer_size=2, iter_axis=2) chunk = dci2.next() self.assertTupleEqual(chunk.shape, (5, 2, 2)) chunk = dci2.next() self.assertTupleEqual(chunk.shape, (5, 2, 1)) # TODO test chunk data, shape, selection self.assertTupleEqual(dci2.recommended_data_shape(), data.shape) self.assertIsNone(dci2.recommended_chunk_shape()) def test_dci_h5dataset_sparse_matched(self): data = [1, 2, 3, None, None, None, None, 8, 9, 10] dci1 = DataChunkIterator(data=data, buffer_size=3) HDF5IO.__chunked_iter_fill__(self.f, 'test_dataset', dci1) dset = self.f['test_dataset'] dci2 = DataChunkIterator(data=dset, buffer_size=2) # dataset is read such that Nones in original data were not written, but are read as 0s self.assertTupleEqual(dci2.maxshape, (10,)) self.assertEqual(dci2.dtype, np.dtype(int)) count = 0 for chunk in dci2: self.assertEqual(len(chunk.selection), 1) if count == 0: self.assertListEqual(chunk.data.tolist(), [1, 2]) self.assertEqual(chunk.selection[0], slice(0, 2)) elif count == 1: self.assertListEqual(chunk.data.tolist(), [3, 0]) self.assertEqual(chunk.selection[0], slice(2, 4)) elif count == 2: self.assertListEqual(chunk.data.tolist(), [0, 0]) self.assertEqual(chunk.selection[0], slice(4, 6)) elif count == 3: self.assertListEqual(chunk.data.tolist(), [0, 8]) self.assertEqual(chunk.selection[0], slice(6, 8)) elif count == 4: self.assertListEqual(chunk.data.tolist(), [9, 10]) self.assertEqual(chunk.selection[0], slice(8, 10)) count += 1 self.assertEqual(count, 5) self.assertTupleEqual(dci2.recommended_data_shape(), (10,)) self.assertIsNone(dci2.recommended_chunk_shape()) def test_dci_h5dataset_sparse_unmatched(self): data = [1, 2, 3, None, None, None, None, 8, 9, 10] dci1 = DataChunkIterator(data=data, buffer_size=3) HDF5IO.__chunked_iter_fill__(self.f, 'test_dataset', dci1) dset = self.f['test_dataset'] dci2 = DataChunkIterator(data=dset, buffer_size=4) # dataset is read such that Nones in original data were not written, but are read as 0s self.assertTupleEqual(dci2.maxshape, (10,)) self.assertEqual(dci2.dtype, np.dtype(int)) count = 0 for chunk in dci2: self.assertEqual(len(chunk.selection), 1) if count == 0: self.assertListEqual(chunk.data.tolist(), [1, 2, 3, 0]) self.assertEqual(chunk.selection[0], slice(0, 4)) elif count == 1: self.assertListEqual(chunk.data.tolist(), [0, 0, 0, 8]) self.assertEqual(chunk.selection[0], slice(4, 8)) elif count == 2: self.assertListEqual(chunk.data.tolist(), [9, 10]) self.assertEqual(chunk.selection[0], slice(8, 10)) count += 1 self.assertEqual(count, 3) self.assertTupleEqual(dci2.recommended_data_shape(), (10,)) self.assertIsNone(dci2.recommended_chunk_shape()) def test_dci_h5dataset_scalar(self): data = [1] dci1 = DataChunkIterator(data=data, buffer_size=3) HDF5IO.__chunked_iter_fill__(self.f, 'test_dataset', dci1) dset = self.f['test_dataset'] dci2 = DataChunkIterator(data=dset, buffer_size=4) # dataset is read such that Nones in original data were not written, but are read as 0s self.assertTupleEqual(dci2.maxshape, (1,)) self.assertEqual(dci2.dtype, np.dtype(int)) count = 0 for chunk in dci2: self.assertEqual(len(chunk.selection), 1) if count == 0: self.assertListEqual(chunk.data.tolist(), [1]) self.assertEqual(chunk.selection[0], slice(0, 1)) count += 1 self.assertEqual(count, 1) self.assertTupleEqual(dci2.recommended_data_shape(), (1,)) self.assertIsNone(dci2.recommended_chunk_shape()) ############################################# # H5DataIO general ############################################# def test_warning_on_non_gzip_compression(self): # Make sure no warning is issued when using gzip with warnings.catch_warnings(record=True) as w: dset = H5DataIO(np.arange(30), compression='gzip') self.assertEqual(len(w), 0) self.assertEqual(dset.io_settings['compression'], 'gzip') # Make sure a warning is issued when using szip (even if installed) if "szip" in h5py_filters.encode: with warnings.catch_warnings(record=True) as w: dset = H5DataIO(np.arange(30), compression='szip', compression_opts=('ec', 16)) self.assertEqual(len(w), 1) self.assertEqual(dset.io_settings['compression'], 'szip') else: with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression='szip', compression_opts=('ec', 16)) # Make sure a warning is issued when using lzf compression with warnings.catch_warnings(record=True) as w: dset = H5DataIO(np.arange(30), compression='lzf') self.assertEqual(len(w), 1) self.assertEqual(dset.io_settings['compression'], 'lzf') def test_error_on_unsupported_compression_filter(self): # Make sure gzip does not raise an error try: H5DataIO(np.arange(30), compression='gzip', compression_opts=5) except ValueError: self.fail("Using gzip compression raised a ValueError when it should not") # Make sure szip raises an error if not installed (or does not raise an error if installed) warn_msg = ("szip compression may not be available on all installations of HDF5. Use of gzip is " "recommended to ensure portability of the generated HDF5 files.") if "szip" not in h5py_filters.encode: with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression='szip', compression_opts=('ec', 16)) else: try: with self.assertWarnsWith(UserWarning, warn_msg): H5DataIO(np.arange(30), compression='szip', compression_opts=('ec', 16)) except ValueError: self.fail("SZIP is installed but H5DataIO still raises an error") # Test error on illegal (i.e., a made-up compressor) with self.assertRaises(ValueError): warn_msg = ("unknown compression may not be available on all installations of HDF5. Use of gzip is " "recommended to ensure portability of the generated HDF5 files.") with self.assertWarnsWith(UserWarning, warn_msg): H5DataIO(np.arange(30), compression="unknown") # Make sure passing int compression filter raise an error if not installed if not h5py_filters.h5z.filter_avail(h5py_filters.h5z.FILTER_MAX): with self.assertRaises(ValueError): warn_msg = ("%i compression may not be available on all installations of HDF5. Use of gzip is " "recommended to ensure portability of the generated HDF5 files." % h5py_filters.h5z.FILTER_MAX) with self.assertWarnsWith(UserWarning, warn_msg): H5DataIO(np.arange(30), compression=h5py_filters.h5z.FILTER_MAX, allow_plugin_filters=True) # Make sure available int compression filters raise an error without passing allow_plugin_filters=True with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression=h5py_filters.h5z.FILTER_DEFLATE) def test_value_error_on_incompatible_compression_opts(self): # Make sure we warn when gzip with szip compression options is used with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression='gzip', compression_opts=('ec', 16)) # Make sure we warn if gzip with a too high agression is used with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression='gzip', compression_opts=100) # Make sure we warn if lzf with gzip compression option is used with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression='lzf', compression_opts=5) # Make sure we warn if lzf with szip compression option is used with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression='lzf', compression_opts=('ec', 16)) # Make sure we warn if szip with gzip compression option is used with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression='szip', compression_opts=4) # Make sure szip raises a ValueError if bad options are used (odd compression option) with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression='szip', compression_opts=('ec', 3)) # Make sure szip raises a ValueError if bad options are used (bad methos) with self.assertRaises(ValueError): H5DataIO(np.arange(30), compression='szip', compression_opts=('bad_method', 16)) def test_warning_on_linking_of_regular_array(self): with warnings.catch_warnings(record=True) as w: dset = H5DataIO(np.arange(30), link_data=True) self.assertEqual(len(w), 1) self.assertEqual(dset.link_data, False) def test_warning_on_setting_io_options_on_h5dataset_input(self): self.io.write_dataset(self.f, DatasetBuilder('test_dataset', np.arange(10), attributes={})) with warnings.catch_warnings(record=True) as w: H5DataIO(self.f['test_dataset'], compression='gzip', compression_opts=4, fletcher32=True, shuffle=True, maxshape=(10, 20), chunks=(10,), fillvalue=100) self.assertEqual(len(w), 7) def test_h5dataio_array_conversion_numpy(self): # Test that H5DataIO.__array__ is working when wrapping an ndarray test_speed = np.array([10., 20.]) data = H5DataIO((test_speed)) self.assertTrue(np.all(np.isfinite(data))) # Force call of H5DataIO.__array__ def test_h5dataio_array_conversion_list(self): # Test that H5DataIO.__array__ is working when wrapping a python list test_speed = [10., 20.] data = H5DataIO(test_speed) self.assertTrue(np.all(np.isfinite(data))) # Force call of H5DataIO.__array__ def test_h5dataio_array_conversion_datachunkiterator(self): # Test that H5DataIO.__array__ is working when wrapping a python list test_speed = DataChunkIterator(data=[10., 20.]) data = H5DataIO(test_speed) with self.assertRaises(NotImplementedError): np.isfinite(data) # Force call of H5DataIO.__array__ ############################################# # Copy/Link h5py.Dataset object ############################################# def test_link_h5py_dataset_input(self): self.io.write_dataset(self.f, DatasetBuilder('test_dataset', np.arange(10), attributes={})) self.io.write_dataset(self.f, DatasetBuilder('test_softlink', self.f['test_dataset'], attributes={})) self.assertTrue(isinstance(self.f.get('test_softlink', getlink=True), SoftLink)) def test_copy_h5py_dataset_input(self): self.io.write_dataset(self.f, DatasetBuilder('test_dataset', np.arange(10), attributes={})) self.io.write_dataset(self.f, DatasetBuilder('test_copy', self.f['test_dataset'], attributes={}), link_data=False) self.assertTrue(isinstance(self.f.get('test_copy', getlink=True), HardLink)) self.assertListEqual(self.f['test_dataset'][:].tolist(), self.f['test_copy'][:].tolist()) def test_link_h5py_dataset_h5dataio_input(self): self.io.write_dataset(self.f, DatasetBuilder('test_dataset',
np.arange(10)
numpy.arange
# <NAME> (<EMAIL>) from __future__ import division, print_function from builtins import range import numpy as np from sklearn.metrics import auc from sklearn.metrics.ranking import _binary_clf_curve, precision_recall_curve, roc_curve import mlpaper.perf_curves as pc import mlpaper.util as util from mlpaper.test_constants import MC_REPEATS_LARGE # ============================================================================ # Non-vectorized versions of routines in perf_curves for testing. # ============================================================================ def _nv_add_pseudo_points(fps, tps): if fps[-1] == 0: fps = pc.EPSILON * tps tps = tps.astype(fps.dtype) if tps[-1] == 0: tps = pc.EPSILON * fps fps = fps.astype(tps.dtype) return fps, tps def _nv_binary_clf_curve(y_true, y_score, sample_weight=None): assert y_true.ndim == 1 and y_true.dtype.kind == "b" assert y_score.shape == y_true.shape and np.all(np.isfinite(y_score)) assert y_true.size >= 1 # sort scores and corresponding truth values desc_score_indices = np.argsort(y_score, kind="mergesort")[::-1] y_score, y_true = y_score[desc_score_indices], y_true[desc_score_indices] # y_score typically has many tied values. Here we extract # the indices associated with the distinct values. We also # concatenate a value for the end of the curve. distinct_value_indices = np.where(np.diff(y_score))[0] threshold_idxs = np.r_[distinct_value_indices, y_true.size - 1] if sample_weight is None: tps = np.cumsum(y_true)[threshold_idxs] fps = 1 + threshold_idxs - tps assert fps[-1] == np.sum(~y_true) and tps[-1] == np.sum(y_true) else: assert sample_weight.shape == y_true.shape assert np.all(np.isfinite(sample_weight)) # Negative weight makes no sense, 0 can violate assumps. of other funcs assert np.all(sample_weight > 0) weight = sample_weight[desc_score_indices] tps = np.cumsum(y_true * weight)[threshold_idxs] fps = np.cumsum(weight)[threshold_idxs] - tps assert np.allclose((fps[-1], tps[-1]), (np.sum(weight[~y_true]), np.sum(weight[y_true]))) # Now put in the (0, 0) coord (y_score >= np.inf) assert not (tps[0] == 0 and fps[0] == 0) fps, tps = np.r_[0, fps], np.r_[0, tps] thresholds = np.r_[np.inf, y_score[threshold_idxs]] # Clean up corner case fps, tps = _nv_add_pseudo_points(fps, tps) assert fps[-1] > 0 and tps[-1] > 0 assert fps.dtype == tps.dtype # Remove any decreases due to numerics fps = np.maximum.accumulate(fps) assert np.all((np.diff(fps) >= 0.0) & (np.diff(tps) >= 0.0)) return fps, tps, thresholds # ============================================================================ # Non-vectorized versions of routines in perf_curves for testing. # ============================================================================ def _nv_roc_curve(y_true, y_score, sample_weight=None): fps, tps, thresholds = _nv_binary_clf_curve(y_true, y_score, sample_weight=sample_weight) fpr = np.true_divide(fps, fps[-1]) tpr = np.true_divide(tps, tps[-1]) return fpr, tpr, thresholds def _nv_recall_precision_curve(y_true, y_score, sample_weight=None): fps, tps, thresholds = _nv_binary_clf_curve(y_true, y_score, sample_weight=sample_weight) recall = np.true_divide(tps, tps[-1]) with np.errstate(divide="ignore", invalid="ignore"): precision = np.true_divide(tps, tps + fps) precision[0] = precision[1] assert np.all(0.0 <= precision) and np.all(precision <= 1.0) return recall, precision, thresholds def _nv_prg_curve(y_true, y_score, sample_weight=None): fps, tps, thresholds = _nv_binary_clf_curve(y_true, y_score, sample_weight=sample_weight) n_neg, n_pos = fps[-1], tps[-1] fns = n_pos - tps den = n_neg * tps with np.errstate(divide="ignore", invalid="ignore"): rec_gain = 1.0 - np.true_divide(n_pos * fns, den) prec_gain = 1.0 - np.true_divide(n_pos * fps, den) # interpolate backward just like in PR curve prec_gain[0] = prec_gain[1] assert np.all(rec_gain <= 1.0) and np.all(prec_gain <= 1.0) # Find index to put everything in the box with np.errstate(invalid="ignore"): assert not np.any(np.diff(rec_gain) < 0.0) idx = np.searchsorted(rec_gain, 0.0, side="right") assert idx == np.where(rec_gain > 0.0)[0][0] assert idx > 0 # Not selecting first point # Bring forward most recent negative point as point at 0 rec_gain = np.concatenate(([0.0], rec_gain[idx:])) prec_gain = prec_gain[idx - 1 :] thresholds = thresholds[idx - 1 :] return rec_gain, prec_gain, thresholds # ============================================================================ # Now the actual tests # ============================================================================ def test_nv_binary_clf_curve(): N = np.random.randint(low=1, high=10) y_bool = np.random.rand(N) <= 0.5 y_pred = np.random.rand(N) if np.random.rand() <= 0.5: # make non-unique y_pred = np.random.choice(y_pred, size=N, replace=True) sample_weight = None if np.random.rand() <= 0.2: sample_weight = np.abs(np.random.randn(N)) if np.random.rand() <= 0.2: sample_weight = 1 + np.random.multinomial(N, np.ones(N) / N) if np.random.rand() <= 0.2: sample_weight = np.maximum(np.random.multinomial(N, np.ones(N) / N), 1e-6) fps, tps, thresholds = _nv_binary_clf_curve(y_bool, y_pred, sample_weight) assert fps.shape == tps.shape and fps.shape == thresholds.shape assert np.all(np.isfinite(fps)) assert np.all(np.isfinite(tps)) assert np.all(np.isfinite(thresholds[1:])) assert fps[0] == 0 and tps[0] == 0 and thresholds[0] == np.inf if sample_weight is None: assert np.abs(fps[-1] - np.sum(~y_bool)) <= 1e-8 assert np.abs(tps[-1] - np.sum(y_bool)) <= 1e-8 else: assert np.abs(fps[-1] - np.sum(sample_weight * ~y_bool)) <= 1e-8 assert np.abs(tps[-1] - np.sum(sample_weight * y_bool)) <= 1e-8 assert np.all((np.diff(fps) >= 0.0) & (np.diff(tps) >= 0.0)) assert np.all((np.diff(fps) > 0) | (np.diff(tps) > 0)) assert np.all(np.diff(thresholds) < 0.0) fpr, tpr, thresholds_roc = _nv_roc_curve(y_bool, y_pred, sample_weight) assert fpr.shape == tpr.shape and fpr.shape == thresholds_roc.shape assert np.all(np.isfinite(fpr)) assert np.all(np.isfinite(tpr)) assert np.all(np.isfinite(thresholds_roc[1:])) assert fpr[0] == 0.0 and tpr[0] == 0.0 assert fpr[-1] == 1.0 and tpr[-1] == 1.0 assert np.all((np.diff(fpr) >= 0.0) & (np.diff(tpr) >= 0.0)) assert np.all((np.diff(fpr) > 0.0) | (np.diff(tpr) > 0.0)) assert np.all(np.diff(thresholds_roc) < 0.0) rec, prec, thresholds_pr = _nv_recall_precision_curve(y_bool, y_pred, sample_weight) assert rec.shape == prec.shape and rec.shape == thresholds_pr.shape assert np.all(np.isfinite(rec)) assert np.all(np.isfinite(prec)) assert np.all(np.isfinite(thresholds_pr[1:])) assert rec[0] == 0.0 and rec[-1] == 1.0 assert len(prec) >= 2 and prec[0] == prec[1] b_rate = ( np.mean(y_bool) if sample_weight is None else np.true_divide(np.sum(sample_weight * y_bool), np.sum(sample_weight)) ) assert np.max(np.abs(prec[-1] - b_rate)) <= 1e-8 # Note: may have repeats in PR curve assert np.all(np.diff(rec) >= 0.0) assert np.all(np.diff(thresholds_pr) < 0.0) rec_gain, prec_gain, thresholds_prg = _nv_prg_curve(y_bool, y_pred, sample_weight) assert rec_gain.shape == prec_gain.shape assert rec_gain.shape == thresholds_prg.shape assert np.all(np.isfinite(thresholds_prg[1:])) assert rec_gain[0] == 0.0 and rec_gain[-1] == 1.0 assert np.all(rec_gain <= 1.0) and np.all(prec_gain <= 1.0) assert np.all(np.diff(rec_gain) >= 0.0) assert np.allclose(prec_gain[-1], 0.0) if np.all(y_bool) or (not np.any(y_bool)): assert np.allclose(0.5, np.trapz(fpr, tpr)) assert np.allclose(np.mean(y_bool), np.sum(prec[:-1] * np.diff(rec))) assert np.allclose(0.0, np.sum(prec_gain[:-1] * np.diff(rec_gain))) return fps2, tps2, thresholds2 = _binary_clf_curve(y_bool, y_pred, pos_label=True, sample_weight=sample_weight) assert np.allclose(fps[1:], fps2) assert np.allclose(tps[1:], tps2) assert np.allclose(thresholds[1:], thresholds2) fpr2, tpr2, thresholds2 = roc_curve( y_bool, y_pred, pos_label=True, sample_weight=sample_weight, drop_intermediate=False ) # sklearn inconsistent on including origin ==> need if statement if len(fpr) == len(fpr2): assert np.allclose(fpr, fpr2) assert np.allclose(tpr, tpr2) assert np.allclose(thresholds_roc[1:], thresholds2[1:]) else: assert np.allclose(fpr[1:], fpr2) assert np.allclose(tpr[1:], tpr2) assert
np.allclose(thresholds_roc[1:], thresholds2)
numpy.allclose
from functools import reduce import cv2 as cv import numpy as np from PIL import Image def enhance_contrast(img, lower=90, upper=None): img = np.asarray(img, dtype=np.uint8) if upper is None: upper = np.max(img) lut = np.zeros(256, dtype=np.uint8) lut[lower:upper + 1] = np.linspace(0, 255, upper - lower + 1, endpoint=True, dtype=np.uint8) lut[upper + 1:] = 255 return Image.fromarray(lut[np.asarray(img, np.uint8)]) def image_threshold_mat2img(mat, threshold=127): """ threshold filter on L channel :param threshold: negative value means inverted output """ if threshold < 0: resultmat = mat <= -threshold else: resultmat = mat >= threshold lut = np.zeros(256, dtype=np.uint8) lut[1:] = 255 return Image.fromarray(lut[resultmat.astype(np.uint8)], 'L').convert('1') def image_threshold(image, threshold=127): """ threshold filter on L channel :param threshold: negative value means inverted output """ grayimg = image.convert('L') mat = np.asarray(grayimg) return image_threshold_mat2img(mat, threshold) def crop_blackedge(numimg, value_threshold=127): if numimg.width == 0 or numimg.height == 0: return None thimg = image_threshold(numimg, value_threshold) return numimg.crop(thimg.getbbox()) def crop_blackedge2(numimg, value_threshold=127): thimg = image_threshold(numimg, value_threshold) x_threshold = int(numimg.height * 0.4) y_threshold = 16 mat = np.asarray(thimg) right = -1 for x in range(thimg.width - 1, -1, -1): col = mat[:, x] if
np.any(col)
numpy.any
import numpy as np from .dedpulUtils import maximize_log_likelihood, rolling_apply, MonotonizingTrends from scipy.stats import gaussian_kde def estimate_diff(preds, target, bw_mix=0.05, bw_pos=0.1, kde_mode='logit', threshold='mid', k_neighbours=None, tune=False, MT=False, MT_coef=0.25, decay_MT_coef=False, kde_type='kde', bins_mix=20, bins_pos=20): """ Estimates densities of predictions y(x) for P and U and ratio between them f_p / f_u for U sample; uses kernel density estimation (kde); post-processes difference of estimated densities - imposes monotonicity on lower preds (so that diff is partly non-decreasing) and applies rolling median to further reduce variance :param preds: predictions of NTC y(x), probability of belonging to U rather than P, np.array with shape (n,) :param target: binary vector, 0 if positive, 1 if unlabeled, np.array with shape (n,) :param bw_mix: bandwidth for kde of U :param bw_pos: bandwidth for kde of P :param kde_mode: 'prob', 'log_prob' or 'logit'; default is 'logit' :param monotonicity: monotonicity is imposed on density difference for predictions below this number, float in [0, 1] :param k_neighbours: difference is relaxed with median rolling window with size k_neighbours * 2 + 1, default = int(preds[target == 1].shape[0] // 10) :return: difference of densities f_p / f_u for U sample """ if kde_mode is None: kde_mode = 'logit' if (threshold is None) or (threshold == 'mid'): threshold = preds[target == 1].mean() / 2 + preds[target == 0].mean() / 2 elif threshold == 'low': threshold = preds[target == 0].mean() elif threshold == 'high': threshold = preds[target == 1].mean() if k_neighbours is None: k_neighbours = int(preds[target == 1].shape[0] // 20) if kde_mode == 'prob': kde_inner_fun = lambda x: x kde_outer_fun = lambda dens, x: dens(x) elif kde_mode == 'log_prob': kde_inner_fun = lambda x: np.log(x) kde_outer_fun = lambda dens, x: dens(np.log(x)) / (x + 10 ** -5) elif kde_mode == 'logit': kde_inner_fun = lambda x: np.log((x + 1e-7) / (1 - x + 10 ** -5)) kde_outer_fun = lambda dens, x: dens(np.log((x + 1e-7) / (1 - x + 10 ** -5))) / (x * (1 - x) + 10 ** -5) if kde_type == 'kde': if tune: bw_mix = maximize_log_likelihood(preds[target == 1], kde_inner_fun, kde_outer_fun, kde_type=kde_type) bw_pos = maximize_log_likelihood(preds[target == 0], kde_inner_fun, kde_outer_fun, kde_type=kde_type) kde_mix = gaussian_kde(np.apply_along_axis(kde_inner_fun, 0, preds[target == 1]), bw_mix) kde_pos = gaussian_kde(np.apply_along_axis(kde_inner_fun, 0, preds[target == 0]), bw_pos) elif kde_type == 'hist': if tune: bins_mix = maximize_log_likelihood(preds[target == 1], kde_inner_fun, lambda kde, x: kde(x), kde_type=kde_type) bins_pos = maximize_log_likelihood(preds[target == 0], kde_inner_fun, lambda kde, x: kde(x), kde_type=kde_type) bars_mix = np.histogram(preds[target == 1], bins=bins_mix, range=(0, 1), density=True)[0] bars_pos = np.histogram(preds[target == 0], bins=bins_pos, range=(0, 1), density=True)[0] kde_mix = lambda x: bars_mix[np.clip((x // (1 / bins_mix)).astype(int), 0, bins_mix-1)] kde_pos = lambda x: bars_pos[np.clip((x // (1 / bins_pos)).astype(int), 0, bins_pos-1)] kde_outer_fun = lambda kde, x: kde(x) # sorting to relax and impose monotonicity sorted_mixed = np.sort(preds[target == 1]) diff = np.apply_along_axis(lambda x: kde_outer_fun(kde_pos, x) / (kde_outer_fun(kde_mix, x) + 10 ** -5), axis=0, arr=sorted_mixed) diff[diff > 50] = 50 diff = rolling_apply(diff, 5) diff = np.append( np.flip(np.maximum.accumulate(np.flip(diff[sorted_mixed <= threshold], axis=0)), axis=0), diff[sorted_mixed > threshold]) diff = rolling_apply(diff, k_neighbours) if MT: MTrends = MonotonizingTrends(MT_coef=MT_coef) diff = np.flip(np.array(MTrends.monotonize_array(np.flip(diff, axis=0), reset=True, decay_MT_coef=decay_MT_coef)), axis=0) diff.sort() diff = np.flip(diff, axis=0) # desorting diff = diff[np.argsort(np.argsort(preds[target == 1]))] return diff def estimate_poster_em(diff=None, mode='dedpul', converge=True, tol=10**-5, max_iterations=1000, \ nonconverge=True, step=0.001, max_diff=0.05, disp=False, alpha=None, alpha_as_mean_poster=True, **kwargs): """ Performs Expectation-Maximization to estimate posteriors and priors alpha (if not provided) of N in U with either of 'en' or 'dedpul' methods; both 'converge' and 'nonconverge' are recommended to be set True for better estimate :param diff: difference of densities f_p/f_u for the sample U, np.array (n,), output of estimate_diff() :param preds: predictions of classifier, np.array with shape (n,) :param target: binary vector, 0 if positive, 1 if unlabeled, np.array with shape (n,) :param mode: 'dedpul' or 'en'; if 'dedpul', diff needs to be provided; if 'en', preds and target need to be provided :param converge: True or False; True if convergence estimate should be computed :param tol: tolerance of error between priors and mean posteriors, indicator of convergence :param max_iterations: if exceeded, search of converged alpha stops even if tol is not reached :param nonconverge: True or False; True if non-convergence estimate should be computed :param step: gap between points of the [0, 1, step] gird to choose best alpha from :param max_diff: alpha with difference of mean posteriors and priors bigger than max_diff cannot be chosen; an heuristic to choose bigger alpha :param plot: True or False, if True - plots ([0, 1, grid], mean posteriors - alpha) and ([0, 1, grid], second lag of (mean posteriors - alpha)) :param disp: True or False, if True - displays if the algorithm didn't converge :param alpha: proportions of N in U; is estimated if None :return: tuple (alpha, poster), e.g. (priors, posteriors) of N in U for the U sample """ assert converge + nonconverge, "At least one of 'converge' and 'nonconverge' has to be set to 'True'" if alpha is not None: if mode == 'dedpul': alpha, poster = estimate_poster_dedpul(diff, alpha=alpha, alpha_as_mean_poster=alpha_as_mean_poster, tol=tol, **kwargs) return alpha, poster # if converge: alpha_converge = 0 for i in range(max_iterations): if mode.endswith('dedpul'): _, poster_converge = estimate_poster_dedpul(diff, alpha=alpha_converge, **kwargs) mean_poster = np.mean(poster_converge) error = mean_poster - alpha_converge if np.abs(error) < tol: break if np.min(poster_converge) > 0: break alpha_converge = mean_poster if disp: if i >= max_iterations - 1: print('max iterations exceeded') # if nonconverge: errors = np.array([]) for alpha_nonconverge in np.arange(0, 1, step): if mode.endswith('dedpul'): _, poster_nonconverge = estimate_poster_dedpul(diff, alpha=alpha_nonconverge, **kwargs) errors = np.append(errors, np.mean(poster_nonconverge) - alpha_nonconverge) idx = np.argmax(np.diff(np.diff(errors))[errors[1: -1] < max_diff]) alpha_nonconverge = np.arange(0, 1, step)[1: -1][errors[1: -1] < max_diff][idx] # if converge and not nonconverge: # return alpha_converge, poster_converge if ((alpha_nonconverge >= alpha_converge) or#converge and nonconverge and (((errors < 0).sum() > 1) and (alpha_converge < 1 - step))): return alpha_converge, poster_converge elif nonconverge: if mode == 'dedpul': _, poster_nonconverge = estimate_poster_dedpul(diff, alpha=alpha_nonconverge, **kwargs) if disp: print('didn\'t converge') return alpha_nonconverge, poster_nonconverge # return np.mean(poster_nonconverge), poster_nonconverge else: if disp: print('didn\'t converge') return None, None def estimate_poster_dedpul(diff, alpha=None, quantile=0.05, alpha_as_mean_poster=False, max_it=100, **kwargs): """ Estimates posteriors and priors alpha (if not provided) of N in U with dedpul method :param diff: difference of densities f_p / f_u for the sample U, np.array (n,), output of estimate_diff() :param alpha: priors, share of N in U (estimated if None) :param quantile: if alpha is None, relaxation of the estimate of alpha; here alpha is estimaeted as infinum, and low quantile is its relaxed version; share of posteriors probabilities that we allow to be negative (with the following zeroing-out) :param kwargs: dummy :return: tuple (alpha, poster), e.g. (priors, posteriors) of N in U for the U sample, represented by diff """ if alpha_as_mean_poster and (alpha is not None): poster = 1 - diff * (1 - alpha) poster[poster < 0] = 0 cur_alpha = np.mean(poster) if cur_alpha < alpha: left_border = alpha right_border = 1 else: left_border = 0 right_border = alpha poster_zero = 1 - diff poster_zero[poster_zero < 0] = 0 if
np.mean(poster_zero)
numpy.mean
# The aim of this approach is to find for a given value of p1, p2 and moi, a value of P(lyso) that brings the MoI as close to 1 as possible. The logic is this: One way to achieve coexistence is to ensure that the MoI remains equal to 1 so that neither of the two species dominates the other. # For each value of MoI at an interval of 0.01, calculate the range of average MoI (for 100 runs) of 1 period each for each of P(lyso) at intervals of 0.05; the optimal curve would pass through points that equal MoI = 1 or closest to it. ##### # Warning: Ensure correct directory name below before run # # Usage: python alt_script.py <arg1> <arg2> # where <arg1> and <arg2> represent the environemntal parameters p1 and p2 # for example, python alt_script.py 0.1 1.0 will run the code for the worst phage environment (p1=0.1) and the best bacterial environment (p2=1.0) ##### import numpy as np import os import time import sys start_time = time.time() iterations = 1000 # number of times the code runs for each value of MoI - use 1000 generally, 2000 if needed moi_range = [x*0.01 for x in xrange(1,201)] # MoI between 0.01 and 2 plyso_range = [x*0.01 for x in xrange(1,101)] # plyso between 0.01 and 1 p1 = float(sys.argv[1]) # phage environment p2 = float(sys.argv[2]) # bacterial environment r = 1 # bacterial steady growth a = 10 # amplification factor(burst size) lambda_p = 1 # degradation factor for phage - phage die lambda_b = 0.1 # degradation factor for bacteria - bacteria die and lysed bacteria are released as free phages moi_arr = [0.0 for x in xrange(iterations)] mean_moi = 0.0 # Ensure correct directory name before run base_folder = 'alt_run' for moi in moi_range: for plyso in plyso_range: for x in xrange(iterations): # create the environment r1 = np.random.rand() if r1 < p1: envp = 1 else: envp = 0 r2 = np.random.rand() if r2 < p2: envb = 1 else: envb = 0 # initialise populations N_bh = 10000 N_pfree = N_bh*moi N_bi = 0 if envp == 1 and envb == 1: N_bh = long(max(N_bh + r*N_bh - N_pfree, 0)) #assume all phages affect one bacterium each (for now) N_bi = long(N_bi + r*N_bi + plyso*N_pfree) N_pfree = long(max(N_pfree + a*(1-plyso)*N_pfree - (plyso)*N_pfree, 0)) if envp == 1 and envb == 0: N_bh = long(max(N_bh + r*N_bh - N_pfree, 0)) N_bi_temp = long((N_bi + plyso*N_pfree)*np.exp(-lambda_b)) N_pfree = long(max(N_pfree + a*(1-plyso)*N_pfree - (plyso)*N_pfree, 0)) N_bi = N_bi_temp if envp == 0 and envb == 1: N_bh = long(max(N_bh + r*N_bh - N_pfree, 0)) N_bi = long(N_bi + r*N_bi + plyso*N_pfree) N_pfree = long(max(N_pfree + a*(1-plyso)*N_pfree - (plyso)*N_pfree,0)*
np.exp(-lambda_p)
numpy.exp
#!/usr/bin/env python # coding: utf-8 # In[1]: ##################################### import sys sys.path.append("..\\src") import numpy import matplotlib.pyplot as plt import pandas as pd from SIR_model import SIR from SEIR_model import SEIR from SEIR_plusCAQ_model import SEIR_plusCAQ from SEIR_plusCQD_model import SEIR_plusCQD from SEIR_plusBG_model import SEIR_plusBG from SEIR_plus_model import SEIR_plus # In[2]: TS_data_confirm = pd.read_csv("..\\data\\jh_data\\csse_covid_19_data\\csse_covid_19_time_series\\time_series_covid19_confirmed_US.csv") TS_data_death = pd.read_csv("..\\data\\jh_data\\csse_covid_19_data\\csse_covid_19_time_series\\time_series_covid19_deaths_US.csv") TS_data_confirm.set_index('UID',inplace = True) TS_data_death.set_index('UID',inplace = True) Miami_dade_comfirm = TS_data_confirm.loc[84012086] Miami_dade_death = TS_data_death.loc[84012086] Miami_dade_comfirm = Miami_dade_comfirm.drop(labels=['iso2', 'iso3','code3','FIPS','Province_State','Country_Region','Lat','Long_','Combined_Key','Admin2']) Miami_dade_comfirm = Miami_dade_comfirm[Miami_dade_comfirm!=0] Miami_dade_death = Miami_dade_death.drop(labels=['iso2', 'iso3','code3','FIPS','Province_State','Country_Region','Lat','Long_','Combined_Key','Admin2']) for i in range(len(Miami_dade_death)): if Miami_dade_death.index[0] != Miami_dade_comfirm.index[0]: Miami_dade_death = Miami_dade_death.drop([Miami_dade_death.index[0]]) BHSF_data = pd.read_excel("..\data\Ih_D.xlsx") BHSF_data = BHSF_data.fillna(0) BHSF_data.head(50) #print(Miami_dade_comfirm) #print(Miami_dade_death) # real_data = BHSF_data['cumulative_pos_IP'].to_numpy() # real_data = numpy.delete(real_data, [0,1,2,3,4]) # print(real_data) # In[3]: # init parameters mean_latent_period = 5 mean_recovery_time = 14 double_time = 5.5 rate_of_growth = 2**(1.0/double_time) - 1.0 population = 2716940 # init N number_of_current_hospitalized_patients = 50 infected = 278 hospital_market_share = 0.22 # % of people will come to your hospital hospitalization_percent= (135/hospital_market_share)/7712 #number_of_all_infected = social_distancing = 0 # % ICU_rate = (135/532)*hospital_market_share ventilated_percent = (85/532)*hospital_market_share hospital_stay = 7 ICU_stay = 9.1 Ventilator_days = 11.6 duration_of_immunization = 60 death_rate = 0.022 t=numpy.linspace(0,80,80) # N, beta1, beta2, sigma, alpha, rho, rho_icu, rho_v, # lamda1, lamda2, lamda_icu, lamda_v, kappa N = population #population I = infected #(number_of_current_hospitalized_patients / hospital_market_share)/hospitalization_percent E = I * mean_latent_period R = 0 D = 7 S = N - E - I - R - D Ih = number_of_current_hospitalized_patients/hospital_market_share Im = I - Ih Iicu = 15/hospital_market_share Iv = 6/hospital_market_share beta = (rate_of_growth + 1/mean_recovery_time)/S * (1- social_distancing) date = pd.date_range(start="2020-03-23",end="2020-06-11",periods=80) date = numpy.array(date) date_real = pd.date_range(start="2020-03-23",end="2020-04-19",periods=28) date_real = numpy.array(date_real) # In[4]: #SEIR+MHD # param beta1 = beta beta2 = beta1 * 0.1 sigma = 1/duration_of_immunization alpha = 1/mean_latent_period rho = hospitalization_percent rho_icu = ICU_rate rho_v = ventilated_percent lamda1 = 1/ mean_recovery_time lamda2 = 1/ hospital_stay lamda_icu = 1/ ICU_stay lamda_v = 1/Ventilator_days kappa = death_rate data = [S, E, Im, Ih, Iicu, Iv, D, R] SEIR_MHD = SEIR_plus(data, t, N, beta1, beta2, sigma, alpha, rho, rho_icu, rho_v, lamda1, lamda2, lamda_icu, lamda_v, kappa) solution = SEIR_MHD.solve() # In[5]: #realdata = numpy.array([155,168,166,167,166,170,155,160,156,151,147,145,135,135]) realdata = BHSF_data['cumulative_pos_IP'].to_numpy() realdata =
numpy.delete(realdata, [0,1,2,3,4,5,6,7,8,9,10,11])
numpy.delete
from flask import render_template, request, redirect, url_for, session from app import app from model import * from model.main import * import json import pandas as pd import numpy as np class DataStore(): model=None model_month=None sale_model=None data = DataStore() @app.route('/', methods=["GET"]) def home(): percent=percentageMethod() total_month=totalMonth() file1=pd.read_json('total_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['total']) with open('percent.json') as f: file2 = json.load(f) labels=file2['index'] data=file2['data'] if "username" in session: return render_template('index.html', last_year=lastYear(), last_month=lastMonth(),dataset=data, label=labels, percent=percent, month_index=month_index, month_data=month_data) else: return render_template('login.html') # Register new user @app.route('/register', methods=["GET", "POST"]) def register(): if request.method == "GET": return render_template("register.html") elif request.method == "POST": registerUser() return redirect(url_for("login")) #Check if email already exists in the registratiion page @app.route('/checkusername', methods=["POST"]) def check(): return checkusername() # Everything Login (Routes to renderpage, check if username exist and also verifypassword through Jquery AJAX request) @app.route('/login', methods=["GET"]) def login(): if request.method == "GET": if "username" not in session: return render_template("login.html") else: return redirect(url_for("home")) @app.route('/checkloginusername', methods=["POST"]) def checkUserlogin(): return checkloginusername() @app.route('/checkloginpassword', methods=["POST"]) def checkUserpassword(): return checkloginpassword() #The admin logout @app.route('/logout', methods=["GET"]) # URL for logout def logout(): # logout function session.pop('username', None) # remove user session return redirect(url_for("home")) # redirect to home page with message #Forgot Password @app.route('/forgot-password', methods=["GET"]) def forgotpassword(): return render_template('forgot-password.html') #404 Page @app.route('/404', methods=["GET"]) def errorpage(): return render_template("404.html") #Blank Page @app.route('/blank', methods=["GET"]) def blank(): return render_template('blank.html') @app.route('/totalyear', methods=["GET"]) def total_year(): total_year=totalYear() file1=pd.read_json('total_year.json',orient='index') year_index=np.array(file1['year']) year_data=np.array(file1['total']) return render_template("total_year.html",year_index=year_index, year_data=year_data) @app.route('/totalmonth', methods=["GET"]) def total_month(): total_month=totalMonth() file1=pd.read_json('total_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['total']) num=6 # Fit model model=fit_model() data.model_month=model predict_rs, fitted_data=predict(model,6) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['total']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("total_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=model, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num=num) def check_stationary(): total_month=totalMonth() data1=total_month[['month_year','total']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def fit_model(): total_month=totalMonth() data1=total_month[['month_year','total']] data1.set_index('month_year', inplace=True) data=data1['total'] stationary=check_stationary() p=stationary[1] if (p<0.05): result1 = fit_model_stationary(data) else: result1 = fit_model_non_stationary(data) return result1 def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data=total_day[['date','total']] data.set_index('date', inplace=True) date = pd.date_range(data.index[-1], periods=num_predict, freq='MS') fitted_seri_month = pd.Series(fitted_month, index=date) dff=pd.DataFrame(fitted_seri_month) dff=dff.reset_index() dff.columns=['date','total'] dff['month_year'] = pd.to_datetime(dff['date']).dt.to_period('M') pred=dff[['month_year','total']] return pred, fitted_month def test(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/totalmonth', methods=["POST"]) def total_month_num(): total_month=totalMonth() file1=pd.read_json('total_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['total']) #Get data if request.method == "POST": num = int(request.form.get("num_month")) predict_rs, fitted_data=predict(data.model_month,num) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['total']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("total_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=data.model_month, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num=num) def check_stationary(): total_month=totalMonth() data1=total_month[['month_year','total']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data2=total_day[['date','total']] data2.set_index('date', inplace=True) date = pd.date_range(data2.index[-1], periods=num_predict, freq='MS') fitted_seri_month = pd.Series(fitted_month, index=date) dff=pd.DataFrame(fitted_seri_month) dff=dff.reset_index() dff.columns=['date','total'] dff['month_year'] = pd.to_datetime(dff['date']).dt.to_period('M') pred=dff[['month_year','total']] return pred, fitted_month def test(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/totaldate', methods=["GET"]) def total_date(): total_date=totalDate() date_index=np.array(total_date['date']) date_data=np.array(total_date['total']) num=30 # Fit model model_date=fit_model_date() data.model=model_date predict_rs_date, fitted_data_date=predict_date(model_date,30) pred_index_date=np.array(predict_rs_date['date']) pred_data_date=np.array(predict_rs_date['total']) #Test model test_rs= test_date(pred_data_date[0], fitted_data_date) return render_template("total_date.html",date_index=date_index, date_data=date_data, stationary=check_stationary_date(), model_date=model_date, pred_index=pred_index_date, pred_data=pred_data_date, test_rs=test_rs, num=num) def check_stationary_date(): total_date=totalDate() data1=total_date[['date','total']] data1.set_index('date', inplace=True) result=stationary_trend(data1) return result def fit_model_date(): total_date=totalDate() data1=total_date[['date','total']] data1.set_index('date', inplace=True) data=data1['total'] result1 = fit_model_fast(data) return result1 def predict_date(model_date, num_predict): if num_predict==0: num_predict=30 fitted_date, confint_date = model_date.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data=total_day[['date','total']] data.set_index('date', inplace=True) date = pd.date_range(data.index[-1], periods=num_predict) fitted_seri_date = pd.Series(fitted_date, index=date) dff=pd.DataFrame(fitted_seri_date) dff=dff.reset_index() dff.columns=['date','total'] dff['date'] = pd.to_datetime(dff['date']).dt.to_period('D') pred=dff[['date','total']] return pred, fitted_date def test_date(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/totaldate', methods=["POST"]) def total_date_num(): total_date=totalDate() date_index=np.array(total_date['date']) date_data=np.array(total_date['total']) #Get data if request.method == "POST": num = int(request.form.get("num_date")) predict_rs_date, fitted_data_date=predict_date(data.model,num) pred_index_date=np.array(predict_rs_date['date']) pred_data_date=np.array(predict_rs_date['total']) test_rs= test_date(pred_data_date[0], fitted_data_date) return render_template("total_date.html",date_index=date_index, date_data=date_data, stationary=check_stationary_date(), model_date=data.model, pred_index=pred_index_date, pred_data=pred_data_date, test_rs=test_rs, num=num) def check_stationary_date(): total_date=totalDate() data1=total_date[['date','total']] data1.set_index('date', inplace=True) result=stationary_trend(data1) return result def predict_date(model_date, num_predict): if num_predict==0: num_predict=6 fitted_date, confint_date = model_date.predict(n_periods=num_predict, return_conf_int=True) df2=df[['total', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data2=total_day[['date','total']] data2.set_index('date', inplace=True) date = pd.date_range(data2.index[-1], periods=num_predict) fitted_seri_date = pd.Series(fitted_date, index=date) dff=pd.DataFrame(fitted_seri_date) dff=dff.reset_index() dff.columns=['date','total'] dff['date'] = pd.to_datetime(dff['date']).dt.to_period('D') pred=dff[['date','total']] return pred, fitted_date def test_date(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) return mse, rmse, mae, mape @app.route('/revenueyear', methods=["GET"]) def revenue_year(): sale_year=saleYear() year_index=np.array(sale_year['year']) year_data=np.array(sale_year['quantity']) return render_template("revenue_year.html",year_index=year_index, year_data=year_data) @app.route('/revenuemonth', methods=["GET"]) def revenue_month(): total_month=saleMonth() file1=pd.read_json('sale_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['quantity']) num_sale=6 # Fit model model=fit_model() data.model_month=model predict_rs, fitted_data=predict(model,6) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['quantity']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("revenue_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=model, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num_sale=num_sale) def check_stationary(): total_month=saleMonth() data1=total_month[['month_year','quantity']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def fit_model(): total_month=saleMonth() data1=total_month[['month_year','quantity']] data1.set_index('month_year', inplace=True) data=data1['quantity'] stationary=check_stationary() p=stationary[1] if (p<0.05): result1 = fit_model_stationary(data) else: result1 = fit_model_non_stationary(data) return result1 def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['quantity', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data=total_day[['date','quantity']] data.set_index('date', inplace=True) date = pd.date_range(data.index[-1], periods=num_predict, freq='MS') fitted_seri_month = pd.Series(fitted_month, index=date) dff=pd.DataFrame(fitted_seri_month) dff=dff.reset_index() dff.columns=['date','quantity'] dff['month_year'] = pd.to_datetime(dff['date']).dt.to_period('M') pred=dff[['month_year','quantity']] return pred, fitted_month def test(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/revenuemonth', methods=["POST"]) def revenue_month_num(): total_month=saleMonth() file1=pd.read_json('sale_month.json',orient='index') month_index=np.array(file1['month_year']) month_data=np.array(file1['quantity']) #Get data if request.method == "POST": num_sale= int(request.form.get("sale_month")) predict_rs, fitted_data=predict(data.model_month,num_sale) pred_index=np.array(predict_rs['month_year']) pred_data=np.array(predict_rs['quantity']) #Test model test_rs= test(pred_data[0], fitted_data) return render_template("revenue_month.html",month_index=month_index, month_data=month_data, stationary=check_stationary(), model=data.model_month, pred_index=pred_index, pred_data=pred_data, test_rs=test_rs, num_sale=num_sale) def check_stationary(): total_month=saleMonth() data1=total_month[['month_year','quantity']] data1.set_index('month_year', inplace=True) result=stationary(data1) return result def predict(model,num_predict): if num_predict==0: num_predict=6 fitted_month, confint_month = model.predict(n_periods=num_predict, return_conf_int=True) df2=df[['quantity', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data2=total_day[['date','quantity']] data2.set_index('date', inplace=True) date = pd.date_range(data2.index[-1], periods=num_predict, freq='MS') fitted_seri_month = pd.Series(fitted_month, index=date) dff=pd.DataFrame(fitted_seri_month) dff=dff.reset_index() dff.columns=['date','quantity'] dff['month_year'] = pd.to_datetime(dff['date']).dt.to_period('M') pred=dff[['month_year','quantity']] return pred, fitted_month def test(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=np.sqrt(mse) mae=np.mean(np.abs(e)) mape=np.mean(abs(e/y)) # print('Sai số bình phương trung bình MSE: {}'.format(mse)) # print('Root Mean Square Error: {}'.format(rmse)) # print('Mean Absolute Error: {}'.format(mae)) # print('Mean Absolute Percentage Error: {}'.format(mape)) return mse, rmse, mae, mape @app.route('/revenuedate', methods=["GET"]) def revenue_date(): total_date=saleDate() date_index=np.array(total_date['date']) date_data=np.array(total_date['quantity']) num=30 # Fit model model_date=fit_model_date() data.sale_model=model_date predict_rs_date, fitted_data_date=predict_date(model_date,30) pred_index_date=np.array(predict_rs_date['date']) pred_data_date=np.array(predict_rs_date['quantity']) #Test model test_rs= test_date(pred_data_date[0], fitted_data_date) return render_template("revenue_date.html",date_index=date_index, date_data=date_data, stationary=check_stationary_date(), model_date=model_date, pred_index=pred_index_date, pred_data=pred_data_date, test_rs=test_rs, num=num) def check_stationary_date(): total_date=saleDate() data1=total_date[['date','quantity']] data1.set_index('date', inplace=True) result=stationary_trend(data1) return result def fit_model_date(): total_date=saleDate() data1=total_date[['date','quantity']] data1.set_index('date', inplace=True) data=data1['quantity'] result1 = fit_model_fast(data) return result1 def predict_date(model_date, num_predict): if num_predict==0: num_predict=30 fitted_date, confint_date = model_date.predict(n_periods=num_predict, return_conf_int=True) df2=df[['quantity', 'date']] total_day = df2.groupby(['date'], as_index=False).sum().sort_values('date', ascending=True) data=total_day[['date','quantity']] data.set_index('date', inplace=True) date = pd.date_range(data.index[-1], periods=num_predict) fitted_seri_date = pd.Series(fitted_date, index=date) dff=pd.DataFrame(fitted_seri_date) dff=dff.reset_index() dff.columns=['date','quantity'] dff['date'] = pd.to_datetime(dff['date']).dt.to_period('D') pred=dff[['date','quantity']] return pred, fitted_date def test_date(y, yhat): e = y-yhat mse=np.mean(e**2) rmse=
np.sqrt(mse)
numpy.sqrt
# Copyright 2018 The dm_control Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """Tests for distributions.""" from absl.testing import absltest from absl.testing import parameterized from dm_control.composer.variation import distributions import numpy as np RANDOM_SEED = 123 NUM_ITERATIONS = 100 def _make_random_state(): return np.random.RandomState(RANDOM_SEED) class DistributionsTest(parameterized.TestCase): def setUp(self): super().setUp() self._variation_random_state = _make_random_state() self._np_random_state = _make_random_state() def testUniform(self): lower, upper = [2, 3, 4], [5, 6, 7] variation = distributions.Uniform(low=lower, high=upper) for _ in range(NUM_ITERATIONS): np.testing.assert_array_equal( variation(random_state=self._variation_random_state), self._np_random_state.uniform(lower, upper)) def testUniformChoice(self): choices = ['apple', 'banana', 'cherry'] variation = distributions.UniformChoice(choices) for _ in range(NUM_ITERATIONS): self.assertEqual( variation(random_state=self._variation_random_state), self._np_random_state.choice(choices)) def testUniformPointOnSphere(self): variation = distributions.UniformPointOnSphere() samples = [] for _ in range(NUM_ITERATIONS): sample = variation(random_state=self._variation_random_state) self.assertEqual(sample.size, 3) np.testing.assert_approx_equal(
np.linalg.norm(sample)
numpy.linalg.norm
# -*- coding: utf-8 -*- # @Author: hliu.Luke # @Date: 2020-07-31 11:18:22 # @Last Modified by: hliu.Luke # @Last Modified time: 2020-08-03 15:17:32 import math import torch import numpy as np # efficient version def precision_recall_ndcg_at_k(k, rankedlist, test_matrix): idcg_k = 0 dcg_k = 0 n_k = k if len(test_matrix) > k else len(test_matrix) for i in range(n_k): idcg_k += 1 / math.log(i + 2, 2) b1 = rankedlist b2 = test_matrix s2 = set(b2) hits = [ (idx, val) for idx, val in enumerate(b1) if val in s2] count = len(hits) #print(hits) r =
np.array(rankedlist)
numpy.array
import numpy as np import gym from gym.spaces import Box, Dict from mujoco_worldgen import Floor, WorldBuilder, Geom, ObjFromXML, WorldParams, Env def update_obs_space(env, delta): spaces = env.observation_space.spaces.copy() for key, shape in delta.items(): spaces[key] = Box(-np.inf, np.inf, shape, np.float32) return Dict(spaces) def rand_pos_on_floor(sim, n=1): world_size = sim.model.geom_size[sim.model.geom_name2id('floor0')] * 2 new_pos = np.random.uniform(np.array([[0.2, 0.2] for _ in range(n)]), np.array([world_size[:2] - 0.2 for _ in range(n)])) return new_pos class GatherEnv(Env): def __init__(self, n_food=3, horizon=200, n_substeps=10, floorsize=4., deterministic_mode=False): super().__init__(get_sim=self._get_sim, get_obs=self._get_obs, action_space=(-1.0, 1.0), horizon=horizon, deterministic_mode=deterministic_mode) self.n_food = n_food self.horizon = horizon self.n_substeps = n_substeps self.floorsize = floorsize def _get_obs(self, sim): qpos = sim.data.qpos.copy() qvel = sim.data.qvel.copy() qpos_qvel = np.concatenate([qpos, qvel], -1) return {'qpos': qpos, 'qvel': qvel, 'qpos_qvel': qpos_qvel} def _get_sim(self, seed): if self.sim is None: self.sim = self._get_new_sim(seed) self.sim.data.qpos[0:2] = rand_pos_on_floor(self.sim) return self.sim def _get_new_sim(self, seed): world_params = WorldParams(size=(self.floorsize, self.floorsize, 2.5), num_substeps=self.n_substeps) builder = WorldBuilder(world_params, seed) floor = Floor() builder.append(floor) # Walls wallsize = 0.1 wall = Geom('box', (wallsize, self.floorsize, 0.5), name="wall1") wall.mark_static() floor.append(wall, placement_xy=(0, 0)) wall = Geom('box', (wallsize, self.floorsize, 0.5), name="wall2") wall.mark_static() floor.append(wall, placement_xy=(1, 0)) wall = Geom('box', (self.floorsize - wallsize*2, wallsize, 0.5), name="wall3") wall.mark_static() floor.append(wall, placement_xy=(1/2, 0)) wall = Geom('box', (self.floorsize - wallsize*2, wallsize, 0.5), name="wall4") wall.mark_static() floor.append(wall, placement_xy=(1/2, 1)) # Add agents obj = ObjFromXML("particle", name="agent0") floor.append(obj) obj.mark(f"object0") # Add food sites for i in range(self.n_food): floor.mark(f"food{i}", (.5, .5, 0.05), rgba=(0., 1., 0., 1.)) sim = builder.get_sim() # Cache constants for quicker lookup later self.food_ids = np.array([sim.model.site_name2id(f'food{i}') for i in range(self.n_food)]) return sim class FoodHealthWrapper(gym.Wrapper): ''' Adds food health to underlying env. Manages food levels. Randomizes food positions. ''' def __init__(self, env, max_food_health=10): super().__init__(env) self.unwrapped.max_food_health = self.max_food_health = max_food_health self.unwrapped.max_food_size = self.max_food_size = 0.1 self.observation_space = update_obs_space(env, {'food_obs': (self.unwrapped.n_food, 4), 'food_pos': (self.unwrapped.n_food, 3), 'food_health': (self.unwrapped.n_food, 1)}) def reset(self): obs = self.env.reset() # Reset food healths self.unwrapped.food_healths = np.array([self.max_food_health for _ in range(self.unwrapped.n_food)]) # Randomize food positions new_pos = rand_pos_on_floor(self.unwrapped.sim, self.unwrapped.n_food) sites_offset = (self.unwrapped.sim.data.site_xpos - self.unwrapped.sim.model.site_pos).copy() self.unwrapped.sim.model.site_pos[self.unwrapped.food_ids, :2] = \ new_pos - sites_offset[self.unwrapped.food_ids, :2] # Reset food size self.unwrapped.sim.model.site_size[self.unwrapped.food_ids] = self.max_food_size return self.observation(obs) def observation(self, obs): # Add food position and healths to obersvations food_pos = self.unwrapped.sim.data.site_xpos[self.unwrapped.food_ids] food_health = self.unwrapped.food_healths obs['food_pos'] = food_pos obs['food_health'] = np.expand_dims(food_health, 1) obs['food_obs'] = np.concatenate([food_pos, np.expand_dims(food_health, 1)], 1) return obs def step(self, action): obs, rew, done, info = self.env.step(action) assert np.all(self.unwrapped.food_healths >= 0), \ f"There is a food health below 0: {self.unwrapped.food_healths}" obs = self.observation(obs) return obs, rew, done, info class ProcessEatFood(gym.Wrapper): """ Manage food health. Resize food based on health. Expects a binary vector as input detailing which """ def __init__(self, env, eat_thresh=0.7): super().__init__(env) self.n_food = self.unwrapped.n_food self.eat_thresh = eat_thresh def reset(self): return self.env.reset() def observation(self, obs): return obs def step(self, action): obs, rew, done, info = self.env.step(action) obs = self.observation(obs) # Eat food that is close enough agent_food_diff = obs['food_pos'] - np.expand_dims(obs['qpos'], axis=0) dist_to_food =
np.linalg.norm(agent_food_diff, axis=-1)
numpy.linalg.norm
""" Contains function that implement the Clustermatch coefficient (https://doi.org/10.1093/bioinformatics/bty899). """ from concurrent.futures import ThreadPoolExecutor, as_completed from typing import Iterable, Union import numpy as np from numpy.typing import NDArray from numba import njit, get_num_threads from numba.typed import List from clustermatch.pytorch.core import unravel_index_2d from clustermatch.sklearn.metrics import adjusted_rand_index as ari from clustermatch.scipy.stats import rank from clustermatch.utils import chunker @njit(cache=True, nogil=True) def _get_perc_from_k(k: int) -> list[float]: """ It returns the percentiles (from 0.0 to 1.0) that separate the data into k clusters. For example, if k=2, it returns [0.5]; if k=4, it returns [0.25, 0.50, 0.75]. Args: k: number of clusters. If less than 2, the function returns an empty list. Returns: A list of percentiles (from 0.0 to 1.0). """ return [(1.0 / k) * i for i in range(1, k)] @njit(cache=True, nogil=True) def run_quantile_clustering(data: NDArray, k: int) -> NDArray[np.int16]: """ Performs a simple quantile clustering on one dimensional data (1d). Quantile clustering is defined as the procedure that forms clusters in 1d data by separating objects using quantiles (for instance, if the median is used, two clusters are generated with objects separated by the median). In the case data contains all the same values (zero variance), this implementation can return less clusters than specified with k. Args: data: a 1d numpy array with numerical values. k: the number of clusters to split the data into. Returns: A 1d array with the data partition. """ data_sorted = np.argsort(data, kind="quicksort") data_rank = rank(data, data_sorted) data_perc = data_rank / len(data) percentiles = [0.0] + _get_perc_from_k(k) + [1.0] cut_points = np.searchsorted(data_perc[data_sorted], percentiles, side="right") current_cluster = 0 part = np.zeros(data.shape, dtype=np.int16) - 1 for i in range(len(cut_points) - 1): lim1 = cut_points[i] lim2 = cut_points[i + 1] part[data_sorted[lim1:lim2]] = current_cluster current_cluster += 1 return part @njit(cache=True, nogil=True) def _get_range_n_clusters( n_features: int, internal_n_clusters: Iterable[int] = None ) -> NDArray[np.uint8]: """ Given the number of features it returns a tuple of k values to cluster those features into. By default, it generates a tuple of k values from 2 to int(np.round(np.sqrt(n_features))) (inclusive). For example, for 25 features, it will generate this tuple: (2, 3, 4, 5). Args: n_features: a positive number representing the number of features that will be clustered into different groups/clusters. internal_n_clusters: it allows to force a different list of clusters. It must be a list of integers. Repeated or invalid values will be dropped, such as values lesser than 2 (a singleton partition is not allowed). Returns: A numpy array with integer values representing numbers of clusters. """ if internal_n_clusters is not None: # remove k values that are invalid clusters_range_list = list( set([int(x) for x in internal_n_clusters if 1 < x < n_features]) ) else: # default behavior if no internal_n_clusters is given: return range from # 2 to sqrt(n_features) n_sqrt = int(np.round(np.sqrt(n_features))) n_sqrt = min((n_sqrt, 10)) clusters_range_list = list(range(2, n_sqrt + 1)) return np.array(clusters_range_list, dtype=np.uint16) @njit(cache=True, nogil=True) def _get_parts(data: NDArray, range_n_clusters: tuple[int]) -> NDArray[np.int16]: """ Given a 1d data array, it computes a partition for each k value in the given range of clusters. This function only supports numerical data, and it always runs run_run_quantile_clustering with the different k values. If partitions with only one cluster are returned (singletons), then the returned array will have negative values. Args: data: a 1d data vector. It is assumed that there are no nans. range_n_clusters: a tuple with the number of clusters. Returns: A numpy array with shape (number of clusters, data rows) with partitions of data. """ parts = np.zeros((len(range_n_clusters), data.shape[0]), dtype=np.int16) for idx in range(len(range_n_clusters)): k = range_n_clusters[idx] parts[idx] = run_quantile_clustering(data, k) # remove singletons partitions_ks = np.array([len(np.unique(p)) for p in parts]) parts[partitions_ks == 1, :] = -1 return parts def cdist_parts_basic(x: NDArray, y: NDArray) -> NDArray[float]: """ It implements the same functionality in scipy.spatial.distance.cdist but for clustering partitions, and instead of a distance it returns the adjusted Rand index (ARI). In other words, it mimics this function call: cdist(x, y, metric=ari) Args: x: a 2d array with m_x clustering partitions in rows and n objects in columns. y: a 2d array with m_y clustering partitions in rows and n objects in columns. Returns: A 2d array with m_x rows and m_y columns and the ARI between each partition pair. Each ij entry is equal to ari(x[i], y[j]) for each i and j. """ res = np.zeros((x.shape[0], y.shape[0])) for i in range(res.shape[0]): for j in range(res.shape[1]): res[i, j] = ari(x[i], y[j]) return res def cdist_parts_parallel( x: NDArray, y: NDArray, executor: ThreadPoolExecutor ) -> NDArray[float]: """ It parallelizes cdist_parts_basic function. Args: x: same as in cdist_parts_basic y: same as in cdist_parts_basic executor: an pool executor where jobs will be submitted. Results: Same as in cdist_parts_basic. """ res = np.zeros((x.shape[0], y.shape[0])) inputs = list(chunker(np.arange(res.shape[0]), 1)) tasks = {executor.submit(cdist_parts_basic, x[idxs], y): idxs for idxs in inputs} for t in as_completed(tasks): idx = tasks[t] res[idx, :] = t.result() return res @njit(cache=True, nogil=True) def get_coords_from_index(n_obj: int, idx: int) -> tuple[int]: """ Given the number of objects and and index, it returns the row/column position of the pairwise matrix. For example, if there are n_obj objects (such as genes), a condensed 1d array can be created with pairwise comparisons between genes, as well as a squared symmetric matrix. This function receives the number of objects and the index of the condensed array, and returns the coordiates of the squared symmetric matrix. Args: n_obj: the number of objects. idx: the index of the condensed pairwise array across all n_obj objects. Returns A tuple (i, j) with the coordinates of the squared symmetric matrix equivalent to the condensed array. """ b = 1 - 2 * n_obj x = np.floor((-b - np.sqrt(b ** 2 - 8 * idx)) / 2) y = idx + x * (b + x + 2) / 2 + 1 return int(x), int(y) def to_numpy(x): """ Converts x into a numpy array. It is used to convert pandas Series and DataFrames into numpy objects. """ if x is None: return x func = getattr(x, "to_numpy", None) if not callable(func): return x return x.to_numpy() def get_chunks( iterable: Union[int, Iterable], n_threads: int, ratio: float = 1 ) -> Iterable[Iterable[int]]: """ It splits elements in an iterable in chunks according to the number of CPU cores available for parallel processing. Args: iterable: an iterable to be split in chunks. If it is an integer, it will split the iterable given by np.arange(iterable). n_threads: number of threads available for parallelization. ratio: a ratio that allows to increase the number of splits given n_threads. For example, with ratio=1, the function will just split the iterable in n_threads chunks. If ratio is larger than 1, then it will split in n_threads * ratio chunks. Results: Another iterable with chunks according to the arguments given. For example, if iterable is [0, 1, 2, 3, 4, 5] and n_threads is 2, it will return [[0, 1, 2], [3, 4, 5]]. """ if isinstance(iterable, int): iterable = np.arange(iterable) n = len(iterable) expected_n_chunks = n_threads * ratio res = list(chunker(iterable, int(np.ceil(n / expected_n_chunks)))) while len(res) < expected_n_chunks <= n: # look for an element in res that can be split in two idx = 0 while len(res[idx]) == 1: idx = idx + 1 new_chunk = get_chunks(res[idx], 2) res[idx] = new_chunk[0] res.insert(idx + 1, new_chunk[1]) return res def cm( x: NDArray, y: NDArray = None, internal_n_clusters: Iterable[int] = None, return_parts: bool = False, n_chunks_threads_ratio: int = 3, ) -> tuple[NDArray[float], NDArray[np.uint64], NDArray[np.int16]]: """ This is the main function that computes the Clustermatch coefficient between two arrays. This implementation only supports numerical data for optimization purposes, but the original implementation can also work with categorical data (https://github.com/sinc-lab/clustermatch). To control the number of threads used, set the NUMBA_NUM_THREADS variable to an integer. For example, NUMBA_NUM_THREADS=2 will use 2 cores. Args: x: an 1d or 2d numerical array with the data. NaN are not supported. If it is 2d, then the coefficient is computed for each pair of rows. y: an optional 1d numerical array. If x is 1d and y is given, it computes the coefficient between x and y. internal_n_clusters: a list of integer values indicating the number of clusters used to split x and y. return_parts: if True, for each object pair, it returns the partitions that maximized the coefficient. n_chunks_threads_ratio: allows to modify how pairwise comparisons are split across different threads. It's given as the ratio parameter of function get_chunks. Returns: If return_parts is False, only Clustermatch coefficients are returned. In that case, if x is 2d, a np.ndarray of size n x n is returned with the coefficient values, where n is the number of rows in x. If only a single coefficient was computed (for example, x and y were given as 1d arrays each), then a single scalar is returned. If returns_parts is True, then it returns a tuple with three values: 1) the coefficients, 2) the partitions indexes that maximized the coefficient for each object pair, and 3) the partitions for all objects. cm_values: if x is 2d, then it is a 1d condensed array of pairwise coefficients. It has size (n * (n - 1)) / 2, where n is the number of rows in x. If x and y are given, and they are 1d, then this is a scalar. The Clustermatch coefficient is always between 0 and 1 (inclusive). If any of the two variables being compared has no variation (all values are the same), the coefficient is not defined (np.nan). max_parts: an array with n * (n - 1)) / 2 rows (one for each object pair) and two columns. It has the indexes pointing to each object's partition (parts, see below) that maximized the ARI. If cm_values[idx] is nan, then max_parts[idx] will be meaningless. parts: a 3d array that contains all the internal partitions generated for each object in data. parts[i] has the partitions for object i, whereas parts[i,j] has the partition j generated for object i. The third dimension is the number of columns in x (if 2d) or elements in x/y (if 1d). For example, if you want to access the pair of partitions that maximized the Clustermatch coefficient given x and y (a pair of objects), then max_parts[0] and max_parts[1] have the partition indexes in parts, respectively: parts[0][max_parts[0]] points to the partition for x, and parts[1][max_parts[1]] points to the partition for y. """ x = to_numpy(x) y = to_numpy(y) if x.ndim == 1 and y is not None: assert x.shape == y.shape X = np.zeros((2, x.shape[0])) X[0, :] = x X[1, :] = y elif x.ndim == 2: X = x else: raise ValueError("Wrong combination of parameters x and y") # get number of cores to use default_n_threads = get_num_threads() if internal_n_clusters is not None: _tmp_list = List() for x in internal_n_clusters: _tmp_list.append(x) internal_n_clusters = _tmp_list # get matrix of partitions for each object pair range_n_clusters = _get_range_n_clusters(X.shape[1], internal_n_clusters) # store a set of partitions per row (object) in X as a multidimensional # array: # - 1st dim: number of objects/rows in X # - 2nd dim: number of partitions per object # - 3rd dim: number of features per object (columns in X) parts = np.zeros( (X.shape[0], range_n_clusters.shape[0], X.shape[1]), dtype=np.int16 ) # cm_values stores the clustermatch coefficients n = X.shape[0] n_comp = (n * (n - 1)) // 2 cm_values = np.full(n_comp, np.nan) # for each object pair being compared, max_parts has the indexes of the # partitions that maximimized the ARI max_parts = np.zeros((n_comp, 2), dtype=np.uint64) with ThreadPoolExecutor(max_workers=default_n_threads) as executor: # pre-compute the internal partitions for each object in parallel inputs = get_chunks(n, default_n_threads, n_chunks_threads_ratio) def compute_parts(idxs): return np.array([_get_parts(X[i], range_n_clusters) for i in idxs]) for idx, ps in zip(inputs, executor.map(compute_parts, inputs)): parts[idx] = ps # Below, there are two layers of parallelism: 1) parallel execution # across object pairs and 2) the cdist_parts_parallel function, which # also runs several threads to compare partitions using ari. In 2) we # need to disable parallelization in case len(cm_values) > 1 (that is, # we have several object pairs to compare), because parallelization is # already performed at this level. Otherwise, more threads than # specified by the user are started. cdist_parts_enable_threading = True if n_comp == 1 else False cdist_func = None map_func = executor.map if cdist_parts_enable_threading: map_func = map def cdist_func(x, y): return cdist_parts_parallel(x, y, executor) else: cdist_func = cdist_parts_basic # compute coefficients def compute_coef(idx_list): """ Given a list of indexes representing each a pair of objects/rows/genes, it computes the Clustermatch coefficient for each of them. This function is supposed to be used to parallelize processing. Args: idx_list: a list of indexes (integers), each of them representing a pair of objects. Returns: Returns a tuple with two arrays. These two arrays are the same arrays returned by the main cm function (cm_values and max_parts) but for a subset of the data. """ n_idxs = len(idx_list) max_ari_list = np.full(n_idxs, np.nan, dtype=float) max_part_idx_list = np.zeros((n_idxs, 2), dtype=np.uint64) for idx, data_idx in enumerate(idx_list): i, j = get_coords_from_index(n, data_idx) # get partitions for the pair of objects obji_parts, objj_parts = parts[i], parts[j] # compute ari only if partitions are not marked as "missing" # (negative values) if obji_parts[0, 0] < 0 or objj_parts[0, 0] < 0: continue # compare all partitions of one object to the all the partitions # of the other object, and get the maximium ARI comp_values = cdist_func( obji_parts, objj_parts, ) max_flat_idx = comp_values.argmax() max_idx = unravel_index_2d(max_flat_idx, comp_values.shape) max_part_idx_list[idx] = max_idx max_ari_list[idx] =
np.max((comp_values[max_idx], 0.0))
numpy.max
import os, re import numpy as np import matplotlib.pyplot as plt def prune( d, pattern=None, types=None ): """ @author: <NAME> Delete dictionary keys with specified name pattern or types Default types are: functions and modules. >>> prune( {'a': 0, 'a_': 0, '_a': 0, 'a_a': 0, 'b': prune} ) {'a_a': 0} """ if pattern == None: pattern = '(^_)|(_$)|(^.$)' if types is None: types = type( re ), type( re.sub ) grep = re.compile( pattern ) d2 = d.copy() for k in d.keys(): if grep.search( k ) or type( d[k] ) in types: del( d2[k] ) return d2 def parse( fd, prune_pattern=None, prune_types=None ): """ @author: <NAME> (modified by <NAME>) parse vars in python file into new dict. ignore types and modules through prune types. inputs fd (string or file) : full_path or file returns parameters (dict) : containing parameter and its value. """ d = {} if isinstance(fd, str): fd = open( os.path.expanduser( fd ) ) exec(fd.read(), d) prune( d, prune_pattern, prune_types ) return d def mw_to_m0( mw ): """ converts moment magnitude to moment using eq. 9.73 in shearer 2009 inputs mw (float) : moment magnitude return m0 (float): seismic moment """ return 10**(1.5*mw+9.1) def poly_area(x,y): """ vectorized implementation of shoelace formula. inputs x (ndarray) : x coordinates of polygon y (ndarray) : y coordinates of polygon type : 'green' or 'shoe' indicating either using greens theorem or the shoelace formula returns area (float) : area of polygons in units of (x,y) """ return 0.5*np.absolute(np.dot(x,np.roll(y,1))-np.dot(y,np.roll(x,1))) def poly_area_bbox(x,y): """ compute area based on bounding box around set of polygons. inputs x (ndarray) : x coordinates of polygon y (ndarray) : y coordinates of polygon returns area (float) : area of polygon in units of (x,y) """ minx = np.min(x) maxx = np.max(x) miny =
np.min(y)
numpy.min
import os import numpy as np from pathlib import Path from typing import Callable, List, Dict from haco.DIDrive_core.utils.data_utils.data_writter import write_json, write_episode_lmdb from haco.DIDrive_core.utils.others.image_helper import save_image, is_image from haco.DIDrive_core.data import BenchmarkDatasetSaver class CICTBenchmarkDatasetSaver(BenchmarkDatasetSaver): def __init__(self, save_dir: str, obs_cfg: Dict, post_process_fn: Callable = None): super().__init__(save_dir, obs_cfg, post_process_fn) def save_episodes_data(self, episodes_data: List, start_episode: int): """ Save data from several episodes sampled from collector, with 'env_param' and 'data' key saved in each episode. :Arguments: - episode_count (int): Start count of episode to save. - episodes_data (List): Saved data of episodes. """ for episode, episode_data in enumerate(episodes_data): data = list() episode_path = Path(self._save_dir).joinpath('episode_%05d' % (start_episode + episode)) CICTBenchmarkDatasetSaver._make_episode_path(episode_path, episode_data['env_param']) for idx, frame_data in enumerate(episode_data['data']): observations = frame_data['obs'] actions = frame_data['action'] if 'real_steer' not in actions: actions['real_steer'] = actions['steer'] actions['real_throttle'] = actions['throttle'] actions['real_brake'] = actions['brake'] measurements = [ observations['tick'], observations['timestamp'], observations['forward_vector'], observations['acceleration'], observations['location'], observations['speed'], observations['command'], observations['velocity'], observations['angular_velocity'], observations['rotation'], actions['steer'], actions['throttle'], actions['brake'], actions['real_steer'], actions['real_throttle'], actions['real_brake'], observations['tl_state'], observations['tl_dis'], ] measurements = [x if x.shape != () else np.float32([x]) for x in measurements] measurements =
np.concatenate(measurements, 0)
numpy.concatenate
# -*- coding: utf-8 -*- """ Created on Mon Apr 22 11:27:32 2019 @author: pjdudenas """ import fabio import numpy as np import matplotlib.pyplot as plt plt.rcParams.update({'font.size':22}) class reduction: def __init__(self,name): self.name = name def geometry(self,SDD,center_x, center_y, xpixels = 1475, ypixels = 1679, pixel_size = .172,wavelength = .123894): self.SDD = SDD self.center_x = center_x self.center_y = center_y self.xpixels = xpixels self.ypixels = ypixels self.pixel_size = pixel_size self.qpx = 2*np.pi*(pixel_size*10e6)/(self.SDD*10e6*wavelength) self.qp = (np.arange(1,xpixels+1)-center_x)*self.qpx self.qz = -(np.arange(1,ypixels+1)-center_y)*self.qpx self.xran = np.arange(self.center_x,self.xpixels) self.yran = np.arange(0,self.center_y+1) self.wavelength = wavelength def load(self): self.data = np.array(fabio.open(self.name).data,dtype=float) self.data[self.data < 1] = 1 def raw_plot(self,size=(12,9)): fig, ax = plt.subplots(figsize=size) plt.imshow(np.log(self.data),cmap='jet') plt.colorbar() plt.show() def plot(self,size=(9,9),show_cbar='False'): fig, ax = plt.subplots(figsize=size) plt.imshow(np.log(self.data),cmap='jet',extent=[self.qp[0],self.qp[-1],self.qz[-1],self.qz[0]], aspect='auto') plt.xlim([-2,2]) plt.ylim([0,4]) plt.yticks(np.arange(1,5)) plt.xticks(np.arange(-2,3)) # tick_loc, tick_label = plt.yticks() # ax.set_yticklabels(map(str,(np.abs(tick_loc)))) plt.xlabel(r'$q_p$ $[nm^{-1}]$') plt.ylabel(r'$q_z$ $[nm^{-1}]$') if show_cbar == 'True': plt.colorbar() plt.show() def qp_linecut(self,ypixel1=1200,ypixel2=1215): I = np.mean(self.data[ypixel1:ypixel2,self.xran],axis=0) qp = self.qp[self.xran] # print(self.xran.shape) return qp, I def qz_linecut(self,xpixel1=650,xpixel2=660): I = np.mean(self.data[self.yran,xpixel1:xpixel2],axis=1) qz = self.qz[self.yran] return qz, I def SRFconvert(self,alphai): self.alphai = alphai*np.pi/180 ypos = (self.center_y - np.arange(1,self.ypixels+1))*self.pixel_size ypos = ypos.reshape(len(ypos),1) xpos = (np.arange(1,self.xpixels+1)-self.center_x)*self.pixel_size xpos = xpos.reshape((1,len(xpos))) gamma = np.arctan(xpos/self.SDD) delta = np.arctan(ypos/np.sqrt(self.SDD**2+xpos**2)) qx = 2*np.pi/self.wavelength*(-np.cos(delta)*np.sin(gamma)); qy = 2*np.pi/self.wavelength*(np.cos(self.alphai)*(np.cos(delta)*np.cos(gamma)-1)+np.sin(self.alphai)*np.sin(delta)); self.qz = 2*np.pi/self.wavelength*(np.cos(self.alphai)*np.sin(delta) + np.sin(self.alphai)*(1 - np.cos(delta)*np.cos(gamma))); self.q =
np.sqrt(qx**2+qy**2+self.qz**2)
numpy.sqrt
""" GUI code modified based on https://github.com/miili/StreamPick For earthquake PKiKP coda quality evaluation and stack """ import os import pickle import pandas as pd import numpy as np # GUI import import PyQt5 from PyQt5 import QtGui from PyQt5 import QtWidgets from PyQt5.QtWidgets import * from PyQt5.QtGui import * import sys import signal import scipy import gpar from gpar.util import util from itertools import cycle #figure plot import import matplotlib matplotlib.use('Qt5Agg') from matplotlib.figure import Figure from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.transforms import offset_copy from matplotlib.widgets import RectangleSelector import matplotlib.colors as mcolors import matplotlib.gridspec as gridspec import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from mpl_toolkits.basemap import shiftgrid # from mpl_toolkits.axesgrid1 import make_axes_locatable #obspy import from obspy.taup import TauPyModel import obspy from obspy.core.trace import Trace from obspy.core.stream import Stream from obspy.core import read from obspy.core import AttribDict signal.signal(signal.SIGINT, signal.SIG_DFL) # color = list(mcolors.cnames.values()) color = ['red', 'blue', 'green','yellow','cyan','magenta','purple'] #class for event first evaluation class glanceEQ(QtWidgets.QMainWindow): def __init__(self, array=None, parent=None, ap=None): if ap is None: self.qApp = QtWidgets.QApplication(sys.argv) else: self.qApp = ap self.KeepGoing = False if isinstance(array, str): ar = util.loadArray(array) elif isinstance(array, gpar.arrayProcess.Array): ar = array else: msg = 'Define Array instance = gpar.arrayPropocess.Array() or a path to a pickle file' raise ValueError(msg) self.array = ar self.eve_type = ['A','B','C','D'] self._shortcuts = {'eve_next': 'n', 'eve_prev': 'p', 'trim_apply': 'w', 'gain_up': 'u', 'gain_down': 'd', 'strip': 's', 'A':'a', 'B':'b', 'C':'c', 'D':'d'} self._plt_drag = None # init events in the array self._events = ar.events #defines list self._events self.savefile = None self._initEqList() self._stripDF = pd.DataFrame() self._badDF = pd.DataFrame() self._btype = 'beam' self._method = 'all' self.trinWin = [{'name':'N200-C200','noise':200.0,'coda':200.0, 'stime':400.0,'etime':1800, 'smooth':4.0,'model':'ak135'}] self._current_win = None self._current_strip = False self._eventCycle = cycle(self._eqlist) self._eventInfo(next(self._eventCycle)) QMainWindow.__init__(self) self.setupUI() def setupUI(self): self.main_widget = QtWidgets.QWidget(self) self._initMenu() self._createStatusBar() self._initPlots() l = QVBoxLayout(self.main_widget) l.addLayout(self.btnbar) l.addLayout(self.btnbar2) l.addWidget(self.canvas) self.setCentralWidget(self.main_widget) self.setGeometry(300, 300, 1200, 800) self.setWindowTitle('Array Analysis: %s'%self.array.name) self.show() def _killLayout(): pass def _initEqList(self): self._eqlist = [] for _eve in self._events: self._eqlist.append(_eve.ID) self._eqlist.sort() def _initPlots(self): self.fig = Figure(facecolor='.86',dpi=100, frameon=True) self.canvas = FigureCanvas(self.fig) self.canvas.setFocusPolicy(PyQt5.QtCore.Qt.StrongFocus) self._drawFig() # connect the events self.fig.canvas.mpl_connect('scroll_event', self._pltOnScroll) self.fig.canvas.mpl_connect('motion_notify_event', self._pltOnDrag) self.fig.canvas.mpl_connect('button_release_event', self._pltOnButtonRelease) def _initMenu(self): # Next and Prev Earthquake nxt = QtWidgets.QPushButton('Next >>', shortcut=self._shortcuts['eve_next'], parent=self.main_widget) nxt.clicked.connect(self._pltNextEvent) nxt.setToolTip('shortcut <b>n</d>') nxt.setMaximumWidth(150) prv = QPushButton('Prev >>', shortcut=self._shortcuts['eve_prev'], parent=self.main_widget) prv.clicked.connect(self._pltPrevEvent) prv.setToolTip('shortcut <b>p</d>') prv.setMaximumWidth(150) # Earthquake drop-down self.evecb = QComboBox(self) for eve in self._eqlist: self.evecb.addItem(eve) self.evecb.activated.connect(self._pltEvent) self.evecb.setMaximumWidth(1000) self.evecb.setMinimumWidth(80) # coda strip button self.codabtn = QtWidgets.QPushButton('Strip', shortcut=self._shortcuts['strip'],parent=self.main_widget) self.codabtn.setToolTip('shortcut <b>s</b>') self.codabtn.clicked.connect(self._appStrip) self.codacb = QComboBox(self) for med in ['all', 'coda','twoline']: self.codacb.addItem(med) self.codacb.activated.connect(self._selectMethod) self.codacb.setMaximumWidth(100) self.codacb.setMinimumWidth(80) self.wincb = QComboBox(self) self.wincb.activated.connect(self._changeStrip) self._updateWindow() # edit/delete coda selected window winEdit = QtWidgets.QPushButton('Coda Window') winEdit.resize(winEdit.sizeHint()) winEdit.clicked.connect(self._editTimeWindow) winDelt = QtWidgets.QPushButton('Delete') winDelt.resize(winDelt.sizeHint()) winDelt.clicked.connect(self._deleteWin) # Coda level _radbtn = [] for _o in self.eve_type: _radbtn.append(QRadioButton(_o.upper(), shortcut=self._shortcuts[_o.upper()])) _radbtn[-1].setToolTip('Level: '+_o) self.levelGrp = QButtonGroup() self.levelGrp.setExclusive(True) levelbtn = QHBoxLayout() for _i, _btn in enumerate(_radbtn): self.levelGrp.addButton(_btn, _i) levelbtn.addWidget(_btn) # plot slide beam figure button self.sbcb = QComboBox(self) for btype in ['beam', 'slide', 'vespetrum','strip']: self.sbcb.addItem(btype) self.sbcb.activated.connect(self._updatePlot) self.vepcb = QComboBox(self) for scale in ['log10', 'log','sqrt','beam']: self.vepcb.addItem(scale) self.vepcb.activated.connect(self._updatePlot ) self.vepcb.setEnabled(False) self.codacb.setMaximumWidth(100) self.codacb.setMinimumWidth(80) self.ampmin = QDoubleSpinBox(decimals=1, maximum=5, minimum=-2, singleStep=.5, value=1) self.ampmax = QDoubleSpinBox(decimals=1, maximum=5, minimum=-2, singleStep=.5, value=3) self.ampmin.valueChanged.connect(self._updatePlot) self.ampmax.valueChanged.connect(self._updatePlot) self.ampmin.setEnabled(False) self.ampmax.setEnabled(False) # self._initAmp() self.sbcb.activated.connect(self._activeAmp) self.ttbtn = QtWidgets.QPushButton('Phases', parent=self.main_widget) self.ttbtn.setCheckable(True) self.ttbtn.clicked.connect(self._updatePlot) # Arrange buttons vline = QFrame() vline.setFrameStyle(QFrame.VLine | QFrame.Raised) self.btnbar = QHBoxLayout() self.btnbar.addWidget(prv) self.btnbar.addWidget(nxt) self.btnbar.addWidget(QLabel('Event')) self.btnbar.addWidget(self.evecb) ## self.btnbar.addWidget(vline) self.btnbar.addWidget(self.codabtn) self.btnbar.addWidget(self.codacb) self.btnbar.addWidget(self.wincb) self.btnbar.addWidget(winEdit) self.btnbar.addWidget(winDelt) self.btnbar.addStretch(1) self.btnbar2 = QHBoxLayout() self.btnbar2.addWidget(QLabel('Level: ')) self.btnbar2.addLayout(levelbtn) self.btnbar2.addWidget(vline) self.btnbar2.addWidget(QLabel('TYPE')) self.btnbar2.addWidget(self.sbcb) self.btnbar2.addWidget(vline) self.btnbar2.addWidget(QLabel('Scale')) self.btnbar2.addWidget(self.vepcb) self.btnbar2.addWidget(QLabel('AMP')) self.btnbar2.addWidget(self.ampmin) self.btnbar2.addWidget(self.ampmax) self.btnbar2.addWidget(vline) self.btnbar2.addWidget(self.ttbtn) self.btnbar2.addStretch(1) #Menubar menubar = self.menuBar() fileMenu = menubar.addMenu('&File') fileMenu.addAction(QtGui.QIcon().fromTheme('document-save'), 'Save', self._saveFile) fileMenu.addAction(QtGui.QIcon().fromTheme('document-save'), 'Save as', self._saveFileFormat) fileMenu.addSeparator() fileMenu.addAction(QIcon().fromTheme('document-open'), 'Load array', self._openArray) fileMenu.addAction(QtGui.QIcon().fromTheme('document-open'), 'Load Strip Pickle File', self._openFile) fileMenu.addSeparator() fileMenu.addAction(QtGui.QIcon().fromTheme('document-save'), 'Save Plot', self._savePlot) fileMenu.addSeparator() quit = QAction(QIcon().fromTheme('application-exit')," &Exit", self) fileMenu.addAction(quit) fileMenu.triggered[QAction].connect(self.closeArray) def _hardExist(self): self.deleteLater() def _activeAmp(self): if self.sbcb.currentText() == 'vespetrum': self.ampmin.setEnabled(True) self.ampmax.setEnabled(True) self.vepcb.setEnabled(True) if self.vepcb.currentText() == 'beam': self.ampmax.setMaximum(100000) # self.ampmax.setValue(1000) self.ampmax.setSingleStep(500) # self.ampmin.setValue(10) self.ampmin.setMaximum(100000) self.ampmin.setSingleStep(500) elif self.vepcb.currentText() == 'sqrt': self.ampmax.setMaximum(300) # self.ampmax.setValue(30) self.ampmax.setSingleStep(5) # self.ampmin.setValue(3) self.ampmin.setMaximum(300) self.ampmin.setSingleStep(5) elif self.vepcb.currentText() == 'log': self.ampmax.setMaximum(12) # # self.ampmax.setValue(7) self.ampmax.setSingleStep(1) # # self.ampmin.setValue(2) self.ampmin.setMaximum(12) self.ampmin.setSingleStep(1) elif self.vepcb.currentText() == 'log10': self.ampmax.setSingleStep(0.5) self.ampmin.setSingleStep(0.5) self.ampmax.setMaximum(5) self.ampmin.setMaximum(5) else: self.ampmin.setEnabled(False) self.ampmax.setEnabled(False) self.vepcb.setEnabled(False) def _createStatusBar(self): """ Creates the status bar """ sb =QStatusBar() sb.setFixedHeight(18) self.setStatusBar(sb) self.statusBar().showMessage('Ready') def _selectMethod(self, index): self._method = self.codacb.currentText() self.sbcb.setCurrentIndex(3) self._updatePlot() def _changeStrip(self,index): if index == len(self.trinWin): return self._newTrim() else: return self._appStrip() def _newTrim(self): """ Creat new strip window """ newWin = self.defWindow(self) if newWin.exec_(): self.trinWin.append(newWin.getValues()) self._updateWindow() self.wincb.setCurrentIndex(len(self.trinWin)-1) self._appStrip() def _editTimeWindow(self): """ Edit existing coda selection window """ _i = self.wincb.currentIndex() this_window = self.trinWin[_i] editWindow = self.defWindow(self, this_window) if editWindow.exec_(): self.trinWin[_i] = editWindow.getValues() self._updateWindow() self.wincb.setCurrentIndex(_i) self._appStrip() def _deleteWin(self): """ Delete window """ pass _i = self.wincb.currentIndex() def _updateWindow(self): self.wincb.clear() self.wincb.setCurrentIndex(-1) for _i, _f in enumerate(self.trinWin): self.wincb.addItem('Noise %.2f sec - Coda %.2f sec' %(_f['noise'], _f['coda'])) self.wincb.addItem('Create new Window') def _appStrip(self, button=True, draw=True): """ Apply coda strip """ _method = self.codacb.currentText() _j = self.wincb.currentIndex() self._eventInfo(self._current_id) self._current_strip = True spts = int(self.trinWin[_j]['smooth'] / self._current_delta ) codaStrip(self._current_event, method=_method, window=spts, siglen=self.trinWin[_j]['coda'], noise=self.trinWin[_j]['noise'],beamphase=self.beamphase, model=self.trinWin[_j]['model'], stime=self.trinWin[_j]['stime'], etime=self.trinWin[_j]['etime'],) self._btype = 'strip' self.sbcb.setCurrentIndex(3) self._setCodaStrip() self._updatePlot() def _pltEvent(self): """ Plot event from DropDown Menu """ _i = self.evecb.currentIndex() while next(self._eventCycle) != self._eqlist[_i]: pass self._eventInfo(self._eqlist[_i]) self._current_strip = False _id = self._current_event.ID if len(self._stripDF) != 0: existDF = self._stripDF[self._stripDF.ID == _id] else: existDF = pd.DataFrame() if len(existDF) != 0: level = existDF.Level.iloc[0] ind = self.eve_type.index(level) self.levelGrp.button(ind).setChecked(True) self._current_strip=True else: if len(self._badDF) != 0: _badDF = self._badDF[self._badDF.ID == _id] if len(_badDF) != 0: self.levelGrp.button(3).setChecked(True) self._current_strip = True self._drawFig() def _pltPrevEvent(self): """ Plot previous events """ _j = self.evecb.currentIndex() for _i in range(len(self._eqlist) - 1): prevEvent = next(self._eventCycle) self._eventInfo(prevEvent) self._current_strip = False _id = self._current_event.ID if len(self._stripDF) != 0: existDF = self._stripDF[self._stripDF.ID == _id] else: existDF = pd.DataFrame() if len(existDF) != 0: level = existDF.Level.iloc[0] ind = self.eve_type.index(level) self.levelGrp.button(ind).setChecked(True) self._current_strip = True else: if len(self._badDF) != 0: _badDF = self._badDF[self._badDF.ID == _id] if len(_badDF) != 0: self.levelGrp.button(3).setChecked(True) self._current_strip = True if _j == 0: _n = len(self.evecb) - 1 self.evecb.setCurrentIndex(_n) else: self.evecb.setCurrentIndex(_j-1) if self._btype == 'strip': self._btype = 'beam' self.sbcb.setCurrentIndex(0) self._drawFig() def _pltNextEvent(self): _id = self._current_event.ID level = self.eve_type[self.levelGrp.checkedId()] if level == 'D': self._current_strip = True self._setCodaStrip() else: # if len(self._stripDF) != 0: # existDF = self._stripDF[(self._stripDF.ID == _id)] # else: # existDF = pd.DataFrame() # if len(existDF) == 0: if not self._current_strip: choice = QMessageBox.question(self, 'Stripping?', "Haven't stripping yet, want to do it?", QMessageBox.Yes | QMessageBox.No) if choice is QMessageBox.Yes: self._current_strip = True self._appStrip() return self._eventInfo(next(self._eventCycle)) self._current_strip = False _id = self._current_event.ID if len(self._stripDF) != 0: existDF = self._stripDF[self._stripDF.ID == _id] else: existDF = pd.DataFrame() if len(existDF) != 0: level = existDF.Level.iloc[0] ind = self.eve_type.index(level) self.levelGrp.button(ind).setChecked(True) self._current_strip = True else: if len(self._badDF) != 0: _badDF = self._badDF[self._badDF.ID == _id] if len(_badDF) != 0: self.levelGrp.button(3).setChecked(True) self._current_strip = True _i = self.evecb.currentIndex() if _i == len(self.evecb) - 1: self.evecb.setCurrentIndex(0) else: self.evecb.setCurrentIndex(_i+1) if self._btype == 'strip': self._btype = 'beam' self.sbcb.setCurrentIndex(0) self._drawFig() def _eventInfo(self, eqid): """ Copies the array process result from the current Earthquake object """ for eve in self._events: if eve.ID == eqid: event = eve self._current_event = event self.beamphase = event.beamphase self._current_id = eqid if not hasattr(event, 'beam'): return self._current_beam = event.beam filts = {} for tr in self._current_beam: filts[tr.stats.station] = tr.stats.channel self._current_filts = filts self._current_ID = event.ID self._current_dis = event.dis self._current_p = event.rayp self._current_bb = event.bb self._current_bakAz = event.baz self._current_delta = event.delta if hasattr(event, 'slideSt'): self._current_slide = event.slideSt if hasattr(event, 'energy'): self._current_energy = event.energy self._current_time = event.slantTime self._current_K = event.slantK self._current_type = event.slantType def _setCodaStrip(self): if not self._current_strip: return event = self._current_event _i = self.wincb.currentIndex() win = self.trinWin[_i] if len(self._stripDF) != 0: existDF = self._stripDF[(self._stripDF.ID == self._current_event.ID) & (self._stripDF.winName == win['name'])] else: existDF = pd.DataFrame() if len(self._badDF) !=0: _badDF = self._badDF[self._badDF.ID == self._current_event.ID] else: _badDF = pd.DataFrame() if len(existDF) !=0: choice = QMessageBox.question(self, 'Replace stripping', "Do you want to replace existed stripping?", QMessageBox.Yes | QMessageBox.No) if choice == QMessageBox.Yes: index = existDF.index self._stripDF.drop(index,axis=0,inplace=True) self._stripDF.reset_index(inplace=True, drop=True) else: return if len(_badDF) != 0: choice = QMessageBox.question(self, 'Bad Event', "Want to replace it?", QMessageBox.Yes | QMessageBox.No) if choice == QMessageBox.Yes: index = _badDF.index self._badDF.drop(index,axis=0,inplace=True) self._badDF.reset_index(inplace=True, drop=True) else: return level = self.eve_type[self.levelGrp.checkedId()] ID = event.ID lat = event.lat lon = event.lon dep = event.dep mw = event.mw dis = event.dis bb = event.bb bakAzi = event.baz delta = event.delta if level =='D': newRow = {'ID': ID, 'lat':lat, 'lon':lon,'dep':dep, 'Mw':mw,'Del':dis, 'BB':bb,'bakAzi':bakAzi,'Level':'D'} msg = ('%s is Bad Event'%self._current_ID) gpar.log(__name__, msg, level='info', pri=True) self._badDF = self._badDF.append(newRow, ignore_index=True) else: if self._method == 'all': newRow = {'ID': ID, 'lat':lat, 'lon':lon,'dep':dep, 'Mw':mw,'Del':dis, 'BB':bb,'bakAzi':bakAzi, 'winName':win['name'], 'win':win, 'Level':level, 'delta': delta, 'codaResSt':event.codaResSt, 'codaSt':event.codaSt, 'crms':event.codaMod, 'twoResSt':event.twoResSt, 'twoSt':event.twoSt, 'trms':event.twoMod} self._stripDF = self._stripDF.append(newRow, ignore_index=True) elif self._method == 'coda': newRow = {'ID': ID, 'lat':lat, 'lon':lon,'dep':dep, 'Mw':mw,'Del':dis, 'winName':win['name'], 'win':win, 'BB':bb,'bakAzi':bakAzi, 'Level':level, 'delta': delta, 'codaResSt':event.codaResSt, 'codaSt':event.codaSt, 'crms':event.codaMod, } self._stripDF = self._stripDF.append(newRow, ignore_index=True) elif self._method == 'twoline': newRow = {'ID': ID, 'lat':lat, 'lon':lon,'dep':dep, 'Mw':mw,'Del':dis, 'BB':bb,'bakAzi':bakAzi, 'Level':level, 'delta': delta, 'winName':win['name'], 'win':win, 'twoResSt':event.twoResSt, 'twoSt':event.twoSt, 'trms':event.twoMod} self._stripDF = self._stripDF.append(newRow, ignore_index=True) def _drawFig(self): self.fig.clear() a = u"\u00b0" if self._btype == 'beam': num_plots = len(self._current_beam) for _i, tr in enumerate(self._current_beam): ax = self.fig.add_subplot(num_plots, 1, _i+1) if hasattr(tr.stats, 'channel'): label = tr.stats.channel else: label=None time = np.arange(tr.stats.npts) * tr.stats.delta + tr.stats.sac.b ax.plot(time, tr.data, 'k', label=label) if not hasattr(self._current_event, 'arrivals'): self._current_event.getArrival() arrival = self._current_event.arrivals[self.beamphase]['TT']# - self._current_event.time ax.vlines(arrival, ax.get_ylim()[0],ax.get_ylim()[1],'r', label=self.beamphase) if self.ttbtn.isChecked(): _arr = self._current_event.arrivals # del _arr[self.beamphase] for name, tt in _arr.items(): if name is self.beamphase: continue ax.vlines(tt['TT'], ax.get_ylim()[0],ax.get_ylim()[1],'b',label=name) ax.legend() if _i == 0: ax.set_xlabel('Seconds') self.fig.suptitle('%s - %s\nDep:%s Distance: %s%s' %(self._current_event.ID, self._btype, self._current_event.dep, self._current_event.dis, a)) elif self._btype == 'slide': self.fig.suptitle('%s - %s\nDep:%s Distance: %s%s' %(self._current_event.ID, self._btype, self._current_event.dep, self._current_event.dis, a)) nfilts = len(self._current_slide.keys()) ax = self.fig.subplots(4, nfilts, sharex='col', sharey='row') ax = ax.reshape(4,nfilts) for ind, (name,st) in enumerate(self._current_slide.items()): for _i, tr in enumerate(st): if hasattr(tr.stats, 'channel'): label = tr.stats.channel else: label=None time = np.arange(tr.stats.npts) * tr.stats.delta + tr.stats.sac.b ax[_i,ind].plot(time, tr.data, 'k', label=None) ax[_i, ind].set_xlim([np.min(time), np.max(time)]) if label == 'Amplitude': peak = np.max(tr.data) + 1 ax[_i,ind].set_ylim([-1, peak]) elif label == 'Slowness': ax[_i,ind].set_ylim([0, 15]) rp = self._current_event.rayp ax[_i, ind].hlines(rp, np.min(time), np.max(time), 'r', 'dashed') elif label == 'Back Azimuth': ax[_i, ind].set_ylim([0,360]) elif label == 'coherence': ax[_i, ind].set_ylim([0,1]) if not hasattr(self._current_event, 'arrivals'): self._current_event.getArrival() arrival = self._current_event.arrivals[self.beamphase]['TT']# - self._current_event.time ax[_i,ind].vlines(arrival, ax[_i,ind].get_ylim()[0],ax[_i,ind].get_ylim()[1],'r',label=self.beamphase) if self.ttbtn.isChecked(): _arr = self._current_event.arrivals # del _arr[self.beamphase] for pname, tt in _arr.items(): if pname is self.beamphase: continue ax[_i,ind].vlines(tt['TT'], ax[_i,ind].get_ylim()[0],ax[_i,ind].get_ylim()[1],'b',label=pname) ax[_i,ind].legend() # ax[_i,ind].set_aspect(aspect=0.3) if _i == 3: ax[_i,ind].set_xlabel('Seconds') if _i == 0: ax[_i,ind].set_title(name) if ind == 0: ax[_i,ind].set_ylabel(label) elif self._btype == 'vespetrum': num = len(self._current_energy) extent=[np.min(self._current_time),np.max(self._current_time),np.min(self._current_K),np.max(self._current_K)] vmin = float(self.ampmin.cleanText()) vmax = float(self.ampmax.cleanText()) if not hasattr(self._current_event, 'arrivals'): self._current_event.getArrival() for ind, _row in self._current_energy.iterrows(): # abspow = _row.POWER name = _row.FILT if self.vepcb.currentText() == 'log10': abspow = np.log10(np.abs(_row.POWER)) elif self.vepcb.currentText() == 'log': abspow = np.log(np.abs(_row.POWER)) elif self.vepcb.currentText() == 'sqrt': abspow = np.sqrt(np.abs(_row.POWER)) else: abspow = np.abs(_row.POWER) ax = self.fig.add_subplot(1, num, ind+1) ax.imshow(abspow, extent=extent, aspect='auto', cmap='Reds', vmin=vmin, vmax=vmax, origin='lower') arrival = self._current_event.arrivals[self.beamphase]['TT'] ax.vlines(arrival, ax.get_ylim()[0],ax.get_ylim()[1],'k',label=self.beamphase) rp = self._current_event.rayp ax.hlines(rp, ax.get_xlim()[0],ax.get_xlim()[1], 'b') ax.hlines(-rp, ax.get_xlim()[0],ax.get_xlim()[1], 'b') if self.ttbtn.isChecked(): _arr = self._current_event.arrivals # del _arr[self.beamphase] for name, tt in _arr.items(): if name is self.beamphase: continue ax.vlines(tt['TT'], ax.get_ylim()[0],ax.get_ylim()[1],'b',label=name) ax.legend() ax.set_xlabel('Seconds') if ind == 0: ax.set_ylabel(self._current_type) ax.set_title(name) if self._current_type == 'slowness': title = '%s - %s\nSlant Stack at a Backazimuth of %.1f %sN\nDep:%s Distance: %s%s' \ %(self._btype, self._current_ID, self._current_event.baz,a, self._current_event.dep, self._current_event.dis, a) elif self._current_type == 'theta': title = '%s - %s\nSlant Stack at a slowness of %.2f s/deg\nDep:%s Distance: %s%s' \ %(self._btype, self._current_ID, self._current_event.rayp, self._current_event.dep, self._current_event.dis, a) self.fig.suptitle(title) elif self._btype == 'strip': _i = self.wincb.currentIndex() win = self.trinWin[_i] if len(self._stripDF) != 0: existDF = self._stripDF[(self._stripDF.ID == self._current_event.ID) & (self._stripDF.winName == win['name'])] else: existDF = pd.DataFrame() if len(self._badDF) != 0: _badDF = self._badDF[self._badDF.ID == self._current_event.ID] else: _badDF = pd.DataFrame() if len(existDF) == 0 and len(_badDF) == 0: choice = QMessageBox.question(self, 'Stripping?', "Haven't stripping yet, want to do it?", QMessageBox.Yes | QMessageBox.No) if choice == QMessageBox.Yes: self._appStrip() else: self._btype = 'beam' self.sbcb.setCurrentIndex(0) self._updatePlot() elif len(_badDF) != 0: choice = QMessageBox.question(self, 'Bad event!', "Want to reevalua it?", QMessageBox.Yes | QMessageBox.No) if choice == QMessageBox.Yes: index = _badDF.index self._badDF.drop(index,axis=0,inplace=True) self._badDF.reset_index(inplace=True, drop=True) self.sbcb.setCurrentIndex(0) self._updatePlot() else: self.sbcb.setCurrentIndex(0) self._updatePlot() elif len(existDF) != 0: trinwin = existDF.win.iloc[0] stime = trinwin['stime'] etime = trinwin['etime'] delta = self._current_beam[0].stats.delta # npts = int((etime - stime)/delta) + 1 npts = int((etime - stime)/delta) # time = np.linspace(stime, etime, npts) time = stime + np.arange(npts) * delta sind = int(stime / delta) # eind = int(etime / delta) if self._method == 'all': codamode = existDF.crms.iloc[0] twomode = existDF.trms.iloc[0] nfilter = len(codamode) codaSt = existDF.codaSt.iloc[0] twoSt = existDF.twoSt.iloc[0] cRes = existDF.codaResSt.iloc[0] tRes = existDF.twoResSt.iloc[0] timeR = np.arange(cRes[0].stats.npts)*cRes[0].stats.delta - trinwin['noise'] data_time = np.arange(twoSt[0].stats.npts) * delta + (twoSt[0].stats.starttime - self._current_beam[0].stats.starttime) ax = self.fig.subplots(2, nfilter) if nfilter == 1: ax = ax.reshape(2, nfilter) for ind in range(nfilter): data = np.abs(scipy.signal.hilbert(self._current_beam[ind].data))[sind:sind+npts] ax[0,ind].plot(time,np.log10(data),'k', label='beam') data_coda = codaSt[ind].data time_coda = stime + np.arange(len(data_coda)) * delta ax[0,ind].plot(time_coda,np.log10(data_coda),'r', label='coda') data_two = twoSt[ind].data ax[0,ind].plot(data_time, data_two,'b', label='twoline') ax[0,ind].set_xlim([stime, etime]) ax[0,ind].set_ylim([-1, 5]) ax[0,ind].set_xlabel('Seconds') ax[0,ind].legend() label_c = "Coda: Mean RMS = %s"%(codamode['RMS'].iloc[ind]) label_t = "Twoline: Mean RMS = %s"%(twomode['RMS'].iloc[ind]) ax[1,ind].plot(timeR,cRes[ind].data, 'r', label=label_c) ax[1,ind].plot(timeR, tRes[ind].data, 'b',label=label_t) ax[1,ind].legend() ax[1,ind].set_xlabel('Seconds') ax[1,ind].set_xlim([-trinwin['noise']/2, trinwin['noise']/2+trinwin['coda']]) ax[0,ind].set_title('Filter: %s'%twomode['FILT'].iloc[ind]) if ind is 0: ax[0,ind].set_ylabel('log10(Amp)') ax[1,ind].set_ylabel('Amp') elif self._method == 'coda': codamode = existDF.crms.iloc[0] nfilter = len(codamode) codaSt = existDF.codaSt.iloc[0] cRes = existDF.codaResSt.iloc[0] timeR = np.arange(cRes[0].stats.npts)*cRes[0].stats.delta - trinwin['noise'] ax = self.fig.subplots(2, nfilter) for ind in range(nfilter): data = np.abs(scipy.signal.hilbert(self._current_beam[ind].data))[sind:sind+npts] ax[0,ind].plot(time,np.log10(data),'k', label='beam') data_coda = codaSt[ind].data time_coda = stime + np.arange(len(data_coda)) * delta ax[0,ind].plot(time_coda,np.log10(data_coda),'r', label='coda') ax[0,ind].set_xlim([stime, etime]) ax[0,ind].set_ylim([-1, 5]) ax[0,ind].set_xlabel('Seconds') ax[0,ind].legend() label_c = "Coda: Mean RMS = %s"%(codamode['RMS'].iloc[ind]) ax[1,ind].plot(timeR,cRes[ind].data, 'r', label=label_c) ax[1,ind].legend() ax[1,ind].set_xlabel('Seconds') ax[1,ind].set_xlim([-trinwin['noise']/2, trinwin['noise']/2+trinwin['coda']]) ax[0,ind].set_title('Filter: %s'%codamode['FILT'].iloc[ind]) if ind is 0: ax[0,ind].set_ylabel('log10(Amp)') ax[1,ind].set_ylabel('Amp') elif self._method == 'twoline': twomode = existDF.trms.iloc[0] nfilter = len(twomode) twoSt = existDF.twoSt.iloc[0] tRes = existDF.twoResSt.iloc[0] timeR = np.arange(tRes[0].stats.npts)*tRes[0].stats.delta - trinwin['noise'] data_time = np.arange(twoSt[0].stats.npts) * delta + (twoSt[0].stats.starttime - self._current_beam[0].stats.starttime) ax = self.fig.subplots(2, nfilter) for ind in range(nfilter): data = np.abs(scipy.signal.hilbert(self._current_beam[ind].data))[sind:sind+npts] ax[0,ind].plot(time,np.log10(data),'k', label='beam') data_two = twoSt[ind].data ax[0,ind].plot(data_time, data_two,'b', label='twoline') ax[0,ind].set_xlim([stime, etime]) ax[0,ind].set_ylim([-1, 5]) ax[0,ind].set_xlabel('Seconds') ax[0,ind].legend() label_t = "Twoline: Mean RMS = %s"%(twomode['RMS'].iloc[ind]) ax[1,ind].plot(timeR, tRes[ind].data, 'b',label=label_t) ax[1,ind].legend() ax[1,ind].set_xlabel('Seconds') ax[1,ind].set_xlim([-trinwin['noise']/2, trinwin['noise']/2+trinwin['coda']]) ax[0,ind].set_title('Filter: %s'%twomode['FILT'].iloc[ind]) if ind is 0: ax[0,ind].set_ylabel('log10(Amp)') ax[1,ind].set_ylabel('Amp') self.fig.suptitle('Coda Strip for %s using %s method in win %s\nDep:%s Distance: %s%s' %(self._current_event.ID, self._method, trinwin['name'], self._current_event.dep, self._current_event.dis, a)) self._canvasDraw() #def _plotTT(self): # if self.ttbtn.isChecked() is False: def _updatePlot(self): self._activeAmp() self._btype = self.sbcb.currentText() self._drawFig() def _canvasDraw(self): """ Redraws the canvas and re-set mouse focus """ # if isinstance(st, obspy.core.stream.Stream): # delta = st[0].stats.delta # elif isinstance(st, obspy.core.trace.Trace): # delta = st.stats.delta for _i, _ax in enumerate(self.fig.get_axes()): _ax.set_xticklabels(_ax.get_xticks()) self.fig.canvas.draw() self.canvas.setFocus() def _pltOnScroll(self, event): """ Scrolls/Redraws the plot along x axis """ if event.inaxes is None: return if event.key == 'control': axes = [event.inaxes] else: axes = self.fig.get_axes() for _ax in axes: left = _ax.get_xlim()[0] right = _ax.get_xlim()[1] extent_x = right - left dxzoom = .2 * extent_x aspect_left = (event.xdata - _ax.get_xlim()[0]) / extent_x aspect_right = (_ax.get_xlim()[1] - event.xdata) / extent_x up = _ax.get_ylim()[1] down = _ax.get_ylim()[0] extent_y = up - down dyzoom = 0.5 * extent_y aspect_down = (0 - _ax.get_ylim()[0]) / extent_y aspect_up = _ax.get_ylim()[1] / extent_y if event.button == 'up': left += dxzoom * aspect_left right -= dxzoom * aspect_right down += dyzoom * aspect_down up -= dyzoom * aspect_up elif event.button == 'down': left -= dxzoom * aspect_left right += dxzoom * aspect_right down -= dyzoom * aspect_down up += dyzoom * aspect_up else: return _ax.set_xlim([left, right]) _ax.set_ylim([down, up]) self._canvasDraw() def _pltOnDrag(self, event): """ Drags/redraws the plot upon drag """ if event.inaxes is None: return if event.key == 'control': axes = [event.inaxes] else: axes = self.fig.get_axes() if event.button == 1: if self._plt_drag is None: self._plt_drag = event.xdata return for _ax in axes: _ax.set_xlim([_ax.get_xlim()[0] + (self._plt_drag - event.xdata), _ax.get_xlim()[1] + (self._plt_drag - event.xdata)]) else: return self._canvasDraw() def _pltOnButtonRelease(self, event): """ On Button Release Reset drag variable """ self._plt_drag = None # def _pltOnButtonPress(self, event): # """ # This function is using for zoom in relative phase region # """ def _saveFile(self): if self.savefile is None: return self._saveFileFormat() savefile = str(self.savefile) if os.path.splitext(savefile)[1].lower() == '.pkl': self._savePickle(savefile) elif os.path.splitext(savefile)[1].lower() == '.csv': self._saveCSV(savefile) def _saveFileFormat(self): files_types = "Pickle (*.pkl);; CSV (*.csv)" self.savefile,_ = QFileDialog.getSaveFileName(self, 'Save as', os.getcwd(), files_types) self.savefile = str(self.savefile) if os.path.splitext(self.savefile)[1].lower() == '.pkl': self._savePickle(self.savefile) elif os.path.splitext(self.savefile)[1].lower() == '.csv': self._saveCSV(self.savefile) def _savePickle(self, filename): self._stripDF.to_pickle(filename) name = os.path.splitext(filename) badname = name[0]+'.D'+name[1] if len(self._badDF) != 0: self._badDF.to_pickle(badname) def _saveCSV(self, filename): _stripDF = self._stripDF _stripDF.drop(['codaSt','twoSt','twoResSt','codaResSt']) _stripDF.to_csv(filename,index=False,sep=',') if len(self._badDF) != 0: _badDF = self._badDF name = os.path.splitext(filename) badname = name[0] +'.D' +name[1] _badDF.to_csv(badname, index=False, sep=',') def _openFile(self): filename,_ = QFileDialog.getOpenFileName(self,'Load Pickle File', os.getcwd(), 'Pickle Format (*.pkl)', '20') if filename: filename = str(filename) self._stripDF = pd.read_pickle(filename) name = os.path.splitext(filename) badname = name[0]+'.D'+name[1] if os.path.exists(badname): self._badDF = pd.read_pickle(badname) self._pltEvent() self.savefile = str(filename) def _openArray(self): filename,_ = QFileDialog.getOpenFileName(self, 'Load array', os.getcwd(), 'Pickle Format (*.pkl)', '20') if filename: filename = str(filename) ar = util.loadArray(filename) self._refreshArray(ar) def _refreshArray(self, ar): self.array = ar self._plt_drag = None # init events in the array self._events = ar.events #defines list self._events self.savefile = ar.name+'.strip.pkl' self._initEqList() self._stripDF = pd.DataFrame() self._badDF = pd.DataFrame() self._btype = 'beam' self._method = 'all' self.trinWin = [{'name':'N200-C200','noise':200.0,'coda':200.0, 'stime':400.0,'etime':1800,'model':'ak135'}] self._current_win = None self._current_strip = False self._eventCycle = cycle(self._eqlist) self._eventInfo(next(self._eventCycle)) self.setWindowTitle('Array Analysis: %s'%self.array.name) self.evecb.clear() for eve in self._eqlist: self.evecb.addItem(eve) self._drawFig() def _savePlot(self): # path = os.getcwd() # path = os.path.join(path,self.array.name,self._current_event.ID) file_types = "Image Format (*.png *.pdf *.ps *.eps);; ALL (*)" filename,_ = QFileDialog.getSaveFileName(self, 'Save Plot', os.getcwd(), file_types) if not filename: return filename = str(filename) formats = os.path.splitext(filename)[1][1:].lower() if formats not in ['png', 'pdf', 'ps', 'eps']: formats = 'png' filename += '.' +formats self.fig.savefig(filename) def closeArray(self,event): if len(self._stripDF) > 0 and self.savefile is None: ask = QMessageBox.question(self, 'Save stripping?', 'Do you want to save your coda data?', QMessageBox.Save | QMessageBox.Discard | QMessageBox.Cancel, QMessageBox.Save) if ask == QMessageBox.Save: self._saveFileFormat() self.close() elif ask == QMessageBox.Cancel: event.ignore() class defWindow(QDialog): def __init__(self, parent=None, windowvalue=None): """ Coda strip window dialog """ QDialog.__init__(self, parent) self.setWindowTitle('Create new coda strip window') self.noisewin = QDoubleSpinBox(decimals=1, maximum=400, minimum=20, singleStep=10, value=10) self.codawin = QDoubleSpinBox(decimals=1, maximum=400, minimum=20, singleStep=10, value=10) self.stime = QDoubleSpinBox(decimals=1, maximum=600, minimum=0, singleStep=50, value=50) self.etime = QDoubleSpinBox(decimals=1, maximum=2400, minimum=1600, singleStep=50, value=50) self.smooth = QDoubleSpinBox(decimals=1, maximum=20, minimum=1, singleStep=1, value=4) self.winName = QLineEdit('Window Name') self.winName.selectAll() self.model = QLineEdit('ak135') self.model.selectAll() grid = QGridLayout() grid.addWidget(QLabel('Window Name'), 0, 0) grid.addWidget(self.winName, 0, 1) grid.addWidget(QLabel('Noise Win.'), 1, 0) grid.addWidget(self.noisewin, 1, 1) grid.addWidget(QLabel('Coda Win.'), 2, 0) grid.addWidget(self.codawin, 2, 1) grid.addWidget(QLabel('Start Time.'), 3, 0) grid.addWidget(self.stime, 3, 1) grid.addWidget(QLabel('End Time.'), 4, 0) grid.addWidget(self.etime, 4, 1) grid.addWidget(QLabel('Smooth.'), 5, 0) grid.addWidget(self.smooth, 5, 1) grid.addWidget(QLabel('Model.'), 6, 0) grid.addWidget(self.model, 6, 1) grid.setVerticalSpacing(10) btnbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) btnbox.accepted.connect(self.accept) btnbox.rejected.connect(self.reject) layout = QVBoxLayout() layout.addWidget(QLabel('Define noise window and coda window for stripping')) layout.addLayout(grid) layout.addWidget(btnbox) if windowvalue is not None: self.winName.setText(windowvalue['name']) self.noisewin.setValue(windowvalue['noise']) self.codawin.setValue(windowvalue['coda']) self.stime.setValue(windowvalue['stime']) self.etime.setValue(windowvalue['etime']) self.smooth.setValue(windowvalue['smooth']) self.model.setText(windowvalue['model']) self.setLayout(layout) self.setSizeGripEnabled(False) def getValues(self): """ Return window dialog values as a dictionary """ return dict(name=str(self.winName.text()), noise=float(self.noisewin.cleanText()), coda=float(self.codawin.cleanText()), stime=float(self.stime.cleanText()), etime=float(self.etime.cleanText()), smooth=float(self.smooth.cleanText()), model=str(self.model.text())) # class for event stacking in arrays class stackArray(QtWidgets.QMainWindow): def __init__(self, arraylist=None, parent=None, ap=None): if ap is None: self.qApp = QApplication(sys.argv) else: self.qApp = ap if isinstance(arraylist, str): arlist = pd.read_csv(arraylist, delimiter='\s+') elif isinstance(arraylist, pd.DataFrame): arlist = arraylist else: msg = 'Define array list in DataFrame or a path to a csv file' raise ValueError(msg) self._shortcuts = {'arr_next': 'n', 'arr_prev': 'p', 'cancel': 'c', 'accept': 'a', 'stack': 's'} self._list = arlist self._initArrayList() self._arrayCycle = cycle(self._namelist) self.dis = [{'name':'All-Dis', 'mindis': 50.0, 'maxdis': 75.0, 'step':25.0, 'overlap':0, 'write':False}] self._arrayInfo(next(self._arrayCycle)) self._initReg() QMainWindow.__init__(self) self.setupUI() def setupUI(self): self.main_widget = QWidget(self) self._initMenu() self._createStatusBar() self._initPlots() l = QVBoxLayout(self.main_widget) l.addLayout(self.btnbar) l.addLayout(self.btnbar2) l.addWidget(self.canvas) self.setCentralWidget(self.main_widget) self.setGeometry(300, 300, 1200, 800) self.setWindowTitle('Array Stack') self.show() def _killLayout(): pass def _initPlots(self): self.fig = Figure(dpi=100, constrained_layout=True) self.canvas = FigureCanvas(self.fig) self.canvas.setFocusPolicy(PyQt5.QtCore.Qt.StrongFocus) self._drawFig() self.fig.canvas.mpl_connect('key_press_event', self._selectRegOnPress) def _initMenu(self): # Next and Prev array nxt = QtWidgets.QPushButton('Next >>', shortcut=self._shortcuts['arr_next'], parent=self.main_widget) nxt.clicked.connect(self._pltNextArray) nxt.setToolTip('shortcut <b>n</d>') nxt.setMaximumWidth(150) prv = QtWidgets.QPushButton('Prev >>', shortcut=self._shortcuts['arr_prev'], parent=self.main_widget) prv.clicked.connect(self._pltPrevArray) prv.setToolTip('shortcut <b>p</d>') prv.setMaximumWidth(150) # Array drop-down self.arcb = QComboBox(self) for arr in self._namelist: self.arcb.addItem(arr) self.arcb.activated.connect(self._pltArray) self.arcb.setMaximumWidth(1000) self.arcb.setMinimumWidth(80) # filter selection self.filtcb = QComboBox(self) self.filtcb.addItem('all') for filt in self._current_filter: self.filtcb.addItem(filt) self.filtcb.activated.connect(self._drawStack) self.filtcb.setMaximumWidth(1000) self.filtcb.setMinimumWidth(80) # Select region # Stacking earthquakes in array self.stbtn = QtWidgets.QPushButton('Stack', shortcut=self._shortcuts['stack'], parent=self.main_widget) self.stbtn.setCheckable(True) self.stbtn.setStyleSheet('QPushButton:checked {background-color: lightgreen;}') self.stbtn.setToolTip('shortcut <b>s</b>') self.stbtn.clicked.connect(self._drawStack) self.nbtn = QtWidgets.QPushButton('Norm', parent=self.main_widget) self.nbtn.setCheckable(True) self.nbtn.setStyleSheet('QPushButton:checked {background-color: lightgreen;}') self.nbtn.clicked.connect(self._drawStack) self.ebtn = QtWidgets.QPushButton('ERR', parent=self.main_widget) self.ebtn.setCheckable(True) self.ebtn.setStyleSheet('QPushButton:checked {background-color: lightgreen;}') self.ebtn.clicked.connect(self._drawStack) # Select distance self.discb = QComboBox(self) self.discb.activated.connect(self._changeStack) self._updateWindow() disEdit = QtWidgets.QPushButton('Edit') disEdit.resize(disEdit.sizeHint()) disEdit.clicked.connect(self._editDis) disDelt = QtWidgets.QPushButton('Delete') disDelt.resize(disEdit.sizeHint()) disDelt.clicked.connect(self._deleteDis) # Select region self.regcb = QComboBox(self) self.regcb.activated.connect(self._changeRegion) self._updateRegion() regEdit = QtWidgets.QPushButton('Edit') regEdit.resize(regEdit.sizeHint()) regEdit.clicked.connect(self._editRegion) regDelt = QtWidgets.QPushButton('Delete') regDelt.resize(regDelt.sizeHint()) regDelt.clicked.connect(self._deleteRegion) #button to plot all regin in one plot self.allbtn = QPushButton('All Region') self.allbtn.setCheckable(True) self.allbtn.setStyleSheet('QPushButton:checked {background-color: lightgreen;}') self.allbtn.clicked.connect(self._stackAll) #reset region button self.rsbtn = QtWidgets.QPushButton('Reset') self.rsbtn.clicked.connect(self._resetReg) self.btnbar = QHBoxLayout() self.btnbar.addWidget(prv) self.btnbar.addWidget(nxt) self.btnbar.addWidget(QLabel('Array')) self.btnbar.addWidget(self.arcb) vline = QFrame() vline.setFrameStyle(QFrame.VLine | QFrame.Raised) self.btnbar.addWidget(vline) self.btnbar.addWidget(self.stbtn) self.btnbar.addWidget(QLabel('Step')) self.btnbar.addWidget(self.discb) self.btnbar.addWidget(disEdit) self.btnbar.addWidget(disDelt) self.btnbar.addStretch(1) self.btnbar2 = QHBoxLayout() self.btnbar2.addWidget(QLabel('Region')) self.btnbar2.addWidget(self.regcb) self.btnbar2.addWidget(regEdit) self.btnbar2.addWidget(regDelt) self.btnbar2.addWidget(self.allbtn) self.btnbar2.addWidget(vline) self.btnbar2.addWidget(self.rsbtn) self.btnbar2.addWidget(vline) self.btnbar2.addWidget(self.nbtn) self.btnbar2.addWidget(vline) self.btnbar2.addWidget(self.ebtn) self.btnbar2.addWidget(vline) self.btnbar2.addWidget(QLabel('Filter')) self.btnbar2.addWidget(self.filtcb) self.btnbar2.addStretch(1) #Menubar menubar = self.menuBar() fileMenu = menubar.addMenu('&File') fileMenu.addAction(QtGui.QIcon().fromTheme('document-save'), 'Save Reg', self._saveFile) def _saveFile(self): if len(self._region) >= 2: _region = self._region[1:] for _reg in _region: name = _reg['name'] array = self._current_array['name'] _df = self.regDf[name] savename = os.path.join(array,name+'.pkl') _df.to_pickle(savename) def _initArrayList(self): self._arlist = pd.DataFrame() for _ind, _ar in self._list.iterrows(): name = _ar.NAME tmp = os.path.join(name,_ar.FILE) tmp_df = pd.read_pickle(tmp) newRow = {'NAME':name,'DF':tmp_df, 'LAT':_ar.LAT, 'LON':_ar.LON} self._arlist = self._arlist.append(newRow, ignore_index=True) self._namelist = self._list.NAME.tolist() def _initReg(self): self._region = [{'name':'global', 'latmin':-90.0, 'latmax':90.0, 'lonmin': -180.0, 'lonmax': 180.0}] self.stackSt = {} self.stdSt = {} win = self._current_array_df['win'].iloc[0] window = [win['noise'], win['coda']] self.regDf = {'global':self._current_array_df} _stackSt, _stdSt = stackTR(self._current_array_df, pklname=None,win=window, mindis=self.dis[0]['mindis'], maxdis=self.dis[0]['maxdis'], step=self.dis[0]['step'], overlap=self.dis[0]['overlap'], write=self.dis[0]['write']) self.stackSt = {'global': _stackSt} self.stdSt = {'global': _stdSt} def _arrayInfo(self, name): ardf = self._arlist[self._arlist.NAME == name].iloc[0] array = {'name':ardf.NAME,'lat':ardf.LAT,'lon':ardf.LON} self._current_array = array self._current_array_df = ardf.DF self._current_filter = self._current_array_df.iloc[0].crms.FILT # self._initReg() def _createStatusBar(self): sb = QStatusBar() sb.setFixedHeight(18) self.setStatusBar(sb) self.statusBar().showMessage('Ready') def _drawFig(self): self.fig.clear() # self.fig.add_subplot(1, 1, 1) # _ax = self.fig.get_axes() _ax = self.fig.add_subplot(1, 1, 1) m = Basemap(projection='cyl', lon_0=0, lat_0=0.0, area_thresh=10000,ax=_ax) x0, y0 = m(self._current_array['lon'], self._current_array['lat']) m.drawcoastlines(ax=_ax) m.drawmapboundary(ax=_ax) m.fillcontinents(color='lightgray',lake_color='white',ax=_ax) parallels = np.arange(-90.0, 90.0, 60) # labels = [left, right, top, bottom] m.drawparallels(parallels,labels=[True, False, False, False],ax=_ax) meridians = np.arange(-180.0, 180.0, 60.0) m.drawmeridians(meridians,labels=[False, False, False, True],ax=_ax) m.scatter(x0, y0, marker='*',c='r',s=100,alpha=0.7,ax=_ax,zorder=10) if self.allbtn.isChecked() and len(self._region) < 2: x, y = m(self._current_array_df.lon.tolist(), self._current_array_df.lat.tolist()) m.scatter(x, y, marker='o', c='blue', s=50, alpha=0.7,ax=_ax,zorder=10) elif self.allbtn.isChecked() and len(self._region) >= 2: _region = self._region[1:,] _current_df = self._current_array_df _rest_df = _current_df.copy() for _j, _reg in enumerate(_region): _name = _region['name'] _df = self.regDf[_name] _rest_df = _rest_df[~((_rest_df['lat']>_reg['latmin']) & (_rest_df['lat']<_reg['latmax']) & (_rest_df['lon']>_reg['lonmin']) & (_rest_df['lon']<_reg['lonmax']))] x, y = m(_df.lon.tolist(), _df.lat.tolist()) m.scatter(x, y, marker='o', c=color[_i], s=50, alpha=0.7,ax=_ax,zorder=10) x, y = m(_rest_df.lon.tolist(), _rest_df.lat.tolist()) m.scatter(x, y, marker='o', c='k', s=50, alpha=0.7,ax=_ax,zorder=10) elif self.allbtn.isChecked() is False: _i = self.regcb.currentIndex() if _i == 0: x, y = m(self._current_array_df.lon.tolist(), self._current_array_df.lat.tolist()) m.scatter(x, y, marker='o', c='blue', s=50, alpha=0.7,ax=_ax,zorder=10) self._pltRectangle() else: _reg = self._region[_i] _name = _reg['name'] _df = self.regDf[_name] x, y = m(_df.lon.tolist(), _df.lat.tolist()) m.scatter(x, y, marker='o', c=color[_i-1], s=50, alpha=0.7,ax=_ax,zorder=10) self.fig.suptitle('Earthquakes in array %s'%self._current_array['name']) self._canvasDraw() def _canvasDraw(self): for _i, _ax in enumerate(self.fig.get_axes()): _ax.set_xticklabels(_ax.get_xticks()) self.fig.canvas.draw() self.canvas.setFocus() def _pltArray(self): _i = self.arcb.currentIndex() while next(self._arrayCycle) != self._namelist[_i]: pass self._arrayInfo(self._namelist[_i]) self.filtcb.clear() self.filtcb.addItem('all') for filt in self._current_filter: self.filtcb.addItem(filt) self._initReg() self._drawFig() # self._resetReg() def _pltPrevArray(self): _j = self.arcb.currentIndex() for _i in range(len(self._namelist) - 1): prevarray = next(self._arrayCycle) self._arrayInfo(prevarray) self.filtcb.clear() self.filtcb.addItem('all') for filt in self._current_filter: self.filtcb.addItem(filt) self.arcb.setCurrentIndex(_j-1) self._initReg() self._drawFig() # self._resetReg() def _pltNextArray(self): _i = self.arcb.currentIndex() self._arrayInfo(next(self._arrayCycle)) self.filtcb.clear() self.filtcb.addItem('all') for filt in self._current_filter: self.filtcb.addItem(filt) self.arcb.setCurrentIndex(_i+1) # self._resetReg() self._initReg() self._drawFig() def _calStack(self): _i = self.discb.currentIndex() self._arrayInfo(self._current_array['name']) savefile = None win = self._current_array_df['win'].iloc[0] window = [win['noise'], win['coda']] _j = self.regcb.currentIndex() _reg = self._region[_j] if self.dis[_i]['write']: savefile = _reg['name'] + '.'+self.dis[_i]['name'] + '.sac' _current_df = self._current_array_df _df = _current_df[(_current_df['lat']>_reg['latmin']) & (_current_df['lat']<_reg['latmax']) & (_current_df['lon']>_reg['lonmin']) & (_current_df['lon']<_reg['lonmax'])] _df.reset_index(inplace=True,drop=True) self.regDf[_reg['name']] = _df _stackSt, _stdSt = stackTR(_df, pklname=savefile,win=window, mindis=self.dis[_i]['mindis'], maxdis=self.dis[_i]['maxdis'], step=self.dis[_i]['step'], overlap=self.dis[_i]['overlap'], write=self.dis[_i]['write']) self.stackSt[_reg['name']] = _stackSt self.stdSt[_reg['name']] = _stdSt # if self.stbtn.isChecked(): # self._drawStack() # else: # self._drawFig() def _drawStack(self): self.fig.clear() if self.stbtn.isChecked() is False: self._drawFig() return # self.fig.add_subplot(121) _i = self.discb.currentIndex() this_dis = self.dis[_i] win = self._current_array_df['win'].iloc[0] window = [win['noise'], win['coda']] step_forward = this_dis['step'] * (1 - this_dis['overlap']) n = int((this_dis['maxdis'] - this_dis['mindis'])/step_forward) ftype = self.filtcb.currentText() if ftype == 'all': current_filter = self._current_filter else: current_filter = [ftype] n_filt = len(current_filter) if self.allbtn.isChecked() is False or len(self._region) < 2: _i = self.regcb.currentIndex() _current_df = self._current_array_df _name = self._region[_i]['name'] _df = self.regDf[_name] _stackSt = self.stackSt[_name] _stdSt = self.stdSt[_name] #n = len(_stackSt) # gs = self.fig.add_gridspec(n,2) gs = gridspec.GridSpec(ncols=n_filt+1, nrows=n, figure=self.fig) _ax = self.fig.add_subplot(gs[:,0]) m = Basemap(projection='cyl', lon_0=0, lat_0=0.0, area_thresh=10000,ax=_ax) x0, y0 = m(self._current_array['lon'], self._current_array['lat']) alon = _current_df[(~_current_df.lon.isin(_df.lon)) & (~_current_df.lat.isin(_df.lat))].lon.tolist() alat = _current_df[(~_current_df.lon.isin(_df.lon)) & (~_current_df.lat.isin(_df.lat))].lat.tolist() x, y = m(alon, alat) xt, yt = m(_df.lon.tolist(), _df.lat.tolist()) m.drawcoastlines(ax=_ax) m.drawmapboundary(ax=_ax) m.fillcontinents(color='lightgray',lake_color='white',ax=_ax) parallels = np.arange(-90.0, 90.0, 60) m.drawparallels(parallels,ax=_ax) meridians = np.arange(-180.0, 180.0, 60.0) m.drawmeridians(meridians,ax=_ax) if _i == 0: c = 'blue' else: c = color[_i-1] m.scatter(x0, y0, marker='*',c='r',s=100,alpha=0.7,ax=_ax,zorder=10) m.scatter(x, y, marker='o', c='k', s=50, alpha=0.7,ax=_ax,zorder=10) m.scatter(xt, yt, marker='o', c='r', s=50, alpha=0.7,ax=_ax,zorder=10) # self.fig.add_subplot(122) delta = _stackSt[0].stats.delta npts = _stackSt[0].stats.npts time = np.arange(npts)*delta + _stackSt[0].stats.sac.b for ind, f in enumerate(current_filter): _st = _stackSt.select(station=f).copy() _st.sort(['channel']) _std_st = _stdSt.select(station=f).copy() _std_st.sort(['channel']) delta = _st[0].stats.delta sind = int(window[0]/delta) eind = sind + int(window[1]/delta) for i in range(n): _ax_st = self.fig.add_subplot(gs[i,ind+1]) if i == n-1: _ax_st.set_xlabel('Time (s)') if i == 0: _ax_st.set_title('Filter: %s'%f) peak, data = norm(_st[i].data, sind, eind) if self.nbtn.isChecked(): _ax_st.plot(time, data,'darkred', label=_st[i].stats.channel) if self.ebtn.isChecked(): _ax_st.errorbar(time, data, yerr=2*_std_st[i].data, marker='.',mew=0.1, ecolor='red', linewidth=0.2, markersize=0.2, capsize=0.1, alpha=0.5) _ax_st.set_ylim([-0.1, 1.1]) else: _ax_st.plot(time, _st[i].data,'darkred', label=_st[i].stats.channel) if self.ebtn.isChecked(): _ax_st.errorbar(time, _st[i].data, yerr=2*_std_st[i].data, marker='.',mew=0.1, ecolor='red', linewidth=0.2, markersize=0.2, capsize=0.1, alpha=0.5) peak = peak + 0.1 _ax_st.set_ylim([-0.1, peak]) _ax_st.hlines(0,time[0],time[-1],'k') _ax_st.set_xlim([-window[0], window[0]+window[1]]) _ax_st.legend() else: _region = self._region[1:] _current_df = self._current_array_df #_i = self.discb.currentIndex() #this_dis = self.dis[_i] #step_forward = this_dis['step'] * (1 - this_dis['overlap']) #n = int((this_dis['maxdis'] - this_dis['mindis'])/step_forward) + 1 gs = self.fig.add_gridspec(n,n_filt+1) _ax = self.fig.add_subplot(gs[:,0]) m = Basemap(projection='cyl', lon_0=0.0, lat_0=0.0, area_thresh=10000,ax=_ax) x0, y0 = m(self._current_array['lon'], self._current_array['lat']) x, y = m(self._current_array_df.lon.tolist(), self._current_array_df.lat.tolist()) m.drawcoastlines(ax=_ax) m.drawmapboundary(ax=_ax) m.fillcontinents(color='lightgray',lake_color='white',ax=_ax) parallels = np.arange(-90.0, 90.0, 60) m.drawparallels(parallels,ax=_ax) meridians = np.arange(-180.0, 180.0, 60.0) m.drawmeridians(meridians,ax=_ax) x0, y0 = m(self._current_array['lon'], self._current_array['lat']) m.scatter(x0, y0, marker='*',c='r',s=100,alpha=0.7,ax=_ax,zorder=10) for _i, _reg in enumerate(_region): _name = _reg['name'] # print(_name) _df = self.regDf[_name] x, y = m(_df.lon.tolist(), _df.lat.tolist()) m.scatter(x, y, marker='o', c=color[_i], s=50, alpha=0.7,ax=_ax,zorder=10) _stackSt = self.stackSt[_name] _stdSt = self.stdSt[_name] delta = _stackSt[0].stats.delta npts = _stackSt[0].stats.npts time = np.arange(npts)*delta + _stackSt[0].stats.sac.b for ind, f in enumerate(current_filter): _st = _stackSt.select(station=f).copy() _st.sort(['channel']) _std_st = _stdSt.select(station=f).copy() _std_st.sort(['channel']) delta = _st[0].stats.delta sind = int(window[0]/delta) eind = sind + int(window[1]/delta) for i in range(n): _ax_st = self.fig.add_subplot(gs[i,ind+1]) if i == n-1: _ax_st.set_xlabel('Time (s)') if i == 0: _ax_st.set_title('Filter: %s'%f) peak, data = norm(_st[i].data, sind, eind) label = _name+':'+_st[i].stats.channel if self.nbtn.isChecked(): _ax_st.plot(time, data,color=color[_i],label=label) if self.ebtn.isChecked(): _ax_st.errorbar(time, data, yerr=2*_std_st[i].data, marker='.',mew=0.1, ecolor=color[_i], linewidth=0.2, markersize=0.2, capsize=0.1, alpha=0.5) _ax_st.set_ylim([-0.1, 1.1]) else: _ax_st.plot(time, _st[i].data,color='dark'+color[_i],label=label) if self.ebtn.isChecked(): _ax_st.errorbar(time, _st[i].data, yerr=2*_std_st[i].data, marker='.',mew=0.1, ecolor=color[_i], linewidth=0.2, markersize=0.2, capsize=0.1, alpha=0.5) peak = peak+0.1 _ax_st.set_ylim([-0.1, peak]) _ax_st.hlines(0,time[0],time[-1],'k') _ax_st.set_xlim([-window[0], window[0]+window[1]]) _ax_st.legend() self._canvasDraw() def _stackAll(self): if self.stbtn.isChecked(): self._drawStack() else: self._drawFig() def _line_select_callback(self, eclick, erelease): x1, y1 = eclick.xdata, eclick.ydata x2, y2 = erelease.xdata, erelease.ydata # msg= 'Startposition: (%f, %f)\tendposition: (%f, %f)'%(x1, y1, x2, y2) # gpar.log(__name__,msg,level='info',pri=True) def _pltRectangle(self): _ax = self.fig.get_axes()[0] self._RS = RectangleSelector(_ax, self._line_select_callback, drawtype='box', useblit=True, button=[1], minspanx=1, minspany=1, interactive=True, state_modifier_keys={'move': ' ','center': 'ctrl', 'square': 'shift','clear': self._shortcuts['cancel']}) def _selectRegOnPress(self,event): if event.key is not None: event.key = event.key.lower() if event.inaxes is None: return if event.key == self._shortcuts['accept'] and self._RS.active: extents=self._RS.extents _value = dict(name='name',lonmin=extents[0],lonmax=extents[1],latmin=extents[2],latmax=extents[3]) self._newReg(_value) def _newReg(self, value=None): newReg = self.defReg(regionValue=value) if newReg.exec_(): self._region.append(newReg.getValues()) self._updateRegion() self.regcb.setCurrentIndex(len(self._region)-1) self._calStack() # self._appStack() def _editRegion(self): _i =self.regcb.currentIndex() this_region = self._region[_i] editRegion = self.defReg(self, this_region) if editRegion.exec_(): self._region[_i] = editRegion.getValues() self.updateRegion() self.regcb.setCurrentIndex(_i) self._calStack() self._drawStack() def _deleteRegion(self): _i = self.regcb.currentIndex() name = self._region[_i]['name'] if name == 'global': msg = QMessageBox() msg.setIcon(QMessageBox.Information) msg.setText("Warning Text") msg.setInformativeText("Global region is not deletebale") msg.exec_() return else: self._region.pop(_i) self._updateRegion() def _changeRegion(self, index): if index == len(self._region): self._newReg() if self.stbtn.isChecked(): self._drawStack() else: self._drawFig() else: if self.stbtn.isChecked(): self._drawStack() else: self._drawFig() def _updateRegion(self): self.regcb.clear() self.regcb.setCurrentIndex(-1) for _i, _f in enumerate(self._region): self.regcb.addItem('Region: %s'%(_f['name'])) self.regcb.addItem('Create new region') def _resetReg(self): self._region = [{'name':'global', 'latmin':-90.0, 'latmax':90.0, 'lonmin': -180.0, 'lonmax': 180.0}] self.regDf = {'global':self._current_array_df} self._updateRegion() self._drawFig() def _changeStack(self,index): if index == len(self.dis): self._newDis() if self.stbtn.isChecked(): self._drawStack() else: self._drawFig() else: self._calStack() if self.stbtn.isChecked(): self._drawStack() else: self._drawFig() def _newDis(self): newDis = self.defDisStep(self) if newDis.exec_(): self.dis.append(newDis.getValues()) self._updateWindow() self.discb.setCurrentIndex(len(self.dis)-1) self._calStack() def _editDis(self): _i = self.discb.currentIndex() this_window = self.dis[_i] editWindow = self.defDisStep(self, this_window) if editWindow.exec_(): self.dis[_i] = editWindow.getValues() self.updateWindow() self.discb.setCurrentIndex(_i) self._appStack() def _deleteDis(self): pass _i = self.discb.currentIndex() def _updateWindow(self): self.discb.clear() self.discb.setCurrentIndex(-1) for _i, _f in enumerate(self.dis): self.discb.addItem('Step %.2f deg - overlap %.2f ' %(_f['step'], _f['overlap'])) self.discb.addItem('Create new distance stack') class defReg(QDialog): def __init__(self, parent=None, regionValue=None): QDialog.__init__(self, parent) self.setWindowTitle('Assign Name for the Region') self.Name = QLineEdit('Name') self.Name.selectAll() self.latmin = QDoubleSpinBox(decimals=1, maximum=90.0, minimum=-90.0, singleStep=5, value=0) self.latmax = QDoubleSpinBox(decimals=1, maximum=90.0, minimum=-90.0, singleStep=5, value=0) self.lonmin = QDoubleSpinBox(decimals=1, maximum=180.0, minimum=-180.0, singleStep=5, value=0) self.lonmax = QDoubleSpinBox(decimals=1, maximum=180.0, minimum=-180.0, singleStep=5, value=0) # self.saveTr = ['True', 'False'] grid = QGridLayout() grid.addWidget(QLabel('Region Name'), 0, 0) grid.addWidget(self.Name, 0, 1) grid.addWidget(QLabel('Min. Lat'), 1, 0) grid.addWidget(self.latmin, 1, 1) grid.addWidget(QLabel('Max. Lat'), 2, 0) grid.addWidget(self.latmax, 2, 1) grid.addWidget(QLabel('Min. Lon'), 3, 0) grid.addWidget(self.lonmin, 3, 1) grid.addWidget(QLabel('Max. Lon'), 4, 0) grid.addWidget(self.lonmax, 4, 1) grid.setVerticalSpacing(10) btnbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) btnbox.accepted.connect(self.accept) btnbox.rejected.connect(self.reject) layout = QVBoxLayout() layout.addWidget(QLabel('Define noise window and coda window for stripping')) layout.addLayout(grid) layout.addWidget(btnbox) if regionValue is not None: self.Name.setText(regionValue['name']) self.latmin.setValue(regionValue['latmin']) self.latmax.setValue(regionValue['latmax']) self.lonmin.setValue(regionValue['lonmin']) self.lonmax.setValue(regionValue['lonmax']) self.setLayout(layout) self.setSizeGripEnabled(False) def getValues(self): return dict(name=str(self.Name.text()), latmin=float(self.latmin.cleanText()), latmax=float(self.latmax.cleanText()), lonmin=float(self.lonmin.cleanText()), lonmax=float(self.lonmax.cleanText())) class defDisStep(QDialog): def __init__(self, parent=None, stepvalue=None): QDialog.__init__(self, parent) self.setWindowTitle('Create new stacking distance step') self.mindis = QDoubleSpinBox(decimals=1, maximum=180, minimum=0, singleStep=1, value=50) self.maxdis = QDoubleSpinBox(decimals=1, maximum=180, minimum=0, singleStep=1, value=75) self.step = QDoubleSpinBox(decimals=1, maximum=100, minimum=0.1, singleStep=0.1, value=0.1) self.overlap = QDoubleSpinBox(decimals=2, maximum=1.0, minimum=0.0, singleStep=0.1, value=0.1) self.Name = QLineEdit('Name') self.Name.selectAll() self.saveTr = ['True', 'False'] grid = QGridLayout() grid.addWidget(QLabel('Name'), 0, 0) grid.addWidget(self.Name, 0, 1) grid.addWidget(QLabel('Min. Dis'), 1, 0) grid.addWidget(self.mindis, 1, 1) grid.addWidget(QLabel('Max. Dis'), 2, 0) grid.addWidget(self.maxdis, 2, 1) grid.addWidget(QLabel('Step'), 3, 0) grid.addWidget(self.step, 3, 1) grid.addWidget(QLabel('Overlap'), 4, 0) grid.addWidget(self.overlap, 4, 1) _savebtn = [QRadioButton("Yes"), QRadioButton("No")] self.saveGrp = QButtonGroup() self.saveGrp.setExclusive(True) sbtn = QHBoxLayout() for _i, _btn in enumerate(_savebtn): self.saveGrp.addButton(_btn, _i) sbtn.addWidget(_btn) grid.addWidget(QLabel('Save Stack'), 5, 0) grid.addLayout(sbtn, 5, 1) btnbox = QDialogButtonBox(QDialogButtonBox.Ok | QDialogButtonBox.Cancel) btnbox.accepted.connect(self.accept) btnbox.rejected.connect(self.reject) layout = QVBoxLayout() layout.addWidget(QLabel('Define distance steps and overlap for stacking')) layout.addLayout(grid) layout.addWidget(btnbox) if stepvalue is not None: self.Name.setText(stepvalue['name']) self.mindis.setValue(stepvalue['mindis']) self.maxdis.setValue(stepvalue['maxdis']) self.step.setValue(stepvalue['step']) self.overlap.setValue(stepvalue['overlap']) self.setLayout(layout) self.setSizeGripEnabled(False) def getValues(self): savefile = self.saveTr[self.saveGrp.checkedId()] return dict(name=str(self.Name), mindis=float(self.mindis.cleanText()), maxdis=float(self.maxdis.cleanText()), step=float(self.step.cleanText()), overlap=float(self.overlap.cleanText()), write=bool(savefile)) def codaStrip(eve, method='all', siglen=200, noise=200,beamphase='PKiKP', phase_list=['P','PP','PcP','ScP','PKiKP','SP','ScS'], model='ak135', stime=400.0, etime=1800.0, window=10, write=False): """ Function to remove background coda noise for events """ if phase_list is None: phase_list = eve.phase_list if not hasattr(eve, 'arrivals'): eve.getArrival(phase_list=phase_list,model=model) if not hasattr(eve, 'beam'): msg = ('Earthquake object has not calculate the beamforming yet') gpar.log(__name__,msg,level='error',pri=True) st = eve.beam delta = st[0].stats.delta noi_sind = int((eve.arrivals['P']['TT'] - 300.0)/delta) noi_win = int(100.0/delta) filts=[] starttime = st[0].stats.starttime tt1 = eve.arrivals[beamphase]['TT'] - noise #- starttime tt2 = eve.arrivals[beamphase]['TT'] + siglen #- starttime # tari = eve.arrivals[beamphase]['UTC'] - starttime tari = eve.arrivals[beamphase]['TT'] n_tr = len(st) npts = st[0].stats.npts if npts%2 !=0: npts = npts-1 data = np.empty((n_tr,npts)) # mean = np.empty((n_tr, 1)) for ind, tr in enumerate(st): npt = tr.stats.npts if npt%2 != 0: tdata = tr.data[:-1] else: tdata = tr.data tmp_data = np.abs(scipy.signal.hilbert(tdata)) # tmp_data = moving_ave(tmp_data, window) # mean[ind,:] = np.mean(tmp_data[noi_sind:noi_sind+noi_win]) # print(mean) # data[ind,:] = tmp_data - mean # print(data[ind,:]) data[ind,:] = tmp_data filts.append(tr.stats.channel) data = moving_ave(data, window) # data = np.abs(scipy.signal.hilbert(tr.data)) sig_pts = int(siglen/delta) + 1 noi_pts = int(noise/delta) + 1 noi_ind1 = int(tt1/delta) sig_ind = int(tari/delta) noi_ind2 = int(tt2/delta) time_before = tt1 + np.arange(int(noise/delta)+1) * delta # data_before = np.empty((n_tr, noi_pts)) data_before = data[:, noi_ind1: noi_ind1 + noi_pts] # print(np.min(data_before)) data_sig = data[:, sig_ind:sig_ind + sig_pts] time_after = tt2 + np.arange(int(noise/delta)+1) * delta data_after = data[:, noi_ind2: noi_ind2+noi_pts] # print(np.min(data_after)) sind = int(stime/delta) # npts = int((etime - stime)/delta) + 1 npts = int((etime - stime)/delta) # time = np.matrix(np.linspace(stime, etime, npts)) time = stime + np.arange(npts) * delta obs_data = data[:, sind: sind+npts] ind = int((tari - stime)/delta) res_ind = int((tt1 - stime)/delta) pts = int((noise*2+siglen)/delta)+1 if method == 'all': #fitting coda model coda_par = codaFit(np.append(time_before,time_after),np.append(data_before,data_after,axis=1)) # print(coda_par) #getting predict noise signal in linear scale coda_data = np.asarray(np.exp(np.transpose(coda_par[0,:]) - np.transpose(coda_par[1,:]) \ *np.log(time) - np.transpose(coda_par[2,:])*time)) # coda_data = np.asarray(coda_data) #getting residual signal after removing the predict noise # coda_res = moving_ave(obs_data, window) - coda_data coda_res = obs_data - coda_data res = np.mean(coda_res[:,ind:ind+sig_pts],axis=-1) #store coda model information _df = pd.DataFrame(columns=['FILT','lnA','B','C','RMS']) _df['FILT'] = filts _df['lnA'] = np.asarray(coda_par)[0] _df['B'] = np.asarray(coda_par)[1] _df['C'] = np.asarray(coda_par)[2] _df['RMS'] = res # codamod = {'RMS':res,'lnA':coda_par[0][0],'B':coda_par[1][0],'C':coda_par[2][0]} # eve.codaMod = codamod eve.codaMod = _df codaSt = obspy.core.stream.Stream() resSt = obspy.core.stream.Stream() for i in range(n_tr): _tr = obspy.core.trace.Trace() _tr.stats.delta = delta _tr.stats.npts = npts _tr.stats.starttime = starttime + stime _tr.stats.channel = filts[i] _tr.data = coda_data[i,:] codaSt.append(_tr) _tr = obspy.core.trace.Trace() _tr.stats.delta = delta _tr.stats.npts = pts _tr.stats.starttime = eve.arrivals[beamphase]['UTC'] - noise _tr.stats.channel = filts[i] _tr.data = coda_res[i,res_ind:res_ind+pts] resSt.append(_tr) eve.codaSt = codaSt eve.codaResSt = resSt #fittint twoline model #For multi-filters all calculations are using np.matrix #all np.matrix are converted back to np.array to store twoline_par_before = twoLineFit(time_before, data_before) twoline_par_after = twoLineFit(time_after, data_after) y1 = twoline_par_before[0,:] + twoline_par_before[1,:] * tari y2 = twoline_par_after[0,:] + twoline_par_after[1,:] * tt2 k = (y2 - y1)/(tt2 - tari) b = y2 - k * tt2 t1 = np.matrix(np.linspace(tt1,tari, int(noise/delta)+1)) d1 = np.asarray(np.transpose(twoline_par_before[0,:]) + np.transpose(twoline_par_before[1,:]) * t1) t2 = np.matrix(np.linspace(tari+delta, tt2, int(siglen/delta))) d2 = np.asarray(np.transpose(k) * t2 + np.transpose(b)) t3 = np.matrix(np.linspace(tt2+delta,tt2+noise, int(noise/delta))) d3 = np.asarray(np.transpose(twoline_par_after[0,:]) + np.transpose(twoline_par_after[1,:]) * t3) two_data = np.append(d1,d2,axis=-1) two_data = np.append(two_data,d3,axis=-1) two_res = moving_ave(obs_data[:,res_ind: res_ind+pts], window) - 10**two_data res = np.mean(two_res[:,int(int(noise)/delta):int(int(noise)/delta)+sig_pts],axis=-1) _df = pd.DataFrame(columns=['FILT','kn1','bn1','kn2','bn2','RMS']) _df['FILT'] = filts _df['kn1'] = np.asarray(twoline_par_before)[1] _df['bn1'] = np.asarray(twoline_par_before)[0] _df['kn2'] = np.asarray(twoline_par_after)[1] _df['bn2'] = np.asarray(twoline_par_after)[0] _df['RMS'] = res # twomod = {'kn1':twoline_par_before[1][0],'bn1':twoline_par_before[0][0], # 'kn2':twoline_par_after[1][0],'bn2':twoline_par_after[0][0],'RMS':res} eve.twoMod = _df twoSt = obspy.core.stream.Stream() resSt = obspy.core.stream.Stream() pts = int((noise*2+siglen)/delta)+1 # res_ind = int((tt1 - stime)/delta) for i in range(n_tr): _tr = obspy.core.trace.Trace() _tr.stats.delta = delta _tr.stats.starttime = starttime + tt1 _tr.stats.channel = filts[i] _tr.data = two_data[i] twoSt.append(_tr) _trr = obspy.core.trace.Trace() _trr.stats.delta = delta _trr.stats.starttime = eve.arrivals[beamphase]['UTC'] - noise _trr.stats.channel = filts[i] _trr.stats.npts = pts _trr.data = two_res[i] resSt.append(_trr) eve.twoSt = twoSt eve.twoResSt = resSt elif method == 'coda': #fitting coda model coda_par = codaFit(np.append(time_before,time_after),np.append(data_before,data_after,axis=1)) #getting predict noise signal in linear scale coda_data = np.asarray(np.exp(np.transpose(coda_par[0,:]) - np.transpose(coda_par[1,:]) \ *np.log(time) - np.transpose(coda_par[2,:])*time)) #getting residual signal after removing the predict noise coda_res = moving_ave(obs_data, window) - coda_data res = np.mean(coda_res[:,ind:ind+sig_pts],axis=-1) #store coda model information _df = pd.DataFrame(columns=['FILT','lnA','B','C','RMS']) _df['FILT'] = filts _df['lnA'] = np.asarray(coda_par)[0] _df['B'] =
np.asarray(coda_par)
numpy.asarray
import numpy as np import math from mpl_toolkits.axes_grid1 import make_axes_locatable import matplotlib.pyplot as plt import xarray as xr # # Plot various fields from LLC4320 Hawaii/North Pacific cutout region. # Shows how to read files, what associated grid is, what times different # file name indices correspond to etc.... # # Fields directories droot='/nobackup1b/users/jahn/hinpac/grazsame3/run/run.0354'; sdflds=['offline-0604', 'offline'] sdfld=['THETA','SALT','UVEL','VVEL','WVEL'] ########################## # Read in Grid variables # ########################## nz=40;nx=1080;ny=2700; fxc="%s/XC.data"%(droot) fxg="%s/XG.data"%(droot) fyc="%s/YC.data"%(droot) fyg="%s/YG.data"%(droot) dtyp='>f4';nr=nx*ny; RS = lambda phi: np.reshape(phi,(ny,nx)) xc=np.fromfile(fxc, dtype=dtyp,count=nr); xg=np.fromfile(fxg, dtype=dtyp,count=nr); yc=np.fromfile(fyc, dtype=dtyp,count=nr); yg=np.fromfile(fyg, dtype=dtyp,count=nr); print('West limit %10.5fE' % min(xc)) print('East limit %10.5fE' % max(xc)) print('North limit %10.5fN' % max(yc)) print('South limit %10.5fN' % min(yc)) xc=RS(xc);xg=RS(xg);yc=RS(yc);yg=RS(yg); # Show horizontal Grid variables fig=plt.figure(figsize=(20, 8), dpi= 80, facecolor='w', edgecolor='k') plt.subplot(1,4,1); plt.imshow(xc,origin='lower',cmap='gist_ncar');plt.title('XC - lon cell center');cbar=plt.colorbar() ax=plt.subplot(1,4,2); plt.imshow(xg,origin='lower',cmap='gist_ncar');plt.title('XG - lon cell corner (SW)');cbar=plt.colorbar() ax=plt.subplot(1,4,3); plt.imshow(yc,origin='lower',cmap='gist_ncar');plt.title('YC - lat cell center');cbar=plt.colorbar() ax=plt.subplot(1,4,4); plt.imshow(yg,origin='lower',cmap='gist_ncar');plt.title('YG - lat cell corner (SW)');cbar=plt.colorbar() plt.savefig('grid-plots.png', bbox_inches='tight') # Show how latitudinal grid spacing decreases with latitude and longitudinal spacing is constant fig=plt.figure(figsize=(20, 8), dpi= 80, facecolor='w', edgecolor='k') plt.subplot(1,2,1); plt.plot(yc[1:-1,1]-yc[0:-2,1],yc[1:-1,1]);plt.plot(yc[1:-1,-1]-yc[0:-2,-1],yc[1:-1,-1]); plt.title('Latitudinal spacing versus latitude') plt.ylabel('Latitude');plt.xlabel('Latitudinal spacing'); plt.subplot(1,2,2); plt.plot(xc[1,1:-1]-xc[1,0:-2],xc[1,0:-2]);plt.xlim((0.0195,0.022)) plt.title('Longitudinal spacing versus longitude') plt.ylabel('Longitude');plt.xlabel('Longitudinal spacing'); plt.savefig('grid-line-plots.png', bbox_inches='tight') # Show vertical levels information fdrf="%s/DRF.data"%(droot) drf=np.fromfile(fdrf, dtype=dtyp,count=nz); zf=[0] zf=-np.concatenate((zf,np.cumsum(drf))) zc=0.5*( zf[0:-1]+zf[1:] ) fig=plt.figure(figsize=(20, 8), dpi= 80, facecolor='w', edgecolor='k') plt.subplot(1,2,1); plt.plot(zf,'x'); plt.title('Cell interface depths');plt.ylabel('Depth (m)') plt.subplot(1,2,2); plt.plot(zc,'.'); plt.title('Cell center depths');plt.ylabel('Depth (m)'); plt.savefig('vert-grid-line-plots.png', bbox_inches='tight') ################################################################################################### # Read and plot physical fields (velocity components, temperature, salinity, sea-surface height). # ################################################################################################### # Get times and create table of iteration numbers plus dates and times import os import time itvalLo=144 itvalHi=1259856 itList=np.arange(itvalLo,itvalHi+144,144) os.environ['TZ']='UTC' tVals=[] for i in itList: ts=time.gmtime(time.mktime(time.strptime('2011/09/11:UTC','%Y/%m/%d:%Z'))+25.*i) tstr=time.strftime('%Y-%m-%dT%H:%M:%S', ts) tVals.append(tstr) tsLo=time.gmtime(time.mktime(time.strptime('2011/09/11:UTC','%Y/%m/%d:%Z'))+25.*itList[0]) tstr=time.strftime('%Y-%m-%dT%H:%M:%S', tsLo) print("Initial time and time step number ", tstr, itList[0]) tsHi=time.gmtime(time.mktime(time.strptime('2011/09/11:UTC','%Y/%m/%d:%Z'))+25.*itList[-1]) tstr=time.strftime('%Y-%m-%dT%H:%M:%S', tsHi) print("Final time and time step number ", tstr, itList[-1]) tsNumList=xr.DataArray(itList,coords={'Time':tVals},dims=('Time')) # Get a particular timestep number tN=10 print("Time step number: ",tsNumList[tN].values) print("Corresponding time: ",tsNumList[tN].coords) # # Get and plot fields # itVal=tsNumList[tN].values nrin=nz lp=10 cm='gist_ncar' def PLT(): phi=
np.fromfile(fn, dtype='>f4',count=nx*ny*nrin)
numpy.fromfile
# BSD 3-Clause License # # Copyright (c) 2019, <NAME> # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Run this module first thing, to test your installation of romcomma. **Contents**: **predict**: Prediction using a GaussianBundle. **test_input**: A rudimentary test input, for installation testing. """ from romcomma import distribution, function, data, model from romcomma.typing_ import NP from numpy import zeros, eye, pi, full, atleast_2d from pathlib import Path from scipy.stats import ortho_group EFFECTIVELY_ZERO = 1.0E-64 BASE_PATH = Path('X:\\comma_group1\\Rom\\dat\\TestFunctions\\Scalar.RBF') def scalar_function_of_normal(store_name: str, N: int, M: int, X_std: float, noise_std: float, CDF_scale: NP.Array=None, CDF_loc: NP.Array=None, pre_function_with_parameters: function.CallableWithParameters = None, function_with_parameters: function.CallableWithParameters = None) -> data.Store: X_marginal = distribution.Univariate('norm', loc=0, scale=X_std) X_dist = distribution.Multivariate.Independent(M=M, marginals=X_marginal) noise_dist = (distribution.Multivariate.Normal(mean=
zeros(1, dtype=float)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jan 8 19:20:14 2018 @author: nemec """ import numpy as np from multiprocessing import Pool #calculating the life time of the spots according to the choosen decay rate def decay(spot_area,time,D): t = spot_area/D +time return t #calculate the meridional flow def merflow(lat): if abs(lat-90) <= 75: u = 22*np.sin(2.4*(90-lat)*np.pi/180)*7.0922e-3 if abs(lat-90) > 75: u = 0 return u #calculate the differential rotation def diffrot(lat): rot = 0.1813 - 2.3*np.sin((90-lat)*np.pi/180)**2.-1.62*np.sin((90-lat)*np.pi/180)**4. return rot #define the decay rate D = 30.9 #MHS per day #setting up the grid on which to mask the spots #in this case pixels have size of 0.1 by 0.1 degree factor = 10. xvalues = np.around(np.linspace(0,359,num=360*factor),decimals=1) yvalues = np.around(np.linspace(0,180,num=180*factor),decimals=1) x,y = np.meshgrid(xvalues,yvalues) #for doing the sin/cos calculations conv = np.pi/180. # ============================================================================= # if you want to experiment with random parameters for the positions and areas, #just comment out the line, where I read in the input file and define the coordinates # and area yourself # ============================================================================= #reading in the file data = np.loadtxt("AR-mod.txt") #defining the coordinates long_pos = data[:, 2] long_neg = data[:,4] #need to redifine grid so that north pole is a + 90 degree and south pole at -90 degree lat_pos = 90-data[:,1] lat_neg = 90 -data[:,3] #define the area at the time of emergence spot = data[:,5] #define which part of the input should then be used start = 70724 end = 74519 grid_max = 359 #only use this for calculations that should not be run parallel! #positivx= open("positivx3.txt","w") #positivy= open("positivy3.txt","w") #negativx= open("negativx3.txt","w") #negativy= open("negativy3.txt","w") #for i in range(start,end): #starting doing the spot masking parallel def f(i): #for i in range(start,end): #print(i) positivx= open("positivx{}.txt".format(i),"w") positivy= open("positivy{}.txt".format(i),"w") negativx= open("negativx{}.txt".format(i),"w") negativy= open("negativy{}.txt".format(i),"w") spot_area = spot[i] time = data[i,0] t = decay(spot_area,time,D) phi_pos = 90-lat_pos[i] phi_neg = 90-lat_neg[i] #print(t) if np.int(t-time) == 0: area = spot[i]/(30.81*np.pi/2.*np.pi/2.) r = area**(1./2.) #define positive polarity patch x_min_pos = long_pos[i]-r/2.*1./np.cos(phi_pos*conv) x_max_pos = long_pos[i]+r/2.*1./np.cos(phi_pos*conv) y_min_pos = lat_pos[i]-r/2. y_max_pos = lat_pos[i]+r/2. #define negative polarity patch x_min_neg = long_neg[i]-r/2.*1./np.cos(phi_neg*conv) x_max_neg = long_neg[i]+r/2.*1./np.cos(phi_neg*conv) y_min_neg = lat_neg[i]-r/2. y_max_neg = lat_neg[i]+r/2. if x_min_pos < 0 and x_max_pos >0: x_min_pos1= grid_max+x_min_pos x_pos_pos = x[np.where((x >= x_min_pos1) & (y>=y_min_pos) & (y <=y_max_pos))] y_pos_pos = y[np.where((x >= x_min_pos1) & (y>=y_min_pos) & (y <=y_max_pos))] for item in x_pos_pos: positivx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_pos: positivy.write("%f \t %f \t %f\n" % (item,r,time)) x_pos_pos1 = x[np.where((x<=x_max_pos) & (y>=y_min_pos) & (y <=y_max_pos))] y_pos_pos1 = y[np.where((x<=x_max_pos) & (y>=y_min_pos) & (y <=y_max_pos))] for item in x_pos_pos1: positivx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_pos1: positivy.write("%f \t %f \t %f\n" % (item,r,time)) if x_min_pos < 0. and x_max_pos <0: x_min_pos2= grid_max+x_min_pos x_max_pos2 = grid_max+x_max_pos x_pos_pos2 = x[np.where((x >= x_min_pos2) & (x<=x_max_pos2) & (y>=y_min_pos) & (y <=y_max_pos))] y_pos_pos2 = y[np.where((x >= x_min_pos2) & (x<=x_max_pos2) & (y>=y_min_pos) & (y <=y_max_pos))] for item in x_pos_pos2: positivx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_pos2: positivy.write("%f \t %f \t %f\n" % (item,r,time)) # if x_min_pos > 0.: x_pos_pos3 = x[np.where((x >= x_min_pos) & (x<=x_max_pos) & (y>=y_min_pos) & (y <=y_max_pos))] y_pos_pos3 = y[np.where((x >= x_min_pos) & (x<=x_max_pos) & (y>=y_min_pos) & (y <=y_max_pos))] for item in x_pos_pos3: positivx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_pos3: positivy.write("%f \t %f \t %f\n" % (item,r,time)) if x_min_neg < 0. and x_max_neg >0: x_min_neg1= grid_max+x_min_neg x_pos_neg1 = x[np.where((x >= x_min_neg1) & (y>=y_min_neg) & (y <=y_max_neg))] y_pos_neg= y[np.where((x >= x_min_neg1) & (y>=y_min_neg) & (y <=y_max_neg))] for item in x_pos_neg1: negativx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_neg: negativy.write("%f \t %f \t %f\n" % (item,r,time)) x_pos_neg1 = x[np.where((x<=x_max_neg) & (y>=y_min_neg) & (y <=y_max_neg))] y_pos_neg1 = y[np.where((x<=x_max_neg) & (y>=y_min_neg) & (y <=y_max_neg))] for item in x_pos_neg1: negativx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_neg1: negativy.write("%f \t %f \t %f\n" % (item,r,time)) if x_min_neg < 0. and x_max_neg <0: x_min_neg2= grid_max+x_min_neg x_max_neg2 = grid_max +x_max_neg x_pos_neg2 = x[np.where((x >= x_min_neg2) & (x<=x_max_neg2) & (y>=y_min_neg) & (y <=y_max_neg))] y_pos_neg2 = y[np.where((x >= x_min_neg2) & (x<=x_max_neg2) & (y>=y_min_neg) & (y <=y_max_neg))] for item in x_pos_neg2: negativx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_neg2: negativy.write("%f \t %f \t %f\n" % (item,r,time)) if x_min_neg > 0.: x_pos_neg3 = x[np.where((x >= x_min_neg) & (x<=x_max_neg) & (y>=y_min_neg) & (y <=y_max_neg))] y_pos_neg3 = y[np.where((x >= x_min_neg) & (x<=x_max_neg) & (y>=y_min_neg) & (y <=y_max_neg))] for item in x_pos_neg3: negativx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_neg3: negativy.write("%f \t %f \t %f\n" % (item,r,time)) if x_max_pos >grid_max and x_min_pos <grid_max: x_max_pos4= x_max_pos-grid_max x_pos_pos = x[np.where((x >= x_min_pos) & (y>=y_min_pos) & (y <=y_max_pos))] y_pos_pos = y[np.where((x >= x_min_pos) & (y>=y_min_pos) & (y <=y_max_pos))] for item in x_pos_pos: positivx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_pos: positivy.write("%f \t %f \t %f\n" % (item,r,time)) x_pos_pos4 = x[np.where((x<=x_max_pos4) & (y>=y_min_pos) & (y <=y_max_pos))] y_pos_pos4 = y[np.where((x<=x_max_pos4) & (y>=y_min_pos) & (y <=y_max_pos))] for item in x_pos_pos4: positivx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_pos4: positivy.write("%f \t %f \t %f\n" % (item,r,time)) if x_max_pos >grid_max and x_min_pos >grid_max: x_min_pos5= x_min_pos-grid_max x_max_pos5 =x_max_pos-grid_max x_pos_pos5 = x[np.where((x >= x_min_pos5) & (x<=x_max_pos5) & (y>=y_min_pos) & (y <=y_max_pos))] y_pos_pos5 = y[np.where((x >= x_min_pos5) & (x<=x_max_pos5) & (y>=y_min_pos) & (y <=y_max_pos))] for item in x_pos_pos5: positivx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_pos5: positivy.write("%f \t %f \t %f\n" % (item,r,time)) # if x_max_pos > grid_max: x_pos_pos6 = x[np.where((x >= x_min_pos) & (x<=x_max_pos) & (y>=y_min_pos) & (y <=y_max_pos))] y_pos_pos6 = y[np.where((x >= x_min_pos) & (x<=x_max_pos) & (y>=y_min_pos) & (y <=y_max_pos))] for item in x_pos_pos6: positivx.write("%f \t %f \t %f\n" % (item,r,time)) for item in y_pos_pos6: positivy.write("%f \t %f \t %f\n" % (item,r,time)) if x_max_neg >grid_max and x_min_neg <grid_max: x_max_neg4= x_max_pos-grid_max x_pos_neg = x[
np.where((x >= x_min_neg) & (y>=y_min_neg) & (y <=y_max_neg))
numpy.where
import scipy import numpy try: import cupy except: import numpy as cupy from apricot import FacilityLocationSelection from sklearn.datasets import load_digits from numpy.testing import assert_almost_equal from numpy.testing import assert_array_equal from numpy.testing import assert_array_almost_equal digits_data = load_digits() X_digits = digits_data.data norm = lambda x: numpy.sqrt((x*x).sum(axis=1)).reshape(x.shape[0], 1) cosine = lambda x: numpy.dot(x, x.T) / (norm(x).dot(norm(x).T)) X_digits_sparse = scipy.sparse.csr_matrix(cosine(X_digits)) X_digits_corr_cupy = cupy.corrcoef(cupy.array(X_digits), rowvar=True) ** 2 X_digits_cosine_cupy = cupy.array(cosine(X_digits)) digits_corr_ranking = [424, 1647, 396, 339, 1030, 331, 983, 1075, 1482, 1539, 1282, 493, 885, 823, 1051, 236, 537, 1161, 345, 1788, 1432, 1634, 1718, 1676, 146, 1286, 655, 1292, 556, 533, 1545, 520, 1711, 1428, 620, 1276, 305, 438, 1026, 183, 2, 384, 1012, 798, 213, 1291, 162, 1206, 227, 1655, 233, 1508, 410, 1295, 1312, 1350, 514, 938, 579, 1066, 82, 164, 948, 1588, 1294, 1682, 943, 517, 959, 1429, 762, 898, 1556, 881, 1470, 1549, 1325, 1568, 937, 347, 1364, 126, 732, 1168, 241, 573, 731, 815, 864, 1639, 1570, 411, 1086, 696, 870, 1156, 353, 160, 1381, 326] digits_corr_gains = [736.794, 114.2782, 65.4154, 61.3037, 54.5428, 38.7506, 34.097, 32.6649, 30.2813, 27.8395, 24.1843, 17.568, 16.6615, 15.2973, 13.2629, 9.7685, 9.5183, 7.9484, 7.8094, 7.0224, 6.623, 6.061, 6.0469, 5.323, 5.167, 5.0563, 4.8848, 4.7694, 4.4766, 4.4577, 4.3198, 3.9347, 3.5501, 3.3284, 3.0123, 2.9994, 2.9739, 2.8233, 2.7572, 2.558, 2.5281, 2.4412, 2.4328, 2.3452, 2.2498, 2.2457, 2.2127, 2.1542, 2.1416, 2.0876, 2.0715, 2.0482, 2.0053, 1.9996, 1.9912, 1.973, 1.8029, 1.7865, 1.7284, 1.7255, 1.7201, 1.7169, 1.6614, 1.6445, 1.6147, 1.5874, 1.5827, 1.5822, 1.5784, 1.5164, 1.4876, 1.4319, 1.4288, 1.3736, 1.3485, 1.3039, 1.2872, 1.2771, 1.2587, 1.2391, 1.2279, 1.2006, 1.1654, 1.1491, 1.1445, 1.137, 1.1122, 1.0785, 1.0771, 1.0402, 1.0321, 1.0192, 1.0158, 0.9734, 0.9627, 0.9612, 0.9401, 0.9291, 0.912, 0.8924] digits_euclidean_ranking = [945, 392, 1507, 793, 1417, 1039, 97, 1107, 1075, 867, 360, 186, 1584, 1422, 885, 1084, 1327, 1696, 991, 146, 181, 765, 175, 1513, 1120, 877, 1201, 1764, 1711, 1447, 1536, 1286, 438, 612, 6, 514, 410, 1545, 384, 1053, 1485, 983, 310, 51, 654, 1312, 708, 157, 259, 1168, 117, 1634, 1537, 1188, 1364, 1713, 579, 582, 69, 200, 1678, 798, 183, 520, 1011, 1295, 1291, 938, 1276, 501, 696, 948, 925, 558, 269, 1066, 573, 762, 1294, 1588, 732, 1387, 1568, 1026, 1156, 79, 1222, 1414, 864, 1549, 1236, 213, 411, 151, 233, 924, 126, 345, 1421, 1562] digits_euclidean_gains = [7448636.0, 384346.0, 250615.0, 224118.0, 166266.0, 127456.0, 122986.0, 109483.0, 93463.0, 67173.0, 55997.0, 54721.0, 51497.0, 47765.0, 45073.0, 33857.0, 30100.0, 25043.0, 22260.0, 19700.0, 19135.0, 17545.0, 17000.0, 15462.0, 15315.0, 14996.0, 14819.0, 13244.0, 12529.0, 12474.0, 11702.0, 11639.0, 11612.0, 11266.0, 11187.0, 9722.0, 9244.0, 8645.0, 8645.0, 8461.0, 8404.0, 8115.0, 7998.0, 7351.0, 7153.0, 6992.0, 6956.0, 6919.0, 6711.0, 6684.0, 6526.0, 6348.0, 6099.0, 5969.0, 5460.0, 5433.0, 5163.0, 5141.0, 5090.0, 4900.0, 4842.0, 4683.0, 4165.0, 4104.0, 4099.0, 4099.0, 3998.0, 3959.0, 3912.0, 3807.0, 3703.0, 3675.0, 3670.0, 3636.0, 3564.0, 3407.0, 3395.0, 3196.0, 3188.0, 3168.0, 3156.0, 3144.0, 3093.0, 3078.0, 3059.0, 2997.0, 2944.0, 2891.0, 2886.0, 2865.0, 2804.0, 2779.0, 2756.0, 2748.0, 2709.0, 2696.0, 2651.0, 2637.0, 2619.0, 2602.0] digits_cosine_ranking = [424, 615, 1545, 1385, 1399, 1482, 1539, 1075, 331, 493, 885, 236, 345, 1282, 1051, 823, 537, 1788, 1549, 834, 1634, 1009, 1718, 655, 1474, 1292, 1185, 396, 1676, 2, 183, 533, 1536, 438, 1276, 305, 1353, 620, 1026, 983, 162, 1012, 384, 91, 227, 798, 1291, 1655, 1485, 1206, 410, 556, 1161, 29, 1320, 1295, 164, 514, 1294, 1711, 579, 938, 517, 1682, 1325, 1222, 82, 959, 520, 1066, 943, 1556, 762, 898, 732, 1086, 881, 1588, 1470, 1568, 1678, 948, 1364, 62, 937, 1156, 1168, 241, 573, 347, 908, 1628, 1442, 126, 815, 411, 1257, 151, 23, 696] digits_cosine_gains = [1418.7103, 47.8157, 25.4947, 21.0313, 19.7599, 19.0236, 16.3013, 13.5381, 11.811, 9.0032, 6.2765, 5.9886, 5.2185, 4.6696, 4.1744, 4.0718, 3.0075, 2.8132, 2.5777, 2.2983, 2.2391, 2.2223, 2.0622, 1.9568, 1.9192, 1.7356, 1.7038, 1.6463, 1.6003, 1.5979, 1.3458, 1.3415, 1.288, 1.1595, 1.0048, 0.9198, 0.8886, 0.8454, 0.8446, 0.829, 0.8162, 0.799, 0.7805, 0.7723, 0.7717, 0.7681, 0.7533, 0.7227, 0.7017, 0.6899, 0.6895, 0.6448, 0.6397, 0.6334, 0.6014, 0.5881, 0.5677, 0.5628, 0.5534, 0.5527, 0.5428, 0.5415, 0.5384, 0.5249, 0.5232, 0.498, 0.4944, 0.4877, 0.4799, 0.4788, 0.4775, 0.4663, 0.4641, 0.4589, 0.4447, 0.4437, 0.4408, 0.4382, 0.4312, 0.4266, 0.4238, 0.4184, 0.4168, 0.4058, 0.4, 0.3983, 0.3892, 0.3855, 0.3837, 0.3818, 0.3765, 0.3524, 0.3519, 0.3471, 0.3331, 0.3289, 0.3268, 0.324, 0.3197, 0.3173] def test_digits_corr_small_greedy(): model = FacilityLocationSelection(10, 'corr', 10) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking[:10]) assert_array_almost_equal(model.gains, digits_corr_gains[:10], 4) def test_digits_corr_small_greedy_rank_initialized(): model = FacilityLocationSelection(10, 'corr', 10, initial_subset=digits_corr_ranking[:5]) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking[5:15]) assert_array_almost_equal(model.gains, digits_corr_gains[5:15], 4) def test_digits_corr_small_greedy_bool_initialized(): mask = numpy.zeros(X_digits.shape[0], dtype=bool) mask[digits_corr_ranking[:5]] = True model = FacilityLocationSelection(10, 'corr', 10, initial_subset=mask) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking[5:15]) assert_array_almost_equal(model.gains, digits_corr_gains[5:15], 4) def test_digits_corr_small_pivot(): model = FacilityLocationSelection(10, 'corr', 5) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking[:10]) assert_array_almost_equal(model.gains, digits_corr_gains[:10], 4) def test_digits_corr_small_pivot_rank_initialized(): model = FacilityLocationSelection(10, 'corr', 5, initial_subset=digits_corr_ranking[:5]) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking[5:15]) assert_array_almost_equal(model.gains, digits_corr_gains[5:15], 4) def test_digits_corr_small_pivot_bool_initialized(): mask = numpy.zeros(X_digits.shape[0], dtype=bool) mask[digits_corr_ranking[:5]] = True model = FacilityLocationSelection(10, 'corr', 5, initial_subset=mask) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking[5:15]) assert_array_almost_equal(model.gains, digits_corr_gains[5:15], 4) def test_digits_corr_small_pq(): model = FacilityLocationSelection(10, 'corr', 1) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking[:10]) assert_array_almost_equal(model.gains, digits_corr_gains[:10], 4) def test_digits_corr_small_pq_rank_initialized(): model = FacilityLocationSelection(10, 'corr', 1, initial_subset=digits_corr_ranking[:5]) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking[5:15]) assert_array_almost_equal(model.gains, digits_corr_gains[5:15], 4) def test_digits_corr_small_pq_bool_initialized(): mask = numpy.zeros(X_digits.shape[0], dtype=bool) mask[digits_corr_ranking[:5]] = True model = FacilityLocationSelection(10, 'corr', 1, initial_subset=mask) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking[5:15]) assert_array_almost_equal(model.gains, digits_corr_gains[5:15], 4) def test_digits_corr_small_truncated(): model = FacilityLocationSelection(15, 'corr', 1) model.fit(X_digits) assert_array_equal(model.ranking[:10], digits_corr_ranking[:10]) assert_array_almost_equal(model.gains[:10], digits_corr_gains[:10], 4) def test_digits_corr_small_truncated_pivot(): model = FacilityLocationSelection(15, 'corr', 5) model.fit(X_digits) assert_array_equal(model.ranking[:10], digits_corr_ranking[:10]) assert_array_almost_equal(model.gains[:10], digits_corr_gains[:10], 4) def test_digits_corr_large_greedy(): model = FacilityLocationSelection(100, 'corr', 100) model.fit(X_digits) assert_array_equal(model.ranking, digits_corr_ranking) assert_array_almost_equal(model.gains, digits_corr_gains, 4) def test_digits_corr_large_pivot(): model = FacilityLocationSelection(100, 'corr', 50) model.fit(X_digits)
assert_array_equal(model.ranking, digits_corr_ranking)
numpy.testing.assert_array_equal
def xmaslight(): # This is the code from my #NOTE THE LEDS ARE GRB COLOUR (NOT RGB) # Here are the libraries I am currently using: import time import re import math # You are welcome to add any of these: import random import numpy as np # import scipy # import sys # If you want to have user changable values, they need to be entered from the command line # so import sys sys and use sys.argv[0] etc # some_value = int(sys.argv[0]) # IMPORT THE COORDINATES (please don't break this bit) coordfilename = "coords.txt" fin = open(coordfilename,'r') coords_raw = fin.readlines() coords_bits = [i.split(",") for i in coords_raw] coords = [] for slab in coords_bits: new_coord = [] for i in slab: new_coord.append(int(re.sub(r'[^-\d]','', i))) coords.append(new_coord) #set up the pixels (AKA 'LEDs') PIXEL_COUNT = len(coords) # this should be 500 pixels = neopixel.NeoPixel(board.D18, PIXEL_COUNT, auto_write=False) # YOU CAN EDIT FROM HERE DOWN # I get a list of the coordinates which is not overly useful here other than to set the max and min coordinates xs = [] ys = [] zs = [] for i in coords: xs.append(i[0]) ys.append(i[1]) zs.append(i[2]) slow = 0 ballradius = 220 # the eight colours in GRB order # if you are turning a lot of them on at once, keep their brightness down please colourA = [0,50,0] # red colourB = [40,60,0] # orange colourC = [45, 45, 0] # yellow colourD = [38, 0, 0] # green colourE = [38, 0, 38] # teal colourF = [0, 0, 38] # blue colourG = [0, 13, 38] # indigo colourH = [0, 25, 38] # violet run = 1 coordmat = np.asmatrix(np.array(coords) + np.array([0.,0.,220]), dtype=np.float64).transpose() # Put LED coordinates into appropriate numpy matrix form to prepare for rotations. cnt = 0 while run == 1: time.sleep(slow) LED = 0 while LED < len(coords): # Check which octant LED lives in to generate colored octahedron if coordmat[0, LED]**2 + coordmat[1, LED]**2 + coordmat[2, LED]**2 < ballradius**2: if coordmat[0, LED] < 0: if coordmat[1, LED] < 0: if coordmat[2, LED] < 0: pixels[LED] = colourA else: pixels[LED] = colourB else: if coordmat[2, LED] < 0: pixels[LED] = colourC else: pixels[LED] = colourD else: if coordmat[1, LED] < 0: if coordmat[2,LED] < 0: pixels[LED] = colourE else: pixels[LED] = colourF else: if coordmat[2, LED] < 0: pixels[LED] = colourG else: pixels[LED] = colourH LED += 1 # use the show() option as rarely as possible as it takes ages # do not use show() each time you change a LED but rather wait until you have changed them all pixels.show() ## <NAME> had to comment this out since he doesn't have LEDs. Won't work until hardware is available. # now we get ready for the next cycle # We do this similarly to how Matt did his translating plane effect: use a static spatial coloring function, # but rotate all of the LEDs! #Do rotate-y stuff here #Rotation Matrix # Small scalar amount (in radians) to rotate for one timestep of animation (plays role of "inc" variable in Matt's original code) theta = 0.2 # UNIT vector axis about which to rotate for one timestep of animation if cnt%100 == 0: #Switch up the rotation axis every so often to keep things interesting ux = random.uniform(-1.0, 1.0) uy = random.uniform(-1.0, 1.0) uz = random.uniform(-1.0, 1.0) length = math.sqrt(ux**2+uy**2+uz**2) ux = ux / length uy = uy / length uz = uz / length u = np.matrix( [ [ux], [uy], [uz] ] ) UX = np.matrix( #Cross Product Matrix [ [0., -uz, uy], [uz, 0., -ux], [-uy, ux, 0.] ] ) UXU = np.matmul(u,u.transpose()) #Generate Outer Product I = np.matrix( #Identity Matrix [ [1., 0., 0.], [0., 1., 0.], [0., 0., 1.] ] ) # Setup rotation matrix using R = \cos(\theta) I + \sin(\theta) UX + (1 - \cos(\theta)) UXU (Rodrigues' Rotation Formula) RotMat = np.cos(theta) * I + np.sin(theta) * UX + (1 - np.cos(theta)) * UXU coordmat =
np.matmul(RotMat,coordmat)
numpy.matmul
# Copyright (c) ASU GitHub Project. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. # ################################################################################ from __future__ import print_function import math import os import random import copy import scipy import string import numpy as np import torch import torch.utils.data from scipy.ndimage.filters import gaussian_filter from scipy.ndimage.interpolation import map_coordinates from skimage.transform import resize try: # SciPy >= 0.19 from scipy.special import comb except ImportError: from scipy.misc import comb from PIL import Image, ImageDraw, ImageFont def bernstein_poly(i, n, t): """ The Bernstein polynomial of n, i as a function of t """ return comb(n, i) * (t ** (n - i)) * (1 - t) ** i def bezier_curve(points, nTimes=1000): """ Given a set of control points, return the bezier curve defined by the control points. Control points should be a list of lists, or list of tuples such as [ [1,1], [2,3], [4,5], ..[Xn, Yn] ] nTimes is the number of time steps, defaults to 1000 See http://processingjs.nihongoresources.com/bezierinfo/ """ nPoints = len(points) xPoints = np.array([p[0] for p in points]) yPoints = np.array([p[1] for p in points]) t = np.linspace(0.0, 1.0, nTimes) polynomial_array = np.array([bernstein_poly(i, nPoints - 1, t) for i in range(0, nPoints)]) xvals = np.dot(xPoints, polynomial_array) yvals = np.dot(yPoints, polynomial_array) return xvals, yvals def data_augmentation(x, y, prob=0.5): # augmentation by flipping cnt = 3 while random.random() < prob and cnt > 0: degree = random.choice([0, 1, 2]) x = np.flip(x, axis=degree) y = np.flip(y, axis=degree) cnt = cnt - 1 return x, y def elastic_transform(image): alpha = 991 sigma = 8 random_state =
np.random.RandomState(None)
numpy.random.RandomState
#!/usr/bin/env python import tensorflow as tf import numpy as np from align.detect_face import create_mtcnn, detect_face from scipy import misc from align.align_dataset_mtcnn import * def initialize_mtcnn(gpu_memory_fraction, rect_minsize = 100, mtcnn_thresholds = [0.6, 0.7, 0.7], scale_factor = 0.709): with tf.Graph().as_default(): gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=0.5) sess = tf.Session(config=tf.ConfigProto(gpu_options=gpu_options, log_device_placement=False)) with sess.as_default(): pnet, rnet, onet = create_mtcnn(sess, None) minsize = rect_minsize threshold = mtcnn_thresholds factor = scale_factor return pnet, rnet, onet, minsize, threshold, factor def align_image(img, pnet, rnet, onet, minsize, threshold, factor, image_height = 160, image_width = 160, view_mtcnn_scores = False, NED_threshold = 0.3, filter_sideways = True, keep_aspect_ratio = False, discard_border_landmark_faces = False, margin = 32, visualize = False): #distance_info = {} if img.ndim<2: #create_dir(parent_dir+'/failed_only_two_channels') #img = cv2.imread(image_path) #cv2.imwrite(parent_dir+'/failed_only_two_channels/'+filename+'.png', img) #print('Unable to align "%s"' % image_path) return [], None, [], [] elif img.ndim == 2: img = facenet.to_rgb(img) img = img[:,:,0:3] bounding_boxes, landmark_points, final_info = detect_face(img, minsize, pnet, rnet, onet, threshold, factor) if not np.all(landmark_points): return [], None, [], [] nrof_faces = bounding_boxes.shape[0] best_face_shape = (1,1,1) best_face_index = 0 best_face_cropped = None best_face_bb = [0,0,0,0] best_face_conf = 0 if nrof_faces>0: for i in range(nrof_faces): det = bounding_boxes[i, 0:4] conf = bounding_boxes[i, 4] img_size = np.asarray(img.shape)[0:2] if nrof_faces>1: bounding_box_size = (det[2]-det[0])*(det[3]-det[1]) img_center = img_size / 2 offsets = np.vstack([ (det[0]+det[2])/2-img_center[1], (det[1]+det[3])/2-img_center[0] ]) offset_dist_squared = np.sum(np.power(offsets,2.0),0) index = np.argmax(bounding_box_size-offset_dist_squared*2.0) # some extra weight on the centering det = np.squeeze(det) bb = np.zeros(4, dtype=np.int32) bb[0] = np.maximum(det[0]-margin/2, 0) bb[1] =
np.maximum(det[1]-margin/2, 0)
numpy.maximum
import numpy as np import numpy.random as npr from test_util import * from funkyyak import grad
npr.seed(1)
numpy.random.seed
import numpy as np from torchvision.transforms import Compose def get_transforms(cfg): transforms = [] if cfg is not None: for trf_cfg in cfg: if trf_cfg.name in globals(): trf_cls = globals()[trf_cfg.name] trf = trf_cls(**dict(trf_cfg.args or {})) transforms.append(trf) else: raise ValueError("Transofrm {} does not exist!" "".format(trf_cfg.name)) return Compose(transforms) class ClockwiseRotation(object): def __init__(self, deg): self.deg = deg def __repr__(self): return "{0.__class__.__name__}(def={0.deg})".format(self) def __call__(self, events): """ :param np.ndarray events: [num_events, 4] array containing (x, y, ts, p) values :return: np.ndarray [num_events, 4] """ x, y, ts, p = np.split(events, 4, axis=-1) # Compute the center of the events cloud xc = (x.max() - x.min()) / 2 yc = (y.max() - y.min()) / 2 # Apply rotation angle = np.radians(self.deg) x_rot = ((x - xc) * np.cos(angle)) - ((y - yc) * np.sin(angle)) + xc y_rot = ((x - xc) * np.sin(angle)) + ((y - yc) * np.cos(angle)) + yc # Translate events so that the top-left most event is in (0,0) x_left =
np.min(x_rot)
numpy.min
import mmcv import numpy as np from terminaltables import AsciiTable from .bbox_overlaps import bbox_overlaps from .class_names import get_classes def average_precision(recalls, precisions, mode='area'): """Calculate average precision (for single or multiple scales). Args: recalls (ndarray): shape (num_scales, num_dets) or (num_dets, ) precisions (ndarray): shape (num_scales, num_dets) or (num_dets, ) mode (str): 'area' or '11points', 'area' means calculating the area under precision-recall curve, '11points' means calculating the average precision of recalls at [0, 0.1, ..., 1] Returns: float or ndarray: calculated average precision """ no_scale = False if recalls.ndim == 1: no_scale = True recalls = recalls[np.newaxis, :] precisions = precisions[np.newaxis, :] assert recalls.shape == precisions.shape and recalls.ndim == 2 num_scales = recalls.shape[0] ap = np.zeros(num_scales, dtype=np.float32) if mode == 'area': zeros = np.zeros((num_scales, 1), dtype=recalls.dtype) ones = np.ones((num_scales, 1), dtype=recalls.dtype) mrec = np.hstack((zeros, recalls, ones)) mpre = np.hstack((zeros, precisions, zeros)) for i in range(mpre.shape[1] - 1, 0, -1): mpre[:, i - 1] = np.maximum(mpre[:, i - 1], mpre[:, i]) for i in range(num_scales): ind = np.where(mrec[i, 1:] != mrec[i, :-1])[0] ap[i] = np.sum( (mrec[i, ind + 1] - mrec[i, ind]) * mpre[i, ind + 1]) elif mode == '11points': for i in range(num_scales): for thr in np.arange(0, 1 + 1e-3, 0.1): precs = precisions[i, recalls[i, :] >= thr] prec = precs.max() if precs.size > 0 else 0 ap[i] += prec ap /= 11 else: raise ValueError( 'Unrecognized mode, only "area" and "11points" are supported') if no_scale: ap = ap[0] return ap def tpfp_imagenet(det_bboxes, gt_bboxes, gt_ignore, default_iou_thr, area_ranges=None): """Check if detected bboxes are true positive or false positive. Args: det_bbox (ndarray): the detected bbox gt_bboxes (ndarray): ground truth bboxes of this image gt_ignore (ndarray): indicate if gts are ignored for evaluation or not default_iou_thr (float): the iou thresholds for medium and large bboxes area_ranges (list or None): gt bbox area ranges Returns: tuple: two arrays (tp, fp) whose elements are 0 and 1 """ num_dets = det_bboxes.shape[0] num_gts = gt_bboxes.shape[0] if area_ranges is None: area_ranges = [(None, None)] num_scales = len(area_ranges) # tp and fp are of shape (num_scales, num_gts), each row is tp or fp # of a certain scale. tp = np.zeros((num_scales, num_dets), dtype=np.float32) fp = np.zeros((num_scales, num_dets), dtype=np.float32) if gt_bboxes.shape[0] == 0: if area_ranges == [(None, None)]: fp[...] = 1 else: det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0] + 1) * ( det_bboxes[:, 3] - det_bboxes[:, 1] + 1) for i, (min_area, max_area) in enumerate(area_ranges): fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1 return tp, fp ious = bbox_overlaps(det_bboxes, gt_bboxes - 1) gt_w = gt_bboxes[:, 2] - gt_bboxes[:, 0] + 1 gt_h = gt_bboxes[:, 3] - gt_bboxes[:, 1] + 1 iou_thrs = np.minimum((gt_w * gt_h) / ((gt_w + 10.0) * (gt_h + 10.0)), default_iou_thr) # sort all detections by scores in descending order sort_inds = np.argsort(-det_bboxes[:, -1]) for k, (min_area, max_area) in enumerate(area_ranges): gt_covered = np.zeros(num_gts, dtype=bool) # if no area range is specified, gt_area_ignore is all False if min_area is None: gt_area_ignore = np.zeros_like(gt_ignore, dtype=bool) else: gt_areas = gt_w * gt_h gt_area_ignore = (gt_areas < min_area) | (gt_areas >= max_area) for i in sort_inds: max_iou = -1 matched_gt = -1 # find best overlapped available gt for j in range(num_gts): # different from PASCAL VOC: allow finding other gts if the # best overlaped ones are already matched by other det bboxes if gt_covered[j]: continue elif ious[i, j] >= iou_thrs[j] and ious[i, j] > max_iou: max_iou = ious[i, j] matched_gt = j # there are 4 cases for a det bbox: # 1. it matches a gt, tp = 1, fp = 0 # 2. it matches an ignored gt, tp = 0, fp = 0 # 3. it matches no gt and within area range, tp = 0, fp = 1 # 4. it matches no gt but is beyond area range, tp = 0, fp = 0 if matched_gt >= 0: gt_covered[matched_gt] = 1 if not (gt_ignore[matched_gt] or gt_area_ignore[matched_gt]): tp[k, i] = 1 elif min_area is None: fp[k, i] = 1 else: bbox = det_bboxes[i, :4] area = (bbox[2] - bbox[0] + 1) * (bbox[3] - bbox[1] + 1) if area >= min_area and area < max_area: fp[k, i] = 1 return tp, fp def tpfp_default(det_bboxes, gt_bboxes, gt_ignore, iou_thr, area_ranges=None): """Check if detected bboxes are true positive or false positive. Args: det_bbox (ndarray): the detected bbox gt_bboxes (ndarray): ground truth bboxes of this image gt_ignore (ndarray): indicate if gts are ignored for evaluation or not iou_thr (float): the iou thresholds Returns: tuple: (tp, fp), two arrays whose elements are 0 and 1 """ num_dets = det_bboxes.shape[0] num_gts = gt_bboxes.shape[0] if area_ranges is None: area_ranges = [(None, None)] num_scales = len(area_ranges) # tp and fp are of shape (num_scales, num_gts), each row is tp or fp of # a certain scale tp = np.zeros((num_scales, num_dets), dtype=np.float32) fp = np.zeros((num_scales, num_dets), dtype=np.float32) # if there is no gt bboxes in this image, then all det bboxes # within area range are false positives if gt_bboxes.shape[0] == 0: if area_ranges == [(None, None)]: fp[...] = 1 else: det_areas = (det_bboxes[:, 2] - det_bboxes[:, 0] + 1) * ( det_bboxes[:, 3] - det_bboxes[:, 1] + 1) for i, (min_area, max_area) in enumerate(area_ranges): fp[i, (det_areas >= min_area) & (det_areas < max_area)] = 1 return tp, fp ious = bbox_overlaps(det_bboxes, gt_bboxes) ious_max = ious.max(axis=1) ious_argmax = ious.argmax(axis=1) sort_inds = np.argsort(-det_bboxes[:, -1]) for k, (min_area, max_area) in enumerate(area_ranges): gt_covered =
np.zeros(num_gts, dtype=bool)
numpy.zeros
# USEFUL FUNC.(TOOL) IN IMSNG MODULE # CREATED IN 19.03.03 BY <NAME> # UPDATE : 20.01.03 #============================================================ # MODULE #------------------------------------------------------------ import os, sys, glob import numpy as np from astropy.io import ascii, fits import astropy.coordinates as coord import astropy.units as u from multiprocessing import Process, Pool import multiprocessing as mp import time from astropy.coordinates import SkyCoord from astropy.wcs import WCS from astropy.nddata import Cutout2D import matplotlib.pyplot as plt from imsng import phot_tbd #============================================================ def timename(): ''' CONVERT 'TIME' TO YYMMDD, HHMMSS FORM. INPUT : NONE OUTPUT : STRIG FORM OF 'YYMMDD', 'HHMMSS' ''' import numpy as np import time now = time.gmtime(time.time()) y, m, d = now.tm_year, now.tm_mon, now.tm_mday ho, mi, se = now.tm_hour, now.tm_min, now.tm_sec yy = str(y)[2:] if len(str(m)) < 2: mm = '0'+str(m) else: mm = str(m) if len(str(d)) < 2: dd = '0'+str(d) else: dd = str(d) if len(str(ho)) < 2: hour = '0'+str(ho) else: hour = str(ho) if len(str(mi)) < 2: mini = '0'+str(mi) else: mini = str(mi) if len(str(se)) < 2: sec = '0'+str(se) else: sec = str(se) yymmdd = yy+mm+dd hhmmss = hour+mini+sec return yymmdd, hhmmss #------------------------------------------------------------ def detection(name, ra, dec, time, location): import numpy as np import os, glob, sys from astropy import units as u from astropy.time import Time from astropy.coordinates import SkyCoord, EarthLocation, AltAz from astropy.coordinates import get_sun, get_moon from astropy.io import ascii from astropy.table import Table, Column target = SkyCoord(ra, dec, unit='deg') # defaults to ICRS frame site = location del_midnight= np.linspace(-12, +12, 720) * u.hour time_night = time+del_midnight frame_night = AltAz(obstime=time_night, location=site) targetaltaz_night = target.transform_to(frame_night) sunaltaz_night = get_sun(time_night).transform_to(frame_night) # indx_set = np.where( sunaltaz_night.alt > -18 * u.deg ) indx_rise = np.where( sunaltaz_night.alt < -18 * u.deg ) sunset = del_midnight[np.min(indx_rise)] sunrise = del_midnight[np.max(indx_rise)] del_midnight= np.linspace(sunset.value, sunrise.value, 100) * u.hour time_night = time+del_midnight frame_night = AltAz(obstime=time_night, location=site) targetaltaz_night = target.transform_to(frame_night) return targetaltaz_night #------------------------------------------------------------ def rts_maker(filename, savepath, obs, obstbl, intbl, date, hhmmss): from astropy.coordinates import Angle import numpy as np import os, glob, sys from astropy import units as u from astropy.time import Time from astropy.coordinates import SkyCoord, EarthLocation, AltAz from astropy.coordinates import get_sun, get_moon from astropy.io import ascii from astropy.table import Table, Column indx_obs = np.where(obstbl['obs'] == obs) lat, lon, height = obstbl['lat'][indx_obs], obstbl['lon'][indx_obs], obstbl['height'][indx_obs] utoff, ul = obstbl['utoff'][indx_obs], obstbl['ul'][indx_obs] lat = lat * u.deg # North lon = lon * u.deg # East height = height * u.m utoff = utoff * u.hour ul = 20 # limiting magnitude location = EarthLocation(lat=lat, lon=lon, height=height) time = Time('20'+date[0:2]+'-'+date[2:4]+'-'+date[4:6]+' 00:00:00')+utoff risetime = [] maxtime = [] settime = [] namelist = [] ralist = [] delist = [] for i in range(len(intbl)): name, ra, dec = intbl['name'][i], intbl['ra'][i], intbl['dec'][i] targetaltaz_night = detection(name, ra, dec, time, location) try: alt_max = np.max(targetaltaz_night.alt) alt_max_time = targetaltaz_night.obstime[targetaltaz_night.alt == alt_max] + utoff alt_rise30_time = targetaltaz_night.obstime[targetaltaz_night.alt >= 25 * u.deg][0] + utoff alt_set30_time = targetaltaz_night.obstime[targetaltaz_night.alt <= 0 * u.deg][0] + utoff if alt_max >= 30.0 *u.deg: risetime.append(alt_rise30_time.value[0][11:]) maxtime.append(alt_max_time.value[0][11:]) settime.append(alt_set30_time.value[0][11:]) namelist.append(name) ralist.append(Angle(str(ra)+'d').to_string(unit=u.hour, sep=':')) delist.append(Angle(str(dec)+'d').to_string(unit=u.degree, sep=':')) except: pass risetime = np.array(risetime) maxtime = np.array(maxtime) settime = np.array(settime) namelist = np.array(namelist) ralist = np.array(ralist) delist = np.array(delist) targettbl = Table( [namelist, ralist, delist, risetime, maxtime, settime], names=['name', 'ra', 'dec', 'rise', 'transit', 'set']) ascii.write( targettbl, output=savepath+date+'/'+date+'-'+hhmmss+'-targetlist-'+obs+'-'+filename+'.txt', format='fixed_width', delimiter=None, overwrite=True) ''' ascii.write( targettbl, output=savepath+date+'/'+date+'-'+hhmmss+'-targetlist-'+obs+'-'+filename+'.txt', delimiter=None, overwrite=True) ''' #------------------------------------------------------------ def sendmail(filename, subject, sendID, sendPW, reciver): ''' Security reference https://cpuu.postype.com/post/23066 Code reference https://kimdoky.github.io/python/2017/07/21/smtplib_email.html File attach https://brunch.co.kr/@jk-lab/31 ''' import smtplib from email.mime.text import MIMEText import codecs email_text = codecs.open(filename, 'rb', 'utf-8') msg = MIMEText(email_text.read()) email_text.close() msg['Subject'] = subject msg['From'] = sendID smtp_gmail = smtplib.SMTP_SSL('smtp.gmail.com', 465) smtp_gmail.login(sendID, sendPW) smtp_gmail.sendmail(sendID, reciver, msg.as_string()) smtp_gmail.quit() comment = 'Send '+filename+'\n'+'From '+sendID+' To '+reciver; print(comment) #------------------------------------------------------------ def send_gmail(subject, contents, fromID, fromPW, toIDs, ccIDs=None, path=None): ''' SEND GMAIL Security reference https://cpuu.postype.com/post/23066 Code reference https://kimdoky.github.io/python/2017/07/21/smtplib_email.html File attach https://brunch.co.kr/@jk-lab/31 ''' import os import smtplib from email.mime.base import MIMEBase from email.mime.text import MIMEText from email.mime.multipart import MIMEMultipart from email.header import Header #msg = MIMEBase('mixed') #msg = MIMEText(contents, 'plain', 'utf-8') msg = MIMEMultipart() msg['Subject'] = Header(s=subject, charset="utf-8") msg['From'] = fromID msg['To'] = toIDs if ccIDs != None: msg['Cc'] = ccIDs msg.attach(MIMEText(contents, 'plain', 'utf-8')) # ATTACH TEXT FILE ON MAIL if path != None: if type(path) != list: filelist = [] filelist.append(path) else: filelist = path for file in filelist: part = MIMEBase("application", "octet-stream") part.set_payload(open(file, 'rb').read()) part.add_header( 'Content-Disposition', 'attachment; filename="%s"'% os.path.basename(file)) msg.attach(part) # ACCESS TO GMAIL & SEND MAIL smtp_gmail = smtplib.SMTP_SSL('smtp.gmail.com', 465) smtp_gmail.login(fromID, fromPW) smtp_gmail.sendmail(msg["From"], msg["To"].split(",") + msg["Cc"].split(","), msg.as_string()) smtp_gmail.quit() comment = 'Send '+str(path)+'\nFrom\t'+fromID+'\nTo'; print(comment); print(toIDs) #------------------------------------------------------------ def calc_rts(filename, observatory, obsdate, dts, obsinfofile, catname, altlimit=30., moonseperation=30.): #cal_visibility.py - <NAME>, 2015/02/01 #calculate rise transit set time and moon distance for observation of IMSNG #to be changed : adding observatory, bar plot, adding object, calculating for all nights of 2015 # Usage : python cal_visibility.py obsdate dts # python cal_visibility.py 2015/03/21 1 # python 3 ported, 2019-03-05, <NAME> import mskpy.observing as obs from astropy.coordinates import Angle import astropy.units as u from astropy.io import ascii from astropy.table import Table, vstack import ephem import numpy as np import string import os, sys import astropy.coordinates as coord # altitite and moon seperation parameter #moon serperation is a little bit close (2~3 deg) #altlimit = 25. #moonseperation = 30. #observatory = 'LOAO' #obsdate = '2019/10/06' #dts = '0' observatory = str(observatory) obsdate = str(obsdate) dts = str(dts) moonsepcut = 360.-moonseperation #obs_info = ascii.read("obs_info.dat") obs_info = ascii.read(obsinfofile) if type(catname)==str : tdata = ascii.read(catname) else : tdata = catname #catname = 'targetlist_test.dat' # Obseravatory information indx_obs = np.where(observatory == obs_info['obs']) obsname = obs_info['obs'][indx_obs][0] obslat = obs_info['lat'][indx_obs][0] obslon = obs_info['lon'][indx_obs][0] obstz = obs_info['utoff'][indx_obs][0] observ = ephem.Observer() observ.date = obsdate+' 01:00:00' observ.lon = str(obslon) observ.lat = str(obslat) observ.elevation= obs_info['height'][indx_obs][0] # Day Time Saving if int(dts) ==0: #print ('No day Time saving') dts = float(dts) else: #print ('Ok then I will plus 1 hr to local time.') dts = float(dts) # objects from catalog file objname = tdata['name'] ra = tdata['ra'] dec = tdata['dec'] prior = tdata['sort'] radd = ra decdd = dec # Moon distance and information mcoord = ephem.Moon() mcoord.compute(obsdate) #print ('Moon ra, dec \n') mheader ='Moon ra, dec' #print (mcoord.ra,mcoord.dec,'\n') minfo = mheader+' '+str(mcoord.ra)+' '+str(mcoord.dec)+'\n' mphase = ephem.Moon(obsdate+' 00:00:00') #print ('Moon phase : '+ "%.2f" % mphase.moon_phase) mphasestr ='Moon phase : '+ "%.2f" % mphase.moon_phase +'\n' # Angular distance calculation def angsep(ra1deg, dec1deg, ra2deg, dec2deg) : ra1rad = ra1deg*np.pi/180 dec1rad = dec1deg*np.pi/180 ra2rad = ra2deg*np.pi/180 dec2rad = dec2deg*np.pi/180 cos_a = np.sin(dec1rad)*np.sin(dec2rad)+(np.cos(dec1rad)*np.cos(dec2rad)*np.cos(ra1rad-ra2rad)) anglesep = np.arccos(cos_a)*180/np.pi return anglesep ''' targets = [] targets.append(rad) targets.append(decd) targets.append(objname) ''' msep = angsep(radd,decdd, np.degrees(mcoord.ra), np.degrees(mcoord.dec)) #sunrise calculation observ.horizon = '-18' sunrise = observ.next_rising(ephem.Sun()) sunset = observ.previous_setting(ephem.Sun()) aaa = ephem.Date.tuple(sunset) #hrr = int(aaa[3]+obstz+dts+24) hrr = int(aaa[3]+obstz+dts) mrr = aaa[4] #print ('sunset : '+str(hrr)+':'+str(mrr)) sunsetstr = '-18 deg sunset : '+str(int(hrr))+':'+str(mrr)+'\n' sunseti = hrr + mrr/60. + 0.25 bbb = ephem.Date.tuple(sunrise) hrr = bbb[3]+obstz+dts mrr = bbb[4] #print ('sunrise : '+str(int(hrr))+':'+str(mrr)) sunrisestr = '-18 deg sunrise : '+str(int(hrr))+':'+str(mrr)+'\n' sunriseti = hrr + mrr/60. -0.25 #f = open("rts_vis_"+obsdate[0:4]+obsdate[5:7]+obsdate[8:10]+"_"+observatory+".txt",'w') f = open(filename,'w') #g = open("targets.data",'w') #header = '{:25s} {:12s} {:10s} {:5s} {:5s} {:5s} {:5s} {:1s}'.format('name', 'ra', 'dec', 'rise(LT)', 'transit(LT)', 'set(LT)', 'moon_dist(deg)', 'sort')+'\n' header = 'name ra dec rise(LT) transit(LT) set(LT) moon_dist(deg) sort \n' dashline = '#'+'-'*60+'\n' f.write(obsdate) f.write('\nobservatory = '+observatory+'\n') f.write(sunsetstr) f.write(sunrisestr) f.write(minfo) f.write(mphasestr) f.write('alt limit = '+str(altlimit)+'\n') f.write('Moon seeperation = '+str(moonseperation)+'\n') f.write(dashline) f.write(header) pobj = [] prt = [] ptt = [] pst = [] telescope = obs.Observer(obslon*u.deg, obslat*u.deg, dts+obstz, obsdate, observatory) for n in range(len(objname)): ra_hms = Angle(str(ra[n])+'d').to_string(unit=u.hour, sep=':')[:-2] de_hms = Angle(str(dec[n])+'d').to_string(unit=u.deg, sep=':')[:-3] # 35 deg altitute cut rtscal = obs.rts(radd[n], decdd[n], obsdate, obslon, obslat, float(obstz)+dts, limit=altlimit, precision=1440) rt = rtscal[0] tt = rtscal[1] st = rtscal[2] if rtscal[0]==None: #print (objname[n], ra_hms, de_hms, rtscal[0], rtscal[1], rtscal[2],"%.2f" % msep[n]) vis=objname[n]+' '+ra_hms+' '+de_hms+ ' '+str(rtscal[0])+' '+ str(rtscal[1])+' '+ str(rtscal[2])+' '+str(int(msep[n]))+ str(prior[n])+'\n' #f.write(vis) #print(vis) elif sunriseti < rtscal[0] < sunseti and sunriseti < rtscal[2] < sunseti and sunriseti < rtscal[1] < sunseti : #print ('It can be seen in daytime!') pass # moon seperation = 50 deg cut elif msep[n] < moonseperation : #print (objname[n]+' too close to Moon < '+str(moonseperation)+' deg') pass elif msep[n] > moonsepcut : #print (objname[n]+' is close to the Moon by ',str(360-msep[n])+' deg') pass else: rtp = "%.2d" % int(rt)+':'+"%.2d" % int((rt-int(rt))*60) ttp = "%.2d" % int(tt)+':'+"%.2d" % int((tt-int(tt))*60) stp = "%.2d" % int(st)+':'+"%.2d" % int((st-int(st))*60) vis = '{:25s} {:12s} {:10s} {:5s} {:5s} {:5s} {:5s} {:1s}'.format(objname[n], ra_hms, de_hms, rtp, ttp, stp, str(int(msep[n])), str(prior[n]))+'\n' f.write(vis) #print(vis) #targets = objname[n]+' , '+ra_hms+' hr , '+de_hms+' deg \n' #g.write(targets) #print (objname[n], ra_hms, de_hms, rtp, ttp, stp, "%.2f" % msep[n]) f.close() #g.close() #os.system('pluma '+"rts_vis_"+obsdate[0:4]+obsdate[5:7]+obsdate[8:10]+"_loao.txt &") #targetfile ="rts_vis_"+obsdate[0:4]+obsdate[5:7]+obsdate[8:10]+".txt" #------------------------------------------------------------ def ds9regmaker(name, ra, dec, radius=1.5, color='green', dashlist=8, width=2, font='helvetica', fontsize=10, filename='ds9.reg'): ''' name = intbl['Object Name'] ra = intbl['RA'] dec = intbl['DEC'] radius=1.5 color='green' dashlist=8 width=2 font='helvetica' fontsize=10 filename='ds9.reg' ''' c = SkyCoord(ra, dec, unit='deg') hmsdms = c.to_string('hmsdms') hms, dms = [], [] for hd in hmsdms: rahms = hd.split(' ')[0].replace('h', ':').replace('m', ':').replace('s', '') dedms = hd.split(' ')[1].replace('d', ':').replace('m', ':').replace('s', '') hms.append(rahms) dms.append(dedms) f = open(filename, 'w') head = """# Region file format: DS9 version 4.1\nglobal color={} dashlist={} 3 width={} font="{} {} normal roman" select=1 highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1\nfk5 """.format(color, dashlist, width, font, fontsize) f.write(head) for r,d,n0 in zip(hms, dms, name): n = n0.replace('<a HREF="javascript:void(0)">', '').replace('</a>', '') reg = """circle({},{},{}") # text={}{}{} """.format(r, d, format(radius, ".3f"), '{', n, '}') f.write(reg) f.close() #------------------------------------------------------------ def rtsmaker(observatory, headname, save_path, obspath, catpath, start, end, altlimit=30., moonseperation=40., sunlimit='-18', numlimit=100): import pytz import jdcal import ephem #from numpy import * import numpy as np import os, sys import string import datetime import astropy.units as u from astropy.io import ascii import mskpy.observing as obs import astropy.coordinates as coord from astropy import units as u from astropy.coordinates import SkyCoord #------------------------------------------------------------# # INPUT SAMPLE #------------------------------------------------------------# ''' observatory = 'SAO' save_path = './' obspath = "/home/gw/Research/observatory.txt" catpath = 'MS181101ab_Preliminary-all_candidates.txt' start = '2019/04/17' end = '2019/04/19' #altitute limit and moon seperation, moon serperation is a little bit close (2~3 deg) numlimit = 100 altlimit = 30. moonseperation = 40. sunlimit = '-18' ''' #------------------------------------------------------------# # OBSERVATORY INFO. #------------------------------------------------------------# obsinfo = ascii.read(obspath) obsname = np.copy(obsinfo['name']) obsindex = np.where(obsname == observatory)[0] obslat = (np.copy(obsinfo['latitude(N+)'])[obsindex])[0] obslon = (np.copy(obsinfo['longitude(E+)'])[obsindex])[0] obsalt = (np.copy(obsinfo['altitude'])[obsindex])[0] obstz = (np.copy(obsinfo['timezone'])[obsindex])[0] tz = pytz.timezone(obstz) #------------------------------------------------------------# observ = ephem.Observer() observ.lat = str(obslat) observ.lon = str(obslon) observ.elevation= obsalt observ.horizon = sunlimit #------------------------------------------------------------# #objects from catalog file tdata = ascii.read(catpath) objname = tdata['name'] ra = tdata['ra'] dec = tdata['dec'] prior = tdata['sort'] rank = tdata['rank'] dist = tdata['dist'] RA = coord.Angle(ra, unit = u.deg) Dec = coord.Angle(dec, unit = u.deg) radd = RA.value rad = RA.hour decd = Dec.value decdd = Dec.degree #angular distance calculation def angsep(ra1deg, dec1deg, ra2deg, dec2deg) : ra1rad = ra1deg*np.pi/180 dec1rad = dec1deg*np.pi/180 ra2rad = ra2deg*np.pi/180 dec2rad = dec2deg*np.pi/180 cos_a = np.sin(dec1rad)*np.sin(dec2rad)+(np.cos(dec1rad)*np.cos(dec2rad)*np.cos(ra1rad-ra2rad)) anglesep = np.arccos(cos_a)*180/np.pi return anglesep #dates to calculate fmt = '%Y/%m/%d' startdt = datetime.datetime.strptime(start, fmt) enddt = datetime.datetime.strptime(end, fmt) startmjd = (jdcal.gcal2jd(startdt.year, startdt.month, startdt.day))[1] endmjd = (jdcal.gcal2jd(enddt.year, enddt.month, enddt.day))[1] for i in range(int(endmjd-startmjd+1)): onedaymjd = startmjd+i+1 oneday = jdcal.jd2gcal(2400000.5, onedaymjd) onedaydt = datetime.datetime(oneday[0], oneday[1], oneday[2]) dst = tz.dst(onedaydt, is_dst=True) dst = dst.seconds/3600 onedaydt = datetime.datetime(oneday[0], oneday[1], oneday[2], tzinfo=tz) onedayutc = onedaydt.astimezone(pytz.utc) observ.date = onedayutc # Moon distance and information mcoord = ephem.Moon() mcoord.compute(observ) minfo = 'Moon ra, dec : '+str(mcoord.ra)+' '+str(mcoord.dec)+'\n' mphase = ephem.Moon(observ.date) mphasestr = 'Moon phase : '+ "%.2f" % mphase.moon_phase +'\n' msep = angsep(radd, decdd, np.degrees(mcoord.ra), np.degrees(mcoord.dec)) # SUNSET CALC. sunset = observ.previous_setting(ephem.Sun()) sunsettu = ephem.Date.tuple(sunset) sunsetdt = datetime.datetime(sunsettu[0],sunsettu[1],sunsettu[2],sunsettu[3],int(sunsettu[4]),tzinfo=pytz.utc) sunsetlocal = sunsetdt.astimezone(tz) sunsetstr = sunlimit+' deg sunset : '+str(sunsetlocal.hour)+':'+str(sunsetlocal.minute)+'\n' sunsethour = sunsetlocal.hour+sunsetlocal.minute/60.+sunsetlocal.second/3600. # SUNRISE CALC. sunrise = observ.next_rising(ephem.Sun()) sunrisetu = ephem.Date.tuple(sunrise) sunrisedt = datetime.datetime(sunrisetu[0],sunrisetu[1],sunrisetu[2],sunrisetu[3],int(sunrisetu[4]),tzinfo=pytz.utc) sunriselocal = sunrisedt.astimezone(tz) sunrisestr = sunlimit+' deg sunrise : '+str(sunriselocal.hour)+':'+str(sunriselocal.minute)+'\n' sunrisehour = sunriselocal.hour+sunriselocal.minute/60.+sunriselocal.second/3600. #print (observatory) #print ('Local mid night in UTC : '+str(observ.date)) #print (minfo,mphasestr,sunsetstr,sunrisestr) # MAKE RESULT FILE stryear = str(oneday[0]) strmonth = str(oneday[1]) strday = str(oneday[2]-1) if int(strmonth) < 10 : strmonth = '0'+strmonth if int(strday) < 10 : strday = '0'+strday f = open(save_path+'/'+headname+'-'+stryear+strmonth+strday+"-rts_vis-"+observatory+".txt",'w') f.write('#\t'+str(observ.date)+' UTC & Day Time Saving +'+str(dst)+'\n') f.write('#\tObservatory\t= '+observatory+'\n') f.write('#\t'+sunsetstr) f.write('#\t'+sunrisestr) f.write('#\t'+minfo) f.write('#\t'+mphasestr) f.write('#\tMoon seperation = '+str(moonseperation)+'\n') f.write('#\tAltitude limit = '+str(altlimit)+'\n') f.write('#\tRank : the lower rank, the higher priority\n') f.write('#------------------------------------------------------- \n') f.write('name ra dec rise(LT) transit(LT) set(LT) moon_dist(deg) distance(Mpc) rank\n') numcount = 0 for n in range(len(rad)): #calculate rise transit set time with altitute limit param_rts = dict( ra=radd[n], dec=decdd[n], date=onedaydt, lon=obslon, lat=obslat, tz=obstz, limit=altlimit, precision=1440) rtscal = obs.rts(**param_rts) rt = rtscal[0] tt = rtscal[1] st = rtscal[2] if rtscal[0]== None: #print (objname[n],ra[n],dec[n], rtscal[0], rtscal[1], rtscal[2],"%.2f" % msep[n]) pass elif sunrisehour < rtscal[0] < sunsethour and sunrisehour < rtscal[2] < sunsethour and sunrisehour < rtscal[1] < sunsethour: #print (objname[n]+' It can be seen in daytime!') pass elif msep[n] < moonseperation or msep[n] > 360-moonseperation: #print (objname[n]+' too close to Moon < '+str(moonseperation)+' deg') pass else: if numcount < numlimit: c= SkyCoord(ra=ra[n]*u.degree, dec=dec[n]*u.degree, frame='icrs') c_ra= c.ra.hms c_dec= c.dec.dms nra='%02d:%02d:%.3f' %(c_ra[0], abs(c_ra[1]), abs(c_ra[2])) ndec='%02d:%02d:%.3f' %(c_dec[0], abs(c_dec[1]), abs(c_dec[2])) rtp ="%.2d" % int(rt)+':'+"%.2d" % int((rt-int(rt))*60) ttp ="%.2d" % int(tt)+':'+"%.2d" % int((tt-int(tt))*60) stp ="%.2d" % int(st)+':'+"%.2d" % int((st-int(st))*60) vis ='{:8s} {:12s} {:12s} {:5s} {:5s} {:5s} {:3s} {:4s} {:4s}'.format(objname[n],str(nra),str(ndec),rtp,ttp,stp,str(int(msep[n])),str(int(dist[n])),str(rank[n]))+'\n' f.write(vis) #print (objname[n],ra[n],dec[n], rtp,ttp,stp,"%.2f" % msep[n]) numcount+= 1 else: pass ''' if numcount < numlimit: rtp="%.2d" % int(rt)+':'+"%.2d" % int((rt-int(rt))*60) ttp="%.2d" % int(tt)+':'+"%.2d" % int((tt-int(tt))*60) stp="%.2d" % int(st)+':'+"%.2d" % int((st-int(st))*60) vis='{:24s} {:12s} {:12s} {:5s} {:5s} {:5s} {:3s} {:2s}'.format(objname[n],str(ra[n]),str(dec[n]),rtp,ttp,stp,str(int(msep[n])),str(prior[n]))+'\n' f.write(vis) #print (objname[n],ra[n],dec[n], rtp,ttp,stp,"%.2f" % msep[n]) numcount+= 1 else: pass ''' f.close() #-------------------------------------------------------------------------# def getccdinfo(obs, path_obs): ''' GET CCD INFORMATION (GAIN, PIXEL SCALE, FOV) gain, pixscale, fov = getccdinfo(obs, path_obs) INPUT: path_obs = '/home/sonic/Research/table/obs.txt' OUTPUT: gain, pixscale, fov ''' obstbl = ascii.read(path_obs) indx_obs = np.where(obstbl['obs']==obs) outdict = dict() gain = obstbl[indx_obs]['gain'][0] pixscale = obstbl[indx_obs]['pixelscale'][0] * u.arcsecond / u.pixel fov = obstbl[indx_obs]['fov'][0] * u.deg * u.deg rdnoise = obstbl[indx_obs]['RDnoise'][0] outdict['obs'] = obs outdict['gain'] = gain * u.electron / u.second outdict['pixelscale'] = pixscale outdict['fov'] = fov outdict['rdnoise'] = rdnoise return outdict #-------------------------------------------------------------------------# ''' def wcsremap(inim, tempim, outim='wr.fits'): # outim = '{}/wr{}'.format(os.path.dirname(inim), os.path.basename(inim)) # com = 'wcsremap -template {} -source {} -outIm {}'.format(inim, tempim, outim) # com = 'wcsremap -template {} -source {} -outIm {}'.format(tempim, inim, outim) com = f'wcsremap -template {tempim} -source {inim} -outIm {outim}'.format(tempim, inim, outim) print(f"""INPUT IMAGE\t: {inim} TEMP IMAGE\t: {tempim} OUTPUT IMAGE\t: {outim}""") print(com) os.system(com) ''' #-------------------------------------------------------------------------# def hotpants(inim, refim, iu=60000, tu=6000000000, tl=-100000): if os.path.dirname(inim) == '': interval = './' else: interval = '/' # outim = os.path.dirname(inim)+interval+'hd'+os.path.basename(inim) outim = '{}{}hd{}'.format(os.path.dirname(inim), interval, os.path.basename(inim)) # convfile = os.path.dirname(inim)+interval+'hc'+os.path.basename(inim) convfile = '{}{}hc{}'.format(os.path.dirname(inim), interval, os.path.basename(inim)) com = 'hotpants -c t -n i -iu {} -tu {} -tl {} -v 0 -inim {} -tmplim {} -outim {} -oci {}'.format(iu, tu, tl, inim, refim, outim, convfile) print(com) os.system(com) return outim #-------------------------------------------------------------------------# def epochimcomb(imlist, outim='imcomb.fits', path_save='.'): ''' epochimcomb(imlist, outim='imcomb.fits', path_save='.') imlist = glob.glob('Calib*20181229*.fits') epochimcomb(imlist) ''' #------------------------------------------------------------ import numpy as np from astropy.nddata import fits_ccddata_reader, fits_ccddata_writer # from astropy.nddata import CCDData from matplotlib import pyplot as plt from ccdproc import Combiner from astropy.time import Time from astropy.io import fits from imsng import phot #------------------------------------------------------------ # EXTRACT INFO. FROM THE FIRST IMAGE #------------------------------------------------------------ data0 = fits_ccddata_reader(imlist[0], unit='adu') meta0 = data0.meta wcs0 = data0.wcs part = imlist[0].split('-') #------------------------------------------------------------ # IMAGE COMBINE #------------------------------------------------------------ comlist = [] dateobslist = [] explist = [] print('{} IMAGE COMBINE START\n'.format(len(imlist))) for inim in imlist: print(inim) hdr = fits.getheader(inim) dateobslist.append(Time(hdr['DATE-OBS'], format='isot').jd) explist.append(hdr['EXPTIME']) comlist.append(fits_ccddata_reader(inim, unit='adu')) dateobs = Time(np.mean(dateobslist), format='jd') totexp = np.sum(explist) try: comim = '{}-{}-{}-{}-{}-{}-{}-com.fits'.format(part[0], part[1], part[2], dateobs.isot[0:10].replace('-', ''), dateobs.isot[11:19].replace(':', ''), part[5], int(totexp)) except: print('IMAGE NAME FORMAT IS NOT Calib-... .fits.') comim = outim c = Combiner(comlist) cdata = c.median_combine() cdata.meta = meta0 cdata.wcs = wcs0 print('OUTPUT IMAGE :\t{}\n'.format(comim)) fits_ccddata_writer(cdata, path_save+'/'+comim) #------------------------------------------------------------ phot.puthdr(comim, 'TOTEXP', totexp, hdrcomment='Total exposure time in seconds') phot.puthdr(comim, 'JD', dateobs.jd, hdrcomment='Center Julian Date at start of exposure') phot.puthdr(comim, 'MJD', dateobs.mjd, hdrcomment='Center Modified Julian Date at start of exposure') phot.puthdr(comim, 'DATE-OBS', dateobs.isot, hdrcomment='YYYY-MM-DDThh:mm:ss observation start, UT') phot.puthdr(comim, 'NCOMBINE', len(imlist), hdrcomment='THE NUMBER OF COMBINED IMAGES') for i, inim in enumerate(imlist): phot.puthdr(comim, 'COMBINE{}'.format(i+1), inim, hdrcomment='{} COMBINED IMAGE'.format(i+1)) print('DONE') return comim #------------------------------------------------------------ def combname(imlist): import numpy as np from astropy.time import Time from astropy.io import fits #------------------------------------------------------------ # EXTRACT INFO. FROM THE FIRST IMAGE #------------------------------------------------------------ part = imlist[0].split('-') #------------------------------------------------------------ # IMAGE COMBINE #------------------------------------------------------------ comlist = [] dateobslist = [] explist = [] for inim in imlist: # print(inim) hdr = fits.getheader(inim) dateobslist.append(Time(hdr['DATE-OBS'], format='isot').jd) explist.append(hdr['EXPTIME']) dateobs = Time(np.mean(dateobslist), format='jd') totexp = np.sum(explist) comim = '{}-{}-{}-{}-{}-{}-{}-com.fits'.format(part[0], part[1], part[2], dateobs.isot[0:10].replace('-', ''), dateobs.isot[11:19].replace(':', ''), part[5], int(totexp)) return comim, hdr, dateobs, totexp #------------------------------------------------------------ def swarpcomb(imlist, listname='obj.list', path_save='.', path_obs = '/home/sonic/Research/table'): import os, glob import numpy as np from imsng import tool, phot ''' imlist = glob.glob('Calib*.fits') path_save = '.' path_obs = '/home/sonic/Research/table' listname = 'obj.list' ''' # imlist = glob.glob(imkey); imlist.sort() f = open(listname, 'w') for inim in imlist: f.write(inim+'\n') # print(inim) f.close() comim, hdr, dateobs, totexp = tool.combname(imlist) part = comim.split('-') gain, pixscale, fov = tool.getccdinfo(part[1], path_obs) conf = 'default.swarp' os.system('swarp -d > {}/{}'.format(path_save, conf)) com = 'swarp @{} -c {} -IMAGEOUT_NAME {} -COMBINE_TYPE MEDIAN -RESAMPLE N -PIXEL_SCALE {} -GAIN_DEFAULT {} -SUBTRACT_BACK Y'.format(listname, conf, comim, pixscale, gain) print(com) os.system(com) phot.puthdr(comim, 'OBJECT', hdr['OBJECT'], hdrcomment='OBJECT') phot.puthdr(comim, 'TOTEXP', totexp, hdrcomment='Total exposure time in seconds') phot.puthdr(comim, 'JD', dateobs.jd, hdrcomment='Center Julian Date at start of exposure') phot.puthdr(comim, 'MJD', dateobs.mjd, hdrcomment='Center Modified Julian Date at start of exposure') phot.puthdr(comim, 'DATE-OBS', dateobs.isot, hdrcomment='YYYY-MM-DDThh:mm:ss observation start, UT') phot.puthdr(comim, 'NCOMBINE', len(imlist), hdrcomment='THE NUMBER OF COMBINED IMAGES') for i, inim in enumerate(imlist): phot.puthdr(comim, 'COMBINE{}'.format(i+1), inim, hdrcomment='{} COMBINED IMAGE'.format(i+1)) os.system('rm coadd.weight.fits default.swarp obj.list swarp.xml') return comim #------------------------------------------------------------ def trim(inim, position, size, outim='trim.fits'): # Load the image and the WCS hdu = fits.open(inim)[0] wcs = WCS(hdu.header) # Make the cutout, including the WCS cutout = Cutout2D(hdu.data, position=position, size=size, wcs=wcs) # Put the cutout image in the FITS HDU hdu.data = cutout.data # Update the FITS header with the cutout WCS hdu.header.update(cutout.wcs.to_header()) # Write the cutout to a new FITS file hdu.writeto(outim, overwrite=True) #------------------------------------------------------------ def calc_app(mag, magerr, gwdist0, gwdiststd0, gwdist1, gwdiststd1): import numpy as np app = mag+5*np.log10(gwdist1/gwdist0) apperr = np.sqrt( (magerr)**2 + ((5*gwdiststd1)/(np.log(5)*gwdist1))**2 + ((5*gwdiststd0)/(np.log(5)*gwdist0))**2 ) return app, apperr #------------------------------------------------------------ def abs2app(mag, magerr, gwdist, gwdiststd): import numpy as np app = 5*np.log10(gwdist)-5+mag apperr = 5*gwdiststd/(gwdist*np.log(10)) return app, apperr #------------------------------------------------------------ def z2dist(z): from astropy import units as u from astropy import constants as const import numpy as np H0 = 70 * u.km / (u.second * u.Mpc) c = const.c.to(u.km / u.second) d = c*z/H0 return d #------------------------------------------------------------ def limitmag(ul0, t0, t): import numpy as np ul = ul0 -(-2.5*np.log10(np.sqrt(t/t0))) return ul #------------------------------------------------------------ def exptime4limitmag(ul0, ul, t0): import numpy as np t = t0*(10.**(2*((ul-ul0)/2.5))) return t #------------------------------------------------------------ def ToO_request(ul0, m0, n, nsigma=5): ''' ul0 : base n sigma depth m0 : target magnitude n : n*exposure time nsigma : ? sigma depth (default 5) return depth, target magnitude error ''' import numpy as np ul = ul0+2.5*np.log10(np.sqrt(n)) dul = ul-m0 mer = 1./(nsigma*(dul*(100**0.2))) return round(ul, 3), round(mer, 3) #------------------------------------------------------------ def sqsum(a, b): ''' SQUARE SUM USEFUL TO CALC. ERROR ''' return np.sqrt(a**2.+b**2.) #------------------------------------------------------------ def puthdr(inim, hdrkey, hdrval, hdrcomment=''): from astropy.io import fits hdr = fits.getheader(inim) fits.setval(inim, hdrkey, value=hdrval, comment=hdrcomment) comment = inim+'\t'+'('+hdrkey+'\t'+str(hdrval)+')' #------------------------------------------------------------ def gregistering(images_to_align, ref_image): import os # import sys, glob import alipy # from multiprocessing import Process, Pool # import multiprocessing as mp import time starttime = time.time() if ref_image == '': ref_image = images_to_align[0] identifications = alipy.ident.run(ref_image, images_to_align, visu=False) for id in identifications: # list of the same length as images_to_align. if id.ok == True: # i.e., if it worked print("%20s : %20s, flux ratio %.2f" % (id.ukn.name, id.trans, id.medfluxratio)) else: print("%20s : no transformation found !" % (id.ukn.name)) outputshape = alipy.align.shape(ref_image) for id in identifications: if id.ok == True: params_align = dict( filepath = id.ukn.filepath, uknstarlist = id.uknmatchstars, refstarlist = id.refmatchstars, shape = alipy.align.shape(ref_image), outdir = os.path.dirname(ref_image), makepng = False) alipy.align.irafalign(**params_align) deltime = time.time() - starttime print('All PROCESS IS DONE.\t('+str(round(deltime, 1))+' sec)') #-------------------------------------------------------------------------# def wcsremap(inim, refim, outim, path_com='/data3/wcsremap/wcsremap-1.0.1/wcsremap'): import os com = f'{path_com} -template {refim} -source {inim} -outim {outim}' print(com) os.system(com) return outim #-------------------------------------------------------------------------# def imcombine_routine(images_to_align, ref_image): ''' path_data = '/data3/paek/factory/doao/20201209-1m-IMSNG' images_to_align = sorted(glob.glob('/data3/paek/factory/doao/20201209-1m-IMSNG/Calib-DOAO*-R-60.fits')) ref_image = '/data3/paek/factory/doao/20201209-1m-IMSNG/Calib-DOAO-NGC6946-20201209-094720-R-60.fits' ''' from pyraf import iraf from imsng import tool_tbd import glob, os from astropy.io import fits from astropy.time import Time import numpy as np images_to_align.remove(ref_image) print('Reference image\t: {}'.format(ref_image)) print('Input images\t:') for inim in images_to_align: print(inim) hdr = fits.getheader(ref_image) obs = os.path.basename(ref_image).split('-')[1] obj = os.path.basename(ref_image).split('-')[2] # Image align print('#\tIMAGE REGISTERING') tool_tbd.gregistering(images_to_align, ref_image) # for inim in images_to_align: tool_tbd.gregistering(inim, ref_image) comlist = [ref_image] for inim in images_to_align: comlist.append(outim_gregistering(inim)) jdlist = [] exptimes = [] print('Summon {}/imcombine.list'.format(os.path.dirname(ref_image))) f = open('{}/imcombine.list'.format(os.path.dirname(ref_image)), 'w') for i, comin in enumerate(comlist): f.write('{}\n'.format(comin)) hdr_tmp = fits.getheader(comin) jdlist.append(float(hdr_tmp['jd'])) exptimes.append(float(hdr_tmp['exptime'])) hdr['IMCOMB{}'.format(i)] = comin f.close() exptime = np.sum(exptimes) jd = Time(np.mean(jdlist), format='jd') dateobs = jd.isot utdate = dateobs.split('T')[0].replace('-', '') uttime = dateobs.split('T')[1].replace(':', '')[:6] outim = '{}/Calib-{}-{}-{}-{}-{}-{}.com.fits'.format(os.path.dirname(ref_image), obs, obj, utdate, uttime, hdr['filter'], int(exptime)) param_imcomb = dict( input="@{}/imcombine.list".format(os.path.dirname(ref_image)), output=outim, combine="median", project="no", reject="none", scale="none", zero="mode", ) print('#\t{} IMAGE IMCOMBINE'.format(len(comlist))) iraf.imcombine(**param_imcomb) tool_tbd.puthdr(outim, 'DATE-OBS', dateobs, hdrcomment='YYYY-MM-DDThh:mm:ss observation start, UT') tool_tbd.puthdr(outim, 'JD', jd.value, hdrcomment='Julian Date at start of exposure') tool_tbd.puthdr(outim, 'EXPTIME', exptime, hdrcomment='Exposure time in seconds') # for i, comin in enumerate(comlist): tool_tbd.puthdr(outim, 'IMCOMB{}'.format(i), os.path.basename(comin), hdrcomment='Combined image {}'.format(i)) return outim #-------------------------------------------------------------------------# def outim_gregistering(inim): part = os.path.splitext(inim) outim = '{}_gregister{}'.format(part[0], part[1]) return outim #-------------------------------------------------------------------------# def subtraction_routine(inim, refim): ''' obs = 'LOAO' path_refim = '/data3/paek/factory/ref_frames/{}'.format(obs) inim = '/data3/paek/factory/test/Calib-LOAO-NGC6946-20201213-014607-R-180-com.fits' obj = 'NGC6946' filte = 'R' ''' # inseeing = fits.getheader(inim)['seeing'] # refseeing = fits.getheader(refim)['seeing'] # if inseeing > refseeing: # images_to_align = [inim] # ref_image = refim # else: # images_to_align = [refim] # ref_image = inim gregistering([refim], inim) # Registered reference image grefim = '{}/{}'.format(os.path.dirname(inim), os.path.basename(outim_gregistering(refim))) subim = hotpants(inim, grefim, iu=60000, tu=6000000000, tl=-100000) ds9com = 'ds9 {} {} {}&'.format(inim, grefim, subim) # os.system(ds9com) return subim, ds9com #-------------------------------------------------------------------------# def subtraction_routine2(inim, refim): ''' obs = 'LOAO' path_refim = '/data3/paek/factory/ref_frames/{}'.format(obs) inim = '/data3/paek/factory/test/Calib-LOAO-NGC6946-20201213-014607-R-180-com.fits' obj = 'NGC6946' filte = 'R' ''' # inseeing = fits.getheader(inim)['seeing'] # refseeing = fits.getheader(refim)['seeing'] # if inseeing > refseeing: # images_to_align = [inim] # ref_image = refim # else: # images_to_align = [refim] # ref_image = inim outim = refim.replace('.fits', '.wcsremap.fits') wcsremap(refim, inim, outim) # Registered reference image subim = hotpants(inim, outim, iu=60000, tu=6000000000, tl=-100000) ds9com = 'ds9 {} {} {}&'.format(inim, outim, subim) # os.system(ds9com) return outim, ds9com #-------------------------------------------------------------------------# def stampimage(inim, x, y, name='IMSNG_transient', outname='./IMSNG_transient.png'): import matplotlib.pyplot as plt from astropy.io import fits from matplotlib.colors import LogNorm from matplotlib.patches import Circle from astropy.visualization import ZScaleInterval, LinearStretch from astropy.wcs import WCS from astropy.visualization import (MinMaxInterval, SqrtStretch, ImageNormalize) # from ligo.skymap.plot.marker import reticle ''' PLOT IMAGE AND SHOW DESINATED OBJECTS rahms = '06:16:39.2560' decdms = '-21:29:59.370' name = 'J{}{}'.format(rahms[:11].replace(':','').replace('.',''), decdms[:11].replace(':','').replace('.','')) imsngname = 'IMSNG {}'.format(name) # input # inim = '/data3/IMSNG/IMSNGgalaxies/NGC2207/LOAO/R/Calib-LOAO-NGC2207-20201216-072752-R-600-com.fits' inim = '/data1/Test/Calib-LOAO-NGC2207-20201216-072752-R-600-com.fits' outname = '{}/test.png'.format(os.path.dirname(inim)) txt = imsngname # 6:16:39.2560, -21:29:59.370 # 94.16356667, -21.499825 # 1448.5771, 1631.7396 ''' size = 100 # x, y = round(1448.5771), round(1631.7396) x1, x2 = x-size, x+size y1, y2 = y-size, y+size # image information data0, hdr = fits.getdata(inim, header=True) # data0[y1:y2, x1:x2] data = data0[y1:y2, x1:x2] # wcs = WCS(hdr) # plot plt.close('all') plt.rc('font', family='serif') fig = plt.figure() x = 1080 / 4 / fig.dpi y = 1080 / 4 / fig.dpi fig.set_figwidth(x) fig.set_figheight(y) ax = fig.add_subplot(111) norm_zscale = ImageNormalize(data, interval=ZScaleInterval(), stretch=LinearStretch()) im = ax.imshow(data, cmap='gray', origin='lower', norm=norm_zscale) # Marker and text --> not use # marker = reticle( # # inner=50.0, outer=150.0, # which='lt', angle=180 # ) # ax.plot(round(x), round(y), markersize=100, markeredgewidth=4, marker=marker, color='yellow') # ax.text(x, y+size/10, str(txt), color='gold', fontsize=5) ax.set_title(name, fontsize=10) ax.grid('both', linestyle='--', color='white', alpha=0.5) ax.set_xlabel('x [pix]', fontsize=12) ax.set_ylabel('y [pix]', fontsize=12) plt.tight_layout() plt.minorticks_on() fig.savefig(outname, bbox_inches='tight', overwrite=True) #-------------------------------------------------------------------------# def dict2table(dictionary, path_save): print('Dictionary to table @{}'.format(path_save)) keys = list(dictionary.keys()) f = open(path_save, 'w') f.write('{}\t{}\n'.format('key', 'value')) for key in keys: f.write('{}\t{}\n'.format(key, dictionary[key])) f.close() #-------------------------------------------------------------------------# def imsng_name_correction(inim, alltbl, radius): ''' path_alltarget = '/home/paek/table/alltarget.dat' alltbl = ascii.read(path_alltarget) inim = '/data3/IMSNG/IMSNGgalaxies/NGC0772/CBNUO/R/Calib-CBNUO-NGC0772-20201210-144734-R-180.fits' ''' import os from astropy.coordinates import SkyCoord import astropy.io.ascii as ascii from astropy import units as u from astropy.io import fits from astropy.wcs import WCS from imsng import calib # center x, y --> ra, dec w = WCS(inim) hdr = fits.getheader(inim) xcent, ycent= hdr['NAXIS1']/2., hdr['NAXIS2']/2. ra, dec = w.all_pix2world(xcent, ycent, 1) # matching c = SkyCoord(ra, dec, frame='icrs', unit='deg') c_all = SkyCoord(alltbl['ra'], alltbl['dec'], unit=(u.hourangle, u.deg)) indx, sep, _ = c.match_to_catalog_sky(c_all) # object (header, closest matched one) obj = hdr['object'] robj = alltbl['obj'][indx] if (obj != robj) & (sep < radius): print('Image OBJECT header\t\t:{}'.format(hdr['object'])) print('Real OBJECT field\t\t:{}'.format(robj)) print('Separation {} and {}\t:{}'.format(obj, robj, sep.to(u.arcmin))) puthdr(inim, 'OBJECT', robj) # calib.changehdr(inim, 'OBJECT', robj) # file name change # newim = inim.replace(obj, robj) # mvcom = 'mv {} {}'.format(inim, newim) # print(mvcom) # os.system(mvcom) else: print('Object header is correct.') pass return robj, sep #-------------------------------------------------------------------------# def SE_seeing(inim, obs, path_obs, path_config, seeing_assume, frac=0.68, clean=True): # import os # import numpy as np # from imsng import tool_tbd # from imsng import phot_tbd # from astropy import units as u # from astropy.io import fits # from astropy.io import ascii # import matplotlib.pyplot as plt # print('Quick seeing measurement with SE') ''' inim = '/data3/paek/factory/loao/2020_1215/afzobj.NGC2207.20201216.0211.fits' path_config = '/home/paek/config' obs = 'LOAO' path_obs = '/home/paek/table/obs.dat' seeing_assume = 3 * u.arcsecond frac = 0.68 ''' #------------------------------------------------------------ # Input #------------------------------------------------------------ hdr = fits.getheader(inim) a = hdr['naxis1']/2. b = hdr['naxis2']/2. #------------------------------------------------------------ # CCD information obsdict = getccdinfo(obs, path_obs) gain = obsdict['gain'] pixscale = obsdict['pixelscale'] fov = obsdict['fov'] # rdnoise = obsdict['readoutnoise'] #------------------------------------------------------------ # OUTPUT NAMES fmt0 = '.fits' fmt1 = '.fit' fmt2 = '.fts' if fmt0 in inim: cat = '{}/{}'.format(os.path.dirname(inim), os.path.basename(inim).replace(fmt0, '.cat')) elif fmt1 in inim: cat = '{}/{}'.format(os.path.dirname(inim), os.path.basename(inim).replace(fmt1, '.cat')) elif fmt2 in inim: cat = '{}/{}'.format(os.path.dirname(inim), os.path.basename(inim).replace(fmt2, '.cat')) # cat = '{}/{}'.format(os.path.dirname(inim), os.path.basename(inim).replace('.fits', '.cat')) # SE configurations param = '{}/simple.param'.format(path_config) conv = '{}/simple.conv'.format(path_config) nnw = '{}/simple.nnw'.format(path_config) conf = '{}/simple.sex'.format(path_config) # SE parameters param_insex = dict( #------------------------------ # CATALOG #------------------------------ CATALOG_NAME = cat, #------------------------------ # CONFIG FILES #------------------------------ CONF_NAME = conf, PARAMETERS_NAME = param, FILTER_NAME = conv, STARNNW_NAME = nnw, #------------------------------ # PHOTOMETRY #------------------------------ GAIN = str(gain.value), PIXEL_SCALE = str(pixscale.value), #------------------------------ # STAR/GALAXY SEPARATION #------------------------------ SEEING_FWHM = str(seeing_assume.value), ) com = phot_tbd.sexcom(inim, param_insex) os.system(com) rawtbl = ascii.read(cat) # Point source selection indx_sel = np.where( (rawtbl['FLAGS'] == 0) & (sqsum((rawtbl['X_IMAGE']-a)/a, (rawtbl['Y_IMAGE']-b)/b) < frac) & (rawtbl['CLASS_STAR']>0.9) & (rawtbl['FWHM_WORLD']>0.0) ) seltbl = rawtbl[indx_sel] # Seeing in arcsecond/pixel as median value seeing = np.median(seltbl['FWHM_WORLD'].to(u.arcsecond)) peeing = np.median(seltbl['FWHM_IMAGE']) * u.pix # Header update try: puthdr(inim, hdrkey='SEEING', hdrval=seeing.value, hdrcomment='SEEING [arcsec]') puthdr(inim, hdrkey='PEEING', hdrval=peeing.value, hdrcomment='PEEING [pix]') except: print('try/except: Too low stars to measure seeing. Use 3.0 arcsecond seeing.') puthdr(inim, hdrkey='SEEING', hdrval=3.0, hdrcomment='SEEING [arcsec]') puthdr(inim, hdrkey='PEEING', hdrval=(3.0*u.arcsecond*pixscale).value, hdrcomment='PEEING [pix]') # Clean output catalog if clean == True: rmcom = 'rm {}'.format(cat) # print(rmcom) os.system(rmcom) else: pass return seeing, peeing #------------------------------------------------------------ def cr_removal(inim, gain, rdnoise): ''' inim obs = 'LOAO' gain = 2.68 rdnoise = 4.84 ''' import os from astroscrappy import detect_cosmics from astropy.io import fits import time data, hdr = fits.getdata(inim, header=True) param_cr = dict( indat=data, sigclip=4.0, sigfrac=0.3, objlim=5.0, gain=gain, readnoise=rdnoise, pssl=0.0, niter=4, sepmed=True, cleantype='meanmask', fsmode='median', psfmodel='gauss', psffwhm=hdr['seeing'], # Default inmask=None, satlevel=65536, psfsize=7, psfk=None, psfbeta=4.765, verbose=False ) time_st = time.time() _, crdata = detect_cosmics(**param_cr) fits.writeto('{}/cr{}'.format(os.path.dirname(inim), os.path.basename(inim)), crdata, hdr, overwrite=True) puthdr('{}/cr{}'.format(os.path.dirname(inim), hdrkey='history', hdrval='Cosmic-rays were removed with the LACosmic {}'.format(time.strftime("%c")), hdrcomment='')) time_delta = time.time() - time_st print('Remove cosmic-ray for {} [{} sec]'.format(inim, round(time_delta, 3))) #------------------------------------------------------------ def npstr2str(arr): outlist = [] for i in arr: outlist.append(str(i)) outarr = np.array(outlist) # return outarr return outlist #------------------------------------------------------------ def obs_summary(filte, ic_cal_phot, ic_com_phot, path_save): ''' # Observation summary plots # 2020.12.26 Created by <NAME> filte = 'R' ic_cal_phot, ic_com_phot path_save = path_data ''' #============================================================ # import os, glob import numpy as np import matplotlib.pyplot as plt # from astropy.table import Table, vstack # from astropy.io import ascii # from astropy.io import fits from astropy.time import Time # from astropy.coordinates import SkyCoord # from astropy import units as u from astropy.wcs import WCS # from astropy import constants as const # from imsng import phot, tool from matplotlib.gridspec import GridSpec # import time #============================================================ # Input #============================================================ # filte = 'R' # path_save = path_data #============================================================ # USER SETTING #============================================================ # PATH #------------------------------------------------------------ ic_cl_pht = ic_cal_phot.filter(filter=filte) ic_cl_pht.summary.sort('jd') cltbl = ic_cl_pht.summary[ (ic_cl_pht.summary['jd'].mask == False) & (ic_cl_pht.summary['ul5_1'].mask == False) & (ic_cl_pht.summary['seeing'].mask == False) & (ic_cl_pht.summary['skyval'].mask == False) & (ic_cl_pht.summary['skysig'].mask == False) ] ic_cm_pht = ic_com_phot.filter(filter=filte) ic_cm_pht.summary.sort('jd') cmtbl = ic_cm_pht.summary[ (ic_cm_pht.summary['jd'].mask == False) & (ic_cm_pht.summary['ul5_1'].mask == False) & (ic_cm_pht.summary['seeing'].mask == False) & (ic_cm_pht.summary['skyval'].mask == False) & (ic_cm_pht.summary['skysig'].mask == False) ] #------------------------------------------------------------ # t0 = Time('2020-12-05T12:14:04', format='isot', scale='utc') time_t0 = Time(np.min(cltbl['jd']), format='jd') t0 = time_t0.jd cmtbl['delt'] = cmtbl['jd'] - t0 cltbl['delt'] = cltbl['jd'] - t0 delt_com = np.copy(cmtbl['delt']).astype('float64') delt_cal = np.copy(cltbl['delt']).astype('float64') totalt_obs = 24*(np.max(delt_cal) - np.min(delt_cal)) #============================================================ # PLOT #------------------------------------------------------------ plt.close('all') plt.rc('font', family='serif') fig = plt.figure() x = 1920 / 2 / fig.dpi y = 1080 / fig.dpi fig.set_figwidth(x) fig.set_figheight(y) #------------------------------------------------------------ # GRID #------------------------------------------------------------ ncols = 3 nrows = 5 grid = GridSpec(nrows, ncols, left=0.1, bottom=0.15, right=0.94, top=0.94, wspace=3, hspace=0.1) ax1 = fig.add_subplot(grid[0:1, 0:ncols]) ax2 = fig.add_subplot(grid[1:2, 0:ncols]) ax3 = fig.add_subplot(grid[2:3, 0:ncols]) ax4 = fig.add_subplot(grid[3:4, 0:ncols]) ax5 = fig.add_subplot(grid[4:nrows, 0:ncols]) #------------------------------------------------------------ param_plot = dict( # fmt='o-', ms=5, marker='o', mec='k', mfc='None', color='silver', # alpha=0.75, alpha=0.5, ) param_plot_com = dict( # fmt='o-', ms=10, marker='v', mec='k', mfc='None', color='silver', alpha=0.75, ) #------------------------------------------------------------ # Depth #------------------------------------------------------------ depth = np.copy(cltbl['ul5_1']).astype('float64') depth_com = np.copy(cmtbl['ul5_1']).astype('float64') ax1.plot(delt_cal, depth, **param_plot)#, label=r'5$\sigma$ depth') ax1.axhline(y=np.median(depth), color='dodgerblue', alpha=0.5, linestyle='--', label='Single = {}'.format(round(np.median(depth), 1))) ax1.plot(delt_com, depth_com, **param_plot_com)#, label=r'5$\sigma$ depth') ax1.axhline(y=np.median(depth_com), color='tomato', linestyle='--', label='Combined = {}'.format(round(np.median(depth_com), 1))) #------------------------------------------------------------ # Seeing #------------------------------------------------------------ seeing = np.copy(cltbl['seeing']).astype('float64') # ax2.plot(delt_cal, seeing, 'o-')#, label=r'5$\sigma$ depth') ax2.plot(delt_cal, seeing, **param_plot)#, label=r'5$\sigma$ depth') ax2.axhline(y=np.median(seeing), color='dodgerblue', alpha=0.5, linestyle='--', label='Median = {}'.format(round(
np.median(seeing)
numpy.median
#!/usr/bin/env python3 # -*- coding: utf-8 -*- import hdf5storage import os import numpy as np # This instantiates local generators for decoupled randomness from numpy.random import Generator, PCG64 # Perform a single-shot decode, while passing through the file system def decode_matlab_file(eng, code_type, input_llr, ref_bits, num_snr, num_codewords, mode='soft'): # Static path # !!!: This is the full path of the decoder .m function decoder_path = 'InsertPathToMatlabDecoder.m' # Draw a random integer (independent of global seed) rg = Generator(PCG64()) random_idx = np.round(1e10 * rg.standard_normal()).astype(np.int) # Filenames filename_in = 'scratch/in%d.mat' % random_idx filename_out = 'scratch/out%d.mat' % random_idx # Copy input_llr = np.copy(input_llr) # Restore and reshape if mode == 'soft': input_llr = 2 * np.arctanh(input_llr) input_llr = np.reshape(input_llr, (num_snr, num_codewords, -1)) # Write to input file hdf5storage.savemat(filename_in, {'llr_input': input_llr, 'code_type': code_type}) # Create input dictionary args = {'filename_in': filename_in, 'filename_out': filename_out} # Call decoder _ = eng.run_func(decoder_path, args) # Read output file contents = hdf5storage.loadmat(filename_out) rec_bits = contents['bits_out'] # Convert to arrays rec_bits = np.asarray(rec_bits) # Compute error rates bler = np.mean(
np.any(rec_bits != ref_bits, axis=-1)
numpy.any
import numpy as np import matplotlib.pyplot as plt import matplotlib.cm as cm from scipy.stats import norm import pandas as pd from tqdm import tqdm class BlackScholes__Pricing_Simulations: def __init__(self, call, stock, strike, maturity, interest, volatility, dividend, Npath, mu): self.call = call self.stock = stock self.strike = strike self.maturity = maturity self.interest = interest self.volatility = volatility self.dividend = dividend self.dt = 1/360 self.Npath = Npath self.mu = mu self.d1 = (self.volatility * np.sqrt(self.maturity)) ** (-1) * ( np.log(self.stock / self.strike) + ( self.interest - self.dividend + self.volatility ** 2 / 2) * self.maturity) self.d2 = self.d1 - self.volatility * np.sqrt(self.maturity) def price(self): if self.call: return np.exp(-self.dividend * self.maturity) * norm.cdf(self.d1) * self.stock - norm.cdf(self.d2) * self.strike * np.exp(-self.interest * self.maturity) else: return norm.cdf(-self.d2) * self.strike * np.exp(-self.interest * self.maturity) - norm.cdf(-self.d1) * self.stock * np.exp(-self.dividend * self.maturity) def delta(self): if self.call: return norm.cdf(self.d1) * np.exp(-self.dividend * self.maturity) else: return (norm.cdf(self.d1) - 1) * np.exp(-self.dividend * self.maturity) def gamma(self): return np.exp(-self.dividend * self.maturity) * norm.pdf(self.d1) / ( self.stock * self.volatility * np.sqrt(self.maturity)) def vega(self): return self.stock * norm.pdf(self.d1) * np.sqrt(self.maturity) * np.exp(-self.dividend * self.maturity) def theta(self): if self.call: return -np.exp(-self.dividend * self.maturity) * (self.stock * norm.pdf(self.d1) * self.volatility) / ( 2 * np.sqrt(self.maturity)) - self.interest * self.strike * np.exp( -self.interest * np.sqrt(self.maturity)) * norm.cdf(self.d2) + self.dividend * self.stock * np.exp(-self.dividend * self.maturity) * norm.cdf(self.d1) else: return -np.exp(-self.dividend * self.maturity) * (self.stock * norm.pdf(self.d1) * self.volatility) / ( 2 * np.sqrt(self.maturity)) + self.interest * self.strike * np.exp( -self.interest * np.sqrt(self.maturity)) * norm.cdf(-self.d2) - self.dividend * self.stock * np.exp( -self.dividend * self.maturity) * norm.cdf(-self.d1) def rho(self): if self.call: return self.strike * self.maturity * np.exp(-self.interest * self.maturity) * norm.cdf(self.d2) else: return -self.strike * self.maturity * np.exp(-self.interest * self.maturity) * norm.cdf(-self.d2) def monte_carlo_bs(self): St_P = [self.stock] * self.Npath St_Q = [self.stock] * self.Npath for t in range(0, int(self.tau/self.dt)): rand = np.random.normal(0, 1, [1, self.Npath]) St_P *= ( np.exp ( self.dt * ( self.mu + self.interest - 0.5 * self.volatility ** 2) + self.volatility * np.sqrt(self.dt)* rand)) St_Q *= ( np.exp ( self.dt * ( self.mu - 0.5 * self.volatility ** 2) + self.volatility *
np.sqrt(self.dt)
numpy.sqrt
# Copyright (c) 2020 Graphcore Ltd. All rights reserved. import numpy as np import popart import torch from op_tester import op_tester def test_cumsum_1d(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, axis.item(0)) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_1d_exclusive(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) expected = np.array([0., 1., 3., 6., 10.]).astype(np.float32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], exclusive=1) builder.addOutputTensor(o) return [o] def reference(ref_data): out = torch.tensor(expected) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_1d_reverse(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], reverse=1) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) tx = torch.flip(tx, [0]) out = torch.cumsum(tx, 0) out = torch.flip(out, [0]) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_1d_reverse_exclusive(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) expected = np.array([14., 12., 9., 5., 0.]).astype(np.float32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], reverse=1, exclusive=1) builder.addOutputTensor(o) return [o] def reference(ref_data): out = torch.tensor(expected) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_2d_axis_0(op_tester): x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32).reshape((2, 3)) axis = np.array(0).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, axis.item(0)) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_2d_axis_1(op_tester): x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32).reshape((2, 3)) axis = np.array(1).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, axis.item(0)) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_2d_negative_axis(op_tester): x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32).reshape((2, 3)) axis = np.array(-1).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, axis.item(0)) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d(op_tester): a0 = np.array([[[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], [[20, 22, 24, 26, 28], [30, 32, 34, 36, 38], [40, 42, 44, 46, 48], [50, 52, 54, 56, 58]], [[60, 63, 66, 69, 72], [75, 78, 81, 84, 87], [90, 93, 96, 99, 102], [105, 108, 111, 114, 117]]]).astype(np.float32) a1 = np.array([[[0, 1, 2, 3, 4], [5, 7, 9, 11, 13], [15, 18, 21, 24, 27], [30, 34, 38, 42, 46]], [[20, 21, 22, 23, 24], [45, 47, 49, 51, 53], [75, 78, 81, 84, 87], [110, 114, 118, 122, 126]], [[40, 41, 42, 43, 44], [85, 87, 89, 91, 93], [135, 138, 141, 144, 147], [190, 194, 198, 202, 206]]]).astype(np.float32) a2 = np.array([[[0, 1, 3, 6, 10], [5, 11, 18, 26, 35], [10, 21, 33, 46, 60], [15, 31, 48, 66, 85]], [[20, 41, 63, 86, 110], [25, 51, 78, 106, 135], [30, 61, 93, 126, 160], [35, 71, 108, 146, 185]], [[40, 81, 123, 166, 210], [45, 91, 138, 186, 235], [50, 101, 153, 206, 260], [55, 111, 168, 226, 285]]]).astype(np.float32) am1 = a2 am2 = a1 am3 = a0 expected = {-3: am3, -2: am2, -1: am1, 0: a0, 1: a1, 2: a2} testAxis = np.array([-3, -2, -1, 0, 1, 2]).astype(np.int32) for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): out = torch.tensor(expected[a]) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d_v2(op_tester): testAxis = [-3, -2, -1, 0, 1, 2] for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) out = torch.cumsum(tx, a) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d_reverse(op_tester): a0 = np.array([[[60, 63, 66, 69, 72], [75, 78, 81, 84, 87], [90, 93, 96, 99, 102], [105, 108, 111, 114, 117]], [[60, 62, 64, 66, 68], [70, 72, 74, 76, 78], [80, 82, 84, 86, 88], [90, 92, 94, 96, 98]], [[40, 41, 42, 43, 44], [45, 46, 47, 48, 49], [50, 51, 52, 53, 54], [55, 56, 57, 58, 59]]]).astype(np.float32) a1 = np.array([[[30, 34, 38, 42, 46], [30, 33, 36, 39, 42], [25, 27, 29, 31, 33], [15, 16, 17, 18, 19]], [[110, 114, 118, 122, 126], [90, 93, 96, 99, 102], [65, 67, 69, 71, 73], [35, 36, 37, 38, 39]], [[190, 194, 198, 202, 206], [150, 153, 156, 159, 162], [105, 107, 109, 111, 113], [55, 56, 57, 58, 59]]]).astype(np.float32) a2 = np.array([[[10, 10, 9, 7, 4], [35, 30, 24, 17, 9], [60, 50, 39, 27, 14], [85, 70, 54, 37, 19]], [[110, 90, 69, 47, 24], [135, 110, 84, 57, 29], [160, 130, 99, 67, 34], [185, 150, 114, 77, 39]], [[210, 170, 129, 87, 44], [235, 190, 144, 97, 49], [260, 210, 159, 107, 54], [285, 230, 174, 117, 59]]]).astype(np.float32) am1 = a2 am2 = a1 am3 = a0 expected = {-3: am3, -2: am2, -1: am1, 0: a0, 1: a1, 2: a2} testAxis = np.array([-3, -2, -1, 0, 1, 2]).astype(np.int32) for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], reverse=1) builder.addOutputTensor(o) return [o] def reference(ref_data): out = torch.tensor(expected[a]) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d_reverse_v2(op_tester): testAxis = [-3, -2, -1, 0, 1, 2] for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], reverse=1) builder.addOutputTensor(o) return [o] def reference(ref_data): tx = torch.tensor(x) tx = torch.flip(tx, [a]) out = torch.cumsum(tx, a) out = torch.flip(out, [a]) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_3d_exclusive(op_tester): # Expected from tf as pytorch does not support # exclusive and reverse. a0 = np.array([[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]], [[0, 1, 2, 3, 4], [5, 6, 7, 8, 9], [10, 11, 12, 13, 14], [15, 16, 17, 18, 19]], [[20, 22, 24, 26, 28], [30, 32, 34, 36, 38], [40, 42, 44, 46, 48], [50, 52, 54, 56, 58]]]).astype(np.float32) a1 = np.array( [[[0, 0, 0, 0, 0], [0, 1, 2, 3, 4], [5, 7, 9, 11, 13], [15, 18, 21, 24, 27]], [[0, 0, 0, 0, 0], [20, 21, 22, 23, 24], [45, 47, 49, 51, 53], [75, 78, 81, 84, 87]], [[0, 0, 0, 0, 0], [40, 41, 42, 43, 44], [85, 87, 89, 91, 93], [135, 138, 141, 144, 147]]]).astype(np.float32) a2 = np.array([[[0, 0, 1, 3, 6], [0, 5, 11, 18, 26], [0, 10, 21, 33, 46], [0, 15, 31, 48, 66]], [[0, 20, 41, 63, 86], [0, 25, 51, 78, 106], [0, 30, 61, 93, 126], [0, 35, 71, 108, 146]], [[0, 40, 81, 123, 166], [0, 45, 91, 138, 186], [0, 50, 101, 153, 206], [0, 55, 111, 168, 226]]]).astype(np.float32) am1 = a2 am2 = a1 am3 = a0 expected = {-3: am3, -2: am2, -1: am1, 0: a0, 1: a1, 2: a2} testAxis = np.array([-3, -2, -1, 0, 1, 2]).astype(np.int32) for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], exclusive=1) builder.addOutputTensor(o) return [o] def reference(ref_data): out = torch.tensor(expected[a]) return [out] op_tester.run(init_builder, reference, 'infer') def test_cumsum_grad_1d(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [ o, popart.reservedGradientPrefix() + i0, popart.reservedGradientPrefix() + o, ] def reference(ref_data): tx = torch.tensor(x, requires_grad=True) out = torch.cumsum(tx, axis.item(0)) d__o = ref_data.getOutputTensorGrad(0) out.backward(torch.tensor(d__o)) return [out, tx.grad, None] op_tester.run(init_builder, reference, 'train') def test_cumsum_grad_1d_reverse(op_tester): x = np.array([1., 2., 3., 4., 5.]).astype(np.float32) axis = np.array(0).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1], reverse=1) builder.addOutputTensor(o) return [ o, popart.reservedGradientPrefix() + i0, popart.reservedGradientPrefix() + o, ] def reference(ref_data): tx = torch.tensor(x, requires_grad=True) tx = torch.flip(tx, [0]) out = torch.cumsum(tx, 0) out = torch.flip(out, [0]) d__o = ref_data.getOutputTensorGrad(0) out.backward(torch.tensor(d__o)) return [out, tx.grad, None] op_tester.run(init_builder, reference, 'train') def test_cumsum_grad_2d_axis_0(op_tester): x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32).reshape((2, 3)) axis = np.array(0).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [ o, popart.reservedGradientPrefix() + i0, popart.reservedGradientPrefix() + o, ] def reference(ref_data): tx = torch.tensor(x, requires_grad=True) out = torch.cumsum(tx, axis.item(0)) d__o = ref_data.getOutputTensorGrad(0) out.backward(torch.tensor(d__o)) return [out, tx.grad, None] op_tester.run(init_builder, reference, 'train') def test_cumsum_grad_2d_axis_1(op_tester): x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32).reshape((2, 3)) axis = np.array(1).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [ o, popart.reservedGradientPrefix() + i0, popart.reservedGradientPrefix() + o, ] def reference(ref_data): tx = torch.tensor(x, requires_grad=True) out = torch.cumsum(tx, axis.item(0)) d__o = ref_data.getOutputTensorGrad(0) out.backward(torch.tensor(d__o)) return [out, tx.grad, None] op_tester.run(init_builder, reference, 'train') def test_cumsum_grad_2d_negative_axis(op_tester): x = np.array([1., 2., 3., 4., 5., 6.]).astype(np.float32).reshape((2, 3)) axis = np.array(-1).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [ o, popart.reservedGradientPrefix() + i0, popart.reservedGradientPrefix() + o, ] def reference(ref_data): tx = torch.tensor(x, requires_grad=True) out = torch.cumsum(tx, axis.item(0)) d__o = ref_data.getOutputTensorGrad(0) out.backward(torch.tensor(d__o)) return [out, tx.grad, None] op_tester.run(init_builder, reference, 'train') def test_cumsum_grad_3d(op_tester): testAxis = [-3, -2, -1, 0, 1, 2] for a in testAxis: x = np.arange(60).astype(np.float32).reshape((3, 4, 5)) axis = np.array(a).astype(np.int32) def init_builder(builder): i0 = builder.addInputTensor(x) i1 = builder.aiOnnxOpset11.constant(axis) o = builder.aiOnnxOpset11.cumsum([i0, i1]) builder.addOutputTensor(o) return [ o, popart.reservedGradientPrefix() + i0, popart.reservedGradientPrefix() + o, ] def reference(ref_data): tx = torch.tensor(x, requires_grad=True) out = torch.cumsum(tx, a) d__o = ref_data.getOutputTensorGrad(0) out.backward(torch.tensor(d__o)) return [out, tx.grad, None] op_tester.run(init_builder, reference, 'train') def test_cumsum_grad_3d_reverse(op_tester): testAxis = [-3, -2, -1, 0, 1, 2] for a in testAxis: x =
np.arange(60)
numpy.arange
#encoding:utf-8 import pandas as pd import numpy as np import os import shutil from scipy import stats import random import sys global_TF_num = 591 def Build_Result(cell,cluster_result,path): try: shutil.rmtree(path) os.makedirs(path) except: print ("First Time") os.makedirs(path) #HiC_Value = np.load("../Temp/%s/HiC_Value.npy" %(cell)) Node2Bin = Load_dict("../Temp/%s/node2bin.npy" %(cell)) Bin2Gene = Load_dict("../Temp/%s/bin2gene.npy" %(cell)) connect = np.load("../Temp/%s/global_connect.npy" %(cell)) connect = np.triu(connect,k = 1) print ("Number of clusters = %d" % len(cluster_result)) size_list = [] print (len(cluster_result)) for i in range(len(cluster_result)): cluster = cluster_result[i] size_list.append(len(cluster)) f = open(path+str(i)+".txt","w") f.write("Source\tTarget\tWeight\tEdgeType\tSourceType\tTargetType\n") cluster = np.asarray(cluster) cluster = np.sort(cluster) cluster = cluster.astype(int) local_connect = connect[cluster,:] local_connect = local_connect[:,cluster] targetindex = np.nonzero(local_connect) for k in range(len(targetindex[0])): SourceType = Node2Bin[cluster[targetindex[0][k]]] TargetType = Node2Bin[cluster[targetindex[1][k]]] Target = Bin2Gene[TargetType] if cluster[targetindex[0][k]] < global_TF_num: Source = SourceType EdgeType = 'D' else: Source = Bin2Gene[SourceType] EdgeType = 'U' #Weight = max(HiC_Value[cluster[targetindex[0][k]],cluster[targetindex[1][k]]],HiC_Value[cluster[targetindex[1][k]],cluster[targetindex[0][k]]]) Weight = 0 f.write("%s\t%s\t%f\t%s\t%s\t%s\n" %(Source,Target,Weight,EdgeType,SourceType,TargetType)) f.close() def getlist(path): file = open(path,"r") lines = file.readlines() list1 = [] for line in lines: list1.append(line.strip()) print (list1) return list1 def Load_dict(path): return np.load(path,allow_pickle=True).item() def Motifcount_npdd(connect,TF_num): #print "Start Counting" split_point = TF_num #Only focus on pro - dna interaction pro_connect =
np.copy(connect)
numpy.copy
import argparse import math import numpy as np import xxhash class OLH(): def __init__(self, repeat=1): self.repeat = repeat self.real_dist = [] self.estimate_dist = [] def calculate_real_dist(self, X, n_user): for i in range(n_user): self.real_dist[X[i]] += 1 def perturb(self, X, n_user, p, q, g): Y = np.zeros(n_user) for i in range(n_user): v = X[i] x = (xxhash.xxh32(str(v), seed=i).intdigest() % g) y = x p_sample = np.random.random_sample() # the following two are equivalent # if p_sample > p: # while not y == x: # y = np.random.randint(0, g) if p_sample > p - q: # perturb y =
np.random.randint(0, g)
numpy.random.randint
from __future__ import absolute_import from __future__ import division from __future__ import generators from __future__ import print_function from __future__ import unicode_literals import numpy as np from oml.models.components import ProximalOracle from . import optimizer class Adam(optimizer.Optimizer): """ Kingma, Diederik, and <NAME>. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014). """ def __init__( self, model, step_size=0.001, t=0, delta=1e-8, beta1=0.9, beta2=0.999 ): optimizer.Optimizer.__init__( self, model, t=t, ) self.hyper_parameter['step_size'] = step_size self.hyper_parameter['delta'] = delta self.state['fst_moment'] = {} self.state['snd_moment'] = {} self.hyper_parameter['beta1'] = beta1 self.hyper_parameter['beta2'] = beta2 def rule(self, i, key, layer): grad = layer.param[key].grad if isinstance(layer.param[key], ProximalOracle): grad += layer.param[key].reg.sub_differential(layer.param[key].param) self.state['fst_moment'][str(i) + key] = self.state['fst_moment'].get( str(i) + key, np.zeros_like(grad) ) * self.hyper_parameter['beta1'] + grad * (1 - self.hyper_parameter['beta1']) self.state['snd_moment'][str(i) + key] = self.state['snd_moment'].get( str(i) + key, np.zeros_like(grad) ) * self.hyper_parameter['beta2'] + np.multiply(grad, grad) * (1 - self.hyper_parameter['beta2']) m = self.state['fst_moment'][str(i) + key] / (1 - self.hyper_parameter['beta1'] ** self.t) v = self.state['snd_moment'][str(i) + key] / (1 - self.hyper_parameter['beta2'] ** self.t) layer.param[key].param -= \ self.hyper_parameter['step_size'] * m / ( np.sqrt(np.sqrt(v)) + self.hyper_parameter['delta'] ) class AdMax(optimizer.Optimizer): """ Kingma, Diederik, and <NAME>. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014). """ def __init__( self, model, step_size=0.001, t=0, delta=1e-8, beta1=0.9, beta2=0.999 ): optimizer.Optimizer.__init__( self, model, t=t, ) self.hyper_parameter['step_size'] = step_size self.hyper_parameter['delta'] = delta self.state['fst_moment'] = {} self.state['snd_moment'] = {} self.hyper_parameter['beta1'] = beta1 self.hyper_parameter['beta2'] = beta2 def rule(self, i, key, layer): grad = layer.param[key].grad if isinstance(layer.param[key], ProximalOracle): grad += layer.param[key].reg.sub_differential(layer.param[key].param) self.state['fst_moment'][str(i) + key] = self.state['fst_moment'].get( str(i) + key,
np.zeros_like(grad)
numpy.zeros_like
"""Integrals over the Bose-Einstein distribution.""" import numpy as np import scipy.special as sp from darkhistory.utilities import log_1_plus_x from darkhistory.utilities import check_err from darkhistory.utilities import bernoulli as bern from darkhistory.utilities import log_series_diff from darkhistory.utilities import spence_series_diff from darkhistory.utilities import exp_expn from darkhistory.utilities import hyp2f1_func_real from scipy.integrate import quad def F2(a,b,tol=1e-10): """Definite integral of x^2/[(exp(x) - 1)] Parameters ---------- a : ndarray Lower limit of integration. Can be either 1D or 2D. b : ndarray Upper limit of integration. Can be either 1D or 2D. tol : float The relative tolerance to be reached. Default is 1e-10. Returns ------- float The resulting integral. """ # bound is fixed. If changed to another number, the exact integral from bound to infinity later in the code needs to be changed to the appropriate value. bound = 2. # Two different series to approximate this: below and above bound. def low_summand(x, k): if k == 1: return x**2/2 - x**3/6 else: return( bern(k)*x**(k+2)/(sp.factorial(k)*(k+2)) ) # B_n for n odd, n > 1 is zero. def high_summand(x, k): inf = (x == np.inf) expr = np.zeros_like(x) # gammaincc(n,x) = 1/gamma(n) * int_x^\infty t^{n-1}exp(-t) dt expr[~inf] = 2*sp.gammaincc( 3, k*np.array(x[~inf], dtype='float64') )/k**3 return expr if a.ndim == 1 and b.ndim == 2: if b.shape[1] != a.size: raise TypeError('The second dimension of b must have the same length as a') # Extend a to a 2D array. a = np.outer(np.ones(b.shape[0], dtype='float128'), a) elif a.ndim == 2 and b.ndim == 1: if a.shape[1] != b.size: raise TypeError('The second dimension of a must have the same length as b') b = np.outer(np.ones(a.shape[0], dtype='float128'), b) # if both are 1D, the rest of the code still works. integral = np.zeros(a.shape, dtype='float128') err = np.zeros_like(integral) next_term = np.zeros_like(integral) both_low = (a < bound) & (b < bound) low_high = (a < bound) & (b >= bound) both_high = (a > bound) & (b > bound) # Both low if np.any(both_low): # Initialize first term of each sum for either limit, and set integral to that value. low_sum_a = low_summand(a[both_low], 1) low_sum_b = low_summand(b[both_low], 1) integral[both_low] = low_sum_b - low_sum_a # Index of summand. k_low = 2 # Initialize error. err_max = 10*tol while err_max > tol: # Get next term. next_term[both_low] = ( low_summand(b[both_low], k_low) - low_summand(a[both_low], k_low) ) # Estimate the error err[both_low] = np.abs( np.divide( next_term[both_low], integral[both_low], out = np.zeros_like(next_term[both_low]), where = integral[both_low] != 0 ) ) # Add the next term in the series to the integral. integral [both_low] += next_term[both_low] # Increment k_low. Increment by 2 since B_n is zero for odd n > 1. k_low += 2 # Set the errors. Only propagate parts where the errors are large to the next step. err_max = np.max(err[both_low]) both_low &= (err > tol) # a low b high if np.any(low_high): # Evaluate the definite integral from a to 2, and then 2 to b. low_sum_a = low_summand(a[low_high], 1) high_sum_b = high_summand(b[low_high], 1) low_sum_bound = low_summand(bound, 1) # Exact integral from 2 to infinity. int_bound_inf = np.float128(1.417948518338124870521) # First term in integral from a to bound int_a_bound = low_sum_bound - low_sum_a # First term in integral from bound to infinity int_bound_b = int_bound_inf - high_sum_b # Initialize the integral integral[low_high] = int_a_bound + int_bound_b # Counters, error estimate k_low = 2 k_high = 2 err_max = 10*tol # Arrays for next term next_term_a_bound = np.zeros_like(integral) next_term_bound_b = np.zeros_like(integral) while err_max > tol: next_term_a_bound[low_high] = ( low_summand(bound, k_low) - low_summand(a[low_high], k_low) ) # Only need to compute the next term to correct high_sum_b, since int_bound_inf is exact. next_term_bound_b[low_high] = ( -high_summand(b[low_high], k_high) ) next_term[low_high] = ( next_term_a_bound[low_high] + next_term_bound_b[low_high] ) # Error estimate err[low_high] = np.abs( np.divide( next_term[low_high], integral[low_high], out = np.zeros_like(next_term[low_high]), where = integral[low_high] != 0 ) ) # Add the next terms to the current integral. integral[low_high] += next_term[low_high] k_low += 2 k_high += 1 err_max = np.max(err[low_high]) low_high &= (err > tol) # Both high if np.any(both_high): high_sum_a = high_summand(a[both_high], 1) high_sum_b = high_summand(b[both_high], 1) integral[both_high] = high_sum_a - high_sum_b k_high = 2 err_max = 10*tol while err_max > tol: next_term[both_high] = ( high_summand(a[both_high], k_high) - high_summand(b[both_high], k_high) ) err[both_high] = np.abs( np.divide( next_term[both_high], integral[both_high], out = np.zeros_like(next_term[both_high]), where = integral[both_high] != 0 ) ) integral[both_high] += next_term[both_high] k_high += 1 err_max = np.max(err[both_high]) both_high &= (err > tol) return integral, err def F1(a,b,epsrel=0): """Definite integral of x/[(exp(x) - 1)]. This is computed from the indefinite integral .. math:: \\int dx \\frac{x}{e^x - 1} = x \\log\\left(1 - e^{-x} \\right) - \\text{Li}_2\\left(e^{-x}\\right) = x \\log\\left(1 - e^{-x} \\right) - \\text{Sp}\\left( 1 - e^{-x} \\right) + \\frac{\\pi^2}{6} \\,, where Sp is Spence's function, as implemented in ``scipy.special.spence``. Parameters ---------- a : ndarray Lower limit of integration. Can be either 1D or 2D. b : ndarray Upper limit of integration. Can be either 1D or 2D. epsrel : float Target relative error associated with series expansion. If zero, then the error is not computed. Default is 0. If the error is larger than ``epsrel``, then the Taylor expansions used here are insufficient. Higher order terms can be added very easily, however. Returns ------- float The resulting integral. Notes ----- For a or b > 0.01, the exact analytic expression is used, whereas below that we use a series expansion. This avoids numerical errors due to computation of log(1 - exp(-x)) and likewise in the `spence` function. Note that `scipy.special.spence` can only take `float64` numbers, so downcasting is necessary for 0.01 < x < 3. See Also --------- :func:`.log_1_plus_x`, :func:`.spence_series_diff` """ lowlim = 0.1 upplim = 3 def indef_int(x): inf = (x == np.inf) low = (x < lowlim) high = (x > upplim) & (~inf) gen = ~(low | high) & (~inf) expr = np.zeros(x.size) # Two different series for small and large x limit. # Excludes pi^2/6 to avoid catastrophic cancellation. if np.any(inf): expr[inf] = 0 if np.any(low): expr[low] = ( x[low] - x[low]**2/4 + x[low]**3/36 - x[low]**5/3600 + x[low]**7/211680 - x[low]**9/10886400 ) if np.any(high): n = np.arange(11) + 1 expr[high] = ( x[high]*log_1_plus_x(-np.exp(-x[high])) - np.exp(-x[high]) - np.exp(-2*x[high])/4 - np.exp(-3*x[high])/9 - np.exp(-4*x[high])/16 - np.exp(-5*x[high])/25 - np.exp(-6*x[high])/36 - np.exp(-7*x[high])/49 - np.exp(-8*x[high])/64 - np.exp(-9*x[high])/81 - np.exp(-10*x[high])/100 - np.exp(-11*x[high])/121 ) if np.any(gen): expr[gen] = (x[gen]*log_1_plus_x(-np.exp(-x[gen])) - sp.spence( np.array(1. - np.exp(-x[gen]), dtype='float64') ) ) return expr if a.ndim == 1 and b.ndim == 2: if b.shape[1] != a.size: raise TypeError('The second dimension of b must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(b.shape[0]), a) elif a.ndim == 2 and b.ndim == 1: if a.shape[1] != b.size: raise TypeError('The second dimension of a must have the same length as b.') b = np.outer(np.ones(a.shape[0]), b) # if both are 1D, then the rest of the code still works. integral = np.zeros(a.shape, dtype='float128') both_low = (a < lowlim) & (b < lowlim) both_high = (a > upplim) & (b > upplim) if np.any(both_low): integral[both_low] = ( b[both_low]-a[both_low] - (b[both_low]-a[both_low])*(b[both_low]+a[both_low])/4 + (b[both_low]**3 - a[both_low]**3)/36 - (b[both_low]**5 - a[both_low]**5)/3600 + (b[both_low]**7 - a[both_low]**7)/211680 - (b[both_low]**9 - a[both_low]**9)/10886400 ) if epsrel > 0: err = (b[both_low]**11 - a[both_low]**11)/526901760 check_err(integral[both_low], err, epsrel) if np.any(both_high): # Use a series for the spence function. spence_term = np.zeros_like(integral) spence_term[both_high] = spence_series_diff( np.exp(-b[both_high]), np.exp(-a[both_high]) ) b_inf = both_high & (b == np.inf) b_not_inf = both_high & (b != np.inf) integral[b_inf] = ( - a[b_inf]*log_1_plus_x(-np.exp(-a[b_inf])) - spence_term[b_inf] ) integral[b_not_inf] = ( b[b_not_inf]*log_1_plus_x(-np.exp(-b[b_not_inf])) - a[b_not_inf]*log_1_plus_x(-np.exp(-a[b_not_inf])) - spence_term[b_not_inf] ) if epsrel > 0: err = ( np.exp(-b[both_high])**11 - np.exp(-a[both_high])**11 )/11**2 check_err(integral[both_high], err, epsrel) gen_case = ~(both_low | both_high) if np.any(gen_case): integral[gen_case] = indef_int(b[gen_case]) - indef_int(a[gen_case]) # Correct for missing pi^2/6 where necessary. a_low_b_notlow = (a < lowlim) & (b >= lowlim) integral[a_low_b_notlow] += np.pi**2/6 return integral def F0(a,b,epsrel=0): """Definite integral of 1/[(exp(x) - 1)]. Parameters ---------- a : ndarray Lower limit of integration. Can be either 1D or 2D. b : ndarray Upper limit of integration. Can be either 1D or 2D. err : float Error associated with series expansion. If zero, then the error is not computed. Returns ------- float The resulting integral. """ lowlim = 0.1 upplim = 3 def indef_int(x): inf = (x == np.inf) low = (x <= 1e-10) high = (x > 1e-10) & (~inf) expr = np.zeros_like(x) if np.any(inf): expr[inf] = 0 if np.any(high): expr[high] = log_1_plus_x(-np.exp(-x[high])) if np.any(low): expr[low] = ( np.log(x[low]) - x[low]/2 + x[low]**2/24 - x[low]**4/2880 + x[low]**6/181440 - x[low]**8/9676800 + x[low]**10/479001600 ) return expr if a.ndim == 1 and b.ndim == 2: if b.shape[1] != a.size: raise TypeError('The second dimension of b must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(b.shape[0]), a) elif a.ndim == 2 and b.ndim == 1: if a.shape[1] != b.size: raise TypeError('The second dimension of a must have the same length as b.') b = np.outer(np.ones(a.shape[0]), b) # if both are 1D, then the rest of the code still works. integral = np.zeros(a.shape, dtype='float128') both_low = (a < lowlim) & (b < lowlim) both_high = (a > upplim) & (b > upplim) if np.any(both_low): integral[both_low] = ( np.log(b[both_low]/a[both_low]) - (b[both_low]-a[both_low])/2 + (b[both_low]-a[both_low])*(b[both_low]+a[both_low])/24 - (b[both_low]**4 - a[both_low]**4)/2880 + (b[both_low]**6 - a[both_low]**6)/181440 - (b[both_low]**8 - a[both_low]**8)/9676800 + (b[both_low]**10 - a[both_low]**10)/479001600 ) if epsrel > 0: err = -(b[both_low]**12 - a[both_low]**12)*691/15692092416000 check_err(integral[both_low], err, epsrel) if np.any(both_high): integral[both_high] = log_series_diff( np.exp(-b[both_high]), np.exp(-a[both_high]) ) if epsrel > 0: err = -( np.exp(-b[both_high])**12 - np.exp(-a[both_high])**12 )/12 check_err(integral[both_high], err, epsrel) gen_case = ~(both_low | both_high) if np.any(gen_case): integral[gen_case] = indef_int(b[gen_case]) - indef_int(a[gen_case]) return integral def F_inv(a,b,tol=1e-10): """Definite integral of (1/x)/(exp(x) - 1). Parameters ---------- a : ndarray Lower limit of integration. b : ndarray Upper limit of integration. tol : float The relative tolerance to be reached. Returns ------- float The resulting integral. """ # bound is fixed. If changed to another number, the exact integral from bound to infinity later in the code needs to be changed to the appropriate value. bound = 2. # Two different series to approximate this: below and above bound. def low_summand(x, k): if k == 1: return -1/x - np.log(x)/2 else: return ( bern(k)*(x**(k-1))/ (sp.factorial(k)*(k-1)) ) # B_n for n odd, n > 1 is zero. def high_summand(x, k): inf = (x == np.inf) expr = np.zeros_like(x) expr[~inf] = sp.expn(1, k*np.array(x[~inf], dtype='float64')) return expr if a.ndim == 1 and b.ndim == 2: if b.shape[1] != a.size: raise TypeError('The second dimension of b must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(b.shape[0],dtype='float128'), a) elif a.ndim == 2 and b.ndim == 1: if a.shape[1] != b.size: raise TypeError('The second dimension of a must have the same length as b.') b = np.outer(np.ones(a.shape[0],dtype='float128'), b) # if both are 1D, then the rest of the code still works. integral = np.zeros(a.shape, dtype='float128') err = np.zeros_like(integral) next_term = np.zeros_like(integral) both_low = (a < bound) & (b < bound) low_high = (a < bound) & (b >= bound) both_high = (a > bound) & (b > bound) # Both low if np.any(both_low): low_sum_a = low_summand(a[both_low], 1) low_sum_b = low_summand(b[both_low], 1) integral[both_low] = low_sum_b - low_sum_a k_low = 2 err_max = 10*tol while err_max > tol: next_term[both_low] = ( low_summand(b[both_low], k_low) - low_summand(a[both_low], k_low) ) err[both_low] = np.abs( np.divide( next_term[both_low], integral[both_low], out = np.zeros_like(next_term[both_low]), where = integral[both_low] != 0 ) ) integral[both_low] += next_term[both_low] k_low += 2 err_max = np.max(err[both_low]) both_low &= (err > tol) # a low b high if np.any(low_high): # Evaluate the definite integral from a to 2, and then 2 to b. low_sum_a = low_summand(a[low_high], 1) high_sum_b = high_summand(b[low_high], 1) low_sum_bound = low_summand(bound, 1) # Exact integral from 2 to infinity. int_bound_inf = np.float128(0.053082306482669888568) int_a_bound = low_sum_bound - low_sum_a int_bound_b = int_bound_inf - high_sum_b integral[low_high] = int_a_bound + int_bound_b k_low = 2 k_high = 2 err_max = 10*tol next_term_a_bound = np.zeros_like(integral) next_term_bound_b = np.zeros_like(integral) while err_max > tol: next_term_a_bound[low_high] = ( low_summand(bound, k_low) - low_summand(a[low_high], k_low) ) # Only need to compute the next term for the b to inf integral. next_term_bound_b[low_high] = ( -high_summand(b[low_high], k_high) ) next_term[low_high] = ( next_term_a_bound[low_high] + next_term_bound_b[low_high] ) err[low_high] = np.abs( np.divide( next_term[low_high], integral[low_high], out = np.zeros_like(next_term[low_high]), where = integral[low_high] != 0 ) ) integral[low_high] += next_term[low_high] k_low += 2 k_high += 1 err_max = np.max(err[low_high]) low_high &= (err > tol) # Both high if np.any(both_high): high_sum_a = high_summand(a[both_high], 1) high_sum_b = high_summand(b[both_high], 1) integral[both_high] = high_sum_a - high_sum_b k_high = 2 err_max = 10*tol while err_max > tol: next_term[both_high] = ( high_summand(a[both_high], k_high) - high_summand(b[both_high], k_high) ) err[both_high] = np.abs( np.divide( next_term[both_high], integral[both_high], out = np.zeros_like(next_term[both_high]), where = integral[both_high] != 0 ) ) integral[both_high] += next_term[both_high] k_high += 1 err_max = np.max(err[both_high]) both_high &= (err > tol) return integral, err def F_inv_a(lowlim, a, tol=1e-10): """Integral of 1/((x+a)(exp(x) - 1)) from lowlim to infinity. Parameters ---------- a : ndarray Parameter in (x+a). lowlim : ndarray Lower limit of integration. tol : float The relative tolerance to be reached. Returns ------- ndarray The resulting integral. """ bound = np.ones_like(lowlim, dtype='float128')*2. # Two different series to approximate this: below and above bound. def low_summand(x, a, k): x_flt64 = np.array(x, dtype='float64') a_flt64 = np.array(a, dtype='float64') if k == 1: expr = np.log(x)/a - np.log(x+a)/a - 0.5*x*( 1/a - x/(2*a**2) *hyp2f1_func_real(1, -x/a) ) # expr = np.log(x)/a - np.log(x+a)/a - 0.5*x*( # 1/a - x/(2*a**2) # *np.real(sp.hyp2f1(1, 2, 3, -x_flt64/a_flt64 + 0j)) # ) return expr else: return bern(k)*x**k/(sp.factorial(k)*k)*( 1/a - k*x/((k+1)*a**2)*hyp2f1_func_real(k, -x/a) ) # return bern(k)*x**k/(sp.factorial(k)*k)*( # 1/a - k*x/((k+1)*a**2)*np.real( # sp.hyp2f1(1, k+1, k+2, -x_flt64/a_flt64 + 0j) # ) # ) def high_summand(x, a, k): x_flt64 = np.array(x, dtype='float64') a_flt64 = np.array(a, dtype='float64') inf = (x == np.inf) expr = np.zeros_like(x) expr[inf] = 0 expr[~inf] = np.exp(-k*x[~inf])*exp_expn( 1, k*(x[~inf] + a[~inf]) ) return expr if a.ndim == 1 and lowlim.ndim == 2: if lowlim.shape[1] != a.size: raise TypeError('The second dimension of lowlim must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(lowlim.shape[0]), a) elif a.ndim == 2 and lowlim.ndim == 1: if a.shape[1] != lowlim.size: raise TypeError('The second dimension of a must have the same length as lowlim.') lowlim = np.outer(np.ones(a.shape[0]), lowlim) # if both are 1D, then the rest of the code still works. integral = np.zeros(lowlim.shape, dtype='float128') err = np.zeros_like(integral) next_term = np.zeros_like(integral) a_is_zero = (a == 0) low = (lowlim < 2) & ~a_is_zero high = ~low & ~a_is_zero if np.any(a_is_zero): integral[a_is_zero] = F_inv( lowlim[a_is_zero], np.ones_like(lowlim[a_is_zero])*np.inf, tol = tol ) if np.any(low): integral[low] = ( low_summand(bound[low], a[low], 1) - low_summand(lowlim[low], a[low], 1) + high_summand(bound[low], a[low], 1) ) k_low = 2 k_high = 2 err_max = 10*tol while err_max > tol: next_term[low] = ( low_summand(bound[low], a[low], k_low) - low_summand(lowlim[low], a[low], k_low) + high_summand(bound[low], a[low], k_high) ) err[low] = np.abs( np.divide( next_term[low], integral[low], out = np.zeros_like(next_term[low]), where = integral[low] != 0 ) ) integral[low] += next_term[low] k_low += 2 k_high += 1 err_max = np.max(err[low]) low &= (err > tol) if np.any(high): integral[high] = high_summand(lowlim[high], a[high], 1) k_high = 2 err_max = 10*tol while err_max > tol: next_term[high] = high_summand(lowlim[high], a[high], k_high) err[high] = np.abs( np.divide( next_term[high], integral[high], out = np.zeros_like(next_term[high]), where = integral[high] != 0 ) ) integral[high] += next_term[high] k_high += 1 err_max = np.max(err[high]) high &= (err > tol) return integral, err def F_inv_n(a,b,n,tol=1e-10): """Definite integral of (1/x**n)/(exp(x) - 1) Parameters ---------- a : ndarray Lower limit of integration. b : ndarray Upper limit of integration. tol : float The relative tolerance to be reached. Returns ------- float The resulting integral. """ bound = np.float128(2.) # Two different series to approximate this: below and above bound. def low_summand(x, k): if k == 1: init_sum = 0 for j in np.arange(n): init_sum += bern(j)/sp.factorial(j)*x**(j-n)/(j-n) init_sum += bern(n)/sp.factorial(n)*np.log(x) return init_sum else: # B_n for n odd, n > 1 is zero. if np.mod(k+n-1, 2) == 0: return( bern(k+n-1)/sp.factorial(k+n-1)*x**(k-1)/(k-1) ) else: return( bern(k+n)/sp.factorial(k+n)*x**k/k ) def high_summand(x, k): inf = (x == np.inf) expr = np.zeros_like(x) expr[~inf] = ( sp.expn(n, k*np.array(x[~inf], dtype='float64'))/x[~inf]**(n-1) ) return expr if a.ndim == 1 and b.ndim == 2: if b.shape[1] != a.size: raise TypeError('The second dimension of b must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(b.shape[0],dtype='float128'), a) elif a.ndim == 2 and b.ndim == 1: if a.shape[1] != b.size: raise TypeError('The second dimension of a must have the same length as b.') b = np.outer(np.ones(a.shape[0],dtype='float128'), b) # if both are 1D, then the rest of the code still works. integral = np.zeros_like(a, dtype='float128') err = np.zeros_like(integral) next_term = np.zeros_like(integral) both_low = (a < bound) & (b < bound) low_high = (a < bound) & (b >= bound) both_high = (a > bound) & (b > bound) # Both low if np.any(both_low): low_sum_a = low_summand(a[both_low], 1) low_sum_b = low_summand(b[both_low], 1) integral[both_low] = low_sum_b - low_sum_a k_low = 2 err_max = 10*tol while err_max > tol: next_term[both_low] = ( low_summand(b[both_low], k_low) - low_summand(a[both_low], k_low) ) err[both_low] = np.abs( np.divide( next_term[both_low], integral[both_low], out = np.zeros_like(next_term[both_low]), where = integral[both_low] != 0 ) ) integral[both_low] += next_term[both_low] k_low += 2 err_max = np.max(err[both_low]) both_low &= (err > tol) # a low b high if np.any(low_high): # Evaluate the definite integral from a to 2, and then 2 to b. low_sum_a = low_summand(a[low_high], 1) high_sum_b = high_summand(b[low_high], 1) low_sum_bound = low_summand(bound, 1) # Exact integral from 2 to infinity. int_bound_inf = quad( lambda x: 1/(x**n*(np.exp(x) - 1)), bound, np.inf, epsabs = 1e-16, epsrel=1e-16 )[0] int_a_bound = low_sum_bound - low_sum_a int_bound_b = int_bound_inf - high_sum_b integral[low_high] = int_a_bound + int_bound_b k_low = 2 k_high = 2 err_max = 10*tol next_term_a_bound = np.zeros_like(integral) next_term_bound_b = np.zeros_like(integral) while err_max > tol: next_term_a_bound[low_high] = ( low_summand(bound, k_low) - low_summand(a[low_high], k_low) ) # Only need to compute the next term for the b to inf integral. next_term_bound_b[low_high] = ( -high_summand(b[low_high], k_high) ) next_term[low_high] = ( next_term_a_bound[low_high] + next_term_bound_b[low_high] ) err[low_high] = np.abs( np.divide( next_term[low_high], integral[low_high], out = np.zeros_like(next_term[low_high]), where = integral[low_high] != 0 ) ) integral[low_high] += next_term[low_high] k_low += 2 k_high += 1 err_max = np.max(err[low_high]) low_high &= (err > tol) # Both high if np.any(both_high): high_sum_a = high_summand(a[both_high], 1) high_sum_b = high_summand(b[both_high], 1) integral[both_high] = high_sum_a - high_sum_b k_high = 2 err_max = 10*tol while err_max > tol: next_term[both_high] = ( high_summand(a[both_high], k_high) - high_summand(b[both_high], k_high) ) err[both_high] = np.abs( np.divide( next_term[both_high], integral[both_high], out = np.zeros_like(next_term[both_high]), where = integral[both_high] != 0 ) ) integral[both_high] += next_term[both_high] k_high += 1 err_max = np.max(err[both_high]) both_high &= (err > tol) return integral, err def F_inv_3(a,b,tol=1e-10): """Definite integral of (1/x**3)/(exp(x) - 1). Parameters ---------- a : ndarray Lower limit of integration. b : ndarray Upper limit of integration. tol : float The relative tolerance to be reached. Returns ------- float The resulting integral. """ # bound is fixed. If changed to another number, the exact integral from bound to infinity later in the code needs to be changed to the appropriate value. bound = 2. # Two different series to approximate this: below and above bound. def low_summand(x, k): if k == 1: return -1/(3*x**3) + 1/(4*x**2) - 1/(12*x) else: return ( bern(k+2)*(x**(k-1))/(sp.factorial(k+2)*(k-1)) ) # B_n for n odd, n > 1 is zero. def high_summand(x, k): inf = (x == np.inf) expr = np.zeros_like(x) expr[~inf] = ( sp.expn(3, k*np.array(x[~inf], dtype='float64'))/x[~inf]**2 ) return expr if a.ndim == 1 and b.ndim == 2: if b.shape[1] != a.size: raise TypeError('The second dimension of b must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(b.shape[0],dtype='float128'), a) elif a.ndim == 2 and b.ndim == 1: if a.shape[1] != b.size: raise TypeError('The second dimension of a must have the same length as b.') b = np.outer(np.ones(a.shape[0],dtype='float128'), b) # if both are 1D, then the rest of the code still works. integral = np.zeros_like(a, dtype='float128') err = np.zeros_like(integral) next_term = np.zeros_like(integral) both_low = (a < bound) & (b < bound) low_high = (a < bound) & (b >= bound) both_high = (a > bound) & (b > bound) # Both low if np.any(both_low): low_sum_a = low_summand(a[both_low], 1) low_sum_b = low_summand(b[both_low], 1) integral[both_low] = low_sum_b - low_sum_a k_low = 2 err_max = 10*tol while err_max > tol: next_term[both_low] = ( low_summand(b[both_low], k_low) - low_summand(a[both_low], k_low) ) err[both_low] = np.abs( np.divide( next_term[both_low], integral[both_low], out = np.zeros_like(next_term[both_low]), where = integral[both_low] != 0 ) ) integral[both_low] += next_term[both_low] k_low += 2 err_max = np.max(err[both_low]) both_low &= (err > tol) # a low b high if np.any(low_high): # Evaluate the definite integral from a to 2, and then 2 to b. low_sum_a = low_summand(a[low_high], 1) high_sum_b = high_summand(b[low_high], 1) low_sum_bound = low_summand(bound, 1) # Exact integral from 2 to infinity. int_bound_inf = np.float128(0.0083036361900336) int_a_bound = low_sum_bound - low_sum_a int_bound_b = int_bound_inf - high_sum_b integral[low_high] = int_a_bound + int_bound_b k_low = 2 k_high = 2 err_max = 10*tol next_term_a_bound = np.zeros_like(integral) next_term_bound_b = np.zeros_like(integral) while err_max > tol: next_term_a_bound[low_high] = ( low_summand(bound, k_low) - low_summand(a[low_high], k_low) ) # Only need to compute the next term for the b to inf integral. next_term_bound_b[low_high] = ( -high_summand(b[low_high], k_high) ) next_term[low_high] = ( next_term_a_bound[low_high] + next_term_bound_b[low_high] ) err[low_high] = np.abs( np.divide( next_term[low_high], integral[low_high], out = np.zeros_like(next_term[low_high]), where = integral[low_high] != 0 ) ) integral[low_high] += next_term[low_high] k_low += 2 k_high += 1 err_max = np.max(err[low_high]) low_high &= (err > tol) # Both high if np.any(both_high): high_sum_a = high_summand(a[both_high], 1) high_sum_b = high_summand(b[both_high], 1) integral[both_high] = high_sum_a - high_sum_b k_high = 2 err_max = 10*tol while err_max > tol: next_term[both_high] = ( high_summand(a[both_high], k_high) - high_summand(b[both_high], k_high) ) err[both_high] = np.abs( np.divide( next_term[both_high], integral[both_high], out = np.zeros_like(next_term[both_high]), where = integral[both_high] != 0 ) ) integral[both_high] += next_term[both_high] k_high += 1 err_max = np.max(err[both_high]) both_high &= (err > tol) return integral, err def F_inv_5(a,b,tol=1e-10): """Definite integral of (1/x**5)/(exp(x) - 1). Parameters ---------- a : ndarray Lower limit of integration. b : ndarray Upper limit of integration. tol : float The relative tolerance to be reached. Returns ------- float The resulting integral. """ # bound is fixed. If changed to another number, the exact integral from bound to infinity later in the code needs to be changed to the appropriate value. bound = 2. # Two different series to approximate this: below and above bound. def low_summand(x, k): if k == 1: return -1/(5*x**5) + 1/(8*x**4) - 1/(36*x**3) + 1/(720*x) else: return ( bern(k+4)*(x**(k-1))/(sp.factorial(k+4)*(k-1)) ) # B_n for n odd, n > 1 is zero. def high_summand(x, k): inf = (x == np.inf) expr = np.zeros_like(x) expr[~inf] = ( sp.expn(5, k*np.array(x[~inf], dtype='float64'))/x[~inf]**4 ) return expr if a.ndim == 1 and b.ndim == 2: if b.shape[1] != a.size: raise TypeError('The second dimension of b must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(b.shape[0],dtype='float128'), a) elif a.ndim == 2 and b.ndim == 1: if a.shape[1] != b.size: raise TypeError('The second dimension of a must have the same length as b.') b = np.outer(np.ones(a.shape[0],dtype='float128'), b) # if both are 1D, then the rest of the code still works. integral = np.zeros_like(a, dtype='float128') err = np.zeros_like(integral) next_term = np.zeros_like(integral) both_low = (a < bound) & (b < bound) low_high = (a < bound) & (b >= bound) both_high = (a > bound) & (b > bound) # Both low if np.any(both_low): low_sum_a = low_summand(a[both_low], 1) low_sum_b = low_summand(b[both_low], 1) integral[both_low] = low_sum_b - low_sum_a k_low = 2 err_max = 10*tol while err_max > tol: next_term[both_low] = ( low_summand(b[both_low], k_low) - low_summand(a[both_low], k_low) ) err[both_low] = np.abs( np.divide( next_term[both_low], integral[both_low], out = np.zeros_like(next_term[both_low]), where = integral[both_low] != 0 ) ) integral[both_low] += next_term[both_low] k_low += 2 err_max = np.max(err[both_low]) both_low &= (err > tol) # a low b high if np.any(low_high): # Evaluate the definite integral from a to 2, and then 2 to b. low_sum_a = low_summand(a[low_high], 1) high_sum_b = high_summand(b[low_high], 1) low_sum_bound = low_summand(bound, 1) # Exact integral from 2 to infinity. int_bound_inf = np.float128(0.001483878955697788) int_a_bound = low_sum_bound - low_sum_a int_bound_b = int_bound_inf - high_sum_b integral[low_high] = int_a_bound + int_bound_b k_low = 2 k_high = 2 err_max = 10*tol next_term_a_bound = np.zeros_like(integral) next_term_bound_b = np.zeros_like(integral) while err_max > tol: next_term_a_bound[low_high] = ( low_summand(bound, k_low) - low_summand(a[low_high], k_low) ) # Only need to compute the next term for the b to inf integral. next_term_bound_b[low_high] = ( -high_summand(b[low_high], k_high) ) next_term[low_high] = ( next_term_a_bound[low_high] + next_term_bound_b[low_high] ) err[low_high] = np.abs( np.divide( next_term[low_high], integral[low_high], out = np.zeros_like(next_term[low_high]), where = integral[low_high] != 0 ) ) integral[low_high] += next_term[low_high] k_low += 2 k_high += 1 err_max = np.max(err[low_high]) low_high &= (err > tol) # Both high if np.any(both_high): high_sum_a = high_summand(a[both_high], 1) high_sum_b = high_summand(b[both_high], 1) integral[both_high] = high_sum_a - high_sum_b k_high = 2 err_max = 10*tol while err_max > tol: next_term[both_high] = ( high_summand(a[both_high], k_high) - high_summand(b[both_high], k_high) ) err[both_high] = np.abs( np.divide( next_term[both_high], integral[both_high], out = np.zeros_like(next_term[both_high]), where = integral[both_high] != 0 ) ) integral[both_high] += next_term[both_high] k_high += 1 err_max = np.max(err[both_high]) both_high &= (err > tol) return integral, err def F_log(a,b,tol=1e-10): """Definite integral of log(x)/(exp(x) - 1). Parameters ---------- a : ndarray Lower limit of integration. b : ndarray Upper limit of integration. tol : float The relative tolerance to be reached. Returns ------- float The resulting integral. """ # bound is fixed. If changed to another number, the exact integral from bound to infinity later in the code needs to be changed to the appropriate value. bound = 2. # Two different series to approximate this: below and above bound. def low_summand(x, k): if k == 1: return 1/2*(np.log(x)**2) - (x/2)*(np.log(x) - 1) else: return ( bern(k)*(x**k)/ (sp.factorial(k)*k**2)*(k*np.log(x) - 1) ) # B_n for n odd, n > 1 is zero. def high_summand(x, k): # sp.expn does not support float128. inf = (x == np.inf) expr = np.zeros_like(x) expr[inf] = 0 expr[~inf] = ( 1/k*(np.exp(-k*x[~inf])*np.log(x[~inf]) + sp.expn( 1, k*np.array(x[~inf], dtype='float64') ) ) ) return expr if a.ndim == 1 and b.ndim == 2: if b.shape[1] != a.size: raise TypeError('The second dimension of b must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(b.shape[0]), a) elif a.ndim == 2 and b.ndim == 1: if a.shape[1] != b.size: raise TypeError('The second dimension of a must have the same length as b.') b = np.outer(np.ones(a.shape[0]), b) # if both are 1D, then the rest of the code still works. integral = np.zeros(a.shape, dtype='float128') err = np.zeros_like(integral) next_term = np.zeros_like(integral) both_low = (a < bound) & (b < bound) low_high = (a < bound) & (b >= bound) both_high = (a > bound) & (b > bound) # Both low if np.any(both_low): low_sum_a = low_summand(a[both_low], 1) low_sum_b = low_summand(b[both_low], 1) integral[both_low] = low_sum_b - low_sum_a k_low = 2 err_max = 10*tol while err_max > tol: next_term[both_low] = ( low_summand(b[both_low], k_low) - low_summand(a[both_low], k_low) ) err[both_low] = np.abs( np.divide( next_term[both_low], integral[both_low], out = np.zeros_like(next_term[both_low]), where = integral[both_low] != 0 ) ) integral[both_low] += next_term[both_low] k_low += 2 err_max = np.max(err[both_low]) both_low &= (err > tol) # a low b high if np.any(low_high): # Evaluate the definite integral from a to 2, and then 2 to b. low_sum_a = low_summand(a[low_high], 1) high_sum_b = high_summand(b[low_high], 1) low_sum_bound = low_summand(bound, 1) # Exact integral from 2 to infinity. int_bound_inf = np.float128(0.15171347859984083704) int_a_bound = low_sum_bound - low_sum_a int_bound_b = int_bound_inf - high_sum_b integral[low_high] = int_a_bound + int_bound_b k_low = 2 k_high = 2 err_max = 10*tol next_term_a_bound = np.zeros_like(integral) next_term_bound_b = np.zeros_like(integral) while err_max > tol: next_term_a_bound[low_high] = ( low_summand(bound, k_low) - low_summand(a[low_high], k_low) ) # Only need to compute the next term for the b to inf integral. next_term_bound_b[low_high] = ( -high_summand(b[low_high], k_high) ) next_term[low_high] = ( next_term_a_bound[low_high] + next_term_bound_b[low_high] ) err[low_high] = np.abs( np.divide( next_term[low_high], integral[low_high], out = np.zeros_like(next_term[low_high]), where = integral[low_high] != 0 ) ) integral[low_high] += next_term[low_high] k_low += 2 k_high += 1 err_max = np.max(err[low_high]) low_high &= (err > tol) # Both high if np.any(both_high): high_sum_a = high_summand(a[both_high], 1) high_sum_b = high_summand(b[both_high], 1) integral[both_high] = high_sum_a - high_sum_b k_high = 2 err_max = 10*tol while err_max > tol: next_term[both_high] = ( high_summand(a[both_high], k_high) - high_summand(b[both_high], k_high) ) err[both_high] = np.abs( np.divide( next_term[both_high], integral[both_high], out = np.zeros_like(next_term[both_high]), where = integral[both_high] != 0 ) ) integral[both_high] += next_term[both_high] k_high += 1 err_max = np.max(err[both_high]) both_high &= (err > tol) return integral, err def F_x_log(a,b,tol=1e-10): """Definite integral of x log(x)/(exp(x) - 1). Parameters ---------- a : ndarray Lower limit of integration. b : ndarray Upper limit of integration. tol : float The relative tolerance to be reached. Returns ------- float The resulting integral. """ # bound is fixed. If changed to another number, the exact integral from bound to infinity later in the code needs to be changed to the appropriate value. bound = 2. def low_summand(x,k): if k==1: return x*np.log(x) - x - (x**2/2)*(2*np.log(x) - 1)/4 else: return ( bern(k)*(x**(k+1))/ (sp.factorial(k)*(k+1)**2)*((k+1)*np.log(x) - 1) ) def high_summand(x, k): inf = (x == np.inf) expr = np.zeros_like(x) expr[inf] = 0 expr[~inf] = ( 1/k**2*( (1+k*x[~inf])*np.exp(-k*x[~inf])*np.log(x[~inf]) + (1+k*x[~inf])*sp.expn( 1, k*np.array(x[~inf], dtype='float64') ) + sp.expn(2, k*np.array(x[~inf], dtype='float64')) ) ) return expr if a.ndim == 1 and b.ndim == 2: if b.shape[1] != a.size: raise TypeError('The second dimension of b must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(b.shape[0]), a) elif a.ndim == 2 and b.ndim == 1: if a.shape[1] != b.size: raise TypeError('The second dimension of a must have the same length as b.') b = np.outer(np.ones(a.shape[0]), b) # if both are 1D, then the rest of the code still works. integral = np.zeros(a.shape, dtype='float128') err = np.zeros_like(integral) next_term = np.zeros_like(integral) both_low = (a < bound) & (b < bound) low_high = (a < bound) & (b >= bound) both_high = (a > bound) & (b > bound) # Both low if np.any(both_low): low_sum_a = low_summand(a[both_low], 1) low_sum_b = low_summand(b[both_low], 1) integral[both_low] = low_sum_b - low_sum_a k_low = 2 err_max = 10*tol while err_max > tol: next_term[both_low] = ( low_summand(b[both_low], k_low) - low_summand(a[both_low], k_low) ) err[both_low] = np.abs( np.divide( next_term[both_low], integral[both_low], out = np.zeros_like(next_term[both_low]), where = integral[both_low] != 0 ) ) integral[both_low] += next_term[both_low] k_low += 2 err_max = np.max(err[both_low]) both_low &= (err > tol) # a low b high if np.any(low_high): # Evaluate the definite integral from a to 2, and then 2 to b. low_sum_a = low_summand(a[low_high], 1) high_sum_b = high_summand(b[low_high], 1) low_sum_bound = low_summand(bound, 1) # Exact integral from 2 to infinity. int_bound_inf = np.float128(0.4888742871822041) int_a_bound = low_sum_bound - low_sum_a int_bound_b = int_bound_inf - high_sum_b integral[low_high] = int_a_bound + int_bound_b k_low = 2 k_high = 2 err_max = 10*tol next_term_a_bound = np.zeros_like(integral) next_term_bound_b = np.zeros_like(integral) while err_max > tol: next_term_a_bound[low_high] = ( low_summand(bound, k_low) - low_summand(a[low_high], k_low) ) next_term_bound_b[low_high] = ( -high_summand(b[low_high], k_high) ) next_term[low_high] = ( next_term_a_bound[low_high] + next_term_bound_b[low_high] ) err[low_high] = np.abs( np.divide( next_term[low_high], integral[low_high], out = np.zeros_like(next_term[low_high]), where = integral[low_high] != 0 ) ) integral[low_high] += next_term[low_high] k_low += 2 k_high += 1 err_max = np.max(err[low_high]) low_high &= (err > tol) # Both high if np.any(both_high): high_sum_a = high_summand(a[both_high], 1) high_sum_b = high_summand(b[both_high], 1) integral[both_high] = high_sum_a - high_sum_b k_high = 2 err_max = 10*tol while err_max > tol: next_term[both_high] = ( high_summand(a[both_high], k_high) - high_summand(b[both_high], k_high) ) err[both_high] = np.abs( np.divide( next_term[both_high], integral[both_high], out = np.zeros_like(next_term[both_high]), where = integral[both_high] != 0 ) ) integral[both_high] += next_term[both_high] k_high += 1 err_max = np.max(err[both_high]) both_high &= (err > tol) return integral, err def F_log_a(lowlim, a, tol=1e-10): """Integral of log(x+a)/(exp(x) - 1) from lowlim to infinity. Parameters ---------- a : ndarray Parameter in log(x+a). lowlim : ndarray Lower limit of integration. tol : float The relative tolerance to be reached. Returns ------- ndarray The resulting integral. """ bound = np.ones_like(lowlim,dtype='float128')*2. # Two different series to approximate this: below and above bound. def low_summand(x, a, k): x_flt64 = np.array(x, dtype='float64') a_flt64 = np.array(a, dtype='float64') if k == 1: expr = np.zeros_like(x) a_pos = a > 0 a_neg = a < 0 if np.any(a_pos): expr[a_pos] = ( np.log(x[a_pos])*np.log(a[a_pos]) - sp.spence(1+x_flt64[a_pos]/a_flt64[a_pos]) - ( (x[a_pos]+a[a_pos]) *np.log(x[a_pos]+a[a_pos]) - x[a_pos] )/2 ) if np.any(a_neg): expr[a_neg] = ( np.log(-x[a_neg]/a[a_neg])*np.log(x[a_neg]+a[a_neg]) + sp.spence(-x_flt64[a_neg]/a_flt64[a_neg]) - ( (x[a_neg]+a[a_neg])*np.log(x[a_neg]+a[a_neg]) - x[a_neg] )/2 ) return expr else: return ( bern(k)*x**k/(sp.factorial(k)*k)*( np.log(x + a) - x/(a*(k+1))*hyp2f1_func_real(k, -x/a) ) ) # return ( # bern(k)*x**k/(sp.factorial(k)*k)*( # np.log(x + a) - x/(a*(k+1))*np.real( # sp.hyp2f1( # 1, k+1, k+2, -x_flt64/a_flt64 + 0j # ) # ) # ) # ) def high_summand(x, a, k): x_flt64 = np.array(x, dtype='float64') a_flt64 = np.array(a, dtype='float64') inf = (x == np.inf) expr = np.zeros_like(x) expr[inf] = 0 expr[~inf] = ( np.exp(-k*x[~inf])/k*( np.log(x[~inf] + a[~inf]) + exp_expn(1, k*(x[~inf] + a[~inf])) ) ) return expr if a.ndim == 1 and lowlim.ndim == 2: if lowlim.shape[1] != a.size: raise TypeError('The second dimension of lowlim must have the same length as a.') # Extend a to a 2D array. a = np.outer(np.ones(lowlim.shape[0]), a) elif a.ndim == 2 and lowlim.ndim == 1: if a.shape[1] != lowlim.size: raise TypeError('The second dimension of a must have the same length as lowlim.') lowlim = np.outer(np.ones(a.shape[0]), lowlim) # if both are 1D, then the rest of the code still works. integral = np.zeros(lowlim.shape, dtype='float128') err = np.zeros_like(integral) next_term = np.zeros_like(integral) a_is_zero = (a == 0) low = (lowlim < 2) & ~a_is_zero high = ~low & ~a_is_zero if np.any(a_is_zero): integral[a_is_zero] = F_log(lowlim[a_is_zero], np.ones_like(lowlim[a_is_zero])*np.inf, tol=tol ) if np.any(low): integral[low] = ( low_summand(bound[low], a[low], 1) - low_summand(lowlim[low], a[low], 1) + high_summand(bound[low], a[low], 1) ) k_low = 2 k_high = 2 err_max = 10*tol while err_max > tol: next_term[low] = ( low_summand(bound[low], a[low], k_low) - low_summand(lowlim[low], a[low], k_low) + high_summand(bound[low], a[low], k_high) ) err[low] = np.abs( np.divide( next_term[low], integral[low], out = np.zeros_like(next_term[low]), where = integral[low] != 0 ) ) integral[low] += next_term[low] k_low += 2 k_high += 1 err_max = np.max(err[low]) low &= (err > tol) if np.any(high): integral[high] = high_summand(lowlim[high], a[high], 1) k_high = 2 err_max = 10*tol while err_max > tol: next_term[high] = high_summand(lowlim[high], a[high], k_high) err[high] = np.abs( np.divide( next_term[high], integral[high], out = np.zeros_like(next_term[high]), where = integral[high] != 0 ) ) integral[high] += next_term[high] k_high += 1 err_max = np.max(err[high]) high &= (err > tol) return integral, err def F_x_log_a(lowlim, a, tol=1e-10): """Integral of x log (x+a)/(exp(x) - 1) from lowlim to infinity. Parameters ---------- a : ndarray Parameter in x log(x+a). lowlim : ndarray Lower limit of integration. tol : float The relative tolerance to be reached. Returns ------- ndarray The resulting integral. """ bound = np.ones_like(lowlim, dtype='float128')*2 # Two different series to approximate this: below and above bound. def low_summand(x, a, k): # x_flt64 = np.array(x, dtype='float64') # a_flt64 = np.array(a, dtype='float64') if k == 1: return ( x*(
np.log(a+x)
numpy.log
#!/usr/bin/env python3 """ performance.py A program to weigh up the virtues of the different algorithms By testing them for energy and angular momentum conservation""" import os import copy import numpy as np import pickle import src.simulation.helpers as hlp from scipy.optimize import curve_fit import src.data_loading.io_pickles as ip import src.simulation.sclass import src.plotting.my_plotting_style as mps import src.plotting.animator as ani import matplotlib.pyplot as plt import src.simulation.sclass as scl import src.time_wrapper as twr import src.simulation.halos as hal @twr.timeit def _circular_orbit(seperation=2, algo="vv", tstep=0.05): """ Take the desired seperation between the two equally sized masses, and turn that into a list of two particles at the right speed and distance. """ co = scl.Controls( MAXTIMER=20, TSTEP=tstep, algorithm=algo, OUT="MUT_CIRC", name=algo + "_" + str(tstep), ) speed = np.sqrt(co.GM / 2 / seperation) particles = [] particles.append( hal.Particle( np.array([-seperation / 2, 0, 0]), np.array([0, speed, 0]), 1.0, False, countA, ) ) particles.append( hal.Particle( np.array([-seperation / 2, 0, 0]), np.array([0, speed, 0]), 1.0, False, countA, ) ) tmp_log_data = {} co, sy, particles = spinner(co, sy, particles, log_time=tmp_log_data) time_taken = tmp_log_data["SPINNER"] hlp.write_out(co, sy) return time, energy, time_taken @twr.timeit def circle_orbit_tester(): """ This function calls _circular_orbit a number of times for different settings, and then sends the output to a _graph_circular_orbit. """ energy_remaining = {} # ar simu_time = {} time_taken = {} for algo in ["rk4o", "vv", "herm"]: time_taken[algo] = [] simu_time[algo] = {} energy_remaining[algo] = {} tsteps = [0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1] for tstep in tsteps: simu_time[algo][tstep], energy_remaining[algo][tstep], tt = _circular_orbit( algo=algo, tstpep=tstep ) time_taken.append(tt) _graph_circular_orbit(energy_remaining, simu_time, time_taken) @twr.timeit def three_body_test(): """ Three body test with a variety of algorithms""" print("Let us try three body") tbc_time = [] for algo in ["rk4o", "vv", "herm"]: tbc_time[algo] = [] for dt in [0.001, 0.002, 0.01, 0.1, 0.2, 0.5]: vb = int(100 * (0.001 / dt)) if vb == 0: # Prevent div0 errors vb = 1 tmp_log_data = {} three_body_collide( MAX_TIMER=5000, VB=vb, TSTEP=dt, EP=0.01, recalculate=True, algorithm=algo, log_time=tmp_log_data, ) tbc_time[algo].append(tmp_log_data["THREE_BODY_COLLIDE"]) @twr.timeit def particle_build_up(OM=5): """A function which gradually fills up a galaxy with a variable number particles, trying each algorithm used in the simulation, allowing computational excess to be compared""" # Fills up the shells at these radii to these maximums radii = [ 0, 1.0, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, ] num_particles = [ 1, 12, 18, 24, 31, 36, 42, 50, 58, 70, 80, 100, 130, 160, 200, 250, 300, 340, 400, ] total_particles = 0 for i in num_particles: total_particles += i print("You can go up to " + str(total_particles) + " if you want to.") N_vec = np.logspace(1, OM, num=OM, base=2) # variables to store the raw data tot_particles_d = {} fill_up_time = [] ani_time = [] spin_round_time = {} spinner_time = {} spin_round_time["vv"] = [] spin_round_time["rk4o"] = [] spin_round_time["herm"] = [] spinner_time["vv"] = [] spinner_time["rk4o"] = [] spinner_time["herm"] = [] tot_particles_d["vv"] = [] tot_particles_d["FU"] = [] tot_particles_d["herm"] = [] tot_particles_d["rk4o"] = [] tot_particles_d["ANI"] = [] tot_particles_d["vv_spin"] = [] tot_particles_d["rk4o_spin"] = [] tot_particles_d["herm_spin"] = [] for required_total in N_vec: tmp_log_data = {} # particles = [] particles = _fill_up( radii, num_particles, int(required_total), log_time=tmp_log_data ) if not required_total == N_vec[0]: # The first data point is always terrible and messes up the fit fill_up_time.append(tmp_log_data["_FILL_UP"]) tot_particles_d["FU"].append(len(particles)) print( "There are " + str(len(particles)) + " particles and I expected " + str(required_total) ) # What happens if you just spin the particles? for key in spin_round_time: tot_particles_d[key].append( len(particles) ) # how many particles in this key co = scl.Controls(TSTEP=0.05, algorithm=key) tmp_log_data = {} part = hal.spin_forward( 400, co, particles=copy.deepcopy(particles), log_time=tmp_log_data ) # chuck it into part to stop interference. assert part != particles spin_round_time[key].append(tmp_log_data["SPIN_FORWARD"]) # What happens if you spin the particles, calculate energies, and plot things? for key in spinner_time: tot_particles_d[key + "_spin"].append(len(particles)) sub = key + "_running_time_test_" + str(len(particles)) co = scl.Controls( OUT="./Run_Time_TEST/" + sub, MAXTIMER=400, TSTEP=0.05, algorithm=key, name=sub, ) sy = scl.System(co, particles=particles) tmp_log_data = {} co, sy, part = hal.spinner( co, sy, copy.deepcopy(particles), log_time=tmp_log_data ) # chuck it into part to stop interference. assert part != particles spinner_time[key].append(tmp_log_data["SPINNER"]) # extract spinner time # What about the animation of those particles? hlp.write_out(co, sy) aniclass_member = ani.AniMP4(co.out, name=co.name, move_with=True) # initiate animator animate = True if key == "vv" and animate == True: tmp_log_data = {} aniclass_member.animate_starter(log_time=tmp_log_data) # run animation / plots ani_time.append(tmp_log_data) tot_particles_d["ANI"].append(len(particles)) sy = [] # delete sy so that it doesn't slow the other steps down. save_data = { "tot_particles_d": tot_particles_d, "fill_up_time": fill_up_time, "spin_round_time": spin_round_time, "spinner_time": spinner_time, "ani_time": ani_time, } name = "Fill_Up_Dict_No_Fits_OM_" + str(OM) ip.print_dict_to_pickle(name=name, dictionary=save_data) print("about to go to _fit_fill_up with name " + name) _fit_fill_up(name=name, animate=animate) @twr.timeit def _fit_fill_up(name="no_name", animate=True): """ :param name: where to look for saved output :param animate: whether the animation is being run :return: void """ read_data = ip.read_pickle_to_dict(name=name) tot_particles_d = read_data["tot_particles_d"] fill_up_time = read_data["fill_up_time"] spin_round_time = read_data["spin_round_time"] spinner_time = read_data["spinner_time"] ani_time = read_data["ani_time"] # variables to store the log log fits popt_d = {} perr_d = {} x_values_d = {} y_values_d = {} tmp_log_data = {} x_values_d["FU"], y_values_d["FU"], popt_d["FU"], perr_d["FU"] = linear_fitter( tot_particles_d["FU"], fill_up_time, "Gen_Output/Verbose/Fill_Up_Only", log_time=tmp_log_data, ) print("Graphing time was %5.3f Seconds." % tmp_log_data["LINEAR_FITTER"]) tmp_log_data = {} x_values_d["ANI"], y_values_d["ANI"], popt_d["ANI"], perr_d["ANI"] = linear_fitter( tot_particles_d["ANI"], ani_time, "Gen_Output/Verbose/Animate_Only", log_time=tmp_log_data, ) print("Graphing time was %5.3f Seconds." % tmp_log_data["LINEAR_FITTER"]) for key in spin_round_time: tmp_log_data = {} x_values_d[key], y_values_d[key], popt_d[key], perr_d[key] = linear_fitter( tot_particles_d[key], spin_round_time[key], "Gen_Output/Verbose/Spin_Round_Time_" + key, log_time=tmp_log_data, ) print("Graphing time was %5.3f Seconds." % tmp_log_data["LINEAR_FITTER"]) for old_key in spinner_time: key = old_key + "_spin" tmp_log_data = {} x_values_d[key], y_values_d[key], popt_d[key], perr_d[key] = linear_fitter( tot_particles_d[key], spin_round_time[old_key], "Gen_Output/Verbose/Spin_Round_Time_" + key, log_time=tmp_log_data, ) print("Graphing time was %5.3f Seconds." % tmp_log_data["LINEAR_FITTER"]) data_dictionary = { "x_values_d": x_values_d, "y_values_d": y_values_d, "popt_d": popt_d, "perr_d": perr_d, } name = "Fill_Up_Dict_With_Fits_OM_" + str(OM) ip.print_dict_to_pickle(name=name, dictionary=data_dictionary) _replot_fill_up(name) @twr.timeit def _replot_fill_up(name): data = ip.read_pickle_to_dict(name=name) linear_replotter( data["x_values_d"], data["y_values_d"], data["popt_d"], data["perr_d"], name_graph="Gen_Output/Compared_Ov2", ) @twr.timeit def _fill_up(radii, num_particles, required_total, **kwargs): """ This algorithm is fills up the rings up to the $\sim$ fermi energy """ temp_total = 0 radii_2 = [] num_particles_2 = [] for j in range(0, len(num_particles)): temp_totalA = temp_total # lower bound of ring temp_total += num_particles[j] # upper bound of ring if temp_totalA < required_total: if temp_total >= required_total: # The change over point valence_planets = required_total - temp_totalA ring_reached = j # ok. if temp_total < required_total: print("Somehow you have overshot what is possible") ring_reached = len(num_particles) - 1 valence_planets = num_particles[ring_reached] for i in range(0, ring_reached): radii_2.append(radii[i]) num_particles_2.append(num_particles[i]) radii_2.append(radii[ring_reached]) num_particles_2.append(valence_planets) return _calculate_vs_and_ps(radii_2, num_particles_2) @twr.timeit def _calculate_vs_and_ps(radiiA, num_particlesB, **kwargs): """ Calculate vs and ps""" particles = [] co = scl.Controls() # the controls really don't matter in this instance. countA = 0 for i in range(len(radiiA)): countB = 0 # CountB is number in a Particular Ring for j in range(num_particlesB[i]): countA += 1 countB += 1 if radiiA[i] == 0: particles.append( hal.Particle( np.array([0.0, 0.0, 0.0]), np.array([0.0, 0.0, 0.0]), 1.0, True, countA, ) ) else: pos = hlp.circular_position(radiiA[i], num_particlesB[i], j) vel = hlp.circular_velocity(radiiA[i], num_particlesB[i], j, co) particles.append(hal.Particle(pos, vel, 1.0, False, countA)) return particles # three_body_test() # three_body_collide(algorithm='herm') # three_body_test(algorithm='herm') def two_body_test(): """ Fin""" print("lets test two bodies for a long time") @twr.timeit def _perf_test_plotter(): """A function designed to test whether the timeit wrapper worked""" test_times = [] test_inputs = [] test_log_times = [] test_log_inputs = [] for i in range(5, 200): tmp_log_data = {} _timeit_tester(N=i ** 2, log_time=tmp_log_data) test_times.append(tmp_log_data["_TIMEIT_TESTER"]) test_inputs.append(i ** 2) # timeit_tester(N=i) tmp_log_data = {} linear_fitter(test_inputs, test_times, "ONSquared", log_time=tmp_log_data) print("Graphing time was %5.3f Seconds." % tmp_log_data["LINEAR_FITTER"]) # Fitting and graphing help def _funct(x, a, b): """ fit linear function to log log data""" return (a * x) + b @twr.timeit def linear_fitter( x_unlogged_values, y_unlogged_values, name_graph, x_unit="N", y_unit="t", **kwargs ): """ requires scipy curvefit :param x_values: :param y_values: :param name_graph: :param kwargs: :return: """ print("fitting for " + name_graph) x_values = [] y_values = [] for x_unlogged_value in x_unlogged_values: assert x_unlogged_value != 0.0 # code will break if there is a zero x_values.append(np.log2(x_unlogged_value)) for y_unlogged_value in y_unlogged_values: assert y_unlogged_value != 0.0 y_values.append(
np.log2(y_unlogged_value)
numpy.log2
import collections import math import os import sys import warnings try: long except NameError: long = int # Python 3 import numpy mw_python_dir = os.environ.get( 'MW_PYTHON_DIR', '/Library/Application Support/MWorks/Scripting/Python', ) sys.path.insert(0, mw_python_dir) import mworks assert (os.path.dirname(mworks.__file__) == os.path.join(mw_python_dir, 'mworks')), 'Wrong mworks package!' class TypeConversionTestMixin(object): def send(self, data): raise NotImplementedError def receive(self): raise NotImplementedError def assertReceivedIsSent(self, sent): self.send(sent) self.assertIs(sent, self.receive()) def assertReceivedEqualsSent(self, sent, expected=None): if expected is None: expected_type = type(sent) expected = sent elif isinstance(expected, type): expected_type = expected expected = sent else: expected_type = type(expected) self.send(sent) received = self.receive() self.assertIsInstance(received, expected_type) self.assertEqual(expected, received) def assertReceivedIsInf(self, sent): self.send(sent) received = self.receive() self.assertIsInstance(received, float) self.assertTrue(math.isinf(received)) def test_none(self): self.assertReceivedIsSent(None) def test_bool(self): self.assertReceivedIsSent(True) self.assertReceivedIsSent(False) def test_int(self): self.assertReceivedEqualsSent(0) self.assertReceivedEqualsSent(1) self.assertReceivedEqualsSent(-2) int_info = numpy.iinfo(int) self.assertReceivedEqualsSent(int_info.max) self.assertReceivedEqualsSent(int_info.min) def test_long(self): self.assertReceivedEqualsSent(long(0), int) self.assertReceivedEqualsSent(long(1), int) self.assertReceivedEqualsSent(long(-2), int) # mw::Datum stores integers as long long's, so we should be # able to send the full range of long long values, but not # values outside that range longlong_info = numpy.iinfo(numpy.longlong) self.assertReceivedEqualsSent(longlong_info.max) self.assertReceivedEqualsSent(longlong_info.min) self.assertRaises(OverflowError, self.send, longlong_info.max+1) self.assertRaises(OverflowError, self.send, longlong_info.min-1) def test_float(self): self.assertReceivedEqualsSent(0.0) self.assertReceivedEqualsSent(1.0) self.assertReceivedEqualsSent(-2.2) def test_float_inf(self): self.assertReceivedIsInf(numpy.inf) def test_float_nan(self): self.send(numpy.nan) received = self.receive() self.assertIsInstance(received, float) self.assertTrue(math.isnan(received)) def test_bytes(self): self.assertReceivedEqualsSent(b'', '') self.assertReceivedEqualsSent(b'foo', 'foo') self.assertReceivedEqualsSent(b' Foo \n Bar ', ' Foo \n Bar ') self.assertReceivedEqualsSent(b'foo\0bar') # Embedded NUL def test_bytes_with_trailing_nul(self): self.assertReceivedEqualsSent(b'foo\0') def test_unicode(self): self.assertReceivedEqualsSent(u'', str) self.assertReceivedEqualsSent(u'foo', str) self.assertReceivedEqualsSent(u' Foo \n Bar ', str) self.assertReceivedEqualsSent(u'foo\0bar', b'foo\0bar') # Embedded NUL # Try some real Unicode sent = u'a\U0001d11eb' # U+1D11E is the G clef character self.send(sent) received = self.receive() self.assertIsInstance(received, str) if sys.version_info >= (3,): self.assertEqual(sent, received) else: sent_encoded = sent.encode('utf-8') with warnings.catch_warnings(): warnings.simplefilter('ignore', UnicodeWarning) self.assertNotEqual(sent, sent_encoded) self.assertEqual(sent_encoded, received) self.assertEqual(sent, received.decode('utf-8')) def test_unicode_with_trailing_nul(self): self.assertReceivedEqualsSent(u'foo\0', b'foo\0') def _test_sequence(self, seq_type): def test(list_val): self.assertReceivedEqualsSent(seq_type(list_val), list_val) test([]) test([1]) test([1, 2.0, 'three', {'four': 4}]) # Unconvertible item self.assertRaises(TypeError, self.send, seq_type([1, 2, 3, 4j, 5])) def test_list(self): self._test_sequence(list) self.assertReceivedEqualsSent([1, [2, [3, [4, 5]]]]) def test_tuple(self): self._test_sequence(tuple) self.assertReceivedEqualsSent((1, (2, (3, (4, 5)))), [1, [2, [3, [4, 5]]]]) def _test_mapping(self, map_type): def test(dict_val): self.assertReceivedEqualsSent(map_type(dict_val), dict_val) test({}) test({'a': 1}) test({'a': 1, 'b': 2.0, 'c': 'three'}) test({1: 'a', 2: 'b', 3: ['c', 'd', 'e']}) # Unconvertible key self.assertRaises(TypeError, self.send, {1: 'a', 2: 'b', 3j: 'c'}) # Unconvertible value self.assertRaises(TypeError, self.send, {'a': 1, 'b': 2, 'c': 3j}) def test_dict(self): self._test_mapping(dict) self.assertReceivedEqualsSent({'a': {'b': {'c': {'d': 'e'}}}}) def test_custom_mapping(self): class MyMapping(collections.Mapping): def __init__(self, d): self._d = d def __getitem__(self, key): return self._d[key] def __iter__(self): return iter(self._d) def __len__(self): return len(self._d) self.assertFalse(issubclass(MyMapping, dict)) self._test_mapping(MyMapping) def test_unconvertible_object(self): self.assertRaises(TypeError, self.send, object()) def test_bad_dict_key(self): # The key (1, 2) is converted on the other end into [1, 2], # which is unhashable and can't be used as a key self.send({(1, 2): 3}) self.assertIsInstance(self.receive(), TypeError) def test_infinite_recursion(self): l = [] l.append(l) self.assertRaises(RuntimeError, self.send, l) def test_numpy_bool_(self): self.assertReceivedEqualsSent(numpy.bool_(True), True) self.assertReceivedEqualsSent(numpy.bool_(False), False) def _test_numpy_integer(self, itype): type_info = numpy.iinfo(itype) longlong_info = numpy.iinfo(numpy.longlong) self.assertReceivedEqualsSent(itype(0), 0) self.assertReceivedEqualsSent(itype(1), 1) if type_info.min < 0: self.assertReceivedEqualsSent(itype(-2), -2) if type_info.max <= longlong_info.max: self.assertReceivedEqualsSent(itype(type_info.max), int(type_info.max)) else: self.assertReceivedEqualsSent(itype(longlong_info.max), int(longlong_info.max)) self.assertRaises(OverflowError, self.send, itype(longlong_info.max+1)) if type_info.min >= longlong_info.min: self.assertReceivedEqualsSent(itype(type_info.min), int(type_info.min)) else: self.assertReceivedEqualsSent(itype(longlong_info.min), int(longlong_info.min)) self.assertRaises(OverflowError, self.send, itype(longong_info.min-1)) def test_numpy_byte(self): self._test_numpy_integer(numpy.byte) def test_numpy_short(self): self._test_numpy_integer(numpy.short) def test_numpy_intc(self): self._test_numpy_integer(numpy.intc) def test_numpy_int_(self): self._test_numpy_integer(numpy.int_) def test_numpy_longlong(self): self._test_numpy_integer(numpy.longlong) def test_numpy_ubyte(self): self._test_numpy_integer(numpy.ubyte) def test_numpy_ushort(self): self._test_numpy_integer(numpy.ushort) def test_numpy_uintc(self): self._test_numpy_integer(numpy.uintc) def test_numpy_uint(self): self._test_numpy_integer(numpy.uint) def test_numpy_ulonglong(self): self._test_numpy_integer(numpy.ulonglong) def _test_numpy_floating(self, ftype): self.assertReceivedEqualsSent(ftype(0.0), 0.0) self.assertReceivedEqualsSent(ftype(1.0), 1.0) self.assertReceivedEqualsSent(ftype(-2.2), float(ftype(-2.2))) type_info = numpy.finfo(ftype) float_info = numpy.finfo(float) if type_info.max <= float_info.max: self.assertReceivedEqualsSent(ftype(type_info.max), float(type_info.max)) self.assertReceivedEqualsSent(ftype(type_info.min), float(type_info.min)) else: self.assertReceivedEqualsSent(ftype(float_info.max), float(float_info.max)) self.assertReceivedIsInf(ftype(float_info.max) * 2.0) self.assertReceivedEqualsSent(ftype(float_info.min), float(float_info.min)) self.assertReceivedIsInf(ftype(float_info.min) * 2.0) def test_numpy_half(self): self._test_numpy_floating(numpy.half) def test_numpy_single(self): self._test_numpy_floating(numpy.single) def test_numpy_float_(self): self._test_numpy_floating(numpy.float_) def test_numpy_longfloat(self): self._test_numpy_floating(numpy.longfloat) def test_numpy_bytes_(self): self.assertReceivedEqualsSent(numpy.bytes_(b'foo'), 'foo') def test_numpy_unicode_(self): self.assertReceivedEqualsSent(numpy.unicode_(u'foo'), str) def test_numpy_array(self): self.assertReceivedEqualsSent(numpy.array([]), []) self.assertReceivedEqualsSent(numpy.array([], dtype=numpy.single), []) self.assertReceivedEqualsSent(numpy.arange(10, dtype=numpy.ushort), list(range(10))) self.assertReceivedEqualsSent(
numpy.arange(10, dtype=numpy.single)
numpy.arange
""" .. module:: trainer :synopsis: Train the flow and perform sampling in latent space .. moduleauthor:: <NAME> <<EMAIL>> """ from __future__ import print_function from __future__ import division import os, sys import time import torch from torch.utils.data import DataLoader import numpy as np from tensorboardX import SummaryWriter from sklearn.model_selection import train_test_split import scipy.spatial from tqdm import tqdm import emcee import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from nnest.networks import SingleSpeed, FastSlow, BatchNormFlow from nnest.utils.logger import create_logger from nnest.trainer import Trainer class MultiTrainer(Trainer): def __init__(self, xdim, ndim, nslow=0, batch_size=100, flow='nvp', num_blocks=5, num_layers=2, oversample_rate=-1, train=True, load_model='', log_dir='logs', use_gpu=False, log=True ): self.device = torch.device( 'cuda' if use_gpu and torch.cuda.is_available() else 'cpu') self.x_dim = xdim self.z_dim = xdim self.batch_size = batch_size self.total_iters = 0 assert xdim > nslow nfast = xdim - nslow self.nslow = nslow if oversample_rate > 0: self.oversample_rate = oversample_rate else: self.oversample_rate = nfast / xdim def init_network(): if flow.lower() == 'nvp': if nslow > 0: self.netG = FastSlow(nfast, nslow, ndim, num_blocks, num_layers) else: self.netG = SingleSpeed(xdim, ndim, num_blocks, num_layers) else: raise NotImplementedError self.nparams = sum(p.numel() for p in self.netG.parameters()) if train and not load_model: if log_dir is not None: self.path = log_dir if not os.path.exists(os.path.join(self.path, 'models')): os.makedirs(os.path.join(self.path, 'models')) if not os.path.exists(os.path.join(self.path, 'data')): os.makedirs(os.path.join(self.path, 'data')) if not os.path.exists(os.path.join(self.path, 'chains')): os.makedirs(os.path.join(self.path, 'chains')) if not os.path.exists(os.path.join(self.path, 'plots')): os.makedirs(os.path.join(self.path, 'plots')) else: self.path = None else: self.path = os.path.join(log_dir, load_model) self.netG.load_state_dict(torch.load( os.path.join(self.path, 'models', 'netG.pt') )) self.optimizer = torch.optim.Adam( self.netG.parameters(), lr=0.0001, weight_decay=1e-6) if self.path is not None: self.writer = SummaryWriter(self.path) self.init_network = init_network self.init_network() print(self.netG) self.logger = create_logger(__name__) self.log = log def train( self, samples, max_iters=5000, log_interval=50, save_interval=50, noise=0.0, validation_fraction=0.05): assert samples.shape[1] == self.x_dim, samples.shape start_time = time.time() if self.path: fig, ax = plt.subplots() ax.scatter(samples[:, 0], samples[:, 1]) self.writer.add_figure('originals', fig, self.total_iters) np.save( os.path.join(self.path, 'data', 'originals.npy'), samples) if noise < 0: # compute distance to nearest neighbor kdt = scipy.spatial.cKDTree(samples) dists, neighs = kdt.query(samples, 2) training_noise = 0.5 * np.mean(dists) / self.x_dim else: training_noise = noise if self.log: self.logger.info('Number of training samples [%d] for [%d] variables' % (samples.shape[0], self.nparams)) self.logger.info('Training noise [%5.4f]' % training_noise) X_train, X_valid = train_test_split( samples, test_size=validation_fraction) train_tensor = torch.from_numpy(X_train.astype(np.float32)) train_dataset = torch.utils.data.TensorDataset(train_tensor) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=self.batch_size, shuffle=True) valid_tensor = torch.from_numpy(X_valid.astype(np.float32)) valid_dataset = torch.utils.data.TensorDataset(valid_tensor) valid_loader = torch.utils.data.DataLoader( valid_dataset, batch_size=X_valid.shape[0], shuffle=False, drop_last=True) best_validation_loss = float('inf') best_validation_epoch = 0 best_model = self.netG.state_dict() self.netGs = [] self.netGs_accepts = [] self.netGs_samples = [] self.netGs_init_x = [] stored = ' ' for epoch in range(1, max_iters + 1): self.total_iters += 1 train_loss = self._train( epoch, self.netG, train_loader, noise=training_noise) validation_loss = self._validate(epoch, self.netG, valid_loader) # 1) remember only if much better # 2) when performance is improving drastically at each epoch, avoid storing every epoch. if validation_loss < best_validation_loss - 1.0 and epoch >= best_validation_epoch + save_interval: best_validation_epoch = epoch best_validation_loss = validation_loss best_model = self.netG.state_dict() self.netGs.append(self.netG.state_dict()) self.netGs_accepts.append(0) self.netGs_samples.append(0) self.netGs_init_x.append(None) stored = '**' if epoch == 1 or epoch % log_interval == 0: print( 'Epoch: {} validation loss: {:6.4f} {}'.format( epoch, validation_loss, stored)) stored = ' ' #if epoch % save_interval == 0: if self.path: self.writer.add_scalar('loss', validation_loss, self.total_iters) if epoch % save_interval == 0: torch.save( self.netG.state_dict(), os.path.join(self.path, 'models', 'netG.pt%d' % epoch) ) if self.x_dim == 2: self._train_plot(self.netG, samples) self.netG.load_state_dict(best_model) def choose_netG(self, verbose=False): # compute accept probabilities # give initially equal acceptance probabilities if verbose: print("Sampling from networks:", ' '.join(['%4d/%4d' % (A, S) for A, S in zip(self.netGs_accepts, self.netGs_samples)]), end=" \r") sys.stdout.flush() probs = np.array([(A + 1.) / (S + 1) for A, S in zip(self.netGs_accepts, self.netGs_samples)]) probs /= probs.sum() i = np.random.choice(np.arange(len(probs)), p=probs) self.netG.load_state_dict(self.netGs[i]) #print("Network %d: %d/%d" % (i, self.netGs_accepts[i], self.netGs_samples[i])) return i def sample( self, mcmc_steps=20, alpha=1.0, dynamic=True, batch_size=1, loglike=None, init_x=None, logl=None, loglstar=None, transform=None, show_progress=False, plot=False, out_chain=None, max_prior=None, nwalkers=40): def transformed_logpost(z): assert z.shape == (self.x_dim,), z.shape x, log_det_J = self.netG(torch.from_numpy(z.reshape((1,-1))).float().to(self.device), mode='inverse') x = x.detach().cpu().numpy() lnlike = float(loglike(transform(x))) log_det_J = float(log_det_J.detach()) logprob = log_det_J + lnlike #print('Like=%.1f' % logprob, x) return logprob allsamples = [] alllatent = [] alllikes = [] allncall = 0 populations = [None for net in self.netGs] nsteps = 4 #nsamples = 200 // len(self.netGs_init_x) while allncall < mcmc_steps: neti = self.choose_netG(verbose = True) sampler = populations[neti] if sampler is None: z0 = np.random.normal(size=(nwalkers, self.x_dim)) if init_x is not None: batch_size = init_x.shape[0] z, _ = self.netG(torch.from_numpy(init_x).float().to(self.device)) z = z.detach() z0[:batch_size,:] = z sampler = emcee.EnsembleSampler(nwalkers=nwalkers, dim=self.x_dim, lnpostfn=transformed_logpost) pos, lnprob, rstate = sampler.run_mcmc(z0, nsteps) populations[neti] = sampler else: # advance population pos, lnprob, rstate = sampler.run_mcmc(sampler.chain[:,-1,:], lnprob0=sampler.lnprobability[:,-1], N=nsteps) alllatent.append(pos) alllikes.append(lnprob) allncall += nsteps * nwalkers x, log_det_J = self.netG(torch.from_numpy(pos).float().to(self.device), mode='inverse') x = x.detach().cpu().numpy() allsamples.append(x) ar = sampler.acceptance_fraction Nsamples = len(sampler.flatchain) #self.logger.info('Network %d sampler accepted: %.3f (%.d/%d)' % (neti, ar.mean(), ar.mean() * Nsamples, Nsamples)) self.netGs_accepts[neti] = int(ar.mean() * Nsamples) self.netGs_samples[neti] = Nsamples #print(np.shape(allsamples), np.shape(alllikes), np.shape(alllatent)) # Transpose so shape is (chain_num, iteration, dim) #samples = np.transpose(np.array(allsamples), axes=[1, 0, 2]) #latent = np.transpose(np.array(alllatent), axes=[1, 0, 2]) #likes = np.transpose(np.array(alllikes), axes=[1, 0]) samples = np.array(allsamples).reshape((1, -1, self.x_dim)) latent = np.array(alllatent).reshape((1, -1, self.x_dim)) likes = np.array(alllikes).reshape((1, -1)) print() ncall = allncall if self.path and plot: cmap = plt.cm.jet cmap.set_under('w', 1) fig, ax = plt.subplots() ax.hist2d(samples[0, :, 0], samples[0, :, 1], bins=200, cmap=cmap, vmin=1, alpha=0.2) #if self.writer is not None: # self.writer.add_figure('chain', fig, self.total_iters) plt.tight_layout() plt.savefig(os.path.join(self.path, 'plots', 'chain_%s.png' % self.total_iters)) plt.close() fig, ax = plt.subplots() ax.plot(likes[0, len(likes[0])//3:]) self.logger.info('lnLike: %d+-%d -> %d+-%d' % ( alllikes[len(alllikes)//3].mean(), alllikes[len(alllikes)//3].std(), alllikes[-1].mean(), alllikes[-1].std() )) #if self.writer is not None: # self.writer.add_figure('likeevol', fig, self.total_iters) plt.tight_layout() plt.savefig(os.path.join(self.path, 'plots', 'likeevol_%s.png' % self.total_iters)) plt.close() return samples, likes, latent, alpha, ncall def subsample( self, mcmc_steps=20, alpha=1.0, dynamic=True, batch_size=1, loglike=None, init_x=None, logl=None, loglstar=None, transform=None, show_progress=False, plot=False, out_chain=None, max_prior=None, max_start_tries=100): self.netG.eval() samples = [] latent = [] likes = [] if transform is None: def transform(x): return x if init_x is not None: batch_size = init_x.shape[0] z, _ = self.netG(torch.from_numpy(init_x).float().to(self.device)) z = z.detach() # Add the backward version of x rather than init_x due to numerical precision x, _ = self.netG(z, mode='inverse') x = x.detach().cpu().numpy() if logl is None: logl = loglike(transform(x)) else: if logl is None: for i in range(max_start_tries): z = torch.randn(batch_size, self.z_dim, device=self.device) x, _ = self.netG(z, mode='inverse') x = x.detach().cpu().numpy() logl = loglike(transform(x)) if np.all(logl > -1e30): break if i == max_start_tries - 1: raise Exception('Could not find starting value') else: z = torch.randn(batch_size, self.z_dim, device=self.device) x, _ = self.netG(z, mode='inverse') x = x.detach().cpu().numpy() logl = loglike(transform(x)) samples.append(x) likes.append(logl) iters = range(mcmc_steps) if show_progress: iters = tqdm(iters) scale = alpha accept = 0 reject = 0 ncall = 0 if out_chain is not None: if batch_size == 1: files = [open(out_chain + '.txt', 'w')] else: files = [open(out_chain + '_%s.txt' % (ib + 1), 'w') for ib in range(batch_size)] for i in iters: dz = torch.randn_like(z) * scale if self.nslow > 0 and np.random.uniform() < self.oversample_rate: fast = True dz[:, 0:self.nslow] = 0.0 else: fast = False z_prime = z + dz # Jacobian is det d f^{-1} (z)/dz x, log_det_J = self.netG(z, mode='inverse') x_prime, log_det_J_prime = self.netG(z_prime, mode='inverse') x = x.detach().cpu().numpy() x_prime = x_prime.detach().cpu().numpy() delta_log_det_J = (log_det_J_prime - log_det_J).detach() log_ratio_1 = delta_log_det_J.squeeze(dim=1) # Check not out of prior range if max_prior is not None: prior = np.logical_or( np.abs(x) > max_prior, np.abs(x_prime) > max_prior) idx = np.where([np.any(p) for p in prior]) log_ratio_1[idx] = -np.inf rnd_u = torch.rand(log_ratio_1.shape, device=self.device) ratio = log_ratio_1.exp().clamp(max=1) mask = (rnd_u < ratio).int() logl_prime = np.full(batch_size, logl) # Only evaluate likelihood if prior and volume is accepted if loglike is not None and transform is not None: for idx, im in enumerate(mask): if im: if not fast: ncall += 1 lp = loglike(transform(x_prime[idx])) if loglstar is not None: if
np.isfinite(lp)
numpy.isfinite
#! /usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2019 <NAME> <<EMAIL>> # License: MIT """ jagged.core ~~~~~~~~~~~ Implementation for `JaggedArray`, the core data structure of jagged array. """ from __future__ import annotations from collections.abc import Iterable from functools import partial from typing import Any from typing import Optional import numpy as np from .typing import ArrayLike from .typing import AxisLike from .typing import DtypeLike from .typing import Number from .typing import ShapeLike from .typing import SliceLike from .utils import infer_nan from .utils import is_float class JaggedArray(object): """ Object supporting arrays with jagged shapes off the zero'th axis. """ def __init__(self, data: ArrayLike, shape: ArrayLike): """ Initialize a jagged array. Args: data: The data as a one dimensional array. shape: The shape of the data along the zero'th axis. """ self._data = self.__cumsum = self._shape = None self._data = np.array(data) self._shape = np.array(shape) self._verify_integrity() @property def data(self) -> np.ndarray: """ 1D array storing all entries of the array. """ return self._data @data.setter def data(self, val: ArrayLike): old_data = self.data self._data = val try: self._verify_integrity() except ValueError: self._data = old_data raise @property def shape(self) -> np.ndarray: """ the shapes of subarrays along the zero'th axis. dims: (D, m) where D is the number of dimensions and m is the length along the zero'th axis. """ return self._shape @shape.setter def shape(self, val: ShapeLike): val = np.asarray(val) old_shape = self.shape self._shape = val try: self._verify_integrity() except ValueError: self._shape = old_shape raise @property def sizes(self) -> np.ndarray: """ the sizes of the subarrays along the zero'th axis. dims: (m) where m is the length along along the zero'th axis. """ return self.shape.prod(axis=0) @property def size(self) -> int: """ the number of elements in the jagged array. """ return self.sizes.sum() @property def nbytes(self) -> int: """ the number of bytes taken up by the jagged array. """ return self.data.nbytes + self.shape.nbytes @property def ndim(self) -> int: """ the number of dims. """ return 1 + len(self.shape) @property def dtype(self) -> DtypeLike: """ the dtype of the contained data. """ return self.data.dtype @property def limits(self) -> np.ndarray: """ the shape of the largest array for each dimension. """ return np.insert(self.shape.max(axis=1), 0, self.shape.shape[1]) @property def _cumsum(self) -> np.ndarray: """ indices into the data along the zero'th axis. """ if not hasattr(self, "__cumsum"): self.__cumsum = np.insert(np.cumsum(self.sizes), 0, 0) return self.__cumsum @classmethod def from_aoa(cls, arr: np.ndarray) -> JaggedArray: """ Create a jagged array from a numpy array of arrays. Args: arr: Numpy array of arrays to convert. Examples: >>> arr = np.array([np.array([0, 1, 2]), ... np.array([3, 4]), ... np.array([5, 6, 7])]) >>> JaggedArray.from_aoa(arr) JaggedArray(data=[0 1 2 3 4 5 6 7], shape=[[3 2 3]], dtype=int64) """ return cls( np.concatenate([sub.flatten() for sub in arr]), np.array([sub.shape for sub in arr]).T, ) @classmethod def from_masked(cls, arr: np.masked.masked_array) -> JaggedArray: """ Create a jagged array from a masked numpy array. Args: arr: Masked numpy array to convert. Examples: >>> arr = np.ma.masked_array(np.array([[0, 1, 2], ... [3, 4, 0], ... [5, 0, 0], ... [6, 7, 8]]), ... np.array([[False, False, False], ... [False, False, True], ... [False, True, True], ... [False, False, False]])) >>> JaggedArray.from_masked(arr) JaggedArray(data=[0 1 2 3 4 5 6 7 8], shape=[[3 2 1 3]], dtype=int64) Notes: The first masked value in a given direction is assumed to be the end of the array. """ return cls._from_arr_and_mask(arr.compressed(), arr.mask) # TODO: add check that mask is jagged (i.e. no holes) @classmethod def _from_arr_and_mask(cls, arr: np.ndarray, mask: np.ndarray) -> JaggedArray: def get_shape(mask, axis=1): res = (~mask).argmin(axis=axis) res = res.max(axis=-1) if res.ndim > 2 else res res[res == 0] = mask.shape[axis] return res shapes = np.vstack([get_shape(mask, axis=i) for i in range(1, len(mask.shape))]) return cls(arr, shapes) @classmethod def from_array( cls, arr: np.ndarray, masked_value: Optional[Any] = None ) -> JaggedArray: """ Create a jagged array from a (full) array with a masked value. Args: arr: array to convert. masked_value: The masked value. If no value is passed and the array is compatible with float, this will be `nan`, otherwise `None`. Examples: >>> arr = np.array([[ 0., 1., 2.], ... [ 3., 4., np.nan], ... [ 5., np.nan, np.nan], ... [ 6., 7., 8.]]) >>> JaggedArray.from_array(arr).astype(np.int64) JaggedArray(data=[0 1 2 3 4 5 6 7 8], shape=[[3 2 1 3]], dtype=int64) """ if masked_value is None: masked_value = infer_nan(arr.dtype) if masked_value == np.nan: mask = np.isnan(arr) else: mask = np.equal(arr, masked_value) return cls._from_arr_and_mask(arr[~mask], mask) @classmethod def from_format(cls, arr, format, **kwargs): """ Instantiate a JaggedArray from a jagged format. Args: arr: array to convert. Keyword Args: are passed onto the initializer. Returns: JaggedArray """ try: return getattr(cls, "from_" + format)(arr, **kwargs) except AttributeError: raise ValueError("{} is not a valid jagged format.".format(format)) def copy(self) -> JaggedArray: """ copy the jagged array. """ return self.__class__(self.data.copy(), self.shape.copy()) def astype(self, dtype: DtypeLike, copy=True) -> JaggedArray: """ the array with the data as a given data type. Args: dtype: the numpy dtype to use to represent data. copy: whether to copy the data, or make the change in place. """ res = self.copy() if copy else self res.data = self.data.astype(dtype) return res def _verify_integrity(self): """ Verify that the jagged array is acceptable. This checks that: - the data is 1D - the shape is 2D - the number of entries match the sizes of the array. Returns: bool """ if len(self.data.shape) != 1: raise ValueError( "Data array must be one dimensional " "(is {})".format(len(self.data.shape)) ) if len(self.shape.shape) != 2: raise ValueError( "Shape array must be two dimensional " "(is {})".format(len(self.shape.shape)) ) shape_size, data_size = self._cumsum[-1], self.data.size if not shape_size == data_size: raise ValueError( "Size of data ({data_size}) does not match that " "of the given shapes ({shape_size}).".format( data_size=data_size, shape_size=shape_size ) ) def _mask(self) -> np.ndarray: """ the mask for a dense array for the given shapes. """ mask = np.ones(self.limits, dtype=bool) for ax, shape, limit in zip( range(1, len(self.limits)), self.shape, self.limits[1:] ): ax_mask = np.arange(limit) < np.expand_dims(shape, 1) new_shape = np.ones(len(self.limits), dtype=int) new_shape[0], new_shape[ax] = self.limits[0], limit mask = mask & ax_mask.reshape(*new_shape) return mask def to_masked(self) -> np.mask.masked_array: """ convert the array to a dense masked array. Examples: >>> JaggedArray(np.arange(8), [[3, 2, 3]]).to_masked() masked_array(data = [[0 1 2] [3 4 --] [5 6 7]], mask = [[False False False] [False False True] [False False False]], fill_value = 999999) >>> JaggedArray(np.arange(33), np.array([[3, 2, 3], ... [3, 6, 4]])).to_masked() masked_array(data = [[[0 1 2 -- -- --] [3 4 5 -- -- --] [6 7 8 -- -- --]] [[9 10 11 12 13 14] [15 16 17 18 19 20] [-- -- -- -- -- --]] [[21 22 23 24 -- --] [25 26 27 28 -- --] [29 30 31 32 -- --]]], mask = [[[False False False True True True] [False False False True True True] [False False False True True True]] [[False False False False False False] [False False False False False False] [ True True True True True True]] [[False False False False True True] [False False False False True True] [False False False False True True]]], fill_value = 999999) """ mask = self._mask() res = np.ma.masked_all(self.limits, dtype=self.dtype) res[mask] = self.data return res def to_aoa(self) -> np.ndarray: """ Return a numpy array of arrays. Examples: >>> JaggedArray(np.arange(8), np.array([[3, 2, 3]])).to_aoa() array([array([0, 1, 2]), array([3, 4]), array([5, 6, 7])], dtype=object) >>> JaggedArray(np.arange(33), np.array([[3, 2, 3], ... [3, 6, 4]])).to_aoa() array([array([[0, 1, 2], [3, 4, 5], [6, 7, 8]]), array([[ 9, 10, 11, 12, 13, 14], [15, 16, 17, 18, 19, 20]]), array([[21, 22, 23, 24], [25, 26, 27, 28], [29, 30, 31, 32]])], dtype=object) """ arr = np.array_split(self.data, self._cumsum[1:]) return np.array([res.reshape(*shape) for res, shape in zip(arr, self.shape.T)]) def to_array(self, fill_value: Optional[Any] = None) -> np.ndarray: """ Convert to a dense array. Args: fill_value: The value to fill in the array. If `None` (as default) and the array can be converted to floats, we will use `np.nan`. Examples: >>> JaggedArray(np.arange(8), np.array([[3, 2, 3]])).to_array() array([array([ 0., 1., 2.]), array([ 3., 4., nan]), array([ 5., 6., 7.])], dtype=np.float64) """ if fill_value is None: fill_value = infer_nan(self.dtype) tmp = self.astype(float) if is_float(fill_value) else self return tmp.to_masked().filled(fill_value=fill_value) def to_format(self, format: str, **kwargs): """ Convert the jagged array to a different format. This is a convenience function around `to_masked`, `to_aoa`, etc. Args: format: The type of array. Returns: JaggedArray | np.array """ try: return getattr(self, "to_" + format)(**kwargs) except AttributeError: raise ValueError("{} is not a valid jagged format.".format(format)) asformat = to_format # consistency with scipy.sparse def __eq__(self, other: JaggedArray) -> bool: """ Whether one JaggedArray equals another. """ return np.array_equal(self.data, other.data) and np.array_equal( self.shape, other.shape ) @classmethod def from_broadcast(cls, arr: np.ndarray, shape: ShapeLike) -> JaggedArray: return cls(np.repeat(arr, shape.prod(axis=0)), shape) def __array__(self, *args, **kwargs): """ Numpy array interface for ufuncs. This just gives ufuncs the data to operate on. """ return self.data def __array_wrap__(self, result, **kwargs): """ Numpy array interface for ufuncs. This takes the result of a ufunc and rejaggedizes it. """ return self.__class__(result, self.shape) def _unitary_op(self, op): return self.__class__(op(self.data), self.shape) def __neg__(self): return self._unitary_op(np.negative) def _binary_elementwise_op(self, other, op): if isinstance(other, JaggedArray): if not np.array_equal(other.shape, self.shape): raise ValueError( "operands cound not be broadcast " "together with shapes {} and " "{}.".format(self.shape, other.shape) ) return self.__class__(op(self.data, other.data), self.shape) else: other = np.asanyarray(other) if other.ndim == 2: # try to broadcast if other.shape[0] != len(self): raise ValueError( "operands could not be broadcast " "together with zero-axis lengths {} and " "{}.".format(len(self), other.shape[0]) ) return self._binary_elementwise_op( self.from_broadcast(other, self.shape), op ) elif other.ndim > 2: raise ValueError( "Could not broadcast dense array of shape {} " "to jagged array.".format(other.shape) ) # otherwise we have single return self.__class__(op(self.data, other), self.shape) def __add__(self, other): """ Add Jagged by a value. """ return self._binary_elementwise_op(other, np.add) def __mul__(self, other): """ Multiply JaggedArray by a value. """ return self._binary_elementwise_op(other, np.multiply) def __truediv__(self, other): """ True divide a JaggedArray by a value. """ return self._binary_elementwise_op(other, np.true_divide) def __floordiv__(self, other): return self._binary_elementwise_op(other, np.floor_divide) def __sub__(self, other): return self._binary_elementwise_op(other, np.subtract) def __pow__(self, power, modulo=None): if modulo: raise NotImplementedError("modulo argument not implemented.") return self._binary_elementwise_op(power, np.power) def __mod__(self, other): return self._binary_elementwise_op(other, np.mod) def clip(self, a_min=Optional[Number], a_max=Optional[Number]): """ Clip the values of the array. Args: a_min: Lower bound of clipping interval. Values below this will be set to this value. a_max: Upper bound of clipping interval. Values above this will be set to this value. Examples: >>> JaggedArray(np.arange(7), [2, 3, 2]).clip(2, 5) JaggedArray(data=[ 2 2 2 3 4 5 5], shape=[[2, 3, 2]], dtype=int64) """ return self._unitary_op(partial(np.clip, a_min=a_min, a_max=a_max)) def conjugate(self) -> JaggedArray: """ Return the element-wise complex conjugate. The complex conjugate of a number is obtained by changing the sign of its imaginary part. Returns: JaggedArray Examples: >>> JaggedArray([np.complex(0, 1), np.complex(1, 1), np.complex(1, -1)], [[2, 1]]).conjugate() JaggedArray(data=[0.-1.j 1.-1.j 1.+j], shape=[[2 1]], dtype=complex128) """ return self._unitary_op(np.conjugate) conj = conjugate def fill(self, value: Any) -> JaggedArray: """ Fill the array with a scalar value. Args: value (any): All elements of `a` will be assigned this value. Examples: >>> ja = JaggedArray(np.arange(7), [[3, 2, 3]]) >>> ja.fill(0) >>> ja JaggedArray(data=[0 0 0 0 0 0 0], shape=[[3 2 3]], dtype=int64) """ self.data[...] = value @property def flat(self) -> np.ndarray: return self.data.flat def flatten(self) -> np.ndarray: """ Flatten the array. This creates a copy of the data. Examples: >>> ja = JaggedArray(np.arange(7), [[3, 2, 3]]) >>> flattened = ja.flatten() >>> flattened array([0, 1, 2, 3, 4, 5, 6]) >>> flattened[...] = 0 >>> ja JaggedArray(data=[0 0 0 0 0 0 0], shape=[[3 2 3]], dtype=int64) """ return self.data.copy() def ravel(self) -> np.ndarray: """ Ravel the array. Creates a view of the data. Examples: >>> ja = JaggedArray(np.arange(7), [[3, 2, 3]]) >>> ravelled = ja.ravel() >>> ravelled array([0, 1, 2, 3, 4, 5, 6]) >>> ravelled[...] = 0 >>> ja JaggedArray(data=[0 0 0 0 0 0 0], shape=[[3 2 3]], dtype=int64) """ return self.data @property def imag(self) -> JaggedArray: """ Get the imaginary part of the array """ return self._unitary_op(np.imag) @imag.setter def imag(self, values): # TODO: broadcasting # TODO: take a jagged array self.data.imag = values @property def real(self): return self._unitary_op(np.real) @real.setter def real(self, values): # TODO: broadcasting # TODO: take a jagged array self.data.real = values def _reduce_op(self, op, axis=None, **kwargs): # easy if axis is none if axis is None: return op(self.data) aoa = self.to_aoa() axis = np.sort(np.atleast_1d(axis)) # then it is applying to all. Will get a dense array. if np.array_equal(axis, np.arange(1, self.ndim)): return np.asarray([op(arr) for arr in aoa]) if axis[0] == 0: raise ValueError( "reduce operations through the zero'th axis are " "not defined." ) return JaggedArray.from_aoa( np.array([op(arr, axis=tuple(axis - 1)) for arr in aoa]) ) def all(self, **kwargs): return self._reduce_op(np.all, **kwargs) def any(self, **kwargs): return self._reduce_op(np.any, **kwargs) def argmax(self, **kwargs): return self._reduce_op(np.argmax, **kwargs) def argmin(self, **kwargs): return self._reduce_op(np.argmin, **kwargs) def cumprod(self, **kwargs): return self._reduce_op(np.cumprod, **kwargs) def cumsum(self, **kwargs): return self._reduce_op(np.cumsum, **kwargs) def max(self, **kwargs): return self._reduce_op(np.max, **kwargs) def mean(self, **kwargs): return self._reduce_op(np.mean, **kwargs) def min(self, **kwargs): return self._reduce_op(np.min, **kwargs) def sum(self, **kwargs): return self._reduce_op(np.sum, **kwargs) def prod(self, **kwargs): return self._reduce_op(np.prod, **kwargs) def ptp(self, **kwargs): return self._reduce_op(np.ptp, **kwargs) def put(self, indices, values): raise NotImplementedError("put for a jagged array is not supported.") def repeat(self, n): raise NotImplementedError("repeat for a jagged array is not supported.") def reshape(self, shape: ShapeLike) -> JaggedArray: """ reshape the array Args: shape: the new shape to add Examples: >>> ja = JaggedArray(np.arange(8), [[3, 2, 3]]) >>> ja.reshape([[2, 3, 3]]) JaggedArray(data=[0 1 2 3 4 5 6 7], shape=[[2 3 3]], dtype=int64) >>> ja.reshape([[3, 3, 3]]) ValueError: total size of new array must be unchanged. """ shape = np.asarray(shape) if not np.array_equal(np.prod(shape, axis=0), np.prod(self.shape, axis=0)): raise ValueError("total size of new array must be unchanged.") else: data = np.concatenate( [sub.reshape(shp).flatten() for sub, shp in zip(self.to_aoa(), shape.T)] ) new = self[...] new.data = data new.shape = shape return new def resize(self, shape: ShapeLike) -> JaggedArray: """ resize the arrays """ new = self[...] size =
np.prod(shape, axis=1)
numpy.prod
from __future__ import division import os import sys import array import struct import io import math import numpy as np import colorsys import pydicom from pydicom.dataset import Dataset, FileDataset import pydicom.uid import skimage as ski import skimage.io import skimage.transform import skimage.draw import skimage.morphology import warnings from Util import * from File import * NORMALIZE_NO = 0 NORMALIZE_SIMPLE = 1 NORMALIZE_CONTRAST_STRETCHING = 2 # NORMALIZE_ADAPTATIVE_EQUALIZATION = 3 # _image type should be np.float32 def NormalizeFrame(_image, _normalize = NORMALIZE_NO): if _normalize == NORMALIZE_SIMPLE: min = np.min(_image) max = np.max(_image) return (_image - min)/(max - min) elif _normalize == NORMALIZE_CONTRAST_STRETCHING: p2, p98 = np.percentile(_image, (2, 98)) return ski.exposure.rescale_intensity(_image, in_range=(p2, p98), out_range=(0,1)) # elif _normalize == NORMALIZE_ADAPTATIVE_EQUALIZATION # return ski.exposure.equalize_adapthist(_image, clip_limit=0.03): return _image def GetMaxValue(_pixelSize): if _pixelSize == 8: return 255 elif _pixelSize == 16: return 65535 elif _pixelSize == 10: return 1023 else: print("GetMaxValue():: WARNING NOT IMPLEMENTED _pixelSize = " + str(_pixelSize)) return 65535 def GetFloat32NormalizedFrame(_image, _pixelSize, _normalize = NORMALIZE_NO): _image = _image.astype(np.float32) if _normalize != NORMALIZE_NO: return NormalizeFrame(_image, _normalize) return _image/GetMaxValue(_pixelSize) def ReadOnlyDicomInfo(_filename): dcmInfo = pydicom.read_file(_filename, stop_before_pixels = True, defer_size = 16) # print(dcmInfo.Columns) # print(dcmInfo.Rows) # print(dcmInfo.NumberOfFrames) # print(dcmInfo.BitsStored) return dcmInfo def ReadDicomFrame(_filename, _frameId): # print(_filename + " " + str(_frameId)) file = open(_filename, "rb") # TODO use OpenFile here? dcmInfo = pydicom.read_file(file, stop_before_pixels = True, defer_size = 16) if _frameId < 0 and _frameId >= dcmInfo.NumberOfFrames: print("ReadDicomFrame():: ERROR _frameId should be inferior dcmInfo.NumberOfFrames") # print(dcmInfo.BitsStored) if dcmInfo.BitsStored == 16 or dcmInfo.BitsStored == 10: pixelType = "H" pixelSize = 2 # dcmInfo.BitsStored//8 elif dcmInfo.BitsStored == 8: pixelType = "B" pixelSize = 1 else: print("ReadDicomFrame():: WARNING NOT IMPLEMENTED dcmInfo.BitsStored = " + str(dcmInfo.BitsStored)) sizeImageInByte = dcmInfo.Columns*dcmInfo.Rows*pixelSize # print(sizeImageInByte) # print(file.tell()) # skip the dicom tag (0x7fe0, 0x0010) 4 bytes, # then the VR info if we have "explicit VR" (if not, nothing is there in "implicit VR") 4 bytes (if not 0 byte): (VR_OW = 0x574f for example) # finally the length of the sequence 4 bytes # u16 = struct.unpack('H', file.read(2))[0] # print(hex(u16) + " " + str(u16)) # u16 = struct.unpack('H', file.read(2))[0] # print(hex(u16) + " " + str(u16)) # if dcmInfo.is_implicit_VR == False: # s32 = struct.unpack('i', file.read(4))[0] # print(hex(s32) + " " + str(s32)) # s32 = struct.unpack('i', file.read(4))[0] # print(hex(s32) + " " + str(s32)) if dcmInfo.is_implicit_VR == True: file.seek(8, io.SEEK_CUR) else: file.seek(12, io.SEEK_CUR) file.seek(_frameId*sizeImageInByte, io.SEEK_CUR) package = file.read(sizeImageInByte) # print(len(package)) # seems faster than... image = array.array(pixelType) if sys.version_info < (3,0): image.fromstring(package) # DEPRECATED else: image.frombytes(package) # ...this # n = dcmInfo.Columns*dcmInfo.Rows # image = struct.unpack(str(n)+pixelType, package) # image = np.array(image).reshape(dcmInfo.Columns, dcmInfo.Rows) # print(sizeImageInByte) # print(np.array(image).shape) # print(np.array(image).dtype) image = np.array(image).reshape(dcmInfo.Rows, dcmInfo.Columns) file.close() # TODO use CloseFile here? return image, dcmInfo def GetFloat32DicomFrame(_filename, _frameId, _normalize = NORMALIZE_NO): image, dcmInfo = ReadDicomFrame(_filename, _frameId) return GetFloat32NormalizedFrame(image, dcmInfo.BitsStored, _normalize) # save a X-ray sequence into dicom format, _sequence is numpy array with the following shape (NumberOfFrames, Rows, Columns) def SaveDicomSequence(_filename, _sequence): file_meta = Dataset() # file_meta.MediaStorageSOPClassUID = '1.2.840.10008.5.1.4.1.1.2' # CT Image Storage file_meta.MediaStorageSOPClassUID = '1.2.3.4.5.1.4.1.1.2' # need valid UID here for real work file_meta.MediaStorageSOPInstanceUID = "1.2.3" # need valid UID here for real work file_meta.ImplementationClassUID = "1.2.3.4" # need valid UIDs here # Create the FileDataset instance (initially no data elements, but file_meta supplied) ds = FileDataset(_filename, {}, file_meta=file_meta, preamble=b"\0" * 128) # Add the data elements -- not trying to set all required here. Check DICOM standard # ds.PatientName = "Test^Firstname" # ds.PatientID = "123456" # Set the transfer syntax ds.is_little_endian = True ds.is_implicit_VR = True # implicit VR (0002,0010) TransferSyntaxUID: 1.2.840.10008.1.2 # ds.is_implicit_VR = False # explicit VR (0002,0010) TransferSyntaxUID: 1.2.840.10008.1.2.1 # Set creation date/time # dt = datetime.datetime.now() # ds.ContentDate = dt.strftime('%Y%m%d') # timeStr = dt.strftime('%H%M%S.%f') # long format with micro seconds # ds.ContentTime = timeStr ds.SamplesPerPixel = 1 ds.PhotometricInterpretation = "MONOCHROME2" ds.PixelRepresentation = 0 ds.HighBit = 15 ds.BitsStored = 16 ds.BitsAllocated = 16 if sys.version_info < (3,0): ds.SmallestImagePixelValue = '\\x00\\x00' ds.LargestImagePixelValue = '\\xff\\xff' else: ds.SmallestImagePixelValue = (0).to_bytes(2, byteorder='little') ds.LargestImagePixelValue = (65535).to_bytes(2, byteorder='little') ds.Columns = _sequence.shape[2] ds.Rows = _sequence.shape[1] ds.NumberOfFrames = _sequence.shape[0] if _sequence.dtype != np.uint16: print("warning _sequence.dtype != np.uint16") _sequence = _sequence.astype(np.uint16) ds.PixelData = _sequence.tostring() ds.save_as(_filename) # Write as a different transfer syntax # ds.file_meta.TransferSyntaxUID = pydicom.uid.ExplicitVRBigEndian # XXX shouldn't need this but pydicom 0.9.5 bug not recognizing transfer syntax # ds.is_little_endian = False # ds.is_implicit_VR = False # print("Writing test file as Big Endian Explicit VR", filename2) # ds.save_as(filename2) def LoadImage(_path): return ski.io.imread(_path) def SaveImage(_path, _buffer): with warnings.catch_warnings(): warnings.simplefilter("ignore") ski.io.imsave(_path, _buffer) # ski.io.imsave(_path, _buffer) def StackImagesMultiChan(_imgs, _columns, _rows): Xid = 2 Yid = 3 bigImage = np.zeros((_imgs.shape[1], _rows*_imgs.shape[Yid], _columns*_imgs.shape[Xid]), dtype=_imgs.dtype) # for index, img in enumerate(_imgs): for index in range(_columns*_rows): if index >= len(_imgs): break i = int(index/_columns) j = index%_columns for chan in range(_imgs.shape[1]): bigImage[chan, i*_imgs.shape[Yid]:(i+1)*_imgs.shape[Yid], j*_imgs.shape[Xid]:(j+1)*_imgs.shape[Xid]] = _imgs[index][chan][...] return bigImage def SaveSetImagesMultiChan(_path, _imgs, _columns, _rows): image = StackImagesMultiChan(_imgs, _columns, _rows) image = np.moveaxis(image, 0, -1) image = image*255 image = image.astype(np.uint8) SaveImage(_path, image) def ConcatImagesAndSave(_imageNameList, _concatImageName, _sizeX, _sizeY, _columns, _rows): imageList = np.zeros((len(_imageNameList), _sizeY, _sizeX, 3), dtype = np.uint8) for i in range(len(_imageNameList)): if IsFileExist(_imageNameList[i]) == True: imageList[i][...] = LoadImage(_imageNameList[i]) imageList = np.rollaxis(imageList, 3, 1) concatImage = StackImagesMultiChan(imageList, _columns, _rows) imageList = None concatImage = np.moveaxis(concatImage, 0, -1) SaveImage(_concatImageName, concatImage) def GrayToRGB(_image): image = np.empty((3, _image.shape[0], _image.shape[1]), dtype = _image.dtype) image[0][...] = _image[...] image[1][...] = _image[...] image[2][...] = _image[...] return np.moveaxis(image, 0, -1) def GrayToRGBSet(_imageSet): imageSet = np.empty((3, _imageSet.shape[0], _imageSet.shape[1], _imageSet.shape[2]), dtype = _imageSet.dtype) for i in range(len(_imageSet)): imageSet[0][i] = _imageSet[i][...] imageSet[1][i] = _imageSet[i][...] imageSet[2][i] = _imageSet[i][...] return
np.moveaxis(imageSet, 0, -1)
numpy.moveaxis
__author__ = "<NAME>" __copyright__ = "Sprace.org.br" __version__ = "1.0.0" import os import math import numpy as np import datetime as dt from enum import Enum from scipy.spatial import distance import tensorflow as tf import keras.backend as K #from keras.backend.tensorflow_backend import set_session from keras.models import Sequential, load_model from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.utils import plot_model from core.utils.utils import * from core.models.gaussian_loss import gaussian_loss, gaussian_nll class BagOfHits(Enum): All=1, Track=2, Layer=3 class BaseModel(): def __init__(self, configs): self.model = Sequential() self.name = configs['model']['name'] self.normalise = configs['data']['normalise'] self.cylindrical = configs['data']['cylindrical'] self.epochs = configs['training']['epochs'] self.batch_size = configs['training']['batch_size'] self.validation = configs['training']['validation'] self.earlystopping = configs['training']['earlystopping'] self.stopped_epoch = 0 path_to, filename = os.path.split(configs['data']['filename']) #print(get_unique_name(filename)) #self.orig_ds_name = configs['data']['filename'] self.orig_ds_name = filename self.encryp_ds_name = get_unique_name(self.orig_ds_name) self.decryp_ds_name = get_decryp_name(self.encryp_ds_name) #print(self.encryp_ds_name) if self.cylindrical: coord = 'cylin' else: coord = 'xyz' # set unique Id identification self.save_fnameh5 = os.path.join(configs['paths']['bin_dir'], 'model-%s-%s-coord-%s-normalise-%s-epochs-%s-batch-%s.h5' % ( self.name, self.encryp_ds_name, coord, str(self.normalise).lower(), self.epochs, self.batch_size)) print(self.save_fnameh5) self.save_fname = os.path.join(configs['paths']['save_dir'], 'architecture-%s.png' % self.name) self.save = configs['training']['save_model'] if configs['training']['use_gpu'] == True: #if tf.test.is_gpu_available(): gpus = tf.config.experimental.list_physical_devices('GPU') if gpus: try: # Currently, memory growth needs to be the same across GPUs for gpu in gpus: tf.config.experimental.set_memory_growth(gpu, True) print('[Model] Set memory growth for %s to True', gpu) logical_gpus = tf.config.experimental.list_logical_devices('GPU') print("[Model] ", len(gpus), "Physical GPUs,", len(logical_gpus), "Logical GPUs") except RuntimeError as e: # Memory growth must be set before GPUs have been initialized print(e) else: print('No GPU configured.') pass # if configs['training']['use_gpu'] == True: # #config = tf.ConfigProto( device_count = {'GPU': 0 , 'CPU': 0} ) # config = tf.ConfigProto() # config.gpu_options.allow_growth = True # sess = tf.Session(config=config) # set_session(sess) # tf.device('/gpu:0') # else: # config=tf.ConfigProto(log_device_placement=True) # sess = tf.Session(config=config) # set_session(sess) #set_random_seed(42) tf.compat.v1.set_random_seed(0) def load_model(self): if self.exist_model(self.save_fnameh5): print('[Model] Loading model from file %s' % self.save_fnameh5) self.model = load_model(self.save_fnameh5, custom_objects={'gaussian_loss': gaussian_loss, 'gaussian_nll': gaussian_nll}) return True else: print('[Model] Can not load the model from file %s' % self.save_fnameh5) return False def exist_model(self, filepath): if os.path.exists(filepath): return True return False def save_architecture(self, filepath): plot_model(self.model, to_file=filepath, show_shapes=True) print('[Model] Model Architecture saved at %s' % filepath) def save_model(self, filepath): self.model.save(filepath) print('[Model] Model for inference saved at %s' % filepath) def train(self, x, y, epochs, batch_size, validation, shuffle=False, verbose=False, callbacks=None): timer = Timer() timer.start() print('[Model] Training Started') print('[Model] %s epochs, %s batch size' % (epochs, batch_size)) #print('[Model] Shape of data train: ', x.shape) #save_fname = os.path.join(save_dir, '%s-e%s.h5' % (dt.datetime.now().strftime('%d%m%Y-%H%M%S'), str(epochs))) if callbacks is None: print('DEBUG') if self.earlystopping: callbacks = [ EarlyStopping(monitor='loss', mode='min', verbose=1), ModelCheckpoint(filepath=self.save_fnameh5, monitor='val_loss', mode='min', save_best_only=True) ] else: callbacks = [ ModelCheckpoint(filepath=self.save_fnameh5, monitor='val_loss', mode='min', save_best_only=True) ] else: pass history = self.model.fit( x, y, verbose=verbose, validation_split=validation, epochs=epochs, batch_size=batch_size, shuffle=shuffle, callbacks=callbacks ) if self.save == True: self.save_model(self.save_fnameh5) # what epocks the algorith stopped if self.earlystopping: self.stopped_epoch = callbacks[0].stopped_epoch print('[Model] Model training stopped at %s epoch' % self.stopped_epoch) print('[Model] Training Completed. Model h5 saved as %s' % self.save_fnameh5) print('[Model] Model train with structure:', self.model.inputs) timer.stop() return history def train_generator(self, data_gen, epochs, batch_size, steps_per_epoch, save_dir): timer = Timer() timer.start() print('[Model] Training Started') print('[Model] %s epochs, %s batch size, %s batches per epoch' % (epochs, batch_size, steps_per_epoch)) save_fname = os.path.join(save_dir, '%s-e%s.h5' % (dt.datetime.now().strftime('%d%m%Y-%H%M%S'), str(epochs))) callbacks = [ ModelCheckpoint(filepath=save_fname, monitor='loss', save_best_only=True) ] self.model.fit_generator( data_gen, steps_per_epoch=steps_per_epoch, epochs=epochs, callbacks=callbacks, workers=1 ) print('[Model] Training Completed. Model saved as %s' % save_fname) timer.stop() def evaluate(self, x, y, batch_size=10): results = self.model.evaluate(x, y, batch_size=batch_size, verbose=2) print('[Model] Test loss %s accuracy %s :' %(results[0], results[1])) def predict_one_hit(self, data): #Predict each timestep given the last sequence of true data, in effect only predicting 1 step ahead each time print('[Model] Predicting Hit-by-Hit...') predicted = self.model.predict(data) print('[Model] Predicted shape predicted%s size %s' % (predicted.shape, predicted.size)) #predicted = np.reshape(predicted, (predicted.size, 1)) return predicted def predict_sequences_multiple(self, data, window_size, prediction_len): #Predict sequence of 50 steps before shifting prediction run forward by 50 steps print('[Model] Predicting Sequences Multiple...') prediction_seqs = [] for i in range(int(len(data)/prediction_len)): curr_frame = data[i*prediction_len] predicted = [] for j in range(prediction_len): predicted.append(self.model.predict(curr_frame[np.newaxis,:,:])[0,0]) curr_frame = curr_frame[1:] curr_frame = np.insert(curr_frame, [window_size-2], predicted[-1], axis=0) prediction_seqs.append(predicted) return prediction_seqs ''' def predict_full_sequences(self, x_test, y_true, hits_len): timer = Timer() timer.start() print('[Model] Predicting Sequences Started') total = len(x_test) correct = 0 incorrect = 0 pred_sequences = [] for j in range(total): curr_frame = x_test[j] predicted = [] for i in range(hits_len): pred = self.model.predict(curr_frame[np.newaxis,:,:]) predicted.append(pred) curr_frame = curr_frame[1:] # inserta um valor np.insert(array, index, value, axes) curr_frame = np.insert(curr_frame, [3], predicted[-1], axis=0) #print(curr_frame, predicted[-1]) pred_sequences.append(predicted) print('[Model] Prediction Finished.') timer.stop() return pred_sequences ''' def predict_full_sequences(self, x_test, data, num_hits=6, normalise=False, tol=0.1): ''' x_test: input data normalise: say input data must be scaled ''' timer = Timer() timer.start() print('[Model] Predicting Sequences Started') total = len(x_test) pred_sequences = [] #count_correct = np.zeros(num_hits) for j in range(total): curr_frame = x_test[j] predicted = [] for i in range(num_hits): if normalise: curr_frame = data.x_scaler.transform(np.reshape(curr_frame,(1,12))) curr_frame_orig = data.inverse_transform_x(pd.DataFrame(curr_frame).values.flatten()) curr_frame_orig = np.reshape(curr_frame_orig, (4,3)) curr_frame = np.reshape(curr_frame, (4,3)) else: curr_frame = curr_frame curr_frame_orig = curr_frame pred = self.model.predict(curr_frame[np.newaxis,:,:]) pred = np.reshape(pred, (1, 3)) if normalise: pred = data.inverse_transform_y(pred) else: pred = pred pred = np.reshape(pred, (1, 3)) #if np.isclose(curr_hit, near_pred, atol=0.01).all(): # count_correct[i]=+1 predicted.append(pred) curr_frame = curr_frame_orig[1:] # inserta um valor np.insert(array, index, value, axes) curr_frame =
np.insert(curr_frame, [3], predicted[-1], axis=0)
numpy.insert
#!/usr/bin/env python3 import os import sys import copy import json import time import queue import ephem import numpy import ctypes import shutil import signal import logging from logging.handlers import TimedRotatingFileHandler import argparse import threading import subprocess from datetime import datetime from collections import deque from scipy.special import pro_ang1, iv from scipy.stats import scoreatpercentile as percentile from astropy.constants import c as speedOfLight speedOfLight = speedOfLight.to('m/s').value from lsl.common.stations import lwasv, parse_ssmif from lsl.correlator import uvutils from lsl.imaging import utils from lsl.common.adp import fS, fC from lsl.astro import MJD_OFFSET, DJD_OFFSET from bifrost.address import Address from bifrost.udp_socket import UDPSocket from bifrost.packet_capture import PacketCaptureCallback, DiskReader, UDPCapture, UDPSniffer from bifrost.ring import Ring from bifrost.libbifrost import bf import bifrost.affinity as cpu_affinity import bifrost.ndarray as BFArray from bifrost.fft import Fft from bifrost.quantize import quantize as Quantize from bifrost.linalg import LinAlg as Correlator from bifrost.orville import Orville as Gridder from bifrost.proclog import ProcLog from bifrost import map as BFMap, asarray as BFAsArray from bifrost.DataType import DataType as BFDataType from bifrost.transpose import transpose as BFTranspose from bifrost.ndarray import memset_array, copy_array from bifrost.device import set_device as BFSetGPU, get_device as BFGetGPU, stream_synchronize as BFSync, set_devices_no_spin_cpu as BFNoSpinZone from bifrost import device BFNoSpinZone() import PIL.Image, PIL.ImageDraw, PIL.ImageFont from OrvilleImageDB import OrvilleImageDB BASE_PATH = os.path.dirname(os.path.abspath(__file__)) CAL_PATH = os.path.join(BASE_PATH, 'calibration') if not os.path.exists(CAL_PATH): os.mkdir(CAL_PATH) STATION = lwasv ANTENNAS = STATION.antennas W_STEP = 0.1 SUPPORT_SIZE = 7 SUPPORT_OVERSAMPLE = 64 def round_up_to_even(n, maxprimes=3): """ Round up the given value to minimize the number of prime factors. Factors other than 2, 3, and 5 are not allowed, and the number of factors of 3 and 5 cannot exceed maxprimes. """ if n % 2 != 0: n += 1 while True: r = n nPrimes = 0 while r > 1 and r % 2 == 0: r //= 2 while r > 1 and r % 3 == 0: r //= 3 nPrimes += 1 while r > 1 and r % 5 == 0: r //= 5 nPrimes += 1 if r == 1 and nPrimes <= maxprimes: return n n += 2 def timetag_to_mjdatetime(time_tag): """ Convert a DP/ADP timestamp into a MJD and UTC hour, minute, and second. """ ## Get the date unix_time_tag_i = time_tag // int(fS) unix_time_tag_f = (time_tag % int(fS)) / float(fS) mjd = int(40587 + unix_time_tag_i // 86400) unix_day_frac_s = unix_time_tag_i - (unix_time_tag_i // 86400) * 86400 h = unix_day_frac_s // 3600 m = unix_day_frac_s % 3600 // 60 s = unix_day_frac_s % 60 + unix_time_tag_f return mjd, h, m, s class MultiQueue(object): def __init__(self, slots, maxsize=0): self._lock = threading.RLock() self._slots = [queue.Queue(maxsize=maxsize) for i in range(slots)] def empty(self): with self._lock: is_empty = all([slot.empty() for slot in self._slots]) return is_empty def full(self): with self._lock: is_full = any([slot.full() for slot in self._slots]) return is_full def qsize(self): with self._lock: size = max([slot.qsize() for slot in self._slots]) return size def put(self, item, block=True, timeout=None): with self._lock: for slot in self._slots: slot.put(item, block=block, timeout=timeout) def put_nowait(self, item): with self._lock: for slot in self._slots: slot.put_nowait(item) def get(self, slot, block=True, timeout=None): with self._lock: item = self._slots[slot].get(block=block, timeout=timeout) return item def get_nowait(self, slot): with self._lock: item = self._slots[slot].get_nowait() return item def task_done(self, slot): self._slots[slot].task_done() def join(self): for slot in self._slots: slot.join() FILL_QUEUE = queue.Queue(maxsize=4) def get_good_and_missing_rx(): pid = os.getpid() statsname = os.path.join('/dev/shm/bifrost', str(pid), 'udp_capture', 'stats') good = 'ngood_bytes : 0' missing = 'nmissing_bytes : 0' if os.path.exists(statsname): with open(os.path.join('/dev/shm/bifrost', str(pid), 'udp_capture', 'stats'), 'r') as fh: good = fh.readline() missing = fh.readline() good = int(good.split(':', 1)[1], 10) missing = int(missing.split(':', 1)[1], 10) return good, missing class CaptureOp(object): def __init__(self, log, oring, sock, *args, **kwargs): self.log = log self.oring = oring self.sock = sock self.args = args self.kwargs = kwargs self.shutdown_event = threading.Event() ## HACK TESTING #self.seq_callback = None def shutdown(self): self.shutdown_event.set() def cor_callback(self, seq0, time_tag, chan0, nchan, navg, nsrc, hdr_ptr, hdr_size_ptr): print("++++++++++++++++ seq0 =", seq0) print(" time_tag =", time_tag) hdr = {'time_tag': time_tag, 'seq0': seq0, 'chan0': chan0, 'cfreq': chan0*25e3, 'nchan': nchan, 'bw': nchan*4*25e3, 'navg': navg, 'nstand': int(numpy.sqrt(8*nsrc+1)-1)//2, 'npol': 2, 'nbl': nsrc, 'complex': True, 'nbit': 32} print("******** CFREQ:", hdr['cfreq']) hdr_str = json.dumps(hdr).encode() # TODO: Can't pad with NULL because returned as C-string #hdr_str = json.dumps(hdr).ljust(4096, '\0') #hdr_str = json.dumps(hdr).ljust(4096, ' ') header_buf = ctypes.create_string_buffer(hdr_str) hdr_ptr[0] = ctypes.cast(header_buf, ctypes.c_void_p) hdr_size_ptr[0] = len(hdr_str) return 0 def main(self): global FILL_QUEUE seq_callback = PacketCaptureCallback() seq_callback.set_cor(self.cor_callback) with UDPCapture("cor", self.sock, self.oring, *self.args, sequence_callback=seq_callback, **self.kwargs) as capture: good, missing = get_good_and_missing_rx() while not self.shutdown_event.is_set(): status = capture.recv() print('III', status) # Determine the fill level of the last gulp new_good, new_missing = get_good_and_missing_rx() try: fill_level = float(new_good-good) / (new_good-good + new_missing-missing) except ZeroDivisionError: fill_level = 0.0 good, missing = new_good, new_missing try: FILL_QUEUE.put_nowait(fill_level) except queue.Full: pass del capture class SpectraOp(object): def __init__(self, log, iring, base_dir=os.getcwd(), core=-1, gpu=-1): self.log = log self.iring = iring self.output_dir = os.path.join(base_dir, 'spectra') self.core = core self.gpu = gpu if not os.path.exists(base_dir): os.mkdir(base_dir) if not os.path.exists(self.output_dir): os.mkdir(self.output_dir) self.bind_proclog = ProcLog(type(self).__name__+"/bind") self.in_proclog = ProcLog(type(self).__name__+"/in") self.size_proclog = ProcLog(type(self).__name__+"/size") self.sequence_proclog = ProcLog(type(self).__name__+"/sequence0") self.perf_proclog = ProcLog(type(self).__name__+"/perf") self.in_proclog.update({'nring':1, 'ring0':self.iring.name}) def _plot_spectra(self, time_tag, freq, specs, status): # Plotting setup nchan = freq.size nstand = specs.shape[0] try: minval = numpy.min(specs[numpy.where(numpy.isfinite(specs))]) maxval = numpy.max(specs[numpy.where(numpy.isfinite(specs))]) except ValueError: minval = 0.0 maxval = 1.0 # Image setup width = height = 16 im = PIL.Image.new('RGB', (width * 65 + 1, height * 65 + 21), '#FFFFFF') draw = PIL.ImageDraw.Draw(im) font = PIL.ImageFont.load(os.path.join(BASE_PATH, 'fonts', 'helvB10.pil')) # Axes boxes for i in range(width + 1): draw.line([i * 65, 0, i * 65, height * 65], fill = '#000000') for i in range(height + 1): draw.line([(0, i * 65), (im.size[0], i * 65)], fill = '#000000') # Power as a function of frequency for all antennas x = numpy.arange(nchan) * 64 // nchan for s in range(nstand): if s >= height * width: break x0, y0 = (s % width) * 65 + 1, (s // width + 1) * 65 draw.text((x0 + 5, y0 - 60), str(s+1), font=font, fill='#000000') ## XX c = '#1F77B4' if status[2*s+0] != 33: c = '#799CB4' y = ((54.0 / (maxval - minval)) * (specs[s,:,0] - minval)).clip(0, 54) draw.line(list(zip(x0 + x, y0 - y)), fill=c) ## YY c = '#FF7F0E' if status[2*s+1] != 33: c = '#FFC28C' y = ((54.0 / (maxval - minval)) * (specs[s,:,1] - minval)).clip(0, 54) draw.line(list(zip(x0 + x, y0 - y)), fill=c) # Summary ySummary = height * 65 + 2 timeStr = datetime.utcfromtimestamp(time_tag / fS) timeStr = timeStr.strftime("%Y/%m/%d %H:%M:%S UTC") draw.text((5, ySummary), timeStr, font = font, fill = '#000000') rangeStr = 'range shown: %.3f to %.3f dB' % (minval, maxval) draw.text((210, ySummary), rangeStr, font = font, fill = '#000000') x = im.size[0] + 15 for label, c in reversed(list(zip(('good XX','good YY','flagged XX','flagged YY'), ('#1F77B4','#FF7F0E','#799CB4', '#FFC28C')))): x -= draw.textsize(label, font = font)[0] + 20 draw.text((x, ySummary), label, font = font, fill = c) return im def main(self): cpu_affinity.set_core(self.core) if self.gpu != -1: BFSetGPU(self.gpu) self.bind_proclog.update({'ncore': 1, 'core0': cpu_affinity.get_core(), 'ngpu': 1, 'gpu0': BFGetGPU(),}) status = [ant.combined_status for ant in ANTENNAS] for iseq in self.iring.read(guarantee=True): ihdr = json.loads(iseq.header.tostring()) self.sequence_proclog.update(ihdr) self.log.info('SpectraOp: Config - %s', ihdr) # Setup the ring metadata and gulp sizes chan0 = ihdr['chan0'] nchan = ihdr['nchan'] nbl = ihdr['nbl'] nstand = int(numpy.sqrt(8*nbl+1)-1)//2 npol = ihdr['npol'] navg = ihdr['navg'] time_tag0 = iseq.time_tag time_tag = time_tag0 igulp_size = nstand*(nstand+1)//2*nchan*npol*npol*8 ishape = (nstand*(nstand+1)//2,nchan,npol,npol) self.iring.resize(igulp_size, igulp_size*10) # Setup the arrays for the frequencies and auto-correlations freq = chan0*fC + numpy.arange(nchan)*4*fC autos = [i*(2*(nstand-1)+1-i)//2 + i for i in range(nstand)] intCount = 0 prev_time = time.time() for ispan in iseq.read(igulp_size): if ispan.size < igulp_size: continue # Ignore final gulp curr_time = time.time() acquire_time = curr_time - prev_time prev_time = curr_time ## Setup and load t0 = time.time() idata = ispan.data_view(numpy.complex64).reshape(ishape) ## Pull out the auto-correlations adata = idata[autos,:,:,:].real adata = adata[:,:,[0,1],[0,1]] ## Plot im = self._plot_spectra(time_tag, freq, 10*numpy.log10(adata), status) ## Save ### Timetag stuff mjd, h, m, s = timetag_to_mjdatetime(time_tag) ### The actual save outname = os.path.join(self.output_dir, str(mjd)) if not os.path.exists(outname): os.mkdir(outname) filename = '%i_%02i%02i%02i_%.3fMHz_%.3fMHz.png' % (mjd, h, m, s, freq.min()/1e6, freq.max()/1e6) outname = os.path.join(outname, filename) im.save(outname, 'PNG') self.log.debug("Wrote spectra %i to disk as '%s'", intCount, os.path.basename(outname)) time_tag += navg * (fS / 100.0) intCount += 1 curr_time = time.time() process_time = curr_time - prev_time self.log.debug('Spectra plotter processing time was %.3f s', process_time) prev_time = curr_time self.perf_proclog.update({'acquire_time': acquire_time, 'reserve_time': 0.0, 'process_time': process_time,}) self.log.info("SpectraOp - Done") class BaselineOp(object): def __init__(self, log, iring, base_dir=os.getcwd(), core=-1, gpu=-1): self.log = log self.iring = iring self.output_dir = os.path.join(base_dir, 'baselines') self.core = core self.gpu = gpu if not os.path.exists(base_dir): os.mkdir(base_dir) if not os.path.exists(self.output_dir): os.mkdir(self.output_dir) self.bind_proclog = ProcLog(type(self).__name__+"/bind") self.in_proclog = ProcLog(type(self).__name__+"/in") self.size_proclog = ProcLog(type(self).__name__+"/size") self.sequence_proclog = ProcLog(type(self).__name__+"/sequence0") self.perf_proclog = ProcLog(type(self).__name__+"/perf") self.in_proclog.update({'nring':1, 'ring0':self.iring.name}) self.station = STATION def _plot_baselines(self, time_tag, freq, dist, baselines, valid): # Plotting setup nchan = freq.size nbl = baselines.shape[0] freq = freq[range(nchan//6//2,nchan,nchan//6)] baselines = baselines[:,range(nchan//6//2,nchan,nchan//6),:,:] baselines = numpy.abs(baselines[:,:,[0,1,1],[0,0,1]]) minval = numpy.min(baselines[valid,:,:]) maxval = numpy.max(baselines[valid,:,:]) if minval == maxval: maxval = minval + 1.0 mindst = 0.0 maxdst = numpy.max(dist) # Image setup width, height = 2, 3 im = PIL.Image.new('RGB', (width*500 + 1, height*300 + 21), '#FFFFFF') draw = PIL.ImageDraw.Draw(im) font = PIL.ImageFont.load(os.path.join(BASE_PATH, 'fonts', 'helvB10.pil')) # Axes boxes for i in range(width + 1): draw.line([i * 500, 0, i * 500, height * 300], fill = '#000000') for i in range(height + 1): draw.line([(0, i * 300), (im.size[0], i * 300)], fill = '#000000') # Visiblity amplitudes as a function of (u,v) distance for c in range(baselines.shape[1]): if c >= height * width: break x0, y0 = (c % width) * 500 + 1, (c // width + 1) * 300 draw.text((x0 + 5, y0 - 295), '%.3f MHz' % (freq[c]/1e6,), font=font, fill='#000000') ## (u,v) distance as adjusted for the frequency x = ((499.0 / (maxdst - mindst)) * (dist[valid]*freq[c]/freq[0] - mindst)).clip(0, 499) ## XX y = ((299.0 / (maxval - minval)) * (baselines[valid,c,0] - minval)).clip(0, 299) draw.point(list(zip(x0 + x, y0 - y)), fill='#1F77B4') ## YY y = ((299.0 / (maxval - minval)) * (baselines[valid,c,2] - minval)).clip(0, 299) draw.point(list(zip(x0 + x, y0 - y)), fill='#FF7F0E') ### XY #y = ((299.0 / (maxval - minval)) * (baselines[valid,c,1] - minval)).clip(0, 299) #draw.point(zip(x0 + x, y0 - y), fill='#A00000') # Details and labels ySummary = height * 300 + 2 timeStr = datetime.utcfromtimestamp(time_tag / fS) timeStr = timeStr.strftime("%Y/%m/%d %H:%M:%S UTC") draw.text((5, ySummary), timeStr, font = font, fill = '#000000') rangeStr = 'range shown: %.6f - %.6f' % (minval, maxval) draw.text((210, ySummary), rangeStr, font = font, fill = '#000000') x = im.size[0] + 15 #for label, c in reversed(list(zip(('XX','XY','YY'), ('#1F77B4','#A00000','#FF7F0E')))): for label, c in reversed(list(zip(('XX','YY'), ('#1F77B4','#FF7F0E')))): x -= draw.textsize(label, font = font)[0] + 20 draw.text((x, ySummary), label, font = font, fill = c) return im def main(self): cpu_affinity.set_core(self.core) if self.gpu != -1: BFSetGPU(self.gpu) self.bind_proclog.update({'ncore': 1, 'core0': cpu_affinity.get_core(), 'ngpu': 1, 'gpu0': BFGetGPU(),}) for iseq in self.iring.read(guarantee=True): ihdr = json.loads(iseq.header.tostring()) self.sequence_proclog.update(ihdr) self.log.info('BaselineOp: Config - %s', ihdr) # Setup the ring metadata and gulp sizes chan0 = ihdr['chan0'] nchan = ihdr['nchan'] nbl = ihdr['nbl'] nstand = int(numpy.sqrt(8*nbl+1)-1)//2 npol = ihdr['npol'] navg = ihdr['navg'] time_tag0 = iseq.time_tag time_tag = time_tag0 igulp_size = nstand*(nstand+1)//2*nchan*npol*npol*8 ishape = (nstand*(nstand+1)//2,nchan,npol,npol) self.iring.resize(igulp_size, igulp_size*10) # Setup the arrays for the frequencies and baseline lengths freq = chan0*fC + numpy.arange(nchan)*4*fC t0 = time.time() distname = os.path.join(CAL_PATH, 'dist_%i_%i_%i.npy' % (nbl, chan0, nchan)) try: if os.path.exists(distname) and os.path.getmtime(distname) < os.path.getmtime(__file__): raise IOError dist = numpy.load(distname) except IOError: print('dist cache failed') uvw = uvutils.compute_uvw(ANTENNAS[0::2], HA=0, dec=self.station.lat*180/numpy.pi, freq=freq[0], site=self.station.get_observer(), include_auto=True) print('uvw.shape', uvw.shape) dist = numpy.sqrt(uvw[:,0,0]**2 + uvw[:,1,0]**2) numpy.save(distname, dist) valid = numpy.where( dist > 0.1 )[0] print('@dist', time.time() - t0, '@', dist.shape, dist.size*4/1024.**2) intCount = 0 prev_time = time.time() for ispan in iseq.read(igulp_size): if ispan.size < igulp_size: continue # Ignore final gulp curr_time = time.time() acquire_time = curr_time - prev_time prev_time = curr_time ## Setup and load idata = ispan.data_view(numpy.complex64).reshape(ishape) ## Plot im = self._plot_baselines(time_tag, freq, dist, idata, valid) ## Save ### Timetag stuff mjd, h, m, s = timetag_to_mjdatetime(time_tag) ### The actual save outname = os.path.join(self.output_dir, str(mjd)) if not os.path.exists(outname): os.mkdir(outname) filename = '%i_%02i%02i%02i_%.3fMHz_%.3fMHz.png' % (mjd, h, m, s, freq.min()/1e6, freq.max()/1e6) outname = os.path.join(outname, filename) im.save(outname, 'PNG') self.log.debug("Wrote baselines %i to disk as '%s'", intCount, os.path.basename(outname)) time_tag += navg * (fS / 100.0) intCount += 1 curr_time = time.time() process_time = curr_time - prev_time self.log.debug('Baseline plotter processing time was %.3f s', process_time) prev_time = curr_time self.perf_proclog.update({'acquire_time': acquire_time, 'reserve_time': 0.0, 'process_time': process_time,}) self.log.info("BaselineOp - Done") class ImagingOp(object): def __init__(self, log, iring, oring, decimation=1, core=-1, gpu=-1): self.log = log self.iring = iring self.oring = oring self.decimation = decimation self.core = core self.gpu = gpu self.bind_proclog = ProcLog(type(self).__name__+"/bind") self.in_proclog = ProcLog(type(self).__name__+"/in") self.out_proclog = ProcLog(type(self).__name__+"/out") self.size_proclog = ProcLog(type(self).__name__+"/size") self.sequence_proclog = ProcLog(type(self).__name__+"/sequence0") self.perf_proclog = ProcLog(type(self).__name__+"/perf") self.in_proclog.update({'nring':1, 'ring0':self.iring.name}) self.out_proclog.update({'nring':1, 'ring0':self.oring.name}) self.station = copy.deepcopy(STATION) self.phase_center_ha = 0.0 # radians self.phase_center_dec = self.station.lat # radians if self.station.id == 'SV': # Alternate phase center for Sevilleta that minimized the w RMS self.phase_center_ha = 1.0*ephem.hours("-0:07:59.82") self.phase_center_dec = 1.0*ephem.degrees("33:21:27.5") def main(self): cpu_affinity.set_core(self.core) if self.gpu != -1: BFSetGPU(self.gpu) self.bind_proclog.update({'ncore': 1, 'core0': cpu_affinity.get_core(), 'ngpu': 1, 'gpu0': BFGetGPU(),}) pce = numpy.sin(self.phase_center_dec)*numpy.sin(self.station.lat) \ + numpy.cos(self.phase_center_dec)*numpy.cos(self.station.lat)*numpy.cos(self.phase_center_ha) pce = numpy.arcsin(pce) pca = numpy.sin(self.phase_center_dec) - numpy.sin(pce)*numpy.sin(self.station.lat) pca = pca / numpy.cos(pca) / numpy.cos(self.station.lat) pca = numpy.arccos(pca) if numpy.sin(self.phase_center_ha) > 0: pca = 2*numpy.pi - pca phase_center = numpy.array([numpy.cos(pce)*numpy.sin(pca), numpy.cos(pce)*numpy.cos(pca),
numpy.sin(pce)
numpy.sin
#--------------------------------------------------------------- import os, sys sys.path.insert(0, os.getcwd()) # enables $ python examples/[EXAMPLE].py #--------------------------------------------------------------- """ ummon3 Examples SINE Run command: python sine.py """ # # IMPORTS import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from ummon import * # # SET inital seed for reproducibility
np.random.seed(17)
numpy.random.seed
import re import numpy as np import pandas as pd def update_namespace(filepath, namespace): file = open(filepath, 'r').read() file = re.sub(r'\S*_model_namespace', namespace + '_model_namespace', file) with open(filepath, 'w') as f: f.write(file) def pol2cart(rho, phi): x = rho * np.cos(phi) y = rho * np.sin(phi) return (x, y) def jdays2years(epochs): if (epochs.shape[0] > 0 and epochs[0] > 30000.0000): return 1900.0 + (epochs - 15020.31352) / 365.242198781 else: return epochs def kepler(M, e, eps=1e-4): En = M Ens = En - (En - e * np.sin(En)- M) / (1 - e * np.cos(En)) k = 1 while (abs(Ens - En) > eps): En = Ens Ens = En - (En - e * np.sin(En) - M) / (1 - e * np.cos(En)) k += 1 if (k > 400000): print('Kepler Eq (%f, %f) not solved in less than 400000 iterations\n', M, e) E = np.nan return E E = Ens return E def getOrbit(t, T, P, e, a, w, Omega, i): N = len(t) E = np.empty(N) # Iterate over epochs for j in range(N): # Mean anomaly M = 2 * np.pi * (t[j] - T) / P # Eccentric anomaly E[j] = kepler(M, e) # Thiele-Innes Constants A = a * ( np.cos(w) * np.cos(Omega) -
np.sin(w)
numpy.sin
# import time # import asyncio # # async def main(): # print(f'hi {time.time()}') # await asyncio.sleep(1) # print(f'world {time.time()}') # # def blocking(): # time.sleep(.5) # print(f'b {time.time()}') # # # loop = asyncio.get_event_loop() # t = loop.create_task(main()) # loop.run_in_executor(None, blocking) # loop.run_until_complete(t) # loop.close() # # async def f(): # try: # while True: await asyncio.sleep(0) # except asyncio.CancelledError: # print('task cancelled.. no') # while True: await asyncio.sleep(0) # else: # return 123 # # # a = f() # # a.send(None) # # a.send(None) # # a.throw(asyncio.CancelledError) # # a.send(None) import numpy as np a = np.zeros((2,2)) # print(np.pad(a, 1, 'constant', constant_values=10)) # print(np.diag(np.arange(4)+1, k=-1)) # print(np.unravel_index(99, (6,7,8))) # print(np.tile(np.array([[0,1],[1,0]]), (4,4))) color = np.dtype([ ('r', np.ubyte, (1,)), ('g', np.ubyte, (1,)), ('b', np.ubyte, (1,)) ]) # print(color) # print(sum(range(5), -1)) # print(np.sum(range(5), -1)) a = np.ones(10) # print(a**a) # print(np.array(0) / np.array(0)) # print(np.array(0) // np.array(0)) # print(np.array([np.nan]).astype(int).astype(float)) Z = np.random.uniform(-10,+10,10) # print(Z) # print(np.round(Z)) # print(np.copysign(np.ceil(np.abs(Z)), Z)) a = np.random.randint(0, 10, 10) b = np.random.randint(0, 10, 10) # print(a) # print(b) # print(np.intersect1d(a, b)) # # print(np.sqrt(-1) == np.emath.sqrt(-1)) yesterday = np.datetime64('today', 'D') - np.timedelta64(1, 'D') today = np.datetime64('today', 'D') tomorrow = np.datetime64('today', 'D') +
np.timedelta64(1, 'D')
numpy.timedelta64
from data import CITIES, BUSINESSES, USERS, REVIEWS, TIPS, CHECKINS from data import get_business import random import pandas as pd import numpy as np def extract_genres(movies): """Create an unfolded genre dataframe. Unpacks genres seprated by a '|' into seperate rows. Arguments: movies -- a dataFrame containing at least the columns 'movieId' and 'genres' where genres are seprated by '|' """ genres_m = movies.apply(lambda row: pd.Series([row['business_id']] + row['categories'].lower().split(", ")), axis=1) stack_genres = genres_m.set_index(0).stack() df_stack_genres = stack_genres.to_frame() df_stack_genres['business_id'] = stack_genres.index.droplevel(1) df_stack_genres.columns = ['categorie', 'business_id'] return df_stack_genres.reset_index()[['business_id', 'categorie']] def pivot_genres(df): """Create a one-hot encoded matrix for genres. Arguments: df -- a dataFrame containing at least the columns 'movieId' and 'genre' Output: a matrix containing '0' or '1' in each cell. 1: the movie has the genre 0: the movie does not have the genre """ return df.pivot_table(index = 'business_id', columns = 'categorie', aggfunc = 'size', fill_value=0) def select_neighborhood(similarity_matrix, utility_matrix, target_business): """selects all items with similarity > 0""" similar = list(similarity_matrix[similarity_matrix[target_business] > 0].index) return similarity_matrix[target_business] def create_similarity_matrix_categories(matrix): """Create a """ npu = matrix.values m1 = npu @ npu.T diag = np.diag(m1) m2 = m1 / diag m3 =
np.minimum(m2, m2.T)
numpy.minimum
"""Python3 - User guided equivalent wideth measurement and analysis tool for stellar absorption spectra """ __version__ = "1.0.1" import numpy as np import matplotlib.pyplot as plt #from scipy.optimize import fmin from scipy.stats import chisquare from scipy.interpolate import interp1d from scipy.integrate import simpson from numpy.random import multivariate_normal from astropy.io import fits from scipy.optimize import curve_fit import glob import george from george import kernels from scipy.optimize import minimize import pickle import copy from scipy.spatial.distance import cdist from numpy.linalg import inv from numpy.linalg import slogdet import subprocess #----------------------------------------------------------Functions-------------------------------------------------------# def plot_line_info(star, name, filt = None): fig = plt.figure(figsize = (10,5)) info_plot = fig.add_subplot(111) if filt == None: info_plot.errorbar(star.lines, star.lines_ew, yerr = star.lines_ew_err, fmt='.', zorder = 2, ecolor='k', c = 'k') info_plot.scatter(star.lines, star.lines_ew, c= star.lines_gauss_Xsquare, cmap = plt.cm.Reds, edgecolors='k', zorder = 3, s = 30) info_plot.scatter(star.lines[star.lines_check_flag], star.lines_ew[star.lines_check_flag], c = 'w', edgecolors= 'r', zorder = 0, s = 100) else: info_plot.errorbar(star.lines[filt], star.lines_ew[filt], yerr = star.lines_ew_err[filt], fmt='.', zorder = 2, ecolor='k', c = 'k') info_plot.scatter(star.lines[filt], star.lines_ew[filt], c= star.lines_gauss_Xsquare[filt], cmap = plt.cm.Reds, edgecolors='k', zorder = 3, s = 30) info_plot.scatter(star.lines[filt][star.lines_check_flag[filt]], star.lines_ew[filt][star.lines_check_flag[filt]], c = 'w', edgecolors= 'r', zorder = 0, s = 100) info_plot.grid() info_plot.set_title(name, size = 20) info_plot.set_xlabel(r'$\rm Wavelength\ (nm)$', size = 15) info_plot.set_ylabel(r'$\rm Equivalent\ Width\ (mA)$', size = 15) #plt.savefig(name+'_line_ew_info.pdf') plt.show() def plot_comparison_res(star,hand_measured, name,xy = [0,100], filt = None): fig = plt.figure(figsize = (10,5)) #top plot info_plot = fig.add_subplot(211) if filt == None: info_plot.errorbar(hand_measured, star.lines_ew, yerr = star.lines_ew_err, fmt='.', zorder = 2,ecolor='k', c = 'k') info_plot.scatter(hand_measured, star.lines_ew, c= star.lines_gauss_Xsquare, cmap = plt.cm.Reds, edgecolors='k', zorder = 3, s = 30) info_plot.scatter(hand_measured[star.lines_check_flag], star.lines_ew[star.lines_check_flag], c = 'w', edgecolors= 'r', zorder = 0, s = 100) else: info_plot.errorbar(hand_measured[filt], star.lines_ew[filt], yerr = star.lines_ew_err[filt], fmt='.', zorder = 2,ecolor='k', c = 'k') info_plot.scatter(hand_measured[filt], star.lines_ew[filt], c= star.lines_gauss_Xsquare[filt], cmap = plt.cm.Reds, edgecolors='k', zorder = 3, s = 30) info_plot.scatter(hand_measured[filt][star.lines_check_flag[filt]], star.lines_ew[filt][star.lines_check_flag[filt]], c = 'w', edgecolors= 'r', zorder = 0, s = 100) info_plot.plot([xy[0],xy[1]],[xy[0],xy[1]], 'k--') info_plot.set_title(name, size = 20) info_plot.grid() info_plot.set_ylabel(r'$\rm Auto\ Measured\ (mA)$', size = 15) #residuals plot res_plot = fig.add_subplot(212, sharex=info_plot) if filt == None: star_res_values = star.lines_ew - hand_measured res_plot.errorbar(hand_measured, star_res_values, yerr = star.lines_ew_err, fmt='.', zorder = 2,ecolor='k', c = 'k') res_plot.scatter(hand_measured, star_res_values, c= star.lines_gauss_Xsquare, cmap = plt.cm.Reds, edgecolors='k', zorder = 3, s = 30) res_plot.scatter(hand_measured[star.lines_check_flag], star_res_values[star.lines_check_flag], c = 'w', edgecolors= 'r', zorder = 0, s = 100) else: star_res_values = star.lines_ew - hand_measured res_plot.errorbar(hand_measured[filt], star_res_values[filt], yerr = star.lines_ew_err[filt], fmt='.', zorder = 2,ecolor='k', c = 'k') res_plot.scatter(hand_measured[filt], star_res_values[filt], c= star.lines_gauss_Xsquare[filt], cmap = plt.cm.Reds, edgecolors='k', zorder = 3, s = 30) res_plot.scatter(hand_measured[filt][star.lines_check_flag[filt]], star_res_values[star.lines_check_flag], c = 'w', edgecolors= 'r', zorder = 0, s = 100) #plt.savefig(name+'_ew_comparison.pdf') res_plot.plot([xy[0],xy[1]],[0,0],'k--') res_plot.set_xlabel(r'$\rm Hand\ Measured\ (mA)$', size = 15) res_plot.grid() plt.tight_layout() plt.show() def get_line_window(line, wave, flux, left_bound, right_bound, line_input, window_size = 1.5): boundaries = [0,0] #if no line is specified, auto fine best line guess if line_input == 0.0: #find line tip left_look = np.where((wave <= line)&(wave >= line - 0.1)) right_look = np.where((wave >= line)&(wave <= line + 0.1)) #find min mins = [flux[left_look].min(),flux[right_look].min()] best_line_guess = wave[np.where(flux == np.min(mins))][0] else: best_line_guess = line_input #get_window around line window = np.where((wave >= best_line_guess-window_size/2.0)&(wave <= best_line_guess+window_size/2.0)) #calc derivative dy = np.gradient(flux[window]) dy_std = dy.std() #if no left or right bound given set using std auto_bound_l = False auto_bound_r = False if left_bound == 0: dy_l = dy_std/2.0 auto_bound_l = True if right_bound == 0: dy_r = dy_std/2.0 auto_bound_r = True #if no line boundaries specified auto find boundaries if auto_bound_l: left_look = np.where(wave[window] <= best_line_guess - 0.05) dy1_left = np.where((dy[left_look] < dy_l)&(dy[left_look] > (-1)*dy_l)) if len(wave[window][left_look][dy1_left]) ==0: print('line ',line,' very close to edge or dy selection value too small') print('will attempt to remeasure, if not possible, add line to exclude lines list in .measure_all_ew() function') plt.clf() plt.plot(wave[window],flux[window]) plt.plot([line,line],[0.95,1.0], 'k') plt.annotate(str(line), xy=[line,1.01]) plt.plot([best_line_guess,best_line_guess],[0.95,1.0], 'k--') plt.annotate(str(best_line_guess), xy=[best_line_guess,1.01]) plt.show() return 1,1,0,0 else: boundaries[0] = wave[window][left_look][dy1_left][-1] else: boundaries[0] = left_bound if auto_bound_r: right_look = np.where(wave[window] >= best_line_guess + 0.05) dy1_right = np.where((dy[right_look] < dy_r)&(dy[right_look] > (-1)*dy_r)) if len(wave[window][right_look][dy1_right]) ==0: print('line ',line,' very close to edge or dy selection value too small') print('will attempt to remeasure, if not possible, add line to exclude lines list in .measure_all_ew() function') plt.clf() plt.plot(wave[window],flux[window]) plt.plot([line,line],[0.95,1.0], 'k') plt.annotate(str(line), xy=[line,1.01]) plt.plot([best_line_guess,best_line_guess],[0.95,1.0], 'k--') plt.annotate(str(best_line_guess), xy=[best_line_guess,1.01]) plt.show() return 0,0,1,1 else: boundaries[1] = wave[window][right_look][dy1_right][0] else: boundaries[1] = right_bound return window,best_line_guess, boundaries,dy def gauss_model(x,A,mu,sigma, baseline): return A*np.exp(-(x-mu)**2/2/sigma**2) + baseline def gfit(wav,flux,wav_cen, fwhm): sigma = fwhm/2.355 #limit window of search center +- 2*fwhm to exclude other emission lines gwave = np.where((wav >= wav_cen-30)&(wav <= wav_cen+30)) #find better center to account for small doppler shift within same window of search bet_cen = wav[np.where(flux == flux[gwave].max())[0][0]] #Initial value for guass max value guess from max of curve guess = flux[np.where(flux == flux[gwave].max())[0][0]] #Set parameters for gauss curve fit p0 = [guess,bet_cen,sigma, 0.] bf,cov = curve_fit(gauss_model,wav[gwave],flux[gwave],p0) #plt.plot(wav[gwave], flux[gwave], 'r') return bf, np.sqrt(np.diag(cov)), p0 def gfit_simple(x_array, y_array, mu, sigma, baseline): A = y_array.max() p0 = [A, mu, sigma, baseline] try: bf, cov = curve_fit(gauss_model, x_array, y_array, p0) return bf, np.sqrt(np.diag(cov)), p0 except: bf, cov = [0,0,0,0],None return bf, cov, p0 def gauss_ew(a, fwhm): if a == 0 or fwhm == 0: return 0 else: return 500.*a*np.sqrt(np.pi/np.log(2))*fwhm #From Adamow pyMOOG ew measure #Gaussian Process code and kernals taken from LSSTC DSFP notebook def SEKernel(par, x1, x2): A, Gamma = par D2 = cdist(x1.reshape(len(x1),1), x2.reshape(len(x2),1), metric = 'sqeuclidean') return A*np.exp(-Gamma*D2) def Pred_GP(CovFunc, CovPar, xobs, yobs, eobs, xtest): # evaluate the covariance matrix for pairs of observed inputs K = CovFunc(CovPar, xobs, xobs) # add white noise K += np.identity(xobs.shape[0]) * eobs**2 # evaluate the covariance matrix for pairs of test inputs Kss = CovFunc(CovPar, xtest, xtest) # evaluate the cross-term Ks = CovFunc(CovPar, xtest, xobs) # invert K Ki = inv(K) # evaluate the predictive mean m = np.dot(Ks, np.dot(Ki, yobs)) # evaluate the covariance cov = Kss - np.dot(Ks, np.dot(Ki, Ks.T)) return m, cov def NLL_GP(p,CovFunc,x,y,e): # Evaluate the covariance matrix K = CovFunc(p,x,x) # Add the white noise term K += np.identity(x.shape[0]) * e**2 # invert it Ki = inv(K) # evaluate each of the three terms in the NLL term1 = 0.5 * np.dot(y,np.dot(Ki,y)) term2 = 0.5 * slogdet(K)[1] term3 = 0.5 * len(y) * np.log(2*np.pi) # return the total return term1 + term2 + term3 def make_line(x,m,b): return m*x+b def combine_files(empty_obj,objects = []): final_wavelength = [] final_flux = [] final_norm_flux = [] final_shifted_wavelength = [] final_estimated_shift = [] final_continuum = [] final_obs_err = [] final_pred_all = [] final_pred_var_all = [] final_gain = [] for j in objects: for i in range(len(j.flux)): final_norm_flux.append(j.normalized_flux[i]) final_shifted_wavelength.append(j.shifted_wavelength[i]) final_wavelength.append(j.wavelength[i]) final_flux.append(j.flux[i]) final_estimated_shift.append(j.estimated_shift[i]) final_continuum.append(j.continuum[i]) final_obs_err.append(j.obs_err[i]) final_pred_all.append(j.pred_all[i]) final_pred_var_all.append(j.pred_var_all[i]) final_gain.append(j.gain[i]) empty_obj.wavelength = np.array(final_wavelength) empty_obj.flux = np.array(final_flux) empty_obj.shifted_wavelength = np.array(final_shifted_wavelength) empty_obj.normalized_flux = np.array(final_norm_flux) empty_obj.estimated_shift = np.array(final_estimated_shift) empty_obj.continuum = np.array(final_continuum) empty_obj.obs_err = np.array(final_obs_err) empty_obj.pred_all = np.array(final_pred_all) empty_obj.pred_var_all = np.array(final_pred_var_all) empty_obj.gain = np.array(final_gain) del final_wavelength del final_flux del final_norm_flux del final_shifted_wavelength del final_estimated_shift del final_continuum del final_obs_err del final_pred_all del final_pred_var_all del final_gain return empty_obj def reduce_cc(x,y,lines,lines_removed,limit=0.12): #check correlation before going further cc = np.corrcoef(x,y) print('starting cc', cc[0,1]) if abs(cc[0,1]) < limit: print('cc good enough') return lines,x,y,lines_removed check_ccs = np.zeros(len(x)) #remove largest cc difference for i in range(len(x)): new_x = np.delete(x,i) new_y = np.delete(y,i) new_cc = np.corrcoef(new_x,new_y) check_ccs[i] = new_cc[0,1] #Calculate differences diffs = [abs(cc[0,1])- abs(j) for j in check_ccs] #which gives largest difference? biggest_diff = np.where(diffs == max(diffs))[0][0] #remove that one line lines_removed.append([lines[biggest_diff],x[biggest_diff],y[biggest_diff]]) x = np.delete(x,biggest_diff) y = np.delete(y,biggest_diff) lines = np.delete(lines,biggest_diff) print('line removed: ', lines_removed) #recalculate cc cc = np.corrcoef(x,y) print('ending cc', cc[0,1]) #Call function again to remove lines until 0.12 is passed lines,x,y,lines_removed = reduce_cc(x,y,lines,lines_removed) return lines,x,y,lines_removed def load_object(filename): with open(filename, 'rb') as f: return pickle.load(f) def make_plots_folder(): folder_name = 'line_plots' #check if folder exists filenames = glob.glob('*') if folder_name in filenames: pass else: #make folder if not cmd = 'mkdir '+folder_name subprocess.call(cmd, shell=True) def replace_w(array, replace_value, replace_with = 'med' ): """ Use to replace individual values with either median or average of the order or with a specific value array format: [[order1],[order2],...] orderN = [x1,x2,x3,...] replace_value - value to be replaced repace_with - 'med', 'avg', or value to replace with """ for i in range(len(array)): gd_0 = np.where(array[i] == replace_value) gd = np.where(array[i] != replace_value) for j in gd_0: if replace_with == 'med': array[i][j] = np.median(array[i][gd]) elif replace_with == 'avg': array[i][j] = np.average(array[i][gd]) else: array[i][j] = replace_with return None #--------------------------------------------------Classes--------------------------------------------------# class Spectrum_Data(): def __init__(self, filename, KECK_file = True, spectx=False, specty=False, order_split = (False,3500)): """ filenmae - used to name plots and files KECK_file - True if loading KECK fits file spectx, specty - input spectrum if loading from arrays if not using order_split: input format: [[order1],[order2],...] orderN = [x1,x2,x3,...] if using order_split: input format: [x1,x2,x3,...] """ self.filename = filename self.gain = None if KECK_file: self.wavelength, self.flux = self.read_spec() else: #split input array into orders if order_split[0]: #Try targetting about 3500 points per order, too many points per order will slow code down order_count = int(len(spectx)/order_split[1]) order_split_wave = np.array_split(spectx, order_count) order_split_flux = np.array_split(specty, order_count) self.wavelength = order_split_wave self.flux = order_split_flux del order_split_wave del order_split_flux print('If values need to be replaced, use replace_w() function') else: self.wavelength = spectx self.flux = specty self.normalized_flux = copy.deepcopy(self.flux) #deepcopy creates new object self.combined_flux = None self.shifted_wavelength = copy.deepcopy(self.wavelength) self.estimated_shift = np.zeros(len(self.wavelength)) self.rv = None #km/s #continuum information self.continuum = np.full(len(self.wavelength), None) #print('cont array empty', self.continuum) self.pred_all = np.full(len(self.wavelength), None) self.pred_var_all = np.full(len(self.wavelength), None) self.obs_err = np.full(len(self.wavelength), None) for i in range(len(self.wavelength)): false_array = np.full(len(self.wavelength[i]), False) #print('false array created', false_array) self.continuum[i] = false_array self.pred_all[i] = np.full(len(self.wavelength[i]), 0) self.pred_var_all[i] = np.full(len(self.wavelength[i]), 0) self.obs_err[i] = np.sqrt(self.flux[i]) #print('empty continuum arrays created', self.continuum) #Old way of setting these variables (change back if above code causes problems) # self.continuum = np.full((len(self.wavelength),len(self.wavelength[0])), False) # self.pred_all = np.zeros((len(self.wavelength),len(self.wavelength[0]))) # self.pred_var_all = np.zeros((len(self.wavelength),len(self.wavelength[0]))) # self.obs_err = np.zeros((len(self.wavelength),len(self.wavelength[0]))) #line information self.lines = None #line - extra parameters [0] - shift continuum, [1] - left boundary in Angstroms #[2] - right boundary in Angstroms, [3] - line center in Angstroms self.lines_exp = None #line - extra data [0] - element, [1] - excitation potential #[2] - gf, [3] - rad self.lines_exd = None #line - equivalent width self.lines_ew = None #line - equivalent width error self.lines_ew_err = None #line - equivalent width calculated by simpon's rule integration self.lines_ew_simp = None #line - equivalent width error from integraion self.lines_ew_simp_err = None #line - best fit parameters for gaussian fit self.lines_bf_params = None #line - X squared value for gaussian and data self.lines_gauss_Xsquare = None #line - X squared threshold value self.X_thresh = 0.003 #line - X squared value above threshold or EW = 0 self.lines_check_flag = None #used to switch between Adamow ew calculation and simpson's rule integration self.temp_line_ew = None self.temp_line_ew_err = None def normalize_all(self, window_width = 1.5, continuum_depth = 90): #loop through orders for i in range(len(self.flux)): #use Gaussian Process to fit continuum self.normalize(i, window_width, continuum_depth) #Replace un-normalized points with value before it #This should only be replacing the last point in the #spectrum that is always missed by normalize # err_est = self.obs_err[i]/self.pred_all[i] # non_norm_points = np.where(self.normalized_flux[i] > np.average(self.normalized_flux[i][self.continuum[i]]+err_est[self.continuum[i]]*100)) # #replace non norm points # self.normalized_flux[i][non_norm_points] = self.normalized_flux[i][non_norm_points[0]-1] return None def normalize(self, order, window_width = 1.5, continuum_depth = 90, clip = [-999,-999]): if clip[0] != -999 and clip[1] != -999: #clipped = True clipl = np.where(self.wavelength[order] <= clip[0])[0][-1] clipr = np.where(self.wavelength[order] >= clip[1])[0][0] else: #clipped = False clipl = 0 clipr = len(self.flux[order]) err = np.sqrt(self.flux[order][clipl:clipr]) continuum_scan_obj = Continuum_scan(window_width, continuum_depth) continuum_scan_obj.load_data(self.wavelength[order][clipl:clipr],self.flux[order][clipl:clipr]) continuum_scan_obj.scan() cont = continuum_scan_obj.get_selected() del continuum_scan_obj #Gaussian Process to fit continuum kernel = np.var(self.flux[order][clipl:clipr][cont]) * kernels.Matern32Kernel(10) #print("cont", len(self.flux[order][cont])) #kernel = np.var(self.flux[order][cont]) * kernels.ExpSquaredKernel(10) gp = george.GP(kernel,mean=self.flux[order][clipl:clipr][cont].mean()) gp.compute(self.wavelength[order][clipl:clipr][cont], err[cont]) x_pred = self.wavelength[order][clipl:clipr].copy() pred, pred_var = gp.predict(self.flux[order][clipl:clipr][cont], x_pred, return_var=True) #print("ln-likelihood: {0:.2f}".format(gp1.log_likelihood(self.flux[order][cont]))) params = [gp,self.flux[order][clipl:clipr][cont]] result = minimize(self.neg_ln_like, gp.get_parameter_vector(), args = params, jac=self.grad_neg_ln_like) #print(result) gp.set_parameter_vector(result.x) pred, pred_var = gp.predict(self.flux[order][clipl:clipr][cont], x_pred, return_var=True) #print("\nFinal ln-likelihood: {0:.2f}".format(gp.log_likelihood(self.flux[order][cont]))) self.continuum[order][clipl:clipr] = cont self.pred_all[order][clipl:clipr] = pred self.pred_var_all[order][clipl:clipr] = pred_var self.obs_err[order][clipl:clipr] = err self.normalized_flux[order][clipl:clipr] = self.flux[order][clipl:clipr]/pred return None def grad_neg_ln_like(self,p, params): params[0].set_parameter_vector(p) neg_ln = (-1)*params[0].grad_log_likelihood(params[1]) return neg_ln def neg_ln_like(self,p, params): params[0].set_parameter_vector(p) neg_ln = (-1)*params[0].log_likelihood(params[1]) return neg_ln def S_N(self, rows = 5, cols = 4, save_plot = False): #Siganl to noise is overestimated compared to MAKEE output plt.clf() f = plt.figure(figsize=(20,15)) plt.suptitle(str(self.filename) + ' S/N', size = 20) for i in range(len(self.wavelength)): order = i i += 1 ax = f.add_subplot(rows, cols,i) ax.plot(self.wavelength[order],np.sqrt(self.flux[order]*self.gain[order])) ax.set_title(str(i)) ax.grid() plt.tight_layout() if save_plot: plt.savefig(str(self.filename)+'_SNR.pdf') plt.show() def load_normalized(self, name): pathnames = glob.glob(name+'*'+'.npy') for i in range(len(pathnames)): if '_flux' in pathnames[i]: self.normalized_flux = np.load(pathnames[i]) print('flux loaded') elif '_wavelength' in pathnames[i]: self.wavelength = np.load(pathnames[i]) print('wavelength loaded') elif '_cont' in pathnames[i]: self.continuum = np.load(pathnames[i]) print('continuum loaded') elif '_obs_err' in pathnames[i]: self.obs_err = np.load(pathnames[i]) print('errors loaded') elif '_pred' in pathnames[i]: self.pred_all = np.load(pathnames[i]) print('all preds loaded') elif '_pred_var' in pathnames[i]: self.pred_var_all = np.load(pathnames[i]) print('all pred vars loaded') def save_normalized(self, name): #arrays are separated by order np.save(name+'_flux',self.normalized_flux) np.save(name+'_wavelength',self.shifted_wavelength) np.save(name+'_cont',self.continuum) np.save(name+'_obs_err',self.obs_err) np.save(name+'_pred',self.pred_all) np.save(name+'_pred_var',self.pred_var_all) return None def wave_shift(self, order, shift): self.shifted_wavelength[order] = self.wavelength[order] + shift self.estimated_shift[order] = shift def combine_spectra(self, spectB, resolution = 1000, shift=True): print('Use self.update_combined() when you are happy with the combined flux to override self.flux') #find corresponding orders that match self in spectB med_A = [np.median(self.shifted_wavelength[i]) for i in range(len(self.shifted_wavelength))] med_B = [np.median(spectB.shifted_wavelength[i]) for i in range(len(spectB.shifted_wavelength))] b_order = [] #find corresponding B order for k in range(len(med_A)): diff = abs(med_A[k] - med_B) loc = np.where(diff == diff.min()) b_order.append(loc) combined_flux_orders = np.zeros_like(self.flux) if shift: #first shift A to match B with higher accuracy (higher resolution) #may have to include a try statement for errors self.estimate_shift([spectB], shift_spacing=resolution) self.clean_shift() #loop through orders for i in range(len(self.shifted_wavelength)): #combining flux values for each wavelength value combined_flux = np.zeros(len(self.shifted_wavelength[i])) print('A order', i, 'B order', b_order[i][0][0]) #loop through each shifted wavelength value for j in range(len(self.shifted_wavelength[i])): #difference between one shifted wavelength value and all B wavelength values #element closest to zero is location of closest wavelength values ed = 5 if j < ed: le = 0 re = j + ed elif j > len(self.shifted_wavelength[i])-ed: le = j - ed re = len(self.shifted_wavelength[i]) + 1 else: le = j - ed re = j + ed near_point = spectB.wavelength[b_order[i][0][0]][le:re] diff_array = abs(self.shifted_wavelength[i][j] - near_point) loc = np.where(diff_array == diff_array.min()) #add A flux with B flux at location where diff = 0 combined_flux[j] = self.flux[i][j] + spectB.flux[b_order[i][0][0]][le:re][loc] #print(combined_flux) #collect flux values for each order combined_flux_orders[i] = combined_flux self.obs_err[i] = np.sqrt(combined_flux) plt.plot(self.shifted_wavelength[i], self.flux[i], label = 'A') plt.plot(spectB.wavelength[b_order[i][0][0]], spectB.flux[b_order[i][0][0]], label = 'B') plt.plot(self.shifted_wavelength[i], combined_flux, label = 'A+B') plt.xlim([np.median(self.shifted_wavelength[i]-(self.shifted_wavelength[i].max() - self.shifted_wavelength[i].min())/10), np.median(self.shifted_wavelength[i]+(self.shifted_wavelength[i].max() - self.shifted_wavelength[i].min())/10)]) plt.grid() plt.legend() plt.show() print('#-----------------------#') #replace original flux for A with combined flux self.combined_flux = combined_flux_orders def update_combined(self): self.flux = self.combined_flux def estimate_shift(self, sun_spectra, shift_max = 5, shift_min = -5, shift_spacing = 100): #setup num orders, place holder for chi min, shifts array orders = len(self.wavelength) chi = np.zeros(shift_spacing) shifts = np.linspace(shift_min, shift_max, shift_spacing) #begin looping through each order in star spectrum for q in range(orders): order = q order_found = False order_mean = self.shifted_wavelength[order].mean() #loop through each included solar spectrum to find a matching order for j in range(len(sun_spectra)): sun = sun_spectra[j] #Loop through sun orders to find similar order for i in range(len(sun.wavelength)): #use average wavelength value in an order to look for #matching solar order if order_mean < sun.wavelength[i].max() and order_mean > sun.wavelength[i].min(): order_found = True sun_range = sun.wavelength[i].max() - sun.wavelength[i].min() sun_window = [sun.wavelength[i][0], sun.wavelength[i][-1]] #loop through specified shift values to find best match for k in range(len(shifts)): shift = shifts[k] self.wave_shift(order,shift) order_range = self.shifted_wavelength[order].max() - self.shifted_wavelength[order].min() order_window = [self.shifted_wavelength[order][0], self.shifted_wavelength[order][-1]] # |------------| --> |------------| #|------------| --> |xx|----------| if order_window[0] > sun_window[0]: sun_window[0] = sun.wavelength[i][np.where(sun.wavelength[i] > order_window[0])][0] #|------------| --> |------------| # |------------| --> |-------|xxxxx| if order_window[1] < sun_window[1]: sun_window[1] = sun.wavelength[i][
np.where(sun.wavelength[i] < order_window[1])
numpy.where
# -*- coding: utf-8 -*- import numpy """Top-level package for Sequel.""" __author__ = """<NAME>""" __email__ = '<EMAIL>' __version__ = '0.1.0' def getsequence(seqhand,nattempts=1000,*args,**kwargs): attempt = 0 while attempt < nattempts: attempt += 1 seq = seqhand(*args,**kwargs) if not numpy.any(numpy.isnan(seq)): return seq,attempt return numpy.nan,attempt # insight 1: you can brute-force a first-order counter-balanced sequence # quite easily even for fairly large condition numbers (<100 works fine) def transferseq(tmat,startind=None): # important to avoid overlap across calls tmat = numpy.copy(tmat) ntransfers = numpy.sum(tmat.flat) dims = numpy.shape(tmat) assert len(dims)==2, 'input tmat must be 2D' assert dims[0] == dims[1], 'input tmat must be square matrix' ncon = dims[0] if startind is None: startind = numpy.random.randint(ncon) seq = [startind] niter = 0 while numpy.sum(tmat.flat)>0.: niter += 1 # the current trial is in rows rowind = seq[-1] validcol = numpy.where(tmat[rowind,:] > 0.)[0] if not len(validcol): return numpy.nan colind = validcol[numpy.random.randint(len(validcol))] seq.append(colind) tmat[rowind,colind] -= 1 return seq def transfermatrix(seq): ncon = numpy.max(seq).astype(int)+1 out = numpy.zeros([ncon,ncon,len(seq)-1]) out[seq[:-1],seq[1:],range(0,len(seq)-1)] = 1 return numpy.sum(out,axis=2) def permutationrep(x,n,allowrep=False,maxiter=1000): """generate repeating sequence of random indices in 0:x range.""" seq = numpy.arange(x) numpy.random.shuffle(seq) niter = 0 while len(seq) < (x*n): niter += 1 newseq =
numpy.arange(x)
numpy.arange
# -*- coding: utf-8 -*- """ Created on Tue Sep 21 13:28:38 2021 @author: lukepinkel """ import numpy as np import pandas as pd from pystatsm.utilities.random import exact_rmvnorm, vine_corr from pystatsm.pyglm.betareg import BetaReg, LogitLink, LogLink from pystatsm.pyglm.clm import CLM from pystatsm.pyglm.glm import (GLM, Binomial, Poisson, Gamma, InverseGaussian, PowerLink, Gaussian, IdentityLink) from pystatsm.pyglm.nb2 import NegativeBinomial from pystatsm.pyglm.zimodels import ZIP from pystatsm.utilities.numerical_derivs import fo_fc_cd, so_gc_cd def test_betareg(): SEED = 1234 rng = np.random.default_rng(SEED) n_obs = 10_000 X = exact_rmvnorm(np.eye(4)/100, n=n_obs, seed=SEED) Z = exact_rmvnorm(np.eye(2)/100, n=n_obs, seed=SEED) betam = np.array([4.0, 1.0, -1.0, -2.0]) betas = np.array([2.0, -2.0]) etam, etas = X.dot(betam)+1.0, 2+Z.dot(betas)#np.tanh(Z.dot(betas))/2.0 + 2.4 mu, phi = LogitLink().inv_link(etam), LogLink().inv_link(etas) a = mu * phi b = (1.0 - mu) * phi y = rng.beta(a, b) xcols = [f"x{i}" for i in range(1, 4+1)] zcols = [f"z{i}" for i in range(1, 2+1)] data = pd.DataFrame(np.hstack((X, Z)), columns=xcols+zcols) data["y"] = y m_formula = "y~1+"+"+".join(xcols) s_formula = "y~1+"+"+".join(zcols) model = BetaReg(m_formula=m_formula, s_formula=s_formula, data=data) model.fit() theta = np.array([0.99819859, 3.92262116, 1.02091902, -0.98526682, -1.9795528, 1.98535573, 2.06533661, -2.06805411]) assert(np.allclose(model.theta, theta)) g1 = fo_fc_cd(model.loglike, model.theta*0.95) g2 = model.gradient(model.theta*0.95) assert(np.allclose(g1, g2)) H1 = so_gc_cd(model.gradient, model.theta) H2 = model.hessian(model.theta) assert(np.allclose(H1, H2)) assert(model.optimizer.success==True) assert((np.abs(model.optimizer.grad)<1e-5).all()) def test_clm(): SEED = 1234 rng = np.random.default_rng(SEED) n_obs, n_var, rsquared = 10_000, 8, 0.25 S = np.eye(n_var) X = exact_rmvnorm(S, n=n_obs, seed=1234) beta = np.zeros(n_var) beta[np.arange(n_var//2)] = rng.choice([-1., 1., -0.5, 0.5], n_var//2) var_names = [f"x{i}" for i in range(1, n_var+1)] eta = X.dot(beta) eta_var = eta.var() scale = np.sqrt((1.0 - rsquared) / rsquared * eta_var) y = rng.normal(eta, scale=scale) df = pd.DataFrame(X, columns=var_names) df["y"] = pd.qcut(y, 7).codes formula = "y~-1+"+"+".join(var_names) model = CLM(frm=formula, data=df) model.fit() theta = np.array([-2.08417224, -1.08288221, -0.34199706, 0.34199368, 1.08217316, 2.08327387, 0.37275823, 0.37544884, 0.3572407 , 0.71165265, 0.0086888 , -0.00846944, 0.00975741, 0.01257564]) assert(np.allclose(theta, model.params)) params_init, params = model.params_init.copy(), model.params.copy() tol = np.finfo(float).eps**(1/3) np.allclose(model.gradient(params_init), fo_fc_cd(model.loglike, params_init)) np.allclose(model.gradient(params), fo_fc_cd(model.loglike, params), atol=tol) np.allclose(model.hessian(params_init), so_gc_cd(model.gradient, params_init)) np.allclose(model.hessian(params), so_gc_cd(model.gradient, params)) def test_glm(): seed = 1234 rng = np.random.default_rng(seed) response_dists = ['Gaussian', 'Binomial', 'Poisson', 'Gamma', "InvGauss"] n_obs, nx, r = 2000, 10, 0.5 n_true = nx//4 R = vine_corr(nx, 10, seed=seed) X = {} X1 = exact_rmvnorm(R, n_obs, seed=seed) X2 = exact_rmvnorm(R, n_obs, seed=seed) X2 = X2 - np.min(X2, axis=0) + 0.1 X['Gaussian'] = X1.copy() X['Binomial'] = X1.copy() X['Poisson'] = X1.copy() X['Gamma'] = X1.copy() X['InvGauss'] = X2.copy() beta = dict(Binomial=np.zeros(nx), Poisson=np.zeros(nx), Gamma=np.zeros(nx), Gaussian=np.zeros(nx), InvGauss=np.zeros(nx)) beta['Gaussian'][:n_true*2] = np.concatenate((0.5*np.ones(n_true), -0.5*np.ones(n_true))) beta['Binomial'][:n_true*2] = np.concatenate((0.5*np.ones(n_true), -0.5*np.ones(n_true))) beta['Poisson'][:n_true*2] = np.concatenate((0.5*np.ones(n_true), -0.5*np.ones(n_true))) beta['Gamma'][:n_true*2] = np.concatenate((0.1*np.ones(n_true), -0.1*np.ones(n_true))) beta['InvGauss'][:n_true*2] = np.concatenate((0.1*np.ones(n_true), 0.1*np.ones(n_true))) for dist in response_dists: beta[dist] = beta[dist][rng.choice(nx, nx, replace=False)] eta = {} eta_var = {} u_var = {} u = {} linpred = {} for dist in response_dists: eta[dist] = X[dist].dot(beta[dist]) eta_var[dist] = eta[dist].var() u_var[dist] = np.sqrt(eta_var[dist] * (1.0 - r) / r) u[dist] = rng.normal(0, u_var[dist], size=(n_obs)) linpred[dist] = u[dist]+eta[dist] if dist in ['InvGauss']: linpred[dist] -= linpred[dist].min() linpred[dist] += 0.01 Y = {} Y['Gaussian'] = IdentityLink().inv_link(linpred['Gaussian']) Y['Binomial'] = rng.binomial(n=10, p=LogitLink().inv_link(linpred['Binomial']))/10.0 Y['Poisson'] = rng.poisson(lam=LogLink().inv_link(linpred['Poisson'])) Y['Gamma'] = rng.gamma(shape=LogLink().inv_link(linpred['Gamma']), scale=3.0) Y['InvGauss'] = rng.wald(mean=PowerLink(-2).inv_link(eta['InvGauss']), scale=2.0) data = {} formula = "y~"+"+".join([f"x{i}" for i in range(1, nx+1)]) for dist in response_dists: data[dist] = pd.DataFrame(np.hstack((X[dist], Y[dist].reshape(-1, 1))), columns=[f'x{i}' for i in range(1, nx+1)]+['y']) models = {} models['Gaussian'] = GLM(formula=formula, data=data['Gaussian'], fam=Gaussian(), scale_estimator='NR') models['Binomial'] = GLM(formula=formula, data=data['Binomial'], fam=Binomial(weights=np.ones(n_obs)*10.0)) models['Poisson'] = GLM(formula=formula, data=data['Poisson'], fam=Poisson()) models['Gamma'] = GLM(formula=formula, data=data['Gamma'], fam=Gamma()) models['Gamma2'] = GLM(formula=formula, data=data['Gamma'], fam=Gamma(), scale_estimator='NR') models['InvGauss'] = GLM(formula=formula, data=data['InvGauss'], fam=InverseGaussian(), scale_estimator='NR') models['Gaussian'].fit() models['Binomial'].fit() models['Poisson'].fit() models['Gamma'].fit() models['Gamma2'].fit() models['InvGauss'].fit() grad_conv = {} grad_conv["Gaussian"] = np.mean(models['Gaussian'].optimizer.grad**2)<1e-6 grad_conv["Binomial"] = np.mean(models['Binomial'].optimizer.grad**2)<1e-6 grad_conv["Poisson"] = np.mean(models['Poisson'].optimizer.grad**2)<1e-6 grad_conv["Gamma"] = models['Gamma'].optimizer['|g|'][-1]<1e-6 grad_conv["Gamma2"] = models['Gamma2'].optimizer['|g|'][-1]<1e-6 grad_conv["InvGauss"] = np.mean(models['InvGauss'].optimizer.grad**2)<1e-6 assert(np.all(grad_conv.values())) param_vals = {} param_vals["Gaussian"] = np.array([0.01677157, 0.01768816, 0.03232757, -0.50586418, 0.00538817, 0.01215466, 0.46273009, 0.03222982, 0.51013559, -0.00482659, -0.44925714, -0.08297647]) param_vals["Binomial"] = np.array([-0.04811123, 0.34608258, 0.02748488, 0.02109192, -0.35403311, 0.37825192, -0.46275101, 0.00668586, 0.06837819, 0.00136615, 0.00321255]) param_vals["Poisson"] = np.array([ 0.78523498, -0.52630851, -0.0407732 , 0.02971785, -0.03919242, -0.01845692, 0.34397533, -0.55594235, 0.0257876 , 0.42205263, 0.13051603]) param_vals["Gamma"] = np.array([ 0.33020564, -0.00496934, -0.01392126, 0.03581743, -0.01186388, 0.03645015, -0.00609281, -0.01056508, 0.00163984, -0.03324063, -0.00937269]) param_vals["Gamma2"] = np.array([ 0.33020564, -0.00496934, -0.01392126, 0.03581743, -0.01186388, 0.03645015, -0.00609281, -0.01056508, 0.00163984, -0.03324063, -0.00937269, 0.09260053]) param_vals["InvGauss"] = np.array([ 0.51658718, -0.03040851, 0.14254292, 0.10087636, 0.05071923, -0.05297573, -0.04039982, -0.04293772, 0.1251764 , -0.02370386, 0.01912702, -0.66386179]) param_close = {} grad_close = {} hess_close = {} for key in param_vals.keys(): m = models[key] param_close[key] = np.allclose(param_vals[key], m.params) x = m.params * 0.98 grad_close[key] = np.allclose(fo_fc_cd(m.loglike, x), m.gradient(x)) hess_close[key] = np.allclose(so_gc_cd(m.gradient, x), m.hessian(x)) assert(np.all(param_close.values())) assert(np.all(grad_conv.values())) assert(np.all(grad_close.values())) assert(np.all(hess_close.values())) def test_nb2(): seed = 1234 rng =
np.random.default_rng(seed)
numpy.random.default_rng
import numpy as np import pandas as pd import time, os, glob import cv2 from keras.applications.vgg16 import VGG16 from keras.optimizers import Adam from keras.layers import GlobalAveragePooling2D, Dense from keras import Model from keras.applications.imagenet_utils import preprocess_input def get_rotnet(num_class, input_size): base_model = VGG16(weights='imagenet', include_top=False, input_shape=[input_size,input_size,3], classes=num_class) x = base_model.get_layer('block5_pool').output x = GlobalAveragePooling2D()(x) x = Dense(4, activation='softmax')(x) model = Model(inputs=base_model.input, outputs=x) optimizer = Adam(lr=0.0001) model.compile(loss='categorical_crossentropy', optimizer=optimizer, metrics=['accuracy']) return model def randomHueSaturationValue(image, hue_shift_limit=(-180, 180), sat_shift_limit=(-255, 255), val_shift_limit=(-255, 255), u=0.5): if np.random.random() < u: image = cv2.cvtColor(image, cv2.COLOR_BGR2HSV) h, s, v = cv2.split(image) hue_shift = np.random.uniform(hue_shift_limit[0], hue_shift_limit[1]) h = cv2.add(h, hue_shift) sat_shift = np.random.uniform(sat_shift_limit[0], sat_shift_limit[1]) s = cv2.add(s, sat_shift) val_shift = np.random.uniform(val_shift_limit[0], val_shift_limit[1]) v = cv2.add(v, val_shift) image = cv2.merge((h, s, v)) image = cv2.cvtColor(image, cv2.COLOR_HSV2BGR) return image def randomShiftScaleRotate(image, shift_limit=(-0.0625, 0.0625), scale_limit=(-0.1, 0.1), rotate_limit=(-45, 45), aspect_limit=(0, 0), borderMode=cv2.BORDER_CONSTANT, u=0.5): if np.random.random() < u: height, width, channel = image.shape angle = np.random.uniform(rotate_limit[0], rotate_limit[1]) # degree scale = np.random.uniform(1 + scale_limit[0], 1 + scale_limit[1]) aspect = np.random.uniform(1 + aspect_limit[0], 1 + aspect_limit[1]) sx = scale * aspect / (aspect ** 0.5) sy = scale / (aspect ** 0.5) dx = round(np.random.uniform(shift_limit[0], shift_limit[1]) * width) dy = round(np.random.uniform(shift_limit[0], shift_limit[1]) * height) cc = np.math.cos(angle / 180 * np.math.pi) * sx ss = np.math.sin(angle / 180 * np.math.pi) * sy rotate_matrix =
np.array([[cc, -ss], [ss, cc]])
numpy.array
import numpy as np from reservoirlib.esn import ArcTanh from reservoirlib.esn import InvertedSigmoid class BenchmarkExperiment: """ Provides a framework for running an experiment using various tasks """ def __init__(self, esn, task, trainer, num_training_trials, invert_target_of_training=False): """ :param esn: an object that can be trained on task data esn should conform to the BaseESN interface :param task: an object that will generate input and target time-series task should conform the BaseTask interface :param trainer: a function that takes as arguments a target and model numpy array and returns a set of parameters :param num_training_trials: number of trials to run the task :param invert_target_of_training: whether to invert the target signal for training. This is usually True if ESN output layer has tanh or sigmoid neurons and you are using least squared regression. Else keep false. Default: False """ self.esn = esn self.task = task self.trainer = trainer self.num_training_trials = num_training_trials self.invert_target_of_training = invert_target_of_training def train_model(self): """ Generates input and target signals and runs the ESN's training algorithm :return: None """ # Generate data for training input_trials = [None for i in range(self.num_training_trials)] target_trials = [None for i in range(self.num_training_trials)] history_trials = [None for i in range(self.num_training_trials)] input_cuts = [None for i in range(self.num_training_trials)] output_cuts = [None for i in range(self.num_training_trials)] for i in range(self.num_training_trials): input_trials[i], target_trials[i], input_cuts[i], output_cuts[i] = \ self.task.generate_signal() input_trials[i] = np.expand_dims(input_trials[i], axis=2) target_trials[i] = np.expand_dims(target_trials[i], axis=2) self.esn.run(input_trials[i], record=True, output=False) history_trials[i] = np.zeros((input_trials[i].shape[0], self.esn.num_neurons, 1), dtype=self.esn.dtype) history_trials[i][:] = self.esn.history self.esn.reset() # stack trial data stacked_target = stack_targets(target_trials, output_cuts, self.esn.dtype) stacked_history = stack_history(input_trials, history_trials, input_cuts, self.esn.dtype) # invert target stack data if applicable if self.invert_target_of_training: invert_target_array(stacked_target, self.esn.output_type, self.esn.output_neuron_pars) # train on data solution = self.trainer(stacked_history, stacked_target) # call set weights for esn self.esn.set_output_weights(solution) def evaluate_model(self): """ Task specific validation runs :return: The task specific validation output """ input_signal, target_output, in_cut, out_cut = self.task.generate_signal() prediction = self.esn.run(
np.expand_dims(input_signal, axis=2)
numpy.expand_dims
""" Utilities that manipulate strides to achieve desirable effects. An explanation of strides can be found in the "ndarray.rst" file in the NumPy reference guide. """ import numpy as np from numpy.core.numeric import normalize_axis_tuple from numpy.core.overrides import array_function_dispatch, set_module __all__ = ['broadcast_to', 'broadcast_arrays', 'broadcast_shapes'] class DummyArray: """Dummy object that just exists to hang __array_interface__ dictionaries and possibly keep alive a reference to a base array. """ def __init__(self, interface, base=None): self.__array_interface__ = interface self.base = base def _maybe_view_as_subclass(original_array, new_array): if type(original_array) is not type(new_array): # if input was an ndarray subclass and subclasses were OK, # then view the result as that subclass. new_array = new_array.view(type=type(original_array)) # Since we have done something akin to a view from original_array, we # should let the subclass finalize (if it has it implemented, i.e., is # not None). if new_array.__array_finalize__: new_array.__array_finalize__(original_array) return new_array def as_strided(x, shape=None, strides=None, subok=False, writeable=True): """ Create a view into the array with the given shape and strides. .. warning:: This function has to be used with extreme care, see notes. Parameters ---------- x : ndarray Array to create a new. shape : sequence of int, optional The shape of the new array. Defaults to ``x.shape``. strides : sequence of int, optional The strides of the new array. Defaults to ``x.strides``. subok : bool, optional .. versionadded:: 1.10 If True, subclasses are preserved. writeable : bool, optional .. versionadded:: 1.12 If set to False, the returned array will always be readonly. Otherwise it will be writable if the original array was. It is advisable to set this to False if possible (see Notes). Returns ------- view : ndarray See also -------- broadcast_to : broadcast an array to a given shape. reshape : reshape an array. lib.stride_tricks.sliding_window_view : userfriendly and safe function for the creation of sliding window views. Notes ----- ``as_strided`` creates a view into the array given the exact strides and shape. This means it manipulates the internal data structure of ndarray and, if done incorrectly, the array elements can point to invalid memory and can corrupt results or crash your program. It is advisable to always use the original ``x.strides`` when calculating new strides to avoid reliance on a contiguous memory layout. Furthermore, arrays created with this function often contain self overlapping memory, so that two elements are identical. Vectorized write operations on such arrays will typically be unpredictable. They may even give different results for small, large, or transposed arrays. Since writing to these arrays has to be tested and done with great care, you may want to use ``writeable=False`` to avoid accidental write operations. For these reasons it is advisable to avoid ``as_strided`` when possible. """ # first convert input to array, possibly keeping subclass x = np.array(x, copy=False, subok=subok) interface = dict(x.__array_interface__) if shape is not None: interface['shape'] = tuple(shape) if strides is not None: interface['strides'] = tuple(strides) array = np.asarray(DummyArray(interface, base=x)) # The route via `__interface__` does not preserve structured # dtypes. Since dtype should remain unchanged, we set it explicitly. array.dtype = x.dtype view = _maybe_view_as_subclass(x, array) if view.flags.writeable and not writeable: view.flags.writeable = False return view def _sliding_window_view_dispatcher(x, window_shape, axis=None, *, subok=None, writeable=None): return (x,) @
array_function_dispatch(_sliding_window_view_dispatcher)
numpy.core.overrides.array_function_dispatch
from configparser import ConfigParser from glob import glob import os from astropy.table import Table from astropy.io import fits from astropy.io import ascii import numpy as np class DitherSequence: """Access class to dithering sequence data from nightwatch or redux files.""" def __init__(self, inifile, dry_run, output): """Parse a configuration file in INI format. Parameters ---------- inifile : str Name of INI file with configuration data. dry_run : bool If true, do not process input files. output : str Name of output file (FITS format). """ config = ConfigParser() config.read(inifile) sequence = config['dithersequence'] # Set up the output. self._output = output # Set up the file type and exposure sequence. self._location = sequence['location'] self._filetype = sequence['filetype'] self._date = sequence['date'] self._exposures = [int(e) for e in sequence['exposures'].split()] if 'coordinates' not in config: raise ValueError('no coordinates set for dither!') coords = config['coordinates'] self._dithertype = coords['dithertype'] self._wcs = fits.getdata(coords['wcsfile'], 2) self._wcs = self._wcs[np.argsort(self._wcs['mjd_obs'])] self._central_exposure = int(sequence['centralexposure']) if coords['dithertype'] == 'telescope': fadir = coords['fiberassigndir'] self._ditherfa = fits.getdata(os.path.join( fadir, 'fiberassign-%s.fits' % coords['ditheredtilenum'])) self._unditherfa = fits.getdata(os.path.join( fadir, 'fiberassign-%s.fits' % coords['unditheredtilenum'])) expnum = [int(fn.split('-')[1]) for fn in self._wcs['filename']] centralind = expnum.index(self._central_exposure) self._central_wcs = self._wcs[centralind] # Set the Tile ID for the output metadata. self._tileid = coords['unditheredtilenum'] else: raise ValueError('not implemented') # Extract the list of exposures on disk. self._exposure_files = self._getfilenames() if not dry_run: # Construct fiber output. self._exposure_table = self._buildtable() def _getfilenames(self): """Return a list of exposures and filenames given an INI configuration. Returns ------- exfiles : dict Dictionary of exposure numbers and corresponding nightwatch qcframe or redux sframe FITS files. """ # Set up the path and file prefix depending on the filetype. if self._filetype == 'nightwatch': fileprefix = 'qcframe' if self._location == 'nersc': prefix = '/global/project/projectdirs/desi/spectro/nightwatch/kpno' elif self._location == 'kpno': prefix = '/exposures/desi' # not correct path! else: raise ValueError('Unknown location {}'.format(self._location)) elif self._filetype == 'redux': fileprefix = 'sframe' if self._location == 'nersc': prefix = '/global/project/projectdirs/desi/spectro/redux/daily/exposures' elif self._location == 'kpno': prefix = '/exposures/desi' # not correct path! else: raise ValueError('Unknown location {}'.format(self._location)) else: raise ValueError('Unknown file type {}'.format(self._filetype)) # Find the exposures files. exfiles = {} for ex in self._exposures: folder = '{}/{}/{:08d}'.format(prefix, self._date, ex) files = sorted(glob('{}/{}*.fits'.format(folder, fileprefix))) exfiles[ex] = files return exfiles def _buildtable(self): """Loop through the exposure list and construct an observation table.""" tabrows = [] for i, (expid, exfiles) in enumerate(self._exposure_files.items()): specflux_b, specflux_r, specflux_z = [], [], [] tab = None if len(exfiles) == 0: continue print(expid) for exfile in exfiles: print(exfile) hdu = fits.open(exfile) # The following tables are present in the redux sframes and the # nightwatch qcframes. wave = hdu['WAVELENGTH'].data # However, in the nightwatch files the wavelength data are a # table of size nfiber x nwavelength. if self._filetype == 'nightwatch': if wave.ndim > 1: wave = wave[0] fluxhead = hdu['FLUX'].header fluxdata = hdu['FLUX'].data ivardata = hdu['IVAR'].data fibermap = hdu['FIBERMAP'].data exptime = fluxhead['EXPTIME'] if not np.all(self._unditherfa['FIBER'] == np.arange(len(self._unditherfa))): raise ValueError('weird fiberassign file format!') fibermap = self._unditherfa[fibermap['FIBER']] target_id = fibermap['TARGETID'] target_ra = fibermap['TARGET_RA'] target_dec = fibermap['TARGET_DEC'] fiber = fibermap['FIBER'] objtype = fibermap['OBJTYPE'] flux_g = fibermap['FLUX_G'] flux_r = fibermap['FLUX_R'] flux_z = fibermap['FLUX_Z'] x, y = [fibermap['FIBERASSIGN_{}'.format(val)] for val in ('X', 'Y')] camera = fluxhead['CAMERA'][0].upper() if getattr(self, '_deltara', None) is not None: dra = self._deltara[i]*np.ones(len(fiber)) ddec = self._deltadec[i]*np.ones(len(fiber)) elif self._dithertype == 'telescope': dithra = self._ditherfa['target_ra'] dithdec = self._ditherfa['target_dec'] udithra = self._unditherfa['target_ra'] udithdec = self._unditherfa['target_dec'] ontarget = ((self._ditherfa['targetid'] == self._unditherfa['targetid']) & (self._ditherfa['objtype'] == 'TGT')) dfiberra = (dithra-udithra)*np.cos(np.radians(udithdec))*60*60 dfiberdec = (dithdec-udithdec)*60*60 if not np.all(self._ditherfa['FIBER'] == np.arange(len(self._ditherfa))): raise ValueError('unexpected shape of dither file') dfiberra[~ontarget] = np.nan dfiberdec[~ontarget] = np.nan dfiberra = dfiberra[fiber] dfiberdec = dfiberdec[fiber] wcs = self.lookup_wcs(fluxhead['MJD-OBS']) centralwcs = self._central_wcs if (~np.isfinite(centralwcs['cenra'][1]) or ~np.isfinite(centralwcs['cendec'][1])): raise ValueError('central pointing ra/dec is NaN!') dtelra = (wcs['cenra'][1]-centralwcs['cenra'][1]) dtelra *= np.cos(np.radians(centralwcs['cendec'][1])) dteldec = wcs['cendec'][1]-centralwcs['cendec'][1] dra = dfiberra + dtelra*60*60 ddec = dfiberdec + dteldec*60*60 if np.all(~np.isfinite(dra)): print('warning: no good telescope offset for %s' % exfile) else: raise ValueError('not implemented') for j, fiber_id in enumerate(fiber): flux = fluxdata[j] ivar = ivardata[j] if not np.any(ivar > 0): specflux = 0 specflux_ivar = 0 else: meanivar = np.mean(ivar[ivar > 0]) mask = ivar > meanivar / 100 specflux = np.trapz(flux*mask, wave) specflux_ivar = 1./np.sum(ivar[mask]**-1) # Schlegel: sum over correct wavelengths, all three # filters, plus 11 pixel median filter to reject # cosmics. # will require being better about reading in # the spectrographs together. tabrows.append((expid, exptime, target_id[j], target_ra[j], target_dec[j], fiber[j], objtype[j], flux_g[j], flux_r[j], flux_z[j], specflux, specflux_ivar, camera, dra[j], ddec[j], x[j], y[j])) tab = Table(rows=tabrows, names=('EXPID', 'EXPTIME', 'TARGETID', 'TARGET_RA', 'TARGET_DEC', 'FIBER', 'OBJTYPE', 'FLUX_G', 'FLUX_R', 'FLUX_Z', 'SPECTROFLUX', 'SPECTROFLUX_IVAR', 'CAMERA', 'DELTA_X_ARCSEC', 'DELTA_Y_ARCSEC', 'XFOCAL', 'YFOCAL'), meta={'EXTNAME' : 'DITHER', 'TILEID' : '{}'.format(self._tileid)}) return tab def lookup_wcs(self, mjd): # expfn = self._exposure_files[expnum] # mjd = fits.getheader(expfn)['MJD-OBS'] ind = np.searchsorted(self._wcs['mjd_obs'], mjd) if ind >= len(self._wcs): return np.array(((np.nan,)*3, (np.nan,)*3), dtype=[('cenra', '3f8'), ('cendec', '3f8')]) twcs = self._wcs[ind] if twcs['mjd_obs'] <= mjd: raise ValueError('Something confusing with wcs list') return twcs def save(self, filename=None, overwrite=True): """Save exposure table to a FITS file. Parameters ---------- filename : str Output filename. If none, use default output class member. overwrite : bool If true, clobber an existing file with the same name. """ if filename is None: filename = self._output self._exposure_table.write(filename, overwrite=overwrite) def rearrange_table(self): exps = np.sort(np.unique(self._exposure_table['EXPID'])) nexp = len(exps) nfiber = 5000 camera =
np.unique(self._exposure_table['CAMERA'])
numpy.unique
"""Test module for memory operations.""" import numpy import pytest from concrete.common.data_types import UnsignedInteger from concrete.common.values import EncryptedTensor from concrete.numpy import compile_numpy_function @pytest.mark.parametrize( "function,parameters,inputset,test_input,expected_output", [ pytest.param( lambda x: x.flatten(), { "x": EncryptedTensor(UnsignedInteger(4), shape=(3, 2)), }, [numpy.random.randint(0, 2 ** 4, size=(3, 2)) for _ in range(10)], [[0, 1], [1, 2], [2, 3]], [0, 1, 1, 2, 2, 3], ), pytest.param( lambda x: x.flatten(), { "x": EncryptedTensor(UnsignedInteger(4), shape=(2, 3, 4, 5, 6)), }, [numpy.random.randint(0, 2 ** 4, size=(2, 3, 4, 5, 6)) for _ in range(10)], (numpy.arange(720) % 10).reshape((2, 3, 4, 5, 6)), (numpy.arange(720) % 10), ), pytest.param( lambda x: x.reshape((1, 3)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(3,)), }, [numpy.random.randint(0, 2 ** 4, size=(3,)) for _ in range(10)], [5, 9, 1], [[5, 9, 1]], ), pytest.param( lambda x: x.reshape((3, 1)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(3,)), }, [numpy.random.randint(0, 2 ** 4, size=(3,)) for _ in range(10)], [5, 9, 1], [[5], [9], [1]], ), pytest.param( lambda x: x.reshape((3, 2)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(3, 2)), }, [numpy.random.randint(0, 2 ** 4, size=(3, 2)) for _ in range(10)], [[0, 1], [1, 2], [2, 3]], [[0, 1], [1, 2], [2, 3]], ), pytest.param( lambda x: x.reshape((3, 2)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(2, 3)), }, [numpy.random.randint(0, 2 ** 4, size=(2, 3)) for _ in range(10)], [[0, 1, 1], [2, 2, 3]], [[0, 1], [1, 2], [2, 3]], ), pytest.param( lambda x: x.reshape(-1), { "x": EncryptedTensor(UnsignedInteger(4), shape=(3, 2)), }, [numpy.random.randint(0, 2 ** 4, size=(3, 2)) for _ in range(10)], [[0, 1], [1, 2], [2, 3]], [0, 1, 1, 2, 2, 3], ), pytest.param( lambda x: x.reshape((2, 2, 3)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(4, 3)), }, [numpy.random.randint(0, 2 ** 4, size=(4, 3)) for _ in range(10)], (numpy.arange(12) % 10).reshape((4, 3)), (numpy.arange(12) % 10).reshape((2, 2, 3)), ), pytest.param( lambda x: x.reshape((4, 3)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(2, 2, 3)), }, [numpy.random.randint(0, 2 ** 4, size=(2, 2, 3)) for _ in range(10)], (numpy.arange(12) % 10).reshape((2, 2, 3)), (numpy.arange(12) % 10).reshape((4, 3)), ), pytest.param( lambda x: x.reshape((3, 2, 2)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(3, 4)), }, [numpy.random.randint(0, 2 ** 4, size=(3, 4)) for _ in range(10)], (numpy.arange(12) % 10).reshape((3, 4)), (numpy.arange(12) % 10).reshape((3, 2, 2)), ), pytest.param( lambda x: x.reshape((3, 4)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(3, 2, 2)), }, [numpy.random.randint(0, 2 ** 4, size=(3, 2, 2)) for _ in range(10)], (numpy.arange(12) % 10).reshape((3, 2, 2)), (numpy.arange(12) % 10).reshape((3, 4)), ), pytest.param( lambda x: x.reshape((5, 3, 2)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(6, 5)), }, [numpy.random.randint(0, 2 ** 4, size=(6, 5)) for _ in range(10)], (numpy.arange(30) % 10).reshape((6, 5)), (numpy.arange(30) % 10).reshape((5, 3, 2)), ), pytest.param( lambda x: x.reshape((5, 6)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(2, 3, 5)), }, [numpy.random.randint(0, 2 ** 4, size=(2, 3, 5)) for _ in range(10)], (numpy.arange(30) % 10).reshape((2, 3, 5)), (numpy.arange(30) % 10).reshape((5, 6)), ), pytest.param( lambda x: x.reshape((6, 4, 30)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(2, 3, 4, 5, 6)), }, [numpy.random.randint(0, 2 ** 4, size=(2, 3, 4, 5, 6)) for _ in range(10)], (numpy.arange(720) % 10).reshape((2, 3, 4, 5, 6)), (numpy.arange(720) % 10).reshape((6, 4, 30)), ), pytest.param( lambda x: x.reshape((2, 60, 6)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(2, 3, 4, 5, 6)), }, [numpy.random.randint(0, 2 ** 4, size=(2, 3, 4, 5, 6)) for _ in range(10)], (numpy.arange(720) % 10).reshape((2, 3, 4, 5, 6)), (numpy.arange(720) % 10).reshape((2, 60, 6)), ), pytest.param( lambda x: x.reshape((6, 6, -1)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(2, 3, 2, 3, 4)), }, [numpy.random.randint(0, 2 ** 4, size=(2, 3, 2, 3, 4)) for _ in range(10)], (numpy.arange(144) % 10).reshape((2, 3, 2, 3, 4)), (numpy.arange(144) % 10).reshape((6, 6, -1)), ), pytest.param( lambda x: x.reshape((6, -1, 12)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(2, 3, 2, 3, 4)), }, [numpy.random.randint(0, 2 ** 4, size=(2, 3, 2, 3, 4)) for _ in range(10)], (numpy.arange(144) % 10).reshape((2, 3, 2, 3, 4)), (numpy.arange(144) % 10).reshape((6, -1, 12)), ), pytest.param( lambda x: x.reshape((-1, 18, 4)), { "x": EncryptedTensor(UnsignedInteger(4), shape=(2, 3, 2, 3, 4)), }, [numpy.random.randint(0, 2 ** 4, size=(2, 3, 2, 3, 4)) for _ in range(10)], (
numpy.arange(144)
numpy.arange
from __future__ import print_function, division, absolute_import import functools import sys import warnings # unittest only added in 3.4 self.subTest() if sys.version_info[0] < 3 or sys.version_info[1] < 4: import unittest2 as unittest else: import unittest # unittest.mock is not available in 2.7 (though unittest2 might contain it?) try: import unittest.mock as mock except ImportError: import mock import matplotlib matplotlib.use('Agg') # fix execution of tests involving matplotlib on travis import numpy as np import six.moves as sm import imgaug as ia from imgaug import augmenters as iaa from imgaug import parameters as iap from imgaug import dtypes as iadt from imgaug import random as iarandom from imgaug.testutils import (array_equal_lists, keypoints_equal, reseed, runtest_pickleable_uint8_img) import imgaug.augmenters.arithmetic as arithmetic_lib import imgaug.augmenters.contrast as contrast_lib class Test_cutout(unittest.TestCase): @mock.patch("imgaug.augmenters.arithmetic.cutout_") def test_mocked(self, mock_inplace): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) mock_inplace.return_value = "foo" rng = iarandom.RNG(0) image_aug = iaa.cutout(image, x1=10, y1=20, x2=30, y2=40, fill_mode="gaussian", cval=1, fill_per_channel=0.5, seed=rng) assert mock_inplace.call_count == 1 assert image_aug == "foo" args = mock_inplace.call_args_list[0][0] assert args[0] is not image assert np.array_equal(args[0], image) assert np.isclose(args[1], 10) assert np.isclose(args[2], 20) assert np.isclose(args[3], 30) assert np.isclose(args[4], 40) assert args[5] == "gaussian" assert args[6] == 1 assert np.isclose(args[7], 0.5) assert args[8] is rng class Test_cutout_(unittest.TestCase): def test_with_simple_image(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_aug = iaa.cutout_(image, x1=10, y1=20, x2=30, y2=40, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) mask = np.zeros(image.shape, dtype=bool) mask[20:40, 10:30, :] = True overlap_inside = np.sum(image_aug[mask] == 0) / np.sum(mask) overlap_outside = np.sum(image_aug[~mask] > 0) / np.sum(~mask) assert image_aug is image assert overlap_inside >= 1.0 - 1e-4 assert overlap_outside >= 1.0 - 1e-4 @mock.patch("imgaug.augmenters.arithmetic._fill_rectangle_constant_") def test_fill_mode_constant_mocked(self, mock_fill): self._test_with_fill_mode_mocked("constant", mock_fill) @mock.patch("imgaug.augmenters.arithmetic._fill_rectangle_gaussian_") def test_fill_mode_gaussian_mocked(self, mock_fill): self._test_with_fill_mode_mocked("gaussian", mock_fill) @classmethod def _test_with_fill_mode_mocked(cls, fill_mode, mock_fill): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) mock_fill.return_value = image seed = iarandom.RNG(0) image_aug = iaa.cutout_(image, x1=10, y1=20, x2=30, y2=40, fill_mode=fill_mode, cval=0, fill_per_channel=False, seed=seed) assert mock_fill.call_count == 1 args = mock_fill.call_args_list[0][0] kwargs = mock_fill.call_args_list[0][1] assert image_aug is image assert args[0] is image assert kwargs["x1"] == 10 assert kwargs["y1"] == 20 assert kwargs["x2"] == 30 assert kwargs["y2"] == 40 assert kwargs["cval"] == 0 assert kwargs["per_channel"] is False assert kwargs["random_state"] is seed def test_zero_height(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_cp = np.copy(image) image_aug = iaa.cutout_(image, x1=10, y1=20, x2=30, y2=20, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) assert np.array_equal(image_aug, image_cp) def test_zero_height_width(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_cp = np.copy(image) image_aug = iaa.cutout_(image, x1=10, y1=20, x2=10, y2=40, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) assert np.array_equal(image_aug, image_cp) def test_position_outside_of_image_rect_fully_outside(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_cp = np.copy(image) image_aug = iaa.cutout_(image, x1=-50, y1=150, x2=-1, y2=200, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) assert np.array_equal(image_aug, image_cp) def test_position_outside_of_image_rect_partially_inside(self): image = np.mod(np.arange(100*100*3), 255).astype(np.uint8).reshape( (100, 100, 3)) image = 1 + image image_aug = iaa.cutout_(image, x1=-25, y1=-25, x2=25, y2=25, fill_mode="constant", cval=0, fill_per_channel=False, seed=None) assert np.all(image_aug[0:25, 0:25] == 0) assert np.all(image_aug[0:25, 25:] > 0) assert np.all(image_aug[25:, :] > 0) def test_zero_sized_axes(self): shapes = [(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 1, 1), (1, 1, 0), (1, 0, 1), (1, 0), (0, 1), (0, 0)] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) image_cp = np.copy(image) image_aug = iaa.cutout_(image, x1=-5, y1=-5, x2=5, y2=5, fill_mode="constant", cval=0) assert np.array_equal(image_aug, image_cp) class Test_fill_rectangle_gaussian_(unittest.TestCase): def test_simple_image(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) rng = iarandom.RNG(0) image_aug = arithmetic_lib._fill_rectangle_gaussian_( image, x1=10, y1=20, x2=60, y2=70, cval=0, per_channel=False, random_state=rng) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert not np.array_equal(image_aug[20:70, 10:60], image_cp[20:70, 10:60]) assert np.isclose(np.average(image_aug[20:70, 10:60]), 127.5, rtol=0, atol=5.0) assert np.isclose(np.std(image_aug[20:70, 10:60]), 255.0/2.0/3.0, rtol=0, atol=2.5) def test_per_channel(self): image = np.uint8([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) image = np.tile(image.reshape((1, 10, 1)), (1, 1, 3)) image_aug = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=False, random_state=iarandom.RNG(0)) image_aug_pc = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(0)) diff11 = (image_aug[..., 0] != image_aug[..., 1]) diff12 = (image_aug[..., 0] != image_aug[..., 2]) diff21 = (image_aug_pc[..., 0] != image_aug_pc[..., 1]) diff22 = (image_aug_pc[..., 0] != image_aug_pc[..., 2]) assert not np.any(diff11) assert not np.any(diff12) assert np.any(diff21) assert np.any(diff22) def test_deterministic_with_same_seed(self): image = np.uint8([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) image = np.tile(image.reshape((1, 10, 1)), (1, 1, 3)) image_aug_pc1 = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(0)) image_aug_pc2 = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(0)) image_aug_pc3 = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(1)) assert np.array_equal(image_aug_pc1, image_aug_pc2) assert not np.array_equal(image_aug_pc2, image_aug_pc3) def test_no_channels(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.uint8([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) image = image.reshape((1, 10)) image_aug = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=per_channel, random_state=iarandom.RNG(0)) assert not np.array_equal(image_aug, image) def test_unusual_channel_numbers(self): for nb_channels in [1, 2, 3, 4, 5, 511, 512, 513]: for per_channel in [False, True]: with self.subTest(nb_channels=nb_channels, per_channel=per_channel): image = np.uint8([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]) image = np.tile(image.reshape((1, 10, 1)), (1, 1, nb_channels)) image_aug = arithmetic_lib._fill_rectangle_gaussian_( np.copy(image), x1=0, y1=0, x2=10, y2=1, cval=0, per_channel=True, random_state=iarandom.RNG(0)) assert not np.array_equal(image_aug, image) def test_other_dtypes_bool(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.array([0, 1], dtype=bool) image = np.tile(image, (int(3*300*300/2),)) image = image.reshape((300, 300, 3)) image_cp = np.copy(image) rng = iarandom.RNG(0) image_aug = arithmetic_lib._fill_rectangle_gaussian_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=0, per_channel=per_channel, random_state=rng) rect = image_aug[10:-10, 10:-10] p_true = np.sum(rect) / rect.size assert np.array_equal(image_aug[:10, :], image_cp[:10, :]) assert not np.array_equal(rect, image_cp[10:-10, 10:-10]) assert np.isclose(p_true, 0.5, rtol=0, atol=0.1) if per_channel: for c in np.arange(1, image.shape[2]): assert not np.array_equal(image_aug[..., 0], image_aug[..., c]) def test_other_dtypes_int_uint(self): dtypes = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dtype in dtypes: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) dynamic_range = int(max_value) - int(min_value) gaussian_min = iarandom.RNG(0).normal(min_value, 0.0001, size=(1,)) gaussian_max = iarandom.RNG(0).normal(max_value, 0.0001, size=(1,)) assert min_value - 1.0 <= gaussian_min <= min_value + 1.0 assert max_value - 1.0 <= gaussian_max <= max_value + 1.0 for per_channel in [False, True]: with self.subTest(dtype=dtype, per_channel=per_channel): # dont generate image from choice() here, that seems # to not support uint64 (max value not in result) image = np.array([min_value, min_value+1, int(center_value), max_value-1, max_value], dtype=dtype) image = np.tile(image, (int(3*300*300/5),)) image = image.reshape((300, 300, 3)) assert min_value in image assert max_value in image image_cp = np.copy(image) rng = iarandom.RNG(0) image_aug = arithmetic_lib._fill_rectangle_gaussian_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=0, per_channel=per_channel, random_state=rng) rect = image_aug[10:-10, 10:-10] mean = np.average(np.float128(rect)) std = np.std(np.float128(rect) - center_value) assert np.array_equal(image_aug[:10, :], image_cp[:10, :]) assert not np.array_equal(rect, image_cp[10:-10, 10:-10]) assert np.isclose(mean, center_value, rtol=0, atol=0.05*dynamic_range) assert np.isclose(std, dynamic_range/2.0/3.0, rtol=0, atol=0.05*dynamic_range/2.0/3.0) assert np.min(rect) < min_value + 0.2 * dynamic_range assert np.max(rect) > max_value - 0.2 * dynamic_range if per_channel: for c in np.arange(1, image.shape[2]): assert not np.array_equal(image_aug[..., 0], image_aug[..., c]) def test_other_dtypes_float(self): dtypes = ["float16", "float32", "float64", "float128"] for dtype in dtypes: min_value = 0.0 center_value = 0.5 max_value = 1.0 dynamic_range = np.float128(max_value) - np.float128(min_value) gaussian_min = iarandom.RNG(0).normal(min_value, 0.0001, size=(1,)) gaussian_max = iarandom.RNG(0).normal(max_value, 0.0001, size=(1,)) assert min_value - 1.0 <= gaussian_min <= min_value + 1.0 assert max_value - 1.0 <= gaussian_max <= max_value + 1.0 for per_channel in [False, True]: with self.subTest(dtype=dtype, per_channel=per_channel): # dont generate image from choice() here, that seems # to not support uint64 (max value not in result) image = np.array([min_value, min_value+1, int(center_value), max_value-1, max_value], dtype=dtype) image = np.tile(image, (int(3*300*300/5),)) image = image.reshape((300, 300, 3)) assert np.any(np.isclose(image, min_value, rtol=0, atol=1e-4)) assert np.any(np.isclose(image, max_value, rtol=0, atol=1e-4)) image_cp = np.copy(image) rng = iarandom.RNG(0) image_aug = arithmetic_lib._fill_rectangle_gaussian_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=0, per_channel=per_channel, random_state=rng) rect = image_aug[10:-10, 10:-10] mean = np.average(np.float128(rect)) std = np.std(np.float128(rect) - center_value) assert np.allclose(image_aug[:10, :], image_cp[:10, :], rtol=0, atol=1e-4) assert not np.allclose(rect, image_cp[10:-10, 10:-10], rtol=0, atol=1e-4) assert np.isclose(mean, center_value, rtol=0, atol=0.05*dynamic_range) assert np.isclose(std, dynamic_range/2.0/3.0, rtol=0, atol=0.05*dynamic_range/2.0/3.0) assert np.min(rect) < min_value + 0.2 * dynamic_range assert np.max(rect) > max_value - 0.2 * dynamic_range if per_channel: for c in np.arange(1, image.shape[2]): assert not np.allclose(image_aug[..., 0], image_aug[..., c], rtol=0, atol=1e-4) class Test_fill_rectangle_constant_(unittest.TestCase): def test_simple_image(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=17, per_channel=False, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60] == 17) def test_iterable_cval_but_per_channel_is_false(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21, 25], per_channel=False, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60] == 17) def test_iterable_cval_with_per_channel_is_true(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21, 25], per_channel=True, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60, 0] == 17) assert np.all(image_aug[20:70, 10:60, 1] == 21) assert np.all(image_aug[20:70, 10:60, 2] == 25) def test_iterable_cval_with_per_channel_is_true_channel_mismatch(self): image = np.mod(np.arange(100*100*5), 256).astype(np.uint8).reshape( (100, 100, 5)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21], per_channel=True, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60, 0] == 17) assert np.all(image_aug[20:70, 10:60, 1] == 21) assert np.all(image_aug[20:70, 10:60, 2] == 17) assert np.all(image_aug[20:70, 10:60, 3] == 21) assert np.all(image_aug[20:70, 10:60, 4] == 17) def test_single_cval_with_per_channel_is_true(self): image = np.mod(np.arange(100*100*3), 256).astype(np.uint8).reshape( (100, 100, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=17, per_channel=True, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60, 0] == 17) assert np.all(image_aug[20:70, 10:60, 1] == 17) assert np.all(image_aug[20:70, 10:60, 2] == 17) def test_no_channels_single_cval(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.mod( np.arange(100*100), 256 ).astype(np.uint8).reshape((100, 100)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=17, per_channel=per_channel, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60] == 17) def test_no_channels_iterable_cval(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.mod( np.arange(100*100), 256 ).astype(np.uint8).reshape((100, 100)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21, 25], per_channel=per_channel, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) assert np.all(image_aug[20:70, 10:60] == 17) def test_unusual_channel_numbers(self): for nb_channels in [1, 2, 4, 5, 511, 512, 513]: for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.mod( np.arange(100*100*nb_channels), 256 ).astype(np.uint8).reshape((100, 100, nb_channels)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=20, x2=60, y2=70, cval=[17, 21], per_channel=per_channel, random_state=None) assert np.array_equal(image_aug[:20, :], image_cp[:20, :]) if per_channel: for c in np.arange(nb_channels): val = 17 if c % 2 == 0 else 21 assert np.all(image_aug[20:70, 10:60, c] == val) else: assert np.all(image_aug[20:70, 10:60, :] == 17) def test_other_dtypes_bool(self): for per_channel in [False, True]: with self.subTest(per_channel=per_channel): image = np.array([0, 1], dtype=bool) image = np.tile(image, (int(3*300*300/2),)) image = image.reshape((300, 300, 3)) image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=[0, 1], per_channel=per_channel, random_state=None) rect = image_aug[10:-10, 10:-10] assert np.array_equal(image_aug[:10, :], image_cp[:10, :]) if per_channel: assert np.all(image_aug[10:-10, 10:-10, 0] == 0) assert np.all(image_aug[10:-10, 10:-10, 1] == 1) assert np.all(image_aug[10:-10, 10:-10, 2] == 0) else: assert np.all(image_aug[20:70, 10:60] == 0) def test_other_dtypes_uint_int(self): dtypes = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dtype in dtypes: for per_channel in [False, True]: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) with self.subTest(dtype=dtype, per_channel=per_channel): image = np.array([min_value, min_value+1, int(center_value), max_value-1, max_value], dtype=dtype) image = np.tile(image, (int(3*300*300/5),)) image = image.reshape((300, 300, 3)) assert min_value in image assert max_value in image image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=[min_value, 10, max_value], per_channel=per_channel, random_state=None) assert np.array_equal(image_aug[:10, :], image_cp[:10, :]) if per_channel: assert np.all(image_aug[10:-10, 10:-10, 0] == min_value) assert np.all(image_aug[10:-10, 10:-10, 1] == 10) assert np.all(image_aug[10:-10, 10:-10, 2] == max_value) else: assert np.all(image_aug[-10:-10, 10:-10] == min_value) def test_other_dtypes_float(self): dtypes = ["float16", "float32", "float64", "float128"] for dtype in dtypes: for per_channel in [False, True]: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dtype) with self.subTest(dtype=dtype, per_channel=per_channel): image = np.array([min_value, min_value+1, int(center_value), max_value-1, max_value], dtype=dtype) image = np.tile(image, (int(3*300*300/5),)) image = image.reshape((300, 300, 3)) # Use this here instead of any(isclose(...)) because # the latter one leads to overflow warnings. assert image.flat[0] <= np.float128(min_value) + 1.0 assert image.flat[4] >= np.float128(max_value) - 1.0 image_cp = np.copy(image) image_aug = arithmetic_lib._fill_rectangle_constant_( image, x1=10, y1=10, x2=300-10, y2=300-10, cval=[min_value, 10, max_value], per_channel=per_channel, random_state=None) assert image_aug.dtype.name == dtype assert np.allclose(image_aug[:10, :], image_cp[:10, :], rtol=0, atol=1e-4) if per_channel: assert np.allclose(image_aug[10:-10, 10:-10, 0], np.float128(min_value), rtol=0, atol=1e-4) assert np.allclose(image_aug[10:-10, 10:-10, 1], np.float128(10), rtol=0, atol=1e-4) assert np.allclose(image_aug[10:-10, 10:-10, 2], np.float128(max_value), rtol=0, atol=1e-4) else: assert np.allclose(image_aug[-10:-10, 10:-10], np.float128(min_value), rtol=0, atol=1e-4) class TestAdd(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Add(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Add(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Add(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [float, int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.Add(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_add_floats(self): # specific tests with floats aug = iaa.Add(value=0.75) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 2 aug = iaa.Add(value=0.45) img = np.full((1, 1), 1, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 img = np.full((1, 1), 1, dtype=np.uint16) img_aug = aug.augment_image(img) assert img_aug.item(0) == 1 def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert 100 + 1 <= np.average(observed) <= 100 + 10 aug = iaa.Add(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 aug = iaa.Add(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert 100 - 3 <= np.average(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Add(value=1) aug_det = iaa.Add(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Add(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_per_channel(self): # test channelwise aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 1 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Add(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.Add(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Add(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps(self): # test heatmaps (not affected by augmenter) base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 aug = iaa.Add(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): image = np.zeros((3, 3), dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Add(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.Add(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.Add(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.Add(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.Add((0, 50), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=10) class TestAddElementwise(unittest.TestCase): def setUp(self): reseed() def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.AddElementwise(value="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.AddElementwise(value=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_add_zero(self): # no add, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_add_one(self): # add > 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images + 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] + 1] assert array_equal_lists(observed, expected) def test_add_minus_one(self): # add < 0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.AddElementwise(value=-1) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images - 1 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [images_list[0] - 1] assert array_equal_lists(observed, expected) def test_uint8_every_possible_value(self): # uint8, every possible addition for base value 127 for value_type in [int]: for per_channel in [False, True]: for value in np.arange(-255, 255+1): aug = iaa.AddElementwise(value=value_type(value), per_channel=per_channel) expected = np.clip(127 + value_type(value), 0, 255) img = np.full((1, 1), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert img_aug.item(0) == expected img = np.full((1, 1, 3), 127, dtype=np.uint8) img_aug = aug.augment_image(img) assert np.all(img_aug == expected) def test_stochastic_parameters_as_value(self): # test other parameters base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=iap.DiscreteUniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Uniform(1, 10)) observed = aug.augment_images(images) assert np.min(observed) >= 100 + 1 assert np.max(observed) <= 100 + 10 aug = iaa.AddElementwise(value=iap.Clip(iap.Normal(1, 1), -3, 3)) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 aug = iaa.AddElementwise(value=iap.Discretize(iap.Clip(iap.Normal(1, 1), -3, 3))) observed = aug.augment_images(images) assert np.min(observed) >= 100 - 3 assert np.max(observed) <= 100 + 3 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AddElementwise(value=1) aug_det = iaa.AddElementwise(value=1).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_value(self): # varying values base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(0, 10)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.7) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.AddElementwise(value=(-50, 50)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.9 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.zeros((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.AddElementwise(value=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.AddElementwise(1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.AddElementwise(value=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.AddElementwise(value=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.AddElementwise(value=-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) for _ in sm.xrange(10): image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 20, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 21) image = np.full((3, 3), max_value - 2, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value - 1) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), max_value - 1, dtype=dtype) aug = iaa.AddElementwise(2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-9) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value + 1) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) image = np.full((3, 3), min_value + 10, dtype=dtype) aug = iaa.AddElementwise(-11) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) for _ in sm.xrange(10): image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 0, dtype=dtype) aug = iaa.AddElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-10 - 1e-2 < image_aug, image_aug < 10 + 1e-2)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) def test_pickleable(self): aug = iaa.AddElementwise((0, 50), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=2) class AdditiveGaussianNoise(unittest.TestCase): def setUp(self): reseed() def test_loc_zero_scale_zero(self): # no noise, shouldnt change anything base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) aug = iaa.AdditiveGaussianNoise(loc=0, scale=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) def test_loc_zero_scale_nonzero(self): # zero-centered noise base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_std_dev_of_added_noise_matches_scale(self): # std correct? base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=0.2 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0]) values = np.array(values) assert np.min(values) == 0 assert 0.1 < np.std(values) / 255.0 < 0.4 def test_nonzero_loc(self): # non-zero loc base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.25 * 255, scale=0.01 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 nb_iterations = 1000 values = [] for i in sm.xrange(nb_iterations): images_aug = aug.augment_images(images) values.append(images_aug[0, 0, 0, 0] - 128) values = np.array(values) assert 54 < np.average(values) < 74 # loc=0.25 should be around 255*0.25=64 average def test_tuple_as_loc(self): # varying locs base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=(0, 0.5 * 255), scale=0.0001 * 255) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_loc(self): # varying locs by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=iap.Choice([-20, 20]), scale=0.0001 * 255) images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 seen = [0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) mean = np.mean(observed) diff_m20 = abs(mean - (128-20)) diff_p20 = abs(mean - (128+20)) if diff_m20 <= 1: seen[0] += 1 elif diff_p20 <= 1: seen[1] += 1 else: assert False assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_tuple_as_scale(self): # varying stds base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=(0.01 * 255, 0.2 * 255)) aug_det = aug.to_deterministic() images = np.ones((1, 1, 1, 1), dtype=np.uint8) * 128 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_stochastic_parameter_as_scale(self): # varying stds by stochastic param base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0, scale=iap.Choice([1, 20])) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 128 seen = [0, 0, 0] for i in sm.xrange(200): observed = aug.augment_images(images) std = np.std(observed.astype(np.int32) - 128) diff_1 = abs(std - 1) diff_20 = abs(std - 20) if diff_1 <= 2: seen[0] += 1 elif diff_20 <= 5: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 5 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.AdditiveGaussianNoise(loc="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.AdditiveGaussianNoise(scale="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) base_img = np.ones((16, 16, 1), dtype=np.uint8) * 128 aug = iaa.AdditiveGaussianNoise(loc=0.5, scale=10) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.AdditiveGaussianNoise(scale=(0.1, 10), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=2) class TestCutout(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.Cutout() assert aug.nb_iterations.value == 1 assert isinstance(aug.position[0], iap.Uniform) assert isinstance(aug.position[1], iap.Uniform) assert np.isclose(aug.size.value, 0.2) assert aug.squared.value == 1 assert aug.fill_mode.value == "constant" assert aug.cval.value == 128 assert aug.fill_per_channel.value == 0 def test___init___custom(self): aug = iaa.Cutout( nb_iterations=1, position=(0.5, 0.5), size=0.1, squared=0.6, fill_mode=["gaussian", "constant"], cval=(0, 255), fill_per_channel=0.5 ) assert aug.nb_iterations.value == 1 assert np.isclose(aug.position[0].value, 0.5) assert np.isclose(aug.position[1].value, 0.5) assert np.isclose(aug.size.value, 0.1) assert np.isclose(aug.squared.p.value, 0.6) assert aug.fill_mode.a == ["gaussian", "constant"] assert np.isclose(aug.cval.a.value, 0) assert np.isclose(aug.cval.b.value, 255) assert np.isclose(aug.fill_per_channel.p.value, 0.5) def test___init___fill_mode_is_stochastic_param(self): param = iap.Deterministic("constant") aug = iaa.Cutout(fill_mode=param) assert aug.fill_mode is param @mock.patch("imgaug.augmenters.arithmetic.cutout_") def test_mocked__squared_false(self, mock_apply): aug = iaa.Cutout(nb_iterations=2, position=(0.5, 0.6), size=iap.DeterministicList([0.1, 0.2]), squared=False, fill_mode="gaussian", cval=1, fill_per_channel=True) image = np.zeros((10, 30, 3), dtype=np.uint8) # dont return image itself, otherwise the loop below will fail # at its second iteration as the method is expected to handle # internally a copy of the image and not the image itself mock_apply.return_value = np.copy(image) _ = aug(image=image) assert mock_apply.call_count == 2 for call_idx in np.arange(2): args = mock_apply.call_args_list[call_idx][0] kwargs = mock_apply.call_args_list[call_idx][1] assert args[0] is not image assert np.array_equal(args[0], image) assert np.isclose(kwargs["x1"], 0.5*30 - 0.5 * (0.2*30)) assert np.isclose(kwargs["y1"], 0.6*10 - 0.5 * (0.1*10)) assert np.isclose(kwargs["x2"], 0.5*30 + 0.5 * (0.2*30)) assert np.isclose(kwargs["y2"], 0.6*10 + 0.5 * (0.1*10)) assert kwargs["fill_mode"] == "gaussian" assert np.array_equal(kwargs["cval"], [1, 1, 1]) assert np.isclose(kwargs["fill_per_channel"], 1.0) assert isinstance(kwargs["seed"], iarandom.RNG) @mock.patch("imgaug.augmenters.arithmetic.cutout_") def test_mocked__squared_true(self, mock_apply): aug = iaa.Cutout(nb_iterations=2, position=(0.5, 0.6), size=iap.DeterministicList([0.1, 0.2]), squared=True, fill_mode="gaussian", cval=1, fill_per_channel=True) image = np.zeros((10, 30, 3), dtype=np.uint8) # dont return image itself, otherwise the loop below will fail # at its second iteration as the method is expected to handle # internally a copy of the image and not the image itself mock_apply.return_value = np.copy(image) _ = aug(image=image) assert mock_apply.call_count == 2 for call_idx in np.arange(2): args = mock_apply.call_args_list[call_idx][0] kwargs = mock_apply.call_args_list[call_idx][1] assert args[0] is not image assert np.array_equal(args[0], image) assert np.isclose(kwargs["x1"], 0.5*30 - 0.5 * (0.1*10)) assert np.isclose(kwargs["y1"], 0.6*10 - 0.5 * (0.1*10)) assert np.isclose(kwargs["x2"], 0.5*30 + 0.5 * (0.1*10)) assert np.isclose(kwargs["y2"], 0.6*10 + 0.5 * (0.1*10)) assert kwargs["fill_mode"] == "gaussian" assert np.array_equal(kwargs["cval"], [1, 1, 1]) assert np.isclose(kwargs["fill_per_channel"], 1.0) assert isinstance(kwargs["seed"], iarandom.RNG) def test_simple_image(self): aug = iaa.Cutout(nb_iterations=2, position=( iap.DeterministicList([0.2, 0.8]), iap.DeterministicList([0.2, 0.8]) ), size=0.2, fill_mode="constant", cval=iap.DeterministicList([0, 0, 0, 1, 1, 1])) image = np.full((100, 100, 3), 255, dtype=np.uint8) for _ in np.arange(3): images_aug = aug(images=[image, image]) for image_aug in images_aug: values = np.unique(image_aug) assert len(values) == 3 assert 0 in values assert 1 in values assert 255 in values def test_batch_contains_only_non_image_data(self): aug = iaa.Cutout() segmap_arr = np.ones((3, 3, 1), dtype=np.int32) segmap = ia.SegmentationMapsOnImage(segmap_arr, shape=(3, 3, 3)) segmap_aug = aug.augment_segmentation_maps(segmap) assert np.array_equal(segmap.get_arr(), segmap_aug.get_arr()) def test_sampling_when_position_is_stochastic_parameter(self): # sampling of position works slightly differently when it is a single # parameter instead of tuple (paramX, paramY), so we have an extra # test for that situation here param = iap.DeterministicList([0.5, 0.6]) aug = iaa.Cutout(position=param) samples = aug._draw_samples([ np.zeros((3, 3, 3), dtype=np.uint8), np.zeros((3, 3, 3), dtype=np.uint8) ], iarandom.RNG(0)) assert np.allclose(samples.pos_x, [0.5, 0.5]) assert np.allclose(samples.pos_y, [0.6, 0.6]) def test_by_comparison_to_official_implementation(self): image = np.ones((10, 8, 2), dtype=np.uint8) aug = iaa.Cutout(1, position="uniform", size=0.2, squared=True, cval=0) aug_official = _CutoutOfficial(n_holes=1, length=int(10*0.2)) dropped = np.zeros((10, 8, 2), dtype=np.int32) dropped_official = np.copy(dropped) height = np.zeros((10, 8, 2), dtype=np.int32) width = np.copy(height) height_official = np.copy(height) width_official = np.copy(width) nb_iterations = 3 * 1000 images_aug = aug(images=[image] * nb_iterations) for image_aug in images_aug: image_aug_off = aug_official(image) mask = (image_aug == 0) mask_off = (image_aug_off == 0) dropped += mask dropped_official += mask_off ydrop = np.max(mask, axis=(2, 1)) xdrop = np.max(mask, axis=(2, 0)) wx = np.where(xdrop) wy = np.where(ydrop) x1 = wx[0][0] x2 = wx[0][-1] y1 = wy[0][0] y2 = wy[0][-1] ydrop_off = np.max(mask_off, axis=(2, 1)) xdrop_off = np.max(mask_off, axis=(2, 0)) wx_off = np.where(xdrop_off) wy_off = np.where(ydrop_off) x1_off = wx_off[0][0] x2_off = wx_off[0][-1] y1_off = wy_off[0][0] y2_off = wy_off[0][-1] height += ( np.full(height.shape, 1 + (y2 - y1), dtype=np.int32) * mask) width += ( np.full(width.shape, 1 + (x2 - x1), dtype=np.int32) * mask) height_official += ( np.full(height_official.shape, 1 + (y2_off - y1_off), dtype=np.int32) * mask_off) width_official += ( np.full(width_official.shape, 1 + (x2_off - x1_off), dtype=np.int32) * mask_off) dropped_prob = dropped / nb_iterations dropped_prob_off = dropped_official / nb_iterations height_avg = height / (dropped + 1e-4) height_avg_off = height_official / (dropped_official + 1e-4) width_avg = width / (dropped + 1e-4) width_avg_off = width_official / (dropped_official + 1e-4) prob_max_diff = np.max(np.abs(dropped_prob - dropped_prob_off)) height_avg_max_diff = np.max(np.abs(height_avg - height_avg_off)) width_avg_max_diff = np.max(np.abs(width_avg - width_avg_off)) assert prob_max_diff < 0.04 assert height_avg_max_diff < 0.3 assert width_avg_max_diff < 0.3 def test_determinism(self): aug = iaa.Cutout(nb_iterations=(1, 3), size=(0.1, 0.2), fill_mode=["gaussian", "constant"], cval=(0, 255)) image = np.mod( np.arange(100*100*3), 256 ).reshape((100, 100, 3)).astype(np.uint8) sums = [] for _ in np.arange(10): aug_det = aug.to_deterministic() image_aug1 = aug_det(image=image) image_aug2 = aug_det(image=image) assert np.array_equal(image_aug1, image_aug2) sums.append(np.sum(image_aug1)) assert len(np.unique(sums)) > 1 def test_get_parameters(self): aug = iaa.Cutout( nb_iterations=1, position=(0.5, 0.5), size=0.1, squared=0.6, fill_mode=["gaussian", "constant"], cval=(0, 255), fill_per_channel=0.5 ) params = aug.get_parameters() assert params[0] is aug.nb_iterations assert params[1] is aug.position assert params[2] is aug.size assert params[3] is aug.squared assert params[4] is aug.fill_mode assert params[5] is aug.cval assert params[6] is aug.fill_per_channel def test_pickleable(self): aug = iaa.Cutout( nb_iterations=1, position=(0.5, 0.5), size=0.1, squared=0.6, fill_mode=["gaussian", "constant"], cval=(0, 255), fill_per_channel=0.5 ) runtest_pickleable_uint8_img(aug) # this is mostly copy-pasted cutout code from # https://github.com/uoguelph-mlrg/Cutout/blob/master/util/cutout.py # we use this to compare our implementation against # we changed some pytorch to numpy stuff class _CutoutOfficial(object): """Randomly mask out one or more patches from an image. Args: n_holes (int): Number of patches to cut out of each image. length (int): The length (in pixels) of each square patch. """ def __init__(self, n_holes, length): self.n_holes = n_holes self.length = length def __call__(self, img): """ Args: img (Tensor): Tensor image of size (C, H, W). Returns: Tensor: Image with n_holes of dimension length x length cut out of it. """ # h = img.size(1) # w = img.size(2) h = img.shape[0] w = img.shape[1] mask = np.ones((h, w), np.float32) for n in range(self.n_holes): y = np.random.randint(h) x = np.random.randint(w) y1 = np.clip(y - self.length // 2, 0, h) y2 = np.clip(y + self.length // 2, 0, h) x1 = np.clip(x - self.length // 2, 0, w) x2 = np.clip(x + self.length // 2, 0, w) # note that in the paper they normalize to 0-mean, # i.e. 0 here is actually not black but grayish pixels mask[y1: y2, x1: x2] = 0 # mask = torch.from_numpy(mask) # mask = mask.expand_as(img) if img.ndim != 2: mask = np.tile(mask[:, :, np.newaxis], (1, 1, img.shape[-1])) img = img * mask return img class TestDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): # no dropout, shouldnt change anything base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] aug = iaa.Dropout(p=0) observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) # 100% dropout, should drop everything aug = iaa.Dropout(p=1.0) observed = aug.augment_images(images) expected = np.zeros((1, 512, 512, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug.augment_images(images_list) expected = [np.zeros((512, 512, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_p_is_50_percent(self): # 50% dropout base_img = np.ones((512, 512, 1), dtype=np.uint8) * 255 images = np.array([base_img]) images_list = [base_img] keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Dropout(p=0.5) aug_det = aug.to_deterministic() observed = aug.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images) assert not np.array_equal(observed, images) percent_nonzero = len(observed.flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug_det.augment_images(images_list) assert not array_equal_lists(observed, images_list) percent_nonzero = len(observed[0].flatten().nonzero()[0]) \ / (base_img.shape[0] * base_img.shape[1] * base_img.shape[2]) assert 0.35 <= (1 - percent_nonzero) <= 0.65 observed = aug.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) observed = aug_det.augment_keypoints(keypoints) assert keypoints_equal(observed, keypoints) def test_tuple_as_p(self): # varying p aug = iaa.Dropout(p=(0.0, 1.0)) aug_det = aug.to_deterministic() images = np.ones((1, 8, 8, 1), dtype=np.uint8) * 255 last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_list_as_p(self): aug = iaa.Dropout(p=[0.0, 0.5, 1.0]) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 nb_seen = [0, 0, 0, 0] nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) n_dropped = np.sum(observed_aug == 0) p_observed = n_dropped / observed_aug.size if 0 <= p_observed <= 0.01: nb_seen[0] += 1 elif 0.5 - 0.05 <= p_observed <= 0.5 + 0.05: nb_seen[1] += 1 elif 1.0-0.01 <= p_observed <= 1.0: nb_seen[2] += 1 else: nb_seen[3] += 1 assert np.allclose(nb_seen[0:3], nb_iterations*0.33, rtol=0, atol=75) assert nb_seen[3] < 30 def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.Dropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5]))) images = np.ones((1, 20, 20, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for wrong parameter datatype got_exception = False try: _aug = iaa.Dropout(p="test") except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Dropout(p=1.0) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.Dropout(p=0.5, per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseDropout(unittest.TestCase): def setUp(self): reseed() def test_p_is_zero(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = base_img assert np.array_equal(observed, expected) def test_p_is_one(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=1.0, size_px=4, size_percent=None, per_channel=False, min_size=4) observed = aug.augment_image(base_img) expected = np.zeros_like(base_img) assert np.array_equal(observed, expected) def test_p_is_50_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_size_percent(self): base_img = np.ones((16, 16, 1), dtype=np.uint8) * 100 aug = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=0.001, per_channel=False, min_size=1) averages = [] for _ in sm.xrange(50): observed = aug.augment_image(base_img) averages.append(np.average(observed)) assert all([v in [0, 100] for v in averages]) assert 50 - 20 < np.average(averages) < 50 + 20 def test_per_channel(self): aug = iaa.CoarseDropout(p=0.5, size_px=1, size_percent=None, per_channel=True, min_size=1) base_img = np.ones((4, 4, 3), dtype=np.uint8) * 100 found = False for _ in sm.xrange(100): observed = aug.augment_image(base_img) avgs = np.average(observed, axis=(0, 1)) if len(set(avgs)) >= 2: found = True break assert found def test_stochastic_parameter_as_p(self): # varying p by stochastic parameter aug = iaa.CoarseDropout(p=iap.Binomial(1-iap.Choice([0.0, 0.5])), size_px=50) images = np.ones((1, 100, 100, 1), dtype=np.uint8) * 255 seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_images(images) p = np.mean(observed == 0) if 0.4 < p < 0.6: seen[0] += 1 elif p < 0.1: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exception for bad parameters got_exception = False try: _ = iaa.CoarseDropout(p="test") except Exception: got_exception = True assert got_exception def test___init___size_px_and_size_percent_both_none(self): got_exception = False try: _ = iaa.CoarseDropout(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseDropout(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseDropout(p=0.5, size_px=10, per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=10, shape=(40, 40, 3)) class TestDropout2d(unittest.TestCase): def setUp(self): reseed() def test___init___defaults(self): aug = iaa.Dropout2d(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 1 def test___init___p_is_float(self): aug = iaa.Dropout2d(p=0.7) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 0.3) assert aug.nb_keep_channels == 1 def test___init___nb_keep_channels_is_int(self): aug = iaa.Dropout2d(p=0, nb_keep_channels=2) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) assert aug.nb_keep_channels == 2 def test_no_images_in_batch(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) heatmaps = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) heatmaps = ia.HeatmapsOnImage(heatmaps, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=heatmaps) assert np.allclose(heatmaps_aug.arr_0to1, heatmaps.arr_0to1) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_1_heatmaps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_1_segmentation_maps__keep_one_channel(self): aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_1_cbaois__keep_one_channel(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_heatmaps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.Dropout2d(p=0.0, nb_keep_channels=0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075(self): image = np.full((1, 1, 3000), 255, dtype=np.uint8) aug = iaa.Dropout2d(p=0.75, nb_keep_channels=0) image_aug = aug(image=image) nb_kept = np.sum(image_aug == 255) nb_dropped = image.shape[2] - nb_kept assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.isclose(nb_dropped, image.shape[2]*0.75, atol=75) def test_force_nb_keep_channels(self): image = np.full((1, 1, 3), 255, dtype=np.uint8) images = np.array([image] * 1000) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=1) images_aug = aug(images=images) ids_kept = [np.nonzero(image[0, 0, :]) for image in images_aug] ids_kept_uq = np.unique(ids_kept) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name # on average, keep 1 of 3 channels # due to p=1.0 we expect to get exactly 2/3 dropped assert np.isclose(nb_dropped, (len(images)*images.shape[3])*(2/3), atol=1) # every channel dropped at least once, i.e. which one is kept is random assert sorted(ids_kept_uq.tolist()) == [0, 1, 2] def test_some_images_below_nb_keep_channels(self): image_2c = np.full((1, 1, 2), 255, dtype=np.uint8) image_3c = np.full((1, 1, 3), 255, dtype=np.uint8) images = [image_2c if i % 2 == 0 else image_3c for i in sm.xrange(100)] aug = iaa.Dropout2d(p=1.0, nb_keep_channels=2) images_aug = aug(images=images) for i, image_aug in enumerate(images_aug): assert np.sum(image_aug == 255) == 2 if i % 2 == 0: assert np.sum(image_aug == 0) == 0 else: assert np.sum(image_aug == 0) == 1 def test_all_images_below_nb_keep_channels(self): image = np.full((1, 1, 2), 255, dtype=np.uint8) images = np.array([image] * 100) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = (len(images) * images.shape[3]) - nb_kept assert nb_dropped == 0 def test_get_parameters(self): aug = iaa.Dropout2d(p=0.7, nb_keep_channels=2) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert np.isclose(params[0].p.value, 0.3) assert params[1] == 2 def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.full(shape, 255, dtype=np.uint8) aug = iaa.Dropout2d(1.0, nb_keep_channels=0) image_aug = aug(image=image) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if value == 0: assert np.sum(image_aug == value) == 10 else: assert np.sum(image_aug == value) == 3 assert np.sum(image_aug == 0) == 7 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: with self.subTest(dtype=dt, value=value): image = np.full((1, 1, 10), value, dtype=dt) aug = iaa.Dropout2d(p=1.0, nb_keep_channels=3) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == dt if _isclose(value, 0.0): assert np.sum(_isclose(image_aug, value)) == 10 else: assert ( np.sum(_isclose(image_aug, np.float128(value))) == 3) assert np.sum(image_aug == 0) == 7 def test_pickleable(self): aug = iaa.Dropout2d(p=0.5, seed=1) runtest_pickleable_uint8_img(aug, iterations=3, shape=(1, 1, 50)) class TestTotalDropout(unittest.TestCase): def setUp(self): reseed() def test___init___p(self): aug = iaa.TotalDropout(p=0) assert isinstance(aug.p, iap.Binomial) assert np.isclose(aug.p.p.value, 1.0) def test_p_is_1(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.sum(image_aug) == 0 def test_p_is_1_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=1.0) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.sum(images_aug) == 0 def test_p_is_1_heatmaps(self): aug = iaa.TotalDropout(p=1.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, 0.0) def test_p_is_1_segmentation_maps(self): aug = iaa.TotalDropout(p=1.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, 0.0) def test_p_is_1_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=1.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert cbaoi_aug.items == [] def test_p_is_0(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == image.dtype.name assert np.array_equal(image_aug, image) def test_p_is_0_multiple_images_list(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = [image, image, image] aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_multiple_images_array(self): image = np.full((1, 2, 3), 255, dtype=np.uint8) images = np.array([image, image, image], dtype=np.uint8) aug = iaa.TotalDropout(p=0.0) images_aug = aug(images=images) for image_aug, image_ in zip(images_aug, images): assert image_aug.shape == image_.shape assert image_aug.dtype.name == image_.dtype.name assert np.array_equal(image_aug, image_) def test_p_is_0_heatmaps(self): aug = iaa.TotalDropout(p=0.0) arr = np.float32([ [0.0, 1.0], [0.0, 1.0] ]) hm = ia.HeatmapsOnImage(arr, shape=(2, 2, 3)) heatmaps_aug = aug(heatmaps=hm) assert np.allclose(heatmaps_aug.arr_0to1, hm.arr_0to1) def test_p_is_0_segmentation_maps(self): aug = iaa.TotalDropout(p=0.0) arr = np.int32([ [0, 1], [0, 1] ]) segmaps = ia.SegmentationMapsOnImage(arr, shape=(2, 2, 3)) segmaps_aug = aug(segmentation_maps=segmaps) assert np.allclose(segmaps_aug.arr, segmaps.arr) def test_p_is_0_cbaois(self): cbaois = [ ia.KeypointsOnImage([ia.Keypoint(x=0, y=1)], shape=(2, 2, 3)), ia.BoundingBoxesOnImage([ia.BoundingBox(x1=0, y1=1, x2=2, y2=3)], shape=(2, 2, 3)), ia.PolygonsOnImage([ia.Polygon([(0, 0), (1, 0), (1, 1)])], shape=(2, 2, 3)), ia.LineStringsOnImage([ia.LineString([(0, 0), (1, 0)])], shape=(2, 2, 3)) ] cbaoi_names = ["keypoints", "bounding_boxes", "polygons", "line_strings"] aug = iaa.TotalDropout(p=0.0) for name, cbaoi in zip(cbaoi_names, cbaois): with self.subTest(datatype=name): cbaoi_aug = aug(**{name: cbaoi}) assert cbaoi_aug.shape == (2, 2, 3) assert np.allclose( cbaoi_aug.items[0].coords, cbaoi.items[0].coords ) def test_p_is_075_multiple_images_list(self): images = [np.full((1, 1, 1), 255, dtype=np.uint8)] * 3000 aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum([np.sum(image_aug == 255) for image_aug in images_aug]) nb_dropped = len(images) - nb_kept for image_aug in images_aug: assert image_aug.shape == images[0].shape assert image_aug.dtype.name == images[0].dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_p_is_075_multiple_images_array(self): images = np.full((3000, 1, 1, 1), 255, dtype=np.uint8) aug = iaa.TotalDropout(p=0.75) images_aug = aug(images=images) nb_kept = np.sum(images_aug == 255) nb_dropped = len(images) - nb_kept assert images_aug.shape == images.shape assert images_aug.dtype.name == images.dtype.name assert np.isclose(nb_dropped, len(images)*0.75, atol=75) def test_get_parameters(self): aug = iaa.TotalDropout(p=0.0) params = aug.get_parameters() assert params[0] is aug.p def test_unusual_channel_numbers(self): shapes = [ (5, 1, 1, 4), (5, 1, 1, 5), (5, 1, 1, 512), (5, 1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): images = np.zeros(shape, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert np.all(images_aug == 0) assert images_aug.dtype.name == "uint8" assert images_aug.shape == shape def test_zero_sized_axes(self): shapes = [ (5, 0, 0), (5, 0, 1), (5, 1, 0), (5, 0, 1, 0), (5, 1, 0, 0), (5, 0, 1, 1), (5, 1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): images = np.full(shape, 255, dtype=np.uint8) aug = iaa.TotalDropout(1.0) images_aug = aug(images=images) assert images_aug.dtype.name == "uint8" assert images_aug.shape == images.shape def test_other_dtypes_bool(self): image = np.full((1, 1, 10), 1, dtype=bool) aug = iaa.TotalDropout(p=1.0) image_aug = aug(image=image) assert image_aug.shape == image.shape assert image_aug.dtype.name == "bool" assert np.sum(image_aug == 1) == 0 def test_other_dtypes_uint_int(self): dts = ["uint8", "uint16", "uint32", "uint64", "int8", "int16", "int32", "int64"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, int(center_value), max_value] for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0) or value == 0: assert np.sum(images_aug == 0) == 5*3 else: assert np.sum(images_aug == value) == 5*3 def test_other_dtypes_float(self): dts = ["float16", "float32", "float64", "float128"] for dt in dts: min_value, center_value, max_value = \ iadt.get_value_range_of_dtype(dt) values = [min_value, -10.0, center_value, 10.0, max_value] atol = 1e-3*max_value if dt == "float16" else 1e-9 * max_value _isclose = functools.partial(np.isclose, atol=atol, rtol=0) for value in values: for p in [1.0, 0.0]: with self.subTest(dtype=dt, value=value, p=p): images = np.full((5, 1, 1, 3), value, dtype=dt) aug = iaa.TotalDropout(p=p) images_aug = aug(images=images) assert images_aug.shape == images.shape assert images_aug.dtype.name == dt if np.isclose(p, 1.0): assert np.sum(_isclose(images_aug, 0.0)) == 5*3 else: assert ( np.sum(_isclose(images_aug, np.float128(value))) == 5*3) def test_pickleable(self): aug = iaa.TotalDropout(p=0.5, seed=1) runtest_pickleable_uint8_img(aug, iterations=30, shape=(4, 4, 2)) class TestMultiply(unittest.TestCase): def setUp(self): reseed() def test_mul_is_one(self): # no multiply, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mul_is_above_one(self): # multiply >1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=1.2) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) def test_mul_is_below_one(self): # multiply <1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.Multiply(mul=0.8) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.Multiply(mul=1.2) aug_det = iaa.Multiply(mul=1.2).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_mul(self): # varying multiply factors base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.Multiply(mul=(0, 2.0)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_per_channel(self): aug = iaa.Multiply(mul=iap.Choice([0, 2]), per_channel=True) observed = aug.augment_image(np.ones((1, 1, 100), dtype=np.uint8)) uq = np.unique(observed) assert observed.shape == (1, 1, 100) assert 0 in uq assert 2 in uq assert len(uq) == 2 def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.Multiply(mul=iap.Choice([0, 2]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.ones((1, 1, 20), dtype=np.uint8)) assert observed.shape == (1, 1, 20) uq = np.unique(observed) per_channel = (len(uq) == 2) if per_channel: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.Multiply(mul="test") except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.Multiply(mul=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.Multiply(1) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.Multiply(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.Multiply(mul=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.Multiply(mul=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.Multiply(-1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 10) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 100) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 5) image = np.full((3, 3), 0, dtype=dtype) aug = iaa.Multiply(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) if np.dtype(dtype).kind == "u": image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) else: image = np.full((3, 3), 10, dtype=dtype) aug = iaa.Multiply(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == -10) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(center_value)) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(1.2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(1.2 * int(center_value))) if np.dtype(dtype).kind == "u": image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.Multiply(100) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(10) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(-2) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) # non-uint8 currently don't increase the itemsize if dtype.name == "uint8": for _ in sm.xrange(10): image = np.full((1, 1, 3), 10, dtype=dtype) aug = iaa.Multiply(iap.Uniform(0.5, 1.5)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.Multiply(iap.Uniform(0.5, 1.5), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 image = np.full((1, 1, 3), 10, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(1, 3)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) == 1 image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(1, 3), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.Multiply(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 10.0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.Multiply(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 20.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.Multiply(-10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, min_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.Multiply(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.5*max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), min_value, dtype=dtype) # aug = iaa.Multiply(-2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.Multiply(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) # using tolerances of -100 - 1e-2 and 100 + 1e-2 is not enough for float16, had to be increased to -/+ 1e-1 # deactivated, because itemsize increase was deactivated """ for _ in sm.xrange(10): image = np.full((1, 1, 3), 10.0, dtype=dtype) aug = iaa.Multiply(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.Multiply(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((1, 1, 3), 10.0, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.Multiply(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) """ def test_pickleable(self): aug = iaa.Multiply((0.5, 1.5), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=20) class TestMultiplyElementwise(unittest.TestCase): def setUp(self): reseed() def test_mul_is_one(self): # no multiply, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=1.0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mul_is_above_one(self): # multiply >1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=1.2) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 120 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 120] assert array_equal_lists(observed, expected) def test_mul_is_below_one(self): # multiply <1.0 base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) images_list = [base_img] aug = iaa.MultiplyElementwise(mul=0.8) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.ones((1, 3, 3, 1), dtype=np.uint8) * 80 assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.ones((3, 3, 1), dtype=np.uint8) * 80] assert array_equal_lists(observed, expected) def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.MultiplyElementwise(mul=1.2) aug_det = iaa.Multiply(mul=1.2).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_tuple_as_mul(self): # varying multiply factors base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.MultiplyElementwise(mul=(0, 2.0)) aug_det = aug.to_deterministic() last_aug = None last_aug_det = None nb_changed_aug = 0 nb_changed_aug_det = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_det = aug_det.augment_images(images) if i == 0: last_aug = observed_aug last_aug_det = observed_aug_det else: if not np.array_equal(observed_aug, last_aug): nb_changed_aug += 1 if not np.array_equal(observed_aug_det, last_aug_det): nb_changed_aug_det += 1 last_aug = observed_aug last_aug_det = observed_aug_det assert nb_changed_aug >= int(nb_iterations * 0.95) assert nb_changed_aug_det == 0 def test_samples_change_by_spatial_location(self): # values should change between pixels base_img = np.ones((3, 3, 1), dtype=np.uint8) * 100 images = np.array([base_img]) aug = iaa.MultiplyElementwise(mul=(0.5, 1.5)) nb_same = 0 nb_different = 0 nb_iterations = 1000 for i in sm.xrange(nb_iterations): observed_aug = aug.augment_images(images) observed_aug_flat = observed_aug.flatten() last = None for j in sm.xrange(observed_aug_flat.size): if last is not None: v = observed_aug_flat[j] if v - 0.0001 <= last <= v + 0.0001: nb_same += 1 else: nb_different += 1 last = observed_aug_flat[j] assert nb_different > 0.95 * (nb_different + nb_same) def test_per_channel(self): # test channelwise aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.ones((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) assert observed.shape == (100, 100, 3) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.ones((20, 20, 3), dtype=np.uint8)) assert observed.shape == (20, 20, 3) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.MultiplyElementwise(mul="test") except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.MultiplyElementwise(mul=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.MultiplyElementwise(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.ones(shape, dtype=np.uint8) aug = iaa.MultiplyElementwise(2) image_aug = aug(image=image) assert np.all(image_aug == 2) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.MultiplyElementwise(mul=1, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert params[0].value == 1 assert params[1].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.MultiplyElementwise(mul=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool image = np.zeros((3, 3), dtype=bool) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(2.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) image = np.full((3, 3), True, dtype=bool) aug = iaa.MultiplyElementwise(-1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.int8, np.int16]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 10) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), 10, dtype=dtype) # aug = iaa.MultiplyElementwise(10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == 100) image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 5) image = np.full((3, 3), 0, dtype=dtype) aug = iaa.MultiplyElementwise(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # partially deactivated, because itemsize increase was deactivated if dtype.name == "uint8": if dtype.kind == "u": image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) else: image = np.full((3, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(-1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == -10) image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == int(center_value)) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), int(center_value), dtype=dtype) # aug = iaa.MultiplyElementwise(1.2) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == int(1.2 * int(center_value))) # deactivated, because itemsize increase was deactivated if dtype.name == "uint8": if dtype.kind == "u": image = np.full((3, 3), int(center_value), dtype=dtype) aug = iaa.MultiplyElementwise(100) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(1) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == max_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-2) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert np.all(image_aug == min_value) # partially deactivated, because itemsize increase was deactivated if dtype.name == "uint8": for _ in sm.xrange(10): image = np.full((5, 5, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(0.5, 1.5)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(0.5, 1.5), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(5 <= image_aug, image_aug <= 15)) assert len(np.unique(image_aug)) > 1 image = np.full((5, 5, 3), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(1, 3)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 assert np.all(image_aug[..., 0] == image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(1, 3), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(10 <= image_aug, image_aug <= 30)) assert len(np.unique(image_aug)) > 1 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) if dtype == np.float16: atol = 1e-3 * max_value else: atol = 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) image = np.full((3, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(1.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 10.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), 10.0, dtype=dtype) # aug = iaa.MultiplyElementwise(2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, 20.0) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), max_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-10) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, min_value) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) image = np.full((3, 3), max_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.5) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.5*max_value) # deactivated, because itemsize increase was deactivated # image = np.full((3, 3), min_value, dtype=dtype) # aug = iaa.MultiplyElementwise(-2.0) # image_aug = aug.augment_image(image) # assert image_aug.dtype.type == dtype # assert _allclose(image_aug, max_value) image = np.full((3, 3), min_value, dtype=dtype) aug = iaa.MultiplyElementwise(0.0) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, 0.0) # using tolerances of -100 - 1e-2 and 100 + 1e-2 is not enough for float16, had to be increased to -/+ 1e-1 # deactivated, because itemsize increase was deactivated """ for _ in sm.xrange(10): image = np.full((50, 1, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.Uniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) image = np.full((50, 1, 3), 10.0, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(-10, 10)) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[1:, :, 0], image_aug[:-1, :, 0]) assert np.allclose(image_aug[..., 0], image_aug[..., 1]) image = np.full((1, 1, 100), 10, dtype=dtype) aug = iaa.MultiplyElementwise(iap.DiscreteUniform(-10, 10), per_channel=True) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(-100 - 1e-1 < image_aug, image_aug < 100 + 1e-1)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1]) """ def test_pickleable(self): aug = iaa.MultiplyElementwise((0.5, 1.5), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestReplaceElementwise(unittest.TestCase): def setUp(self): reseed() def test_mask_is_always_zero(self): # no replace, shouldnt change anything base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 images = np.array([base_img]) images_list = [base_img] aug = iaa.ReplaceElementwise(mask=0, replacement=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = images assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = images assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = images_list assert array_equal_lists(observed, expected) def test_mask_is_always_one(self): # replace at 100 percent prob., should change everything base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 images = np.array([base_img]) images_list = [base_img] aug = iaa.ReplaceElementwise(mask=1, replacement=0) aug_det = aug.to_deterministic() observed = aug.augment_images(images) expected = np.zeros((1, 3, 3, 1), dtype=np.uint8) assert np.array_equal(observed, expected) assert observed.shape == (1, 3, 3, 1) observed = aug.augment_images(images_list) expected = [np.zeros((3, 3, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) observed = aug_det.augment_images(images) expected = np.zeros((1, 3, 3, 1), dtype=np.uint8) assert np.array_equal(observed, expected) observed = aug_det.augment_images(images_list) expected = [np.zeros((3, 3, 1), dtype=np.uint8)] assert array_equal_lists(observed, expected) def test_mask_is_stochastic_parameter(self): # replace half aug = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0) img = np.ones((100, 100, 1), dtype=np.uint8) nb_iterations = 100 nb_diff_all = 0 for i in sm.xrange(nb_iterations): observed = aug.augment_image(img) nb_diff = np.sum(img != observed) nb_diff_all += nb_diff p = nb_diff_all / (nb_iterations * 100 * 100) assert 0.45 <= p <= 0.55 def test_mask_is_list(self): # mask is list aug = iaa.ReplaceElementwise(mask=[0.2, 0.7], replacement=1) img = np.zeros((20, 20, 1), dtype=np.uint8) seen = [0, 0, 0] for i in sm.xrange(400): observed = aug.augment_image(img) p = np.mean(observed) if 0.1 < p < 0.3: seen[0] += 1 elif 0.6 < p < 0.8: seen[1] += 1 else: seen[2] += 1 assert seen[2] <= 10 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test_keypoints_dont_change(self): # keypoints shouldnt be changed base_img = np.ones((3, 3, 1), dtype=np.uint8) + 99 keypoints = [ia.KeypointsOnImage([ia.Keypoint(x=0, y=0), ia.Keypoint(x=1, y=1), ia.Keypoint(x=2, y=2)], shape=base_img.shape)] aug = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0) aug_det = iaa.ReplaceElementwise(mask=iap.Binomial(p=0.5), replacement=0).to_deterministic() observed = aug.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) observed = aug_det.augment_keypoints(keypoints) expected = keypoints assert keypoints_equal(observed, expected) def test_replacement_is_stochastic_parameter(self): # different replacements aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Choice([100, 200])) img = np.zeros((1000, 1000, 1), dtype=np.uint8) img100 = img + 100 img200 = img + 200 observed = aug.augment_image(img) nb_diff_100 = np.sum(img100 != observed) nb_diff_200 = np.sum(img200 != observed) p100 = nb_diff_100 / (1000 * 1000) p200 = nb_diff_200 / (1000 * 1000) assert 0.45 <= p100 <= 0.55 assert 0.45 <= p200 <= 0.55 # test channelwise aug = iaa.MultiplyElementwise(mul=iap.Choice([0, 1]), per_channel=True) observed = aug.augment_image(np.ones((100, 100, 3), dtype=np.uint8)) sums = np.sum(observed, axis=2) values = np.unique(sums) assert all([(value in values) for value in [0, 1, 2, 3]]) def test_per_channel_with_probability(self): # test channelwise with probability aug = iaa.ReplaceElementwise(mask=iap.Choice([0, 1]), replacement=1, per_channel=0.5) seen = [0, 0] for _ in sm.xrange(400): observed = aug.augment_image(np.zeros((20, 20, 3), dtype=np.uint8)) assert observed.shape == (20, 20, 3) sums = np.sum(observed, axis=2) values = np.unique(sums) all_values_found = all([(value in values) for value in [0, 1, 2, 3]]) if all_values_found: seen[0] += 1 else: seen[1] += 1 assert 150 < seen[0] < 250 assert 150 < seen[1] < 250 def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _aug = iaa.ReplaceElementwise(mask="test", replacement=1) except Exception: got_exception = True assert got_exception got_exception = False try: _aug = iaa.ReplaceElementwise(mask=1, replacement=1, per_channel="test") except Exception: got_exception = True assert got_exception def test_zero_sized_axes(self): shapes = [ (0, 0), (0, 1), (1, 0), (0, 1, 0), (1, 0, 0), (0, 1, 1), (1, 0, 1) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.ReplaceElementwise(1.0, 1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_unusual_channel_numbers(self): shapes = [ (1, 1, 4), (1, 1, 5), (1, 1, 512), (1, 1, 513) ] for shape in shapes: with self.subTest(shape=shape): image = np.zeros(shape, dtype=np.uint8) aug = iaa.ReplaceElementwise(1.0, 1) image_aug = aug(image=image) assert np.all(image_aug == 1) assert image_aug.dtype.name == "uint8" assert image_aug.shape == image.shape def test_get_parameters(self): # test get_parameters() aug = iaa.ReplaceElementwise(mask=0.5, replacement=2, per_channel=False) params = aug.get_parameters() assert isinstance(params[0], iap.Binomial) assert isinstance(params[0].p, iap.Deterministic) assert isinstance(params[1], iap.Deterministic) assert isinstance(params[2], iap.Deterministic) assert 0.5 - 1e-6 < params[0].p.value < 0.5 + 1e-6 assert params[1].value == 2 assert params[2].value == 0 def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.ReplaceElementwise(mask=1, replacement=0.5) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_other_dtypes_bool(self): # bool aug = iaa.ReplaceElementwise(mask=1, replacement=0) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0) image = np.full((3, 3), True, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), True, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0.7) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=0.2) image = np.full((3, 3), False, dtype=bool) image_aug = aug.augment_image(image) assert image_aug.dtype.type == np.bool_ assert np.all(image_aug == 0) def test_other_dtypes_uint_int(self): # uint, int for dtype in [np.uint8, np.uint16, np.uint32, np.int8, np.int16, np.int32]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) aug = iaa.ReplaceElementwise(mask=1, replacement=1) image = np.full((3, 3), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 1) aug = iaa.ReplaceElementwise(mask=1, replacement=2) image = np.full((3, 3), 1, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == 2) # deterministic stochastic parameters are by default int32 for # any integer value and hence cannot cover the full uint32 value # range if dtype.name != "uint32": aug = iaa.ReplaceElementwise(mask=1, replacement=max_value) image = np.full((3, 3), min_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == max_value) aug = iaa.ReplaceElementwise(mask=1, replacement=min_value) image = np.full((3, 3), max_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(image_aug == min_value) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Uniform(1.0, 10.0)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 1 aug = iaa.ReplaceElementwise(mask=1, replacement=iap.DiscreteUniform(1, 10)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 1 aug = iaa.ReplaceElementwise(mask=0.5, replacement=iap.DiscreteUniform(1, 10), per_channel=True) image = np.full((1, 1, 100), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(0 <= image_aug, image_aug <= 10)) assert len(np.unique(image_aug)) > 2 def test_other_dtypes_float(self): # float for dtype in [np.float16, np.float32, np.float64]: dtype = np.dtype(dtype) min_value, center_value, max_value = iadt.get_value_range_of_dtype(dtype) atol = 1e-3*max_value if dtype == np.float16 else 1e-9 * max_value _allclose = functools.partial(np.allclose, atol=atol, rtol=0) aug = iaa.ReplaceElementwise(mask=1, replacement=1.0) image = np.full((3, 3), 0.0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, 1.0) aug = iaa.ReplaceElementwise(mask=1, replacement=2.0) image = np.full((3, 3), 1.0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.allclose(image_aug, 2.0) # deterministic stochastic parameters are by default float32 for # any float value and hence cannot cover the full float64 value # range if dtype.name != "float64": aug = iaa.ReplaceElementwise(mask=1, replacement=max_value) image = np.full((3, 3), min_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, max_value) aug = iaa.ReplaceElementwise(mask=1, replacement=min_value) image = np.full((3, 3), max_value, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert _allclose(image_aug, min_value) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.Uniform(1.0, 10.0)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[1:, :], image_aug[:-1, :], atol=0.01) aug = iaa.ReplaceElementwise(mask=1, replacement=iap.DiscreteUniform(1, 10)) image = np.full((100, 1), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(1 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[1:, :], image_aug[:-1, :], atol=0.01) aug = iaa.ReplaceElementwise(mask=0.5, replacement=iap.DiscreteUniform(1, 10), per_channel=True) image = np.full((1, 1, 100), 0, dtype=dtype) image_aug = aug.augment_image(image) assert image_aug.dtype.type == dtype assert np.all(np.logical_and(0 <= image_aug, image_aug <= 10)) assert not np.allclose(image_aug[:, :, 1:], image_aug[:, :, :-1], atol=0.01) def test_pickleable(self): aug = iaa.ReplaceElementwise(mask=0.5, replacement=(0, 255), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) # not more tests necessary here as SaltAndPepper is just a tiny wrapper around # ReplaceElementwise class TestSaltAndPepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.SaltAndPepper(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_p_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.SaltAndPepper(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper > 200 assert nb_salt > 200 def test_pickleable(self): aug = iaa.SaltAndPepper(p=0.5, per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseSaltAndPepper(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarseSaltAndPepper(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarseSaltAndPepper(p=0.5, size_px=100) aug2 = iaa.CoarseSaltAndPepper(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarseSaltAndPepper(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarseSaltAndPepper(p=(0.0, 1.0), size_px=50) base_img = np.zeros((50, 50, 1), dtype=np.uint8) + 128 ps = [] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) ps.append(p) nb_bins = 5 hist, _ = np.histogram(ps, bins=nb_bins, range=(0.0, 1.0), density=False) tolerance = 0.05 for nb_seen in hist: density = nb_seen / len(ps) assert density - tolerance < density < density + tolerance def test___init___bad_datatypes(self): # test exceptions for wrong parameter types got_exception = False try: _ = iaa.CoarseSaltAndPepper(p="test", size_px=100) except Exception: got_exception = True assert got_exception got_exception = False try: _ = iaa.CoarseSaltAndPepper(p=0.5, size_px=None, size_percent=None) except Exception: got_exception = True assert got_exception def test_heatmaps_dont_change(self): # test heatmaps (not affected by augmenter) aug = iaa.CoarseSaltAndPepper(p=1.0, size_px=2) hm = ia.quokka_heatmap() hm_aug = aug.augment_heatmaps([hm])[0] assert np.allclose(hm.arr_0to1, hm_aug.arr_0to1) def test_pickleable(self): aug = iaa.CoarseSaltAndPepper(p=0.5, size_px=(4, 15), per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=20) # not more tests necessary here as Salt is just a tiny wrapper around # ReplaceElementwise class TestSalt(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Salt(p=0.5) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 # Salt() occasionally replaces with 127, which probably should be the center-point here anyways assert np.all(observed >= 127) def test_p_is_one(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.Salt(p=1.0) observed = aug.augment_image(base_img) nb_pepper = np.sum(observed < 40) nb_salt = np.sum(observed > 255 - 40) assert nb_pepper == 0 assert nb_salt > 200 def test_pickleable(self): aug = iaa.Salt(p=0.5, per_channel=True, seed=1) runtest_pickleable_uint8_img(aug, iterations=3) class TestCoarseSalt(unittest.TestCase): def setUp(self): reseed() def test_p_is_fifty_percent(self): base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 aug = iaa.CoarseSalt(p=0.5, size_px=100) observed = aug.augment_image(base_img) p = np.mean(observed != 128) assert 0.4 < p < 0.6 def test_size_px(self): aug1 = iaa.CoarseSalt(p=0.5, size_px=100) aug2 = iaa.CoarseSalt(p=0.5, size_px=10) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 ps1 = [] ps2 = [] for _ in sm.xrange(100): observed1 = aug1.augment_image(base_img) observed2 = aug2.augment_image(base_img) p1 = np.mean(observed1 != 128) p2 = np.mean(observed2 != 128) ps1.append(p1) ps2.append(p2) assert 0.4 < np.mean(ps2) < 0.6 assert np.std(ps1)*1.5 < np.std(ps2) def test_p_is_list(self): aug = iaa.CoarseSalt(p=[0.2, 0.5], size_px=100) base_img = np.zeros((100, 100, 1), dtype=np.uint8) + 128 seen = [0, 0, 0] for _ in sm.xrange(200): observed = aug.augment_image(base_img) p = np.mean(observed != 128) diff_020 = abs(0.2 - p) diff_050 = abs(0.5 - p) if diff_020 < 0.025: seen[0] += 1 elif diff_050 < 0.025: seen[1] += 1 else: seen[2] += 1 assert seen[2] < 10 assert 75 < seen[0] < 125 assert 75 < seen[1] < 125 def test_p_is_tuple(self): aug = iaa.CoarseSalt(p=(0.0, 1.0), size_px=50) base_img =
np.zeros((50, 50, 1), dtype=np.uint8)
numpy.zeros
import sys sys.path.append('/Users/eshanking/repos') import matplotlib.pyplot as plt from cycler import cycler import seaborn as sns import numpy as np import os import math import scipy.stats from fears.utils import dir_manager, fitness # from fears.utils.experiment_class import Experiment from matplotlib.collections import LineCollection import networkx as nx from labellines import labelLine def gen_color_cycler(style=None,palette='bright',n_colors=16): if style is None: colors = sns.color_palette(palette) colors = np.concatenate((colors[0:9],colors[0:7]),axis=0) # colors[[14,15]] = colors[[15,14]] colors[[7,8]] = colors[[8,7]] cc = (cycler(color=colors) + cycler(linestyle=['-', '-','-','-','-','-','-','-','-', '--','--','--','--','--','--','--'])) elif style == 'solid': colors = sns.color_palette(palette,n_colors) cc = cycler(color=colors) return cc def plot_timecourse(pop,counts_t=None,title_t=None): if (pop.counts == 0).all() and counts_t is None: print('No data to plot!') return elif counts_t is None: counts = pop.counts else: counts = counts_t # an input other than pop overrides pop if title_t is not None: title = title_t else: title = pop.fig_title left = 0.1 width = 0.8 if pop.plot_entropy == True: fig,(ax1,ax3) = plt.subplots(2,1,figsize=(6,4),sharex=True) ax3.set_position([left, 0.2, width, 0.2]) # ax3 is entropy else: fig,ax1 = plt.subplots(1,1,figsize=(6,4),sharex=True) ax1.set_position([left, 0.5, width, 0.6]) # ax1 is the timecourse counts_total = np.sum(counts,axis=0) sorted_index = counts_total.argsort() sorted_index_big = sorted_index[-8:] cc = gen_color_cycler() ax1.set_prop_cycle(cc) color = [0.5,0.5,0.5] if pop.plot_drug_curve: ax2 = ax1.twinx() # ax2 is the drug timecourse ax2.set_position([left, 0.5, width, 0.6]) ax2.set_ylabel('Drug Concentration \n($\u03BC$M)', color=color,fontsize=20) # we already handled the x-label with ax1 drug_curve = pop.drug_curve ax2.plot(drug_curve, color='black', linewidth=2.0) ax2.tick_params(axis='y', labelcolor=color) if pop.drug_log_scale: ax2.set_yscale('log') if min(drug_curve) <= 0: axmin = 10**-3 else: axmin = min(drug_curve) ax2.set_ylim(axmin,2*max(drug_curve)) ax2.legend(['Drug Conc.'],loc=(1.3,0.93),frameon=False,fontsize=15) else: ax2.set_ylim(0,1.1*max(drug_curve)) ax2.legend(['Drug Conc.'],loc=(1.25,0.93),frameon=False,fontsize=15) ax2.tick_params(labelsize=15) ax2.set_title(title,fontsize=20) for allele in range(counts.shape[1]): if allele in sorted_index_big: ax1.plot(counts[:,allele],linewidth=3.0,label=str(pop.int_to_binary(allele))) else: ax1.plot(counts[:,allele],linewidth=3.0,label=None) ax1.legend(loc=(1.25,-.12),frameon=False,fontsize=15) ax1.set_xlim(0,pop.x_lim) ax1.set_facecolor(color='w') ax1.grid(False) ax1.set_ylabel('Cells',fontsize=20) ax1.tick_params(labelsize=15) if pop.plot_entropy == True: e = pop.entropy(counts) ax3.plot(e,color='black') ax3.set_xlabel('Time',fontsize=20) ax3.set_ylabel('Entropy',fontsize=20) if pop.entropy_lim is not None: ax3.set_ylim(0,pop.entropy_lim) ax3.tick_params(labelsize=15) if pop.y_lim is not None: y_lim = pop.y_lim else: y_lim = np.max(counts) + 0.05*np.max(counts) if pop.counts_log_scale: ax1.set_yscale('log') # ax1.set_ylim(1,5*10**5) else: ax1.set_ylim(0,y_lim) xlabels = ax1.get_xticks() xlabels = xlabels*pop.timestep_scale xlabels = xlabels/24 xlabels = np.array(xlabels).astype('int') ax1.set_xticklabels(xlabels) ax1.set_xlabel('Days',fontsize=20) plt.show() return fig def plot_fitness_curves(pop, fig_title='', plot_r0 = False, save=False, savename=None, fig=None, ax=None, labelsize=15, linewidth=3, show_legend=True, show_axes_labels=True, color_kwargs={}): if ax is None: fig, ax = plt.subplots(figsize = (10,6)) conc = np.logspace(-3,5,200) cc = gen_color_cycler(**color_kwargs) ax.set_prop_cycle(cc) fit = np.zeros((pop.n_genotype,conc.shape[0])) for j in range(conc.shape[0]): fit[:,j] = pop.gen_fit_land(conc[j]) if plot_r0: fit = fit-pop.death_rate ylabel = '$R_{0}$' thresh = np.ones(conc.shape) ax.plot(conc,thresh,linestyle='dashdot',color='black',linewidth=linewidth) else: ylabel = 'Growth Rate' for gen in range(pop.n_genotype): ax.plot(conc,fit[gen,:],linewidth=linewidth,label=str(pop.int_to_binary(gen))) if show_legend: ax.legend(fontsize=labelsize,frameon=False,loc=(1,-.10)) ax.set_xscale('log') ax.set_title(fig_title,fontsize=labelsize) ax.tick_params(labelsize=labelsize) if show_axes_labels: ax.set_xlabel('Drug concentration ($\mathrm{\mu}$M)',fontsize=labelsize) ax.set_ylabel(ylabel,fontsize=labelsize) ax.set_frame_on(False) if save: if savename is None: savename = 'fitness_seascape.pdf' r = dir_manager.get_project_root() savename = str(r) + os.sep + 'figures' + os.sep + savename plt.savefig(savename,bbox_inches="tight") return fig,ax def plot_msw(pop,wt,conc=None,fc=None): """ plot_msw: method for plotting mutant selection window figures. Parameters ---------- pop : population_class object fitness_curves : numpy array Columns 1-N represents a genotype that is a neighbor of column 0 (ancestor). Rows represent drug concentration. conc : numpy array Drug concentration used to calculate fitness_curves genotypes : list of ints Genotypes that were used to calculate the fitness_curves. save : bool Returns ------- fig : figure object MSW figures """ if conc is None: conc = np.logspace(-3,5,1000) if fc is None: fc = fitness.gen_fitness_curves(pop,conc) rows = int((pop.n_allele)/2) fig, ax = plt.subplots(rows,2) neighbors = pop.gen_neighbors(wt) wt_fitness_curve = fc[wt] i = 0 for r in range(rows): for col in range(2): n = neighbors[i] wtlabel = pop.int_to_binary(wt) + ' (wt)' ax[r,col].plot(conc,wt_fitness_curve,label=wtlabel,linewidth=3) bitstring = pop.int_to_binary(n) ax[r,col].plot(conc,fc[n],label=bitstring,linewidth=3) msw_left,msw_right = get_msw(wt_fitness_curve,fc[n],conc) ax[r,col].axvspan(msw_left, msw_right, facecolor='#2ca02c',alpha=0.5, label='MSW') ax[r,col].set_xscale('log') ax[r,col].legend(fontsize=10,frameon=False) i+=1 for r in range(rows): ax[r,0].set_ylabel('$R_{0}$',fontsize=10) for c in range(2): ax[rows-1,c].set_xlabel('Drug concentration ($\mathrm{\mu}$M)', fontsize=10) """ n_genotype = pop.n_genotype rows = int((n_genotype-1)/2) fig, ax = plt.subplots(rows,2) g = 1 wt_fitness_curve = fitness_curves[:,0] for r in range(rows): for col in range(2): ax[r,col].plot(conc,wt_fitness_curve,label='wt',linewidth=3) cur_fitness_curve = fitness_curves[:,g] gt = genotypes[g] bitstring = pop.int_to_binary(gt) ax[r,col].plot(conc,cur_fitness_curve,label=bitstring,linewidth=3) msw_left_assigned = False msw_right_assigned = False if wt_fitness_curve[0] > cur_fitness_curve[0] \ and any(cur_fitness_curve>wt_fitness_curve): for c in range(len(conc)): if wt_fitness_curve[c] < cur_fitness_curve[c] \ and msw_left_assigned is False: msw_left = conc[c] msw_left_assigned = True if (cur_fitness_curve[c] < 1 and msw_right_assigned is False): msw_right = conc[c] msw_right_assigned = True if msw_left < msw_right: ax[r,col].axvspan(msw_left, msw_right, facecolor='#2ca02c',alpha=0.5, label='MSW') ax[r,col].set_xscale('log') ax[r,col].legend(fontsize=10,frameon=False) g+=1 for r in range(rows): ax[r,0].set_ylabel('$R_{0}$',fontsize=10) for c in range(2): ax[rows-1,c].set_xlabel('Drug concentration ($\mathrm{\mu}$M)', fontsize=10) if save: r = dir_manager.get_project_root() savename = str(r) + os.sep + 'figures' + os.sep + 'msw.pdf' plt.savefig(savename,bbox_inches="tight") """ return fig def plot_timecourse_to_axes(pop, counts, counts_ax, drug_curve=None, drug_curve_label='Drug Concentration \n($\u03BC$M)', drug_curve_legend_label = None, # drug_curve_linestyle='--', drug_ax_sci_notation=False, drug_ax=None, labelsize=15, linewidth=3, legend_labels = True, label_lines = False, select_labels=None, label_xpos = None, grayscale=False, legend_size=8, color_kwargs = {}, drug_kwargs = {}, label_kwargs={}, **kwargs): """ Plots simulation timecourse to user defined axes (counts_ax). Parameters ---------- pop : Population class object Population class object containing population visualization options. counts : numpy array Simulation data to be plotted. counts_ax : matplotlib axes object Axes on which data is plotted. drug_curve : numpy array, optional Optional drug concentration curve to plot. Requires additional drug axes. The default is None. drug_ax : matplotlib axes, optional Axes on which drug curve is plotted. The default is None. labelsize : float, optional Font size of the labels. The default is 15. linewidth : float, optional Width parameter passed to matplotlib plot function. The default is 3. Raises ------ Exception Error given if no drug axes are provided but the drug curve is not None (drug data needs drug axes to plot to). Returns ------- counts_ax : matplotlib axes Axes with counts data plotted. drug_ax : matplotlib axes Axes with drug curve data plotted. """ counts_total = np.sum(counts,axis=0) sorted_index = counts_total.argsort() sorted_index_big = sorted_index[-legend_size:] if grayscale is False: cc = gen_color_cycler(**color_kwargs) counts_ax.set_prop_cycle(cc) if drug_curve is not None: if 'color' in drug_kwargs: color = drug_kwargs['color'] else: color='black' if drug_ax is None: drug_ax = counts_ax.twinx() # ax2 is the drug timecourse if drug_curve_label is None: yax_label = '' else: yax_label = drug_curve_label drug_ax.set_ylabel(yax_label, color=color,fontsize=labelsize) drug_ax.plot(drug_curve,zorder=0,**drug_kwargs) if pop.drug_log_scale: drug_ax.set_yscale('log') if min(drug_curve) <= 0: axmin = 10**-3 else: axmin = min(drug_curve) drug_ax.set_ylim(axmin,2*max(drug_curve)) else: drug_ax.set_ylim(0,1.1*max(drug_curve)) # drug_ax.yaxis.label.set_color('gray') drug_ax.tick_params(labelsize=labelsize,color=color) plt.setp(drug_ax.get_yticklabels(), color=color) if drug_ax_sci_notation: drug_ax.ticklabel_format(style='scientific',axis='y', scilimits=(0,3)) for genotype in range(counts.shape[1]): if genotype in sorted_index_big: if legend_labels: counts_ax.plot(counts[:,genotype],linewidth=linewidth, zorder=10, label=str(pop.int_to_binary(genotype)), **kwargs) else: counts_ax.plot(counts[:,genotype],linewidth=linewidth, zorder=10, **kwargs) else: counts_ax.plot(counts[:,genotype],linewidth=linewidth, zorder=10, label=None) if pop.counts_log_scale: counts_ax.set_yscale('log') yl = counts_ax.get_ylim() yl = [10**1,yl[1]] counts_ax.set_ylim(yl) counts_ax.set_xlim(0,pop.x_lim) counts_ax.set_facecolor(color='w') counts_ax.grid(False) # counts_ax.set_ylabel('Cells',fontsize=20) counts_ax.tick_params(labelsize=labelsize) xticks = counts_ax.get_xticks() xlabels = xticks xlabels = xlabels*pop.timestep_scale xlabels = xlabels/24 xlabels = np.array(xlabels).astype('int') counts_ax.set_xticks(xticks) counts_ax.set_xticklabels(xlabels) xl = [0,len(counts[:,0])] counts_ax.set_xlim(xl) counts_ax.spines["top"].set_visible(False) counts_ax.spines["right"].set_visible(False) counts_ax.patch.set_alpha(0) if drug_ax is not None: drug_ax.zorder = 0 # counts_ax.zorder = 10 if label_lines: lines = counts_ax.get_lines() for i in range(len(label_xpos)): sl = select_labels[i] labelLine(lines[sl],label_xpos[i], fontsize=5, zorder=100, outline_color='white', outline_width=6, **label_kwargs) return counts_ax, drug_ax def plot_landscape(p,conc=10**0, fitness=None, relative=True, rank=True, ax=None, ignore_zero=False, colorbar_lim=None, colorbar=True, node_size = 800, textsize=11, resize_param=0.2, square=False, textcolor='black', cbax=None, cblabel='', cbloc = [0.1,0.8,0.3,0.5], **kwargs): """ Plots a graph representation of this landscape on the current matplotlib figure. If p is set to a vector of occupation probabilities, the edges in the graph will have thickness proportional to the transition probability between nodes. """ if fitness is None: fitness = p.gen_fit_land(conc) if relative: fitness = fitness-min(fitness) fitness = fitness/max(fitness) if ax is None: fig,ax=plt.subplots() if rank: fitness = scipy.stats.rankdata(fitness) cblabel = 'Rank' if ignore_zero: fitness_t = [f==0 for f in fitness] fitness[fitness==0] = 'NaN' # Figure out the length of the bit sequences we're working with N = int(np.log2(len(fitness))) # Generate all possible N-bit sequences genotypes = np.arange(2**N) genotypes = [p.int_to_binary(g) for g in genotypes] # Turn the unique bit sequences array into a list of tuples with the bit sequence and its corresponding fitness # The tuples can still be used as nodes because they are hashable objects genotypes = [(genotypes[i], fitness[i]) for i in range(len(genotypes))] # Build hierarchical structure for N-bit sequences that differ by 1 bit at each level hierarchy = [[] for i in range(N+1)] for g in genotypes: hierarchy[g[0].count("1")].append(g) # Add all unique bit sequences as nodes to the graph G = nx.DiGraph() G.add_nodes_from(genotypes) # Add edges with appropriate weights depending on the TM TM = p.random_mutations(len(genotypes)) for i in range(len(TM)): for j in range(len(TM[i])): if TM[i][j] != 0 and i != j: G.add_edge(genotypes[i], genotypes[j], weight=1) # just using spring layout to generate an initial dummy pos dict pos = nx.spring_layout(G) # # calculate how many entires in the longest row, it will be N choose N/2 # # because the longest row will have every possible way of putting N/2 1s (or 0s) into N bits maxLen = math.factorial(N) / math.factorial(N//2)**2 # Position the nodes in a layered hierarchical structure by modifying pos dict y = 1 for row in hierarchy: if len(row) > maxLen: maxLen = len(row) for i in range(len(hierarchy)): levelLen = len(hierarchy[i]) # algorithm for horizontal spacing.. may not be 100% correct? offset = (maxLen - levelLen + 1) / maxLen xs = np.linspace(0 + offset / 2, 1 - offset / 2, levelLen) for j in range(len(hierarchy[i])): pos[hierarchy[i][j]] = (xs[j], y) y -= 1 / N labels = dict(pos) for k in labels.keys(): labels[k] = k[0] xy = np.asarray([pos[v] for v in list(G)]) # draw edges edgelist = list(G.edges()) edge_pos = np.asarray([(pos[e[0]], pos[e[1]]) for e in edgelist]) edge_collection = LineCollection( edge_pos, linewidths=1, antialiaseds=(1,), linestyle='solid', zorder=1) edge_collection.set_zorder(1) ax.add_collection(edge_collection) # draw nodes if colorbar_lim is not None: vmin = colorbar_lim[0] vmax = colorbar_lim[1] else: vmin=min(fitness) vmax=max(fitness) ax.scatter(xy[:,0],xy[:,1], s=node_size, c=fitness, vmin=vmin, vmax=vmax, clip_on=False, **kwargs) # if you don't want to include nodes with fitness = 0 if ignore_zero: fitness_t = np.array(fitness_t) indx = np.argwhere(fitness_t==True) for i in indx: ax.scatter(xy[i,0],xy[i,1], s=node_size, c='gray', clip_on=False, **kwargs) if textcolor is not None: for n, label in labels.items(): (x, y) = pos[n] if not isinstance(label, str): label = str(label) # this makes "1" and 1 labeled the same ax.text( x, y, label, size=textsize, color=textcolor, horizontalalignment='center', verticalalignment='center', transform=ax.transData, clip_on=True, ) # display colorbar if colorbar: if 'cmap' in kwargs: cmap=kwargs['cmap'] sm = plt.cm.ScalarMappable(cmap=cmap, norm=plt.Normalize(vmin = vmin, vmax=vmax)) else: sm = plt.cm.ScalarMappable(norm=plt.Normalize( vmin = vmin, vmax=vmax)) sm._A = [] cbax = ax.inset_axes(cbloc) cbax.set_frame_on(False) cbax.set_xticks([]) cbax.set_yticks([]) cb = plt.colorbar(sm, drawedges=False, ax=cbax, location='right', aspect=10) cb.outline.set_visible(False) cb.set_label(cblabel,fontsize=8) if rank: ticks = [min(fitness),max(fitness)] cb.set_ticks(ticks) ticks = [max(fitness),min(fitness)] ticks = np.array(ticks).astype('int') ticks = [str(t) for t in ticks] cb.set_ticklabels(ticks) if square: ydata_range = max(xy[:,1])-min(xy[:,1]) xdata_range = max(xy[:,0])-min(xy[:,0]) ax.set_aspect(xdata_range/ydata_range) xl = ax.get_xlim() xrange = xl[1]-xl[0] xl = [xl[0]-resize_param*xrange,xl[1]+xrange*resize_param] ax.set_xlim(xl) yl = ax.get_ylim() yrange = yl[1]-yl[0] yl = [yl[0]-resize_param*yrange,yl[1]+yrange*resize_param] ax.set_ylim(yl) ax.set_axis_off() return ax def add_landscape_to_fitness_curve(c,ax,pop, textcolor='gray', colorbar=False, square=True, vert_lines=True, position = 'top', pad = 0, vert_lines_ydata = None, **kwargs): if position == 'top': ypos = 1+pad elif position == 'bottom': ypos = -1-pad else: raise Exception('Position argument not recognized') x = get_pos_in_log_space(c, 3) l = ax.inset_axes([x[0],ypos,x[1]-x[0],0.5],transform=ax.transData) l = plot_landscape(pop,c,ax=l,node_size=200, colorbar=colorbar, textcolor=textcolor, square=square, **kwargs) if vert_lines: if vert_lines_ydata is None: yl = ax.get_ylim() ydata = np.arange(yl[0],yl[1],0.1) else: ydata = vert_lines_ydata xdata = np.ones(len(ydata))*c ax.plot(xdata,ydata,'--',color='black',alpha=0.5) return l def plot_population_count(pop, c, ax=None, thresh=None, normalize=False, max_cells=None, logscale=True, **kwargs): if ax is None: fig,ax = plt.subplots(figsize=(6,4)) if thresh is None: thresh = pop.max_cells/10 c1 = [245,100,100] c1 = [c/255 for c in c1] c2 = [100,100,245] c2 = [c/255 for c in c2] if c[-1] < thresh: if normalize: c = c/pop.max_cells ax.plot(c,color=c2,label='extinct',**kwargs) else: if normalize: c = c/pop.max_cells ax.plot(c,color=c1,label='resistant',**kwargs) xticks = ax.get_xticks() xlabels = xticks xlabels = xlabels*pop.timestep_scale xlabels = xlabels/24 xlabels = np.array(xlabels).astype('int') ax.set_xticks(xticks) ax.set_xticklabels(xlabels) if logscale: ax.set_yscale('log') return ax def plot_kaplan_meier(pop, event_times, label=None, t_max=None, n_sims=None, ax=None, mode='resistant', errorband=True, **kwargs): if t_max is None: t_max = int(max(event_times)) # hours if n_sims is None: n_sims = pop.n_sims survival_curve = np.ones(t_max)*100 for t in range(len(survival_curve)-1): if t>0: survival_curve[t] = survival_curve[t-1] if any(event_times==t): num = np.argwhere(event_times==t) num = num.shape[0] perc = 100*num/n_sims survival_curve[t] = survival_curve[t]-perc survival_curve[-1] = survival_curve[-2] if ax is None: fig,ax = plt.subplot(figsize=(5,7)) if mode == 'resistant': survival_curve = 100-survival_curve ylabel='% resistant' else: ylabel='% survival' ax.plot(survival_curve,label=label,**kwargs) if errorband: # compute error bars # rule of succession explanation: https://en.wikipedia.org/wiki/Rule_of_succession err = np.zeros(t_max) for t in range(t_max): p = (np.array(survival_curve[t]) + 1)/(n_sims + 2) # uniform prior (rule of succession) n = n_sims q = 1-p # standard deviation of the estimator of the parameter of a binomial distribution err[t] = 100*(p*q/n)**0.5 # t = np.arange(t_max) ax.fill_between(t,survival_curve-err,survival_curve+err,alpha=0.4) xticks = ax.get_xticks() xlabels = xticks xlabels = xlabels/24 xlabels = np.array(xlabels).astype('int') ax.set_xticks(xticks) ax.set_xticklabels(xlabels) xl = [0,len(survival_curve)] ax.set_xlim(xl) ax.set_ylim([0,100]) ax.set_ylabel(ylabel) ax.set_xlabel('Days') return ax def get_msw(wt_fitness_curve,cur_fitness_curve,conc): msw_left =
np.argwhere(wt_fitness_curve<cur_fitness_curve)
numpy.argwhere
import warnings import pyfar.dsp.filter as filt import numpy as np def sti(signal, data_type=None, gender='male', level=None, snr=None, amb=True): """ Calculation of the speech transmission index (STI). Returns a np array with the female or male STI , a single number value on a metric scale between 0 (bad) and 1 (excellent) for quality assessment of speech transmission channels. The indices are based on the modulation transfer function (MTF) that determines affections of the intensity envelope throughout the transmission. The MTF values are assessed from the IR and are further modified based on auditory, ambient noise and masking aspects. STI considers 7 octaves between 125 Hz and 8 kHz (125 Hz is not considered for the female STI) and 14 modulation frequencies between 0.63 Hz and 12 Hz. References ---------- .. [1] IEC 60268-16:2011 Sound system equipment - Part 16: Objective rating of speech intelligibility by speech transmission index .. [2] IEC 60268-16/Ed.5: 2019-08 (DRAFT) Sound system equipment - Part 16: Objective rating of speech intelligibility by speech transmission index ============================ Parameters --------- signal : Signal The impulse responses (IR) to be analyzed. Length must be at least 1.6 s and not shorter than 1/2 RT60. [1], section 6.2 data_type : 'electrical', 'acoustical' Determines weather input signals are obtained acoustically or electrically. Auditory effects can only be considered when "acoustical" [1], section A.3.1. Default is 'None'. gender: 'female', 'male' Defines the applied weighting factors. Default is 'male' because the STI is more critical in this case due to the expanded low frequency range of the male voice. level: np.array, None Level of the test signal without any present noise sources. Given in 7 octave bands 125 Hz - 8000 Hz in dB_SPL. Np array with 7 elements per row and rows for all given IR. See [1], section A.3.2 snr: np.array, None Ratio between test signal level (see above) and noise level when the test source is turned of. Given in 7 octave bands 125 Hz - 8000 Hz in dB_SPL. Np array with 7 elements per row and rows for all given IR. See [1], section 3 amb: bool, True Consideration of ambient noise effects as proposed in [2], section A.2.3. Default is True. """ # preprocess and verify input data sig, inp_sig_oct, inp_da_ty, inp_gen, inp_lvl, inp_snr, inp_amb = \ preprocess(signal, data_type, gender, level, snr, amb) # calculate IR for 14 modulation frequencies in 7 octave bands mtf_data = mtf(inp_sig_oct, inp_da_ty, inp_lvl, inp_snr, inp_amb) # calculate sti from MTF sti_data = sti_calc(mtf_data, signal, inp_gen) # return result return sti_data def preprocess(signal, data_type=None, gender='male', level=None, snr=None, amb=True): # get flattened signal copy sig = signal.copy().flatten() # check / flatten snr if snr is not None: snr = np.asarray(snr).flatten() if np.squeeze(snr.flatten().shape)/7 != (np.squeeze(sig.cshape)): raise ValueError("SNR consists of wrong number of components.") if np.any(snr < 20): warnings.warn("SNR should be at least 20 dB for every octave " "band.") snr = np.reshape(snr, (-1, 7)).T # set snr to infinity if not given else: snr = np.ones([7, np.squeeze(sig.cshape)])*np.inf # check / flatten level if level is not None: level = np.asarray(level).flatten() if np.squeeze(level.flatten().shape)/7 != (np.squeeze(sig.cshape)): raise ValueError("Level consists of wrong number of components.") level = np.reshape(level, (-1, 7)).T # check for sufficient signal length ([1], section 6.2) if signal.n_samples/sig.sampling_rate < 1.6: warnings.warn("Signal length below 1.6 seconds.") # check data_type if data_type is None: warnings.warn("Data type is considered as acoustical. Consideration " "of masking effects not valid for electrically obtained " "signals.") data_type = "acoustical" if data_type not in ["electrical", "acoustical"]: raise ValueError(f"Data_type is '{data_type}' but must be " "'electrical' or 'acoustical'.") # check gender if gender not in ["male", "female"]: raise ValueError(f"Gender is '{gender}' but must be 'male' " "or 'female'.") # apply octave band filters (preliminary with crossover; later: perf. # reconstructing oct. filter) sig_oct = (filt.fractional_octave_bands(sig, num_fractions=1, freq_range=(125, 8e3))) return sig, sig_oct, data_type, gender, level, snr, amb def mtf(sig_oct, data_type, level, snr, amb): # MTF per octave and modulation frequency ([1], section 6.1) mf = [0.63, 0.80, 1, 1.25, 1.60, 2, 2.5, 3.15, 4, 5, 6.3, 8, 10, 12] mtf = np.zeros((len(mf),)+sig_oct.cshape) sig_en = np.sum(sig_oct.time**2, axis=-1) t = np.arange(sig_oct.n_samples) with np.errstate(divide='ignore'): # return nan for empty IR for i, f in enumerate(mf): mtf[i] = np.abs(np.sum(sig_oct.time**2*np.exp(-2*1j*np.pi*mf[i] * t/44100), axis=-1))/sig_en * np.squeeze(1/(1+10 ** (-snr/10))) # Adjustment of mtf for ambient noise, auditory masking and threshold # effects ([1], sections A.3, A.5.3) if level is not None: # overall intensity ([1], section A.3.2) i_k = 10**(level/10)+10**((level-snr)/10) # apply ambient noise effects (proposed in [2], section A.2.3) if amb is True: mtf = mtf*(10**(np.squeeze(level)/10)/np.squeeze(i_k)) # consideration of auditory effects only for acoustical signals # ([1], section A.3.1) if data_type == "electrical": pass else: # level-dependent auditory masking ([1], section A.3.2) amdb = level.copy() amdb[amdb < 63] = 0.5*amdb[amdb < 63]-65 amdb[(63 <= amdb) & (amdb < 67)] = 1.8*amdb[(63 <= amdb) & (amdb < 67)]-146.9 amdb[(67 <= amdb) & (amdb < 100)] = 0.5*amdb[(67 <= amdb) & (amdb < 100)]-59.8 amdb[100 <= amdb] = amdb[100 <= amdb]-10 amf = 10**(amdb/10) # masking intensity i_am = np.zeros(i_k.shape) i_am = i_k*amf # absolute speech reception threshold ([1], section A.3.3) artdb = np.array([[46, 27, 12, 6.5, 7.5, 8, 12]]).T i_rt = 10**(artdb/10) # apply auditory and masking effects ([1], section A.5.3) i_T = i_k/(i_k+i_am+i_rt) i_T = np.squeeze(i_T) mtf = mtf*i_T # limit mtf to 1 ([1], section A.5.3) mtf[mtf > 1] = 1 return mtf def sti_calc(mtf, signal, gender): # effective SNR per octave and modulation frequency ([1], section A.5.4) with np.errstate(divide='ignore'): snr_eff = 10*np.log10(mtf/(1-mtf)) # min value: -15 dB, max. value +15 dB snr_eff[snr_eff < -15] = -15 snr_eff[snr_eff > 15] = 15 # transmission index (TI) per octave and modulation frequency ([1], # section A.5.5) ti = ((snr_eff+15)/30) # modulation transmission indices (MTI) per octave ([1], section A.5.6) mti = (np.array(1/14*np.sum(ti, axis=0))).reshape(7, signal.flatten() .cshape[-1]) # speech transmission index (STI) ([1], section A.5.6) if gender == "female": alpha = np.array([[0], [0.117], [0.223], [0.216], [0.328], [0.250], [0.194]]) beta =
np.array([[0], [0.099], [0.066], [0.062], [0.025], [0.076]])
numpy.array
""" QTNM base field module. Provides the abstract classes, QtnmBaseField and QtnmBaseSolver. New concrete implementations of this class should be compatible with other python code within the Electron-Tracking package. """ from abc import ABC, abstractmethod import numpy as np import matplotlib.pyplot as plt from scipy.constants import electron_mass as me, elementary_charge as qe from scipy.integrate import solve_ivp from utils import calculate_omega class QtnmBaseSolver(ABC): def __init__(self, charge=-qe, mass=me, b_field=1.0, calc_b_field=None): self.mass = mass self.charge = charge self.b_field = b_field self.calc_b_field = calc_b_field if calc_b_field is not None: # Handle cases where calc_b_field returns a single component if np.size(calc_b_field(0, 0, 0)) == 1: self.calc_b_field = lambda x, y, z: \ np.array([0.0, 0.0, calc_b_field(x, y, z)]) # If calc_b_field not provided, assume constant field, and store omega if calc_b_field is None: omega0 = calculate_omega(b_field, mass=mass, charge=charge) if
np.size(omega0)
numpy.size
from argparse import ArgumentParser import sys import h5py import json import copy import importlib import numpy as np from enum import Enum import random from typing import List, Dict, Tuple from collections import OrderedDict from weighted_collection import WeightedCollection from tdw.tdw_utils import TDWUtils from tdw.librarian import ModelRecord, MaterialLibrarian from tdw.output_data import OutputData, Transforms, Images, CameraMatrices from tdw_physics.rigidbodies_dataset import (RigidbodiesDataset, get_random_xyz_transform, get_range, handle_random_transform_args) from tdw_physics.util import (MODEL_LIBRARIES, FLEX_MODELS, MODEL_CATEGORIES, MATERIAL_TYPES, MATERIAL_NAMES, get_parser, xyz_to_arr, arr_to_xyz, str_to_xyz, none_or_str, none_or_int, int_or_bool) from tdw_physics.postprocessing.labels import get_all_label_funcs PRIMITIVE_NAMES = [r.name for r in MODEL_LIBRARIES['models_flex.json'].records if not r.do_not_use] FULL_NAMES = [r.name for r in MODEL_LIBRARIES['models_full.json'].records if not r.do_not_use] def get_args(dataset_dir: str, parse=True): """ Combine Domino-specific arguments with controller-common arguments """ common = get_parser(dataset_dir, get_help=False) parser = ArgumentParser(parents=[common], add_help=parse, fromfile_prefix_chars='@') parser.add_argument("--num_middle_objects", type=int, default=3, help="The number of middle objects to place") parser.add_argument("--zone", type=str, default="cube", help="comma-separated list of possible target zone shapes") parser.add_argument("--target", type=str, default="cube", help="comma-separated list of possible target objects") parser.add_argument("--probe", type=str, default="cube", help="comma-separated list of possible probe objects") parser.add_argument("--middle", type=str, default=None, help="comma-separated list of possible middle objects; default to same as target") parser.add_argument("--ramp", type=int, default=0, help="Whether to place the probe object on the top of a ramp") parser.add_argument("--rscale", type=none_or_str, default=None, help="The xyz scale of the ramp") parser.add_argument("--rfriction", action="store_true", help="Whether the ramp has friction") parser.add_argument("--zscale", type=str, default="0.5,0.01,2.0", help="scale of target zone") parser.add_argument("--zlocation", type=none_or_str, default=None, help="Where to place the target zone. None will default to a scenario-specific place.") parser.add_argument("--zfriction", type=float, default=0.1, help="Static and dynamic friction on the target zone.") parser.add_argument("--tscale", type=str, default="0.1,0.5,0.25", help="scale of target objects") parser.add_argument("--trot", type=str, default="[0,0]", help="comma separated list of initial target rotation values") parser.add_argument("--mrot", type=str, default="[-30,30]", help="comma separated list of initial middle object rotation values") parser.add_argument("--prot", type=str, default="[0,0]", help="comma separated list of initial probe rotation values") parser.add_argument("--phorizontal", type=int_or_bool, default=0, help="whether the probe is horizontal") parser.add_argument("--mscale", type=str, default="0.1,0.5,0.25", help="Scale or scale range for middle objects") parser.add_argument("--mmass", type=str, default="2.0", help="Scale or scale range for middle objects") parser.add_argument("--horizontal", type=int_or_bool, default=0, help="Whether to rotate middle objects horizontally") parser.add_argument("--pscale", type=str, default="0.1,0.5,0.25", help="scale of probe objects") parser.add_argument("--pmass", type=str, default="2.0", help="scale of probe objects") parser.add_argument("--fscale", type=str, default="2.0", help="range of scales to apply to push force") parser.add_argument("--frot", type=str, default="[0,0]", help="range of angles in xz plane to apply push force") parser.add_argument("--foffset", type=str, default="0.0,0.8,0.0", help="offset from probe centroid from which to apply force, relative to probe scale") parser.add_argument("--fjitter", type=float, default=0.0, help="jitter around object centroid to apply force") parser.add_argument("--fwait", type=none_or_str, default="[0,0]", help="How many frames to wait before applying the force") parser.add_argument("--tcolor", type=none_or_str, default="1.0,0.0,0.0", help="comma-separated R,G,B values for the target object color. None to random.") parser.add_argument("--zcolor", type=none_or_str, default="1.0,1.0,0.0", help="comma-separated R,G,B values for the target zone color. None is random") parser.add_argument("--rcolor", type=none_or_str, default="0.75,0.75,1.0", help="comma-separated R,G,B values for the target zone color. None is random") parser.add_argument("--pcolor", type=none_or_str, default="0.0,1.0,1.0", help="comma-separated R,G,B values for the probe object color. None is random.") parser.add_argument("--mcolor", type=none_or_str, default=None, help="comma-separated R,G,B values for the middle object color. None is random.") parser.add_argument("--collision_axis_length", type=float, default=2.0, help="Length of spacing between probe and target objects at initialization.") parser.add_argument("--spacing_jitter", type=float, default=0.2, help="jitter in how to space middle objects, as a fraction of uniform spacing") parser.add_argument("--lateral_jitter", type=float, default=0.2, help="lateral jitter in how to space middle objects, as a fraction of object width") parser.add_argument("--remove_target", type=int_or_bool, default=0, help="Don't actually put the target object in the scene.") parser.add_argument("--remove_zone", type=int_or_bool, default=0, help="Don't actually put the target zone in the scene.") parser.add_argument("--camera_distance", type=none_or_str, default="1.75", help="radial distance from camera to centerpoint") parser.add_argument("--camera_min_height", type=float, default=0.75, help="min height of camera") parser.add_argument("--camera_max_height", type=float, default=2.0, help="max height of camera") parser.add_argument("--camera_min_angle", type=float, default=45, help="minimum angle of camera rotation around centerpoint") parser.add_argument("--camera_max_angle", type=float, default=225, help="maximum angle of camera rotation around centerpoint") parser.add_argument("--camera_left_right_reflections", action="store_true", help="Whether camera angle range includes reflections along the collision axis") parser.add_argument("--material_types", type=none_or_str, default="Wood,Metal,Plastic", help="Which class of materials to sample material names from") parser.add_argument("--tmaterial", type=none_or_str, default="parquet_wood_red_cedar", help="Material name for target. If None, samples from material_type") parser.add_argument("--zmaterial", type=none_or_str, default="wood_european_ash", help="Material name for target. If None, samples from material_type") parser.add_argument("--rmaterial", type=none_or_str, default=None, help="Material name for ramp. If None, same as zone material") parser.add_argument("--pmaterial", type=none_or_str, default="parquet_wood_red_cedar", help="Material name for probe. If None, samples from material_type") parser.add_argument("--pfriction", action="store_true", help="Whether the probe object has friction") parser.add_argument("--mmaterial", type=none_or_str, default="parquet_wood_red_cedar", help="Material name for middle objects. If None, samples from material_type") parser.add_argument("--distractor", type=none_or_str, default="core", help="The names or library of distractor objects to use") parser.add_argument("--distractor_categories", type=none_or_str, help="The categories of distractors to choose from (comma-separated)") parser.add_argument("--num_distractors", type=int, default=0, help="The number of background distractor objects to place") parser.add_argument("--distractor_aspect_ratio", type=none_or_str, default=None, help="The range of valid distractor aspect ratios") parser.add_argument("--occluder", type=none_or_str, default="core", help="The names or library of occluder objects to use") parser.add_argument("--occluder_categories", type=none_or_str, help="The categories of occluders to choose from (comma-separated)") parser.add_argument("--num_occluders", type=int, default=0, help="The number of foreground occluder objects to place") parser.add_argument("--occlusion_scale", type=float, default=0.75, help="The height of the occluders as a proportion of camera height") parser.add_argument("--occluder_aspect_ratio", type=none_or_str, default=None, help="The range of valid occluder aspect ratios") parser.add_argument("--no_moving_distractors", action="store_true", help="Prevent all distractors (and occluders) from moving by making them 'kinematic' objects") parser.add_argument("--remove_middle", action="store_true", help="Remove one of the middle dominoes scene.") # which models are allowed parser.add_argument("--model_libraries", type=none_or_str, default=','.join(list(MODEL_LIBRARIES.keys())), help="Which model libraries can be drawn from") parser.add_argument("--only_use_flex_objects", action="store_true", help="Only use models that are FLEX models (and have readable meshes)") # for generating training data without zones, targets, caps, and at lower resolution parser.add_argument("--training_data_mode", action="store_true", help="Overwrite some parameters to generate training data without target objects, zones, etc.") parser.add_argument("--readout_data_mode", action="store_true", help="Overwrite some parameters to generate training data without target objects, zones, etc.") parser.add_argument("--testing_data_mode", action="store_true", help="Overwrite some parameters to generate training data without target objects, zones, etc.") parser.add_argument("--match_probe_and_target_color", action="store_true", help="Probe and target will have the same color.") def postprocess(args): # testing set data drew from a different set of models; needs to be preserved # for correct occluder/distractor sampling if not (args.training_data_mode or args.readout_data_mode): global PRIMITIVE_NAMES PRIMITIVE_NAMES = [r.name for r in MODEL_LIBRARIES['models_flex.json'].records] global FULL_NAMES FULL_NAMES = [r.name for r in MODEL_LIBRARIES['models_full.json'].records] # choose a valid room assert args.room in ['box', 'tdw', 'house'], args.room # parse the model libraries if args.model_libraries is not None: if not isinstance(args.model_libraries, list): args.model_libraries = args.model_libraries.split(',') libs = [] for lib in args.model_libraries: if 'models_' not in lib: libs.append('models_' + lib) else: libs.append(lib) args.model_libraries = libs # whether to set all objects same color args.monochrome = bool(args.monochrome) # camera distance args.camera_distance = handle_random_transform_args(args.camera_distance) # scaling and rotating of objects args.rscale = handle_random_transform_args(args.rscale) args.zscale = handle_random_transform_args(args.zscale) args.zlocation = handle_random_transform_args(args.zlocation) args.tscale = handle_random_transform_args(args.tscale) args.trot = handle_random_transform_args(args.trot) args.pscale = handle_random_transform_args(args.pscale) args.pmass = handle_random_transform_args(args.pmass) args.prot = handle_random_transform_args(args.prot) args.mscale = handle_random_transform_args(args.mscale) args.mrot = handle_random_transform_args(args.mrot) args.mmass = handle_random_transform_args(args.mmass) # the push force scale and direction args.fscale = handle_random_transform_args(args.fscale) args.frot = handle_random_transform_args(args.frot) args.foffset = handle_random_transform_args(args.foffset) args.fwait = handle_random_transform_args(args.fwait) args.horizontal = bool(args.horizontal) # occluders and distrators args.occluder_aspect_ratio = handle_random_transform_args(args.occluder_aspect_ratio) args.distractor_aspect_ratio = handle_random_transform_args(args.distractor_aspect_ratio) if args.zone is not None: zone_list = args.zone.split(',') # assert all([t in PRIMITIVE_NAMES for t in zone_list]), \ # "All target object names must be elements of %s" % PRIMITIVE_NAMES args.zone = zone_list else: args.zone = PRIMITIVE_NAMES if args.target is not None: targ_list = args.target.split(',') # assert all([t in PRIMITIVE_NAMES for t in targ_list]), \ # "All target object names must be elements of %s" % PRIMITIVE_NAMES args.target = targ_list else: args.target = PRIMITIVE_NAMES if args.probe is not None: probe_list = args.probe.split(',') # assert all([t in PRIMITIVE_NAMES for t in probe_list]), \ # "All target object names must be elements of %s" % PRIMITIVE_NAMES args.probe = probe_list else: args.probe = PRIMITIVE_NAMES if args.middle is not None: middle_list = args.middle.split(',') args.middle = middle_list if args.tcolor is not None: rgb = [float(c) for c in args.tcolor.split(',')] assert len(rgb) == 3, rgb args.tcolor = args.color = rgb else: args.tcolor = args.color = None if args.zcolor is not None: rgb = [float(c) for c in args.zcolor.split(',')] assert len(rgb) == 3, rgb args.zcolor = rgb if args.rcolor is not None: rgb = [float(c) for c in args.rcolor.split(',')] assert len(rgb) == 3, rgb args.rcolor = rgb if args.pcolor is not None: rgb = [float(c) for c in args.pcolor.split(',')] assert len(rgb) == 3, rgb args.pcolor = rgb if args.mcolor is not None: rgb = [float(c) for c in args.mcolor.split(',')] assert len(rgb) == 3, rgb args.mcolor = rgb if args.material_types is None: args.material_types = MATERIAL_TYPES else: matlist = args.material_types.split(',') assert all ([m in MATERIAL_TYPES for m in matlist]), \ "All material types must be elements of %s" % MATERIAL_TYPES args.material_types = matlist if args.distractor is None or args.distractor == 'full': args.distractor = FULL_NAMES elif args.distractor == 'core': args.distractor = [r.name for r in MODEL_LIBRARIES['models_core.json'].records] elif args.distractor in ['flex', 'primitives']: args.distractor = PRIMITIVE_NAMES else: d_names = args.distractor.split(',') args.distractor = [r for r in FULL_NAMES if any((nm in r for nm in d_names))] if args.occluder is None or args.occluder == 'full': args.occluder = FULL_NAMES elif args.occluder == 'core': args.occluder = [r.name for r in MODEL_LIBRARIES['models_core.json'].records] elif args.occluder in ['flex', 'primitives']: args.occluder = PRIMITIVE_NAMES else: o_names = args.occluder.split(',') args.occluder = [r for r in FULL_NAMES if any((nm in r for nm in o_names))] # produce training data if args.training_data_mode: # multiply the number of trials by a factor args.num = int(float(args.num) * args.num_multiplier) # change the random seed in a deterministic way args.random = 0 args.seed = (args.seed * 1000) % 997 # randomize colors and wood textures args.match_probe_and_target_color = False args.color = args.tcolor = args.zcolor = args.pcolor = args.mcolor = args.rcolor = None # only use the flex objects and make sure the distractors don't move args.only_use_flex_objects = args.no_moving_distractors = True # only save out the RGB images and the segmentation masks args.write_passes = "_img,_id" args.save_passes = "" args.save_movies = False args.save_meshes = True args.use_test_mode_colors = False # produce "readout" training data with red target and yellow zone, # but seed is still different from whatever it was in the commandline_args.txt config elif args.readout_data_mode: # multiply the number of trials by a factor args.num = int(float(args.num) * args.num_multiplier) # change the random seed in a deterministic way args.random = 0 args.seed = (args.seed * 3000) % 1999 # target is red, zone is yellow, others are random args.color = args.tcolor = [1.0, 0.0, 0.0] args.zcolor = [1.0, 1.0, 0.0] args.pcolor = args.mcolor = args.rcolor = None # only use the flex objects and make sure the distractors don't move args.only_use_flex_objects = args.no_moving_distractors = True # only save out the RGB images and the segmentation masks args.write_passes = "_img,_id" args.save_passes = "" args.save_movies = False args.save_meshes = True args.use_test_mode_colors = True # produce the same trials as the testing trials, but with red / yellow; # seed MUST be pulled from a config. elif args.testing_data_mode: assert args.random == 0, "You can't regenerate the testing data without --random 0" assert args.seed != -1, "Seed has to be specified but is instead the default" assert all((('seed' not in a) for a in sys.argv[1:])), "You can't pass a new seed argument for generating the testing data; use the one in the commandline_args.txt config!" # red and yellow target and zone args.use_test_mode_colors = True args.write_passes = "_img,_id,_depth,_normals,_flow" args.save_passes = "_img,_id" args.save_movies = True args.save_meshes = True else: args.use_test_mode_colors = False return args if not parse: return (parser, postprocess) args = parser.parse_args() args = postprocess(args) return args class Dominoes(RigidbodiesDataset): """ Drop a random Flex primitive object on another random Flex primitive object """ MAX_TRIALS = 1000 DEFAULT_RAMPS = [r for r in MODEL_LIBRARIES['models_full.json'].records if 'ramp_with_platform_30' in r.name] CUBE = [r for r in MODEL_LIBRARIES['models_flex.json'].records if 'cube' in r.name][0] PRINT = False def __init__(self, port: int = None, room='box', target_zone=['cube'], zone_color=[1.0,1.0,0.0], #yellow is the default color for target zones zone_location=None, zone_scale_range=[0.5,0.01,0.5], zone_friction=0.1, probe_objects=PRIMITIVE_NAMES, target_objects=PRIMITIVE_NAMES, probe_scale_range=[0.2, 0.3], probe_mass_range=[2.,7.], probe_color=None, probe_rotation_range=[0,0], target_scale_range=[0.2, 0.3], target_rotation_range=None, target_color=None, target_motion_thresh=0.01, collision_axis_length=1., force_scale_range=[0.,8.], force_angle_range=[-60,60], force_offset={"x":0.,"y":0.5,"z":0.0}, force_offset_jitter=0.1, force_wait=None, remove_target=False, remove_zone=False, camera_radius=2.0, camera_min_angle=0, camera_max_angle=360, camera_left_right_reflections=False, camera_min_height=1./3, camera_max_height=2./3, material_types=MATERIAL_TYPES, target_material=None, probe_material=None, probe_has_friction=False, ramp_material=None, zone_material=None, model_libraries=MODEL_LIBRARIES.keys(), distractor_types=PRIMITIVE_NAMES, distractor_categories=None, num_distractors=0, distractor_aspect_ratio=None, occluder_types=PRIMITIVE_NAMES, occluder_categories=None, num_occluders=0, occlusion_scale=0.6, occluder_aspect_ratio=None, use_ramp=False, ramp_has_friction=False, ramp_scale=None, ramp_color=[0.75,0.75,1.0], ramp_base_height_range=0, flex_only=False, no_moving_distractors=False, match_probe_and_target_color=False, probe_horizontal=False, use_test_mode_colors=False, **kwargs): ## get random port unless one is specified if port is None: port = np.random.randint(1000,4000) print("random port",port,"chosen. If communication with tdw build fails, set port to 1071 or update your tdw installation.") ## initializes static data and RNG super().__init__(port=port, **kwargs) ## which room to use self.room = room ## which model libraries can be sampled from self.model_libraries = model_libraries ## whether only flex objects are allowed self.flex_only = flex_only ## whether the occluders and distractors can move self.no_moving_distractors = no_moving_distractors ## color randomization self._random_target_color = (target_color is None) self._random_zone_color = (zone_color is None) self._random_probe_color = (probe_color is None) ## target zone self.set_zone_types(target_zone) self.zone_location = zone_location self.zone_color = zone_color self.zone_scale_range = zone_scale_range self.zone_material = zone_material self.zone_friction = zone_friction self.remove_zone = remove_zone ## allowable object types self.set_probe_types(probe_objects) self.set_target_types(target_objects) self.material_types = material_types self.remove_target = remove_target # whether to use a ramp self.use_ramp = use_ramp self.ramp_color = ramp_color self.ramp_material = ramp_material or self.zone_material if ramp_scale is not None: self.ramp_scale = get_random_xyz_transform(ramp_scale) else: self.ramp_scale = None self.ramp_base_height_range = ramp_base_height_range self.ramp_physics_info = {} if ramp_has_friction: self.ramp_physics_info.update({ 'mass': 1000, 'static_friction': 0.1, 'dynamic_friction': 0.1, 'bounciness': 0.1}) self.probe_has_friction = probe_has_friction ## object generation properties self.target_scale_range = target_scale_range self.target_color = target_color self.target_rotation_range = target_rotation_range self.target_material = target_material self.target_motion_thresh = target_motion_thresh self.probe_color = probe_color self.probe_scale_range = probe_scale_range self.probe_rotation_range = probe_rotation_range self.probe_mass_range = get_range(probe_mass_range) self.probe_material = probe_material self.probe_horizontal = probe_horizontal self.match_probe_and_target_color = match_probe_and_target_color self.middle_scale_range = target_scale_range ## Scenario config properties self.collision_axis_length = collision_axis_length self.force_scale_range = force_scale_range self.force_angle_range = force_angle_range self.force_offset = get_random_xyz_transform(force_offset) self.force_offset_jitter = force_offset_jitter self.force_wait_range = force_wait or [0,0] ## camera properties self.camera_radius_range = get_range(camera_radius) self.camera_min_angle = camera_min_angle self.camera_max_angle = camera_max_angle self.camera_left_right_reflections = camera_left_right_reflections self.camera_min_height = camera_min_height self.camera_max_height = camera_max_height self.camera_aim = {"x": 0., "y": 0.5, "z": 0.} # fixed aim ## distractors and occluders self.num_distractors = num_distractors self.distractor_aspect_ratio = get_range(distractor_aspect_ratio) self.distractor_types = self.get_types( distractor_types, libraries=self.model_libraries, categories=distractor_categories, flex_only=self.flex_only, aspect_ratio_min=self.distractor_aspect_ratio[0], aspect_ratio_max=self.distractor_aspect_ratio[1] ) self.num_occluders = num_occluders self.occlusion_scale = occlusion_scale self.occluder_aspect_ratio = get_range(occluder_aspect_ratio) self.occluder_types = self.get_types( occluder_types, libraries=self.model_libraries, categories=occluder_categories, flex_only=self.flex_only, aspect_ratio_min=self.occluder_aspect_ratio[0], aspect_ratio_max=self.occluder_aspect_ratio[1], ) ## target can move self._fixed_target = False self.use_test_mode_colors = use_test_mode_colors def get_types(self, objlist, libraries=["models_flex.json"], categories=None, flex_only=True, aspect_ratio_min=None, aspect_ratio_max=None, size_min=None, size_max=None): if isinstance(objlist, str): objlist = [objlist] recs = [] for lib in libraries: recs.extend(MODEL_LIBRARIES[lib].records) tlist = [r for r in recs if r.name in objlist] if categories is not None: if not isinstance(categories, list): categories = categories.split(',') tlist = [r for r in tlist if r.wcategory in categories] if flex_only: tlist = [r for r in tlist if r.flex == True] if aspect_ratio_min: tlist = [r for r in tlist if self.aspect_ratios(r)[0] > aspect_ratio_min] if aspect_ratio_max: tlist = [r for r in tlist if self.aspect_ratios(r)[1] < aspect_ratio_max] if size_min or size_max: if size_min is None: size_min = 0.0 if size_max is None: size_max = 1000.0 rlist = [] for r in tlist: dims = self.get_record_dimensions(r) dmin, dmax = [min(dims), max(dims)] if (dmax > size_min) and (dmin < size_max): rlist.append(r) tlist = [r for r in rlist] assert len(tlist), "You're trying to choose objects from an empty list" return tlist def set_probe_types(self, olist): tlist = self.get_types(olist, flex_only=self.flex_only) self._probe_types = tlist def set_target_types(self, olist): tlist = self.get_types(olist, flex_only=self.flex_only) self._target_types = tlist def set_zone_types(self, olist): tlist = self.get_types(olist, flex_only=self.flex_only) self._zone_types = tlist def clear_static_data(self) -> None: super().clear_static_data() ## randomize colors if self._random_zone_color: self.zone_color = None if self._random_target_color: self.target_color = None if self._random_probe_color: self.probe_color = None ## scenario-specific metadata: object types and drop position self.target_type = None self.target_rotation = None self.target_position = None self.target_delta_position = None self.replace_target = False self.probe_type = None self.probe_mass = None self.push_force = None self.push_position = None self.force_wait = None @staticmethod def get_controller_label_funcs(classname = 'Dominoes'): funcs = super(Dominoes, Dominoes).get_controller_label_funcs(classname) funcs += get_all_label_funcs() def room(f): return str(np.array(f['static']['room'])) def trial_seed(f): return int(np.array(f['static']['trial_seed'])) def num_distractors(f): try: return int(len(f['static']['distractors'])) except KeyError: return int(0) def num_occluders(f): try: return int(len(f['static']['occluders'])) except KeyError: return int(0) def push_time(f): try: return int(np.array(f['static']['push_time'])) except KeyError: return int(0) funcs += [room, trial_seed, push_time, num_distractors, num_occluders] return funcs def get_field_of_view(self) -> float: return 55 def get_scene_initialization_commands(self) -> List[dict]: if self.room == 'box': add_scene = self.get_add_scene(scene_name="box_room_2018") elif self.room == 'tdw': add_scene = self.get_add_scene(scene_name="tdw_room") elif self.room == 'house': add_scene = self.get_add_scene(scene_name='archviz_house') return [add_scene, {"$type": "set_aperture", "aperture": 8.0}, {"$type": "set_post_exposure", "post_exposure": 0.4}, {"$type": "set_ambient_occlusion_intensity", "intensity": 0.175}, {"$type": "set_ambient_occlusion_thickness_modifier", "thickness": 3.5}] def get_trial_initialization_commands(self) -> List[dict]: commands = [] # randomization across trials if not(self.randomize): self.trial_seed = (self.MAX_TRIALS * self.seed) + self._trial_num random.seed(self.trial_seed) else: self.trial_seed = -1 # not used # Choose and place the target zone. commands.extend(self._place_target_zone()) # Choose and place a target object. commands.extend(self._place_target_object()) # Set the probe color if self.probe_color is None: self.probe_color = self.target_color if (self.monochrome and self.match_probe_and_target_color) else None # Choose, place, and push a probe object. commands.extend(self._place_and_push_probe_object()) # Build the intermediate structure that captures some aspect of "intuitive physics." commands.extend(self._build_intermediate_structure()) # Teleport the avatar to a reasonable position based on the drop height. a_pos = self.get_random_avatar_position(radius_min=self.camera_radius_range[0], radius_max=self.camera_radius_range[1], angle_min=self.camera_min_angle, angle_max=self.camera_max_angle, y_min=self.camera_min_height, y_max=self.camera_max_height, center=TDWUtils.VECTOR3_ZERO, reflections=self.camera_left_right_reflections) # Set the camera parameters self._set_avatar_attributes(a_pos) commands.extend([ {"$type": "teleport_avatar_to", "position": self.camera_position}, {"$type": "look_at_position", "position": self.camera_aim}, {"$type": "set_focus_distance", "focus_distance": TDWUtils.get_distance(a_pos, self.camera_aim)} ]) # Place distractor objects in the background commands.extend(self._place_background_distractors()) # Place occluder objects in the background commands.extend(self._place_occluders()) # test mode colors if self.use_test_mode_colors: self._set_test_mode_colors(commands) return commands def get_per_frame_commands(self, resp: List[bytes], frame: int) -> List[dict]: if (self.force_wait != 0) and frame == self.force_wait: if self.PRINT: print("applied %s at time step %d" % (self.push_cmd, frame)) return [self.push_cmd] else: print(frame) return [] def _write_static_data(self, static_group: h5py.Group) -> None: super()._write_static_data(static_group) # randomization try: static_group.create_dataset("room", data=self.room) except (AttributeError,TypeError): pass try: static_group.create_dataset("seed", data=self.seed) except (AttributeError,TypeError): pass try: static_group.create_dataset("randomize", data=self.randomize) except (AttributeError,TypeError): pass try: static_group.create_dataset("trial_seed", data=self.trial_seed) except (AttributeError,TypeError): pass try: static_group.create_dataset("trial_num", data=self._trial_num) except (AttributeError,TypeError): pass ## which objects are the zone, target, and probe try: static_group.create_dataset("zone_id", data=self.zone_id) except (AttributeError,TypeError): pass try: static_group.create_dataset("target_id", data=self.target_id) except (AttributeError,TypeError): pass try: static_group.create_dataset("probe_id", data=self.probe_id) except (AttributeError,TypeError): pass if self.use_ramp: static_group.create_dataset("ramp_id", data=self.ramp_id) if self.ramp_base_height > 0.0: static_group.create_dataset("ramp_base_height", data=float(self.ramp_base_height)) static_group.create_dataset("ramp_base_id", data=self.ramp_base_id) ## color and scales of primitive objects try: static_group.create_dataset("target_type", data=self.target_type) except (AttributeError,TypeError): pass try: static_group.create_dataset("target_rotation", data=xyz_to_arr(self.target_rotation)) except (AttributeError,TypeError): pass try: static_group.create_dataset("probe_type", data=self.probe_type) except (AttributeError,TypeError): pass try: static_group.create_dataset("probe_mass", data=self.probe_mass) except (AttributeError,TypeError): pass try: static_group.create_dataset("push_force", data=xyz_to_arr(self.push_force)) except (AttributeError,TypeError): pass try: static_group.create_dataset("push_position", data=xyz_to_arr(self.push_position)) except (AttributeError,TypeError): pass try: static_group.create_dataset("push_time", data=int(self.force_wait)) except (AttributeError,TypeError): pass # distractors and occluders try: static_group.create_dataset("distractors", data=[r.name.encode('utf8') for r in self.distractors.values()]) except (AttributeError,TypeError): pass try: static_group.create_dataset("occluders", data=[r.name.encode('utf8') for r in self.occluders.values()]) except (AttributeError,TypeError): pass def _write_frame(self, frames_grp: h5py.Group, resp: List[bytes], frame_num: int) -> \ Tuple[h5py.Group, h5py.Group, dict, bool]: frame, objs, tr, sleeping = super()._write_frame(frames_grp=frames_grp, resp=resp, frame_num=frame_num) # If this is a stable structure, disregard whether anything is actually moving. return frame, objs, tr, sleeping and not (frame_num < 150) def _update_target_position(self, resp: List[bytes], frame_num: int) -> None: if frame_num <= 0: self.target_delta_position = xyz_to_arr(TDWUtils.VECTOR3_ZERO) elif 'tran' in [OutputData.get_data_type_id(r) for r in resp[:-1]]: target_position_new = self.get_object_position(self.target_id, resp) or self.target_position try: self.target_delta_position += (target_position_new - xyz_to_arr(self.target_position)) self.target_position = arr_to_xyz(target_position_new) except TypeError: print("Failed to get a new object position, %s" % target_position_new) def _write_frame_labels(self, frame_grp: h5py.Group, resp: List[bytes], frame_num: int, sleeping: bool) -> Tuple[h5py.Group, List[bytes], int, bool]: labels, resp, frame_num, done = super()._write_frame_labels(frame_grp, resp, frame_num, sleeping) # Whether this trial has a target or zone to track has_target = (not self.remove_target) or self.replace_target has_zone = not self.remove_zone labels.create_dataset("has_target", data=has_target) labels.create_dataset("has_zone", data=has_zone) if not (has_target or has_zone): return labels, resp, frame_num, done # Whether target moved from its initial position, and how much if has_target: self._update_target_position(resp, frame_num) has_moved = np.sqrt((self.target_delta_position**2).sum()) > self.target_motion_thresh labels.create_dataset("target_delta_position", data=self.target_delta_position) labels.create_dataset("target_has_moved", data=has_moved) # Whether target has fallen to the ground c_points, c_normals = self.get_object_environment_collision( self.target_id, resp) if frame_num <= 0: self.target_on_ground = False self.target_ground_contacts = c_points elif len(c_points) == 0: self.target_on_ground = False elif len(c_points) != len(self.target_ground_contacts): self.target_on_ground = True elif any([np.sqrt(((c_points[i] - self.target_ground_contacts[i])**2).sum()) > self.target_motion_thresh \ for i in range(min(len(c_points), len(self.target_ground_contacts)))]): self.target_on_ground = True labels.create_dataset("target_on_ground", data=self.target_on_ground) # Whether target has hit the zone if has_target and has_zone: c_points, c_normals = self.get_object_target_collision( self.target_id, self.zone_id, resp) target_zone_contact = bool(len(c_points)) labels.create_dataset("target_contacting_zone", data=target_zone_contact) return labels, resp, frame_num, done def is_done(self, resp: List[bytes], frame: int) -> bool: return frame > 300 def get_rotation(self, rot_range): if rot_range is None: return {"x": 0, "y": random.uniform(0, 360), "z": 0.} else: return get_random_xyz_transform(rot_range) def get_y_rotation(self, rot_range): if rot_range is None: return self.get_rotation(rot_range) else: return {"x": 0., "y": random.uniform(*get_range(rot_range)), "z": 0.} def get_push_force(self, scale_range, angle_range, yforce = [0,0]): #sample y force component yforce = random.uniform(*yforce) # rotate a unit vector initially pointing in positive-x direction theta = np.radians(random.uniform(*get_range(angle_range))) push = np.array([np.cos(theta), yforce, np.sin(theta)]) # scale it push *= random.uniform(*get_range(scale_range)) # convert to xyz return arr_to_xyz(push) def _get_push_cmd(self, o_id, position_or_particle=None): if position_or_particle is None: cmd = { "$type": "apply_force_to_object", "force": self.push_force, "id": o_id} else: cmd = { "$type": "apply_force_at_position", "force": self.push_force, "position": position_or_particle, "id": o_id} return cmd def _get_zone_location(self, scale): return { "x": 0.5 * self.collision_axis_length + scale["x"] + 0.1, "y": 0.0 if not self.remove_zone else 10.0, "z": 0.0 if not self.remove_zone else 10.0 } def _place_target_zone(self) -> List[dict]: # create a target zone (usually flat, with same texture as room) record, data = self.random_primitive(self._zone_types, scale=self.zone_scale_range, color=self.zone_color, add_data=False ) o_id, scale, rgb = [data[k] for k in ["id", "scale", "color"]] self.zone = record self.zone_type = data["name"] self.zone_color = rgb self.zone_id = o_id self.zone_scale = scale if any((s <= 0 for s in scale.values())): self.remove_zone = True self.scales = self.scales[:-1] self.colors = self.colors[:-1] self.model_names = self.model_names[:-1] # place it just beyond the target object with an effectively immovable mass and high friction commands = [] commands.extend( self.add_primitive( record=record, position=(self.zone_location or self._get_zone_location(scale)), rotation=TDWUtils.VECTOR3_ZERO, scale=scale, material=self.zone_material, color=rgb, mass=500, scale_mass=False, dynamic_friction=self.zone_friction, static_friction=(10.0 * self.zone_friction), bounciness=0, o_id=o_id, add_data=(not self.remove_zone), make_kinematic=True # zone shouldn't move )) # get rid of it if not using a target object if self.remove_zone: commands.append( {"$type": self._get_destroy_object_command_name(o_id), "id": int(o_id)}) self.object_ids = self.object_ids[:-1] return commands @staticmethod def rescale_record_to_size(record, size_range=1.0, randomize=False): dims = Dominoes.get_record_dimensions(record) dmin, dmax = [min(dims), max(dims)] scale = 1.0 if randomize: smin = random.uniform(*get_range(size_range)) smax = random.uniform(smin, get_range(size_range)[1]) else: smin, smax = get_range(size_range) if dmax < smin: scale = smin / dmax elif dmax > smax: scale = smax / dmax print("%s rescaled by %.2f" % (record.name, scale)) print("dims", dims, "dminmax", dmin, dmax) print("bounds now", [d * scale for d in dims]) return arr_to_xyz(np.array([scale] * 3)) def _place_target_object(self, size_range=None) -> List[dict]: """ Place a primitive object at one end of the collision axis. """ # create a target object record, data = self.random_primitive(self._target_types, scale=self.target_scale_range, color=self.target_color, add_data=False ) o_id, scale, rgb = [data[k] for k in ["id", "scale", "color"]] if size_range is not None: scale = self.rescale_record_to_size(record, size_range) print("rescaled target", scale) self.target = record self.target_type = data["name"] self.target_color = rgb self.target_scale = self.middle_scale = scale self.target_id = o_id if any((s <= 0 for s in scale.values())): self.remove_target = True # Where to put the target if self.target_rotation is None: self.target_rotation = self.get_rotation(self.target_rotation_range) if self.target_position is None: self.target_position = { "x": 0.5 * self.collision_axis_length, "y": 0. if not self.remove_target else 10.0, "z": 0. if not self.remove_target else 10.0 } # Commands for adding hte object commands = [] commands.extend( self.add_primitive( record=record, position=self.target_position, rotation=self.target_rotation, scale=scale, material=self.target_material, color=rgb, mass=2.0, scale_mass=False, dynamic_friction=0.5, static_friction=0.5, bounciness=0.0, o_id=o_id, add_data=(not self.remove_target), make_kinematic=True if self._fixed_target else False, apply_texture=True if self.target.name in PRIMITIVE_NAMES else False )) # If this scene won't have a target if self.remove_target: commands.append( {"$type": self._get_destroy_object_command_name(o_id), "id": int(o_id)}) self.object_ids = self.object_ids[:-1] return commands def _place_and_push_probe_object(self, size_range=None) -> List[dict]: """ Place a probe object at the other end of the collision axis, then apply a force to push it. """ exclude = not (self.monochrome and self.match_probe_and_target_color) record, data = self.random_primitive(self._probe_types, scale=self.probe_scale_range, color=self.probe_color, exclude_color=(self.target_color if exclude else None), exclude_range=0.25, add_data=False) o_id, scale, rgb = [data[k] for k in ["id", "scale", "color"]] if size_range is not None: scale = self.rescale_record_to_size(record, size_range) print("rescaled probe", scale) self.probe = record self.probe_type = data["name"] self.probe_scale = scale self.probe_id = o_id # Add the object with random physics values commands = [] ### better sampling of random physics values self.probe_mass = random.uniform(self.probe_mass_range[0], self.probe_mass_range[1]) self.probe_initial_position = {"x": -0.5*self.collision_axis_length, "y": 0., "z": 0.} rot = self.get_y_rotation(self.probe_rotation_range) if self.probe_horizontal: rot["z"] = 90 self.probe_initial_position["z"] += -np.sin(np.radians(rot["y"])) * scale["y"] * 0.5 self.probe_initial_position["x"] += np.cos(np.radians(rot["y"])) * scale["y"] * 0.5 if self.use_ramp: commands.extend(self._place_ramp_under_probe()) if self.probe_has_friction: probe_physics_info = {'dynamic_friction': 0.1, 'static_friction': 0.1, 'bounciness': 0.6} else: probe_physics_info = {'dynamic_friction': 0.01, 'static_friction': 0.01, 'bounciness': 0} commands.extend( self.add_primitive( record=record, position=self.probe_initial_position, rotation=rot, scale=scale, material=self.probe_material, color=rgb, mass=self.probe_mass, scale_mass=False, o_id=o_id, add_data=True, make_kinematic=False, apply_texture=True if self.probe.name in PRIMITIVE_NAMES else False, **probe_physics_info )) # Set its collision mode commands.extend([ {"$type": "set_object_drag", "id": o_id, "drag": 0, "angular_drag": 0}]) # Apply a force to the probe object self.push_force = self.get_push_force( scale_range=self.probe_mass * np.array(self.force_scale_range), angle_range=self.force_angle_range) self.push_force = self.rotate_vector_parallel_to_floor( self.push_force, -rot['y'], degrees=True) self.push_position = self.probe_initial_position if self.PRINT: print("PROBE MASS", self.probe_mass) print("PUSH FORCE", self.push_force) if self.use_ramp: self.push_cmd = self._get_push_cmd(o_id, None) else: self.push_position = { k:v+self.force_offset[k]*self.rotate_vector_parallel_to_floor( self.probe_scale, rot['y'])[k] for k,v in self.push_position.items()} self.push_position = { k:v+random.uniform(-self.force_offset_jitter, self.force_offset_jitter) for k,v in self.push_position.items()} self.push_cmd = self._get_push_cmd(o_id, self.push_position) # decide when to apply the force self.force_wait = int(random.uniform(*get_range(self.force_wait_range))) if self.PRINT: print("force wait", self.force_wait) if self.force_wait == 0: commands.append(self.push_cmd) return commands def _place_ramp_under_probe(self) -> List[dict]: cmds = [] # ramp params self.ramp = random.choice(self.DEFAULT_RAMPS) rgb = self.ramp_color or self.random_color(exclude=self.target_color) ramp_pos = copy.deepcopy(self.probe_initial_position) ramp_pos['y'] = self.zone_scale['y'] if not self.remove_zone else 0.0 # don't intersect w zone ramp_rot = self.get_y_rotation([180,180]) ramp_id = self._get_next_object_id() self.ramp_pos = ramp_pos self.ramp_rot = ramp_rot self.ramp_id = ramp_id # figure out scale r_len, r_height, r_dep = self.get_record_dimensions(self.ramp) scale_x = (0.75 * self.collision_axis_length) / r_len if self.ramp_scale is None: self.ramp_scale = arr_to_xyz([scale_x, self.scale_to(r_height, 1.5), 0.75 * scale_x]) self.ramp_end_x = self.ramp_pos['x'] + self.ramp_scale['x'] * r_len * 0.5 # optionally add base cmds.extend(self._add_ramp_base_to_ramp(color=rgb)) # add the ramp cmds.extend( self.add_ramp( record = self.ramp, position=self.ramp_pos, rotation=self.ramp_rot, scale=self.ramp_scale, material=self.ramp_material, color=rgb, o_id=self.ramp_id, add_data=True, **self.ramp_physics_info )) # need to adjust probe height as a result of ramp placement self.probe_initial_position['x'] -= 0.5 * self.ramp_scale['x'] * r_len - 0.15 self.probe_initial_position['y'] = self.ramp_scale['y'] * r_height + self.ramp_base_height + self.probe_initial_position['y'] return cmds def _add_ramp_base_to_ramp(self, color=None) -> None: cmds = [] if color is None: color = self.random_color(exclude=self.target_color) self.ramp_base_height = random.uniform(*get_range(self.ramp_base_height_range)) if self.ramp_base_height < 0.01: self.ramp_base_scale = copy.deepcopy(self.ramp_scale) return [] self.ramp_base = self.CUBE r_len, r_height, r_dep = self.get_record_dimensions(self.ramp) self.ramp_base_scale = arr_to_xyz([ float(self.ramp_scale['x'] * r_len), float(self.ramp_base_height), float(self.ramp_scale['z'] * r_dep)]) self.ramp_base_id = self._get_next_object_id() # add the base ramp_base_physics_info = { 'mass': 500, 'dynamic_friction': 0.01, 'static_friction': 0.01, 'bounciness': 0} if self.ramp_physics_info.get('dynamic_friction', None) is not None: ramp_base_physics_info.update(self.ramp_physics_info) cmds.extend( RigidbodiesDataset.add_physics_object( self, record=self.ramp_base, position=copy.deepcopy(self.ramp_pos), rotation=TDWUtils.VECTOR3_ZERO, o_id=self.ramp_base_id, add_data=True, **ramp_base_physics_info)) # scale it, color it, fix it cmds.extend( self.get_object_material_commands( self.ramp_base, self.ramp_base_id, self.get_material_name(self.ramp_material))) cmds.extend([ {"$type": "scale_object", "scale_factor": self.ramp_base_scale, "id": self.ramp_base_id}, {"$type": "set_color", "color": {"r": color[0], "g": color[1], "b": color[2], "a": 1.}, "id": self.ramp_base_id}, {"$type": "set_object_collision_detection_mode", "mode": "continuous_speculative", "id": self.ramp_base_id}, {"$type": "set_kinematic_state", "id": self.ramp_base_id, "is_kinematic": True, "use_gravity": True}]) # add data self.model_names.append(self.ramp_base.name) self.scales.append(self.ramp_base_scale) self.colors = np.concatenate([self.colors, np.array(color).reshape((1,3))], axis=0) # raise the ramp self.ramp_pos['y'] += self.ramp_base_scale['y'] return cmds def _replace_target_with_object(self, record, data): self.target = record self.target_type = data["name"] self.target_color = data["color"] self.target_scale = data["scale"] self.target_id = data["id"] self.replace_target = True def _set_test_mode_colors(self, commands) -> None: tcolor = {'r': 1.0, 'g': 0.0, 'b': 0.0, 'a': 1.0} zcolor = {'r': 1.0, 'g': 1.0, 'b': 0.0, 'a': 1.0} exclude = {'r': 1.0, 'g': 0.0, 'b': 0.0} exclude_range = 0.25 for c in commands: if "set_color" in c.values(): o_id = c['id'] if o_id == self.target_id: c['color'] = tcolor elif o_id == self.zone_id: c['color'] = zcolor elif any((np.abs(exclude[k] - c['color'][k]) < exclude_range for k in exclude.keys())): rgb = self.random_color_from_rng(exclude=[exclude[k] for k in ['r','g','b']], exclude_range=exclude_range, seed=self.trial_seed) c['color'] = {'r': rgb[0], 'g': rgb[1], 'b': rgb[2], 'a': 1.0} def _build_intermediate_structure(self) -> List[dict]: """ Abstract method for building a physically interesting intermediate structure between the probe and the target. """ commands = [] return commands def _set_distractor_objects(self) -> None: self.distractors = OrderedDict() for i in range(self.num_distractors): record, data = self.random_model(self.distractor_types, add_data=True) self.distractors[data['id']] = record def _set_occluder_objects(self) -> None: self.occluders = OrderedDict() for i in range(self.num_occluders): record, data = self.random_model(self.occluder_types, add_data=True) self.occluders[data['id']] = record @staticmethod def get_record_dimensions(record: ModelRecord) -> List[float]: length = np.abs(record.bounds['left']['x'] - record.bounds['right']['x']) height = np.abs(record.bounds['top']['y'] - record.bounds['bottom']['y']) depth = np.abs(record.bounds['front']['z'] - record.bounds['back']['z']) return (length, height, depth) @staticmethod def aspect_ratios(record: ModelRecord) -> List[float]: l,h,d = Dominoes.get_record_dimensions(record) a1 = float(h) / l a2 = float(h) / d min_ar = min(a1, a2) max_ar = max(a1, a2) return (min_ar, max_ar) @staticmethod def scale_to(current_scale : float, target_scale : float) -> float: return target_scale / current_scale def _set_avatar_attributes(self, avatar_position) -> None: a_pos = avatar_position ## camera position and ray self.camera_position = a_pos self.camera_rotation = np.degrees(np.arctan2(a_pos['z'], a_pos['x'])) dist = TDWUtils.get_distance(a_pos, self.camera_aim) self.camera_altitude = np.degrees(np.arcsin((a_pos['y'] - self.camera_aim['y'])/dist)) camera_ray = np.array([self.camera_position['x'], 0., self.camera_position['z']]) self.camera_radius = np.linalg.norm(camera_ray) camera_ray /= np.linalg.norm(camera_ray) self.camera_ray = arr_to_xyz(camera_ray) ## unit vector that points opposite the camera opposite = np.array([-self.camera_position['x'], 0., -self.camera_position['z']]) opposite /= np.linalg.norm(opposite) opposite = arr_to_xyz(opposite) self.opposite_unit_vector = opposite if self.PRINT: print("camera distance", self.camera_radius) print("camera ray", self.camera_ray) print("camera angle", self.camera_rotation) print("camera altitude", self.camera_altitude) print("camera position", self.camera_position) def _set_occlusion_attributes(self) -> None: self.occluder_angular_spacing = 10 self.occlusion_distance_fraction = [0.6, 0.8] self.occluder_rotation_jitter = 30. self.occluder_min_z = self.middle_scale['z'] + 0.25 self.occluder_min_size = 0.25 self.occluder_max_size = 1.5 self.rescale_occluder_height = True def _get_occluder_position_pose_scale(self, record, unit_position_vector): """ Given a unit vector direction in world coordinates, adjust in a Controller-specific manner to avoid interactions with the physically relevant objects. """ o_len, o_height, o_dep = self.get_record_dimensions(record) ## get the occluder pose ang = self.camera_rotation rot = self.get_y_rotation( [ang - self.occluder_rotation_jitter, ang + self.occluder_rotation_jitter]) bounds = {'x': o_len, 'y': o_height, 'z': o_dep} bounds_rot = self.rotate_vector_parallel_to_floor(bounds, rot['y']) bounds = {k:np.maximum(np.abs(v), bounds[k]) for k,v in bounds_rot.items()} # make sure it's in a reasonable size range size = max(list(bounds.values())) size = np.minimum(np.maximum(size, self.occluder_min_size), self.occluder_max_size) scale = size / max(list(bounds.values())) bounds = self.scale_vector(bounds, scale) ## choose the initial position of the object, before adjustment occ_distance = random.uniform(*get_range(self.occlusion_distance_fraction)) pos = self.scale_vector( unit_position_vector, occ_distance * self.camera_radius) ## reposition and rescale it so it's not too close to the "physical dynamics" axis (z) if np.abs(pos['z']) < (self.occluder_min_z + self.occluder_min_size): pos.update({'z' : np.sign(pos['z']) * (self.occluder_min_z + self.occluder_min_size)}) reach_z = np.abs(pos['z']) - 0.5 * bounds['z'] if reach_z < self.occluder_min_z: # scale down scale_z = (np.abs(pos['z']) - self.occluder_min_z) / (0.5 * bounds['z']) else: scale_z = 1.0 bounds = self.scale_vector(bounds, scale_z) scale *= scale_z ## reposition and rescale it so it's not too close to other occluders if self.num_occluders > 1 and len(self.occluder_positions): last_pos_x = self.occluder_positions[-1]['x'] last_bounds_x = self.occluder_dimensions[-1]['x'] if (pos['x'] + self.occluder_min_size) > (last_pos_x - 0.5 * last_bounds_x): pos.update({'x': (last_pos_x - 0.5 * last_bounds_x) - self.occluder_min_size}) reach_x = pos['x'] + 0.5 * bounds['x'] if reach_x > (last_pos_x - 0.5 * last_bounds_x): # scale down scale_x = (last_pos_x - 0.5 * last_bounds_x - pos['x']) / (0.5 * bounds['x']) else: scale_x = 1.0 bounds = self.scale_vector(bounds, scale_x) scale *= scale_x # do some trigonometry to figure out the scale of the occluder if self.rescale_occluder_height: occ_dist = np.sqrt(pos['x']**2 + pos['z']**2) occ_target_height = self.camera_aim['y'] + occ_dist * np.tan(np.radians(self.camera_altitude)) occ_target_height *= self.occlusion_scale occ_target_height = np.minimum(occ_target_height, self.occluder_max_size) scale_y = occ_target_height / bounds['y'] scale_y = np.minimum( scale_y, (np.abs(pos['z']) - self.occluder_min_z) / (0.5 * bounds['z'])) bounds = self.scale_vector(bounds, scale_y) scale *= scale_y scale = arr_to_xyz([scale] * 3) self.occluder_positions.append(pos) self.occluder_dimensions.append(bounds) return (pos, rot, scale) def _set_distractor_attributes(self) -> None: self.distractor_angular_spacing = 15 self.distractor_distance_fraction = [0.4,1.0] self.distractor_rotation_jitter = 30 self.distractor_min_z = self.middle_scale['z'] + 0.25 self.distractor_min_size = 0.5 self.distractor_max_size = 1.5 def _get_distractor_position_pose_scale(self, record, unit_position_vector): d_len, d_height, d_dep = self.get_record_dimensions(record) ## get distractor pose and initial bounds ang = 0 if (self.camera_rotation > 0) else 180 rot = self.get_y_rotation( [ang - self.distractor_rotation_jitter, ang + self.distractor_rotation_jitter]) bounds = {'x': d_len, 'y': d_height, 'z': d_dep} bounds_rot = self.rotate_vector_parallel_to_floor(bounds, rot['y']) bounds = {k:np.maximum(np.abs(v), bounds[k]) for k,v in bounds_rot.items()} ## make sure it's in a reasonable size range size = max(list(bounds.values())) size = np.minimum(np.maximum(size, self.distractor_min_size), self.distractor_max_size) scale = size / max(list(bounds.values())) bounds = self.scale_vector(bounds, scale) ## choose the initial position of the object distract_distance = random.uniform(*get_range(self.distractor_distance_fraction)) pos = self.scale_vector( unit_position_vector, distract_distance * self.camera_radius) ## reposition and rescale it away from the "physical dynamics axis" if np.abs(pos['z']) < (self.distractor_min_z + self.distractor_min_size): pos.update({'z':
np.sign(pos['z'])
numpy.sign
# -*- coding: utf-8 -*- """ This module is part of the spafe library and has the purpose of of computing the following spectral stats: - meanfreq : mean frequency (in kHz) - sd : standard deviation of frequency - median : median frequency (in kHz) - Q25 : first quantile (in kHz) - Q75 : third quantile (in kHz) - IQR : interquantile range (in kHz) - skew : skewness (see note in specprop description) - kurt : kurtosis (see note in specprop description) - sp.ent : spectral entropy - sfm : spectral flatness - mode : mode frequency - centroid : frequency centroid (see specprop) - peakf : peak frequency (frequency with highest energy) - meanfun : average of fundamental frequency measured across acoustic signal - minfun : minimum fundamental frequency measured across acoustic signal - maxfun : maximum fundamental frequency measured across acoustic signal - meandom : average of dominant frequency measured across acoustic signal - mindom : minimum of dominant frequency measured across acoustic signal - maxdom : maximum of dominant frequency measured across acoustic signal - dfrange : range of dominant frequency measured across acoustic signal - modindx : modulation index. Calculated as the accumulated absolute difference between adjacent measurements of fundamental frequencies divided by the frequency range - label : male or female Todo: * For module TODOs * You have to also use ``sphinx.ext.todo`` extension Reference: http://ijeee.iust.ac.ir/article-1-1074-en.pdf """ import scipy import numpy as np from ..utils.spectral import stft, rfft from ..frequencies.dominant_frequencies import get_dominant_frequencies from ..frequencies.fundamental_frequencies import FundamentalFrequenciesExtractor def compute_fund_freqs(sig, fs): """ compute fundamental frequencies. Args: centroid (float) : spectral centroid. spectrum (array) : spectrum array. Returns: (float) spectral spread. """ # fundamental frequencies calculations fund_freqs_extractor = FundamentalFrequenciesExtractor(debug=False) pitches, harmonic_rates, argmins, times = fund_freqs_extractor.main( sig=sig, fs=fs) return pitches def compute_dom_freqs_and_mod_index(sig, fs, lower_cutoff=50, upper_cutoff=3000, nfft=512, win_len=0.03, win_hop=0.015, win_type='hamming', debug=False): """ compute dominant frequencies and modulation index. Args: sig (array) : spectral centroid. fs (int) : spectrum array. Returns: (float) spectral spread. """ # dominant frequencies calculations dom_freqs = get_dominant_frequencies(sig=sig, fs=fs, lower_cutoff=50, upper_cutoff=upper_cutoff, nfft=nfft, win_len=win_len, win_hop=win_hop, win_type=win_type, debug=debug) # modulation index calculation changes = np.abs(dom_freqs[:-1] - dom_freqs[1:]) dfrange = dom_freqs.max() - dom_freqs.min() if dom_freqs.min() == dom_freqs.max(): mod_index = 0 else: mod_index = changes.mean() / dfrange return dom_freqs, mod_index def spectral_centroid(sig, fs): """ compute spectral centroid. """ # compute magnitude spectrum magnitude_spectrum = np.fft.rfft(sig) # compute positive frequencies freqs = np.abs(np.fft.fftfreq(len(sig), 1.0 / fs)[:len(sig) // 2 + 1]) # return weighted mean sc = np.sum(magnitude_spectrum * freqs) / np.sum(magnitude_spectrum) return sc def spectral_flatness(sig): """ compute spectral flatness. """ # compute magnitude spectrum magnitude_spectrum = np.fft.rfft(sig) # select half of the spectrum due to symetrie magnitude_spectrum = magnitude_spectrum[:len(sig) // 2 + 1] sf = scipy.stats.mstats.gmean(magnitude_spectrum) / np.mean( magnitude_spectrum) return sf def spectral_rolloff(sig, fs, k=0.85): # convert to frequency domain magnitude_spectrum, _ = stft(sig=sig, fs=fs) power_spectrum = np.abs(magnitude_spectrum)**2 tbins, fbins = np.shape(magnitude_spectrum) # when do these blocks begin (time in seconds)? tstamps = (np.arange(0, tbins - 1) * (tbins / float(fs))) # compute the spectral sum spectral_sum = np.sum(power_spectrum, axis=1) # find frequency-bin indeces where the cummulative sum of all bins is higher # than k-percent of the sum of all bins. Lowest index = Rolloff sr = [ np.where(np.cumsum(power_spectrum[t, :]) >= k * spectral_sum[t])[0][0] for t in range(tbins - 1) ] sr = np.asarray(sr).astype(float) # convert frequency-bin index to frequency in Hz sr = (sr / fbins) * (fs / 2.0) return sr, np.asarray(tstamps) def spectral_flux(sig, fs): # convert to frequency domain magnitude_spectrum, _ = stft(sig=sig, fs=fs) tbins, fbins = np.shape(magnitude_spectrum) # when do these blocks begin (time in seconds)? tstamps = (np.arange(0, tbins - 1) * (tbins / float(fs))) sf = np.sqrt(np.sum(np.diff(np.abs(magnitude_spectrum))**2, axis=1)) / fbins return sf[1:], np.asarray(tstamps) def spectral_spread(centroid, spectrum, fs): """ Compute the spectral spread (basically a variance of the spectrum around the spectral centroid) Args: centroid (float) : spectral centroid. spectrum (array) : spectrum array. Returns: (float) spectral spread. """ bin_count, numerator, denominator = 0, 0, 0 for bin_i in spectrum: # Compute center frequency f = ((fs / 2.0) / len(spectrum)) * bin_count numerator = numerator + (((f - centroid)**2) * abs(bin_i)) denominator = denominator + abs(bin_i) bin_count = bin_count + 1 return np.sqrt((numerator * 1.0) / denominator) def zero_crossing_rate(sig, fs, block_length=256): # how many blocks have to be processed? num_blocks = int(np.ceil(len(sig) / block_length)) # when do these blocks begin (time in seconds)? timestamps = (np.arange(0, num_blocks - 1) * (block_length / float(fs))) zcr = [] for i in range(0, num_blocks - 1): start = i * block_length stop = np.min([(start + block_length - 1), len(sig)]) zc = 0.5 * np.mean(np.abs(np.diff(np.sign(sig[start:stop])))) zcr.append(zc) return np.asarray(zcr), np.asarray(timestamps) def root_mean_square(sig, fs, block_length=256): # how many blocks have to be processed? num_blocks = int(np.ceil(len(sig) / block_length)) # when do these blocks begin (time in seconds)? tstamps = (np.arange(0, num_blocks - 1) * (block_length / float(fs))) rms = [] for i in range(0, num_blocks - 1): start = i * block_length stop = np.min([(start + block_length - 1), len(sig)]) # This is wrong but why? rms_seg = np.sqrt(np.mean(sig[start:stop]**2)) rms_seg = np.sqrt(np.mean(np.power(sig[start:stop], 2))) rms.append(rms_seg) return
np.asarray(rms)
numpy.asarray
# toy model for use on stream # CLimate Analysis using Digital Estimations (CLAuDE) import numpy as np import matplotlib.pyplot as plt import time, sys, pickle import claude_low_level_library as low_level import claude_top_level_library as top_level from scipy.interpolate import interp2d, RectBivariateSpline # from twitch import prime_sub ######## CONTROL ######## day = 60*60*24 # define length of day (used for calculating Coriolis as well) (s) resolution = 3 # how many degrees between latitude and longitude gridpoints planet_radius = 6.4E6 # define the planet's radius (m) insolation = 1370 # TOA radiation from star (W m^-2) gravity = 9.81 # define surface gravity for planet (m s^-2) axial_tilt = 23.5/2 # tilt of rotational axis w.r.t. solar plane year = 365*day # length of year (s) pressure_levels = np.array([1000,950,900,800,700,600,500,400,350,300,250,200,150,100,75,50,25,10,5,2,1]) pressure_levels *= 100 nlevels = len(pressure_levels) top = -1 dt_spinup = 60*137 dt_main = 60*3.5 spinup_length = 21*day ### advection = True # if you want to include advection set this to be True smoothing = True smoothing_parameter_t = 1.0 smoothing_parameter_u = 0.9 smoothing_parameter_v = 0.9 smoothing_parameter_w = 0.2 smoothing_parameter_add = 0.6 save = False # save current state to file? load = False # load initial state from file? above = False pole = 'n' above_level = -1 plot = False # display plots of output? diagnostic = False # display raw fields for diagnostic purposes level_plots = False # display plots of output on vertical levels? nplots = 3 # how many levels you want to see plots of (evenly distributed through column) verbose = False pole_lower_latitude_limit = -60 pole_higher_latitude_limit = -75 ########################### # define coordinate arrays lat = np.arange(-90,91,resolution) lon = np.arange(0,360,resolution) nlat = len(lat) nlon = len(lon) lon_plot, lat_plot = np.meshgrid(lon, lat) heights_plot, lat_z_plot = np.meshgrid(lat,pressure_levels[:top]/100) # initialise arrays for various physical fields temperature_world = np.zeros((nlat,nlon)) + 290 potential_temperature = np.zeros((nlat,nlon,nlevels)) u = np.zeros_like(potential_temperature) v = np.zeros_like(potential_temperature) w = np.zeros_like(potential_temperature) atmosp_addition = np.zeros_like(potential_temperature) ########################## # read temperature and density in from standard atmosphere f = open("standard_atmosphere.txt", "r") standard_temp = [] standard_pressure = [] for x in f: h, t, r, p = x.split() standard_temp.append(float(t)) standard_pressure.append(float(p)) f.close() # density_profile = np.interp(x=heights/1E3,xp=standard_height,fp=standard_density) temp_profile = np.interp(x=pressure_levels[::-1],xp=standard_pressure[::-1],fp=standard_temp[::-1])[::-1] for k in range(nlevels): potential_temperature[:,:,k] = temp_profile[k] potential_temperature = low_level.t_to_theta(potential_temperature,pressure_levels) geopotential = np.zeros_like(potential_temperature) sigma = np.zeros_like(pressure_levels) kappa = 287/1000 for i in range(len(sigma)): sigma[i] = 1E3*(pressure_levels[i]/pressure_levels[0])**kappa ########################### heat_capacity_earth = np.zeros_like(temperature_world) + 1E6 albedo_variance = 0.001 albedo = np.random.uniform(-albedo_variance,albedo_variance, (nlat, nlon)) + 0.2 specific_gas = 287 thermal_diffusivity_roc = 1.5E-6 # define planet size and various geometric constants circumference = 2*np.pi*planet_radius circle = np.pi*planet_radius**2 sphere = 4*np.pi*planet_radius**2 # define how far apart the gridpoints are: note that we use central difference derivatives, and so these distances are actually twice the distance between gridboxes dy = circumference/nlat dx = np.zeros(nlat) coriolis = np.zeros(nlat) # also define the coriolis parameter here angular_speed = 2*np.pi/day for i in range(nlat): dx[i] = dy*np.cos(lat[i]*np.pi/180) coriolis[i] = angular_speed*np.sin(lat[i]*np.pi/180) #################### SHOW TIME #################### pole_low_index_S = np.where(lat > pole_lower_latitude_limit)[0][0] pole_high_index_S = np.where(lat > pole_higher_latitude_limit)[0][0] # initialise grid polar_grid_resolution = dx[-pole_low_index_S] size_of_grid = planet_radius*np.cos(lat[-pole_low_index_S]*np.pi/180) ### south pole ### grid_x_values_S = np.arange(-size_of_grid,size_of_grid,polar_grid_resolution) grid_y_values_S = np.arange(-size_of_grid,size_of_grid,polar_grid_resolution) grid_xx_S,grid_yy_S =
np.meshgrid(grid_x_values_S,grid_y_values_S)
numpy.meshgrid
#Author: <NAME> (c) 2018 from collections import Counter import dill import glob import gzip import igraph as ig import itertools import leidenalg #import magic import matplotlib from matplotlib import pyplot import numba import numpy import os import pickle from plumbum import local import random import re import scipy from scipy.cluster import hierarchy import scipy.sparse as sps from scipy.spatial import distance import scipy.stats as stats from sklearn.feature_extraction.text import TfidfTransformer from sklearn.decomposition import TruncatedSVD from sklearn import neighbors from sklearn import metrics import sys import umap def find_nearest_genes(peak_files, out_subdir, refseq_exon_bed): #get unix utilities bedtools, sort, cut, uniq, awk = local['bedtools'], local['sort'], local['cut'], local['uniq'], local['awk'] #process the peak files to find nearest genes nearest_genes = [] for path in sorted(peak_files): out_path = os.path.join(out_subdir, os.path.basename(path).replace('.bed', '.nearest_genes.txt')) cmd = (bedtools['closest', '-D', 'b', '-io', '-id', '-a', path, '-b', refseq_exon_bed] | cut['-f1,2,3,5,9,12'] | #fields are chrom, start, stop, peak sum, gene name, distance awk['BEGIN{OFS="\t"}{if($6 > -1200){print($1, $2, $3, $6, $5, $4);}}'] | sort['-k5,5', '-k6,6nr'] | cut['-f5,6'])() with open(out_path, 'w') as out: prev_gene = None for idx, line in enumerate(str(cmd).strip().split('\n')): if prev_gene is None or not line.startswith(prev_gene): # print(line) line_split = line.strip().split() prev_gene = line_split[0] out.write(line + '\n') nearest_genes.append(out_path) return nearest_genes def load_expr_db(db_path): if os.path.basename(db_path) == 'RepAvgGeneTPM.csv': with open(db_path) as lines_in: db_headers = lines_in.readline().strip().split(',')[1:] db_vals = numpy.loadtxt(db_path, delimiter=',', skiprows=1, dtype=object)[:,1:] elif os.path.basename(db_path) == 'gexplore_l2_tissue_expr.jonathan_updated.txt.gz': db_headers, db_vals = load_expr_db2(db_path) else: with open(db_path) as lines_in: db_headers = lines_in.readline().strip().split('\t') db_vals = numpy.loadtxt(db_path, delimiter='\t', skiprows=1, dtype=object) print('Loaded DB shape: {!s}'.format(db_vals.shape)) return (db_headers, db_vals) def load_expr_db2(db_path): db_vals =
numpy.loadtxt(db_path, delimiter='\t', skiprows=1, dtype=object)
numpy.loadtxt
import matplotlib matplotlib.use("Agg") import matplotlib.pyplot as plt import copy import os import numpy as np from collections import Counter, OrderedDict from tfbldr.datasets import notes_to_midi from tfbldr.datasets import midi_to_notes from functools import reduce basedir = "/u/kastner/music_npz_jos" """ cnt = Counter() for fnpz in sorted(os.listdir(basedir)): print(fnpz) d = np.load(basedir + os.sep + fnpz) if len(d['centered']) < 1: print(fnpz + " had zero length") continue for mi in range(len(d['centered'])): measure = d['centered'][mi] cnt.update(measure.ravel()) """ all_filenames = [] all_measurenums = [] all_piano_rolls = [] all_pitch_duration = [] all_functional_notes = [] all_functional_notes_idx = [] all_functional_notes_kv = [] all_functional_voicings_idx = [] all_functional_voicings_kv = [] all_keyframes = [] all_chords_names = [] all_indexed = [] all_absolutes = [] all_keys = [] all_modes = [] all_scalenotes = [] for fnpz in sorted(os.listdir(basedir)): print(fnpz) try: d = np.load(basedir + os.sep + fnpz) except: print("Unable to load {}, continuing".format(fnpz)) if len(d["centered"]) < 1 or 'keyname' not in d: print(fnpz + " had zero length or no key") continue prs = copy.deepcopy(d["piano_rolls"]) pds = copy.deepcopy(d["pitch_duration"]) loaded_chords_names = copy.deepcopy(d["chords_names"]) key = d["keyname"] mode = d["keymode"] # last note is octave of the root, skip it notes = d["keynotes"][:-1] assert sorted(list(set(d["keynotes"]))) == sorted(list(notes)) scale_lu = {} scale_lu["R"] = 0 ordered_scale = ["R"] counter = 1 for octave in ["1", "2", "3", "4", "5"]: for note in notes: ordered_scale.append(note + octave) scale_lu[note + octave] = counter counter += 1 norm_lu = {v: k for k, v in scale_lu.items()} notes_lu = {os: notes_to_midi([[os]])[0][0] for os in ordered_scale} notes_lu["R"] = notes_to_midi([["R"]])[0][0] midi_lu = {v: k for k, v in notes_lu.items()} filename = fnpz keyframe_lu = {v: k for k, v in enumerate(np.arange(-13, 14 + 1))} diff_lu = {v: k for k, v in keyframe_lu.items()} piano_rolls = [] pitch_duration = [] measurenums = [] keyframes = [] indexed = [] absolutes = [] keys = [] modes = [] chords_names = [] scalenotes = [] functional_notes = [] functional_notes_idx = [] functional_voicings_idx = [] func_notes_lu = {} func_notes_lu["R"] = 0 # R is always in the lowest voicing -> R0 counter = 1 notes = [n for n in notes] for n1 in notes + ["R"]: for n2 in notes + ["R"]: for n3 in notes + ["R"]: for n4 in notes + ["R"]: # hack to represent it in the form we get from midi_to_notes # basically changing E-3 -> Eb3 , etc if n1 != "R": nnn1 = midi_to_notes(notes_to_midi([[n1 + octave]]))[0][0][:-1] else: nnn1 = n1 if n2 != "R": nnn2 = midi_to_notes(notes_to_midi([[n2 + octave]]))[0][0][:-1] else: nnn2 = n2 if n3 != "R": nnn3 = midi_to_notes(notes_to_midi([[n3 + octave]]))[0][0][:-1] else: nnn3 = n3 if n4 != "R": nnn4 = midi_to_notes(notes_to_midi([[n4 + octave]]))[0][0][:-1] else: nnn4 = n4 func_notes_lu[tuple([nnn1, nnn2, nnn3, nnn4])] = counter counter += 1 func_voicings_lu = {} # hardcode for 4 voices for now count = 0 for o1 in [0, 1, 2, 3, 4, 5]: for o2 in [0, 1, 2, 3, 4, 5]: for o3 in [0, 1, 2, 3, 4, 5]: for o4 in [0, 1, 2, 3, 4, 5]: oo = [o1, o2, o3, o4] nz = [ooi for ooi in oo if ooi != 0] # can only be an ordering with at least 2 if len(nz) == 0 or len(nz) == 1: func_voicings_lu[tuple(oo)] = count count += 1 else: rr = range(len(nz)) ordered = True maxv = 5 for i in rr: if nz[i] <= maxv: maxv = nz[i] else: ordered = False # allow voice crossing in the middle 2 voices? if ordered: func_voicings_lu[tuple(oo)] = count count += 1 inv_func_voicings = {v: k for k, v in func_voicings_lu.items()} last_non_rest = [0, 0, 0, 0] for n in range(len(prs)): # key and mode delta normalized repr # 0 rest, 1:28 is [-13, 14] pr_i = prs[n] pd_i = pds[n] chords_names_i = loaded_chords_names[n] if len(set([lcn for lcn in loaded_chords_names[n]])) != 1: print("got multiple chords") from IPython import embed; embed(); raise ValueError() if pr_i.shape[-1] != 4: #print("3 voices, skip for now") continue if pr_i.shape[0] != 48: new_pr_i = np.zeros((48, pr_i.shape[-1])) if pr_i.shape[0] == 32: # 32 into 48 is 4 into 6 ii = 0 oi = 0 while True: nt = pr_i[ii:ii + 4] for v in range(pr_i.shape[-1]): if len(np.unique(nt[:, v])) != 1: if len(np.unique(nt[:, v])) == 2: mn = np.min(nt[:, v]) mx = np.max(nt[:, v]) if np.sum(nt[:, v] == mn) == 2: nt[:, v] = mn else: nt[:, v] = mx else: print("note changed :|") from IPython import embed; embed(); raise ValueError() new_pr_i[oi:oi + 6] = nt[0][None] # ii:ii + 3 all forced the same above oi = oi + 6 ii = ii + 4 if ii >= 32: break pr_i = new_pr_i else: #print("not length 48, needs normalization") continue loop_reset = False for unote in
np.unique(pr_i)
numpy.unique
# -*- coding: utf-8 -*- # Built-in # Common import numpy as np import scipy.sparse as scpsp # specific from . import _generic_check _LOPERATORS_INT = [ 'D1', 'D2', 'D3', 'D0N1', 'D0N2', 'D1N2', 'D2N2', 'D3N2', ] # ############################################################################# # ############################################################################# # Mesh2DRect - bsplines - operators # ############################################################################# def _get_mesh2dRect_operators_check( deg=None, operator=None, geometry=None, sparse_fmt=None, ): # deg deg = _generic_check._check_var( deg, 'deg', types=int, allowed=[0, 1, 2, 3], ) # operator operator = _generic_check._check_var( operator, 'operator', default='D0N1', types=str, allowed=_LOPERATORS_INT, ) # geometry geometry = _generic_check._check_var( geometry, 'geometry', default='toroidal', types=str, allowed=['toroidal', 'linear'], ) # sparse_fmt sparse_fmt = _generic_check._check_var( sparse_fmt, 'sparse_fmt', default='csc', types=str, allowed=['dia', 'csr', 'csc', 'lil'], ) # dim if operator == 'D1': dim = 'origin / m' elif operator == 'D2': dim = 'origin / m2' elif operator == 'D3': dim = 'origin / m3' elif operator == 'D0N1': if geometry == 'linear': dim = 'origin x m2' else: dim = 'origin x m3/rad' elif operator == 'D0N2': if geometry == 'linear': dim = 'origin2 x m2' else: dim = 'origin2 x m3/rad' elif operator == 'D1N2': if geometry == 'linear': dim = 'origin2' else: dim = 'origin2 x m/rad' elif operator == 'D2N2': if geometry == 'linear': dim = 'origin2 / m2' else: dim = 'origin2 / (m2.rad)' return operator, geometry, sparse_fmt, dim def get_mesh2dRect_operators( operator=None, geometry=None, deg=None, knotsx_mult=None, knotsy_mult=None, knotsx_per_bs=None, knotsy_per_bs=None, overlap=None, sparse_fmt=None, cropbs_flat=None, # specific to deg = 0 cropbs=None, centered=None, ): # ------------ # check inputs operator, geometry, sparse_fmt, dim = _get_mesh2dRect_operators_check( deg=deg, operator=operator, geometry=geometry, sparse_fmt=sparse_fmt, ) # ------------ # prepare nx, ny = knotsx_per_bs.shape[1], knotsy_per_bs.shape[1] kR = np.tile(knotsx_per_bs, ny) kZ = np.repeat(knotsy_per_bs, nx, axis=1) nbs = nx*ny if cropbs_flat is None: cropbs_flat = False if cropbs_flat is not False: c0 = ( isinstance(cropbs_flat, np.ndarray) and cropbs_flat.shape == (nbs,) and cropbs_flat.dtype == np.bool_ ) if not c0: msg = ( f"Arg cropbs_flat must be a bool array of shape {(nbs,)}\n" f"Provided: {cropbs_flat.shape}" ) raise Exception(msg) nbscrop = cropbs_flat.sum() shape = (nbscrop, nbscrop) indbs = -np.ones((nbs,), dtype=int) indbs[cropbs_flat] = np.arange(0, nbscrop) else: shape = (nbs, nbs) indbs = np.arange(0, nbs) if 'N2' in operator and deg >= 1: # get intersection indices array if cropbs_flat is False: nbtot = np.sum(overlap >= 0) else: ind = cropbs_flat[None, :] & cropbs_flat[overlap] nbtot = np.sum(ind) # prepare data and indices arrays if operator == 'D0N2': data = np.full((nbtot,), np.nan) row = np.zeros((nbtot,), dtype=int) column = np.zeros((nbtot,), dtype=int) elif operator == 'D1N2': datadR = np.full((nbtot,), np.nan) datadZ = np.full((nbtot,), np.nan) row = np.zeros((nbtot,), dtype=int) column = np.zeros((nbtot,), dtype=int) elif operator == 'D2N2': datad2R = np.full((nbtot,), np.nan) datad2Z = np.full((nbtot,), np.nan) datadRZ = np.full((nbtot,), np.nan) row = np.zeros((nbtot,), dtype=int) column = np.zeros((nbtot,), dtype=int) # ------------ # D0 - integral if operator == 'D0N1': if deg == 0 and geometry == 'linear': opmat = (kR[1, :] - kR[0, :]) * (kZ[1, :] - kZ[0, :]) elif deg == 0 and geometry == 'toroidal': opmat = 0.5 * (kR[1, :]**2 - kR[0, :]**2) * (kZ[1, :] - kZ[0, :]) elif deg == 1 and geometry == 'linear': opmat = 0.25 * (kR[2, :] - kR[0, :]) * (kZ[2, :] - kZ[0, :]) elif deg == 1 and geometry == 'toroidal': opmat = ( 0.5 * (kR[2, :]**2 - kR[0, :]**2 + kR[1, :]*(kR[2, :]-kR[0, :])) * (kZ[2, :] - kZ[0, :]) ) / 6. elif deg == 2: iZ1 = (kZ[1, :] - kZ[0, :])**2 / (3.*(kZ[2, :] - kZ[0, :])) iZ21 = ( ( kZ[2, :]**2 - 2*kZ[1, :]**2 + kZ[1, :]*kZ[2, :] + 3.*kZ[0, :]*(kZ[1, :] - kZ[2, :]) ) / (6.*(kZ[2, :]-kZ[0, :])) ) iZ22 = ( ( -2.*kZ[2, :]**2 + kZ[1, :]**2 + kZ[1, :]*kZ[2, :] + 3.*kZ[3, :]*(kZ[2, :] - kZ[1, :]) ) / (6.*(kZ[3, :] - kZ[1, :])) ) iZ3 = (kZ[3, :] - kZ[2, :])**2 / (3.*(kZ[3, :] - kZ[1, :])) if geometry == 'linear': iR1 = (kR[1, :] - kR[0, :])**2 / (3.*(kR[2, :] - kR[0, :])) iR21 = ( ( kR[2, :]**2 - 2. * kR[1, :]**2 + kR[1, :] * kR[2, :] + 3. * kR[0, :] * (kR[1, :] - kR[2, :]) ) / (6. * (kR[2, :] - kR[0, :])) ) iR22 = ( ( -2. * kR[2, :]**2 + kR[1, :]**2 + kR[1, :] * kR[2, :] + 3. * kR[3, :] * (kR[2, :] - kR[1, :]) ) / (6.*(kR[3, :] - kR[1, :])) ) iR3 = (kR[3, :] - kR[2, :])**2 / (3.*(kR[3, :] - kR[1, :])) else: iR1 = ( ( 3.*kR[1, :]**3 + kR[0, :]**3 - 5.*kR[0, :] * kR[1, :]**2 + kR[0, :]**2 * kR[1, :] ) / (12. * (kR[2, :] - kR[0, :])) ) iR21 = ( ( kR[2, :]**3 - 3.*kR[1, :]**3 + kR[1, :]**2 * kR[2, :] + kR[1, :] * kR[2, :]**2 - 2.*kR[0, :] * kR[2, :]**2 - 2.*kR[0, :] * kR[1, :] * kR[2, :] + 4.*kR[0, :] * kR[1, :]**2 ) / (12. * (kR[2, :] - kR[0, :])) ) iR22 = ( ( -3.*kR[2, :]**3 + kR[1, :]**3 + kR[1, :] * kR[2, :]**2 + kR[1, :]**2 * kR[2, :] + 4.*kR[2, :]**2 * kR[3, :] - 2.*kR[1, :]*kR[2, :]*kR[3, :] - 2.*kR[1, :]**2 * kR[3, :] ) / (12. * (kR[3, :] - kR[1, :])) ) iR3 = ( ( kR[3, :]**3 + 3.*kR[2, :]**3 - 5.*kR[2, :]**2 * kR[3, :] + kR[2, :]*kR[3, :]**2 ) / (12. * (kR[3, :] - kR[1, :])) ) opmat = (iR1 + iR21 + iR22 + iR3) * (iZ1 + iZ21 + iZ22 + iZ3) elif deg == 3: msg = "Integral D0N1 not implemented for deg=3 yet!" raise NotImplementedError(msg) # crop if cropbs_flat is not False: opmat = opmat[cropbs_flat] # ------------ # D1 - gradient elif operator == 'D1': # Treat separately discrete case if deg == 0: gradR, gradZ = _D1_Deg0( knotsx_mult=knotsx_mult, knotsy_mult=knotsy_mult, cropbs=cropbs, cropbs_flat=cropbs_flat, nx=nx, ny=ny, nbs=nbs, centered=centered, ) opmat = ( scpsp.csc_matrix(gradR), scpsp.csc_matrix(gradZ), ) elif deg >= 1: raise NotImplementedError() # ------------ # D0N2 elif operator == 'D0N2' and deg == 0: iZ = kZ[1, :] - kZ[0, :] if geometry == 'linear': iR = kR[1, :] - kR[0, :] else: iR = 0.5 * (kR[1, :]**2 - kR[0, :]**2) if cropbs_flat is not False: iR = iR[cropbs_flat] iZ = iZ[cropbs_flat] opmat = scpsp.diags( [iR*iZ], [0], shape=None, format=sparse_fmt, dtype=float, ) elif operator == 'D0N2': # pre-compute integrals if deg == 1: iR = _D0N2_Deg1(knotsx_mult, geometry=geometry) iZ = _D0N2_Deg1(knotsy_mult, geometry='linear') elif deg == 2: iR = _D0N2_Deg2(knotsx_mult, geometry=geometry) iZ = _D0N2_Deg2(knotsy_mult, geometry='linear') elif deg == 3: msg = "Integral D0N2 not implemented for deg=3!" raise NotImplementedError(msg) # set non-diagonal elements i0 = 0 for ir in range(nx): for iz in range(ny): iflat = ir + iz*nx if cropbs_flat is not False and not cropbs_flat[iflat]: continue # general case overlapi = overlap[:, iflat][overlap[:, iflat] > iflat] # diagonal element data[i0] = iR[0, ir] * iZ[0, iz] row[i0] = indbs[iflat] column[i0] = indbs[iflat] i0 += 1 # non-diagonal elements (symmetric) for jflat in overlapi: if cropbs_flat is not False and not cropbs_flat[jflat]: continue jr = jflat % nx jz = jflat // nx # store (i, j) and (j, i) (symmetric matrix) if jr >= ir: iiR = iR[jr - ir, ir] else: iiR = iR[abs(jr - ir), jr] if jz >= iz: iiZ = iZ[jz - iz, iz] else: iiZ = iZ[abs(jz - iz), jz] data[i0:i0+2] = iiR * iiZ row[i0:i0+2] = (indbs[iflat], indbs[jflat]) column[i0:i0+2] = (indbs[jflat], indbs[iflat]) i0 += 2 assert i0 == nbtot opmat = scpsp.csc_matrix((data, (row, column)), shape=shape) # ------------ # D1N2 elif operator == 'D1N2': # Treat separately discrete case if deg == 0: gradR, gradZ = _D1_Deg0( knotsx_mult=knotsx_mult, knotsy_mult=knotsy_mult, cropbs=cropbs, cropbs_flat=cropbs_flat, nx=nx, ny=ny, nbs=nbs, ) # surface elements dZ = np.repeat(knotsy_mult[1:] - knotsy_mult[:-1], nx) if geometry == 'linear': dR = np.tile( knotsx_mult[1:] - knotsx_mult[:-1], ny, ) else: dR = np.tile( 0.5*(knotsx_mult[1:]**2 - knotsx_mult[:-1]**2), ny, ) if cropbs_flat is not False: dR = dR[cropbs_flat] dZ = dZ[cropbs_flat] opmat = ( scpsp.csc_matrix(gradR.T.dot(gradR*(dR*dZ)[:, None])), scpsp.csc_matrix(gradZ.T.dot(gradZ*(dR*dZ)[:, None])), ) else: # pre-compute integrals for exact operator deg >= 1 if deg == 1: idR = _D1N2_Deg1(knotsx_mult, geometry=geometry) idZ = _D1N2_Deg1(knotsy_mult, geometry='linear') iR = _D0N2_Deg1(knotsx_mult, geometry=geometry) iZ = _D0N2_Deg1(knotsy_mult, geometry='linear') elif deg == 2: idR = _D1N2_Deg2(knotsx_mult, geometry=geometry) idZ = _D1N2_Deg2(knotsy_mult, geometry='linear') iR = _D0N2_Deg2(knotsx_mult, geometry=geometry) iZ = _D0N2_Deg2(knotsy_mult, geometry='linear') elif deg == 3: msg = "Integral D1N2 not implemented for deg=3!" raise NotImplementedError(msg) # set non-diagonal elements i0 = 0 for ir in range(nx): for iz in range(ny): iflat = ir + iz*nx if cropbs_flat is not False and not cropbs_flat[iflat]: continue # general case overlapi = overlap[:, iflat][overlap[:, iflat] > iflat] # diagonal element datadR[i0] = idR[0, ir] * iZ[0, iz] datadZ[i0] = iR[0, ir] * idZ[0, iz] row[i0] = indbs[iflat] column[i0] = indbs[iflat] i0 += 1 # non-diagonal elements (symmetric) for jflat in overlapi: if cropbs_flat is not False and not cropbs_flat[jflat]: continue jr = jflat % nx jz = jflat // nx # store (i, j) and (j, i) (symmetric matrix) if jr >= ir: iidR = idR[jr - ir, ir] iiR = iR[jr - ir, ir] else: iidR = idR[abs(jr - ir), jr] iiR = iR[abs(jr - ir), jr] if jz >= iz: iidZ = idZ[jz - iz, iz] iiZ = iZ[jz - iz, iz] else: iidZ = idZ[abs(jz - iz), jz] iiZ = iZ[abs(jz - iz), jz] datadR[i0:i0+2] = iidR * iiZ datadZ[i0:i0+2] = iiR * iidZ row[i0:i0+2] = (indbs[iflat], indbs[jflat]) column[i0:i0+2] = (indbs[jflat], indbs[iflat]) i0 += 2 assert i0 == nbtot opmat = ( scpsp.csc_matrix((datadR, (row, column)), shape=shape), scpsp.csc_matrix((datadZ, (row, column)), shape=shape), ) # ------------ # D2N2 elif operator == 'D2N2': # pre-compute integrals if deg == 2: id2R = _D2N2_Deg2(knotsx_mult, geometry=geometry) id2Z = _D2N2_Deg2(knotsy_mult, geometry='linear') idR = _D1N2_Deg2(knotsx_mult, geometry=geometry) idZ = _D1N2_Deg2(knotsy_mult, geometry='linear') iR = _D0N2_Deg2(knotsx_mult, geometry=geometry) iZ = _D0N2_Deg2(knotsy_mult, geometry='linear') elif deg == 3: msg = "Integral D2N2 not implemented for deg=3!" raise NotImplementedError(msg) # set non-diagonal elements i0 = 0 for ir in range(nx): for iz in range(ny): iflat = ir + iz*nx if cropbs_flat is not False and not cropbs_flat[iflat]: continue # general case overlapi = overlap[:, iflat][overlap[:, iflat] > iflat] # diagonal element datad2R[i0] = id2R[0, ir] * iZ[0, iz] datad2Z[i0] = iR[0, ir] * id2Z[0, iz] datadRZ[i0] = idR[0, ir] * idZ[0, iz] row[i0] = indbs[iflat] column[i0] = indbs[iflat] i0 += 1 # non-diagonal elements (symmetric) for jflat in overlapi: if cropbs_flat is not False and not cropbs_flat[jflat]: continue jr = jflat % nx jz = jflat // nx # store (i, j) and (j, i) (symmetric matrix) if jr >= ir: iid2R = id2R[jr - ir, ir] iidR = idR[jr - ir, ir] iiR = iR[jr - ir, ir] else: iid2R = id2R[abs(jr - ir), jr] iidR = idR[abs(jr - ir), jr] iiR = iR[abs(jr - ir), jr] if jz >= iz: iid2Z = id2Z[jz - iz, iz] iidZ = idZ[jz - iz, iz] iiZ = iZ[jz - iz, iz] else: iid2Z = id2Z[abs(jz - iz), jz] iidZ = idZ[abs(jz - iz), jz] iiZ = iZ[abs(jz - iz), jz] datad2R[i0:i0+2] = iid2R * iiZ datad2Z[i0:i0+2] = iiR * iid2Z datadRZ[i0:i0+2] = iidR * iidZ row[i0:i0+2] = (indbs[iflat], indbs[jflat]) column[i0:i0+2] = (indbs[jflat], indbs[iflat]) i0 += 2 assert i0 == nbtot opmat = ( scpsp.csc_matrix((datad2R, (row, column)), shape=shape), scpsp.csc_matrix((datad2Z, (row, column)), shape=shape), scpsp.csc_matrix((datadRZ, (row, column)), shape=shape), ) # ------------ # D3N2 elif operator == 'D3N2' and deg == 3: raise NotImplementedError("Integral D3N2 not implemented for deg=3!") return opmat, operator, geometry, dim # ############################################################################# # ############################################################################# # Operator sub-routines: D0N2 # ############################################################################# def _D0N2_Deg1_full_linear(k0, k2): """ from 1d knots, return int_0^2 x b**2(x) dx """ return (k2 - k0) / 3. def _D0N2_Deg1_full_toroidal(k0, k1, k2): """ from 1d knots, return int_0^2 x b**2(x) dx """ intt = np.zeros((k0.size,)) intt[1:] += ( (3. * k1**3 - 5.*k0*k1**2 + k1*k0**2 + k0**3)[1:] / (12. * (k1 - k0))[1:] ) intt[:-1] = ( + (3.*k1**3 - 5.*k2*k1**2 + k1*k2**2 + k2**3)[:-1] / (12. * (k2 - k1))[:-1] ) return intt def _D0N2_Deg1_2_linear(k1, k2): """ from 1d knots, return int_0^2 x b**2(x) dx """ return (k2 - k1) / 6. def _D0N2_Deg1_2_toroidal(k1, k2): """ from 1d knots, return int_0^2 x b**2(x) dx """ return (k2**2 - k1**2) / 12. def _D0N2_Deg1(knots, geometry=None): if geometry == 'linear': integ = np.array([ _D0N2_Deg1_full_linear( knots[:-2], knots[2:], ), _D0N2_Deg1_2_linear( knots[1:-1], knots[2:] ), ]) else: integ = np.array([ _D0N2_Deg1_full_toroidal( knots[:-2], knots[1:-1], knots[2:], ), _D0N2_Deg1_2_toroidal( knots[1:-1], knots[2:] ), ]) return integ def _D0N2_Deg2(knots, geometry=None): if geometry == 'linear': ffull = _D0N2_Deg2_full_linear f3 = _D0N2_Deg2_3_linear f2 = _D0N2_Deg2_2_linear else: ffull = _D0N2_Deg2_full_toroidal f3 = _D0N2_Deg2_3_toroidal f2 = _D0N2_Deg2_2_toroidal integ = np.array([ ffull( knots[:-3], knots[1:-2], knots[2:-1], knots[3:], ), f3( knots[:-3], knots[1:-2], knots[2:-1], knots[3:], np.r_[knots[4:], np.nan], ), f2( knots[1:-2], knots[2:-1], knots[3:], np.r_[knots[4:], np.nan], ), ]) return integ def _D0N2_Deg2_full_linear(k0, k1, k2, k3): """ from 1d knots, return int_0^3 b**2(x) dx """ intt = np.zeros((k0.size,)) intt[1:] += ( (k1 - k0)[1:]**3 / (5.*(k2 - k0)[1:]**2) + (k2 - k1)[1:] * ( 10.*k0**2 + 6.*k1**2 + 3.*k1*k2 + k2**2 - 5.*k0*(3.*k1 + k2) )[1:] / (30.*(k2 - k0)[1:]**2) ) intt[1:-1] += ( (k2 - k1)[1:-1] * ( -3.*k1**2 - 4.*k1*k2 - 3.*k2**2 + 5.*k0*(k1 + k2 - 2.*k3) + 5.*k3*(k1 + k2) )[1:-1] / (60.*(k2 - k0)*(k3 - k1))[1:-1] ) intt[:-1] += ( (k2 - k1)[:-1] * ( 10.*k3**2 + 6.*k2**2 + 3.*k1*k2 + k1**2 - 5.*k3*(3.*k2 + k1) )[:-1] / (30.*(k3 - k1)[:-1]**2) + (k3 - k2)[:-1]**3 / (5.*(k3 - k1)[:-1]**2) ) return intt def _D0N2_Deg2_full_toroidal(k0, k1, k2, k3): """ from 1d knots, return int_0^3 b**2(x) dx """ intt = np.zeros((k0.size,)) intt[1:] += ( (5.*k1 + k0)[1:]*(k1 - k0)[1:]**3 / (30.*(k2 - k0)[1:]**2) + (k2 - k1)[1:] * ( 10*k1**3 + 6.*k1**2*k2 + 3.*k1*k2**2 + k2**3 + 5.*k0**2*(3.*k1 + k2) - 4.*k0*(6.*k1**2 + 3.*k1*k2 + k2**2) )[1:] / (60.*(k2 - k0)**2)[1:] ) intt[:-1] += ( (5.*k2 + k3)[:-1]*(k3 - k2)[:-1]**3 / (30.*(k3 - k1)[:-1]**2) + (k2 - k1)[1:] * ( 10*k2**3 + 6.*k2**2*k1 + 3.*k2*k1**2 + k1**3 + 5.*k3**2*(3.*k2 + k1) - 4.*k3*(6.*k2**2 + 3.*k2*k1 + k1**2) )[:-1] / (60.*(k3 - k1)**2)[:-1] ) intt[1:-1] += ( (k2 - k1)[1:-1] * ( - 2.*k1**3 - 2.*k2**3 - 3.*k1*k2*(k1 + k2) - 5.*k0*k3*(k1 + k2) + (k0 + k3)*(3.*k2**2 + 4.*k1*k2 + 3.*k1**2) )[1:-1] / (30.*(k3 - k1)*(k2 - k0))[1:-1] ) return intt def _D0N2_Deg2_3_linear(k0, k1, k2, k3, k4): """ from 1d knots, return int_0^3 b**2(x) dx """ intt = np.zeros((k0.size,)) intt[1:-1] += ( (3.*k2 + 2.*k1 - 5.*k0)[1:-1]*(k2 - k1)[1:-1]**2 / (60.*(k3 - k1)*(k2 - k0))[1:-1] ) intt[:-2] += ( + (5.*k4 - 2.*k3 - 3.*k2)[:-2]*(k3 - k2)[:-2]**2 / (60.*(k4 - k2)*(k3 - k1))[:-2] ) intt[:-1] += ( + (5.*k3 - 4.*k2 - k1)[:-1]*(k2 - k1)[:-1]**2 / (20.*(k3 - k1)**2)[:-1] + (4.*k2 + k3 - 5.*k1)[:-1]*(k3 - k2)[:-1]**2 / (20.*(k3 - k1)**2)[:-1] ) return intt def _D0N2_Deg2_3_toroidal(k0, k1, k2, k3, k4): """ from 1d knots, return int_0^3 b**2(x) dx """ intt = np.zeros((k0.size,)) intt[:-1] = ( (k2 - k1)[:-1]**2 * (-10*k2**2 - 4*k1*k2 - k1**2 + 3*k3*(4*k2 + k1))[:-1] / (60.*(k3 - k1)**2)[:-1] + (k3 - k2)[:-1]**2 * (k3**2 + 4*k3*k2 + 10*k2**2 - 3*k1*(k3 + 4*k2))[:-1] / (60*(k3 - k1)**2)[:-1] ) intt[1:-1] = ( (k2 - k1)[1:-1]**2 * (2*k2**2 + 2*k1*k2 + k1**2 - k0*(3.*k2 + 2.*k1))[1:-1] / (60.*(k3 - k1)*(k2 - k0))[1:-1] ) intt[:-2] = ( + (k3 - k2)[:-2]**2 * (-k3**2 - 2*k3*k2 - 2*k2**2 + k4*(2*k3 + 3*k2))[:-2] / (60*(k4 - k2)*(k3 - k1))[:-2] ) return intt def _D0N2_Deg2_2_linear(k1, k2, k3, k4): """ from 1d knots, return int_0^3 b**2(x) dx """ intt = np.zeros((k1.size,)) intt[:-2] = ( (k3 - k2)[:-2]**3 / (30.*(k4 - k2)*(k3 - k1))[:-2] ) return intt def _D0N2_Deg2_2_toroidal(k1, k2, k3, k4): """ from 1d knots, return int_0^3 b**2(x) dx """ intt = np.zeros((k1.size,)) intt[:-2] = ( (k3 + k2)[:-2]*(k3 - k2)[:-2]**3 / (60.*(k4 - k2)[:-2]*(k3 - k1)[:-2]) ) return intt # ############################################################################# # ############################################################################# # Operator sub-routines: D1 - deg = 0 - discrete # ############################################################################# def _D1_Deg0( knotsx_mult=None, knotsy_mult=None, cropbs=None, cropbs_flat=None, nx=None, ny=None, nbs=None, centered=None, ): """ Discrete apprmixation of the gradient for pixels Centered when possible Non-centered otherwise """ # check input centered = _generic_check._check_var( centered, 'centered', types=bool, default=False, ) # initialize output datadR = np.zeros((nbs, nbs), dtype=float) datadZ = np.zeros((nbs, nbs), dtype=float) if cropbs is False: cropbs = np.ones((nx, ny), dtype=bool) # positions of centers centsR = 0.5*(knotsx_mult[1:] + knotsx_mult[:-1]) centsZ = 0.5*(knotsy_mult[1:] + knotsy_mult[:-1]) if centered is True: # Determine points that have 2 neighbours in R (centered) n2R = np.zeros(cropbs.shape, dtype=bool) n2R[1:-1, :] = cropbs[1:-1, :] & cropbs[2:, :] & cropbs[:-2, :] # points with a neighbours at higher R npR = cropbs & (~n2R) npR[-1, :] = False npR[:-1, :] &= cropbs[1:, :] # points with a neighbours at lower R nmR = cropbs & (~n2R) & (~npR) nmR[0, :] = False nmR[1:, :] &= cropbs[:-1, :] # Determine points that have 2 neighbours in Z (centered) n2Z =
np.zeros(cropbs.shape, dtype=bool)
numpy.zeros
import os import numpy as np from astropy.convolution import Gaussian2DKernel, convolve import bokeh.plotting as bkp from bokeh.models import (HoverTool, Whisker, CDSView, BooleanFilter, ColorBar, LinearColorMapper) from bokeh.models.tickers import SingleIntervalTicker, DatetimeTicker, FixedTicker from bokeh.layouts import column, gridplot from bokeh.palettes import Set1, Turbo256 from bokeh.io import export_png, curdoc from bokeh.themes import Theme import dash import dash_core_components as dcc import dash_html_components as html import dash.dependencies as ddep import plotly.io as pio import plotly.graph_objects as go WIDTH, HEIGHT = 1000, 500 FONTSIZE, NUMFONTSIZE = '16pt', '12pt' BOKEH_THEME_FILE = os.path.join(os.path.dirname(__file__), 'data', 'bokeh.yml') def color_generator(pallette=Set1[9]): i = -1 while True: i = (i + 1) % len(pallette) yield pallette[i] def plot_bokeh(self, filename=None, show=True, savepng=False): curdoc().theme = Theme(BOKEH_THEME_FILE) if filename is not None: if not filename.endswith('.html'): filename += '.html' else: pass bkp.output_file(filename) else: pass # Format the date correction self.data['utcstr'] = self.data['utc'].apply( lambda x:x.isoformat()[0:19]) # Put the dataframe in a useable form self.data['lower'] = self.data.radiance-self.data.sigma self.data['upper'] = self.data.radiance+self.data.sigma self.data['lattandeg'] = self.data.lattan*180/np.pi mask = self.data.alttan != self.data.alttan.max() if np.any(mask): m = self.data[self.data.alttan != self.data.alttan.max()].alttan.max() else: m = 1e10 col = np.interp(self.data.alttan,
np.linspace(0, m, 256)
numpy.linspace
import numpy as np import matplotlib as mpl import matplotlib.pyplot as plt import pybie2d from ipde.embedded_boundary import EmbeddedBoundary from ipde.ebdy_collection import EmbeddedBoundaryCollection, EmbeddedFunction from ipde.heavisides import SlepianMollifier from ipde.derivatives import fd_x_4, fd_y_4, fourier from ipde.solvers.multi_boundary.stokes import StokesSolver from qfs.two_d_qfs import QFS_Evaluator, QFS_Evaluator_Pressure from personal_utilities.arc_length_reparametrization import arc_length_parameterize star = pybie2d.misc.curve_descriptions.star GSB = pybie2d.boundaries.global_smooth_boundary.global_smooth_boundary.Global_Smooth_Boundary Grid = pybie2d.grid.Grid Stokes_Layer_Singular_Form = pybie2d.kernels.high_level.stokes.Stokes_Layer_Singular_Form Stokes_Layer_Form = pybie2d.kernels.high_level.stokes.Stokes_Layer_Form Stokes_Layer_Apply = pybie2d.kernels.high_level.stokes.Stokes_Layer_Apply Singular_DLP = lambda src, _: Stokes_Layer_Singular_Form(src, ifdipole=True) - 0.5*np.eye(2*src.N) Naive_SLP = lambda src, trg: Stokes_Layer_Form(src, trg, ifforce=True) Naive_DLP = lambda src, trg: Stokes_Layer_Form(src, trg, ifdipole=True) from pyfmmlib2d import SFMM def Layer_Apply(src, trg, f): s = src.get_stacked_boundary() t = trg.get_stacked_boundary() out = SFMM(source=s, target=t, forces=f*src.weights, compute_target_velocity=True, compute_target_stress=True) u = out['target']['u'] v = out['target']['v'] p = out['target']['p'] return u, v, p ns = [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 ] # velocity errors with no pressure correction errs_u = [1.09e-02, 4.77e-05, 6.65e-07, 7.98e-09, 9.75e-11, 1.27e-12, 2.13e-12, 2.58e-12, 2.59e-12, 1.87e-12 ] # velocity/pressure errors with pressure correction errs_u = [1.09e-02, 4.77e-05, 6.65e-07, 7.99e-09, 9.74e-11, 1.91e-12, 4.02e-11, 1.86e-11, 2.58e-12, 1.29e-10 ] errs_p = [3.17e-01, 3.15e-03, 6.55e-05, 1.26e-06, 1.83e-08, 3.25e-10, 3.45e-09, 3.62e-09, 5.55e-10, 1.58e-08 ] nb = 400 ng = int(nb/2) M = 4*int(nb/100) M = max(4, M) M = min(30, M) pad_zone = 0 verbose = True plot = True reparametrize = False slepian_r = 1.5*M solver_type = 'spectral' # fourth or spectral grid_upsample = 2 fix_pressure = True # get heaviside function MOL = SlepianMollifier(slepian_r) # construct boundary bdy = GSB(c=star(nb, a=0.1, f=5)) if reparametrize: bdy = GSB(*arc_length_parameterize(bdy.x, bdy.y)) bh = bdy.dt*bdy.speed.min() # construct a grid grid = Grid([-np.pi/2, np.pi/2], ng, [-np.pi/2, np.pi/2], ng, x_endpoints=[True, False], y_endpoints=[True, False]) # construct embedded boundary ebdy = EmbeddedBoundary(bdy, True, M, grid.xh*0.75, pad_zone=pad_zone, heaviside=MOL.step, qfs_tolerance=1e-14, qfs_fsuf=2) ebdys = [ebdy,] ebdyc = EmbeddedBoundaryCollection([ebdy,]) # register the grid print('\nRegistering the grid') ebdyc.register_grid(grid) # give ebdyc a bumpy function ebdyc.ready_bump(MOL.bump, (np.pi/2-ebdy.radial_width, np.pi/2-ebdy.radial_width), ebdyc[0].radial_width) ################################################################################ # Extract radial information from ebdy and construct annular solver # Testing the radial Stokes solver print(' Testing Radial Stokes Solver') a = 3.0 b = 2.0 p_a = 2.0 p_b = 1.0 sin = np.sin cos = np.cos esin = lambda x: np.exp(sin(x)) psix = lambda x, y: esin(a*x)*cos(b*y) psiy = lambda x, y: esin(a*x)*sin(b*y) u_function = lambda x, y: psix(x, y) v_function = lambda x, y: -a/b*cos(a*x)*psiy(x, y) p_function = lambda x, y: cos(p_a*x) + esin(p_b*y) fu_function = lambda x, y: (a**2*(sin(a*x)-cos(a*x)**2) + b**2)*psix(x, y) - p_a*sin(p_a*x) fv_function = lambda x, y: -a*b*cos(a*x)*psiy(x, y)*(1 + (a/b)**2*sin(a*x)*(3+sin(a*x))) + p_b*cos(p_b*y)*esin(p_b*y) fu = EmbeddedFunction(ebdyc) fv = EmbeddedFunction(ebdyc) ua = EmbeddedFunction(ebdyc) va = EmbeddedFunction(ebdyc) pa = EmbeddedFunction(ebdyc) fu.define_via_function(fu_function) fv.define_via_function(fv_function) ua.define_via_function(u_function) va.define_via_function(v_function) pa.define_via_function(p_function) bcu = u_function(ebdyc[0].bdy.x, ebdyc[0].bdy.y) bcv = v_function(ebdyc[0].bdy.x, ebdyc[0].bdy.y) # setup the solver solver = StokesSolver(ebdyc, solver_type=solver_type) u, v, p = solver(fu, fv, tol=1e-14, verbose=verbose, maxiter=200, restart=50) # this isn't correct yet because we haven't applied boundary conditions def Stokes_Pressure_Fix(src, trg): Nxx = trg.normal_x[:,None]*src.normal_x Nxy = trg.normal_x[:,None]*src.normal_y Nyx = trg.normal_y[:,None]*src.normal_x Nyy = trg.normal_y[:,None]*src.normal_y NN = np.array(np.bmat([[Nxx, Nxy], [Nyx, Nyy]])) return NN # SLP with pressure evaluation at 0th target point def PSLP(src, trg): out = np.zeros([2*trg.N+1, 2*src.N]) out[:-1,:] = Naive_SLP(src, trg) dx = trg.x[0] - src.x dy = trg.y[0] - src.y r2 = dx*dx + dy*dy sir2 = 0.5/r2/np.pi out[-1, 0*src.N:1*src.N] = dx*sir2*src.weights out[-1, 1*src.N:2*src.N] = dy*sir2*src.weights return out # DLP with pressure evaluation at 0th target point def PDLP(src, trg): out = np.zeros([2*trg.N+1, 2*src.N]) out[:-1,:] = Naive_DLP(src, trg) dx = trg.x[0] - src.x dy = trg.y[0] - src.y r2 = dx*dx + dy*dy rdotn = dx*src.normal_x + dy*src.normal_y ir2 = 1.0/r2 rdotnir4 = rdotn*ir2*ir2 out[-1, 0*src.N:1*src.N] = (-src.normal_x*ir2 + 2*rdotnir4*dx)*src.weights out[-1, 1*src.N:2*src.N] = (-src.normal_y*ir2 + 2*rdotnir4*dy)*src.weights out[-1] /= np.pi return out # SLP with pressure null-space correction; fixing scale to eval at 0th target point def Pressure_SLP(src, trg): out = np.zeros([2*trg.N+1, 2*src.N+1]) out[:-1,:-1] = Naive_SLP(src, trg) dx = trg.x[0] - src.x dy = trg.y[0] - src.y r2 = dx*dx + dy*dy sir2 = 0.5/r2/np.pi out[-1, 0*src.N:1*src.N] = dx*sir2*src.weights out[-1, 1*src.N:2*src.N] = dy*sir2*src.weights out[0*trg.N:1*trg.N, -1] = trg.normal_x*trg.weights out[1*trg.N:2*trg.N, -1] = trg.normal_y*trg.weights return out def Fixed_SLP(src, trg): return Naive_SLP(src, trg) + Stokes_Pressure_Fix(src, trg) A = Stokes_Layer_Singular_Form(bdy, ifdipole=True) - 0.5*np.eye(2*bdy.N) + Stokes_Pressure_Fix(bdy, bdy) bu = solver.get_boundary_values(u) bv = solver.get_boundary_values(v) buc = np.concatenate([bu, bv]) bc = np.concatenate([bcu, bcv]) tau = np.linalg.solve(A, bc-buc) if fix_pressure: qfs = QFS_Evaluator_Pressure(ebdy.bdy_qfs, True, [PDLP,], Pressure_SLP, form_b2c=False) sigma = qfs([tau,]) nsigma2 = int(sigma.size/2) out = Layer_Apply(ebdy.bdy_qfs.interior_source_bdy, ebdyc.grid_and_radial_pts, sigma.reshape(2, nsigma2)) else: qfs = QFS_Evaluator(ebdy.bdy_qfs, True, [Singular_DLP,], Fixed_SLP, on_surface=True, form_b2c=False, vector=True) sigma = qfs([tau,]) nsigma2 = int(sigma.size/2) out = Layer_Apply(ebdy.bdy_qfs.interior_source_bdy, ebdyc.grid_and_radial_pts, sigma.reshape(2, nsigma2)) u += out[0] v += out[1] p += out[2] # normalize p/pa pd = ebdyc[0].interpolate_radial_to_boundary(p[0]) pad = ebdyc[0].interpolate_radial_to_boundary(pa[0]) p -= np.sum(pd*bdy.weights)/np.sum(bdy.weights) pa -= np.sum(pad*bdy.weights)/np.sum(bdy.weights) # compute the error u_err =
np.abs(ua-u)
numpy.abs
#!/usr/bin/env python import sys import math import numpy as np import ast from scipy.signal import butter, lfilter, freqz, lfilter_zi, filtfilt #from sympy import Derivative import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from timeit import default_timer as timer import smoother import Vec3D import Bezier_curves def read_files(files): num_files = len(files) raw_coord_list = [] time_list = [] for file in files: if 'x_' in file or 'y_' in file: x,y,z,t = read_BT_file(file) else: x,y,z,t = read_OP_file(file) raw_coord_list.append([x,y,z]) time_list.append(t) return raw_coord_list,time_list def read_OP_file(file): #OpenPose case tmp = open(file, "r") fl = tmp.readlines() x = [] y = [] z = [] time = [] for i in range(len(fl)): if 'Wrist' in fl[i]: tmp1 = fl[i-2].split() tmp2 = fl[i-1].split() t = float(tmp1[-1])+(0.000000001*float(tmp2[-1])) time.append(t) x.append(float(fl[i+2][4:len(fl[i])-1])) y.append(float(fl[i+3][4:len(fl[i])-1])) z.append(float(fl[i+4][4:len(fl[i])-1])) time = np.array(time) - time[0] return x,y,z,time def read_BT_file(file): f = open(file, "r") fl = f.readlines() x = [] y = [] z = [] time = [] for i in range(len(fl)): if 'Frame' in fl[i]: if '[]' in fl[i+1]: continue temp = fl[i+1] if temp: temp = temp[3:] a = ast.literal_eval(temp) cox=[] coy=[] coz=[] for k in range(len(a)): cox.append(a[k][0][0]) coy.append(a[k][0][1]) coz.append(a[k][0][2]) if cox[8] != 0.0: time.append(float(fl[i-1][41:56])) x.append(cox[8]/1000) y.append(coy[8]/1000) z.append(coz[8]/1000) if time != []: time = np.array(time) - time[0] method = "BT" return x,y,z,time def print2D(raw_coords,smooth_coords,p=[],case=0,outliers=[],filtered=[]): f_info = 'Smoothed trajectory' fig,ax = plt.subplots() ax.set_aspect('equal') ax.grid('on') ax.scatter(np.array(raw_coords[0]),np.array(raw_coords[1]),alpha=0.3,label="Initial Points") if outliers != []: ax.scatter(np.array(outliers[0]),np.array(outliers[1]),alpha=0.3,label="Points after excluding outliers") if filtered != []: ax.scatter(np.array(filtered[0]),np.array(filtered[1]),alpha=0.3,label="Points after Filtering") if case == 0 or case == 1: if case == 0: plt.title('Single Bezier Smoothing') else: plt.title('Piecewise Bezier Smoothing') ax.scatter(np.array(smooth_coords[0]), np.array(smooth_coords[1]),linewidth=1.5,label='%s' %(f_info)) elif case == 2: ax.plot(np.array(smooth_coords[0]), np.array(smooth_coords[1]),linewidth=1.5,label='%s, p = %.4f' %(f_info,p)) plt.title('Cubic Spline Smoothing') ax.set_xlabel('X - axis (m)') ax.set_ylabel('Y - axis (m)') ax.legend() #manager = plt.get_current_fig_manager() #manager.window.showMaximized() plt.show() def printDemo2D(raw_coord_list,smooth_coord_list,num_files,f_info,case=-1,scatter=True): f_info = ['line','line','line','line','line','line','line','line','line','line','line','line'] p = [0,0,0,0] fig1, ax = plt.subplots() ax.scatter(np.array(raw_coord_list[0][0]),np.array(raw_coord_list[0][1]),alpha=0.3,label="Initial Points") if scatter: if num_files <= 2: for i in range(num_files): ax.scatter(np.array(raw_coord_list[i][0]),np.array(raw_coord_list[i][1]),alpha=0.3,label="Initial Points") ax.set_aspect('equal') ax.grid('on') print(case) if case == 0 or case == 1: if case == 0: plt.title('Single Bezier Smoothing') else: plt.title('Piecewise Bezier Smoothing') for i in range(num_files): ax.plot(np.array(smooth_coord_list[i][0]), np.array(smooth_coord_list[i][1]),linewidth=1.0,label='%s' %(f_info[i])) elif case == 2: for i in range(num_files): ax.plot(np.array(smooth_coord_list[i][0]), np.array(smooth_coord_list[i][1]),linewidth=1.0,label='%s' %(f_info[i])) plt.title('Cubic Spline Smoothing') else: for i in range(num_files): ax.plot(np.array(smooth_coord_list[i][0]), np.array(smooth_coord_list[i][1])) plt.title('Initial Trajectories WITHOUT smoothing') ax.set_xlabel('X - axis (m)') ax.set_ylabel('Y - axis (m)') ax.legend() manager = plt.get_current_fig_manager() manager.window.showMaximized() plt.show() def print3D(raw_coord_list,smooth_coord_l): fig = plt.figure() ax = fig.gca(projection='3d') ax.plot(np.array(smooth_coord_l[0]),np.array(smooth_coord_l[1]), np.array(smooth_coord_l[2])) ax.scatter(np.array(raw_coord_list[0]),np.array(raw_coord_list[1]), np.array(raw_coord_list[2])) ax.plot([0,0],[-0.5,.5],color='dimgrey') ax.plot([-.6,.6],[0,0],color='dimgrey') ax.plot([0,0],[0,0],[-0.1,0.3],color='dimgrey') ax.set_xlabel('X - axis') ax.set_ylabel('Y - axis') ax.set_zlabel('Z - axis') #ax.set_xlim([-0.6,0.6]) #ax.set_ylim([-0.6,0.6]) #ax.set_zlim([-0.1,0.3]) plt.show() #<--------------------- ButterWorth Filter ------------------------># def butter_lowpass(cutoff, fs, order=5): nyq = 0.5 * fs normal_cutoff = cutoff / nyq b, a = butter(order, normal_cutoff, btype='low', analog=False) return b, a def butter_lowpass_filter(data, cutoff, fs, order=5): b, a = butter_lowpass(cutoff, fs, order=order) y = filtfilt(b, a, data) return y #<-----------------------------------------------------------------># def filtering(x_raw,y_raw,z_raw,time,cutoff=1.5,plot=False): order = 6 fs = 20.0 # sample rate, Hz # desired cutoff frequency of the filter, Hz points = [] x = butter_lowpass_filter(x_raw, cutoff, fs, order) y = butter_lowpass_filter(y_raw, cutoff, fs, order) z = butter_lowpass_filter(z_raw, cutoff, fs, order) if plot: plotter(x_raw,x,time) return x,y,z,time #<----------------- Downsampling Auxiliaries ----------------------># def exclude_outliers(x_raw,y_raw,z_raw,time): mean_z, std_z = np.mean(z_raw), np.std(z_raw) mean_y, std_y = np.mean(y_raw),
np.std(y_raw)
numpy.std
import numpy as np import pandas as pd import logging import operator logging.basicConfig(level=logging.WARNING) test_input = [ [1, 1], [1, 6], [8, 3], [3, 4], [5, 5], [8, 9], ] data = np.array(test_input) input_file = "day06_input.txt" data =
np.loadtxt(input_file, delimiter=',', dtype=int)
numpy.loadtxt
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Thu Oct 12 17:11:30 2017 General Oceanographic tools NOTES: geostrophy is wrong.. need to go back and try with geopotentials? @author: manishdevana """ import numpy as np import pandas as pd import scipy.interpolate as interp import scipy import matplotlib.pyplot as plt import gsw import cmocean from netCDF4 import Dataset from matplotlib.collections import LineCollection import datetime as dt default_params = { 'bin_size': 200, 'overlap': 100, 'm_0': 1. / 300., # 1/lamda limits 'm_c': 1. / 10., # 1/lamda limits 'order': 1, 'nfft': 256, 'plot_data': 'on', 'transect_fig_size': (6, 4), 'reference pressure': 0, 'plot_check_adiabatic': False, 'plot_spectrums': False, } def loadCTD(ctd): """ Loads standard ctd data from a dictionary of ctd values """ S = ctd['s'] T = ctd['t'] p = ctd['p'] lat = ctd['lat'] lon = ctd['lon'] return S, T, p, lat, lon def loadLADCP(ladcp, full_set=False): """ Loads standard ctd data from a dictionary of ctd values """ U = ladcp['u'] V = ladcp['v'] p = ladcp['p_grid'] uup = ladcp['uup'] vup = ladcp['vup'] udo = ladcp['udo'] vdo = ladcp['vdo'] if full_set: return U, V, p, uup, vup, udo, vdo else: return U, V, p def depthTrim(data, z, maxDepth): """ Trims array to a max depth with corresponding depth or pressure grid """ idx = np.squeeze(z <= maxDepth) dataTrimmed = data[idx,:] return dataTrimmed, z[idx] def rhoFromCTD(S, T, p, lon, lat): """ Rho from measured salinity and temperature values """ SA = gsw.SA_from_SP(S, p, lon, lat) CT = gsw.CT_from_t(SA, T, p) rho = gsw.density.rho(SA, CT, p) return rho def sigma0FromCTD(S, T, p, lon, lat): """ Rho from measured salinity and temperature values """ SA = gsw.SA_from_SP(S, p, lon, lat) CT = gsw.CT_from_t(SA, T, p) rho = gsw.density.sigma0(SA, CT) return rho def gswN2(S, T, p, lat, lon, axis=0): SA = gsw.SA_from_SP(S, p, lon, lat) CT = gsw.CT_from_t(SA, T, p) N2, dump = gsw.stability.Nsquared(SA, CT, p, lat, axis=axis) N2poly = [] # for cast in N2.T: # fitrev = vert_polyFit(cast, p[:,1], 100, deg=1) # N2poly.append(fitrev) # # N2poly = np.vstack(N2poly).T bottom_row = np.full((1,21), np.nan) N2 = np.vstack((N2, bottom_row)) return N2 def bfrq(T, S, z, lat, lon): """ Calculate Bouyancy frequency from practical salinity and temperature. Converts to potential temperature and absolute salinity to calculate density """ SA = gsw.conversions.SA_from_SP(S, z, lon, lat) g = gsw.grav(lat, z) pdens = gsw.rho_t_exact(SA, T, z) dpdens = np.gradient(gsw.rho_t_exact(SA, T, z), axis=0) dz = np.gradient(z, axis=0) N2 = (g/pdens)*(dpdens/dz) return N2 def sliding_bins(data, p, bin_size, step=100): """ Bin data in sliding vertical bins with a specified overlap """ dz = np.nanmean(np.gradient(p)) bin_step = int(np.ceil(bin_size/dz)) step = int(np.ceil(step/dz)) # start point of each bin starts = np.arange(0, data.shape[0], step) idx = [] for start in starts: if start+bin_step <= data.shape[0]: idx.append(np.arange(start, start+bin_step, dtype=int)) return np.vstack(idx) def binData(data, p, bin_size): """ This function takes an array of hydrographic casts (each column representing an indivdual cast) and bins the data into half overlapping bins, returning only the indices i.e. no modifications are made to the original data """ # Pressure steps dp = np.nanmean(np.gradient(p)) steps = int(np.ceil(bin_size/dp)) starts = np.arange(0, data.shape[0], steps/2) idx = [] for i in starts: if i+steps <= data.shape[0]: idx.append(np.arange(i,i+steps, dtype=int)) idx = np.vstack(idx) return idx def depthAvgFlow(U, V, dz, depthRange=500): """ Depth averaged flow for flow from bottom up to depthrange. """ steps = int(np.ceil(depthRange/dz)) Umeans = np.empty(0) Vmeans = np.empty(0) for Ui, Vi in zip(U.T, V.T): mask = np.where(np.isfinite(Ui))[0] mask = mask[-1:np.max(mask)-steps:-1] Umeans = np.append(Umeans, np.nanmean(Ui[mask])) Vmeans = np.append(Vmeans, np.nanmean(Vi[mask])) return Umeans, Vmeans def bathyLoadNc(fname, lat, lon, add_buffer=True, buffer=.1): """ Loads bathymetric data from Netcdf file and extracts box around transect """ file = Dataset(fname) bathyDict = {key:file.variables[key][:] for key in file.variables.keys()} file.close() lat2 = bathyDict['lat'] lon2 = bathyDict['lon'] if add_buffer: # go back and actually add the buffer in latidx = np.where(np.logical_and(lat2 < np.nanmax(lat)+buffer\ , lat2 > np.nanmin(lat)-buffer))[0] lonidx = np.where(np.logical_and(lon2 < np.nanmax(lon)+buffer\ , lon2 > np.nanmin(lon)-buffer))[0] else: latidx = np.where(np.logical_and(lat2 < np.nanmax(lat)\ , lat2 > np.nanmin(lat)))[0] lonidx = np.where(np.logical_and(lon2 < np.nanmax(lon)\ , lon2 >
np.nanmin(lon)
numpy.nanmin
# Copyright (c) Facebook, Inc. and its affiliates # Copyright (c) MTRF authors import numpy as np MOCAP_POS_PALMDOWN = np.array([0.705, 0.185, 1.0]) MOCAP_QUAT_PALMDOWN = np.array([0, 1, 0, 0]) MOCAP_EULER_PALMDOWN = np.array([-np.pi, 0, 0]) ARM_QPOS_PALMDOWN = np.array([0.7, 0.133, -0.503, 1.067, -2.308, 0.976, 0.0973]) MOCAP_POS_PALMUP = np.array([0.705, 0.185, 1.0]) MOCAP_QUAT_PALMUP = np.array([1, 0, 0, 0]) MOCAP_EULER_PALMUP = np.array([0, 0, 0]) ARM_QPOS_PALMUP = np.array([0.758, 0.403, -0.953, 0.935, -2.019, 0.774, -2.811]) DEFAULT_MOCAP_RANGE =
np.array([.01, .01, .01, .25, .25, .25])
numpy.array
# This is a python port of the C++ code of qvality (https://github.com/percolator/percolator/) # It does not include the mix-max corrections, nor the pi0 corrections from __future__ import print_function import subprocess import tempfile import csv import os import sys import numpy as np import bisect tao = 2.0 / (1 + np.sqrt(5.0)) # inverse of golden section scaleAlpha = 1 stepEpsilon = 1e-8 gRange = 35.0 weightSlope = 1e1 VERB = 3 # pi0 estimation parameters numLambda = 100 maxLambda = 0.5 # this function returns PEPs in ascending order (lowest PEP first) def getQvaluesFromScores(targetScores, decoyScores, includePEPs = False, includeDecoys = False, tdcInput = False, pi0 = 1.0, plotRegressionCurve = False, numBins = 500): if type(targetScores) is not np.ndarray: targetScores = np.array(targetScores) if type(decoyScores) is not np.ndarray: decoyScores = np.array(decoyScores) if len(targetScores) == 0: sys.exit("ERROR: no target hits available for PEP calculation") if len(decoyScores) == 0: sys.exit("ERROR: no decoy hits available for PEP calculation") targetScores.sort() decoyScores.sort() allScores = np.concatenate((targetScores, decoyScores)) allScores.sort() medians, negatives, sizes = binData(allScores, decoyScores, numBins) medians, negatives, sizes = np.array(medians), np.array(negatives), np.array(sizes) # sort in descending order, highest score first if includeDecoys: evalScores = allScores[::-1] #evalScores = np.array([x[0] for x in combined]) else: evalScores = targetScores[::-1] if VERB > 3: print(medians, negatives, sizes) variables = roughnessPenaltyIRLS(medians, negatives, sizes) if pi0 < 1.0: factor = pi0 * float(len(targetScores)) / len(decoyScores) else: factor = 1.0 if plotRegressionCurve: scoresForPlot = evalScores.copy() probs = factor * np.exp(splineEval(evalScores, medians, variables)) probs = monotonize(probs) if plotRegressionCurve: import matplotlib.pyplot as plt plt.plot(medians, (1.0*negatives) / sizes, '*-') plt.plot(scoresForPlot, probs) plt.figure() plt.plot(medians, (1.0*negatives) / sizes, '*-') plt.plot(scoresForPlot, probs) plt.yscale("log") plt.show() return None, probs def getQvaluesFromPvalues(pvalues, includePEPs = False): targetScores = sorted(pvalues) pi0 = estimatePi0(targetScores) if VERB > 2: print("Estimating pi0 = %f" % pi0) step = 1.0 / 2.0 / len(pvalues) decoyScores = np.arange(step, 1 - step + 1e-10, step*2) targetScores = pvaluesToScores(targetScores) decoyScores = pvaluesToScores(decoyScores) return getQvaluesFromScores(targetScores, decoyScores, includePEPs, includeDecoys = False, pi0 = pi0) def pvaluesToScores(pvalues): return np.array(list(map(lambda x : -1*np.log(x / (1 - x)), pvalues))) def monotonize(peps): return np.minimum(1.0, np.maximum.accumulate(peps)) def binData(allScores, decoyScores, numBins): binEdges = list(map(lambda x : int(np.floor(x)), np.linspace(0, len(allScores), numBins+1))) bins = list() startIdx = 0 for endIdx in binEdges[1:]: if startIdx < endIdx: while endIdx < len(allScores) and allScores[endIdx-1] == allScores[endIdx]: endIdx += 1 bins.append(allScores[startIdx:endIdx]) startIdx = endIdx results = list() for b in bins: m = np.median(b) numNegs = np.searchsorted(decoyScores, b[-1], side = 'right') - np.searchsorted(decoyScores, b[0], side = 'left') numTot = len(b) results.append([m, numNegs, numTot]) return zip(*results) def roughnessPenaltyIRLS(medians, negatives, sizes): Q, R = initQR(medians) g, w, z, gamma, p, gnew = initg(negatives, sizes) variables = (Q, R, g, w, z, gamma, p, gnew) p1 = 1.0 - tao p2 = tao cv1 = evaluateSlope(medians, negatives, sizes, variables, -scaleAlpha * np.log(p1)) cv2 = evaluateSlope(medians, negatives, sizes, variables, -scaleAlpha * np.log(p2)) alpha = alphaLinearSearchBA(0.0, 1.0, p1, p2, cv1, cv2, medians, negatives, sizes, variables) if VERB > 3: print("Alpha selected to be", alpha) variables = iterativeReweightedLeastSquares(medians, negatives, sizes, variables, alpha) return variables def alphaLinearSearchBA(min_p, max_p, p1, p2, cv1, cv2, medians, negatives, sizes, variables): # Minimize Slope score # Use neg log of 0<p<1 so that we allow for searches 0<alpha<inf oldCV = 0.0 if cv2 < cv1: # keep point 2 min_p = p1 p1 = p2 p2 = min_p + tao * (max_p - min_p) oldCV = cv1 cv1 = cv2 cv2 = evaluateSlope(medians, negatives, sizes, variables, -1*scaleAlpha*np.log(p2)) if VERB > 3: print("New point with alpha=", -scaleAlpha*np.log(p2), ", giving slopeScore=", cv2) else: # keep point 1 max_p = p2 p2 = p1 p1 = min_p + (1 - tao) * (max_p - min_p) oldCV = cv2 cv2 = cv1 cv1 = evaluateSlope(medians, negatives, sizes, variables, -1*scaleAlpha*np.log(p1)) if VERB > 3: print("New point with alpha=", -scaleAlpha*np.log(p1), ", giving slopeScore=", cv1) if (oldCV - min(cv1, cv2)) / oldCV < 1e-5 or abs(p2 - p1) < 1e-10: return -scaleAlpha*np.log(p1) if cv1 < cv2 else -scaleAlpha*np.log(p2) return alphaLinearSearchBA(min_p, max_p, p1, p2, cv1, cv2, medians, negatives, sizes, variables) def evaluateSlope(medians, negatives, sizes, variables, alpha): # Calculate a spline for current alpha variables = iterativeReweightedLeastSquares(medians, negatives, sizes, variables, alpha) _, _, g, _, _, _, _, _ = variables # Find highest point (we only want to evaluate things to the right of that point) n = len(medians) mixg = 1 # Ignore 0 and n-1 maxg = g[mixg] for ix in range(mixg, n-1): if g[ix] >= maxg: maxg = g[ix] mixg = ix maxSlope = -10e6 slopeix = -1 for ix in range(mixg+1, n-2): slope = g[ix-1]-g[ix] if slope > maxSlope: maxSlope = slope slopeix = ix # Now score the fit based on a linear combination between # The bump area and alpha if VERB > 3: print("mixg=", mixg, ", maxg=", maxg, ", maxBA=", maxSlope, " at ix=", slopeix, ", alpha=", alpha) return maxSlope * weightSlope + alpha def iterativeReweightedLeastSquares(medians, negatives, sizes, variables, alpha, epsilon = stepEpsilon, maxiter = 50): Q, R, g, w, z, gamma, p, gnew = variables for it in range(maxiter): g = gnew p, z, w = calcPZW(g, negatives, sizes) aWiQ = np.multiply((alpha / w)[:,None], Q) M = R + Q.T.dot(aWiQ) gamma = np.linalg.solve(M, Q.T.dot(z)) gnew = z - aWiQ.dot(gamma) gnew = np.minimum(gRange, np.maximum(-1*gRange, gnew)) difference = g - gnew step = np.linalg.norm(difference) / len(medians) if VERB > 3: print("Step size:", step) if step < epsilon: return (Q, R, g, w, z, gamma, p, gnew) if VERB > 1: print("Warning: IRLS did not converge with maxIter =", maxiter) return (Q, R, g, w, z, gamma, p, gnew) def calcPZW(g, negatives, sizes, epsilon = 1e-15): e = np.exp(g) p = np.minimum(1 - epsilon, np.maximum(epsilon, e / (1+e))) w = np.maximum(epsilon, sizes * p * (1 - p)) z = np.minimum(gRange, np.maximum(-1*gRange, g + (negatives - p * sizes) / w)) return p, z, w def initg(negatives, sizes): n = len(negatives) g = np.zeros(n) w = np.zeros(n) z = np.ones(n) * 0.5 gamma = np.zeros(n-2) p = (negatives + 0.05) / (sizes + 0.1) gnew = np.log(p / (1-p)) return g, w, z, gamma, p, gnew def initQR(medians): n = len(medians) dx = medians[1:] - medians[:-1] Q = np.zeros((n, n -2)) Q[range(n-2), range(n-2)] = 1.0 / dx[:-1] Q[range(1,n-1), range(n-2)] = - 1.0 / dx[:-1] - 1.0 / dx[1:] Q[range(2,n), range(n-2)] = 1.0 / dx[1:] R = np.zeros((n-2, n-2)) R[range(n-2), range(n-2)] = (dx[:-1] + dx[1:]) / 3 R[range(n-3), range(1,n-2)] = dx[1:-1] / 6 R[range(1,n-2), range(n-3)] = dx[1:-1] / 6 return Q, R def splineEval(scores, medians, variables): _, _, g, _, _, gamma, _, _ = variables #score = np.exp(score) n = len(medians) rights = np.searchsorted(medians, scores) derr = (g[1] - g[0]) / (medians[1] - medians[0]) - (medians[1] - medians[0]) / 6 * gamma[0] scores[rights == 0] = g[0] - (medians[0] - scores[rights == 0]) * derr # reuse "scores" array to save memory derl = (g[-1] - g[-2]) / (medians[-1] - medians[-2]) + (medians[-1] - medians[-2]) / 6 * gamma[-3] scores[rights == n] = g[-1] + (scores[rights == n] - medians[-1]) * derl idxs = np.where((rights > 0) & (rights < n)) rights = rights[idxs] # reuse "rights" array to save memory hs = medians[rights] - medians[rights - 1] drs = medians[rights] - scores[idxs] dls = scores[idxs] - medians[rights - 1] gamr = np.zeros_like(hs) gamr[rights < (n - 1)] = gamma[rights[rights < (n - 1)] - 1] gaml = np.zeros_like(hs) gaml[rights > 1] = gamma[rights[rights > 1] - 2] scores[idxs] = (dls * g[rights] + drs * g[rights - 1]) / hs - dls * drs / 6 * ((1.0 + dls / hs) * gamr + (1.0 + drs / hs) * gaml) return scores def estimatePi0(pvalues, numBoot = 100): pvalues = np.array(pvalues) lambdas, pi0s = list(), list() numPvals = len(pvalues) for lambdaIdx in range(numLambda + 1): l = ((lambdaIdx + 1.0) / numLambda) * maxLambda startIdx = np.searchsorted(pvalues, l) Wl = numPvals - startIdx pi0 = Wl / (1.0 - l) / numPvals if pi0 > 0.0: lambdas.append(l) pi0s.append(pi0) if len(pi0s) == 0: print("Error in the input data: too good separation between target and decoy PSMs.\nImpossible to estimate pi0, setting pi0 = 1") return 1.0 minPi0 = min(pi0s) mse = [0.0] * len(pi0s) # Examine which lambda level is most stable under bootstrap for boot in range(numBoot): pBoot = bootstrap(pvalues) n = len(pBoot) for idx, l in enumerate(lambdas): startIdx =
np.searchsorted(pvalues, l)
numpy.searchsorted
from typing import Tuple from tunepy2.interfaces import AbstractValidator, AbstractLearner from tunepy2.internal import * import numpy as np from copy import deepcopy class CrossValidator(AbstractValidator): """ Trains a set number of models on subsets of the provided data and returns the average fitness of the trained models. """ def __init__(self, bins: int): """ Creates a new CrossValidator. :param bins: number of bins (must be at least 2) """ self._bins = bins self._feature_bins_train = [] self._feature_bins_test = [] self._label_bins_train = [] self._label_bins_test = [] def validate(self, x, y, model: AbstractLearner) -> float: """ Creates a fitness score for the provided model and data :param x: array-like dataset features :param y: array-like dataset labels :param model: untrained learner :return: a fitness score """ if self._bins < 2: raise CrossValidatorBinException if len(x) != len(y): raise DimensionsMismatchException self.build_test_bins(x, y) self.build_train_bins(x, y) total_fitness = 0.0 for index in range(self._bins): model_copy = deepcopy(model) model_copy.fit(self._feature_bins_train[index], self._label_bins_train[index]) model_copy.evaluate(self._label_bins_test[index], self._label_bins_train[index]) total_fitness += model_copy.fitness return float(total_fitness / self._bins) def build_test_bins(self, x, y): if len(x) != len(y): raise DimensionsMismatchException total_rows = len(y) extra_rows = total_rows % self._bins bin_size = int((total_rows - extra_rows) / self._bins) self._feature_bins_test = [None for _ in range(self._bins)] self._label_bins_test = [None for _ in range(self._bins)] for index in range(self._bins): start_slice = index * bin_size end_slice = (index + 1) * bin_size if index == self._bins - 1: self._feature_bins_test[index] = x[start_slice:] self._label_bins_test[index] = y[start_slice:] else: self._feature_bins_test[index] = x[start_slice:end_slice] self._label_bins_test[index] = y[start_slice:end_slice] def build_train_bins(self, x, y): if len(x) != len(y): raise DimensionsMismatchException total_rows = len(y) extra_rows = total_rows % self._bins bin_size = int((total_rows - extra_rows) / self._bins) self._feature_bins_train = [None for _ in range(self._bins)] self._label_bins_train = [None for _ in range(self._bins)] for index in range(self._bins): start_slice = index * bin_size end_slice = (index + 1) * bin_size if index == 0: self._feature_bins_train[index] = x[end_slice:] self._label_bins_train[index] = y[end_slice:] elif index == self._bins - 1: self._feature_bins_train[index] = x[:start_slice] self._label_bins_train[index] = y[:start_slice] else: self._feature_bins_train[index] =
np.concatenate((x[:start_slice], x[end_slice:]), axis=0)
numpy.concatenate