prompt
stringlengths
15
655k
completion
stringlengths
3
32.4k
api
stringlengths
8
52
from builtins import object import numpy as np from PIL import Image from struct import pack, unpack_from V = True class RLXMessageImage(object): def __init__(self, image): self.image = image class RLXMessage(object): # types: https://docs.python.org/3.5/library/struct.html#struct.pack_into TYPE_NONE = 0 TYPE_NULL = 1 TYPE_INT4 = 2 TYPE_STRING_UTF8 = 3 TYPE_DOUBLE = 4 TYPE_BOOLEAN = 5 TYPE_IMAGE = 6 TYPE_NDARRAY = 7 TYPE_LIST = 8 TYPE_UINT4 = 9 TYPE_INT64 = 10 TYPE_DICT = 11 pack_info = { type(None).__name__: {'id': TYPE_NULL, 'pack_func': lambda cls, *args: cls._pack_null(*args), 'unpack_func': lambda cls, *args: cls._unpack_null(*args)}, int.__name__: {'id': TYPE_INT4, 'pack_func': lambda cls, *args: cls._pack_int(*args), 'unpack_func': lambda cls, *args: cls._unpack_int(*args)}, 'int32': {'id': TYPE_INT4, 'pack_func': lambda cls, *args: cls._pack_int(*args), 'unpack_func': lambda cls, *args: cls._unpack_int(*args)}, 'int64': {'id': TYPE_INT64, 'pack_func': lambda cls, *args: cls._pack_int64(*args), 'unpack_func': lambda cls, *args: cls._unpack_int64(*args)}, str.__name__: {'id': TYPE_STRING_UTF8, 'pack_func': lambda cls, *args: cls._pack_string(*args), 'unpack_func': lambda cls, *args: cls._unpack_string(*args)}, float.__name__: {'id': TYPE_DOUBLE, 'pack_func': lambda cls, *args: cls._pack_double(*args), 'unpack_func': lambda cls, *args: cls._unpack_double(*args)}, 'float64': {'id': TYPE_DOUBLE, 'pack_func': lambda cls, *args: cls._pack_double(*args), 'unpack_func': lambda cls, *args: cls._unpack_double(*args)}, bool.__name__: {'id': TYPE_BOOLEAN, 'pack_func': lambda cls, *args: cls._pack_bool(*args), 'unpack_func': lambda cls, *args: cls._unpack_bool(*args)}, RLXMessageImage.__name__: {'id': TYPE_IMAGE, 'pack_func': lambda cls, *args: cls._pack_image(*args), 'unpack_func': lambda cls, *args: cls._unpack_image(*args)}, np.ndarray.__name__: {'id': TYPE_NDARRAY, 'pack_func': lambda cls, *args: cls._pack_ndarray(*args), 'unpack_func': lambda cls, *args: cls._unpack_ndarray(*args)}, list.__name__: {'id': TYPE_LIST, 'pack_func': lambda cls, *args: cls._pack_list(*args), 'unpack_func': lambda cls, *args: cls._unpack_list(*args)}, dict.__name__: {'id': TYPE_DICT, 'pack_func': lambda cls, *args: cls._pack_dict(*args), 'unpack_func': lambda cls, *args: cls._unpack_dict(*args)} } @classmethod def _pack_type(cls, type_id, buf, pack_type=True): if pack_type: buf += pack("B", type_id) @classmethod def _unpack_type(cls, buf, offset): return unpack_from("B", buf, offset)[0], offset+1 @classmethod def _pack_null(cls, value, buf, pack_type=True): cls._pack_type(cls.TYPE_NULL, buf, pack_type) @classmethod def _unpack_null(cls, buf, offset): return None, offset @classmethod def _pack_string(cls, value, buf, pack_type=True): cls._pack_type(cls.TYPE_STRING_UTF8, buf, pack_type) bval = bytearray(str(value).encode('UTF-8')) buf += pack("I", len(bval)) buf += bval @classmethod def _unpack_string(cls, buf, offset): reslen = unpack_from("I", buf, offset)[0] offset += 4 res = str(buf[offset:offset+reslen].decode('UTF-8')) offset += reslen return res, offset @classmethod def _pack_int(cls, value, buf, pack_type=True): cls._pack_type(cls.TYPE_INT4, buf, pack_type) buf += pack("i", value) @classmethod def _unpack_int(cls, buf, offset): res = unpack_from("i", buf, offset)[0] offset += 4 return res, offset @classmethod def _pack_int64(cls, value, buf, pack_type=True): cls._pack_type(cls.TYPE_INT64, buf, pack_type) buf += pack("q", value) @classmethod def _unpack_int64(cls, buf, offset): res = unpack_from("q", buf, offset)[0] offset += 8 return res, offset @classmethod def _pack_double(cls, value, buf, pack_type=True): cls._pack_type(cls.TYPE_DOUBLE, buf, pack_type) buf += pack("d", value) @classmethod def _unpack_double(cls, buf, offset): res = unpack_from("d", buf, offset)[0] offset += 8 return res, offset @classmethod def _pack_bool(cls, value, buf, pack_type=True): cls._pack_type(cls.TYPE_BOOLEAN, buf, pack_type) buf += pack("B", 1 if value else 0) @classmethod def _unpack_bool(cls, buf, offset): res = unpack_from("B", buf, offset)[0] res = res == 1 offset += 1 return res, offset @classmethod def _pack_image(cls, value, buf, pack_type=True): cls._pack_type(cls.TYPE_IMAGE, buf, pack_type) cls._pack_string(value.image.mode, buf, False) buf += pack("I", value.image.size[0]) buf += pack("I", value.image.size[1]) bval = value.image.tobytes() buf += pack("I", len(bval)) buf += bval @classmethod def _unpack_image(cls, buf, offset): mode, offset = cls._unpack_string(buf, offset) x = unpack_from("I", buf, offset)[0] offset += 4 y = unpack_from("I", buf, offset)[0] offset += 4 reslen = unpack_from("I", buf, offset)[0] offset += 4 img = Image.frombytes(mode, (x, y), bytes(buf[offset:offset+reslen])) # .convert("RGB") res = np.asarray(img) if img.mode in ["L", "RGB", "RGBA", "CMYK", "YCbCr", "LAB", "HSV"]: res = res.astype(np.float32) * (1.0 / 255.0) # print(res.shape) # res = np.reshape(res, (x, y, 1)) offset += reslen return res, offset @classmethod def _pack_ndarray(cls, value, buf, pack_type=True): cls._pack_type(cls.TYPE_NDARRAY, buf, pack_type) cls._pack_string(str(value.dtype), buf, False) buf += pack("I", len(value.shape)) for ns in value.shape: buf += pack("I", ns) bval = value.tobytes() buf += pack("I", len(bval)) buf += bval @classmethod def _unpack_ndarray(cls, buf, offset): dtype, offset = cls._unpack_string(buf, offset) shape_len = unpack_from("I", buf, offset)[0] offset += 4 shape = [] for i in range(0, shape_len): item = unpack_from("I", buf, offset)[0] offset += 4 shape.append(item) reslen = unpack_from("I", buf, offset)[0] offset += 4 res = np.frombuffer(buf[offset:offset+reslen], dtype=
np.dtype(dtype)
numpy.dtype
import numpy as np import random import tensorflow as tf import keras from keras.models import Sequential from keras.layers import Dense, Dropout, SpatialDropout1D from keras.layers import Activation, Flatten, Input, Masking from keras.layers import Convolution1D, MaxPooling1D from keras.utils import np_utils from keras.layers.normalization import BatchNormalization from keras import backend as K from sklearn.metrics import auc, roc_auc_score, roc_curve, precision_recall_curve from keras.layers.recurrent import LSTM, GRU from keras.layers.wrappers import Bidirectional from keras.layers.embeddings import Embedding from keras.preprocessing import sequence from keras import regularizers from keras import losses from keras import optimizers from keras.models import Model from crf import CRF from layer.PyramidPooling import PyramidPooling from keras.utils import multi_gpu_model from utils import generate_label, make_batch import time from sys import argv script, GOterm = argv def run_crf(score_map, co_exp_net, testing_size, theta): positive_unary_energy = 1 - score_map crf = CRF(testing_size, positive_unary_energy, co_exp_net, theta) pos_prob_crf = crf.inference(10) return pos_prob_crf #------------------------------------------------------------------------------- #Loading sequence data def load_sequence_data(): X_test_seq = np.load('../data/sequences/human_sequence_test_demo.npy') X_test_dm = np.load('../data/domains/human_domain_test_demo.npy') X_test_geneid = np.load('../data/id_lists/gene_list_test_demo.npy') X_test_isoid = np.load('../data/id_lists/isoform_list_test_demo.npy') return X_test_seq, X_test_dm, X_test_geneid, X_test_isoid #------------------------------------------------------------------------------- #Loading positive and negtive set def pos_gene_set(StudiedGOterm): positive_set = [] fr = open('../data/annotations/human_annotations.txt', 'r') while True: line = fr.readline() if not line: break line = line.split('\n')[0] gene = line.split('\t')[0] GO = line.split('\t')[1:] if StudiedGOterm in GO: positive_set.append(gene) fr.close() return positive_set #------------------------------------------------------------------------------- ###### main function ###### StudiedGOterm = GOterm print('Testing model for ' + StudiedGOterm) positive_Gene = pos_gene_set(StudiedGOterm) co_exp_net = np.load('../data/co-expression_net/coexp_net_unified_demo.npy') X_test_seq, X_test_dm, X_test_geneid, X_test_isoid = load_sequence_data() K_testing_size = X_test_seq.shape[0] seq_dim = X_test_seq.shape[1] dm_dim = X_test_dm.shape[1] print('Generating initial label...') y_test = generate_label(X_test_geneid, positive_Gene) ## Model architecture seq_input = Input(shape=(None, ), dtype='int32', name='seq_input') x1 = Embedding(input_dim = 8001, output_dim = 32)(seq_input) x1 = Convolution1D(filters = 64, kernel_size = 32, strides = 1, padding = 'valid', activation = 'relu')(x1) x1 = PyramidPooling([1, 2, 4, 8])(x1) x1 = Dense(32, kernel_regularizer=regularizers.l2(0.15))(x1) x1 = Activation('relu')(x1) x1 = Dropout(0.5)(x1) x1 = Dense(16, kernel_regularizer=regularizers.l2(0.15))(x1) seq_output = Activation('relu')(x1) domain_input = Input(shape=(dm_dim, ), dtype='int32', name='domain_input') x2 = Embedding(input_dim = 16155, output_dim = 32, input_length = dm_dim, mask_zero = True)(domain_input) domain_output = LSTM(16)(x2) x = keras.layers.concatenate([seq_output, domain_output]) x = Dense(16, kernel_regularizer=regularizers.l2(0.15))(x) x = Activation('relu')(x) x = Dropout(0.5)(x) x = Dense(1, kernel_regularizer=regularizers.l2(0.15))(x) output = Activation('sigmoid')(x) model = Model(inputs = [seq_input, domain_input], output = output) model.summary() adam = optimizers.Adam(lr = 0.002, beta_1 = 0.9, beta_2 = 0.999, epsilon = 1e-08, decay=0.01) model.compile(loss= losses.binary_crossentropy, optimizer= adam, metrics=['accuracy']) ## Load model model.load_weights('../saved_models/'+ StudiedGOterm + '_DNN.h5') theta = np.load('../saved_models/'+ StudiedGOterm +'_CRF_weights.npy') ## Testing tup_idx, tup_gp = make_batch(X_test_seq) y_pred =
np.array([])
numpy.array
######################################################################## # Copyright 2021, UChicago Argonne, LLC # # Licensed under the BSD-3 License (the "License"); you may not use # this file except in compliance with the License. You may obtain a # copy of the License at # # https://opensource.org/licenses/BSD-3-Clause # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. ######################################################################## """ date: 2021-11-02 author: <NAME> This module defines the Subchannel class to map coolant and structural subchannels in and between hexagonal fuel assemblies. """ # Still need to implement SC-PIN adjacency (N_sc x 3) ######################################################################## import numpy as np # _sqrt3over2 = 0.866025403784439 _invSqrt3over2 = 1.154700538379252 _sqrt3over3 = 0.5773502691896257 _sqrt3 = 1.7320508075688772 class Subchannel(object): """Map subchannels and neighbors in hexagonal fuel assemblies. Define the location and adjacency of the subchannels in the assembly. This is done by constructing a array mapping the the relative position of subchannels in the assembly. Like for the fuel pin labels, the subchannels are defined in concentric rings around the assembly. The array informs connections between subchannels and (1) other subchannels, and (2) adjacent fuel pins, as well as the X-Y position of the subchannel centroids. This object also defines the types of subchannels. Parameters ---------- n_ring : int Number of pin rings (incl. center pin) in the assembly pin_pitch : float Pin center-to-center pitch distance pin_diameter : float Diameter of pin outer clad pin_map : numpy.ndarray Mapping of pin IDs into array (from PinLattice) pin_xy : numpy.ndarray XY coordinates of pins in the assembly (from PinLattice) duct_ftf : list List of tuples containing inner and outer duct flat-to-flat distances test: bool (optional) If testing, do not run all the instantiation methods; instead, allow the object to be instantiated without calling them so they can be called incrementally and independently Attributes ---------- n_sc : dict Number of subchannels of each type in different assembly regions type : numpy.ndarray Type of each subchannel in the assembly sc_adj : numpy.ndarray Subchannel neighbors for each subchannel in the assembly pin_adj : numpy.ndarray Subchannel neighbors for each pin in the assembly sc_xy : numpy.ndarray Array (N_sc x 2) containing the X-Y coordinates of each subchannel in the assembly """ _edge_angle = [np.pi / 3, 0.0, 5 * np.pi / 3, 4 * np.pi / 3, np.pi, 2 * np.pi / 3] _corner_angle = [np.pi / 6, 11 * np.pi / 6, 3 * np.pi / 2, 7 * np.pi / 6, 5 * np.pi / 6, np.pi / 2] def __init__(self, n_ring, pin_pitch, pin_diameter, pin_map, pin_xy, duct_ftf, test=False): """Instantiate a subchannelSetup object.""" # Count the different types of subchannels self.n_sc = {} self.n_sc['coolant'] = {} self.n_sc['coolant']['interior'] = 6 * (n_ring - 1)**2 self.n_sc['coolant']['edge'] = (n_ring - 1) * 6 self.n_sc['coolant']['corner'] = 6 self.n_sc['coolant']['total'] = 6 * (n_ring**2 - n_ring + 1) # Assemblies with multiple ducts have the same number of SC # in each duct/bypass self.n_sc['duct'] = {} self.n_sc['duct']['edge'] = (n_ring - 1) * 6 self.n_sc['duct']['corner'] = 6 self.n_sc['duct']['total'] = 6 * n_ring # Bypass channels - if present, same number as duct channels self.n_sc['bypass'] = {} if len(duct_ftf) > 1: self.n_sc['bypass']['edge'] = self.n_sc['duct']['edge'] self.n_sc['bypass']['corner'] = 6 self.n_sc['bypass']['total'] = self.n_sc['duct']['total'] else: self.n_sc['bypass']['edge'] = 0 self.n_sc['bypass']['corner'] = 0 self.n_sc['bypass']['total'] = 0 # Get the total number of subchannels self.n_sc['total'] = (self.n_sc['coolant']['total'] + (2 * len(duct_ftf) - 1) * self.n_sc['duct']['total']) # -------------------------------------------------------------- if test: return # -------------------------------------------------------------- # Subchannel types: self.type = self.setup_sc_type(n_ring, duct_ftf) # Subchannel map self._int_map = self._make_interior_sc_map(n_ring) self._ext_map = self._make_exterior_sc_map(n_ring) self._map = np.add(self._int_map, self._ext_map) # Subchannel-subchannel adjacency # See method(s) below for more details and docstrings self.sc_adj = self.find_sc_sc_neighbors(n_ring, duct_ftf) # Subchannel-pin adjacency # (N_pin x 6); subchannels adjacent to each pin # See method(s) below for more details and docstrings self.pin_adj = self.find_pin_sc_neighbors(n_ring, pin_map) # Pin-subchannel adjacency # (N_coolant_sc x 6); pins adjacent to each coolant subchannel self.rev_pin_adj = self.reverse_pin_neighbors() # Subchannel X-Y position self.xy = self.find_sc_xy(n_ring, pin_pitch, pin_diameter, pin_xy, duct_ftf) # UPDATE ARRAYS TO PYTHON INDEXING (Type 1 --> Type 0) self.type -= 1 self.sc_adj -= 1 self.pin_adj -= 1 #################################################################### # SUBCHANNEL TYPE SETUP #################################################################### def setup_sc_type(self, n_ring, duct_ftf): """Set up the subchannel types. Parameters ---------- n_ring : int Number of pin rings (incl. center pin) in the assembly duct_ftf : list List of tuples containing the inner/outer flat-to-flat distances for each duct in the assembly Notes ----- Coolant: (1) Interior (2) Edge (3) Corner Duct: (4) Edge (5) Corner Bypass: (6) Edge (7) Corner (Inter-asm gap not attributed to any assembly) """ sc_type = np.ones(self.n_sc['coolant']['interior'], dtype="int") # Append coolant SC types 2 and 3 for each side ext = np.ones(int(n_ring - 1), dtype="int") * 2 ext = np.append(ext, np.array([3], dtype="int")) for side in range(0, 6): # loop over hex sides sc_type = np.append(sc_type, ext) # Append duct wall SC types 4,5 for each side; same number of # SC as for edge/corner coolant channels with same arrangement duct = ext + 2 bypass = duct + 2 for i in range(0, len(duct_ftf)): if i > 0: # bypass only occurs within outer ducts i > 0 for side in range(0, 6): sc_type = np.append(sc_type, bypass) for side in range(0, 6): # loop over hex sides sc_type = np.append(sc_type, duct) assert len(sc_type) == self.n_sc['total'] return sc_type #################################################################### # SUBCHANNEL MAP #################################################################### @classmethod def _make_interior_sc_map(cls, n_ring): """Generate a map of the interior subchannels. Parameters ---------- n_ring : int Number of pin rings (incl. center pin) in the assembly Returns ------- numpy.ndarray Map of the locations of the interior subchannels Notes ----- Walk a "ring" around an array labeling the interior-type subchannels that occupy the row-column positions. The shape of the rings is designed to show the subchannel-pin adjacency Example ------- For an assembly with 3 pin rings, there are two rings of interior subchannels (one between the first and second rings and another between the second and third rings). The final result for this system is obtained by filling in entries for each subchannel ring: _step 1 _step 2 Final result (around center pin) (between ring 2-3) Int. subchannel map | 00 00 00 00 | | 00 24 07 00 | | 00 24 07 00 | | 00 00 00 00 | | 22 23 08 09 | | 22 23 08 09 | | 00 06 01 00 | | 21 00 00 10 | | 21 06 01 10 | | 00 05 02 00 | + | 20 00 00 11 | = | 20 05 02 11 | | 00 04 03 00 | | 19 00 00 12 | | 19 04 03 12 | | 00 00 00 00 | | 18 17 14 13 | | 18 17 14 13 | | 00 00 00 00 | | 00 16 15 00 | | 00 16 15 00 | The map below distorts the array to illustrate the ring arrangement of subchannels around pins from the example. The pin locations are at the "x" marks; pick any "x" and you can see the subchannels that surround it. The 00 entries are shown to lie outside of the interior subchannel domain. X | 00 X 24 07 X 00 | |X 22 23 X 08 09 X| | 21 X 06 01 X 10 | |X 20 05 X 02 11 X| | 19 X 04 03 X 12 | |X 18 17 X 14 13 X| | 00 X 16 15 X 00 | X """ map = np.zeros((4 * n_ring - 1, 2 * n_ring), dtype="int") for ring in range(2, n_ring + 1): # Starting position loc = ((n_ring - ring) * 2 + 2, n_ring) sc_id = np.amax(map) + 1 map[loc] = sc_id # Begin walking through the ring loc, map, sc_id = cls._step(loc, 'down', map, sc_id) for i in range(0, ring - 2): # Walk down the weird side loc, map, sc_id = cls._step(loc, 'right', map, sc_id) loc, map, sc_id = cls._step(loc, 'down', map, sc_id) for i in range(0, ring - 2): loc, map, sc_id = cls._step(loc, 'down', map, sc_id) loc, map, sc_id = cls._step(loc, 'down', map, sc_id) for i in range(0, ring - 2): loc, map, sc_id = cls._step(loc, 'down', map, sc_id) loc, map, sc_id = cls._step(loc, 'left', map, sc_id) loc, map, sc_id = cls._step(loc, 'down', map, sc_id) loc, map, sc_id = cls._step(loc, 'left', map, sc_id) loc, map, sc_id = cls._step(loc, 'up', map, sc_id) for i in range(0, ring - 2): # Walk up the weird other side loc, map, sc_id = cls._step(loc, 'left', map, sc_id) loc, map, sc_id = cls._step(loc, 'up', map, sc_id) for i in range(0, ring - 2): loc, map, sc_id = cls._step(loc, 'up', map, sc_id) loc, map, sc_id = cls._step(loc, 'up', map, sc_id) for i in range(0, ring - 2): loc, map, sc_id = cls._step(loc, 'up', map, sc_id) loc, map, sc_id = cls._step(loc, 'right', map, sc_id) # Take the last _step up loc, map, sc_id = cls._step(loc, 'up', map, sc_id) return map def _make_exterior_sc_map(self, n_ring): r"""Generate map of the exterior (edge and corner) subchannels. Parameters ---------- n_ring : int Number of pin rings (incl. center pin) in the assembly Walk a "ring" around an array labeling the exterior-type subchannels that occupy the row-column positions. The exterior subchannels are the edge and corner subchannels. The shape of the rings is designed to show the subchannel-pin adjacency. Because each pin on the outer ring only touches 5 subchannels, this method is different from the one the labels the interior subchannels in that one of the six possible subchannel positions is skipped at each of the six hexagon faces. Returns ------- numpy.ndarray Array mapping the locations of the edge, corner subchannels Notes ----- If the positions around pin i are labeled clockwise: \ 6 | 1 / \ | / 5 > < 2 / | \ / 4 | 3 \ Then depending on which assembly hexagonal face pin i is located, one of the positions is skipped: skip pos. 6 skip pos. 1 (incl. 90 deg corner) /\ (incl. 30 deg. corner) / \ skip pos. 5 | | skip pos. 2 (incl. 150 deg corner) | | (incl. 330 deg. corner) \ / skip pos. 4 \/ skip pos. 3 (incl. 210 deg corner) (incl. 270 deg. corner) Example ------- For an assembly with 3 pin rings, subchannels 25-42 are exterior subchannels. The array that holds the pin IDs for this system is: | 00 00 00 42 00 00 | | 00 00 41 25 00 00 | | 39 40 00 00 26 00 | | 00 00 00 00 00 27 | | 38 00 00 00 00 28 | | 00 00 00 00 00 00 | | 37 00 00 00 00 29 | | 36 00 00 00 00 00 | | 00 35 00 00 31 30 | | 00 00 34 32 00 00 | | 00 00 33 00 00 00 | """ map = np.zeros((4 * n_ring - 1, 2 * n_ring), dtype="int") sc_id = self.n_sc['coolant']['interior'] loc = (1, n_ring - 1) # starting location for i in range(0, n_ring): # NE side: skip "sector 1" loc, map, sc_id = self._step(loc, 'right', map, sc_id) loc = self._move(loc, 'down') # need an extra step down loc = self._move(loc, 'up') # undo extra move from last iter for i in range(0, n_ring): # E side: skip "sector 2" loc, map, sc_id = self._step(loc, 'down', map, sc_id) loc = self._move(loc, 'down') # need an extra step down loc = self._move(loc, 'up') # undo extra move from last iter for i in range(0, n_ring): # SE side: skip "sector 3" loc, map, sc_id = self._step(loc, 'left', map, sc_id) loc = self._move(loc, 'down') # need an extra step right loc = self._move(loc, 'up') # undo extra move from last iter for i in range(0, n_ring): # SW side: skip "sector 4" loc, map, sc_id = self._step(loc, 'up', map, sc_id) loc = self._move(loc, 'left') # need an extra step loc = self._move(loc, 'right') # undo extra move from last iter for i in range(0, n_ring): # W side: skip "sector 5" loc, map, sc_id = self._step(loc, 'up', map, sc_id) loc = self._move(loc, 'up') # need an extra step loc = self._move(loc, 'down') # undo extra move from last iter for i in range(0, n_ring): # NW side: skip "sector 6" loc, map, sc_id = self._step(loc, 'right', map, sc_id) loc = self._move(loc, 'up') # need an extra step right return map @classmethod def _step(cls, loc, dir, map, sc_id): """Take a _step into an adjacent position and fill it Parameters ---------- loc : tuple The row,column entries of the current position dir : str The direction ("left", "right", "up", or "down") to _move map : numpy array The array map being updated sc_id : int The current subchannel ID number Returns ------- tuple Updated position numpy.ndarray Updated array of subchannel map int Updated subchannel ID """ new_loc = cls._move(loc, dir) new_scid = sc_id + 1 map[new_loc] = new_scid return new_loc, map, new_scid @staticmethod def _move(loc, dir): """_move to an adjacent array entry Parameters ---------- loc : tuple (row, col) of the current location in the array dir : str Direction ('left, right, up, down') in which to _step Returns ------- tuple (row, col) after taking _step """ if dir == 'left': loc = (loc[0], loc[1] - 1) elif dir == 'right': loc = (loc[0], loc[1] + 1) elif dir == 'up': loc = (loc[0] - 1, loc[1]) elif dir == 'down': loc = (loc[0] + 1, loc[1]) else: msg = 'Direction must be one of: [left, right, up, down]' raise ValueError(msg) return loc #################################################################### # SUBCHANNEL-SUBCHANNEL NEIGHBORS # For each subchannel, determine what subchannels are next to it #################################################################### def find_sc_sc_neighbors(self, n_ring, duct_ftf): """Define the connections between neighboring subchannels. Parameters ---------- n_ring : int Number of pin rings (incl. center pin) in the assembly duct_ftf : list List of tuples containing duct inner/outer flat-to-flat distances for each duct in the assembly Notes ----- The columns of the neighbors array imply the type of subchannel to which the connection is being established: Columns 1 - 3: Connection with interior subchannels Three columns are reserved for connections of a subchannel and an adjacent interior subchannel - for an interior subchannel in contact with three other interior subchannels, all three of these columns are filled. Edge subchannels connect with one interior subchannel. Corner subchannels do not touch any interior subchannels. Columns 4 - 5: Connection with edge subchannels Edge subchannels always touch two other edge subchannels, which may be corners; corner subchannels always touch two edge subchannels. Interior subchannels along the assembly periphery will be in contact with one edge subchannels. Columns 5 - 6: Connection with duct subchannels Columns 7 - 8: Connection with bypass subchannels (optional) Columns 9 - 10: Connection with outer duct (optional) ... """ # Array has 5 columns for interior coolant subchannels # First duct ring adds 2 cols; every subsequent duct ring # adds 4 more (2 for the duct, 2 for the bypass flow). ncol = 5 + 4 * len(duct_ftf) - 2 # 5 cols for coolant subchannels sc_sc = np.zeros((self.n_sc['total'], ncol), dtype="int") sc_sc = self._connect_int_sc(sc_sc) # print(sc_sc) sc_sc = self._connect_int_ext_sc(sc_sc) # print(sc_sc) sc_sc = self._connect_ext_sc(sc_sc) # print(sc_sc) sc_sc = self._connect_duct_bypass_sc(sc_sc, n_ring, duct_ftf) return sc_sc def _connect_int_sc(self, sc_adj): """Define the connections between interior subchannels Parameters ---------- sc_adj : numpy.ndarray Array defining subchannel neighbors Returns ------- numpy.ndarray Updated subchannel neighbor definitions """ for col in range(1, self._int_map.shape[1] - 1): # Vertical connections: at least one, at most two temp = self._int_map[:, col] temp = temp[temp != 0] if temp.size == 0: continue else: for i in range(1, len(temp) - 1): sc_adj[temp[i] - 1, 0] = temp[i - 1] sc_adj[temp[i] - 1, 1] = temp[i + 1] # first and last entries from "temp" are separate sc_adj[temp[0] - 1, 1] = temp[1] sc_adj[temp[-1] - 1, 0] = temp[-2] # Horizontal connections (at most 1); we are mapping the # connections between the current column ("j") and column # "j+1". The first row with a connection is the one for # which both column "j" and column "j+1" are nonzero. try: r1 = min(np.intersect1d((self._int_map[:, col] .nonzero()[0]), (self._int_map[:, col + 1] .nonzero()[0]))) except ValueError: # trying to compare with zero columns continue else: # make connection every other row for row in range(r1, self._int_map.shape[0], 2): sc_i = self._int_map[row, col] sc_ip1 = self._int_map[row, col + 1] if sc_i == 0 or sc_ip1 == 0: continue else: sc_adj[sc_i - 1, 2] = sc_ip1 sc_adj[sc_ip1 - 1, 2] = sc_i return sc_adj def _connect_int_ext_sc(self, sc_adj): """Define connections between interior and exterior subchannels. Connections between interior and exterior (edge, corner) subchannels are handled individually - this method figures out which interior subchannels are missing an interior connection; the position of the missing connection informs the direction in which to look in the assembly subchannel map for the adjacent edge subchannel. Parameters ---------- sc_adj : numpy.ndarray Array defining subchannel neighbors Returns ------- numpy.ndarray Updated subchannel neighbor definitions """ # Total number of missing interior-exterior subchannel # connections; connect only via interior-edge subchannels n_missing_total = self.n_sc['coolant']['edge'] idx_missing = 0 for i in range(0, self.n_sc['coolant']['interior']): # Find subchannel with missing value in map row, col = np.where(self._map == i + 1) # Looking for missing connections in the first three cols missing = np.where(sc_adj[i][:3] == 0) if len(missing[0]) > 0: # some missing, count that idx_missing += 1 for idx in range(0, len(missing[0])): if missing[0][idx] == 0: # look upward for value sc_adj[i, idx + 3] = self._map[row - 1, col] sc_adj[self._map[row - 1, col] - 1, idx] = i + 1 elif missing[0][idx] == 1: # look down sc_adj[i, idx + 3] = self._map[row + 1, col] sc_adj[self._map[row + 1, col] - 1, idx] = i + 1 else: # look horizontallyf # Because we're going clockwise, if we're on the # first half of subchannels w/ missing connections # we're on the RIGHT side of the asm if idx_missing < n_missing_total / 2: sc_adj[i, idx + 3] = self._map[row, col + 1] sc_adj[self._map[row, col + 1] - 1, idx] = i + 1 else: # SC on the left side of asm (higher numbers) sc_adj[i, idx + 3] = self._map[row, col - 1] sc_adj[self._map[row, col - 1] - 1, idx] = i + 1 return sc_adj def _connect_ext_sc(self, sc_adj): """Connect edge and corner subchannels to each other. Parameters ---------- sc_adj : numpy.ndarray Array defining subchannel neighbors Returns ------- numpy.ndarray Updated subchannel neighbor definitions Notes ----- Because they are arranged in a ring, each exterior subchannel touches the subchannels immediately in front and behind it """ ext_sc = np.arange(self.n_sc['coolant']['interior'] + 1, self.n_sc['coolant']['total'] + 1, 1) for i in range(-1, len(ext_sc) - 1): # backward connection: i+1 back to i sc_adj[ext_sc[i + 1] - 1, 3] = ext_sc[i] # forward connection: i forward to i+1 sc_adj[ext_sc[i] - 1, 4] = ext_sc[i + 1] return sc_adj def _connect_duct_bypass_sc(self, sc_adj, n_ring, duct_ftf): """Connect successive duct and bypass rings. Parameters ---------- sc_adj : numpy.ndarray Array defining subchannel neighbors n_ring : int Number of pin rings (incl. center pin) in the assembly duct_ftf : list List of tuple containing the inner/outer duct flat-to-flat distances for each duct in the assembly Returns ------- numpy.ndarray Updated subchannel neighbor definitions Notes ----- The duct and bypass subchannels are organized in rings; each ring has the same number of subchannels. This method connects each ring to the previous. """ sc = (np.arange(1, self.n_sc['duct']['total'] + 1, 1) + self.n_sc['coolant']['total']) for r in range(1, 2 * len(duct_ftf)): # r:ring # duct ring 1: cols 5-6; bypass ring 1: cols 7-8, ... # relationship between ring and cols: 2r+3, 2r+4 for i in range(-1, len(sc) - 1): # i is current sc # backward connection: i+1 back to i (ring r) sc_adj[sc[i + 1] - 1, 2 * r + 3] = sc[i] # forward connection: i forward to i+1 (ring r) sc_adj[sc[i] - 1, 2 * r + 4] = sc[i + 1] # inward connection: i+1 (ring r) to i+1 (ring r-1) sc_adj[sc[i + 1] - 1, 2 * r + 2] = \ sc[i + 1] - 6 * n_ring # outward connection i+1 (ring r-1) up to i+1 (ring r) sc_adj[sc[i] - 1 - 6 * n_ring, 2 * r + 3] = sc[i] sc = sc + 6 * n_ring return sc_adj #################################################################### # PIN-SUBCHANNEL ADJACENCY # Determine the subchannels that neighbor each pin #################################################################### def find_pin_sc_neighbors(self, n_ring, pin_map): """Determine the subchannels that neighbor each pin. When this method is called, the subchannel position map has already been created and is linked to the subchannel map for the pins by "stamping" a 3x2 cutout of the map centered where each pin should be. Parameters ---------- n_ring : int Number of pin rings (incl. center pin) in the assembly pin_map : numpy.ndarray Map of pin layout in the assembly Returns ------- numpy.ndarray Array (n_pin x 6) indicating the subchannels that neighbor each pin. """ pin_sc_adj = np.zeros((len(pin_map[pin_map != 0]), 6), dtype="int") for row in range(0, len(pin_map)): loc = (row, n_ring - row) # start loc for p in pin_map[row]: if p != 0: pin_sc_adj[p - 1, 0] = self._map[loc] pin_sc_adj[p - 1, 1] = self._map[loc[0] + 1, loc[1]] pin_sc_adj[p - 1, 2] = self._map[loc[0] + 2, loc[1]] pin_sc_adj[p - 1, 3] = self._map[loc[0] + 2, loc[1] - 1] pin_sc_adj[p - 1, 4] = self._map[loc[0] + 1, loc[1] - 1] pin_sc_adj[p - 1, 5] = self._map[loc[0], loc[1] - 1] loc = (loc[0] + 1, loc[1] + 1) # update location return pin_sc_adj def reverse_pin_neighbors(self): """Determine pins that are adjacent to each subchannel Parameters ---------- None Returns ------- numpy.ndarray Array (N_coolant_sc x 3) of adjacent pin indices for each subchannel; where less than 3 pins are adjacent, the array is filled with -1 which are later filtered Notes ----- This is the "inverse" of the "pin_adj" attribute and is useful for calculating the power assigned to each subchannel """ sc_nghbrs = [[] for i in range(self.n_sc['coolant']['total'])] for pin in range(len(self.pin_adj)): for sc in self.pin_adj[pin]: if sc > 0: sc_nghbrs[sc - 1].append(pin) for sc in sc_nghbrs: while len(sc) < 3: sc.append(-1) return np.array(sc_nghbrs) #################################################################### # SUBCHANNEL XY # Determine the XY positions of the centroid of each subchannel #################################################################### def find_sc_xy(self, n_ring, pin_pitch, pin_diameter, pin_xy, duct_ftf): """Determine X-Y coordinates of the subchannels. Parameters ---------- n_ring : int Number of pin rings (incl. center pin) in the assembly pin_pitch : float Pin center-to-center pitch distance pin_diameter : float Diameter of pin outer clad pin_xy : numpy.ndarray XY coordinates of pins in the assembly (from PinLattice) duct_ftf : list List of tuples containing the inner and outer flat-to- flat distances of the duct walls, ordered from inner to outer ducts. Returns ------- numpy.ndarray Array (N_sc x 2) of subchannel X-Y coordinates Notes ----- This method uses the subchannel-pin adjacency array and the X-Y coordinates of the pins to define the X-Y coordinate of each subchannel based on its location relative to each fuel pin, with the center pin located at (0, 0). """ # Preallocate sc_xy array. The coolant subchannel coords are # entered into this array; the duct and bypass subchannel # coords are appended to it. sc_xy =
np.zeros((self.n_sc['coolant']['total'], 2))
numpy.zeros
# DISCLAIMER: Code from the ddsp_timbre_transfer colab notebook demo # Copyright 2020 The DDSP Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings warnings.filterwarnings("ignore") import copy import os import time import crepe import ddsp import ddsp.training from ddsp.colab import colab_utils from ddsp.colab.colab_utils import ( auto_tune, detect_notes, fit_quantile_transform, get_tuning_factor, download, play, record, specplot, upload, DEFAULT_SAMPLE_RATE) import gin import librosa import matplotlib.pyplot as plt import numpy as np import pickle import tensorflow.compat.v2 as tf import tensorflow_datasets as tfds from scipy.io import wavfile from pydub import AudioSegment import tempfile def write_to_file(audio_file, model_dir, output, sample_rate = DEFAULT_SAMPLE_RATE): audio_float = audio_file_to_np(audio_file) cat_audio_float = tranfer(audio_float, model_dir, sample_rate=sample_rate) if len(cat_audio_float.shape) == 2: cat_audio_float = cat_audio_float[0] normalizer = float(np.iinfo(np.int16).max) cat_audio_int = np.array( np.asarray(cat_audio_float) * normalizer, dtype=np.int16) wavfile.write(output, sample_rate, cat_audio_int) def audio_file_to_np(audio_file, sample_rate=DEFAULT_SAMPLE_RATE, normalize_db=0.1): audio = AudioSegment.from_file(audio_file) audio.remove_dc_offset() if normalize_db is not None: audio.normalize(headroom=normalize_db) # Save to tempfile and load with librosa. with tempfile.NamedTemporaryFile(suffix='.wav') as temp_wav_file: fname = temp_wav_file.name audio.export(fname, format='wav') audio_np, unused_sr = librosa.load(fname, sr=sample_rate) return audio_np.astype(np.float32) def tranfer(audio, model_dir, sample_rate = DEFAULT_SAMPLE_RATE): audio = audio[np.newaxis, :] ddsp.spectral_ops.reset_crepe() audio_features = ddsp.training.metrics.compute_audio_features(audio) audio_features['loudness_db'] = audio_features['loudness_db'].astype(np.float32) audio_features_mod = None gin_file = os.path.join(model_dir, 'operative_config-0.gin') # Load the dataset statistics. DATASET_STATS = None dataset_stats_file = os.path.join(model_dir, 'dataset_statistics.pkl') try: if tf.io.gfile.exists(dataset_stats_file): with tf.io.gfile.GFile(dataset_stats_file, 'rb') as f: DATASET_STATS = pickle.load(f) except Exception as err: print('Loading dataset statistics from pickle failed: {}.'.format(err)) # Parse gin config, with gin.unlock_config(): gin.parse_config_file(gin_file, skip_unknown=True) # Assumes only one checkpoint in the folder, 'ckpt-[iter]`. ckpt_files = [f for f in tf.io.gfile.listdir(model_dir) if 'ckpt' in f] ckpt_name = ckpt_files[0].split('.')[0] ckpt = os.path.join(model_dir, ckpt_name) # Ensure dimensions and sampling rates are equal time_steps_train = gin.query_parameter('DefaultPreprocessor.time_steps') n_samples_train = gin.query_parameter('Additive.n_samples') hop_size = int(n_samples_train / time_steps_train) time_steps = int(audio.shape[1] / hop_size) n_samples = time_steps * hop_size gin_params = [ 'Additive.n_samples = {}'.format(n_samples), 'FilteredNoise.n_samples = {}'.format(n_samples), 'DefaultPreprocessor.time_steps = {}'.format(time_steps), 'oscillator_bank.use_angular_cumsum = True', # Avoids cumsum accumulation errors. ] with gin.unlock_config(): gin.parse_config(gin_params) # Trim all input vectors to correct lengths for key in ['f0_hz', 'f0_confidence', 'loudness_db']: audio_features[key] = audio_features[key][:time_steps] audio_features['audio'] = audio_features['audio'][:, :n_samples] # Set up the model just to predict audio given new conditioning model = ddsp.training.models.Autoencoder() model.restore(ckpt) # Build model by running a batch through it. start_time = time.time() _ = model(audio_features, training=False) threshold = 1 ADJUST = True quiet = 20 autotune = 0 pitch_shift = -1 loudness_shift = 3 audio_features_mod = {k: v.copy() for k, v in audio_features.items()} ## Helper functions. def shift_ld(audio_features, ld_shift=0.0): """Shift loudness by a number of ocatves.""" audio_features['loudness_db'] += ld_shift return audio_features def shift_f0(audio_features, pitch_shift=0.0): """Shift f0 by a number of ocatves.""" audio_features['f0_hz'] *= 2.0 ** (pitch_shift) audio_features['f0_hz'] = np.clip(audio_features['f0_hz'], 0.0, librosa.midi_to_hz(110.0)) return audio_features mask_on = None if ADJUST and DATASET_STATS is not None: # Detect sections that are "on". mask_on, note_on_value = detect_notes(audio_features['loudness_db'], audio_features['f0_confidence'], threshold) if np.any(mask_on): # Shift the pitch register. target_mean_pitch = DATASET_STATS['mean_pitch'] pitch = ddsp.core.hz_to_midi(audio_features['f0_hz']) mean_pitch = np.mean(pitch[mask_on]) p_diff = target_mean_pitch - mean_pitch p_diff_octave = p_diff / 12.0 round_fn = np.floor if p_diff_octave > 1.5 else np.ceil p_diff_octave = round_fn(p_diff_octave) audio_features_mod = shift_f0(audio_features_mod, p_diff_octave) # Quantile shift the note_on parts. _, loudness_norm = colab_utils.fit_quantile_transform( audio_features['loudness_db'], mask_on, inv_quantile=DATASET_STATS['quantile_transform']) # Turn down the note_off parts. mask_off =
np.logical_not(mask_on)
numpy.logical_not
from __future__ import print_function, division # pytorch imports import torch import torch.nn as nn import torch.optim as optim from torch.optim import lr_scheduler from torch.autograd import Variable import torchvision from torchvision import datasets, models, transforms from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils # helper imports from model_helper import load_checkpoint # image imports from skimage import io, transform from PIL import Image # general imports import re import os, glob import time import datetime import pdb from shutil import copyfile from shutil import rmtree from pathlib import Path # data science imports import pandas as pd import numpy as np import csv from sklearn.metrics import accuracy_score import statistics import cxr_dataset as CXR import eval_model as E use_gpu = torch.cuda.is_available() gpu_count = torch.cuda.device_count() print("Available GPU count:" + str(gpu_count)) def create_checkpoint(model, best_loss, epoch, PRETRAINED, FREEZE, TIME, MODEL, OPTIM, LR, STEP, TRAIN_LOSS, TRAIN_ACC, VAL_LOSS, VAL_ACC): """ Saves checkpoint of torchvision model during training. Args: model: torchvision model to be saved best_loss: best val loss achieved so far in training epoch: current epoch of training PRETRAINED: if use pretrained model FREEZE: if freeze base layer TIME: time training started (UNIX) MODEL: model name used OPTIM: optimizer name LR: learning rate value STEP: how much steps LR dropped TRAIN_LOSS: list of train loss TRAIN_ACC: list of train accuracy VAL_LOSS: list of val loss VAL_ACC: list of val accuracy NOTES: list of notes Returns: None """ print('saving') state = { 'model': model, 'best_loss': best_loss, 'epoch': epoch, 'rng_state': torch.get_rng_state(), 'LR': LR } for filename in glob.glob(f'results/{TIME}*'): os.remove(filename) path_name = f'results/{TIME}#{MODEL}_P-{PRETRAINED}_F-{FREEZE}_{OPTIM}_LR({LR})_every-{STEP}-step_VLOSS-{VAL_LOSS[-1]}_VACC-{VAL_ACC[-1]}' torch.save(model.state_dict(), path_name) return path_name def create_csv(DEBUG, PRETRAINED, FREEZE, TIME, MODEL, OPTIM, LR, STEP, TRAIN_LOSS, TRAIN_ACC, VAL_LOSS, VAL_ACC, NOTES, CHECKPOINT): """ Create training results in csv Args: DEBUG: didn't create csv if debugging mode PRETRAINED: if use pretrained model FREEZE: if freeze base layer TIME: time training started MODEL: model name used OPTIM: optimizer name LR: learning rate value STEP: how much steps LR dropped TRAIN_LOSS: list of train loss TRAIN_ACC: list of train accuracy VAL_LOSS: list of val loss VAL_ACC: list of val accuracy NOTES: list of notes CHECKPOINT: checkpoint name """ if not DEBUG: df = pd.DataFrame({ 'train_loss': TRAIN_LOSS, 'train_acc': TRAIN_ACC, 'val_loss': VAL_LOSS, 'val_acc': VAL_ACC, 'notes': NOTES }) df.to_csv(f'results_csv/{TIME}#{MODEL}_CP-{CHECKPOINT}_P-{PRETRAINED}_F-{FREEZE}_{OPTIM}_LR({LR})_every-{STEP}-steps.csv') def get_distillate_output(distillate_results, distillate_index, outputs_row): return torch.from_numpy(distillate_results[distillate_index][:outputs_row, :]).float().cuda() def train_model( model, criterion, optimizer, optim_name, LR, num_epochs, dataloaders, dataset_sizes, weight_decay, scheduler, debug_mode, pretrained, freeze, checkpoint, distillate_time): """ Fine tunes torchvision model to NIH CXR data. Args: model: torchvision model to be finetuned criterion: loss criterion optimizer: optimizer to use in training optim_name: optimizer name used to decay and drop LR: learning rate num_epochs: continue training up to this many epochs dataloaders: pytorch train and val dataloaders dataset_sizes: length of train and val datasets weight_decay: weight decay parameter scheduler: set learning rate to drop after x steps debug_mode: if true then no log and checkpoint will be created pretrained: for logging name only freeze: for logging name only checkpoint: for logging name only distillate_time: distillate_time file Returns: model: trained torchvision model best_epoch: epoch on which best model val loss was obtained """ checkpoint_path = '' since = time.time() start_epoch = 1 best_loss = 999999 best_epoch = -1 last_train_loss = -1 csv_time = datetime.datetime.now().isoformat() csv_model = model.name csv_optim = optim_name csv_lr = LR csv_step = scheduler.step_size if not os.path.exists('results_csv'): os.makedirs('results_csv') # List used for csv later list_train_loss = [] list_train_acc = [] list_val_loss = [] list_val_acc = [] list_notes = [] create_csv(debug_mode, pretrained, freeze, csv_time, csv_model, csv_optim, csv_lr, csv_step, list_train_loss, list_train_acc, list_val_loss, list_val_acc, list_notes, checkpoint) # iterate over epochs for epoch in range(start_epoch, num_epochs + 1): print(f'Epoch {epoch}/{num_epochs}') # training and val status training_print = 0 val_print = 0 # loading bar loading_bar = '' dataloaders_length = len(dataloaders['train']) + len(dataloaders['val']) for i in range(dataloaders_length): loading_bar += '-' distillate_index = 0 if distillate_time != '': distillate_results = np.load(f'results_distillation/d-{distillate_time}.npy') # set model to train or eval mode based on whether we are in train or # val; necessary to get correct predictions given batchnorm for phase in ['train', 'val']: if phase == 'train': model.train(True) else: model.train(False) running_loss = 0.0 total_done = 0 # reset output_acc output_acc = 0 num_of_steps = 0 # iterate over all data in train/val dataloader: for data in dataloaders[phase]: inputs, labels = data batch_size = inputs.shape[0] # loading bar progress loading_bar = f'={loading_bar}' loading_bar = loading_bar[:dataloaders_length] print(f'Steps: {loading_bar}', end='\r') # =========================================================== # train datasets if phase == "train": for i in range(10): optimizer.zero_grad() inp = inputs.clone()[:, i] inp = inp.cuda() labels = labels.cuda() num_of_steps += 1 outputs = model(inp) if(isinstance(outputs, list)): current_loss = [] # get output pred and get accuracy for output_item in outputs: if distillate_time != '': current_loss.append(criterion(outputs, get_distillate_output(distillate_results, distillate_index, outputs.shape[0]))) else: current_loss.append(criterion(output_item, labels)) combined_pred = torch.max(outputs[-1], dim=1)[1] output_acc += accuracy_score(labels.cpu().data.numpy(), combined_pred.cpu().data.numpy()) loss = sum(current_loss[0:-1]) / len(current_loss[0:-1]) + (current_loss[-1] / 2) else: # get output pred and get accuracy if distillate_time != '': loss = criterion(outputs, get_distillate_output(distillate_results, distillate_index, outputs.shape[0])) else: loss = criterion(outputs, labels) outputs_pred = torch.max(outputs, dim=1)[1] output_acc += accuracy_score(labels.cpu().data.numpy(), outputs_pred.cpu().data.numpy()) loss.backward() optimizer.step() running_loss += loss.item() * batch_size # =========================================================== # val datasets else: optimizer.zero_grad() inputs = inputs.cuda() labels = labels.cuda() outputs = model(inputs) if(isinstance(outputs, list)): current_loss = [] # get output pred and get accuracy for output_item in outputs: if distillate_time != '': current_loss.append(criterion(outputs, get_distillate_output(distillate_results, distillate_index, outputs.shape[0]))) else: current_loss.append(criterion(output_item, labels)) combined_pred = torch.max(outputs[-1], dim=1)[1] output_acc += accuracy_score(labels.cpu().data.numpy(), combined_pred.cpu().data.numpy()) loss = sum(current_loss[0:-1]) / len(current_loss[0:-1]) + (current_loss[-1] / 2) else: if distillate_time != '': loss = criterion(outputs, get_distillate_output(distillate_results, distillate_index, outputs.shape[0])) else: loss = criterion(outputs, labels) # get output pred and get accuracy outputs_pred = torch.max(outputs, dim=1)[1] output_acc += accuracy_score(labels.cpu().data.numpy(), outputs_pred.cpu().data.numpy()) running_loss += loss.item() * batch_size distillate_index += 1 # =========================================================== if phase == 'train': output_acc = output_acc / len(dataloaders[phase]) / 10 epoch_loss = running_loss / dataset_sizes[phase] / 10 last_train_loss = epoch_loss training_print = f'{phase} epoch {epoch}: acc {output_acc:.2f} loss {epoch_loss:.4f} with data size {dataset_sizes[phase]}' list_train_loss.append(f'{epoch_loss:.4f}') list_train_acc.append(f'{output_acc:.2f}') else: output_acc = output_acc / len(dataloaders[phase]) epoch_loss = running_loss / dataset_sizes[phase] val_print = f'{phase} epoch {epoch}: acc {output_acc:.2f} loss {epoch_loss:.4f} with data size {dataset_sizes[phase]}' list_val_loss.append(f'{epoch_loss:.4f}') list_val_acc.append(f'{output_acc:.2f}') print('') # checkpoint model if has best val loss yet if phase == 'val' and epoch_loss < best_loss and not debug_mode: best_loss = epoch_loss best_epoch = epoch checkpoint_path = create_checkpoint(model, best_loss, epoch, pretrained, freeze, since, csv_model, csv_optim, csv_lr, csv_step, list_train_loss, list_train_acc, list_val_loss, list_val_acc) # log training and validation loss over each epoch if phase == 'val': with open("results/log_train", 'a') as logfile: logwriter = csv.writer(logfile, delimiter=',') if(epoch == 1): logwriter.writerow(["epoch", "train_loss", "val_loss"]) logwriter.writerow([epoch, last_train_loss, epoch_loss]) # decay learning rate every x steps scheduler.step() if epoch % scheduler.step_size == 0: lr_new = '{0:.20f}'.format(optimizer.param_groups[0]['lr']).rstrip('0') optim_print = f'created new {optim_name} optimizer with LR: {lr_new}' print(optim_print) list_notes.append(optim_print) else: list_notes.append('') # update csv report create_csv(debug_mode, pretrained, freeze, csv_time, csv_model, csv_optim, csv_lr, csv_step, list_train_loss, list_train_acc, list_val_loss, list_val_acc, list_notes, checkpoint) print(training_print) print(val_print) data = {'train_loss': list_train_loss, 'train_acc': list_train_acc} total_done += batch_size if(total_done % (100 * batch_size) == 0): print("completed " + str(total_done) + " so far in epoch") # break if no val loss improvement in 3 epochs # if ((epoch - best_epoch) >= 3): # print("no improvement in 3 epochs, break") # break time_elapsed = time.time() - since print('Training complete in {:.0f}m {:.0f}s'.format( time_elapsed // 60, time_elapsed % 60)) # load best model weights to return # checkpoint_best = torch.load(checkpoint_path) # model = checkpoint_best['model'] return model, best_epoch def train_cnn(MODEL_NAME, PRETRAINED, FREEZE, EPOCHS, BATCH_SIZE, N_LABELS, OPTIMIZERS, PATH_TO_IMAGES, LR, WEIGHT_DECAY, LR_DECAY_STEPS, DEBUG_MODE, CHECKPOINT_PATH = '', DISTILLATE_WITH = ''): """ Train torchvision model to NIH data given high level hyperparameters. Args: MODEL_NAME: model name PRETRAINED: if model pretrained FREEZE: model layer frozen or not EPOCHS: epochs iteration BATCH_SIZE: number of batch data per training N_LABELS: number of class labels OPTIMIZERS: optimizers used PATH_TO_IMAGES: path to NIH images LR: learning rate WEIGHT_DECAY: weight decay parameter for SGD LR_DECAY_STEPS: how many steps before LR decayed and dropped DEBUG_MODE: if true then no log will be created CHECKPOINT_PATH: load checkpoint path DISTILLATE_WITH: distillate the model with Returns: # preds: torchvision model predictions on test fold with ground truth for comparison # aucs: AUCs for each train,test tuple """ if not os.path.exists('results'): os.makedirs('results') # use imagenet mean,std for normalization mean = [0.485, 0.456, 0.406] std = [0.229, 0.224, 0.225] normalize = transforms.Normalize(mean=mean, std=std) # define torchvision transforms data_transforms = { 'train': transforms.Compose([ transforms.Resize(256), transforms.TenCrop(224), transforms.Lambda(lambda crops: torch.stack([normalize(transforms.ToTensor()(crop)) for crop in crops])) ]), 'val': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std) ]), 'test': transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize(mean, std) ]) } # create train/val dataloaders transformed_datasets = {x: datasets.ImageFolder(os.path.join(PATH_TO_IMAGES, x), data_transforms[x]) for x in ['train', 'val', 'test']} dataloaders = {x: torch.utils.data.DataLoader(transformed_datasets[x], batch_size=BATCH_SIZE, shuffle=True, num_workers=0) for x in ['train', 'val']} # please do not attempt to train without GPU as will take excessively long if not use_gpu: raise ValueError("Error, requires GPU") # Check model used import modified_densenet import modified_alexnet model = (models.densenet121(pretrained=PRETRAINED) if MODEL_NAME == 'densenet' else modified_densenet.densenet121(type=MODEL_NAME, pretrained=PRETRAINED) if MODEL_NAME == 'va-densenet' or MODEL_NAME == 'reva-densenet' or MODEL_NAME == 'fp-densenet' or MODEL_NAME == 'start-densenet' or MODEL_NAME == 'every-densenet' or MODEL_NAME == 'sedensenet' or MODEL_NAME == 'triplelossdensenet' else models.alexnet(pretrained=PRETRAINED) if MODEL_NAME == 'alexnet' else modified_alexnet.alexnet(type=MODEL_NAME, pretrained=PRETRAINED) if MODEL_NAME == 'va-alexnet' or MODEL_NAME == 'reva-alexnet' or MODEL_NAME == 'fp-alexnet' or MODEL_NAME == 'start-alexnet' else models.resnet152(pretrained=PRETRAINED)if MODEL_NAME == 'resnet' else models.vgg16(pretrained=PRETRAINED)if MODEL_NAME == 'VGG' else models.vgg16_bn(pretrained=PRETRAINED)if MODEL_NAME == 'VGG_Bn' else '') # get num_ftrs based on model name num_ftrs = (model.classifier.in_features if MODEL_NAME == 'densenet' or MODEL_NAME == 'va-densenet' or MODEL_NAME == 'reva-densenet' or MODEL_NAME == 'fp-densenet' or MODEL_NAME == 'start-densenet' or MODEL_NAME == 'every-densenet' or MODEL_NAME == 'sedensenet' or MODEL_NAME == 'triplelossdensenet' else model.classifier[6].in_features if MODEL_NAME == 'alexnet' or MODEL_NAME == 'va-alexnet' or MODEL_NAME == 'reva-alexnet' or MODEL_NAME == 'fp-alexnet' or MODEL_NAME == 'start-alexnet' or MODEL_NAME == 'VGG' or MODEL_NAME == 'VGG_Bn' else model.fc.in_features if MODEL_NAME == 'resnet' else model.fc3.in_features if MODEL_NAME == 'small_va' else '') # change classifier class to N_LABELS if (MODEL_NAME == 'densenet' or MODEL_NAME == 'va-densenet' or MODEL_NAME == 'reva-densenet' or MODEL_NAME == 'fp-densenet' or MODEL_NAME == 'start-densenet' or MODEL_NAME == 'every-densenet' or MODEL_NAME == 'sedensenet' or MODEL_NAME == 'triplelossdensenet'): model.classifier = nn.Linear(num_ftrs, N_LABELS) elif (MODEL_NAME == 'alexnet' or MODEL_NAME == 'va-alexnet' or MODEL_NAME == 'va-alexnet' or MODEL_NAME == 'reva-alexnet' or MODEL_NAME == 'fp-alexnet' or MODEL_NAME == 'start-alexnet' or MODEL_NAME == 'VGG' or MODEL_NAME == 'VGG_Bn'): model.classifier[6] = nn.Linear(num_ftrs, N_LABELS) elif (MODEL_NAME == 'resnet'): model.fc = nn.Linear(num_ftrs, N_LABELS) else: raise ValueError("Error model name") if CHECKPOINT_PATH != '': model = load_checkpoint(model, CHECKPOINT_PATH) # show params to learn if FREEZE: for name, param in model.named_parameters(): attention_pattern = re.compile(r'^(conv2d1x1|valinear|transconv|start|every|se_).+$') classifier_pattern = re.compile(r'^(classifier(?!\.\d)|classifier\.6|fc).+$') if attention_pattern.match(name): param.requires_grad = True elif classifier_pattern.match(name) and CHECKPOINT_PATH == '': param.requires_grad = True else: param.requires_grad = False if FREEZE: print('Params to learn:') for name, param in model.named_parameters(): if param.requires_grad == True: print(name) print('==================================') # Distillate distillate_time = '' if DISTILLATE_WITH != '': print(f'Distillate with {DISTILLATE_WITH}') distillate_time = datetime.datetime.now().isoformat() model_distillate = models.densenet121(pretrained=PRETRAINED) num_ftrs_distillate = model_distillate.classifier.in_features model_distillate.classifier = nn.Linear(num_ftrs_distillate, N_LABELS) model_distillate = load_checkpoint(model_distillate, DISTILLATE_WITH) print('Loaded checkpoint for distillation') model_distillate = model_distillate.cuda() loading_bar = '' dataloaders_length = len(dataloaders['train']) + len(dataloaders['val']) for i in range(dataloaders_length): loading_bar += '-' for phase in ['train', 'val']: for data in dataloaders[phase]: loading_bar = f'={loading_bar}' loading_bar = loading_bar[:dataloaders_length] print(f'Distillating: {loading_bar}', end='\r') inputs, labels = data if phase == 'train': for i in range(10): inp = inputs.clone()[:, i] inp = inp.cuda() labels = labels.cuda() outputs = model_distillate(inp).cpu().data.numpy() if len(outputs) != BATCH_SIZE: outputs_padding =
np.zeros((BATCH_SIZE, N_LABELS))
numpy.zeros
# -*- coding: utf-8 -*- """ last mod 5/14/19 """ import numpy as np import numba as nb from time import time @nb.njit(nb.i8(nb.b1[:,:,:,:], nb.i8[:], nb.i8, nb.i8, nb.i8[:])) def orderIdxsBySplit(X, idxs, start, end, split): """ partition array[start:end] so that split_directions==True are on left """ j = start for i in xrange(start, end): xi = idxs[i] if np.any(X[xi,split[0]:split[3],split[1]:split[4],split[2]:split[5]]): idxs[i] = idxs[j] idxs[j] = xi j += 1 return j @nb.njit(nb.f8(nb.f8,nb.f8,nb.f8,nb.f8)) def calcScore(gradin,hessin,gradsum,hesssum): gradout = gradsum - gradin hessout = hesssum - hessin return gradin*gradin/max(hessin, 1e-10) + gradout*gradout/max(hessout, 1e-10) #def makeIntegral(X2): # X,Y,Z,N = X2.shape # for x,y,n in np.ndindex(X,Y,N): # count = 0 # for z in range(Z): # count += X2[x,y,z,n] # X2[x,y,z,n] = count # for x,z,n in np.ndindex(X,Z,N): # count = 0 # for y in range(Y): # count += X2[x,y,z,n] # X2[x,y,z,n] = count # for y,z,n in np.ndindex(Y,Z,N): # count = 0 # for x in range(X): # count += X2[x,y,z,n] # X2[x,y,z,n] = count #@nb.njit(nb.void(nb.i2[:,:,:,:], nb.i2[:], nb.f8[:], nb.f8[:], nb.i8[:], # nb.f8[:], nb.i8[:,:])) #def findSplitIntegral(X, storage, grad, hess, leafidxs, scores, splits): # xfull, yfull, zfull, n = X.shape # gradsum = np.sum(grad[leafidxs]) # hesssum = np.sum(hess[leafidxs]) # K = scores.shape[0] # worstbestscore = scores[0] # for xmin, ymin, zmin in np.ndindex(xfull, yfull, zfull): # xmaxcount = xfull - xmin # ymaxcount = yfull - ymin # zmaxcount = zfull - zmin # for xmax, ymax, zmax in np.ndindex(xmaxcount, ymaxcount, zmaxcount): # xmax += xmin+1 # ymax += ymin+1 # zmax += zmin+1 # gradin = 0. # hessin = 0. # storage[:] = (X[xmax,ymax,zmax] - X[xmax,ymax,zmin] - # X[xmax,ymin,zmax] - X[xmin,ymax,zmax] + # X[xmax,ymin,zmin] + X[xmin,ymax,zmin] + # X[xmin,ymin,zmax] - X[xmin,ymin,zmin]) # gradin = np.sum(grad[storage>0]) # hessin = np.sum(hess[storage>0]) # if hessin > 0 and hessin < hesssum: # gradout = gradsum - gradin # hessout = hesssum - hessin # score = gradin*gradin/hessin + gradout*gradout/hessout # if score > worstbestscore: # lastk = 0 # for k in range(1,K): # if score < scores[k]: # break # scores[lastk] = scores[k] # splits[lastk] = splits[k] # lastk = k # scores[lastk] = score # splits[lastk] = (xmin,ymin,zmin,xmax,ymax,zmax) # worstbestscore = scores[0] @nb.njit(nb.void(nb.b1[:,:,:,:], nb.b1[:,:,:], nb.f8[:], nb.f8[:], nb.i8[:], nb.f8[:], nb.i8[:,:])) def findSplitInitial(X, storage, grad, hess, leafidxs, scores, splits): """ X = [LxWxHxn] binary feature grid grad, hess = [n] float target values for GBM tries all possible integer 3d boxes in LxWxH """ xfull, yfull, zfull, n = X.shape # variables to perform efficient calculations of the GB split cost gradsum = np.sum(grad[leafidxs]) hesssum = np.sum(hess[leafidxs]) # worstbestscore = gradsum*gradsum/hesssum K = scores.shape[0] worstbestscore = scores[0] for xmin, ymin, zmin in np.ndindex(xfull, yfull, zfull): xmaxcount = xfull - xmin ymaxcount = yfull - ymin zmaxcount = zfull - zmin storage[ymin:yfull+1,zmin:zfull+1, leafidxs] = False for xmax, ymax, zmax in np.ndindex(xmaxcount, ymaxcount, zmaxcount): xmax += xmin+1 ymax += ymin+1 zmax += zmin+1 gradin = 0. hessin = 0. for xidx in leafidxs: here = (storage[ymax,zmax,xidx] | storage[ymax-1,zmax,xidx] | storage[ymax,zmax-1,xidx] | X[xmax-1,ymax-1,zmax-1,xidx]) # current storage[ymax,zmax] has info on :xmax-1,:ymax,:zmax # will never use this again, can replace with :xmax,:ymax,:zmax storage[ymax,zmax,xidx] = here if here: gradin += grad[xidx] hessin += hess[xidx] score = calcScore(gradin, hessin, gradsum, hesssum) if score > worstbestscore: # heapless O(k) update of k-best scores lastk = 0 for k in xrange(1,K): if score < scores[k]: break scores[lastk] = scores[k] splits[lastk] = splits[k] lastk = k scores[lastk] = score splits[lastk] = (xmin,ymin,zmin,xmax,ymax,zmax) worstbestscore = scores[0] @nb.njit(nb.void(nb.b1[:,:,:,:], nb.f8[:], nb.f8[:], nb.i8[:], nb.i8[:,:], nb.f8[:], nb.i8[:,:])) def findSplitPartial2(X, grad, hess, leafidxs, boxes, scores, splits): """ X = [nxLxWxH] binary feature grid grad, hess = [n] float target values for GBM tries various intervals """ n, xfull, yfull, zfull = X.shape maxxmin, maxymin, maxzmin, minxmax, minymax, minzmax = boxes[0] minxmin, minymin, minzmin, maxxmax, maxymax, maxzmax = boxes[1] leaf_in = 0 prevgradin = 0. prevhessin = 0. for leafidx in xrange(leafidxs.shape[0]): xidx = leafidxs[leafidx] if np.any(X[xidx, maxxmin:minxmax, maxymin:minymax, maxzmin:minzmax]): leafidxs[leafidx] = leafidxs[leaf_in] leafidxs[leaf_in] = xidx leaf_in += 1 prevgradin += grad[xidx] prevhessin += hess[xidx] leaf_out = leafidxs.shape[0] for leafidx in xrange(leafidxs.shape[0]-1, leaf_in-1, -1): xidx = leafidxs[leafidx] if not np.any(X[xidx, minxmin:maxxmax, minymin:maxymax, minzmin:maxzmax]): leaf_out -= 1 leafidxs[leafidx] = leafidxs[leaf_out] leafidxs[leaf_out] = xidx gradsum = np.sum(grad[leafidxs]) hesssum = np.sum(hess[leafidxs]) K = scores.shape[0] worstbestscore = scores[0] thissplit = np.zeros(6, dtype=np.int64) xmin, ymin, zmin, xmax, ymax, zmax = boxes[0] bestchangescore = calcScore(prevgradin, prevhessin, gradsum, hesssum) for addition in xrange(25): bestchange = 0 if xmin > minxmin: gradin = prevgradin hessin = prevhessin for xidx in leafidxs[leaf_in:leaf_out]: if np.any(X[xidx, xmin-1, ymin:ymax, zmin:zmax]): gradin += grad[xidx] hessin += hess[xidx] changescore = calcScore(gradin, hessin, gradsum, hesssum) if changescore > bestchangescore: bestchange = 1 bestchangescore = changescore if ymin > minymin: gradin = prevgradin hessin = prevhessin for xidx in leafidxs[leaf_in:leaf_out]: if np.any(X[xidx, xmin:xmax, ymin-1, zmin:zmax]): gradin += grad[xidx] hessin += hess[xidx] changescore = calcScore(gradin, hessin, gradsum, hesssum) if changescore > bestchangescore: bestchange = 2 bestchangescore = changescore if zmin > minzmin: gradin = prevgradin hessin = prevhessin for xidx in leafidxs[leaf_in:leaf_out]: if np.any(X[xidx, xmin:xmax, ymin:ymax, zmin-1]): gradin += grad[xidx] hessin += hess[xidx] changescore = calcScore(gradin, hessin, gradsum, hesssum) if changescore > bestchangescore: bestchange = 3 bestchangescore = changescore if xmax < maxxmax: gradin = prevgradin hessin = prevhessin for xidx in leafidxs[leaf_in:leaf_out]: if np.any(X[xidx, xmax, ymin:ymax, zmin:zmax]): gradin += grad[xidx] hessin += hess[xidx] changescore = calcScore(gradin, hessin, gradsum, hesssum) if changescore > bestchangescore: bestchange = 4 bestchangescore = changescore if ymax < maxymax: gradin = prevgradin hessin = prevhessin for xidx in leafidxs[leaf_in:leaf_out]: if
np.any(X[xidx, xmin:xmax, ymax, zmin:zmax])
numpy.any
# Experiment that generates several sets of networks of varying CH-divergence types # then trains an msbm of a single type in a "consensus" type of way. Then we report the # average rand_index and average entropy of the z variables, which are indicators of how well # the algorithm is learning the true model. import os, sys import pickle import pdb import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors def main(): stats_url = os.path.join('stats', 'stats_' + 'detectability.pickle') print("generating plots from: {}".format(stats_url)) statistics = pickle.load(open(stats_url, 'rb'), encoding='latin1') #box plot CH-div vs Rand Index #We create a list with the 8 boxes data1 = np.array(statistics['ari_Z']) fil = np.array([(chd>0.55)&(chd<0.65) for chd in statistics['CH_div']]) fil2 = np.array([n == 250 for n in statistics['N']]) data1 = data1[fil&fil2].flatten() data2 = np.array(statistics['ari_Z']) fil = np.array([(chd>0.65)&(chd<0.75) for chd in statistics['CH_div']]) fil2 = np.array([n == 250 for n in statistics['N']]) data2 = data2[fil&fil2].flatten() data3 = np.array(statistics['ari_Z']) fil = np.array([(chd>0.75)&(chd< 0.85) for chd in statistics['CH_div']]) fil2 = np.array([n == 250 for n in statistics['N']]) data3 = data3[fil&fil2].flatten() data4 = np.array(statistics['ari_Z']) fil = np.array([(chd>0.85)&(chd<0.95) for chd in statistics['CH_div']]) fil2 = np.array([n == 250 for n in statistics['N']]) data4 = data4[fil&fil2].flatten() data5 = np.array(statistics['ari_Z']) fil = np.array([(chd>0.95)&(chd<1.05) for chd in statistics['CH_div']]) fil2 = np.array([n == 250 for n in statistics['N']]) data5 = data5[fil&fil2].flatten() data6 = np.array(statistics['ari_Z']) fil = np.array([(chd>1.05)&(chd<1.15) for chd in statistics['CH_div']]) fil2 = np.array([n == 250 for n in statistics['N']]) data6 = data6[fil&fil2].flatten() data7 = np.array(statistics['ari_Z']) fil = np.array([(chd>1.15)&(chd<1.25) for chd in statistics['CH_div']]) fil2 = np.array([n == 250 for n in statistics['N']]) data7 = data7[fil&fil2].flatten() data8 = np.array(statistics['ari_Z']) fil = np.array([(chd>1.25)&(chd<1.35) for chd in statistics['CH_div']]) fil2 = np.array([n == 250 for n in statistics['N']]) data8 = data8[fil&fil2].flatten() data = [data1, data2, data3, data4, data5, data6, data7, data8] plt.boxplot(data) plt.xticks(range(1,9),[0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3], fontsize=10) plt.xlabel('CH Divergence') plt.ylabel('Adj. Rand Index') plt.title("CH-div vs Average Rand Index", fontsize= 16) plot_file = os.path.join('plots', 'plot_' + 'boxplot_ch.svg') plt.savefig(plot_file, format="svg") plt.clf() #we make a boxplot for N vs ari_Z data1 = np.array(statistics['ari_Z']) fil = np.array([n == 75 for n in statistics['N']]) fil2= np.array([(chd>1.00)&(chd<1.10) for chd in statistics['CH_div']]) data1 = data1[fil&fil2].flatten() data2 = np.array(statistics['ari_Z']) fil =
np.array([n == 151 for n in statistics['N']])
numpy.array
# ------------------------------------------------------------------- # # This Python code samples the sample space $\chi$ of the normalized # # maximum likelihood (NML) for the Dirichlet model which is used to # # plot Figure 2 in the text: # # Minimum Description Length codes are critical # # <NAME>; <NAME>; <NAME> # # ------------------------------------------------------------------- # # Some basic imports from __future__ import division import numpy as np # Import necessary libraries from collections import Counter from mpmath import mp, log, loggamma, exp, fmul, fsum, power # Configure mpmath to calculate quantities up to 100 decimal places mp.dps = 100 mp.pretty = True # Define function to calculate $\hat{H}[k]$ and $\hat{H}[s]$ def calculate_HofKS(mapping_ks): ks_counts = np.asarray(Counter(mapping_ks).most_common()) positive_values = np.where(ks_counts[:,0]>0)[0] kq, mq = ks_counts[:,0][positive_values], ks_counts[:,1][positive_values] assert np.sum(kq*mq)==np.sum(mapping_ks) M = float(np.sum(kq*mq)) return -np.sum(((kq*mq)/M)*np.log2((kq*mq)/M))/np.log2(M), -np.sum(((kq*mq)/M)*np.log2(kq/M))/np.log2(M) # Define function needed for the Monte Carlo step which takes care of $k=0$ def dk_term(k): k = float(k) if k!=0: return k*log(k) - loggamma(k+1) else: return - loggamma(k+1) # Fix the parameters of the Dirichlet model # $\rho = M/S_size$ where $S_size$ is the size of the state space and $M$ is the number of samples rho = 10 S_size = 1000 M = rho*S_size output_name = 'dirichlet_M1e3_S1000' # Initialize the vector $k_s$ which the frequency of the state $s$ in the sample $\hat{s}$ # Here, we initialize by creating (almost) equally sampled states k_sample = np.floor(M/S_size)*np.ones(S_size) remainder = int(M -
np.sum(k_sample)
numpy.sum
from model_utils import get_det2_features import os import numpy as np from utils import add_overlay from detectron2.data import MetadataCatalog from detectron2.utils.visualizer import Visualizer from detectron2.config import get_cfg from detectron2.engine import DefaultPredictor import json import panoramic_camera as camera from skimage.transform import PiecewiseAffineTransform, warp from scipy.ndimage import map_coordinates import sys import cv2 import matplotlib usage = ''' Re-run a history of actions of an agent. Change DATA_PATH and DETECTRON2_YAML with your paths to those files. argv[1] : json file for the history argv[2] : 0 or 1 whether to use detectron for demo argv[3] : degrees between successive FoVs make sure it is equal to the agent's original FoV increment examples: PYTHONPATH=.. python simulate_history.py exp-random/samples/1575_randomagent.json 1 15 PYTHONPATH=.. python simulate_history.py exp-random/samples/2100_randomagent.json 0 15 ''' DATA_PATH = '../py_bottom_up_attention/demo/data/genome/1600-400-20' DETECTRON2_YAML = '../py_bottom_up_attention/configs/VG-Detection/faster_rcnn_R_101_C4_caffe.yaml' matplotlib.use('Agg') if __name__ == '__main__': if len(sys.argv) != 4: print(usage) quit(1) history = json.load(open(sys.argv[1], 'r')) detectron = int(sys.argv[2]) increment = int(sys.argv[3]) if detectron: data_path = DATA_PATH vg_classes = [] with open(os.path.join(data_path, 'objects_vocab.txt')) as f: for object in f.readlines(): vg_classes.append(object.split(',')[0].lower().strip()) MetadataCatalog.get("vg").thing_classes = vg_classes yaml_file = DETECTRON2_YAML cfg = get_cfg() cfg.merge_from_file(yaml_file ) cfg.MODEL.RPN.POST_NMS_TOPK_TEST = 300 cfg.MODEL.ROI_HEADS.NMS_THRESH_TEST = 0.6 cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.6 # VG Weight cfg.MODEL.WEIGHTS = "http://nlp.cs.unc.edu/models/faster_rcnn_from_caffe.pkl" predictor = DefaultPredictor(cfg) refer = ".".join([" ".join(refexp) for refexp in history['refexps']]) n_steps = len(history['lng_diffs']) image_path = history['img_src'] waldo_position_lng = history['gt_lng'] waldo_position_lat = history['gt_lat'] start_lng = history['start_lat'] start_lat = history['start_lng'] pred_lng = history['pred_lng'] pred_lat = history['pred_lat'] pred_x = history['pred_x'] pred_y = history['pred_y'] print("image_path", image_path) print(refer) print("start:", start_lat, start_lng) print("gt:", waldo_position_lat, waldo_position_lng) print("pred:", pred_lat, pred_lng) print("pred xy:", pred_x, pred_y) print('n_steps:', n_steps) full_w, full_h = 4552, 2276 canvas = np.zeros((full_h, full_w, 3), dtype='uint8') fov_canvas = np.ones((full_h, full_w, 3), dtype='uint8')*255 size = 20 x = int(full_w * ((waldo_position_lng + 180)/360.0)) y = int(full_h - full_h * ((waldo_position_lat + 90)/180.0)) print('lat lng:', waldo_position_lat, waldo_position_lng) print('x y:', x, y) fov_canvas[y-size:y+size, x-size:x+size, 2] = 255. fov_canvas[y-size:y+size, x-size:x+size, :2] = 0 original = cv2.imread(image_path, cv2.IMREAD_COLOR) cam = camera.PanoramicCamera() cam.load_img(image_path, convert_color=False) waldo_img = cv2.resize(cv2.imread( '../data/waldo.png', cv2.IMREAD_COLOR), (60, 40), interpolation=cv2.INTER_AREA) target_img = cv2.resize(cv2.imread( '../data/target.png', cv2.IMREAD_COLOR), (60, 60), interpolation=cv2.INTER_AREA) nn = 0 lng = -180 # start_lng lat = 75 # start_lat objects = [] THRESHOLD = 10 font = cv2.FONT_HERSHEY_SIMPLEX while True: cam.look(lng, lat) img = cam.get_image() lng_map, lat_map = cam.get_pixel_map() mapping = np.stack((lng_map, lat_map), axis=2) points = [] poly_transform = np.stack((lng_map.reshape(400*400, 1), lat_map.reshape(400*400, 1)), axis=1).reshape(400*400, 2) poly = [] w, h = mapping.shape[0], mapping.shape[1] debug = [] for ii in range(h): poly.append([mapping[ii][0][0], mapping[ii][0][1]]) debug.append(poly[0]) debug.append(poly[-1]) for ii in range(w): poly.append([mapping[w-1][ii][0], mapping[w-1][ii][1]]) debug.append(poly[-1]) for ii in range(h): poly.append([mapping[h-1-ii][w-1][0], mapping[h-1-ii][w-1][1]]) debug.append(poly[-1]) for ii in range(w): poly.append([mapping[0][w-1-ii][0], mapping[0][w-1-ii][1]]) debug.append(poly[-1]) points.append(np.array(poly)) color = np.uint8(np.random.rand(3) * 255).tolist() # orig_lng, orig_lat = lng, lat # ylats = np.arange(-3, 3, 1) # xlngs = np.arange(-3, 3, 1) # for ylat in ylats: # for xlng in xlngs: # cam.look(lng + xlng, lat + ylat) # cover_pixel_map = cam.get_map() # c_lng_map, c_lat_map = cam.get_pixel_map() # canvas[c_lat_map, c_lng_map, :] = original[c_lat_map, c_lng_map, :] # canvas[lat_map, lng_map, :] = original[lat_map, lng_map, :] #canvas = cv2.blur(canvas, (3, 3)) # tform = PiecewiseAffineTransform() # tform.estimate(poly_transform, poly_transform) # out_rows = original.shape[0] # out_cols = original.shape[1] # canvas = warp(original, tform, output_shape=(out_rows, out_cols)) inverse_mapx, inverse_mapy = cam.get_inverse_map() dummy = np.zeros((full_h, full_w), dtype='uint8') m1 = np.greater(inverse_mapx, dummy) m2 = np.greater(inverse_mapy, dummy) m = np.logical_or(m1, m2).astype(np.uint8)*255 mask =
np.stack((m,)*3, axis=-1)
numpy.stack
#!/usr/bin/env python3 import numpy as np import re import sys import os import subprocess import logging import argparse from scipy.interpolate import UnivariateSpline import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from astropy.time import Time from scipy.optimize import curve_fit logger = logging.getLogger(__name__) #--------------------------------------------------------------- class LittleClipError(Exception): """Raise when not enough data is clipped""" pass class LargeClipError(Exception): """Raise when too much data is clipped""" pass class NoComponentsError(Exception): """Raise when there are no feasible profile components""" pass class ProfileLengthError(Exception): """Raise when a profile's legnth is too small to be fit""" pass class NoFitError(Exception): """Raise when no gaussian fits have been found""" pass #--------------------------------------------------------------- def subprocess_pdv(archive, outfile="archive.txt", pdvops="-FTt"): """ Runs the pdv commnand from PSRCHIVE as a python subprocess Parameters ---------- archive: string The name of the archive file to run the command on outfile: string OPTIONAL - The name of the text file to write the output to. Default: outfile pdvops: string OPTIONAL - Additional options for the pdv. Default: -FTt """ myoutput = open(outfile,'w+') commands=["pdv"] commands.append(pdvops) commands.append(archive) subprocess.run(commands, stdout=myoutput) myoutput.close() #--------------------------------------------------------------- def get_from_bestprof(file_loc): """ Get info from a bestprof file Parameters: ----------- file_loc: string The path to the bestprof file Returns: -------- [obsid, pulsar, dm, period, period_uncer, obsstart, obslength, profile, bin_num]: list obsid: int The observation ID pulsar: string The name of the pulsar dm: float The dispersion measure of the pulsar period: float The period of the pulsar period_uncer: float The uncertainty in the period measurement obsstart: int The beginning time of the observation obslength: float The length of the observation in seconds profile: list A list of floats containing the profile data bin_num: int The number of bins in the profile """ with open(file_loc,"r") as bestprof: lines = bestprof.readlines() # Find the obsid by finding a 10 digit int in the file name obsid = re.findall(r'(\d{10})', lines[0])[0] try: obsid = int(obsid) except ValueError: obsid = None pulsar = str(lines[1].split("_")[-1][:-1]) if not (pulsar.startswith('J') or pulsar.startswith('B')): pulsar = 'J{0}'.format(pulsar) dm = lines[14][22:-1] period = lines[15][22:-1] period, period_uncer = period.split(' +/- ') mjdstart = Time(float(lines[3][22:-1]), format='mjd', scale='utc') # Convert to gps time obsstart = int(mjdstart.gps) # Get obs length in seconds by multipling samples by time per sample obslength = float(lines[6][22:-1])*float(lines[5][22:-1]) # Get the pulse profile orig_profile = [] for l in lines[27:]: orig_profile.append(float(l.split()[-1])) bin_num = len(orig_profile) profile = np.zeros(bin_num) # Remove min min_prof = min(orig_profile) for p, _ in enumerate(orig_profile): profile[p] = orig_profile[p] - min_prof return [obsid, pulsar, dm, period, period_uncer, obsstart, obslength, profile, bin_num] #--------------------------------------------------------------- def get_from_ascii(file_loc): """ Retrieves the profile from an ascii file Parameters: ----------- file_loc: string The location of the ascii file Returns: -------- [profile, len(profile)]: list profile: list A list of floats containing the profile data len(profile): int The number of bins in the profile """ f = open(file_loc) lines = iter(f.readlines()) next(lines) #skip first line f.close() profile=[] for line in lines: thisline=line.split() profile.append(float(thisline[3])) return [profile, len(profile)] #--------------------------------------------------------------- def get_stokes_from_ascii(file_loc): """ Retrieves the all stokes components from an ascii file Parameters: ----------- file_loc: string The location of the ascii file Returns: -------- [I, Q, U, V, len(profile)]: list I: list Stokes I Q: list Stokes Q U: list Stokes U V: list Stokes V len(profile): int The number of bins in the profile """ f = open(file_loc) lines = iter(f.readlines()) f.close() next(lines) #skip first line I=[] Q=[] U=[] V=[] for line in lines: thisline=line.split() I.append(float(thisline[3])) Q.append(float(thisline[4])) U.append(float(thisline[5])) V.append(float(thisline[6])) return [I, Q, U, V, len(I)] #--------------------------------------------------------------- def sigmaClip(data, alpha=3., tol=0.1, ntrials=10): """ Sigma clipping operation: Compute the data's median, m, and its standard deviation, sigma. Keep only the data that falls in the range (m-alpha*sigma,m+alpha*sigma) for some value of alpha, and discard everything else. This operation is repeated ntrials number of times or until the tolerance level is hit. Parameters: ----------- data: list A list of floats - the data to clip alpha: float OPTIONAL - Determines the number of sigmas to use to determine the upper and lower limits. Default=3 tol: float OPTIONAL - The fractional change in the standard deviation that determines when the tolerance is hit. Default=0.1 ntrials: int OPTIONAL - The maximum number of times to apply the operation. Default=10 Returns: -------- oldstd: float The std of the clipped data x: list The data list that contains only noise, with nans in place of 'real' data """ x = np.copy(data) oldstd = np.nanstd(x) #When the x[x<lolim] and x[x>hilim] commands encounter a nan it produces a #warning. This is expected because it is ignoring flagged data from a #previous trial so the warning is supressed. old_settings = np.seterr(all='ignore') for trial in range(ntrials): median = np.nanmedian(x) lolim = median - alpha * oldstd hilim = median + alpha * oldstd x[x<lolim] = np.nan x[x>hilim] = np.nan newstd = np.nanstd(x) tollvl = (oldstd - newstd) / newstd if tollvl <= tol: logger.debug("Took {0} trials to reach tolerance".format(trial+1)) np.seterr(**old_settings) return oldstd, x if trial + 1 == ntrials: logger.info("Reached number of trials without reaching tolerance level") np.seterr(**old_settings) return oldstd, x oldstd = newstd #--------------------------------------------------------------- def check_clip(clipped_prof, toomuch=0.8, toolittle_frac=0., toolittle_absolute=4): """ Determines whether a clipped profile from sigmaClip() has been appropriately clipped by checking the number of nans. Raises a LittleClipError or a LargeClipError if too little or toomuch of the data has been clipped respectively. Parameters: ----------- clipped_prof: list The clipped profile from sigmaClip() toomuch: float OPTIONAL - The fraction of the clipped profile beyond which is considered overclipped. Default: 0.8 toolittle: float OPTIONAL - The fraction of the clipped profile below which is considered underclipped. Default: 0. toolittle_absolute: int OPTIONAL - If a profile has this many or less on-pulse bins, it is deemed not sufficient. Default: 4 """ num_nans = 0 for i in clipped_prof: if np.isnan(i): num_nans += 1 if num_nans <= toolittle_frac*len(clipped_prof) or num_nans <= toolittle_absolute: raise LittleClipError("Not enough data has been clipped. Condsier trying a smaller alpha value when clipping.") elif num_nans >= toomuch*len(clipped_prof): raise LargeClipError("A large portion of the data has been clipped. Condsier trying a larger alpha value when clipping.") #--------------------------------------------------------------- def fill_clipped_prof(clipped_prof, search_scope=None, nan_type=0.): """ Intended for use on noisy profiles. Fills nan values that are surrounded by non-nans to avoid discontinuities in the profile Parameters: ----------- clipped_prof: list The on-pulse profile profile: list The original profile search_scope: int The number of bins to search for non-nan values. If None, will search 5% of the total bin number. Default:None. Returns: -------- clipped_prof: list The clipped profile with nan gaps filled in """ length = len(clipped_prof) if search_scope is None: #Search 5% ahead for non-nans search_scope = round(length*0.05) search_scope = np.linspace(1, search_scope, search_scope, dtype=int) #loop over all values in clipped profile for i, val in enumerate(clipped_prof): if val==nan_type and not (i+max(search_scope)) >= length: #look 'search_scope' indices ahead for non-nans for j in sorted(search_scope, reverse=True): #fill in nans if clipped_prof[i+j]==nan_type: for k in range(j): clipped_prof[i+k]=nan_type break return clipped_prof #--------------------------------------------------------------- def find_components(profile, min_comp_len=5): """ Given a profile in which the noise is clipped to 0, finds the components that are clumped together. Parameters: ----------- profile: list A list of floats describing the profile where the noise has been clipped to zero min_comp_len: float OPTIONAL - Minimum length of a component to be considered real. Measured in bins. Default: 5 Returns: -------- component_dict: dictionary dict["component_x"] contains an array of the component x component_idx: dictionary dict["component_x"] contains an array of indexes of the original profile corresponding to component x """ component_dict={} component_idx={} num_components=0 for i, val in enumerate(profile): if val!=0.: if profile[i-1]==0 or i==0: num_components+=1 comp_key = "component_{}".format(num_components) component_dict[comp_key]=[] component_idx[comp_key]=[] component_dict[comp_key].append(val) component_idx[comp_key].append(i) del_comps = [] for comp_key in component_dict.keys(): if len(component_dict[comp_key]) < min_comp_len or max(component_dict[comp_key]) < 0.: del_comps.append(comp_key) for i in del_comps: del component_dict[i] del component_idx[i] if len(component_dict.keys()) == 0: raise NoComponentsError("No profile components have been found") return component_dict, component_idx #--------------------------------------------------------------- def find_minima_maxima(profile, ignore_threshold=0, min_comp_len=0): """ Finds all minima and maxima of the input profile. Assumes that the profile has noise zero-clipped. profile: list The profile with noise zero-clipped ignore_threshold: float OPTIONAL - Maxima with values below this number will be ignored. Default: 0 min_comp_len: float OPTIONAL - Minimum length of a component to be considered real. Measured in bins. Default: 0 Returns: -------- minima: list A list of floats corresponding to the bin location of the profile minima maxima: list A list of floats corresponding to the bin location of the profile maxima """ #If there is more than one component, find each one comp_dict, comp_idx = find_components(profile, min_comp_len) maxima=[] minima=[] #loop over each profile component for key in comp_dict.keys(): x = np.linspace(0, len(comp_dict[key])-1, len(comp_dict[key]), dtype=int) spline = UnivariateSpline(x, comp_dict[key], s=0.0, k=4) comp_roots = spline.derivative().roots() # These are the roots, we want to split maxima and minima ^^ comp_maxima=[] comp_minima=[] for i, root in enumerate(comp_roots): idx = int(root) left = comp_dict[key][idx-1] if left>comp_dict[key][idx]: comp_minima.append(root) else: comp_maxima.append(root) #Turn the root locations into locations on profile, not on component for root in comp_minima: abs_root = root + comp_idx[key][0] minima.append(abs_root) for root in comp_maxima: abs_root = root + comp_idx[key][0] maxima.append(abs_root) ignore_idx = [] for i, mx in enumerate(maxima): if max(profile[int(mx-1):int(mx+1)]) < ignore_threshold*max(profile): ignore_idx.append(i) for i in sorted(ignore_idx, reverse=True): del maxima[i] return minima, maxima def find_minima_maxima_gauss(popt, pcov, x_length, min_comp_len=0): """ Finds all roots of a gaussian function Parameters: ----------- popt: list A list of length 3N where N is the number of gaussians. This list contains the parameters amp, mean, centre respectively pcov: np.matrix The covariance matric corresponding to the parameters from popt x_length: int The length of the list used to fit the gaussian Returns: -------- minima: list A list of the minimum points of the fit maxima: list A list of the maximum points of the fit """ #Create the derivative list and spline it to find roots x = np.linspace(0, x_length-1, x_length) dy = multi_gauss_ddx(x, *popt) spline_dy = UnivariateSpline(x, dy, s=0) roots = spline_dy.roots() #Find which are max and min maxima = [] minima = [] for root in roots: idx = int(root + 0.5) if dy[idx-1] > dy[idx]: maxima.append(root) else: minima.append(root) minima_e = find_x_err(minima, popt, pcov) maxima_e = find_x_err(maxima, popt, pcov) return minima, maxima, minima_e, maxima_e #--------------------------------------------------------------- def find_x_err(x, popt, pcov): """ Finds the error in the horizontal position of a gaussian fit at the point x. Uses the equation sigma_x = sigma_y/d2ydx2 where: sigma_x = error in x d2ydx2 = second derivative of the gaussian function at point x sigma_y = J*C*J_T J = Jacobian evalutated at point x C = covariance matrix of gaussian fit J_T = transposed jacobian Parameters: ----------- x: list A list of points to evaluate the error at popt: list The parameters used to describe the gaussian fit pcov: numpy.matrix The covariance matrix corresponding to popt Returns: -------- x_err: list The error evaluated at each point, x """ x_err = [] for _, point in enumerate(x): J = jacobian_slope(point, *popt) d2dx2 = multi_gauss_d2dx2(point, *popt) JC = np.matmul(J, pcov) sigma_y = np.sqrt( np.matmul(JC, np.transpose(J)).item(0) ) x_err.append(sigma_y / abs(d2dx2)) return x_err #--------------------------------------------------------------- def find_widths(profile, popt, pcov, alpha=3): """ Attempts to find the W_10, W_50 and equivalent width of a profile by using a spline approach. W10 and W50 errors are estimated by using: sigma_x = sigma_y/(dy/dx) Weq errors are estimated by finding the average difference in Weq when you add and subtract the std from the on-pulse profile Parameters: ----------- profile: list A list of floats that make up the profile popt: list The parameters that are used to create the multi-gaussian fit pcov: np.matrix The covariance matrix corresponding to the parameters from popt alpha: float OPTIONAL - The alpha value to be used in sigmaClip(). Default: 3 Returns: -------- [W10, W50, Weq, Wscat, W10_e, W50_e, Weq_e, Wscat_e]: list W10: float The W10 width of the profile measured in number of bins W50: float The W50 width of the profile measured in number of bins Weq: float The equivalent width of the profile measured in number of bins Wscat: float The scattering width of the profile measured in number of bins W10_e: float The uncertainty in W10 W50_e: float The uncertainty in W50 Weq_e: float The uncertainty in Weq Wscar_e: float The unceratinty in Wscat """ def error_in_x_pos(pcov, popt, x): J = jacobian_slope(x, *popt) JC = np.matmul(J, pcov) sigma_y = np.sqrt(np.matmul(JC, np.transpose(J)).item(0)) ddx = multi_gauss_ddx(x, *popt) return sigma_y/ddx #perform spline operations on the fit x = np.linspace(0, len(profile)-1, len(profile)) fit = multi_gauss(x, *popt) amp_fit = max(fit) - min(fit) spline10 = UnivariateSpline(x, fit - np.full(len(x), 0.1*amp_fit), s=0) spline50 = UnivariateSpline(x, fit - np.full(len(x), 0.5*amp_fit), s=0) spline_s = UnivariateSpline(x, fit - np.full(len(x), 1/np.exp(1)*amp_fit), s=0) #find Weq using the real profile std, off_pulse = sigmaClip(profile, alpha=alpha) check_clip(off_pulse) on_pulse=[] for i, data in enumerate(off_pulse): if np.isnan(data): on_pulse.append(profile[i]) x = np.linspace(0, len(on_pulse)-1, len(on_pulse)) spline0 = UnivariateSpline(x, on_pulse, s=0) integral = spline0.integral(0, len(on_pulse)-1) Weq = integral/max(on_pulse) #find W10, W50 and Wscat W10_roots = spline10.roots() W50_roots = spline50.roots() Wscat_roots = spline_s.roots() W10 = W10_roots[-1] - W10_roots[0] W50 = W50_roots[-1] - W50_roots[0] Wscat = Wscat_roots[-1] - Wscat_roots[0] #W10 root errors err_10_1 = error_in_x_pos(pcov, popt, W10_roots[0]) err_10_2 = error_in_x_pos(pcov, popt, W10_roots[-1]) W10_e = np.sqrt(err_10_1**2 + err_10_2**2) #W50 root errors err_50_1 = error_in_x_pos(pcov, popt, W50_roots[0]) err_50_2 = error_in_x_pos(pcov, popt, W50_roots[-1]) W50_e = np.sqrt(err_50_1**2 + err_50_2**2) #Wscat root errors err_scat_1 = error_in_x_pos(pcov, popt, Wscat_roots[0]) err_scat_2 = error_in_x_pos(pcov, popt, Wscat_roots[-1]) Wscat_e = np.sqrt(err_scat_1**2 + err_scat_2**2) #Weq errors - using covariance formula on_pulse_less = (on_pulse - std).clip(min=0) spline0 = UnivariateSpline(x, on_pulse_less, s=0) integral = spline0.integral(0, len(profile)-1) dwdint = 1/max(on_pulse)**2 dwdmax = -integral/max(on_pulse)**2 int_e = abs(integral/max(on_pulse - std) - integral/max(on_pulse)) max_e = std Weq_e = np.sqrt( dwdint**2 * int_e**2 + dwdmax**2 * max_e**2 + 2*dwdint*dwdmax*int_e*max_e ) return [W10, W50, Weq, Wscat, W10_e, W50_e, Weq_e, Wscat_e] #--------------------------------------------------------------- def est_sn_from_prof(prof_data, period, alpha=3.): """ Estimates the signal to noise ratio from a pulse profile Based on code oringally writted by <NAME>. Parameters: ----------- prof_data: string A list of floats that contains the pulse profile period: float The pulsar's period in ms alpha: float OPTIONAL - The alpha value to be used in sigmaClip(). Default: 3 Returns: -------- [sn, sn_e, scattered] sn: float The estimated signal to noise ratio u_sn: float The uncertainty in sn scattered: boolean When true, the profile is highly scattered """ # Check profile is normalised prof_data = prof_data / max(prof_data) #centre the profile around the max shift = -int(np.argmax(prof_data))+int(len(prof_data))//2 prof_data = np.roll(prof_data, shift) #find std and check if profile is scattered sigma, flags = sigmaClip(prof_data, tol=0.01, ntrials=100, alpha=alpha) check_clip(flags) bot_prof_min = (max(prof_data) - min(prof_data)) * .1 + min(prof_data) scattered=False if (np.nanmin(flags) > bot_prof_min) or ( not np.isnan(flags).any() ): logger.warning("The profile is highly scattered. S/N estimate cannot be calculated") scattered=True sn = sn_e = None else: #prof_e = 500. #this is when it's not normalised prof_e = 0.0005 #this is an approximation non_pulse_bins = 0 #work out the above parameters for i, _ in enumerate(prof_data): if not np.isnan(flags[i]): non_pulse_bins += 1 sigma_e = sigma / np.sqrt(2 * non_pulse_bins - 2) #now calc S/N sn = max(prof_data)/sigma sn_e = sn * np.sqrt(prof_e/max(prof_data)**2 + (sigma_e/sigma)**2) logger.debug("max prof: {} +/- {} ".format(max(prof_data), prof_e )) logger.debug("sigma : {} +/- {} ".format(sigma, sigma_e )) logger.debug("sn : {} +/- {} ".format(sn, sn_e )) return [sn, sn_e, scattered] #--------------------------------------------------------------- def analyse_pulse_prof(prof_data, period, alpha=3): """ Estimates the signal to noise ratio and many other properties from a pulse profile. Based on code oringally writted by <NAME>. This is the old version of 'est_sn_from_prof' but is useful when we can't fit gaussians Parameters: ----------- prof_data: list A list of floats that contains the pulse profile. period: float The pulsar's period in ms alpha: float OPTIONAL - The alpha value to use when clipping using sigmaClip(). Default: 3 Returns: -------- prof_dict: dictionary contains keys: sn: float The estimated signal to noise ratio u_sn: float The estimated signal to noise ratio's its uncertainty flags: list A list of flagged data points w_equiv_bins: float The equivalent width of the profile measured in bins u_w_equiv_bins: float The uncertaintiy in w_equiv_bins w_equiv_ms: float The equivalent width of the profile measured in ms u_w_equiv_ms: float The uncertainty in w_equiv_ms scattering: float The scattering width in ms u_scattering: float The uncertainty in the scattering width in ms scattered: boolean When true, the profile is highly scattered """ prof_dict = {} nbins = len(prof_data) #centre the profile around the max shift = -int(np.argmax(prof_data))+int(nbins)//2 prof_data = np.roll(prof_data, shift) #find sigma and check if profile is scattered sigma, flags = sigmaClip(prof_data, alpha=alpha, tol=0.01, ntrials=100) check_clip(flags) bot_prof_min = (max(prof_data) - min(prof_data)) * .1 + min(prof_data) scattered=False if (np.nanmin(flags) > bot_prof_min) or ( not np.isnan(flags).any() ): logger.info("The profile is highly scattered. S/N estimate cannot be calculated") scattered=True #making a new profile with the only bin being the lowest point prof_min_i = np.argmin(prof_data) flags = [] for fi, _ in enumerate(prof_data): if fi == prof_min_i: flags.append(prof_data[fi]) else: flags.append(np.nan) flags = np.array(flags) prof_data -= min(prof_data) #Assuming width is equal to pulsar period because of the scattering w_equiv_ms = period u_w_equiv_ms = period/nbins sn = None u_sn = None else: u_prof = 500. #this is an approximation pulse_width_bins = 0 non_pulse_bins = 0 p_total = 0. u_p = 0. #work out the above parameters for i, data in enumerate(prof_data): if np.isnan(flags[i]): pulse_width_bins += 1 p_total += data u_p = np.sqrt(u_p**2 + u_prof**2) else: non_pulse_bins += 1 u_simga = sigma / np.sqrt(2 * non_pulse_bins - 2) #now calc S/N sn = max(prof_data)/sigma u_sn = sn * np.sqrt(u_prof/max(prof_data)**2 + (u_simga/sigma)**2) if not scattered: off_pulse_mean = np.nanmean(flags) prof_data -= off_pulse_mean flags -= off_pulse_mean prof_max = max(prof_data) w_equiv_bins = p_total / prof_max w_equiv_ms = w_equiv_bins / nbins * period # in ms u_w_equiv_bins = np.sqrt(p_total /prof_max)**2 +\ (p_total * u_prof / (prof_max)**2)**2 u_w_equiv_ms = u_w_equiv_bins / nbins * period # in ms else: w_equiv_ms = period u_w_equiv_ms = period/nbins w_equiv_bins = w_equiv_ms/period*nbins u_w_equiv_bins = (u_w_equiv_ms/w_equiv_ms)*w_equiv_bins #calc scattering scat_height = max(prof_data) / 2.71828 scat_bins = 0 for p in prof_data: if p > scat_height: scat_bins = scat_bins + 1 scattering = float(scat_bins + 1) * float(period) /1000. #in s u_scattering = 1. * float(period) /1000. # assumes the uncertainty is one bin prof_dict["sn"] = sn prof_dict["sn_e"] = u_sn prof_dict["flags"] = flags prof_dict["w_equiv_bins"] = w_equiv_bins prof_dict["w_equiv_bins_e"] = u_w_equiv_bins prof_dict["w_equiv_ms"] = w_equiv_ms prof_dict["w_equiv_ms_e"] = u_w_equiv_ms prof_dict["scattering"] = scattering prof_dict["scattering_e"] = u_scattering prof_dict["scattered"] = scattered return prof_dict def auto_analyse_pulse_prof(prof_data, period): """ Automatically finds the best alpha value to use for analyse_pulse_prof() and returns the best resulting dictionary Parameters: ----------- prof_data: list A list of floats that contains the pulse profile. preiod: float The period of the pulsar Returns: -------- fit_dict: dictionary contains keys: sn: float The estimated signal to noise ratio u_sn: float The estimated signal to noise ratio's its uncertainty flags: list A list of flagged data points w_equiv_bins: float The equivalent width of the profile measured in bins u_w_equiv_bins: float The uncertaintiy in w_equiv_bins w_equiv_ms: float The equivalent width of the profile measured in ms u_w_equiv_ms: float The uncertainty in w_equiv_ms scattering: float The scattering width in ms u_scattering: float The uncertainty in the scattering width in ms scattered: boolean When true, the profile is highly scattered """ if not isinstance(period, float): period = float(period) alphas = np.linspace(1, 5, 9) attempts_dict = {} loglvl = logger.level logger.setLevel(logging.WARNING) #squelch logging for the loop #loop over the gaussian evaluation fucntion, excepting in-built errors for alpha in alphas: try: prof_dict = analyse_pulse_prof(prof_data, period, alpha=alpha) attempts_dict[alpha] = prof_dict except(LittleClipError, LargeClipError, NoComponentsError, ProfileLengthError) as e: logger.setLevel(loglvl) logger.info(e) logger.info("Skipping alpha value: {}".format(alpha)) logger.setLevel(logging.WARNING) #squelch logging for the loop logger.setLevel(loglvl) #Evaluate the best profile based on the SN error. sne = [] sne_alphas = [] scattered_trials = [] if attempts_dict: for alpha_key in attempts_dict.keys(): scattered_trials.append(attempts_dict[alpha_key]["scattered"]) if not attempts_dict[alpha_key]["scattered"]: sne.append(attempts_dict[alpha_key]["sn_e"]) sne_alphas.append(alpha_key) if sne: #there is an SN estimate available. Only look through these analyses as candidates best_sne = min(sne) best_alpha = sne_alphas[sne.index(best_sne)] fit_dict = attempts_dict[best_alpha] elif scattered_trials: mse = [] scattered_alphas = [] for alpha_key in attempts_dict.keys(): if attempts_dict[alpha_key]["scattered"]: #use mean square of width errors as a metric for the best fit mse.append(np.sqrt(attempts_dict[alpha_key]["w_equiv_bins_e"]**2 + attempts_dict[alpha_key]["scattering_e"]**2)) scattered_alphas.append(alpha_key) best_mse = min(mse) best_alpha = scattered_alphas[mse.index(best_mse)] fit_dict = attempts_dict[best_alpha] if not attempts_dict: #sometimes things go wrong :/ logger.error("Profile could not be fit. Returning empty dictionary!") return {} logger.info("Best profile analysis using an alpha value of {}".format(best_alpha)) return fit_dict #--------------------------------------------------------------- def integral_multi_gauss(*params): y=0 for i in range(0, len(params), 3): a = params[i] c = params[i+2] y = y + a*c*np.sqrt(2*np.pi) return y def multi_gauss(x, *params): y = np.zeros_like(x) for i in range(0, len(params), 3): a = params[i] b = params[i+1] c = params[i+2] y = y + a * np.exp( -(((x-b)**2) / (2*c**2)) ) return y def multi_gauss_ddx(x, *params): #derivative of gaussian y = np.zeros_like(x) for i in range(0, len(params), 3): a = params[i] b = params[i+1] c = params[i+2] y = y - a/c**2 * (x - b) * np.exp( -(((x-b)**2) / (2*c**2)) ) return y def multi_gauss_d2dx2(x, *params): #double derivative of gaussian y = np.zeros_like(x) for i in range(0, len(params), 3): a = params[i] b = params[i+1] c = params[i+2] y = y + (multi_gauss(x, a, b, c) / c**2) * (((x - b)**2)/(c**2) - 1) return y def partial_gauss_dda(x, a, b, c): return np.exp((-(b - x)**2)/(2*c**2)) def partial_gauss_ddb(x, a, b, c): return a*(x - b) * np.exp((-(b - x)**2)/(2*c**2))/c**2 def partial_gauss_ddc(x, a, b, c): return a*(x - b)**2 * np.exp((-(b - x)**2)/(2*c**2))/c**3 #--------------------------------------------------------------- def jacobian_slope(x, *params): """ Evaluates the Jacobian matrix of a gaussian slope at a single point, x Parameters: ----------- x: float The point to evaluate *params: list A list containing three parameters per gaussian component in the order: Amp, Mean, Width Returns: -------- J: numpy.matrix The Jacobian matrix """ def dda(a, b, c, x): return -multi_gauss(x, a, b, c) * (x - b)/(c**2)/a def ddb(a, b, c, x): return multi_gauss(x, a, b, c) * (1 - (x - b)**2/(c**2))/c**2 def ddc(a, b, c, x): return multi_gauss(x, a, b, c) * (x - b)/(c**3) * (2 - (x-b)**2/(c**2)) J = [] for i in range(0, len(params), 3): a = params[i] b = params[i+1] c = params[i+2] mypars = [a, b, c, x] J.append(dda(*mypars)) J.append(ddb(*mypars)) J.append(ddc(*mypars)) J = np.asmatrix(J) return J #--------------------------------------------------------------- def plot_fit(plot_name, y, fit, popt, maxima=None, maxima_e=None): x = np.linspace(0, len(y)-1, len(y)) plt.figure(figsize=(30, 18)) for j in range(0, len(popt), 3): z = multi_gauss(x, *popt[j:j+3]) plt.plot(x, z, "--", label="Gaussian Component {}".format(int((j+3)/3))) if maxima: for i, mx in enumerate(maxima): plt.axvline(x=(mx + maxima_e[i]), ls=":", lw=2, color="gray") plt.axvline(x=(mx - maxima_e[i]), ls=":", lw=2, color="gray") plt.title(plot_name.split("/")[-1].split(".")[0], fontsize=22) plt.xticks(fontsize=18) plt.yticks(fontsize=18) plt.xlim(0, len(y)) plt.xlabel("Bins", fontsize=20) plt.ylabel("Intensity", fontsize=20) plt.plot(x, y, label="Original Profile", color="black") plt.plot(x, fit, label="Gaussian Model", color="red") plt.legend(loc="upper right", prop={'size': 16}) plt.savefig(plot_name) plt.close() #--------------------------------------------------------------- def fit_gaussian(profile, max_N=6, min_comp_len=0, plot_name=None, alpha=3.): """ Fits multiple gaussian components to a pulse profile and finds the best number to use for a fit. Will always fit at least one gaussian per profile component. Profile components are defined by find_components(). Each gaussian is defined by the following: y = amp * np.exp( -((x - ctr)/wid)**2) Parameters: ----------- profile: list A list containing the profile data max_N: int OPTIONAL - The maximum number of gaussain components to attempt to fit. Default: 6 min_comp_len: float OPTIONAL - Minimum length of a component to be considered real. Measured in bins. Default: 0 plot_name: string OPTIONAL - If not none, will make a plot of the best fit with this name. Default: None alpha: float OPTIONAL - The alpha value to be used in sigmaClip(). Default: 3 Returns: -------- [fit, redchisq, best_bic, popt, pcov]: list fit: list The data containing the multi-component gaussian fit to the input profile redchisq: float The reduced chi-sqaured value of the fit best_bic: float The bayesian information criterion for the fit popt: list A list of floats where each 3 numbers describes a single gaussain and are 'ctr', 'amp' and 'wid' respectively pcov: numpy matrix The covariance matrix generated by the curve_fit function """ #chi sqaured evaluation def chsq(observed_values, expected_values, err): test_statistic=0 for observed, expected in zip(observed_values, expected_values): test_statistic+=((float(observed)-float(expected))/float(err))**2 return test_statistic #Take noise mean and normalize the profile and check the clipped profile _, clipped = sigmaClip(profile, alpha=alpha) check_clip(clipped) y = np.array(profile) - np.nanmean(np.array(clipped)) max_y = max(y) y = np.array(y)/max_y noise_std = np.nanstd(np.array(clipped)/max_y) #Find profile components clipped = fill_clipped_prof(clipped, search_scope=int(len(profile)/100)) on_pulse=[] for i, val in enumerate(clipped): if not np.isnan(val): on_pulse.append(0) else: on_pulse.append(y[i]) comp_dict, comp_idx = find_components(on_pulse, min_comp_len=min_comp_len) #Estimate gaussian parameters based on profile components comp_centres = [] comp_max = [] comp_width = [] for i in range(max_N//len(comp_idx.keys())+1): for key in comp_idx.keys(): comp_centres.append(np.mean(comp_idx[key])) comp_max.append(max(comp_dict[key])*0.5) comp_width.append((max(comp_idx[key])-min(comp_idx[key]))) centre_guess = iter(comp_centres) width_guess=iter(comp_width) max_guess=iter(comp_max) n_comps=len(comp_dict.keys()) logger.debug("Number of profile components: {0} ({1})".format(n_comps, comp_centres[:n_comps])) #Fit from 1 to max_N gaussians to the profile. Evaluate profile fit using bayesian information criterion x=np.linspace(0, len(y)-1, len(y)) bounds_arr=[[],[]] guess = [] fit_dict = {} for num in range(1, max_N): guess += [next(max_guess), next(centre_guess), next(width_guess)] bounds_arr[0].append(0) bounds_arr[0].append(0) bounds_arr[0].append(0) bounds_arr[1].append(max(y)) bounds_arr[1].append(len(y)) bounds_arr[1].append(len(y)) bounds_tuple=(tuple(bounds_arr[0]), tuple(bounds_arr[1])) popt, pcov = curve_fit(multi_gauss, x, y, bounds=bounds_tuple, p0=guess, maxfev=100000) fit = multi_gauss(x, *popt) chisq = chsq(y, fit, noise_std) #Bayesian information criterion for gaussian noise k = 3*(num+1) bic = chisq + k*np.log(len(y)) fit_dict[str(num+1)]={"popt":[], "pcov":[], "fit":[], "chisq":[], "bic":[]} fit_dict[str(num+1)]["popt"] = popt fit_dict[str(num+1)]["pcov"] = pcov fit_dict[str(num+1)]["fit"] = fit fit_dict[str(num+1)]["redchisq"] = chisq/(len(y)-1) fit_dict[str(num+1)]["bic"] = bic logger.debug("Reduced chi squared for {0} components: {1}".format(num+1, fit_dict[str(num+1)]["redchisq"])) logger.debug("Bayesian Information Criterion for {0} components: {1}".format(num+1, fit_dict[str(num+1)]["bic"])) #Find the best fit according to the BIC best_bic = np.inf best_fit = None for n_components in fit_dict.keys(): if fit_dict[n_components]["bic"] < best_bic: best_bic = fit_dict[n_components]["bic"] best_fit = n_components logger.info("Fit {0} gaussians for a reduced chi sqaured of {1}".format(best_fit, fit_dict[best_fit]["redchisq"])) popt = fit_dict[best_fit]["popt"] pcov = fit_dict[best_fit]["pcov"] fit = fit_dict[best_fit]["fit"] redchisq = fit_dict[best_fit]["redchisq"] return [fit, redchisq, best_bic, popt, pcov, comp_dict, comp_idx] #--------------------------------------------------------------- def prof_eval_gfit(profile, max_N=6, ignore_threshold=None, min_comp_len=None, plot_name=None, alpha=3., period=None): """ Fits multiple gaussians to a profile and subsequently finds W10, W50, Weq and maxima Parameters: ----------- profile: list The pulse profile to evaluate max_N: int OPTIONAL - The maximum number of gaussian components to attempt to fit. Default: 6 ignore_threshold: float OPTIONAL - Maxima with values below this number will be ignored. If none, will use 3*noise. Default: None min_comp_len: float OPTIONAL - Minimum length of a component to be considered real. Measured in bins. If None, will use 1% of total profile lengths + 2, max 50. Default: None plot_name: string OPTIONAL - If not none, will make a plot of the best fit with this name. Default: None alpha: float OPTIONAL - The alpha value passed to the sigmaClip() function. Default: 3 period: float OPTIONAL - The puslar's period in ms. If not none, will attempt a S/N calculation. Default: None Returns: -------- fit_dict: dictionary contains the following keys: W10: float The W10 width of the profile measured in number of bins W10_e: float The uncertainty in the W10 W50: float The W50 width of the profile measured in number of bins W50_e: float The uncertainty in the W50 Weq: float The equivalent width of the profile measured in number of bins Weq_e: float The uncertainty in the equivalent width Wscat: float The scattering width of the profile measured in number of bins Wscat_e: float The uncertainty in the scattering width maxima: list A lost of floats corresponding to the bin location of each maximum point maxima_e: list A list of floats, each correspinding to the error of the maxima of the same index. Measured in bins redchisq: float The reduced chi sqared of the fit num_gauss: int The number of gaussian components used in the best fit bic: float The Bayesian Information Criterion for the best fit gaussian_params: list A list of length 3*N there N is num_gauss. Each set of 3 parameters corresponds to the amp, centre and width of a guassian component cov_mat: np.matrix The covariance matrix from the fit comp_dict: dictionary dict["component_x"] contains an array of the component x comp_idx: dictionary dict["component_x"] contains an array of indexes of the original profile corresponding to component x alpha: float The alpha value used in sigmaClip() profile: list The input profile fit: list The best fit made into a list form sn: float The estimated signal to noise ratio, obtained from the profile. Will be None is period unsupplied sn_e: float The uncertainty in sn. Will be None is period unsupplied scattered: boolean True is the profile is scattered. Will be None is period unsupplied """ #initialize minimum component length and ignore threshold if min_comp_len is None: min_comp_len = int(len(profile)/100 + 0.5) + 2 if min_comp_len > 100: min_comp_len = 100 if min_comp_len < 3: min_comp_len = 3 #Normalize, find the std y = np.array(profile)/max(profile) noise_std, clipped = sigmaClip(y, alpha=alpha) check_clip(clipped) if ignore_threshold is None: ignore_threshold = 3 * noise_std y = y -
np.nanmean(clipped)
numpy.nanmean
from scipy import stats from numpy import linalg import numpy as np import sys # NOTE: enable/disable smart quantization of weights and activations smart_quantization = False def quantize_arr(input_arr, min_val, max_val): quantize_range = 256.0 input_range = max_val - min_val mul_factor = input_range / quantize_range v1 = np.subtract(input_arr, min_val) v2 = np.divide(v1, mul_factor) v3 = v2.astype(int) v4 = np.multiply(v3, mul_factor) v5 = np.add(v4, min_val) v6 = np.clip(v5, min_val, max_val) return v6 def compute_norm(a1, a2): norm_inp = np.subtract(a1, a2) #norm = linalg.norm(norm_inp, ord = 1) norm = np.sum(np.abs(norm_inp)) print ("*** norm = ", norm) return norm def get_best_quant_range(input_arr): # For disabled smart quantization, skip expensive quant range computation if smart_quantization == False: min_val = np.percentile(input_arr, 0.1) max_val = np.percentile(input_arr, 99.9) return (min_val, max_val) # Trying different threshold values for INT8 quantization min_percentiles = [0.0] max_percentiles = [99.9, 99.8, 99.7, 99.5] min_norm = 100000000 min_pair = (0, 100) range_vals = (0, 0) for i in min_percentiles: for j in max_percentiles: print (" i = ", i, " j = ", j, " \n") min_val = np.percentile(input_arr, i) max_val = np.percentile(input_arr, j) res = quantize_arr(input_arr, min_val, max_val) norm = compute_norm(res, input_arr) if norm < min_norm: min_norm = norm min_pair = (i, j) range_vals = (min_val, max_val) print ("--- min_norm = ", min_norm, " , min_pair = ", min_pair , " range_vals = ", range_vals) return range_vals def dumpQuantizeRanges(weights_dir, input_min, input_max, w_max, w_min, \ b_max, b_min, output_min, output_max): outfile_path = weights_dir + "/quant_ranges.txt" f = open(outfile_path, "a+") f.write(str(input_min) + " " + str(input_max) + " " + str(w_min) + " " + str(w_max) + " " + \ str(b_min) + " " + str(b_max) + " " + str(output_min) + " " + str(output_max) + "\n") f.close() if __name__ == "__main__": vals = np.zeros((2,3)) vals[0][0] = 1.2 vals[0][1] = 0.48 vals[0][2] = 0.5 vals[1][0] = -0.3 vals[1][1] = 0.25 vals[1][2] = 0.46 input_arr =
np.array(vals)
numpy.array
from __future__ import print_function, division, absolute_import import copy import time import numpy as np import sys class Bridge(object): def __init__(self, initial_components, available_components): self.components = list(initial_components) self.score = sum([sum(tup) for tup in self.components]) self.available_components = available_components def next_required_number(self): if len(self.components) == 1: c = self.components[0] nrn = c[0] if c.index(0) == 1 else c[1] else: c1 = self.components[-1] c2 = self.components[-2] nrn = c1[0] if c1[1] in c2 else c1[1] return nrn def add_component(self, c): nrn = self.next_required_number() if nrn not in c: raise ValueError('Invalid connection, wrong port. Needed: {0} Got: {1}'.format(nrn, str(c))) if c not in self.available_components: raise ValueError('Component unavailable:', c) self.components.append(c) self.score += sum(c) self.available_components.remove(c) # def score(self): # return sum([sum(tup) for tup in self.components]) def length(self): return len(self.components) def assemble_next(self): """ Find the next required number in the bridge. Return a *new* list of bridges each with a different valid component on the end, depending on the available components. Returns ------- """ nrn = self.next_required_number() next_components = [c for c in self.available_components if nrn in c] new_bridges = [] for nx in next_components: b = Bridge(initial_components=tuple(self.components), available_components=self.available_components.copy()) b.add_component(nx) new_bridges.append(b) return new_bridges def __str__(self): s = '--'.join(['{0}/{1}'.format(*c) for c in self.components]) return s def solve(inp): components = [(int(line.split('/')[0]), int(line.split('/')[1])) for line in inp] starting_comps = [c for c in components if 0 in c] bridges = [] for sc in starting_comps: bridges.append(Bridge((sc,), set(components)-set((sc,)))) complete_bridges = [] complete_bridges.extend(bridges) for i in range(1000): print('.', end='') sys.stdout.flush() new_bridges = [] for b in bridges: new_bridges.extend(b.assemble_next()) if not new_bridges: # Terminate once no new bridges can be built break bridges = new_bridges complete_bridges.extend(new_bridges) strongest_bridge = complete_bridges[
np.argmax([b.score for b in complete_bridges])
numpy.argmax
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """Created on Thu Mar 30 9:30:00 2017 @author: gsutanto """ import re import numpy as np import os import sys import copy import glob import pickle import shutil from scipy import signal from scipy.interpolate import interp1d import pyplot_util as pypl_util def chunks(l, n): """Yield successive n-sized chunks from l.""" for i in range(0, len(l), n): yield l[i:i + n] def computeMSEVarGTNMSE(predictions, ground_truth, axis=0): mse = np.mean( np.square(predictions - ground_truth), axis=axis) # Mean-Squared Error (MSE) var_ground_truth = np.var( ground_truth, axis=axis) # Variance of the Ground-Truth nmse = np.divide(mse, var_ground_truth) # Normalized Mean-Squared Error (NMSE) return mse, var_ground_truth, nmse def computeNMSE(predictions, ground_truth, axis=0): [_, _, nmse] = computeMSEVarGTNMSE(predictions, ground_truth, axis) return nmse def computeWNMSE(predictions, ground_truth, weight, axis=0): N_data = ground_truth.shape[0] N_dims = ground_truth.shape[1] wmse = np.mean( np.multiply( np.tile(weight, (1, N_dims)), np.square(predictions - ground_truth)), axis=axis) # Weighted Mean-Squared Error (WMSE) mean_gt = np.mean(ground_truth, axis=axis) zero_mean_gt = ground_truth - np.tile(mean_gt, (N_data, 1)) wvar_gt = (1.0 / (N_data - 1)) * np.sum( np.multiply(np.tile(weight, (1, N_dims)), np.square(zero_mean_gt)), axis=axis) # Weighted Variance of the Ground-Truth wnmse = np.divide(wmse, wvar_gt) # Normalized Weighted Mean-Squared Error (NWMSE) return wnmse def computeSumSquaredL2Norm(matrix, axis=None): return np.sum(np.square(matrix), axis=axis) def compareTwoNumericFiles(file_1_path, file_2_path, scalar_max_abs_diff_threshold=1.001e-5, scalar_max_rel_abs_diff_threshold=1.001e-5, is_relaxed_comparison=False): file_1 = np.loadtxt(file_1_path) file_2 = np.loadtxt(file_2_path) return compareTwoMatrices(file_1, file_2, scalar_max_abs_diff_threshold, scalar_max_rel_abs_diff_threshold, file_1_path, file_2_path, is_relaxed_comparison) def compareTwoMatrices(matrix1, matrix2, scalar_max_abs_diff_threshold=1.001e-5, scalar_max_rel_abs_diff_threshold=1.001e-5, name1="", name2="", is_relaxed_comparison=False): assert (matrix1.shape == matrix2.shape ), "File dimension mis-match! %s vs %s" % (str( matrix1.shape), str(matrix2.shape)) file_diff = matrix1 - matrix2 abs_diff = np.abs(file_diff) rowvec_max_abs_diff = np.max(abs_diff, axis=0) rowvec_max_idx_abs_diff = np.argmax(abs_diff, axis=0) scalar_max_abs_diff =
np.max(rowvec_max_abs_diff)
numpy.max
import numpy as np from pandas import DataFrame import matplotlib.pyplot as plt def plot_train_curve(L, labels=["Learning Curve"], title='Training Curve'): """ Plot model training curve Parameters ---------- L: list Records list during training. labels: list Labels of different datasets. title: str Title of figure. """ if type(L[0]) != tuple: x = range(1, len(L) + 1) plt.plot(x, L, label=labels[0]) else: datasets_size = len(L[0]) for i in range(datasets_size): x = range(1, len(L) + 1) v = [m_L[i] for m_L in L] plt.plot(x, v, label=labels[i]) # no ticks plt.xlabel("Steps") plt.legend(loc="best") plt.title(title) plt.show() def plot_surv_curve(df_survf, title="Survival Curve"): """ Plot survival curve. Parameters ---------- df_survf: pandas.DataFrame or numpy.ndarray Survival function of samples, shape of which is (n, #Time_Points). `Time_Points` indicates the time point presented in columns of DataFrame. title: str Title of figure. """ if isinstance(df_survf, DataFrame): plt.plot(df_survf.columns.values,
np.transpose(df_survf.values)
numpy.transpose
""" Copyright 2018 Defense Innovation Unit Experimental All rights reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import csv import json import os import time import scipy.io import numpy as np from tqdm import tqdm from scoring.matching import Matching from scoring.rectangle import Rectangle """ Scoring code to calculate per-class precision and mean average precision. Args: predictions: a folder path of prediction files. Prediction files should have filename format 'XYZ.tif.txt', where 'XYZ.tif' is the xView TIFF file being predicted on. Prediction files should be in space-delimited csv format, with each line like (xmin ymin xmax ymax class_prediction score_prediction). ie ("predictions/") groundtruth: a filepath to ground truth labels (GeoJSON format) ie ("ground_truth.geojson") output (-o): a folder path where output metrics are saved ie ("scores/") Outputs: Writes two files to the 'output' parameter folder: 'score.txt' and 'metrics.txt' 'score.txt' contains a single floating point value output: mAP 'metrics.txt' contains the remaining metrics in per-line format (metric/class_num: score_float) """ #@profile def get_labels(fname): """ Processes a WorldView3 GEOJSON file Args: fname: filepath to the GeoJson file. Outputs: Bounding box coordinate array, Chip-name array, and Classes array """ with open(fname) as f: data = json.load(f) coords = np.zeros((len(data['features']), 4)) chips = np.zeros((len(data['features'])), dtype="object") classes = np.zeros((len(data['features']))) for i in tqdm(range(len(data['features']))): if data['features'][i]['properties']['bounds_imcoords'] != []: b_id = data['features'][i]['properties']['image_id'] val = np.array([int(num) for num in data['features'][i]['properties']['bounds_imcoords'].split(",")]) chips[i] = b_id classes[i] = data['features'][i]['properties']['type_id'] if val.shape[0] != 4: raise ValueError('A bounding box should have 4 entries!') else: coords[i] = val else: chips[i] = 'None' return coords, chips, classes def convert_to_rectangle_list(coordinates): """ Converts a list of coordinates to a list of rectangles Args: coordinates: a flattened list of bounding box coordinates in format (xmin,ymin,xmax,ymax) Outputs: A list of rectangles """ rectangle_list = [] number_of_rects = int(len(coordinates) / 4) for i in range(number_of_rects): rectangle_list.append(Rectangle( coordinates[4 * i], coordinates[4 * i + 1], coordinates[4 * i + 2], coordinates[4 * i + 3])) return rectangle_list def ap_from_pr(p, r): """ Calculates AP from precision and recall values as specified in the PASCAL VOC devkit. Args: p: an array of precision values r: an array of recall values Outputs: An average precision value """ r = np.concatenate([[0], r, [1]]) p = np.concatenate([[0], p, [0]]) for i in range(p.shape[0] - 2, 0, -1): if p[i] > p[i - 1]: p[i - 1] = p[i] i = np.where(r[1:] != r[:len(r) - 1])[0] + 1 ap = np.sum( (r[i] - r[i - 1]) * p[i]) return ap # @profile def score(path_predictions, path_groundtruth, path_output, iou_threshold=.5): """ Compute metrics on a number of prediction files, given a folder of prediction files and a ground truth. Primary metric is mean average precision (mAP). Args: path_predictions: a folder path of prediction files. Prediction files should have filename format 'XYZ.tif.txt', where 'XYZ.tif' is the xView TIFF file being predicted on. Prediction files should be in space-delimited csv format, with each line like (xmin ymin xmax ymax class_prediction score_prediction) path_groundtruth: a file path to a single ground truth geojson path_output: a folder path for output scoring files iou_threshold: a float between 0 and 1 indicating the percentage iou required to count a prediction as a true positive Outputs: Writes two files to the 'path_output' parameter folder: 'score.txt' and 'metrics.txt' 'score.txt' contains a single floating point value output: mAP 'metrics.txt' contains the remaining metrics in per-line format (metric/class_num: score_float) Raises: ValueError: if there are files in the prediction folder that are not in the ground truth geojson. EG a prediction file is titled '15.tif.txt', but the file '15.tif' is not in the ground truth. """ assert (iou_threshold < 1 and iou_threshold > 0) ttime = time.time() boxes_dict = {} pchips = [] stclasses = [] num_preds = 0 for file in tqdm(os.listdir(path_predictions)): fname = file.split(".txt")[0] pchips.append(fname) with open(path_predictions + file, 'r') as f: arr = np.array(list(csv.reader(f, delimiter=" "))) if arr.shape[0] == 0: # If the file is empty, we fill it in with an array of zeros boxes_dict[fname] = np.array([[0, 0, 0, 0, 0, 0]]) num_preds += 1 else: arr = arr[:, :6].astype(np.float64) threshold = 0 arr = arr[arr[:, 5] > threshold] stclasses += list(arr[:, 4]) num_preds += arr.shape[0] if np.any(arr[:, :4] < 0): raise ValueError('Bounding boxes cannot be negative.') if np.any(arr[:, 5] < 0) or np.any(arr[:, 5] > 1): raise ValueError('Confidence scores should be between 0 and 1.') boxes_dict[fname] = arr[:, :6] pchips = sorted(pchips) stclasses = np.unique(stclasses).astype(np.int64) # gt_coords, gt_chips, gt_classes = get_labels(path_groundtruth) # scipy.io.savemat('ground_truth.mat',{'gt_coords':gt_coords,'gt_chips':gt_chips,'gt_classes':gt_classes}) mat = scipy.io.loadmat('scoring/ground_truth.mat') gt_coords, gt_chips, gt_classes = mat['gt_coords'], mat['gt_chips'], mat['gt_classes'] gt_unique = np.unique(gt_classes.astype(np.int64)) max_gt_cls = 100 if set(pchips).issubset(set(gt_unique)): raise ValueError('The prediction files {%s} are not in the ground truth.' % str(set(pchips) - (set(gt_unique)))) print("Number of Predictions: %d" % num_preds) print("Number of GT: %d" % np.sum(gt_classes.shape)) per_file_class_data = {} for i in gt_unique: per_file_class_data[i] = [[], []] num_gt_per_cls = np.zeros((max_gt_cls)) attempted = np.zeros(100) for file_ind in range(len(pchips)): print(pchips[file_ind]) det_box = boxes_dict[pchips[file_ind]][:, :4] det_scores = boxes_dict[pchips[file_ind]][:, 5] det_cls = boxes_dict[pchips[file_ind]][:, 4] gt_box = gt_coords[(gt_chips == pchips[file_ind]).flatten()] gt_cls = gt_classes[(gt_chips == pchips[file_ind])] for i in gt_unique: s = det_scores[det_cls == i] ssort = np.argsort(s)[::-1] per_file_class_data[i][0] += s[ssort].tolist() gt_box_i_cls = gt_box[gt_cls == i].flatten().tolist() det_box_i_cls = det_box[det_cls == i] det_box_i_cls = det_box_i_cls[ssort].flatten().tolist() gt_rects = convert_to_rectangle_list(gt_box_i_cls) rects = convert_to_rectangle_list(det_box_i_cls) attempted[i] += len(rects) matching = Matching(gt_rects, rects) rects_matched, gt_matched = matching.greedy_match(iou_threshold) # we aggregate confidence scores, rectangles, and num_gt across classes # per_file_class_data[i][0] += det_scores[det_cls == i].tolist() per_file_class_data[i][1] += rects_matched num_gt_per_cls[i] += len(gt_matched) average_precision_per_class = np.ones(max_gt_cls) * float('nan') per_class_p = np.ones(max_gt_cls) * float('nan') per_class_r = np.ones(max_gt_cls) * float('nan') per_class_rcount = np.ones(max_gt_cls) * float('nan') for i in gt_unique: scores = np.array(per_file_class_data[i][0]) rects_matched = np.array(per_file_class_data[i][1]) if num_gt_per_cls[i] != 0: sorted_indices = np.argsort(scores)[::-1] tp_sum = np.cumsum(rects_matched[sorted_indices]) fp_sum = np.cumsum(np.logical_not(rects_matched[sorted_indices])) precision = tp_sum / (tp_sum + fp_sum + np.spacing(1)) recall = tp_sum / num_gt_per_cls[i] per_class_p[i] = np.sum(rects_matched) / len(rects_matched) per_class_r[i] = np.sum(rects_matched) / num_gt_per_cls[i] per_class_rcount[i] = np.sum(rects_matched) ap = ap_from_pr(precision, recall) else: ap = 0 average_precision_per_class[i] = ap # metric splits metric_keys = ['map', 'map/small', 'map/medium', 'map/large', 'map/common', 'map/rare'] splits = { 'map/small': [17, 18, 19, 20, 21, 23, 24, 26, 27, 28, 32, 41, 60, 62, 63, 64, 65, 66, 91], 'map/medium': [11, 12, 15, 25, 29, 33, 34, 35, 36, 37, 38, 42, 44, 47, 50, 53, 56, 59, 61, 71, 72, 73, 76, 84, 86, 93, 94], 'map/large': [13, 40, 45, 49, 51, 52, 54, 55, 57, 74, 77, 79, 83, 89], 'map/common': [13, 17, 18, 19, 20, 21, 23, 24, 25, 26, 27, 28, 34, 35, 41, 47, 60, 63, 64, 71, 72, 73, 76, 77, 79, 83, 86, 89, 91], 'map/rare': [11, 12, 15, 29, 32, 33, 36, 37, 38, 40, 42, 44, 45, 49, 50, 51, 52, 53, 54, 55, 56, 57, 59, 61, 62, 65, 66, 74, 84, 93, 94] } n = [ 11.0, 12.0, 13.0, 15.0, 17.0, 18.0, 19.0, 20.0, 21.0, 23.0, 24.0, 25.0, 26.0, 27.0, 28.0, 29.0, 32.0, 33.0, 34.0, 35.0, 36.0, 37.0, 38.0, 40.0, 41.0, 42.0, 44.0, 45.0, 47.0, 49.0, 50.0, 51.0, 52.0, 53.0, 54.0, 55.0, 56.0, 57.0, 59.0, 60.0, 61.0, 62.0, 63.0, 64.0, 65.0, 66.0, 71.0, 72.0, 73.0, 74.0, 76.0, 77.0, 79.0, 83.0, 84.0, 86.0, 89.0, 91.0, 93.0, 94.0] with open('data/xview.names') as f: lines = f.readlines() map_dict = {} for i in range(60): map_dict[lines[i].replace('\n','')] = average_precision_per_class[int(n[i])] print(np.nansum(per_class_rcount), map_dict) vals = {} vals['map'] =
np.nanmean(average_precision_per_class)
numpy.nanmean
''' LDM with AA on embeddings vs. RAA: Run with synthetic data K = 3 Synthetic alphas = 0.2 N = 100 (wip) K = 2 .. 10 D = 2 Inits = 5 #Number of inits. seed = 1999 sample_size = 1 Lr = 0.01 Iterations = 10,000 ''' from src.models.train_DRRAA_module import DRRAA from src.models.train_LSM_module import LSM, LSMAA from src.models.train_KAA_module import KAA from src.models.calcNMI import calcNMI import torch import torch.nn.functional as F import matplotlib.pyplot as plt import numpy as np import scipy.stats as st import matplotlib as mpl from src.data.synthetic_data import main from src.data.synthetic_data import ideal_prediction import networkx as nx import archetypes as arch import warnings warnings.filterwarnings("ignore") np.random.seed(42) torch.manual_seed(42) rand=False #set test and train split seed. We want the same train and test split in order to know that differences #are because of inits. seed_split = 42 #Run 10 different seeds with 10 different inits. Take the best of the 10 inits and save as best in seed. #Then plot the auc and nmi with errorbars on the 10 best in seeds. alphas = [0.2,1,5] num_init = 10 raa_best_in_seed_aucs = np.zeros((len(alphas),num_init)) lsm_best_in_seed_aucs = np.zeros((len(alphas),num_init)) lsmaa_best_in_seed_aucs = np.zeros((len(alphas),num_init)) kaa_best_in_seed_aucs = np.zeros((len(alphas),num_init)) raainit_best_in_seed_aucs = np.zeros((len(alphas),num_init)) raa_best_in_seed_nmis = np.zeros((len(alphas),num_init)) lsm_best_in_seed_nmis = np.zeros((len(alphas),num_init)) lsmaa_best_in_seed_nmis = np.zeros((len(alphas),num_init)) kaa_best_in_seed_nmis = np.zeros((len(alphas),num_init)) raainit_best_in_seed_nmis = np.zeros((len(alphas),num_init)) seed_init = 0 #################################### ## Synthetic model comparison ## ## RAA and all RAAs without stuff ## #################################### #Defining models iter = 10 for alpha_idx, alpha in enumerate(alphas): if rand: np.random.seed(1) torch.manual_seed(1) else: np.random.seed(42) torch.manual_seed(42) k=3 n = 100 d = 2 adj_m, z, A, Z_true, beta, partition = main(alpha=alpha, k=k, dim=d, nsamples=n, rand=rand) G = nx.from_numpy_matrix(adj_m.numpy()) temp = [x for x in nx.generate_edgelist(G, data=False)] edge_list = np.zeros((2, len(temp))) for i in range(len(temp)): edge_list[0, i] = temp[i].split()[0] edge_list[1, i] = temp[i].split()[1] raa_models = [] lsm_models = [] lsmaa_models = [] kaa_models = [] raainit_models = [] raa_nmi_models = [] lsm_nmi_models = [] lsmaa_nmi_models = [] kaa_nmi_models = [] raainit_nmi_models = [] for init in range(num_init): raa = DRRAA(k=k, d=d, sample_size=1, data=edge_list, data_type = "edge list", link_pred = True, seed_split=seed_split, seed_init=seed_init ) raa.train(iterations=iter) raa_models.append(raa) lsm = LSM(d=d, sample_size=1, data=edge_list, data_type="edge list", link_pred=True, seed_init=seed_init, seed_split = seed_split ) lsm.train(iterations=iter) lsm_models.append(lsm) lsmaa = LSMAA(d=d, k=k, sample_size=1, data = edge_list, data_type = "Edge list", link_pred = True, seed_split=seed_split, seed_init=seed_init ) lsmaa.train(iterations=iter) lsmaa_models.append(lsmaa) kaa = KAA(k=k, data=edge_list, data_type='edge list', type='jaccard', link_pred=True, seed_split = seed_split, seed_init = seed_init ) kaa.train(iterations=iter) kaa_models.append(kaa) kaainit = KAA(k=k, data=edge_list, data_type="edge list", link_pred=True, seed_split=seed_split, seed_init=seed_init ) kaainit.train(iterations=1000) raainit = DRRAA(init_Z=kaainit.S.detach(), k=k, d=d, sample_size=1, data=edge_list, data_type="edge list", link_pred=True, seed_split=seed_split, seed_init=seed_init ) raainit.train(iterations=iter) raainit_models.append(raainit) ############################################################################# #NMIs - require full data, so link_pred=False, else everything is the same :) raa_nmi = DRRAA(k=k, d=d, sample_size=1, data=edge_list, data_type="edge list", link_pred=False, seed_init=seed_init ) raa_nmi.train(iterations=iter) raa_nmi_models.append(raa_nmi) lsm_nmi = LSM(d=d, sample_size=1, data=edge_list, data_type="edge list", link_pred=False, seed_init=seed_init ) lsm_nmi.train(iterations=iter) lsm_nmi_models.append(lsm_nmi) lsmaa_nmi = LSMAA(d=d, k=k, sample_size=1, data = edge_list, data_type = "Edge list", link_pred = False, seed_split=seed_split ) lsmaa_nmi.train(iterations=iter) lsmaa_nmi_models.append(lsmaa_nmi) kaa_nmi = KAA(k=k, data=adj_m.numpy(), type='jaccard', link_pred=False, seed_split = seed_split ) kaa_nmi.train(iterations=iter) kaa_nmi_models.append(kaa_nmi) kaainit = KAA(k=k, data=adj_m.numpy(), link_pred=False, seed_init=seed_init ) kaainit.train(iterations=1000) raainit_nmi = DRRAA(init_Z=kaainit.S.detach(), k=k, d=d, sample_size=1, data=edge_list, data_type="edge list", link_pred=False, seed_init=seed_init ) raainit_nmi.train(iterations=iter) raainit_nmi_models.append(raainit_nmi) #make sure to increase the initialisation-seed ;) seed_init += 1 print(seed_init) raa_aucs = [] lsm_aucs = [] lsmaa_aucs = [] kaa_aucs = [] raainit_aucs = [] raa_nmis = [] lsm_nmis = [] lsmaa_nmis = [] kaa_nmis = [] raainit_nmis = [] for i in range(num_init): #calc aucs raa_auc, _, _ = raa_models[i].link_prediction() lsm_auc, _, _ = lsm_models[i].link_prediction() lsmaa_auc, _, _ = lsmaa_models[i].link_prediction() kaa_auc, _, _ = kaa_models[i].link_prediction() raainit_auc, _, _ = raainit_models[i].link_prediction() raa_aucs.append(raa_auc) lsm_aucs.append(lsm_auc) lsmaa_aucs.append(lsmaa_auc) kaa_aucs.append(kaa_auc) raainit_aucs.append(raainit_auc) #calc nmis raa_nmi = calcNMI(F.softmax(raa_nmi_models[i].Z.detach(),dim=0), Z_true) lsm_nmi = calcNMI(F.softmax(lsm_nmi_models[i].latent_Z.detach().T,dim=0), Z_true) aa = arch.AA(n_archetypes=k) Z = aa.fit_transform(lsmaa_nmi_models[i].latent_Z.detach().numpy()) lsmaa_nmi = calcNMI(torch.from_numpy(Z).T.float(), Z_true) kaa_nmi = calcNMI(F.softmax(kaa_nmi_models[i].S.detach(),dim=0), Z_true) raainit_nmi = calcNMI(F.softmax(raainit_nmi_models[i].Z.detach(),dim=0), Z_true) raa_nmis.append(raa_nmi) lsm_nmis.append(lsm_nmi) lsmaa_nmis.append(lsmaa_nmi) kaa_nmis.append(kaa_nmi) raainit_nmis.append(raainit_nmi) #append aucs and NMIs raa_best_in_seed_aucs[alpha_idx,:] = raa_aucs lsm_best_in_seed_aucs[alpha_idx,:] = lsm_aucs lsmaa_best_in_seed_aucs[alpha_idx,:] = lsmaa_aucs kaa_best_in_seed_aucs[alpha_idx,:] = kaa_aucs raainit_best_in_seed_aucs[alpha_idx, :] = raainit_aucs raa_best_in_seed_nmis[alpha_idx,:] = raa_nmis lsm_best_in_seed_nmis[alpha_idx,:] = lsm_nmis lsmaa_best_in_seed_nmis[alpha_idx,:] = lsmaa_nmis kaa_best_in_seed_nmis[alpha_idx,:] = kaa_nmis raainit_best_in_seed_nmis[alpha_idx, :] = raainit_nmis avg_raa_aucs = np.mean(raa_best_in_seed_aucs,1) avg_lsm_aucs = np.mean(lsm_best_in_seed_aucs,1) avg_lsmaa_aucs = np.mean(lsmaa_best_in_seed_aucs,1) avg_kaa_aucs =
np.mean(kaa_best_in_seed_aucs,1)
numpy.mean
from tensordash.torchdash import Torchdash import torch import torchvision from torchvision import transforms, datasets import torch.nn as nn import torch.nn.functional as F import numpy as np train = datasets.MNIST('', train=True, download=True, transform=transforms.Compose([ transforms.ToTensor() ])) test = datasets.MNIST('', train=False, download=True, transform=transforms.Compose([ transforms.ToTensor() ])) trainset = torch.utils.data.DataLoader(train, batch_size=10, shuffle=True) testset = torch.utils.data.DataLoader(test, batch_size=10, shuffle=False) class Net(nn.Module): def __init__(self): super().__init__() self.fc1 = nn.Linear(28*28, 64) self.fc2 = nn.Linear(64, 64) self.fc3 = nn.Linear(64, 64) self.fc4 = nn.Linear(64, 10) def forward(self, x): x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) x = F.relu(self.fc3(x)) x = self.fc4(x) return F.log_softmax(x, dim=1) net = Net() import torch.optim as optim loss_function = nn.CrossEntropyLoss() optimizer = optim.Adam(net.parameters(), lr=0.001) my_cb = Torchdash(ModelName='<YOUR_MODEL_NAME>', email = '<YOUR_EMAIL_ID>', password= '<<PASSWORD>>') epochs = 10 try: for epoch in range(epochs): losses = [] for data in trainset: X, y = data net.zero_grad() output = net(X.view(-1,784)) loss = F.nll_loss(output, y) losses.append(loss.item()) loss.backward() optimizer.step() losses = np.asarray(losses) print("Send Value") my_cb.sendLoss(loss =
np.mean(losses)
numpy.mean
# This Python module is part of the PyRate software package. # # Copyright 2020 Geoscience Australia # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ This Python module contains tests for the orbital.py PyRate module. """ import os import shutil import tempfile import unittest from itertools import product from numpy import empty, dot, concatenate, float32 from numpy import nan, isnan, array from os.path import join import numpy as np from numpy.linalg import pinv, inv from numpy.testing import assert_array_equal, assert_array_almost_equal from scipy.linalg import lstsq from .common import small5_mock_ifgs, MockIfg from pyrate.core import algorithm, config as cf from pyrate.core.orbital import INDEPENDENT_METHOD, NETWORK_METHOD, PLANAR, \ QUADRATIC, PART_CUBIC from pyrate.core.orbital import OrbitalError, _orbital_correction from pyrate.core.orbital import get_design_matrix, get_network_design_matrix from pyrate.core.orbital import _get_num_params, remove_orbital_error from pyrate.core.shared import Ifg from pyrate.core.shared import nanmedian from tests.common import TEST_CONF_ROIPAC, IFMS16 from tests.common import SML_TEST_LEGACY_ORBITAL_DIR from tests.common import SML_TEST_TIF, small_data_setup from tests.common import small_ifg_file_list #TODO: Purpose of this variable? Degrees are 1, 2 and 3 respectively DEG_LOOKUP = { 2: PLANAR, 5: QUADRATIC, 6: PART_CUBIC} NUM_COEF_LOOKUP = { PLANAR: 2, QUADRATIC: 5, PART_CUBIC: 6} class SingleDesignMatrixTests(unittest.TestCase): """ Tests to verify correctness of basic planar & quadratic design matrices or DMs. This class serves two purposes, ensuring the independent method DMs are produced correctly. Secondly, these indivdual DMs are subsets of the larger DM 'grid' required for the networked orbital correction method. """ def setUp(self): # faked cell sizes self.xs = 0.75 self.ys = 0.8 self.ifg = Ifg(join(SML_TEST_TIF, 'geo_060619-061002_unw.tif')) self.ifg.open() self.ifg.nodata_value = 0 self.m = MockIfg(self.ifg, 3, 4) self.m.x_size = self.xs self.m.y_size = self.ys # tests for planar model def test_create_planar_dm(self): offset = False act = get_design_matrix(self.m, PLANAR, offset) self.assertEqual(act.shape, (self.m.num_cells, 2)) exp = unittest_dm(self.m, INDEPENDENT_METHOD, PLANAR, offset) assert_array_equal(act, exp) def test_create_planar_dm_offsets(self): offset = True act = get_design_matrix(self.m, PLANAR, offset) self.assertEqual(act.shape, (self.m.num_cells, 3)) exp = unittest_dm(self.m, INDEPENDENT_METHOD, PLANAR, offset) assert_array_almost_equal(act, exp) # tests for quadratic model def test_create_quadratic_dm(self): offset = False act = get_design_matrix(self.m, QUADRATIC, offset) self.assertEqual(act.shape, (self.m.num_cells, 5)) exp = unittest_dm(self.m, INDEPENDENT_METHOD, QUADRATIC, offset) assert_array_equal(act, exp) def test_create_quadratic_dm_offsets(self): offset = True act = get_design_matrix(self.m, QUADRATIC, offset) self.assertEqual(act.shape, (self.m.num_cells, 6)) exp = unittest_dm(self.m, INDEPENDENT_METHOD, QUADRATIC, offset) assert_array_equal(act, exp) # tests for partial cubic model def test_create_partcubic_dm(self): offset = False act = get_design_matrix(self.m, PART_CUBIC, offset) self.assertEqual(act.shape, (self.m.num_cells, 6)) exp = unittest_dm(self.m, INDEPENDENT_METHOD, PART_CUBIC, offset) assert_array_equal(act, exp) def test_create_partcubic_dm_offsets(self): offset = True act = get_design_matrix(self.m, PART_CUBIC, offset) self.assertEqual(act.shape, (self.m.num_cells, 7)) exp = unittest_dm(self.m, INDEPENDENT_METHOD, PART_CUBIC, offset) assert_array_equal(act, exp) # tests for unittest_dm() assuming network method def test_create_planar_dm_network(self): # networked method planar version should not have offsets col ncol_exp = 2 exp = unittest_dm(self.m, NETWORK_METHOD, PLANAR, False) self.assertEqual(exp.shape, (self.m.num_cells, ncol_exp)) exp2 = unittest_dm(self.m, NETWORK_METHOD, PLANAR, True) self.assertEqual(exp2.shape, (self.m.num_cells, ncol_exp)) assert_array_equal(exp, exp2) def test_create_quadratic_dm_network(self): # quadratic version with networked method does not have offsets col ncol_exp = 5 exp = unittest_dm(self.m, NETWORK_METHOD, QUADRATIC, False) self.assertEqual(exp.shape, (self.m.num_cells, ncol_exp)) exp2 = unittest_dm(self.m, NETWORK_METHOD, QUADRATIC, True) self.assertEqual(exp2.shape, (self.m.num_cells, ncol_exp)) assert_array_equal(exp, exp2) def test_create_partcubic_dm_network(self): # partial cubic version with networked method does not have offsets col ncol_exp = 6 exp = unittest_dm(self.m, NETWORK_METHOD, PART_CUBIC, False) self.assertEqual(exp.shape, (self.m.num_cells, ncol_exp)) exp2 = unittest_dm(self.m, NETWORK_METHOD, PART_CUBIC, True) self.assertEqual(exp2.shape, (self.m.num_cells, ncol_exp)) assert_array_equal(exp, exp2) class IndependentCorrectionTests(unittest.TestCase): """Test cases for the orbital correction component of PyRate.""" def setUp(self): self.ifgs = small5_mock_ifgs() _add_nodata(self.ifgs) for ifg in self.ifgs: ifg.x_size = 90.0 ifg.y_size = 89.5 ifg.open() def alt_orbital_correction(self, ifg, deg, offset): data = ifg.phase_data.reshape(ifg.num_cells) dm = get_design_matrix(ifg, deg, offset)[~isnan(data)] fd = data[~isnan(data)].reshape((dm.shape[0], 1)) dmt = dm.T invNbb = inv(dmt.dot(dm)) orbparams = invNbb.dot(dmt.dot(fd)) alt_params = lstsq(dm, fd)[0] # FIXME: precision assert_array_almost_equal(orbparams, alt_params, decimal=2) dm2 = get_design_matrix(ifg, deg, offset) if offset: fullorb = np.reshape(np.dot(dm2[:, :-1], orbparams[:-1]), ifg.phase_data.shape) else: fullorb = np.reshape(np.dot(dm2, orbparams), ifg.phase_data.shape) offset_removal = nanmedian( np.reshape(ifg.phase_data - fullorb, (1, -1))) fwd_correction = fullorb - offset_removal # ifg.phase_data -= (fullorb - offset_removal) return ifg.phase_data - fwd_correction def check_correction(self, degree, method, offset, decimal=2): orig = array([c.phase_data.copy() for c in self.ifgs]) exp = [self.alt_orbital_correction(i, degree, offset) for i in self.ifgs] params = dict() params[cf.ORBITAL_FIT_METHOD] = method params[cf.ORBITAL_FIT_DEGREE] = degree params[cf.PARALLEL] = False params[cf.NO_DATA_VALUE] = 0 params[cf.NAN_CONVERSION] = False for i in self.ifgs: i.mm_converted = True _orbital_correction(self.ifgs, params, None, offset) corrected = array([c.phase_data for c in self.ifgs]) self.assertFalse((orig == corrected).all()) self.check_results(self.ifgs, orig) # test shape, data is non zero # FIXME: is decimal=2 close enough? for i, (e, a) in enumerate(zip(exp, corrected)): assert_array_almost_equal(e, a, decimal=decimal) def check_results(self, ifgs, corrections): """Helper method for result verification""" for i, c in zip(ifgs, corrections): ys, xs = c.shape self.assertEqual(i.nrows, ys) self.assertEqual(i.ncols, xs) # ensure there is real data self.assertFalse(isnan(i.phase_data).all()) self.assertFalse(isnan(c).all()) self.assertTrue(c.ptp() != 0) # ensure range of values in grid def test_independent_correction_planar(self): self.check_correction(PLANAR, INDEPENDENT_METHOD, False) def test_independent_correction_planar_offsets(self): self.check_correction(PLANAR, INDEPENDENT_METHOD, True) def test_independent_correction_quadratic(self): self.check_correction(QUADRATIC, INDEPENDENT_METHOD, False) def test_independent_correction_quadratic_offsets(self): self.check_correction(QUADRATIC, INDEPENDENT_METHOD, True) def test_independent_correction_partcubic(self): self.check_correction(PART_CUBIC, INDEPENDENT_METHOD, False) def test_independent_correction_partcubic_offsets(self): self.check_correction(PART_CUBIC, INDEPENDENT_METHOD, True, decimal=1) class ErrorTests(unittest.TestCase): """Tests for the networked correction method""" def test_invalid_ifgs_arg(self): # min requirement is 1 ifg, can still subtract one epoch from the other self.assertRaises(OrbitalError, get_network_design_matrix, [], PLANAR, True) def test_invalid_degree_arg(self): # test failure of a few different args for 'degree' ifgs = small5_mock_ifgs() for d in range(-5, 1): self.assertRaises(OrbitalError, get_network_design_matrix, ifgs, d, True) for d in range(4, 7): self.assertRaises(OrbitalError, get_network_design_matrix, ifgs, d, True) def test_invalid_method(self): # test failure of a few different args for 'method' ifgs = small5_mock_ifgs() params = dict() params[cf.ORBITAL_FIT_DEGREE] = PLANAR params[cf.PARALLEL] = False for m in [None, 5, -1, -3, 45.8]: params[cf.ORBITAL_FIT_METHOD] = m self.assertRaises(OrbitalError, _orbital_correction, ifgs, params, None) def test_multilooked_ifgs_arg(self): # check some bad args for network method with multilooked ifgs ifgs = small5_mock_ifgs() args = [[None, None, None, None, None], ["X"] * 5] params = dict() params[cf.ORBITAL_FIT_METHOD] = NETWORK_METHOD params[cf.PARALLEL] = False params[cf.ORBITAL_FIT_DEGREE] = PLANAR for a in args: args = (ifgs, params, a) self.assertRaises(OrbitalError, _orbital_correction, *args) # ensure failure if # ifgs doesn't match # mlooked ifgs args = (ifgs, params, ifgs[:4]) self.assertRaises(OrbitalError, _orbital_correction, *args) class NetworkDesignMatrixTests(unittest.TestCase): """Contains tests verifying creation of sparse network design matrix.""" def setUp(self): self.ifgs = small5_mock_ifgs() _add_nodata(self.ifgs) self.nifgs = len(self.ifgs) self.ncells = self.ifgs[0].num_cells self.date_ids = get_date_ids(self.ifgs) self.nepochs = len(self.date_ids) assert self.nepochs == 6 for ifg in self.ifgs: ifg.X_SIZE = 90.0 ifg.Y_SIZE = 89.5 def test_planar_network_dm(self): ncoef = 2 offset = False act = get_network_design_matrix(self.ifgs, PLANAR, offset) self.assertEqual(act.shape, (self.ncells * self.nifgs, ncoef * self.nepochs)) self.assertNotEqual(act.ptp(), 0) self.check_equality(ncoef, act, self.ifgs, offset) def test_planar_network_dm_offset(self): ncoef = 2 # NB: doesn't include offset col offset = True act = get_network_design_matrix(self.ifgs, PLANAR, offset) self.assertEqual(act.shape[0], self.ncells * self.nifgs) self.assertEqual(act.shape[1], (self.nepochs * ncoef) + self.nifgs) self.assertNotEqual(act.ptp(), 0) self.check_equality(ncoef, act, self.ifgs, offset) def test_quadratic_network_dm(self): ncoef = 5 offset = False act = get_network_design_matrix(self.ifgs, QUADRATIC, offset) self.assertEqual(act.shape, (self.ncells * self.nifgs, ncoef * self.nepochs)) self.assertNotEqual(act.ptp(), 0) self.check_equality(ncoef, act, self.ifgs, offset) def test_quadratic_network_dm_offset(self): ncoef = 5 offset = True act = get_network_design_matrix(self.ifgs, QUADRATIC, offset) self.assertEqual(act.shape[0], self.ncells * self.nifgs) self.assertEqual(act.shape[1], (self.nepochs * ncoef) + self.nifgs) self.assertNotEqual(act.ptp(), 0) self.check_equality(ncoef, act, self.ifgs, offset) def test_partcubic_network_dm(self): ncoef = 6 offset = False act = get_network_design_matrix(self.ifgs, PART_CUBIC, offset) self.assertEqual(act.shape, (self.ncells * self.nifgs, ncoef * self.nepochs)) self.assertNotEqual(act.ptp(), 0) self.check_equality(ncoef, act, self.ifgs, offset) def test_partcubic_network_dm_offset(self): ncoef = 6 offset = True act = get_network_design_matrix(self.ifgs, PART_CUBIC, offset) self.assertEqual(act.shape[0], self.ncells * self.nifgs) self.assertEqual(act.shape[1], (self.nepochs * ncoef) + self.nifgs) self.assertNotEqual(act.ptp(), 0) self.check_equality(ncoef, act, self.ifgs, offset) def check_equality(self, ncoef, dm, ifgs, offset): """ Internal test function to check subsets against network design matrix ncoef - base number of coefficients, without extra col for offsets dm - network design matrix to check the results ifgs - sequence of Ifg objs offset - boolean to include extra parameters for model offsets """ deg = DEG_LOOKUP[ncoef] np = ncoef * self.nepochs # index of 1st offset col for i, ifg in enumerate(ifgs): exp = unittest_dm(ifg, NETWORK_METHOD, deg, offset) self.assertEqual(exp.shape, (ifg.num_cells, ncoef)) ib1, ib2 = [x * self.ncells for x in (i, i+1)] # row start/end jbm = ncoef * self.date_ids[ifg.master] # starting col index for master jbs = ncoef * self.date_ids[ifg.slave] # col start for slave assert_array_almost_equal(-exp, dm[ib1:ib2, jbm:jbm+ncoef]) assert_array_almost_equal( exp, dm[ib1:ib2, jbs:jbs+ncoef]) # ensure remaining rows/cols are zero for this ifg NOT inc offsets assert_array_equal(0, dm[ib1:ib2, :jbm]) # all cols leading up to master assert_array_equal(0, dm[ib1:ib2, jbm + ncoef:jbs]) # cols btwn mas/slv assert_array_equal(0, dm[ib1:ib2, jbs + ncoef:np]) # to end of non offsets # check offset cols for 1s and 0s if offset is True: ip1 = i + np # offset column index assert_array_equal(1, dm[ib1:ib2, ip1]) assert_array_equal(0, dm[ib1:ib2, np:ip1]) # cols before offset col assert_array_equal(0, dm[ib1:ib2, ip1 + 1:]) # cols after offset col # components for network correction testing def network_correction(ifgs, deg, off, ml_ifgs=None, tol=1e-6): """ Compares results of orbital_correction() to alternate implementation. deg - PLANAR, QUADRATIC or PART_CUBIC off - True/False to calculate correction with offsets """ ncells = ifgs[0].num_cells if ml_ifgs: ml_nc = ml_ifgs[0].num_cells ml_data = concatenate([i.phase_data.reshape(ml_nc) for i in ml_ifgs]) dm = get_network_design_matrix(ml_ifgs, deg, off)[~isnan(ml_data)] fd = ml_data[~isnan(ml_data)].reshape((dm.shape[0], 1)) else: data = concatenate([i.phase_data.reshape(ncells) for i in ifgs]) dm = get_network_design_matrix(ifgs, deg, off)[~
isnan(data)
numpy.isnan
# encoding: latin2 """Algorithm utilities G{packagetree core} """ __author__ = "<NAME>" __credits__ = "Copyright (c) 2009-11 <NAME>" __license__ = "New BSD License" __version__ = "1.0.0" __maintainer__ = "RiSE Group" __email__ = "<EMAIL>" from copy import deepcopy import numpy as np from objFunctions import makeObjDict, objectiveFunctionTypeDispatcher from selectionTypeFunctions import selectionTypeDispatcher from warnings import warn from time import time from memory import ExtendedMemory as ExtMem from areacl import AreaCl from helperfunctions import sortedKeys from os import getpid class RegionMaker: """ This class deals with a large amount of methods required during both the construction and local search phases. This class takes the area instances and coordinate them during the solution process. It also send information to Memory when needed. """ def __init__(self, am, pRegions=2, initialSolution=[], seedSelection = "kmeans", distanceType = "EuclideanSquared", distanceStat = "Centroid", selectionType = "Minimum", alpha = 0.2, numRegionsType = "Exogenous", objectiveFunctionType = "SS", threshold = 0.0, weightsDistanceStat = [], weightsObjectiveFunctionType = [], indexDataStat = [], indexDataOF = []): """ @type am: AreaManager @param am: Area manager object. @type pRegions: integer @keyword pRegions: Number of regions in scheme @type seeds: list @keyword seeds: List of area IDs for initial seeds. @type distanceType: string @keyword distanceType: Type of distance to be used, by default "EuclideanSquared" @type distanceStat: string @keyword distanceStat: Type of conversion used for summarizing distance, by defaults "Average" @type selectionType: string @keyword selectionType: Type of selection criterion for construction phase, by defaults "Minimum" @type alpha: float. @keyword alpha: float equal or between the interval [0,1]; for GRASP selection only. @type numRegionsType: string @keyword numRegionsType: Type of constructive method (Exogenous, EndogenousThreshold, EndogenousRange), by default "Exogenous" @type objectiveFunctionType: string @keyword objectiveFunctionType: Method to calculate the objective function, by default "Total" @type threshold: float @keyword threshold: Minimum population threshold to be satisfied for each region @type weightsDistanceStat: list @keyword weightsDistanceStat: @type weightsObjectiveFunctionStat: list @keyword weightsObjectiveFunctionStat: @type indexDataStat = list @keyword indexDataStat: @type indexDataOf = list @keyword indexDataOf: """ self.am = am self.areas = deepcopy(am.areas) self.distanceType = distanceType self.distanceStat = distanceStat self.weightsDistanceStat = weightsDistanceStat self.indexDataStat = indexDataStat self.weightsObjectiveFunctionType = weightsObjectiveFunctionType self.indexDataOF = indexDataOF self.selectionType = selectionType self.objectiveFunctionType = objectiveFunctionType self.n = len(self.areas) self.unassignedAreas = self.areas.keys() self.assignedAreas = [] self.area2Region = {} self.region2Area = {} self.potentialRegions4Area = {} self.intraBorderingAreas = {} self.candidateInfo = {} self.externalNeighs = set() self.alpha = alpha self.numRegionsType = numRegionsType self.neighSolutions = {(0,0): 9999} self.regionMoves = set() self.distances = {} self.NRegion = [] self.N = 0 self.data = {} self.objInfo = -1 self.assignAreasNoNeighs() # PREDEFINED NUMBER OF REGIONS seeds = [] regions2createKeys = [] emptyList = [] c = 0 lenUnassAreas = len(self.unassignedAreas) s = 0 i = 0 lseeds = 0 if numRegionsType == "Exogenous": if not initialSolution: self.pRegions = pRegions seeds = self.kmeansInit() self.setSeeds(seeds) c = 0 while lenUnassAreas > 0: self.constructRegions() lenUnassAreas = len(self.unassignedAreas) c += 1 self.objInfo = self.getObj() else: uniqueInitSolution = set(initialSolution) self.pRegions = len(uniqueInitSolution) seeds = [] for s in uniqueInitSolution: seeds.append(initialSolution.index(s)) self.setSeeds(seeds) regions2create = {} c = 0 for i in initialSolution: regions2create.setdefault(i, []).append(c) c += 1 c = 0 regions2createKeys = regions2create.keys() for i in regions2createKeys: self.unassignedAreas = regions2create[i][1:] lenUnassAreas = len(self.unassignedAreas) while lenUnassAreas > 0: self.constructRegions(filteredCandidates=self.unassignedAreas, filteredReg=i) lenUnassAreas = len(self.unassignedAreas) c += 1 self.objInfo = self.getObj() # NUMBER OF REGIONS IS ENDOGENOUS WITH A THRESHOLD VALUE if self.numRegionsType == "EndogenousThreshold": self.constructionStage = "growing" try: self.areas[self.areas.keys()[0]].thresholdVar except: self.extractThresholdVar() self.regionalThreshold = threshold c = 0 self.feasibleRegions = {} self.regionValue = {} seeds = [] for aID in self.areas: if self.areas[aID].thresholdVar >= self.regionalThreshold: seed = aID seeds = seeds + [seed] self.regionValue[c] = self.areas[seed].thresholdVar self.feasibleRegions[c] = [seed] self.removeRegionAsCandidate() c += 1 self.setSeeds(seeds) while len(self.unassignedAreas) != 0: np.random.shuffle(self.unassignedAreas) vals = [] for index in self.unassignedAreas: vals += [self.areas[index].thresholdVar] seed = self.unassignedAreas[0] self.setSeeds([seed], c) self.regionValue[c] = self.areas[seed].thresholdVar if self.regionValue[c] >= self.regionalThreshold: self.feasibleRegions[c] = [seed] self.removeRegionAsCandidate() c += 1 else: feasibleThreshold = 1 while self.regionValue[c] < self.regionalThreshold: self.addedArea = -1 try: self.constructRegions() self.regionValue[c] += self.areas[self.addedArea].thresholdVar except: feasibleThreshold = 0 break if feasibleThreshold == 1: self.feasibleRegions[c] = self.region2Area[c] self.removeRegionAsCandidate() c += 1 # NUMBER OF REGIONS IS ENDOGENOUS WITH A RANGE VALUE if self.numRegionsType == "EndogenousRange": self.constructionStage = "growing" # there are two values for constructionStage: "growing" and "enclaves" try: self.areas[self.areas.keys()[0]].thresholdVar except: self.extractThresholdVar() self.regionalThreshold = threshold c = 0 self.feasibleRegions = {} while len(self.unassignedAreas) != 0: # select seed np.random.shuffle(self.unassignedAreas) seed = self.unassignedAreas[0] self.setSeeds([seed],c) # regionRange contains the current range per region # regionalThreshold is the predefined threshold value self.regionRange = {} maxValue = self.areas[seed].thresholdVar minValue = self.areas[seed].thresholdVar currentRange = maxValue - minValue self.regionRange[c] = currentRange # grow region if possible stop = 0 while stop == 0: upplim = maxValue + self.regionalThreshold - currentRange lowlim = minValue - self.regionalThreshold + currentRange feasibleNeigh = 0 toRemove = [] for ext in self.externalNeighs: if self.areas[ext].thresholdVar <= upplim and self.areas[ext].thresholdVar >= lowlim: feasibleNeigh = 1 if self.areas[ext].thresholdVar > upplim or self.areas[ext].thresholdVar < lowlim: toRemove.append(ext) self.toRemove = toRemove if feasibleNeigh == 0: stop = 1 if feasibleNeigh == 1: try: self.constructRegions() if self.areas[self.addedArea].thresholdVar > maxValue: maxValue = self.areas[self.addedArea].thresholdVar if self.areas[self.addedArea].thresholdVar < minValue: minValue = self.areas[self.addedArea].thresholdVar currentRange = maxValue - minValue self.regionRange[c] = currentRange except: stop = 1 self.feasibleRegions[c] = self.region2Area[c] self.removeRegionAsCandidate() c += 1 self.getIntraBorderingAreas() def kmeansInit(self): cachedDistances = {} y = self.am.y n = len(y) distances = np.ones(n) total = sum(distances) probabilities = map(lambda x: x / float(total), distances) seeds = [] localDistanceType = self.distanceType returnDistance2Area = AreaCl.returnDistance2Area np.random.seed(int(time() * getpid()) % 4294967295) for k in xrange(self.pRegions): random = np.random.uniform(0, 1) find = False acum = 0 cont = 0 while not find: inf = acum sup = acum + probabilities[cont] if inf <= random <= sup: find = True seeds += [cont] selfAmAreas = self.am.areas for area in selfAmAreas: currentArea = selfAmAreas[area] tempMap = [] for x in seeds: if x < area: k = (x, area) elif x > area: k = (area, x) else: k = (0,0) cached = cachedDistances.get(k, -1) if cached < 0: newDist = returnDistance2Area(currentArea, selfAmAreas[x], distanceType = localDistanceType) tempMap.append(newDist) cachedDistances[k] = newDist else: tempMap.append(cached) distancei = min(tempMap) distances[area] = distancei total = sum(distances) probabilities = map(lambda x: x / float(total), distances) else: cont += 1 acum = sup del cachedDistances return seeds def extractThresholdVar(self): """ Separate aggregation variables (data) from the variable selected to satisfy a threshold value (thresholdVar) """ self.totalThresholdVar = 0.0 for areaId in self.areas.keys(): self.areas[areaId].thresholdVar = self.areas[areaId].data[-1] self.areas[areaId].data = self.areas[areaId].data[0: -1] self.totalThresholdVar += self.areas[areaId].thresholdVar def removeRegionAsCandidate(self): """ Remove a region from candidates """ for i in self.candidateInfo.keys(): a, r = i if r in self.feasibleRegions: self.candidateInfo.pop(i) def returnRegions(self): """ Return regions created """ areasId = self.area2Region.keys() areasId = np.sort(areasId).tolist() return [self.area2Region[area] for area in areasId] def resetNow(self): """ Reset all variables """ self.unassignedAreas = self.areas.keys() self.assignedAreas = [] self.area2Region = {} self.region2Area = {} self.potentialRegions4Area = {} self.intraBorderingAreas = {} self.candidateInfo = {} self.externalNeighs = set([]) self.neighsMinusAssigned = set([]) def setSeeds(self, seeds, c=0): """ Sets the initial seeds for clustering """ if self.numRegionsType == "Exogenous" and len(seeds) <= self.pRegions: idx = range(self.n) didx = list((set(idx) - set(seeds)) - self.am.noNeighs) np.random.shuffle(didx) self.seeds = seeds + didx[0:(self.pRegions - len(seeds))] else: self.seeds = seeds for seed in self.seeds: self.NRegion += [0] self.assignSeeds(seed, c) c += 1 def assignAreaStep1(self, areaID, regionID): """ Assign an area to a region """ a = self.areas[areaID] neighs = a.neighs try: self.region2Area[regionID].append(areaID) if self.objectiveFunctionType == "GWalt": try: self.NRegion[regionID] += a.data[0] for index in range(1,len(a.data)): self.data[regionID][index - 1] += a.data[index] * a.data[0] except: self.NRegion[regionID] = a.data[0] for index in range(1, len(a.data)): self.data[regionID][index - 1] = a.data[index] * a.data[0] self.N += a.data[0] except: self.region2Area[regionID] = [areaID] if self.objectiveFunctionType == "GWalt": self.NRegion[regionID] = a.data[0] for index in range(1, len(a.data)): if index == 1: self.data[regionID] = [a.data[index] * a.data[0]] else: self.data[regionID] += [a.data[index] * a.data[0]] self.N += a.data[0] self.area2Region[areaID] = regionID try: aid = self.unassignedAreas.remove(areaID) except: pass self.assignedAreas.append(areaID) setNeighs = set(neighs) setAssigned = set(self.assignedAreas) self.oldExternal = self.externalNeighs self.externalNeighs.update(setNeighs) self.externalNeighs.difference_update(setAssigned) self.newExternal = self.externalNeighs - self.oldExternal self.neighsMinusAssigned = setNeighs - setAssigned def assignSeeds(self, areaID, regionID): """ Assign an area to a region and updates potential regions for the neighs Parameters """ self.assignAreaStep1(areaID, regionID) for neigh in self.neighsMinusAssigned: self.potentialRegions4Area.setdefault(neigh, set()).add(regionID) try: self.potentialRegions4Area.pop(areaID) except: pass self.changedRegion = 'null' self.newExternal = self.potentialRegions4Area.keys() def assignAreasNoNeighs(self): """ Assign to the region "-1" for the areas without neighbours """ noNeighs = list(self.am.noNeighs) nr = -1 for areaID in noNeighs: self.area2Region[areaID] = nr try: aid = self.unassignedAreas.remove(areaID) except: pass self.assignedAreas.append(areaID) setAssigned = set(self.assignedAreas) nr = nr - 1 def assignArea(self, areaID, regionID): """ Assign an area to a region and updates potential regions for neighs """ self.changedRegion = regionID self.addedArea = areaID self.assignAreaStep1(areaID, regionID) for neigh in self.neighsMinusAssigned: self.potentialRegions4Area.setdefault(neigh, set()).add(regionID) try: self.potentialRegions4Area.pop(areaID) except: pass def returnBorderingAreas(self, regionID): """ Returns bordering areas of a region """ areas2Eval = self.region2Area[regionID] borderingAreas = set() for area in areas2Eval: try: if len(self.intraBorderingAreas[area]) > 0: borderingAreas.add(area) except: pass return borderingAreas def getIntraBorderingAreas(self): """ Gets the intrabordering areas """ self.intraBorderingAreas = {} if self.numRegionsType == "Exogenous": nr = range(self.pRegions) else: nr = self.feasibleRegions for regionID in nr: setNeighsNoRegion = set() try: areas2Eval = self.region2Area[regionID] except: areas2Eval = [] for area in areas2Eval: setNeighsNoRegion.update(self.areas[area].neighs) setNeighsNoRegion.difference_update(areas2Eval) for neigh in setNeighsNoRegion: self.intraBorderingAreas.setdefault(neigh, set()).add(regionID) def constructRegions(self, filteredCandidates=-99, filteredReg=-99): """ Construct potential regions per area """ _d_stat = self.distanceStat _wd_stat = self.weightsDistanceStat _ida_stat = self.indexDataStat _fun_am_d2r = self.am.getDistance2Region lastRegion = 0 for areaID in self.potentialRegions4Area.keys(): a = self.areas[areaID] regionIDs = list(self.potentialRegions4Area[areaID]) for region in regionIDs: if (self.numRegionsType != "Exogenous" and self.constructionStage == "growing" and region in self.feasibleRegions): # Once a region reaches the threshold, the grow is # rejected until the assignation of enclaves continue else: if filteredCandidates == -99: if (areaID not in self.newExternal and region != self.changedRegion): lastRegion = region pass else: _reg_dist = 0.0 if self.selectionType != "FullRandom": _reg_dist = _fun_am_d2r(self.areas[areaID], self.region2Area[region], distanceStat = _d_stat, weights = _wd_stat, indexData = _ida_stat) self.candidateInfo[(areaID, region)] = _reg_dist elif (filteredCandidates != -99 and areaID in filteredCandidates and region == filteredReg): _reg_dist = _fun_am_d2r(self.areas[areaID], self.region2Area[region], distanceStat = _d_stat, weights = _wd_stat, indexData = _ida_stat) self.candidateInfo[(areaID, region)] = _reg_dist if len(self.candidateInfo) == 0: self.changedRegion = lastRegion if self.numRegionsType == "EndogenousRange": self.filterCandidate(self.toRemove) selectionTypeDispatcher[self.selectionType](self) def filterCandidate(self, removeCandidate=[]): """ Filter candidates """ if len(removeCandidate) > 0: toRemove = [] for _id in removeCandidate: for cand, reg in self.candidateInfo.keys(): if cand == _id: toRemove.append((cand, reg)) for remov in toRemove: self.candidateInfo.pop(remov) def graspList(self, xList, alpha=0.0): """ Return random index of values with specified range. """ maxX = max(xList) minX = min(xList) xRangeMax = minX + ((maxX - minX) * alpha) candidates = [i <= xRangeMax for i in xList] indices = indexMultiple(candidates, 1) nCandidates = len(indices) idx = range(nCandidates) np.random.shuffle(idx) random = idx[0] index4Grasp = indices[random] return index4Grasp def getObjective(self, region2AreaDict): """ Return the value of the objective function from regions2area dictionary This function acts as a proxy function since the idea behind the getObjective and getObjectiveFast is the same. When the non-fast approach is needed, this function will call getObjectiveFast with the extra parameter as None. This way the fast function will execute as the non-fast would have. """ return self.getObjectiveFast(region2AreaDict, modifiedRegions=None) def getObjectiveFast(self, region2AreaDict, modifiedRegions=[]): """ Return the value of the objective function from regions2area dictionary When this function gets called, the objectiveFunctionType property could be either a String representing the type of the function (the common case), or could be a list of function types, in which case it's necessary to iterate over all the functions. """ distance = 0.0 _objFunType = self.objectiveFunctionType if isinstance(_objFunType, "".__class__): if len(self.indexDataOF) == 0: indexData = range(len(self.areas[0].data)) else: indexData = self.indexDataOF _fun = None if modifiedRegions == None: _fun = objectiveFunctionTypeDispatcher[_objFunType] distance = _fun(self, region2AreaDict, indexData) else: _fun = objectiveFunctionTypeDispatcher[_objFunType+'f'] distance=_fun(self, region2AreaDict, modifiedRegions, indexData) else: i = 0 for oFT in _objFunType: if len(self.indexDataOF) == 0: indexData = range(len(self.areas[0].data)) else: indexData = self.indexDataOF[i] if len(self.weightsObjectiveFunctionType) > 0: _fun = objectiveFunctionTypeDispatcher[oFT] distance += (self.weightsObjectiveFunctionType[i] * _fun(self, region2AreaDict, indexData)) i += 1 else: _fun = objectiveFunctionTypeDispatcher[oFT] distance += _fun(self, region2AreaDict, indexData) return distance def getLambda(self): L = np.matrix(np.identity(self.pRegions)) for r in range(self.pRegions): L[r, r] = 1.0 * self.NRegion[r] / self.N return L def getB(self): """ Return matrix of parameters of all regions """ B = np.matrix(np.zeros(len(self.data[0]) * self.pRegions)).T index = 0 for r in range(self.pRegions): for i in range(len(self.data[0])): B[index, 0] = self.data[r][i] / self.NRegion[r] index += 1 return B def getY(self): """ Return matrix of the average variance-covariance of all regions """ Y = np.matrix(np.identity(len(self.data[0]))) centroids = {} for r in range(self.pRegions): centroids[r] = calculateCentroid([self.areas[aID] for aID in self.region2Area[r]]) for r in range(self.pRegions): Y += centroids[r].var *
np.power(self.NRegion[r] / self.N, 2)
numpy.power
import numpy as np, pandas as pd from scipy.sparse import csc_matrix, csr_matrix, issparse, isspmatrix_csc, isspmatrix_csr, vstack as sp_vstack import warnings import multiprocessing import ctypes import json import os from copy import deepcopy from ._cpp_interface import isoforest_cpp_obj, _sort_csc_indices, _reconstruct_csr_sliced, _reconstruct_csr_with_categ, _get_has_openmp __all__ = ["IsolationForest"] ### Helpers def _get_num_dtype(X_num=None, sample_weights=None, column_weights=None): if X_num is not None: return np.empty(0, dtype=X_num.dtype) elif sample_weights is not None: return np.empty(0, dtype=column_weights.dtype) elif column_weights is not None: return np.empty(0, dtype=sample_weights.dtype) else: return np.empty(0, dtype=ctypes.c_double) def _get_int_dtype(X_num): if (X_num is not None) and (issparse(X_num)): return np.empty(0, dtype=X_num.indices.dtype) else: return np.empty(0, dtype=ctypes.c_size_t) def _is_row_major(X_num): if (X_num is None) or (issparse(X_num)): return False else: return X_num.strides[1] == X_num.dtype.itemsize def _is_col_major(X_num): if (X_num is None) or (issparse(X_num)): return False else: return X_num.strides[0] == X_num.dtype.itemsize def _copy_if_subview(X_num, prefer_row_major=False): ### TODO: the C++ functions should accept a 'leading dimension' ### parameter so as to avoid copying the data here if (X_num is not None) and (not issparse(X_num)): col_major = _is_col_major(X_num) leading_dimension = int(X_num.strides[1 if col_major else 0] / X_num.dtype.itemsize) if ( (leading_dimension != X_num.shape[0 if col_major else 1]) or (len(X_num.strides) != 2) or (not X_num.flags.aligned) or (not _is_row_major(X_num) and not _is_col_major(X_num)) ): X_num = X_num.copy() if _is_col_major(X_num) != col_major: if prefer_row_major: X_num = np.ascontiguousarray(X_num) else: X_num = np.asfortranarray(X_num) return X_num def _all_equal(x, y): if x.shape[0] != y.shape[0]: return False return np.all(x == y) def _encode_categorical(cl, categories): if (cl.shape[0] >= 100) and (cl.dtype.name == "category"): if _all_equal(cl.cat.categories, categories): return cl.cat.codes return pd.Categorical(cl, categories).codes class IsolationForest: """ Isolation Forest model Isolation Forest is an algorithm originally developed for outlier detection that consists in splitting sub-samples of the data according to some attribute/feature/column at random. The idea is that, the rarer the observation, the more likely it is that a random uniform split on some feature would put outliers alone in one branch, and the fewer splits it will take to isolate an outlier observation like this. The concept is extended to splitting hyperplanes in the extended model (i.e. splitting by more than one column at a time), and to guided (not entirely random) splits in the SCiForest model that aim at isolating outliers faster and finding clustered outliers. This version adds heuristics to handle missing data and categorical variables. Can be used to aproximate pairwise distances by checking the depth after which two observations become separated, and to approximate densities by fitting trees beyond balanced-tree limit. Offers options to vary between randomized and deterministic splits too. Note ---- The default parameters in this software do not correspond to the suggested parameters in any of the references. In particular, the following default values are likely to cause huge differences when compared to the defaults in other software: ``ndim``, ``sample_size``, ``ntrees``. The defaults here are nevertheless more likely to result in better models. In order to mimic scikit-learn for example, one would need to pass ``ndim=1``, ``sample_size=256``, ``ntrees=100``, ``missing_action="fail"``, ``nthreads=1``. Note ---- Shorthands for parameter combinations that match some of the references: 'iForest' (reference [1]_): ``ndim=1``, ``sample_size=256``, ``max_depth=8``, ``ntrees=100``, ``missing_action="fail"``. 'EIF' (reference [3]_): ``ndim=2``, ``sample_size=256``, ``max_depth=8``, ``ntrees=100``, ``missing_action="fail"``, ``coefs="uniform"``, ``standardize_data=False`` (plus standardizing the data **before** passing it). 'SCiForest' (reference [4]_): ``ndim=2``, ``sample_size=256``, ``max_depth=8``, ``ntrees=100``, ``missing_action="fail"``, ``coefs="normal"``, ``ntry=10``, ``prob_pick_avg_gain=1``, ``penalize_range=True``. Might provide much better results with ``max_depth=None`` despite the reference's recommendation. Note ---- The model offers many tunable parameters. The most likely candidate to tune is ``prob_pick_pooled_gain``, for which higher values tend to result in a better ability to flag outliers in the training data at the expense of hindered performance when making predictions (calling method ``predict``) on new data (including out-of-bag samples for each tree) and poorer generalizability to inputs with values outside the variables' ranges to which the model was fit (see plots generated from the examples in GitHub notebook for a better idea of the difference). The next candidate to tune is ``sample_size`` - the default is to use all rows, but in some datasets introducing sub-sampling can help, especially for the single-variable model. In smaller datasets, one might also want to experiment with ``weigh_by_kurtosis`` and perhaps lower ``ndim``. If using ``prob_pick_pooled_gain``, models are likely to benefit from deeper trees (controlled by ``max_depth``), but using large samples and/or deeper trees can result in significantly slower model fitting and predictions - in such cases, using ``min_gain`` (with a value like 0.25) with ``max_depth=None`` can offer a better speed/performance trade-off than changing ``max_depth``. Note ---- The default parameters will not scale to large datasets. In particular, if the amount of data is large, it's suggested to set a smaller sample size for each tree (parameter ``sample_size``) and to fit fewer of them (parameter ``ntrees``). As well, the default option for 'missing_action' might slow things down significantly. See the documentation of the parameters for more details. These defaults can also result in very big model sizes in memory and as serialized files (e.g. models that weight over 10GB) when the number of rows in the data is large. Using fewer trees, smaller sample sizes, and shallower trees can help to reduce model sizes if that becomes a problem. Note ---- See the documentation of ``predict`` for some considerations when serving models generated through this library. Parameters ---------- sample_size : str "auto", int, float(0,1), or None Sample size of the data sub-samples with which each binary tree will be built. If passing 'None', each tree will be built using the full data. Recommended value in [1]_, [2]_, [3]_ is 256, while the default value in the author's code in [5]_ is 'None' here. If passing "auto", will use the full number of rows in the data, up to 10,000 (i.e. will take 'sample_size=min(nrows(X), 10000)') **when calling fit**, and the full amount of rows in the data **when calling the variants** ``fit_predict`` or ``fit_transform``. If passing ``None``, will take the full number of rows in the data (no sub-sampling). If passing a number between zero and one, will assume it means taking a sample size that represents that proportion of the rows in the data. Hint: seeing a distribution of scores which is on average too far below 0.5 could mean that the model needs more trees and/or bigger samples to reach convergence (unless using non-random splits, in which case the distribution is likely to be centered around a much lower number), or that the distributions in the data are too skewed for random uniform splits. ntrees : int Number of binary trees to build for the model. Recommended value in [1]_ is 100, while the default value in the author's code in [5]_ is 10. In general, the number of trees required for good results is higher when (a) there are many columns, (b) there are categorical variables, (c) categorical variables have many categories, (d) `ndim` is high, (e) ``prob_pick_pooled_gain`` is used. Hint: seeing a distribution of scores which is on average too far below 0.5 could mean that the model needs more trees and/or bigger samples to reach convergence (unless using non-random splits, in which case the distribution is likely to be centered around a much lower number), or that the distributions in the data are too skewed for random uniform splits. ndim : int Number of columns to combine to produce a split. If passing 1, will produce the single-variable model described in [1]_ and [2]_, while if passing values greater than 1, will produce the extended model described in [3]_ and [4]_. Recommended value in [4]_ is 2, while [3]_ recommends a low value such as 2 or 3. Models with values higher than 1 are referred hereafter as the extended model (as in [3]_). Note that, when using ``ndim>1`` plus ``standardize_data=True``, the variables are standardized at each step as suggested in [4]_, which makes the models slightly different than in [3]_. ntry : int In the extended model with non-random splits, how many random combinations to try for determining the best gain. Only used when deciding splits by gain (see documentation for parameters 'prob_pick_avg_gain' and 'prob_pick_pooled_gain'). Recommended value in [4]_ is 10. Ignored for single-variable model. categ_cols : None or array-like Columns that hold categorical features, when the data is passed as an array or matrix. Categorical columns should contain only integer values with a continuous numeration starting at zero, with negative values and NaN taken as missing, and the array or list passed here should correspond to the column numbers, with numeration starting at zero. The maximum categorical value should not exceed 'INT_MAX' (typically :math:`2^{31}-1`). This might be passed either at construction time or when calling ``fit`` or variations of ``fit``. This is ignored when the input is passed as a ``DataFrame`` as then it will consider columns as categorical depending on their dtype (see the documentation for ``fit`` for details). max_depth : int, None, or str "auto" Maximum depth of the binary trees to grow. If passing None, will build trees until each observation ends alone in a terminal node or until no further split is possible. If using "auto", will limit it to the corresponding depth of a balanced binary tree with number of terminal nodes corresponding to the sub-sample size (the reason being that, if trying to detect outliers, an outlier will only be so if it turns out to be isolated with shorter average depth than usual, which corresponds to a balanced tree depth). When a terminal node has more than 1 observation, the remaining isolation depth for them is estimated assuming the data and splits are both uniformly random (separation depth follows a similar process with expected value calculated as in [6]_). Default setting for [1]_, [2]_, [3]_, [4]_ is "auto", but it's recommended to pass higher values if using the model for purposes other than outlier detection. Note that models that use ``prob_pick_pooled_gain`` or ``prob_pick_avg_gain`` are likely to benefit from deeper trees (larger ``max_depth``), but deeper trees can result in much slower model fitting and predictions. If using pooled gain, one might want to substitute ``max_depth`` with ``min_gain``. ncols_per_tree : None, int, or float(0,1] Number of columns to use (have as potential candidates for splitting at each iteration) in each tree, somewhat similar to the 'mtry' parameter of random forests. In general, this is only relevant when using non-random splits and/or weighting by kurtosis. If passing a number between zero and one, will assume it means taking a sample size that represents that proportion of the columns in the data. If passing exactly 1, will assume it means taking 100% of the columns rather than taking 1 column. If passing ``None`` (the default) or zero, will use the full number of available columns. prob_pick_avg_gain : float(0, 1) * For the single-variable model (``ndim=1``), this parameter indicates the probability of making each split by choosing a column and split point in that same column as both the column and split point that gives the largest averaged gain (as proposed in [4]_) across all available columns and possible splits in each column. Note that this implies evaluating every single column in the sample data when this type of split happens, which will potentially make the model fitting much slower, but has no impact on prediction time. For categorical variables, will take the expected standard deviation that would be gotten if the column were converted to numerical by assigning to each category a random number ~ Unif(0, 1) and calculate gain with those assumed standard deviations. * For the extended model, this parameter indicates the probability that the split point in the chosen linear combination of variables will be decided by this averaged gain criterion. Compared to a pooled average, this tends to result in more cases in which a single observation or very few of them are put into one branch. Recommended to use sub-samples (parameter 'sample_size') when passing this parameter. Note that, since this will create isolated nodes faster, the resulting object will be lighter (use less memory). When splits are not made according to any of 'prob_pick_avg_gain', 'prob_pick_pooled_gain', 'prob_split_avg_gain', 'prob_split_pooled_gain', both the column and the split point are decided at random. Default setting for [1]_, [2]_, [3]_ is zero, and default for [4]_ is 1. This is the randomization parameter that can be passed to the author's original code in [5]_, but note that the code in [5]_ suffers from a mathematical error in the calculation of running standard deviations, so the results from it might not match with this library's. Note that, if passing a value of 1 (100%) with no sub-sampling and using the single-variable model, every single tree will have the exact same splits. Under this option, models are likely to produce better results when increasing ``max_depth``. Important detail: if using either ``prob_pick_avg_gain`` or ``prob_pick_pooled_gain``, the distribution of outlier scores is unlikely to be centered around 0.5. prob_pick_pooled_gain : float(0, 1) * For the single-variable model (``ndim=1``), this parameter indicates the probability of making each split by choosing a column and split point in that same column as both the column and split point that gives the largest pooled gain (as used in decision tree classifiers such as C4.5 in [7]_) across all available columns and possible splits in each column. Note that this implies evaluating every single column in the sample data when this type of split happens, which will potentially make the model fitting much slower, but has no impact on prediction time. For categorical variables, will use shannon entropy instead (like in [7]_). * For the extended model, this parameter indicates the probability that the split point in the chosen linear combination of variables will be decided by this pooled gain criterion. Compared to a simple average, this tends to result in more evenly-divided splits and more clustered groups when they are smaller. Recommended to pass higher values when used for imputation of missing values. When used for outlier detection, higher values of this parameter result in models that are able to better flag outliers in the training data of each tree, but generalize poorly to outliers in new data (including out-of-bag samples for each tree) and to values of variables outside of the ranges from the training data. Passing small 'sample_size' and high values of this parameter will tend to flag too many outliers. Note that, since this makes the trees more even and thus it takes more steps to produce isolated nodes, the resulting object will be heavier. When splits are not made according to any of 'prob_pick_avg_gain', 'prob_pick_pooled_gain', 'prob_split_avg_gain', 'prob_split_pooled_gain', both the column and the split point are decided at random. Note that, if passing value 1 (100%) with no sub-sampling and using the single-variable model, every single tree will have the exact same splits. Be aware that ``penalize_range`` can also have a large impact when using ``prob_pick_pooled_gain``. Under this option, models are likely to produce better results when increasing ``max_depth``. Alternatively, one can also control the depth through ``min_gain`` (for which one might want to set ``max_depth=None``). Important detail: if using either ``prob_pick_avg_gain`` or ``prob_pick_pooled_gain``, the distribution of outlier scores is unlikely to be centered around 0.5. prob_split_avg_gain : float(0, 1) Probability of making each split by selecting a column at random and determining the split point as that which gives the highest averaged gain. Not supported for the extended model as the splits are on linear combinations of variables. See the documentation for parameter 'prob_pick_avg_gain' for more details. prob_split_pooled_gain : float(0, 1) Probability of making each split by selecting a column at random and determining the split point as that which gives the highest pooled gain. Not supported for the extended model as the splits are on linear combinations of variables. See the documentation for parameter 'prob_pick_pooled_gain' for more details. min_gain : float > 0 Minimum gain that a split threshold needs to produce in order to proceed with a split. Only used when the splits are decided by a gain criterion (either pooled or averaged). If the highest possible gain in the evaluated splits at a node is below this threshold, that node becomes a terminal node. This can be used as a more sophisticated depth control when using pooled gain (note that ``max_depth`` still applies on top of this heuristic). missing_action : str, one of "divide" (single-variable only), "impute", "fail", "auto" How to handle missing data at both fitting and prediction time. Options are: ``"divide"``: (For the single-variable model only, recommended) Will follow both branches and combine the result with the weight given by the fraction of the data that went to each branch when fitting the model. ``"impute"``: Will assign observations to the branch with the most observations in the single-variable model, or fill in missing values with the median of each column of the sample from which the split was made in the extended model (recommended for the extended model). ``"fail"``: Will assume there are no missing values and will trigger undefined behavior if it encounters any. ``"auto"``: Will use "divide" for the single-variable model and "impute" for the extended model. In the extended model, infinite values will be treated as missing. Passing "fail" will produce faster fitting and prediction times along with decreased model object sizes. Models from [1]_, [2]_, [3]_, [4]_ correspond to "fail" here. new_categ_action : str, one of "weighted" (single-variable only), "impute" (extended only), "smallest", "random" What to do after splitting a categorical feature when new data that reaches that split has categories that the sub-sample from which the split was done did not have. Options are: ``"weighted"``: (For the single-variable model only, recommended) Will follow both branches and combine the result with weight given by the fraction of the data that went to each branch when fitting the model. ``"impute"``: (For the extended model only, recommended) Will assign them the median value for that column that was added to the linear combination of features. ``"smallest"``: In the single-variable case will assign all observations with unseen categories in the split to the branch that had fewer observations when fitting the model, and in the extended case will assign them the coefficient of the least common category. ``"random"``: Will assing a branch (coefficient in the extended model) at random for each category beforehand, even if no observations had that category when fitting the model. Note that this can produce biased results when deciding splits by a gain criterion. Important: under this option, if the model is fitted to a ``DataFrame``, when calling ``predict`` on new data which contains new categories (unseen in the data to which the model was fitted), they will be added to the model's state on-the-fly. This means that, if calling ``predict`` on data which has new categories, there might be inconsistencies in the results if predictions are done in parallel or if passing the same data in batches or with different row orders. It also means that the ``predict`` function will not be thread-safe (e.g. cannot be used alongside ``joblib`` with a backend that uses shared memory). ``"auto"``: Will select "weighted" for the single-variable model and "impute" for the extended model. Ignored when passing 'categ_split_type' = 'single_categ'. categ_split_type : str, one of "subset" or "single_categ" Whether to split categorical features by assigning sub-sets of them to each branch, or by assigning a single category to a branch and the rest to the other branch. For the extended model, whether to give each category a coefficient, or only one while the rest get zero. all_perm : bool When doing categorical variable splits by pooled gain with ``ndim=1`` (regular model), whether to consider all possible permutations of variables to assign to each branch or not. If ``False``, will sort the categories by their frequency and make a grouping in this sorted order. Note that the number of combinations evaluated (if ``True``) is the factorial of the number of present categories in a given column (minus 2). For averaged gain, the best split is always to put the second most-frequent category in a separate branch, so not evaluating all permutations (passing ``False``) will make it possible to select other splits that respect the sorted frequency order. Ignored when not using categorical variables or not doing splits by pooled gain or using ``ndim > 1``. coef_by_prop : bool In the extended model, whether to sort the randomly-generated coefficients for categories according to their relative frequency in the tree node. This might provide better results when using categorical variables with too many categories, but is not recommended, and not reflective of real "categorical-ness". Ignored for the regular model (``ndim=1``) and/or when not using categorical variables. recode_categ : bool Whether to re-encode categorical variables even in case they are already passed as ``pd.Categorical``. This is recommended as it will eliminate potentially redundant categorical levels if they have no observations, but if the categorical variables are already of type ``pd.Categorical`` with only the levels that are present, it can be skipped for slightly faster fitting times. You'll likely want to pass ``False`` here if merging several models into one through ``append_trees``. weights_as_sample_prob : bool If passing sample (row) weights when fitting the model, whether to consider those weights as row sampling weights (i.e. the higher the weights, the more likely the observation will end up included in each tree sub-sample), or as distribution density weights (i.e. putting a weight of two is the same as if the row appeared twice, thus higher weight makes it less of an outlier). Note that sampling weight is only used when sub-sampling data for each tree, which is not the default in this implementation. sample_with_replacement : bool Whether to sample rows with replacement or not (not recommended). Note that distance calculations, if desired, don't work well with duplicate rows. penalize_range : bool Whether to penalize (add -1 to the terminal depth) observations at prediction time that have a value of the chosen split variable (linear combination in extended model) that falls outside of a pre-determined reasonable range in the data being split (given by 2 * range in data and centered around the split point), as proposed in [4]_ and implemented in the authors' original code in [5]_. Not used in single-variable model when splitting by categorical variables. It's recommended to turn this off for faster predictions on sparse CSC matrices. Note that this can make a very large difference in the results when using ``prob_pick_pooled_gain``. Be aware that this option can make the distribution of outlier scores a bit different (i.e. not centered around 0.5) standardize_data : bool Whether to standardize the features at each node before creating alinear combination of them as suggested in [4]_. This is ignored when using ``ndim=1``. weigh_by_kurtosis : bool Whether to weigh each column according to the kurtosis obtained in the sub-sample that is selected for each tree as briefly proposed in [1]_. Note that this is only done at the beginning of each tree sample, so if not using sub-samples, it's better to pass column weights calculated externally. For categorical columns, will calculate expected kurtosis if the column was converted to numerical by assigning to each category a random number ~ Unif(0, 1). Note that when using sparse matrices, the calculation of kurtosis will rely on a procedure that uses sums of squares and higher-power numbers, which has less numerical precision than the calculation used for dense inputs, and as such, the results might differ slightly. Using this option makes the model more likely to pick the columns that have anomalous values when viewed as a 1-d distribution, and can bring a large improvement in some datasets. coefs : str, one of "normal" or "uniform" For the extended model, whether to sample random coefficients according to a normal distribution ~ N(0, 1) (as proposed in [4]_) or according to a uniform distribution ~ Unif(-1, +1) as proposed in [3]_. Ignored for the single-variable model. Note that, for categorical variables, the coefficients will be sampled ~ N (0,1) regardless - in order for both types of variables to have transformations in similar ranges (which will tend to boost the importance of categorical variables), pass ``"uniform"`` here. assume_full_distr : bool When calculating pairwise distances (see [8]_), whether to assume that the fitted model represents a full population distribution (will use a standardizing criterion assuming infinite sample, and the results of the similarity between two points at prediction time will not depend on the prescence of any third point that is similar to them, but will differ more compared to the pairwise distances between points from which the model was fit). If passing 'False', will calculate pairwise distances as if the new observations at prediction time were added to the sample to which each tree was fit, which will make the distances between two points potentially vary according to other newly introduced points. This will not be assumed when the distances are calculated as the model is being fit (see documentation for method 'fit_transform'). build_imputer : bool Whether to construct missing-value imputers so that later this same model could be used to impute missing values of new (or the same) observations. Be aware that this will significantly increase the memory requirements and serialized object sizes. Note that this is not related to 'missing_action' as missing values inside the model are treated differently and follow their own imputation or division strategy. min_imp_obs : int Minimum number of observations with which an imputation value can be produced. Ignored if passing 'build_imputer' = 'False'. depth_imp : str, one of "higher", "lower", "same" How to weight observations according to their depth when used for imputing missing values. Passing "higher" will weigh observations higher the further down the tree (away from the root node) the terminal node is, while "lower" will do the opposite, and "same" will not modify the weights according to node depth in the tree. Implemented for testing purposes and not recommended to change from the default. Ignored when passing 'build_imputer' = 'False'. weigh_imp_rows : str, one of "inverse", "prop", "flat" How to weight node sizes when used for imputing missing values. Passing "inverse" will weigh a node inversely proportional to the number of observations that end up there, while "proportional" will weight them heavier the more observations there are, and "flat" will weigh all nodes the same in this regard regardless of how many observations end up there. Implemented for testing purposes and not recommended to change from the default. Ignored when passing 'build_imputer' = 'False'. random_seed : int Seed that will be used for random number generation. nthreads : int Number of parallel threads to use. If passing a negative number, will use the same formula as joblib does for calculating number of threads (which is n_cpus + 1 + n_jobs - i.e. pass -1 to use all available threads). Note that, the more threads, the more memory will be allocated, even if the thread does not end up being used. Be aware that most of the operations are bound by memory bandwidth, which means that adding more threads will not result in a linear speed-up. For some types of data (e.g. large sparse matrices with small sample sizes), adding more threads might result in only a very modest speed up (e.g. 1.5x faster with 4x more threads), even if all threads look fully utilized. n_estimators : None or int Synonym for ``ntrees``, kept for better compatibility with scikit-learn. max_samples : None or int Synonym for ``sample_size``, kept for better compatibility with scikit-learn. n_jobs : None or int Synonym for ``nthreads``, kept for better compatibility with scikit-learn. random_state : None, int, or RandomState Synonym for ``random_seed``, kept for better compatibility with scikit-learn. bootstrap : None or bool Synonym for ``sample_with_replacement``, kept for better compatibility with scikit-learn. Attributes ---------- cols_numeric_ : array(n_num_features,) Array with the names of the columns that were taken as numerical (Only when fitting the model to a DataFrame object). cols_categ_ : array(n_categ_features,) Array with the names of the columns that were taken as categorical (Only when fitting the model to a DataFrame object). is_fitted_ : bool Indicator telling whether the model has been fit to data or not. References ---------- .. [1] Liu, <NAME>, <NAME>, and <NAME>. "Isolation forest." 2008 Eighth IEEE International Conference on Data Mining. IEEE, 2008. .. [2] Liu, <NAME>, <NAME>, and <NAME>. "Isolation-based anomaly detection." ACM Transactions on Knowledge Discovery from Data (TKDD) 6.1 (2012): 3. .. [3] Hariri, Sahand, <NAME>, and <NAME>. "Extended Isolation Forest." arXiv preprint arXiv:1811.02141 (2018). .. [4] Liu, <NAME>, <NAME>, and <NAME>. "On detecting clustered anomalies using SCiForest." Joint European Conference on Machine Learning and Knowledge Discovery in Databases. Springer, Berlin, Heidelberg, 2010. .. [5] https://sourceforge.net/projects/iforest/ .. [6] https://math.stackexchange.com/questions/3388518/expected-number-of-paths-required-to-separate-elements-in-a-binary-tree .. [7] <NAME>. C4. 5: programs for machine learning. Elsevier, 2014. .. [8] <NAME>. "Distance approximation using Isolation Forests." arXiv preprint arXiv:1910.12362 (2019). .. [9] <NAME>. "Imputing missing values with unsupervised random trees." arXiv preprint arXiv:1911.06646 (2019). .. [10] https://math.stackexchange.com/questions/3333220/expected-average-depth-in-random-binary-tree-constructed-top-to-bottom """ def __init__(self, sample_size = "auto", ntrees = 500, ndim = 3, ntry = 3, categ_cols = None, max_depth = "auto", ncols_per_tree = None, prob_pick_avg_gain = 0.0, prob_pick_pooled_gain = 0.0, prob_split_avg_gain = 0.0, prob_split_pooled_gain = 0.0, min_gain = 0., missing_action = "auto", new_categ_action = "auto", categ_split_type = "subset", all_perm = False, coef_by_prop = False, recode_categ = False, weights_as_sample_prob = True, sample_with_replacement = False, penalize_range = False, standardize_data = True, weigh_by_kurtosis = False, coefs = "normal", assume_full_distr = True, build_imputer = False, min_imp_obs = 3, depth_imp = "higher", weigh_imp_rows = "inverse", random_seed = 1, nthreads = -1, n_estimators = None, max_samples = None, n_jobs = None, random_state = None, bootstrap = None): self.sample_size = sample_size self.ntrees = ntrees self.ndim = ndim self.ntry = ntry self.categ_cols = categ_cols self.max_depth = max_depth self.ncols_per_tree = ncols_per_tree self.prob_pick_avg_gain = prob_pick_avg_gain self.prob_pick_pooled_gain = prob_pick_pooled_gain self.prob_split_avg_gain = prob_split_avg_gain self.prob_split_pooled_gain = prob_split_pooled_gain self.min_gain = min_gain self.missing_action = missing_action self.new_categ_action = new_categ_action self.categ_split_type = categ_split_type self.all_perm = all_perm self.coef_by_prop = coef_by_prop self.recode_categ = recode_categ self.weights_as_sample_prob = weights_as_sample_prob self.sample_with_replacement = sample_with_replacement self.penalize_range = penalize_range self.standardize_data = standardize_data self.weigh_by_kurtosis = weigh_by_kurtosis self.coefs = coefs self.assume_full_distr = assume_full_distr self.build_imputer = build_imputer self.min_imp_obs = min_imp_obs self.depth_imp = depth_imp self.weigh_imp_rows = weigh_imp_rows self.random_seed = random_seed self.nthreads = nthreads self.n_estimators = n_estimators self.max_samples = max_samples self.n_jobs = n_jobs self.random_state = random_state self.bootstrap = bootstrap self._reset_obj() def _init(self, categ_cols = None): if categ_cols is not None: if self.categ_cols is not None: warnings.warn("Passed 'categ_cols' in constructor and fit method. Will take the latter.") self.categ_cols = categ_cols self._initialize_full( sample_size = self.sample_size if (self.max_samples is None) else self.max_samples, ntrees = self.ntrees if (self.n_estimators is None) else self.n_estimators, ndim = self.ndim, ntry = self.ntry, categ_cols = self.categ_cols, max_depth = self.max_depth, ncols_per_tree = self.ncols_per_tree, prob_pick_avg_gain = self.prob_pick_avg_gain, prob_pick_pooled_gain = self.prob_pick_pooled_gain, prob_split_avg_gain = self.prob_split_avg_gain, prob_split_pooled_gain = self.prob_split_pooled_gain, min_gain = self.min_gain, missing_action = self.missing_action, new_categ_action = self.new_categ_action, categ_split_type = self.categ_split_type, all_perm = self.all_perm, coef_by_prop = self.coef_by_prop, recode_categ = self.recode_categ, weights_as_sample_prob = self.weights_as_sample_prob, sample_with_replacement = self.sample_with_replacement if (self.bootstrap is None) else self.bootstrap, penalize_range = self.penalize_range, standardize_data = self.standardize_data, weigh_by_kurtosis = self.weigh_by_kurtosis, coefs = self.coefs, assume_full_distr = self.assume_full_distr, build_imputer = self.build_imputer, min_imp_obs = self.min_imp_obs, depth_imp = self.depth_imp, weigh_imp_rows = self.weigh_imp_rows, random_seed = self.random_seed if (self.random_state is None) else self.random_state, nthreads = self.nthreads if (self.n_jobs is None) else self.n_jobs) def _initialize_full(self, sample_size = None, ntrees = 500, ndim = 3, ntry = 3, categ_cols = None, max_depth = "auto", ncols_per_tree = None, prob_pick_avg_gain = 0.0, prob_pick_pooled_gain = 0.0, prob_split_avg_gain = 0.0, prob_split_pooled_gain = 0.0, min_gain = 0., missing_action = "auto", new_categ_action = "auto", categ_split_type = "subset", all_perm = False, coef_by_prop = False, recode_categ = True, weights_as_sample_prob = True, sample_with_replacement = False, penalize_range = True, standardize_data = True, weigh_by_kurtosis = False, coefs = "normal", assume_full_distr = True, build_imputer = False, min_imp_obs = 3, depth_imp = "higher", weigh_imp_rows = "inverse", random_seed = 1, nthreads = -1): if (sample_size is not None) and (sample_size != "auto"): assert sample_size > 0 if sample_size > 1: assert isinstance(sample_size, int) elif sample_size == 1: sample_size = None if ncols_per_tree is not None: assert ncols_per_tree > 0 if ncols_per_tree > 1: assert isinstance(ncols_per_tree, int) elif ncols_per_tree == 1: ncols_per_tree = None assert ntrees > 0 assert isinstance(ntrees, int) if (max_depth != "auto") and (max_depth is not None): assert max_depth > 0 assert isinstance(max_depth, int) if (sample_size is not None) and (sample_size != "auto"): assert max_depth < sample_size assert ndim >= 1 assert isinstance(ndim, int) assert ntry >= 1 assert isinstance(ntry, int) if isinstance(random_seed, np.random.RandomState): random_seed = random_seed.randint(np.iinfo(np.int32).max) if isinstance(random_seed, np.random.Generator): random_seed = random_seed.integers(np.iinfo(np.int32).max) random_seed = int(random_seed) assert random_seed >= 0 assert isinstance(min_imp_obs, int) assert min_imp_obs >= 1 assert missing_action in ["divide", "impute", "fail", "auto"] assert new_categ_action in ["weighted", "smallest", "random", "impute", "auto"] assert categ_split_type in ["single_categ", "subset"] assert coefs in ["normal", "uniform"] assert depth_imp in ["lower", "higher", "same"] assert weigh_imp_rows in ["inverse", "prop", "flat"] assert prob_pick_avg_gain >= 0 assert prob_pick_pooled_gain >= 0 assert prob_split_avg_gain >= 0 assert prob_split_pooled_gain >= 0 assert min_gain >= 0 s = prob_pick_avg_gain + prob_pick_pooled_gain + prob_split_avg_gain + prob_split_pooled_gain if s > 1: warnings.warn("Split type probabilities sum to more than 1, will standardize them") prob_pick_avg_gain /= s prob_pick_pooled_gain /= s prob_split_avg_gain /= s prob_split_pooled_gain /= s if (ndim == 1) and ((sample_size is None) or (sample_size == "auto")) and ((prob_pick_avg_gain >= 1) or (prob_pick_pooled_gain >= 1)) and (not sample_with_replacement): msg = "Passed parameters for deterministic single-variable splits" msg += " with no sub-sampling. " msg += "Every tree fitted will end up doing exactly the same splits. " msg += "It's recommended to set 'prob_pick_avg_gain' < 1, 'prob_pick_pooled_gain' < 1, " msg += "or to use the extended model (ndim > 1)." warnings.warn(msg) if missing_action == "auto": if ndim == 1: missing_action = "divide" else: missing_action = "impute" if new_categ_action == "auto": if ndim == 1: new_categ_action = "weighted" else: new_categ_action = "impute" if (build_imputer) and (missing_action == "fail"): raise ValueError("Cannot impute missing values when passing 'missing_action' = 'fail'.") if ndim == 1: if (categ_split_type != "single_categ") and (new_categ_action == "impute"): raise ValueError("'new_categ_action' = 'impute' not supported in single-variable model.") else: if (prob_split_avg_gain > 0) or (prob_split_pooled_gain > 0): msg = "Non-zero values for 'prob_split_avg_gain' " msg += "and 'prob_split_pooled_gain' not meaningful in " msg += "extended model." raise ValueError(msg) if missing_action == "divide": raise ValueError("'missing_action' = 'divide' not supported in extended model.") if (categ_split_type != "single_categ") and (new_categ_action == "weighted"): raise ValueError("'new_categ_action' = 'weighted' not supported in extended model.") if (weigh_by_kurtosis) and (ndim == 1) and (prob_pick_pooled_gain + prob_split_avg_gain) >= 1: msg = "'weigh_by_kurtosis' is incompatible with deterministic column selection" msg += " ('prob_pick_pooled_gain' and ' prob_split_avg_gain'). Will be forced to 'False'." warnings.warn(msg) weigh_by_kurtosis = False if nthreads is None: nthreads = 1 elif nthreads < 0: nthreads = multiprocessing.cpu_count() + 1 + nthreads assert nthreads > 0 assert isinstance(nthreads, int) if (nthreads > 1) and (not _get_has_openmp()): msg_omp = "Attempting to use more than 1 thread, but " msg_omp += "package was built without multi-threading " msg_omp += "support - see the project's GitHub page for " msg_omp += "more information." warnings.warn(msg_omp) if categ_cols is not None: categ_cols = np.array(categ_cols).reshape(-1).astype(int) categ_cols.sort() self.sample_size = sample_size self.ntrees = ntrees self.ndim = ndim self.ntry = ntry self.categ_cols = categ_cols self.max_depth = max_depth self.ncols_per_tree = ncols_per_tree self.prob_pick_avg_gain = prob_pick_avg_gain self.prob_pick_pooled_gain = prob_pick_pooled_gain self.prob_split_avg_gain = prob_split_avg_gain self.prob_split_pooled_gain = prob_split_pooled_gain self.min_gain = min_gain self.missing_action = missing_action self.new_categ_action = new_categ_action self.categ_split_type = categ_split_type self.coefs = coefs self.depth_imp = depth_imp self.weigh_imp_rows = weigh_imp_rows self.min_imp_obs = min_imp_obs self.random_seed = random_seed self.nthreads = nthreads self.all_perm = bool(all_perm) self.recode_categ = bool(recode_categ) self.coef_by_prop = bool(coef_by_prop) self.weights_as_sample_prob = bool(weights_as_sample_prob) self.sample_with_replacement = bool(sample_with_replacement) self.penalize_range = bool(penalize_range) self.standardize_data = bool(standardize_data) self.weigh_by_kurtosis = bool(weigh_by_kurtosis) self.assume_full_distr = bool(assume_full_distr) self.build_imputer = bool(build_imputer) self._reset_obj() def _reset_obj(self): self.cols_numeric_ = np.array([]) self.cols_categ_ = np.array([]) self._cat_mapping = list() self._cat_max_lev = np.array([]) self._ncols_numeric = 0 self._ncols_categ = 0 self.is_fitted_ = False self._ntrees = 0 self._cpp_obj = isoforest_cpp_obj() self._is_extended_ = self.ndim > 1 def copy(self): """ Get a deep copy of this object Returns ------- copied : obj A deep copy of this object """ if not self.is_fitted_: self._cpp_obj = isoforest_cpp_obj() return deepcopy(self) else: obj_restore = self._cpp_obj obj_new = self._cpp_obj.deepcopy() try: self._cpp_obj = None out = deepcopy(self) finally: self._cpp_obj = obj_restore out._cpp_obj = obj_new return out def get_params(self, deep=True): """ Get parameters for this estimator. Kept for compatibility with scikit-learn. Parameters ---------- deep : bool Ignored. Returns ------- params : dict Parameter names mapped to their values. """ import inspect return {param.name:getattr(self, param.name) for param in inspect.signature(self.__init__).parameters.values()} def set_params(self, **params): """ Set the parameters of this estimator. Kept for compatibility with scikit-learn. Note ---- Setting any parameter other than the number of threads will reset the model - that is, if it was fitted to some data, the fitted model will be lost, and it will need to be refitted before being able to make predictions. Parameters ---------- **params : dict Estimator parameters. Returns ------- self : estimator instance Estimator instance. """ if not (len(params) == 1 and ("nthreads" in params or "n_jobs" in params)): self.is_fitted_ = False valid_params = self.get_params(deep=False) for k,v in params.items(): if k not in valid_params: raise ValueError("Invalid parameter: ", k) setattr(self, k, v) return self def __str__(self): msg = "" if self._is_extended_: msg += "Extended " msg += "Isolation Forest model" if (self.prob_pick_avg_gain + self.prob_pick_pooled_gain) > 0 or \ (self.ndim == 1 and (self.prob_split_avg_gain + self.prob_split_pooled_gain) > 0): msg += " (using guided splits)" msg += "\n" if self.ndim > 1: msg += "Splitting by %d variables at a time\n" % self.ndim if self.is_fitted_: msg += "Consisting of %d trees\n" % self._ntrees if self._ncols_numeric > 0: msg += "Numeric columns: %d\n" % self._ncols_numeric if self._ncols_categ: msg += "Categorical columns: %d\n" % self._ncols_categ return msg def __repr__(self): return self.__str__() def _get_model_obj(self): return self._cpp_obj.get_cpp_obj(self._is_extended_) def _get_imputer_obj(self): return self._cpp_obj.get_imputer() def _check_can_use_imputer(self, X_cat): if (self.build_imputer) and (self.ndim == 1) and (X_cat is not None) and (X_cat.shape[1]): if (self.categ_split_type != "single_categ") and (self.new_categ_action == "weighted"): raise ValueError("Cannot build imputer with 'ndim=1' + 'new_categ_action=weighted'.") if self.missing_action == "divide": raise ValueError("Cannot build imputer with 'ndim=1' + 'missing_action=divide'.") def fit(self, X, y = None, sample_weights = None, column_weights = None, categ_cols = None): """ Fit isolation forest model to data Parameters ---------- X : array or array-like (n_samples, n_features) Data to which to fit the model. Can pass a NumPy array, Pandas DataFrame, or SciPy sparse CSC matrix. If passing a DataFrame, will assume that columns are: - Numeric, if their dtype is a subtype of NumPy's 'number' or 'datetime64'. - Categorical, if their dtype is 'object', 'Categorical', or 'bool'. Note that, if `Categorical` dtypes are ordered, the order will be ignored here. Other dtypes are not supported. Note that, if passing NumPy arrays, they are used in column-major order (a.k.a. "Fortran arrays"), and if they are not already in column-major format, will need to create a copy of the data. y : None Not used. Kept as argument for compatibility with SciKit-learn pipelining. sample_weights : None or array(n_samples,) Sample observation weights for each row of 'X', with higher weights indicating either higher sampling probability (i.e. the observation has a larger effect on the fitted model, if using sub-samples), or distribution density (i.e. if the weight is two, it has the same effect of including the same data point twice), according to parameter 'weights_as_sample_prob' in the model constructor method. column_weights : None or array(n_features,) Sampling weights for each column in 'X'. Ignored when picking columns by deterministic criterion. If passing None, each column will have a uniform weight. Cannot be used when weighting by kurtosis. categ_cols : None or array-like Columns that hold categorical features, when the data is passed as an array or matrix. Categorical columns should contain only integer values with a continuous numeration starting at zero, with negative values and NaN taken as missing, and the array or list passed here should correspond to the column numbers, with numeration starting at zero. The maximum categorical value should not exceed 'INT_MAX' (typically :math:`2^{31}-1`). This might be passed either at construction time or when calling ``fit`` or variations of ``fit``. This is ignored when the input is passed as a ``DataFrame`` as then it will consider columns as categorical depending on their dtype. Returns ------- self : obj This object. """ self._init(categ_cols) if ( self.sample_size is None and (sample_weights is not None) and (self.weights_as_sample_prob) ): raise ValueError("Sampling weights are only supported when using sub-samples for each tree.") if column_weights is not None and self.weigh_by_kurtosis: raise ValueError("Cannot pass column weights when weighting columns by kurtosis.") self._reset_obj() X_num, X_cat, ncat, sample_weights, column_weights, nrows = self._process_data(X, sample_weights, column_weights) self._check_can_use_imputer(X_cat) if self.sample_size is None: sample_size = nrows elif self.sample_size == "auto": sample_size = min(nrows, 10000) if (sample_weights is not None) and (self.weights_as_sample_prob): raise ValueError("Sampling weights are only supported when using sub-samples for each tree.") elif self.sample_size <= 1: sample_size = int(np.ceil(self.sample_size * nrows)) if sample_size < 2: raise ValueError("Sampling proportion amounts to a single row or less.") else: sample_size = self.sample_size if self.max_depth == "auto": max_depth = 0 limit_depth = True elif self.max_depth is None: max_depth = nrows - 1 limit_depth = False else: max_depth = self.max_depth limit_depth = False if self.ncols_per_tree is None: ncols_per_tree = 0 elif self.ncols_per_tree <= 1: ncols_tot = 0 if X_num is not None: ncols_tot += X_num.shape[1] if X_cat is not None: ncols_tot += X_cat.shape[1] ncols_per_tree = int(np.ceil(self.ncols_per_tree * ncols_tot)) else: ncols_per_tree = self.ncols_per_tree if isinstance(self.random_state, np.random.RandomState): seed = self.random_state.randint(np.iinfo(np.int32).max) else: seed = self.random_seed self._cpp_obj.fit_model(_get_num_dtype(X_num, sample_weights, column_weights), _get_int_dtype(X_num), X_num, X_cat, ncat, sample_weights, column_weights, ctypes.c_size_t(nrows).value, ctypes.c_size_t(self._ncols_numeric).value, ctypes.c_size_t(self._ncols_categ).value, ctypes.c_size_t(self.ndim).value, ctypes.c_size_t(self.ntry).value, self.coefs, ctypes.c_bool(self.coef_by_prop).value, ctypes.c_bool(self.sample_with_replacement).value, ctypes.c_bool(self.weights_as_sample_prob).value, ctypes.c_size_t(sample_size).value, ctypes.c_size_t(self.ntrees).value, ctypes.c_size_t(max_depth).value, ctypes.c_size_t(ncols_per_tree).value, ctypes.c_bool(limit_depth).value, ctypes.c_bool(self.penalize_range).value, ctypes.c_bool(self.standardize_data).value, ctypes.c_bool(False).value, ctypes.c_bool(False).value, ctypes.c_bool(False).value, ctypes.c_bool(False).value, ctypes.c_bool(False).value, ctypes.c_bool(self.weigh_by_kurtosis).value, ctypes.c_double(self.prob_pick_avg_gain).value, ctypes.c_double(self.prob_split_avg_gain).value, ctypes.c_double(self.prob_pick_pooled_gain).value, ctypes.c_double(self.prob_split_pooled_gain).value, ctypes.c_double(self.min_gain).value, self.missing_action, self.categ_split_type, self.new_categ_action, ctypes.c_bool(self.build_imputer).value, ctypes.c_size_t(self.min_imp_obs).value, self.depth_imp, self.weigh_imp_rows, ctypes.c_bool(self.build_imputer).value, ctypes.c_bool(False).value, ctypes.c_uint64(seed).value, ctypes.c_int(self.nthreads).value) self.is_fitted_ = True self._ntrees = self.ntrees return self def fit_predict(self, X, column_weights = None, output_outlierness = "score", output_distance = None, square_mat = False, output_imputed = False, categ_cols = None): """ Fit the model in-place and produce isolation or separation depths along the way See the documentation of other methods ('init', 'fit', 'predict', 'predict_distance') for details. Note ---- The data must NOT contain any duplicate rows. Note ---- This function will be faster at predicting average depths than calling 'fit' + 'predict' separately when using full row samples. Note ---- If using 'penalize_range' = 'True', the resulting scores/depths from this function might differ a bit from those of 'fit' + 'predict' ran separately. Note ---- Sample weights are not supported for this method. Note ---- When using multiple threads, there can be small differences in the predicted scores or average depth or separation/distance between runs due to roundoff error. Parameters ---------- X : array or array-like (n_samples, n_features) Data to which to fit the model. Can pass a NumPy array, Pandas DataFrame, or SciPy sparse CSC matrix. If passing a DataFrame, will assume that columns are: - Numeric, if their dtype is a subtype of NumPy's 'number' or 'datetime64'. - Categorical, if their dtype is 'object', 'Categorical', or 'bool'. Note that, if `Categorical` dtypes are ordered, the order will be ignored here. Other dtypes are not supported. column_weights : None or array(n_features,) Sampling weights for each column in 'X'. Ignored when picking columns by deterministic criterion. If passing None, each column will have a uniform weight. Cannot be used when weighting by kurtosis. Note that, if passing a DataFrame with both numeric and categorical columns, the column names must not be repeated, otherwise the column weights passed here will not end up matching. output_outlierness : None or str in ["score", "avg_depth"] Desired type of outlierness output. If passing "score", will output standardized outlier score. If passing "avg_depth" will output average isolation depth without standardizing. If passing 'None', will skip outlierness calculations. output_distance : None or str in ["dist", "avg_sep"] Type of distance output to produce. If passing "dist", will standardize the average separation depths. If passing "avg_sep", will output the average separation depth without standardizing it (note that lower separation depth means furthest distance). If passing 'None', will skip distance calculations. square_mat : bool Whether to produce a full square matrix with the distances. If passing 'False', will output only the upper triangular part as a 1-d array in which entry (i,j) with 0 <= i < j < n is located at position p(i,j) = (i * (n - (i+1)/2) + j - i - 1). Ignored when passing 'output_distance' = 'None'. output_imputed : bool Whether to output the data with imputed missing values. Model object must have been initialized with 'build_imputer' = 'True'. categ_cols : None or array-like Columns that hold categorical features, when the data is passed as an array or matrix. Categorical columns should contain only integer values with a continuous numeration starting at zero, with negative values and NaN taken as missing, and the array or list passed here should correspond to the column numbers, with numeration starting at zero. The maximum categorical value should not exceed 'INT_MAX' (typically :math:`2^{31}-1`). This might be passed either at construction time or when calling ``fit`` or variations of ``fit``. This is ignored when the input is passed as a ``DataFrame`` as then it will consider columns as categorical depending on their dtype. Returns ------- output : array(n_samples,), or dict Requested outputs about isolation depth (outlierness), pairwise separation depth (distance), and/or imputed missing values. If passing either 'output_distance' or 'output_imputed', will return a dictionary with keys "pred" (array(n_samples,)), "dist" (array(n_samples * (n_samples - 1) / 2,) or array(n_samples, n_samples)), "imputed" (array-like(n_samples, n_columns)), according to whether each output type is present. """ self._init(categ_cols) if (self.sample_size is not None) and (self.sample_size != "auto"): raise ValueError("Cannot use 'fit_predict' when the sample size is limited.") if self.sample_with_replacement: raise ValueError("Cannot use 'fit_predict' or 'fit_transform' when sampling with replacement.") if column_weights is not None and self.weigh_by_kurtosis: raise ValueError("Cannot pass column weights when weighting columns by kurtosis.") if (output_outlierness is None) and (output_distance is None): raise ValueError("Must pass at least one of 'output_outlierness' or 'output_distance'.") if output_outlierness is not None: assert output_outlierness in ["score", "avg_depth"] if output_distance is not None: assert output_distance in ["dist", "avg_sep"] if output_imputed: if self.missing_action == "fail": raise ValueError("Cannot impute missing values when using 'missing_action' = 'fail'.") if not self.build_imputer: msg = "Trying to impute missing values from object " msg += "that was initialized with 'build_imputer' = 'False' " msg += "- will force 'build_imputer' to 'True'." warnings.warn(msg) self.build_imputer = True self._reset_obj() X_num, X_cat, ncat, sample_weights, column_weights, nrows = self._process_data(X, None, column_weights) self._check_can_use_imputer(X_cat) if (output_imputed) and (issparse(X_num)): msg = "Imputing missing values from CSC matrix on-the-fly can be very slow, " msg += "it's recommended if possible to fit the model first and then pass the " msg += "same matrix as CSR to 'transform'." warnings.warn(msg) if self.max_depth == "auto": max_depth = 0 limit_depth = True elif self.max_depth is None: max_depth = nrows - 1 else: max_depth = self.max_depth limit_depth = False if self.ncols_per_tree is None: ncols_per_tree = 0 elif self.ncols_per_tree <= 1: ncols_tot = 0 if X_num is not None: ncols_tot += X_num.shape[1] if X_cat is not None: ncols_tot += X_cat.shape[1] ncols_per_tree = int(np.ceil(self.ncols_per_tree * ncols_tot)) else: ncols_per_tree = self.ncols_per_tree if isinstance(self.random_state, np.random.RandomState): seed = self.random_state.randint(np.iinfo(np.int32).max) else: seed = self.random_seed depths, tmat, dmat, X_num, X_cat = self._cpp_obj.fit_model(_get_num_dtype(X_num, None, column_weights), _get_int_dtype(X_num), X_num, X_cat, ncat, None, column_weights, ctypes.c_size_t(nrows).value, ctypes.c_size_t(self._ncols_numeric).value, ctypes.c_size_t(self._ncols_categ).value, ctypes.c_size_t(self.ndim).value, ctypes.c_size_t(self.ntry).value, self.coefs, ctypes.c_bool(self.coef_by_prop).value, ctypes.c_bool(self.sample_with_replacement).value, ctypes.c_bool(self.weights_as_sample_prob).value, ctypes.c_size_t(nrows).value, ctypes.c_size_t(self.ntrees).value, ctypes.c_size_t(max_depth).value, ctypes.c_size_t(ncols_per_tree).value, ctypes.c_bool(limit_depth).value, ctypes.c_bool(self.penalize_range).value, ctypes.c_bool(self.standardize_data).value, ctypes.c_bool(output_distance is not None).value, ctypes.c_bool(output_distance == "dist").value, ctypes.c_bool(square_mat).value, ctypes.c_bool(output_outlierness is not None).value, ctypes.c_bool(output_outlierness == "score").value, ctypes.c_bool(self.weigh_by_kurtosis).value, ctypes.c_double(self.prob_pick_avg_gain).value, ctypes.c_double(self.prob_split_avg_gain).value, ctypes.c_double(self.prob_pick_pooled_gain).value, ctypes.c_double(self.prob_split_pooled_gain).value, ctypes.c_double(self.min_gain).value, self.missing_action, self.categ_split_type, self.new_categ_action, ctypes.c_bool(self.build_imputer).value, ctypes.c_size_t(self.min_imp_obs).value, self.depth_imp, self.weigh_imp_rows, ctypes.c_bool(output_imputed).value, ctypes.c_bool(self.all_perm).value, ctypes.c_uint64(seed).value, ctypes.c_int(self.nthreads).value) self.is_fitted_ = True self._ntrees = self.ntrees if (not output_distance) and (not output_imputed): return depths else: outp = {"pred" : depths} if output_distance: if square_mat: outp["dist"] = dmat else: outp["dist"] = tmat if output_imputed: outp["imputed"] = self._rearrange_imputed(X, X_num, X_cat) return outp def _process_data(self, X, sample_weights, column_weights): ### TODO: this needs a refactoring after introducing 'categ_cols' if X.__class__.__name__ == "DataFrame": if self.categ_cols is not None: warnings.warn("'categ_cols' is ignored when passing a DataFrame as input.") self.categ_cols = None ### https://stackoverflow.com/questions/25039626/how-do-i-find-numeric-columns-in-pandas X_num = X.select_dtypes(include = [np.number, np.datetime64]).to_numpy() if X_num.dtype not in [ctypes.c_double, ctypes.c_float]: X_num = X_num.astype(ctypes.c_double) if not _is_col_major(X_num): X_num = np.asfortranarray(X_num) X_cat = X.select_dtypes(include = [pd.CategoricalDtype, "object", "bool"]) if (X_num.shape[1] + X_cat.shape[1]) == 0: raise ValueError("Input data has no columns of numeric or categorical type.") elif (X_num.shape[1] + X_cat.shape[1]) < X.shape[1]: cols_num = np.array(X.select_dtypes(include = [np.number, np.datetime64]).columns.values) cols_cat =
np.array(X_cat.columns.values)
numpy.array
"""ROSS plotting module. This module returns graphs for each type of analyses in rotor_assembly.py. """ import numpy as np import plotly.express as px import plotly.graph_objects as go import scipy.linalg as la from plotly.subplots import make_subplots from scipy import interpolate # set Plotly palette of colors colors1 = px.colors.qualitative.Dark24 class ModalResults: """Class used to store results and provide plots for Modal Analysis. Two options for plottting are available: plot_mode3D (mode shape 3D view) and plot_mode2D (mode shape 2D view). The user chooses between them using the respective methods. Parameters ---------- speed : float Rotor speed. evalues : array Eigenvalues array. evectors : array Eigenvectors array. wn : array Undamped natural frequencies array. wd : array Damped natural frequencies array. log_dec : array Logarithmic decrement for each . damping_ratio : array Damping ratio for each mode. lti : StateSpaceContinuous Space State Continuos with A, B, C and D matrices. ndof : int Number of degrees of freedom. nodes : list List of nodes number. nodes_pos : list List of nodes positions. shaft_elements_length : list List with Rotor shaft elements lengths. """ def __init__( self, speed, evalues, evectors, wn, wd, damping_ratio, log_dec, lti, ndof, nodes, nodes_pos, shaft_elements_length, ): self.speed = speed self.evalues = evalues self.evectors = evectors self.wn = wn self.wd = wd self.damping_ratio = damping_ratio self.log_dec = log_dec self.lti = lti self.ndof = ndof self.nodes = nodes self.nodes_pos = nodes_pos self.shaft_elements_length = shaft_elements_length self.modes = self.evectors[: self.ndof] kappa_modes = [] for mode in range(len(self.wn)): kappa_color = [] kappa_mode = self.kappa_mode(mode) for kappa in kappa_mode: kappa_color.append("blue" if kappa > 0 else "red") kappa_modes.append(kappa_color) self.kappa_modes = kappa_modes @staticmethod def whirl(kappa_mode): """Evaluate the whirl of a mode. Parameters ---------- kappa_mode : list A list with the value of kappa for each node related to the mode/natural frequency of interest. Returns ------- whirldir : str A string indicating the direction of precession related to the kappa_mode. Example ------- >>> kappa_mode = [-5.06e-13, -3.09e-13, -2.91e-13, 0.011, -4.03e-13, -2.72e-13, -2.72e-13] >>> ModalResults.whirl(kappa_mode) 'Forward' """ if all(kappa >= -1e-3 for kappa in kappa_mode): whirldir = "Forward" elif all(kappa <= 1e-3 for kappa in kappa_mode): whirldir = "Backward" else: whirldir = "Mixed" return whirldir @staticmethod @np.vectorize def whirl_to_cmap(whirl): """Map the whirl to a value. Parameters ---------- whirl: string A string indicating the whirl direction related to the kappa_mode Returns ------- An array with reference index for the whirl direction Example ------- >>> whirl = 'Backward' >>> whirl_to_cmap(whirl) array(1.) """ if whirl == "Forward": return 0.0 elif whirl == "Backward": return 1.0 elif whirl == "Mixed": return 0.5 def H_kappa(self, node, w, return_T=False): r"""Calculate the H matrix for a given node and natural frequency. The matrix H contains information about the whirl direction, the orbit minor and major axis and the orbit inclination. The matrix is calculated by :math:`H = T.T^T` where the matrix T is constructed using the eigenvector corresponding to the natural frequency of interest: .. math:: :nowrap: \begin{eqnarray} \begin{bmatrix} u(t)\\ v(t) \end{bmatrix} = \mathfrak{R}\Bigg( \begin{bmatrix} r_u e^{j\eta_u}\\ r_v e^{j\eta_v} \end{bmatrix}\Bigg) e^{j\omega_i t} = \begin{bmatrix} r_u cos(\eta_u + \omega_i t)\\ r_v cos(\eta_v + \omega_i t) \end{bmatrix} = {\bf T} \begin{bmatrix} cos(\omega_i t)\\ sin(\omega_i t) \end{bmatrix} \end{eqnarray} Where :math:`r_u e^{j\eta_u}` e :math:`r_v e^{j\eta_v}` are the elements of the *i*\th eigenvector, corresponding to the node and natural frequency of interest (mode). .. math:: {\bf T} = \begin{bmatrix} r_u cos(\eta_u) & -r_u sin(\eta_u)\\ r_u cos(\eta_u) & -r_v sin(\eta_v) \end{bmatrix} Parameters ---------- node: int Node for which the matrix H will be calculated. w: int Index corresponding to the natural frequency of interest. return_T: bool, optional If True, returns the H matrix and a dictionary with the values for :math:`r_u, r_v, \eta_u, \eta_v`. Default is false. Returns ------- H: array Matrix H. Tdic: dict Dictionary with values for :math:`r_u, r_v, \eta_u, \eta_v`. It will be returned only if return_T is True. """ # get vector of interest based on freqs vector = self.evectors[4 * node : 4 * node + 2, w] # get translation sdofs for specified node for each mode u = vector[0] v = vector[1] ru = np.absolute(u) rv = np.absolute(v) nu = np.angle(u) nv = np.angle(v) # fmt: off T = np.array([[ru * np.cos(nu), -ru *
np.sin(nu)
numpy.sin
import sys, getopt import numpy as np import datetime import locale import platform import time import getpass from random import randrange from matplotlib import pyplot as plt from matplotlib import ticker from matplotlib import pylab from pylab import * from jira import JIRA # prompt for Jira username username = input("Please enter your Jira username: ") # prompt for Jira password password = getpass.getpass(prompt="Please enter your Jira password: ") # Note that you'll need to have numpy, matplotlib, pylab, and jira packages installed (all are available on pip) if platform.system() == 'Windows': locale.setlocale( locale.LC_MONETARY, 'fr-FR' ) else: locale.setlocale( locale.LC_ALL, 'en_IE.UTF-8' ) def mybar(ax,x1,x2,y2): Xbars = [[0., .3],[.7,.4]] left,right = x1,x2 bottom,top = 0.0,y2 ## ax.imshow(Xbars, interpolation='bicubic', cmap=cm.Blues, ## extent=(left, right, bottom, top), alpha=1) return # Format the date to the proper form of year, month, day def format_date(x, pos=None): # return pl.num2date(x).strftime('%Y-%m-%d') return pylab.num2date(x).strftime('%b, %Y') # Use a sorting method of the "data" to find the total cost at a specified confidence level "breakfraction" def percentage(data,breakfraction): breaknumber = int(breakfraction * len(data)) # data is a list of total costs for each iteration, sort from lowest cost to highest cost data.sort() # sorts input from lowest to highest value return data[breaknumber] def xstr(s): # this is just to handle converting lists to strings when there might be some empty values if s is None: return '' return str(s) def montecarlorisk(num_trials,annual_escalation,subsystem,output_file): ## define output location; if variable output_file is true then output goes to test.txt in working directory fhold = sys.stdout if output_file: f = open('./test.txt', 'w') sys.stdout = f ######################################################################################### ###################### Some basic values ############################### ######################################################################################### total_contingency = 230694.0 # total contingency in K EUR TBD !!!! nyears = 7 ## number of years with construction activity date_start = "2021-07-01" date_end = "2028-07-31" date_commissioning_start = "2028-08-01" date_base_year = "2021" date_year_start = "2021" date_year_end = "2028" annual_esc = 1.0 + annual_escalation # convert annual fractional escalation to factor yer = ['2021','2022','2023','2024','2025','2026','2027','2028'] final_totals_distribution = [] #cost_lowest = np.zeros(1000) #cost_expected = np.zeros(1000) #cost_highest = np.zeros(1000) subsystem = subsystem.upper() if subsystem == 'ALL': fundingstring = " " projectname = "SKA" elif subsystem == 'MID': fundingstring = " AND component = 'MID' " projectname = 'MID' elif subsystem == 'LOW': fundingstring = " AND component = 'LOW' " projectname = 'LOW' elif subsystem == 'OCS': fundingstring = " AND component = 'OCS' " projectname = 'OCS' elif subsystem == 'PM': fundingstring = " AND component = 'PM' " projectname = 'PM' ############################################################################## ################### Simple escalation model ############################################################################## escalate = array(10) sum = 0.0 escalate = {} # a dictionary escalate[date_base_year] = 1.0 for jj in range(nyears): escalate[yer[jj+1]] = escalate[yer[jj]] * annual_esc sum += escalate[yer[jj+1]] escalate['dist_sum'] = sum/nyears server = "https://jira.skatelescope.org" auth_inf = (username,password) try: jira = JIRA(server=server,basic_auth=auth_inf) except: print("ERROR: Jira authentication failed. Have you provided the correct username and password?") return # AND (cf[12916] is EMPTY OR cf[12916] ='False') query = "project=RM AND issuetype='RM-Risk' AND status in ('Active Risk/Opportunity','Subordinated') " + fundingstring + "ORDER BY cf[12933]" fields="components,summary,customfield_12926,customfield_12901,customfield_12905,customfield_12915,customfield_12933,customfield_12936,customfield_12938,description" print(('\n\r Query to database \n\r\n\r'+ query +'\n\r')) issues = jira.search_issues(query,maxResults=None,fields=fields) nrisks = len(issues) rows=[] mean_prob_lookup = {'2%':0.02, '5%':0.05, '10%':0.1, '25%':0.25, '50%':0.5, '80%':0.8} rows=[] for i in range(len(issues)): rows.append({'riskid':int(''.join([i for i in issues[i].key if i.isdigit()])), 'projectsystem':xstr(issues[i].fields.components[0].name), 'current_probability':xstr(issues[i].fields.customfield_12926), #map from 13200 'current_expense_expected':(float(issues[i].fields.customfield_12901) if issues[i].fields.customfield_12901 else 0.0), #map from 13404 'current_schedule_cost_expected':(float(issues[i].fields.customfield_12905) if issues[i].fields.customfield_12905 else 0.0), #map from 13606 'meanprobability':mean_prob_lookup[issues[i].fields.customfield_12926.value], #map from 13200 'total_cost':0.0, 'obligationmodel':xstr(issues[i].fields.customfield_12915), #map from 13107 'triggerdate':(datetime.datetime.strptime(issues[i].fields.customfield_12933,'%Y-%m-%d').date() if issues[i].fields.customfield_12933 else datetime.date(2000,1,1)), #map from 13108 'randomtrigger':(int(issues[i].fields.customfield_12938) if issues[i].fields.customfield_12938 else 0), #map from 13110 'risktitle':xstr(issues[i].fields.summary), 'riskdescription':xstr(issues[i].fields.description), 'randomperiod':xstr(issues[i].fields.customfield_12936) }) # map from 13111 # setup lists nyears=[1 for i in range(nrisks)] riskheader = [' ' for i in range(20000)] riskid=[] # issue.key projectsystem=[] # issue.fields.components current_probability=[] # issue.fields.customfield_12926 current_expense_expected=[] # issue.fields.customfield_12901 current_schedule_cost_expected=[] # issue.fields.customfield_12905 meanprobability=[] # calculate from cf 12926 total_cost=[] # issue.fields.customfield_12905 + issue.customfield_12901 obligationmodel=[] # issue.fields.customfield_12915 triggerdate=[] # issue.fields.customfield_12933 randomtrigger=[] # issue.fields.customfield_12936 and issue.customfield_12938 risktitle=[] # issue.fields.summary riskdescription = [] # issue.fields.description randomperiod = [] ## Rule 0 - Accept all risks, simple passthrough ## print "\n\r Rule 1 - Accept only risks that have total cost of more than €1M \n\r" ## print "\n\r Rule 2 - Accept only risks that have expected exposure of more that €200K \n\r" ## print "\n\r Rule 3 - Accept risks that pass Rule 1 OR Rule 2 \n\r" ## Store the database values into arrays print('\n\r Summary of risks ordered by triggerdate \n\r\n\r') for ii in range(nrisks): lasttotalcost = (float(rows[ii]['current_expense_expected'])+float(rows[ii]['current_schedule_cost_expected'])) ############################################################################## ################### Use simple model of escalation to convert to as-spent dollars ############################################################################## if rows[ii]['obligationmodel'] == "trigger" : yr = rows[ii]['triggerdate'].year yr = max(int(date_year_start),int(yr)) yr = min(int(date_year_end),int(yr)) lasttotalcost = lasttotalcost * escalate[str(yr)] else: lasttotalcost = lasttotalcost * escalate['dist_sum'] ############################################################################## if lasttotalcost >= 0.00: ## print("\n\r Rule 0 - Accept all risks, simple passthrough \n\r") ## Rule 1 - Accept only risks that have total cost of more than €1M ## if lasttotalcost >= 1000.00: ## Rule 2 - Accept only risks that have expected exposure of more that €200K ## if float(rows[ii]['meanprobability'])*lasttotalcost >= 200.0: ## Rule 3 - Accept risks that pass Rule 1 OR Rule 2 ## if float(rows[ii]['meanprobability'])*lasttotalcost >= 200.0 or lasttotalcost >= 1000.00: riskid.append(rows[ii]['riskid']) projectsystem.append(rows[ii]['projectsystem']) current_probability.append(rows[ii]['current_probability']) current_expense_expected.append(rows[ii]['current_expense_expected']) current_schedule_cost_expected.append(rows[ii]['current_schedule_cost_expected']) meanprobability.append(float(rows[ii]['meanprobability'])) obligationmodel.append(rows[ii]['obligationmodel']) triggerdate.append(rows[ii]['triggerdate']) randomtrigger.append(rows[ii]['randomtrigger']) risktitle.append(rows[ii]['risktitle']) riskdescription.append(rows[ii]['riskdescription']) total_cost.append(lasttotalcost) randomperiod.append(rows[ii]['randomperiod']) ## Print formatted output print('{:>30} RM-{:4} {:>10} {:>22} {:>5} [{:>8.2f} {:>8.2f}] {:>8.2f} {:40} {:80}'.format( rows[ii]['projectsystem'], str(rows[ii]['riskid']), str(rows[ii]['triggerdate']), #rows[ii]['obligationmodel'][0:4], rows[ii]['obligationmodel'], #rows[ii]['randomtrigger'] % 1000, rows[ii]['randomtrigger'], lasttotalcost, rows[ii]['meanprobability'], float(rows[ii]['meanprobability'])*lasttotalcost, str(rows[ii]['risktitle']), str(rows[ii]['riskdescription']), )) nrisks = len(riskid) ## Print risks ordered by riskid print(('\n\r Summary of {:>3} risks ordered by riskid \n\r\n\r'.format(str(nrisks)))) hold_riskid,hold_projectsystem,hold_risktitle = (list(t) for t in zip(*sorted(zip(riskid,projectsystem,risktitle)))) for ii in range(nrisks): print('{:>30} RM-{:3} {:40}'.format( hold_projectsystem[ii],str(hold_riskid[ii]),hold_risktitle[ii])) ## Print risk description ordered by totalcost print(('\n\r Summary of {:>3} risks ordered by totalcost \n\r\n\r'.format(str(nrisks)))) hold_total_cost,hold_riskdescription,hold_projectsystem,hold_riskid,hold_meanprobability = (list(t) for t in zip(*sorted(zip(total_cost,riskdescription,projectsystem,riskid,meanprobability), reverse=True))) for ii in range(nrisks): print('{:>30} RM-{:3} €{:8,.7}K [{:<4}] {:<100}'.format( hold_projectsystem[ii],str(hold_riskid[ii]),hold_total_cost[ii],hold_meanprobability[ii],hold_riskdescription[ii])) ## Figure 4 ## Interaction loop over risks. Also, plot fig 4 with the risk spend curve max_hold = 0.0 fig4 = plt.figure(4) ax1 = fig4.add_subplot(111) ################################################################### ############ Begin main Monte Carlo iteration loop ################ ################################################################### for ii in range(num_trials): delta_this_iteration = [] triggerdate_this_iteration = [] projectsystem_this_iteration = [] riskid_this_iteration = [] ################################################################### ############ Random loop over each risk ################ ################################################################### ## ## Each risk has a specified date of possible occurence. A risk can occur at a specified trigger date; # at some random time; or a risk may occur more than once over a specified range of dates. ## Trigger case for jj in range(nrisks): if obligationmodel[jj] == "Trigger date": choice=np.random.uniform(0.0,1.0,1) if choice <= meanprobability[jj] : addit = float(total_cost[jj]) else: addit = float(0.0) delta_this_iteration.append(addit) triggerdate_this_iteration.append(triggerdate[jj]) projectsystem_this_iteration.append(projectsystem[jj]) riskid_this_iteration.append(int(riskid[jj])) ## Random case elif obligationmodel[jj] == "Random occurrence(s)": nrandom = randomtrigger[jj] #print("random risk; nrandom = "+str(nrandom)) #periodcode = randomtrigger[jj] / 1000 #print("random risk periodcode = "+str(periodcode)) periodcode = 3 if randomperiod[jj] == 'Construction only': periodcode = 1 elif randomperiod[jj] == 'Commissioning only': periodcode = 2 elif randomperiod[jj] == 'Both Construction and Commissioning': periodcode = 3 date1 = date_start date2 = date_commissioning_start if periodcode == 1: # random during construction only date1 = date_start date2 = date_commissioning_start elif periodcode == 2: # random during commissioning only date1 = date_commissioning_start date2 = date_end elif periodcode == 3: # random throughout project date1 = date_start date2 = date_end for kk in range(nrandom): stime = time.mktime(time.strptime(date1, '%Y-%m-%d')) etime = time.mktime(time.strptime(date2, '%Y-%m-%d')) ptime = stime + np.random.uniform(etime - stime) randomdate = datetime.date.fromtimestamp(int(ptime)) #print(randomdate) choice = np.random.uniform(0.0,1.0) if choice <= meanprobability[jj] : addit = float(total_cost[jj])/float(nrandom) else: addit = float(0.0) delta_this_iteration.append(addit) triggerdate_this_iteration.append(randomdate) projectsystem_this_iteration.append(projectsystem[jj]) riskid_this_iteration.append(int(riskid[jj])) ## Distributed case elif obligationmodel[jj] == "Distributed occurrence": if ii == 0: # only on first pass through will triggerdate always have the proper value #print ii,jj,triggerdate[jj],triggerdate[jj].year ny = max(triggerdate[jj].year - 2021,1) # risk is distributed over this many years but must be at least 1 nyears[jj] = min(ny,8) # must store the corect values of nyears for each distributed risk for kk in range(nyears[jj]): year = 2022 + kk #kk starts at zero. Don't include short period in 2021 choice=np.random.uniform(0.0,1.0,1) if choice <= meanprobability[jj] : addit = float(total_cost[jj])/float(nyears[jj]) else: addit = float(0.0) delta_this_iteration.append(addit) triggerdate_this_iteration.append(datetime.date(year,randrange(1,12),1)) # random month in year, always assign the first day of the month projectsystem_this_iteration.append(projectsystem[jj]) riskid_this_iteration.append(int(riskid[jj])) else: sys.exit(" obligationmode not defined for risk "+str(projectsystem[jj]) + str(riskid[jj])+" " +str(jj)) ################################################################### ############ End short random loop over risk ################ ################################################################### # Since random and distributed risks have been added the lists are no longer in date order. # Need to resort the two arrays by effective trigger dates using: list1, list2 = (list(t) for t in zip(*sorted(zip(list1, list2)))) - YIKES #print(riskid_this_iteration) triggerdate_this_iteration, delta_this_iteration,projectsystem_this_iteration, riskid_this_iteration = (list(t) for t in zip(*sorted(zip(triggerdate_this_iteration,delta_this_iteration,projectsystem_this_iteration,riskid_this_iteration)))) #print(type(riskid_this_iteration),riskid_this_iteration) #print(" ") #print(delta_this_iteration) # Compute the running sum xx_this_iteration =
np.cumsum(delta_this_iteration)
numpy.cumsum
""" Definition of tasks needed for calculating features """ import abc from datetime import date, datetime, time, timedelta from typing import List, Optional, Sequence, Tuple, Union import numpy as np from eolearn.core import EOPatch, EOTask, FeatureType, MapFeatureTask from ..utils.types import Feature def join_valid_and_cloud_masks(valid_mask: np.ndarray, cloud_mask: np.ndarray) -> np.ndarray: """Used to zip together information about valid data and clouds into a combined validity mask""" return valid_mask.astype(bool) & (cloud_mask == 0) class ValidDataFractionPredicate: """ Predicate that defines if a frame from EOPatch's time-series is valid or not. Frame is valid, if the valid data fraction is above the specified threshold. """ def __init__(self, validity_threshold: float): self.validity_threshold = validity_threshold def __call__(self, array: np.ndarray) -> np.ndarray: coverage = np.sum(array.astype(np.uint8)) / np.prod(array.shape) return coverage > self.validity_threshold class MaxNDVI(MapFeatureTask): def map_method(self, feature: np.ndarray) -> np.ndarray: if feature.shape[0]: return np.nanmax(feature, axis=0) # A special case of arrays with time dimension of size 0 return np.full(feature.shape[1:], np.nan, dtype=feature.dtype) class MosaickingTask(EOTask, metaclass=abc.ABCMeta): """Base class for mosaicking images given an interval of edge dates""" def __init__( self, feature: Feature, dates: Union[List[date], Tuple[date, date, int]], valid_mask: Optional[Feature] = None, ndvi_feature: Optional[Feature] = None, ): self.feature_type, self.feature_name, self.new_feature_name = self.parse_renamed_feature( feature, allowed_feature_types={FeatureType.DATA} ) self.valid_mask_type, self.valid_mask_name = None, None if valid_mask is not None: self.valid_mask_type, self.valid_mask_name = self.parse_feature( valid_mask, allowed_feature_types={FeatureType.MASK} ) self.ndvi_feature_type, self.ndvi_feature_name = None, None if ndvi_feature is not None: self.ndvi_feature_type, self.ndvi_feature_name = self.parse_feature( ndvi_feature, allowed_feature_types={FeatureType.DATA} ) self.dates = self._get_dates(dates) def _get_dates(self, dates: Union[List[date], Tuple[date, date, int]]) -> np.ndarray: """Set dates either from list of dates or a tuple (start_date, end_date, n_mosaics)""" if all(isinstance(d, (date, datetime)) for d in dates): return np.array(dates) if len(dates) == 3 and isinstance(dates[-1], int): return self._get_date_edges(*dates) raise ValueError( "dates parameter can be either a list of date(time)s or a tuple " "(start_date, end_date, n_mosaics) for equidistant intervals between start and end date." ) @staticmethod def _get_date_edges(start_date: date, end_date: date, parts: int) -> np.ndarray: """Help function to get dates of year split into equal parts :param start_date: first date of time interval :param end_date: last date of time interval :param parts: Number of parts to split the year into :return: numpy array of dates that split the time interval into equal parts """ start = datetime.combine(start_date, time.min) end = datetime.combine(end_date, time.min) + timedelta(days=1) diff = (end - start) / parts edges = [start + diff * i for i in range(parts)] edges.append(end) return np.array(edges) def _find_time_indices(self, timestamps: Sequence[date], index: int) -> Tuple[np.ndarray, ...]: """Compute indices of images to use for mosaicking""" if index == 1: array = np.where((np.array(timestamps) <= self.dates[index])) elif index == len(self.dates) - 1: array = np.where((np.array(timestamps) > self.dates[index - 1])) else: array = np.where( (np.array(timestamps) > self.dates[index - 1]) & (np.array(timestamps) <= self.dates[index]) ) return array def compute_mosaic_dates(self) -> np.ndarray: """Compute dates of corresponding mosaics""" # calculate centers of date edges delta = self.dates[1:] - self.dates[:-1] return self.dates[:-1] + delta / 2 @abc.abstractmethod def _compute_single_mosaic(self, eopatch: EOPatch, idate: int) -> np.ndarray: """Compute single mosaic given index of edge date""" def compute_mosaic(self, eopatch: EOPatch) -> np.ndarray: """Computes mosaic""" return np.array([self._compute_single_mosaic(eopatch, idate) for idate in range(1, len(self.dates))]) def execute(self, eopatch: EOPatch) -> EOPatch: """Compute mosaic for given dates""" eopatch.timestamp = [ts.replace(tzinfo=None) for ts in eopatch.timestamp] eopatch[self.feature_type][self.new_feature_name] = self.compute_mosaic(eopatch) eopatch.timestamp = list(self.compute_mosaic_dates()) return eopatch class MaxNDVIMosaickingTask(MosaickingTask): """ Task to create mosaics of data based on the max NDVI value between provided dates """ def __init__( self, feature: Feature, dates: Union[List[date], Tuple[date, date, int]], ndvi_feature: Feature, valid_mask: Optional[Feature] = None, ): super().__init__(feature, dates, ndvi_feature=ndvi_feature, valid_mask=valid_mask) def _compute_single_mosaic(self, eopatch: EOPatch, idate: int) -> np.ndarray: """Compute single mosaic using values of the max NDVI""" array = self._find_time_indices(eopatch.timestamp, idate) feat_values = eopatch[self.feature_type][self.feature_name][array].astype(np.float32) ndvi_values = eopatch[self.ndvi_feature_type][self.ndvi_feature_name][array] valid_mask = ( eopatch[self.valid_mask_type][self.valid_mask_name][array] if self.valid_mask_type is not None else np.ones(feat_values.shape, dtype=bool) ).astype(bool) ndvi_values[~valid_mask] = np.nan feat_values[~np.broadcast_to(valid_mask, feat_values.shape)] = np.nan mask_nan_slices = np.all(np.isnan(ndvi_values), axis=0, keepdims=True) ndvi_values[np.broadcast_to(mask_nan_slices, ndvi_values.shape)] = -999 feat_values[np.broadcast_to(mask_nan_slices, feat_values.shape)] = -999 timeframes, height, width, depth = feat_values.shape if timeframes == 0: mosaic = np.full((height, width, depth), np.nan) else: if timeframes == 1: mosaic = feat_values[0] else: indices = np.nanargmax(ndvi_values, axis=0).squeeze(axis=-1) ixgrid: Tuple[np.ndarray, ...] = np.ix_(np.arange(timeframes), np.arange(height), np.arange(width)) mosaic = feat_values[indices, ixgrid[1], ixgrid[2], :].squeeze(axis=0) mosaic[np.broadcast_to(mask_nan_slices[0], mosaic.shape)] = np.nan return mosaic class MedianMosaickingTask(MosaickingTask): """ Task to create mosaics of data based on the median value between provided dates """ def __init__( self, feature: Feature, dates: Union[List[date], Tuple[date, date, int]], valid_mask: Optional[Feature] = None, ): super().__init__(feature, dates, valid_mask=valid_mask) def _compute_single_mosaic(self, eopatch: EOPatch, idate: int) -> np.ndarray: """Compute single mosaic using the median of values""" array = self._find_time_indices(eopatch.timestamp, idate) feat_values = eopatch[self.feature_type][self.feature_name][array].astype(np.float32) valid_mask = ( eopatch[self.valid_mask_type][self.valid_mask_name][array] if self.valid_mask_type is not None else np.ones(feat_values.shape, dtype=bool) ) feat_values[~np.broadcast_to(valid_mask, feat_values.shape)] = np.nan mask_nan_slices = np.all(np.isnan(feat_values), axis=0, keepdims=True) feat_values[np.broadcast_to(mask_nan_slices, feat_values.shape)] = -999 timeframes, height, width, depth = feat_values.shape if timeframes == 0: mosaic =
np.full((height, width, depth), np.nan)
numpy.full
#!/usr/bin/python # Wflow is Free software, see below: # # Copyright (c) <NAME>/Deltares 2005-2014 # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. """ Run the wflow_sbm hydrological model.. usage :: wflow_sbm [-h][-v level][-F runinfofile][-L logfile][-C casename][-R runId] [-c configfile][-T last_step][-S first_step][-s seconds][-W][-E][-N][-U discharge] [-P parameter multiplication][-X][-f][-I][-i tbl_dir][-x subcatchId][-u updatecols] [-p inputparameter multiplication][-l loglevel] -X: save state at the end of the run over the initial conditions at the start -f: Force overwrite of existing results -T: Set end time of the run: yyyy-mm-dd hh:mm:ss -S: Set start time of the run: yyyy-mm-dd hh:mm:ss -s: Set the model timesteps in seconds -I: re-initialize the initial model conditions with default -i: Set input table directory (default is intbl) -x: Apply multipliers (-P/-p ) for subcatchment only (e.g. -x 1) -C: set the name of the case (directory) to run -R: set the name runId within the current case -L: set the logfile -E: Switch on reinfiltration of overland flow -c: name of wflow the configuration file (default: Casename/wflow_sbm.ini). -h: print usage information -W: If set, this flag indicates that an ldd is created for the water level for each timestep. If not the water is assumed to flow according to the DEM. Wflow will run a lot slower with this option. Most of the time (shallow soil, steep topography) you do not need this option. Also, if you need it you migth actually need another model. -U: The argument to this option should be a .tss file with measured discharge in [m^3/s] which the progam will use to update the internal state to match the measured flow. The number of columns in this file should match the number of gauges in the wflow_gauges.map file. -u: list of gauges/columns to use in update. Format: -u [1 , 4 ,13] The above example uses column 1, 4 and 13 -P: set parameter change string (e.g: -P "self.FC = self.FC * 1.6") for non-dynamic variables -p: set parameter change string (e.g: -P "self.Precipitation = self.Precipitation * 1.11") for dynamic variables -l: loglevel (most be one of DEBUG, WARNING, ERROR) """ import os.path import numpy as np import pcraster.framework from wflow.wf_DynamicFramework import * from wflow.wflow_adapt import * from wflow.wflow_funcs import * import pcraster as pcr import pdb import math from numba import jit wflow = "wflow_sbm: " updateCols = [] def usage(*args): sys.stdout = sys.stderr """Way""" for msg in args: print(msg) print(__doc__) sys.exit(0) def estimate_iterations_kin_wave(Q, Beta, alpha, timestepsecs, dx, mv): celerity = pcr.ifthen(Q > 0.0, 1.0 / (alpha * Beta * Q**(Beta-1))) courant = (timestepsecs / dx) * celerity np_courant = pcr.pcr2numpy(courant, mv) np_courant[np_courant==mv] = np.nan try: it_kin = int(np.ceil(1.25*(np.nanpercentile(np_courant,95)))) except: it_kin = 1 return it_kin @jit(nopython=True) def _sCurve(X, a=0.0, b=1.0, c=1.0): """ sCurve function: Input: - X input map - C determines the steepness or "stepwiseness" of the curve. The higher C the sharper the function. A negative C reverses the function. - b determines the amplitude of the curve - a determines the centre level (default = 0) Output: - result """ s = 1.0 / (b + np.exp(-c * (X - a))) return s @jit(nopython=True) def actEvap_unsat_SBM( RootingDepth, UStoreDepth, UStoreLayerThickness, sumLayer, RestPotEvap, sumActEvapUStore, c, L, thetaS, thetaR, ust=0, ): """ Actual evaporation function: - first try to get demand from the saturated zone, using the rootingdepth as a limiting factor - secondly try to get the remaining water from the unsaturated store - it uses an S-Curve the make sure roots het wet/dry gradually (basically) representing a root-depth distribution if ust is True, all ustore is deems to be avaiable fro the roots a Input: - RootingDepth, UStoreDepth, FirstZoneDepth, PotTrans, smoothpar Output: - ActEvap, FirstZoneDepth, UStoreDepth ActEvapUStore """ # AvailCap is fraction of unsat zone containing roots if ust >= 1: AvailCap = UStoreDepth * 0.99 else: if L > 0: AvailCap = min(1.0, max(0.0, (RootingDepth - sumLayer) / L)) else: AvailCap = 0.0 MaxExtr = AvailCap * UStoreDepth # Calculate the reduction of RestPotEvap due to differences in rooting density in the soil column # The used model is based on Vrugt et al. (2001) and uses as input parameters for z* and Pz the # values of Hoffman and van Genuchten (z* = 0.20 and Pz = 1.00) # Next step is to make use of the Feddes curve in order to decrease ActEvapUstore when soil moisture values # occur above or below ideal plant growing conditions (see also Feddes et al., 1978). h1-h4 values are # actually negative, but all values are made positive for simplicity. hb = 1 # cm (pF 1 for atmospheric pressure) h1 = 1 # cm h2 = 100 # cm (pF 2 for field capacity) h3 = 400 # cm (pF 3, critical pF value) h4 = 15849 # cm (pF 4.2, wilting point) # According to Brooks-Corey par_lambda = 2 / (c - 3) if L > 0.0: vwc = UStoreDepth / L else: vwc = 0.0 vwc = max(vwc, 0.0000001) head = hb / ( ((vwc) / (thetaS - thetaR)) ** (1 / par_lambda) ) # Note that in the original formula, thetaR is extracted from vwc, but thetaR is not part of the numerical vwc calculation head = max(head,hb) # Transform h to a reduction coefficient value according to Feddes et al. (1978). if(head <= h1): alpha = 0 elif(head >= h4): alpha = 0 elif((head < h2) & (head > h1)): alpha = (head - h1) / (h2 - h1) elif((head > h3) & (head < h4)): alpha = 1 - (head - h3) / (h4 - h3) else: alpha = 1 ActEvapUStore = (min(MaxExtr, RestPotEvap, UStoreDepth)) * alpha UStoreDepth = UStoreDepth - ActEvapUStore RestPotEvap = RestPotEvap - ActEvapUStore sumActEvapUStore = ActEvapUStore + sumActEvapUStore return UStoreDepth, sumActEvapUStore, RestPotEvap @jit(nopython=True) def infiltration(AvailableForInfiltration, PathFrac, cf_soil, TSoil,InfiltCapSoil,InfiltCapPath, UStoreCapacity, modelSnow, soilInfReduction): SoilInf = AvailableForInfiltration * (1 - PathFrac) PathInf = AvailableForInfiltration * PathFrac if modelSnow & soilInfReduction: bb = 1.0 / (1.0 - cf_soil) soilInfRedu = _sCurve(TSoil, a=0.0, b=bb, c=8.0) else: soilInfRedu = 1.0 MaxInfiltSoil = min(InfiltCapSoil * soilInfRedu, SoilInf) MaxInfiltPath = min(InfiltCapPath * soilInfRedu, PathInf) InfiltSoilPath = min(MaxInfiltPath + MaxInfiltSoil, max(0.0, UStoreCapacity)) return InfiltSoilPath @jit(nopython=True) def unsatzone_flow(UStoreLayerDepth, InfiltSoilPath, L, z, KsatVerFrac, c, KsatVer, f, thetaS, thetaR, SoilWaterCapacity, SWDold, shape_layer, TransferMethod): m = 0 UStoreLayerDepth[m] = UStoreLayerDepth[m] + InfiltSoilPath if L[m] > 0.0: #sbm option for vertical transfer (only for 1 layer) if (TransferMethod == 1 and shape_layer == 1): Sd = SoilWaterCapacity - SWDold if Sd <= 0.00001: st = 0.0 else: st = KsatVerFrac[m] * KsatVer * (min(UStoreLayerDepth[m],L[m]*(thetaS-thetaR))/Sd) else: st = KsatVerFrac[m] * KsatVer * np.exp(-f * z[m]) * min((UStoreLayerDepth[m]/(L[m] * (thetaS-thetaR)))**c[m],1.0) ast = min(st,UStoreLayerDepth[m]) UStoreLayerDepth[m] = UStoreLayerDepth[m] - ast else: ast = 0.0 for m in range(1,len(L)): UStoreLayerDepth[m] = UStoreLayerDepth[m] + ast if L[m] > 0.0: st = KsatVerFrac[m] * KsatVer * np.exp(-f* z[m]) * min((UStoreLayerDepth[m]/(L[m] * (thetaS-thetaR)))**c[m],1.0) ast = min(st,UStoreLayerDepth[m]) else: ast = 0.0 UStoreLayerDepth[m] = UStoreLayerDepth[m] - ast return ast, UStoreLayerDepth @jit(nopython=True) def sbm_cell(nodes, nodes_up, ldd, layer, static, dyn, modelSnow, soilInfReduction, timestepsecs, basetimestep, deltaT, nrpaddyirri, shape, TransferMethod, it_kinL=1, ust=0): shape_layer = layer['UStoreLayerThickness'].shape # flat new state ssf_new = np.zeros(dyn['ssf'].size, dtype=dyn['ssf'].dtype) qo_new = np.zeros(dyn['LandRunoff'].size, dtype=dyn['LandRunoff'].dtype) qo_new = np.concatenate((qo_new, np.array([0], dtype=dyn['LandRunoff'].dtype))) # append zero to end to deal with nodata (-1) in indices ssf_new = np.concatenate((ssf_new, np.array([0], dtype=dyn['ssf'].dtype))) ldd_ = np.concatenate((ldd, np.array([0], dtype=ldd.dtype))) slope_ = np.concatenate((static['slope'], np.array([0], dtype=static['slope'].dtype))) SWDold = np.zeros(dyn['ssf'].size, dtype=dyn['ssf'].dtype) sumUSold = np.zeros(dyn['ssf'].size, dtype=dyn['ssf'].dtype) for i in range(len(nodes)): for j in range(len(nodes[i])): idx = nodes[i][j] nbs = nodes_up[i][j] sumlayer = np.unique(layer['UStoreLayerThickness'][:,idx].cumsum()) sumlayer_0 = np.concatenate((np.array([0.0]), sumlayer)) SWDold[idx] = dyn['SatWaterDepth'][idx] sumUSold[idx] = layer['UStoreLayerDepth'][:,idx].sum() n = np.where(dyn['zi'][idx] > sumlayer_0)[0] if len(n) > 1: L = np.concatenate((layer['UStoreLayerThickness'][n[0:-1],idx], np.array([dyn['zi'][idx] - sumlayer_0[n[-1]]]))).astype(np.float64) else: L = np.array([dyn['zi'][idx]]).astype(np.float64) z = L.cumsum() dyn['ActEvapUStore'][idx] = 0.0 if static['River'][idx]: ind = np.where(ldd_[nbs] != ldd_[idx]) chanperc = np.zeros(ldd_[nbs].size) chanperc[ind] = slope_[nbs][ind]/(slope_[idx]+slope_[nbs][ind]) ssf_in = np.sum((1-chanperc)*ssf_new[nbs]) dyn['ssf_toriver'][idx] = np.sum((chanperc)*ssf_new[nbs])/(1000*1000*1000)/timestepsecs else: ssf_in = np.sum(ssf_new[nbs]) dyn['CellInFlow'][idx] = ssf_in UStoreCapacity = static['SoilWaterCapacity'][idx] - dyn['SatWaterDepth'][idx] - layer['UStoreLayerDepth'][n,idx].sum() InfiltSoilPath = infiltration(dyn['AvailableForInfiltration'][idx], static['PathFrac'][idx], static['cf_soil'][idx], dyn['TSoil'][idx],static['InfiltCapSoil'][idx],static['InfiltCapPath'][idx],UStoreCapacity, modelSnow, soilInfReduction) dyn['InfiltSoilPath'][idx] = InfiltSoilPath # unsat fluxes first ast, layer['UStoreLayerDepth'][:,idx] = unsatzone_flow(layer['UStoreLayerDepth'][:,idx], InfiltSoilPath, L, z, layer['KsatVerFrac'][:,idx], layer['c'][:,idx], static['KsatVer'][idx], static['f'][idx], static['thetaS'][idx], static['thetaR'][idx], static['SoilWaterCapacity'][idx], SWDold[idx], shape_layer[0], TransferMethod) dyn['Transfer'][idx] = ast # then evaporation from layers for k in range(len(L)): if k==0: SaturationDeficit = static['SoilWaterCapacity'][idx] - dyn['SatWaterDepth'][idx] if shape_layer[0] == 1: soilevapunsat = dyn['restEvap'][idx] * min(1.0, SaturationDeficit / static['SoilWaterCapacity'][idx]) else: if len(L) == 1: if dyn['zi'][idx] > 0: soilevapunsat = dyn['restEvap'][idx] * min(1.0, layer['UStoreLayerDepth'][k,idx]/dyn['zi'][idx]) else: soilevapunsat = 0.0 else: soilevapunsat = dyn['restEvap'][idx] * min(1.0, layer['UStoreLayerDepth'][k,idx]/(layer['UStoreLayerThickness'][k,idx]*(static['thetaS'][idx]-static['thetaR'][idx]))) soilevapunsat = min(soilevapunsat, layer['UStoreLayerDepth'][k,idx]) dyn['restEvap'][idx] = dyn['restEvap'][idx] - soilevapunsat layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] - soilevapunsat if shape_layer[0] == 1: soilevapsat = 0.0 else: if len(L) == 1: soilevapsat = dyn['restEvap'][idx] * min(1.0, (layer['UStoreLayerThickness'][k,idx] - dyn['zi'][idx])/ layer['UStoreLayerThickness'][k,idx]) soilevapsat = min(soilevapsat, (layer['UStoreLayerThickness'][k,idx] - dyn['zi'][idx]) * (static['thetaS'][idx] - static['thetaR'][idx])) else: soilevapsat = 0.0 dyn['soilevap'][idx] = soilevapunsat + soilevapsat dyn['SatWaterDepth'][idx] = dyn['SatWaterDepth'][idx] - soilevapsat # evaporation available for transpiration PotTrans = dyn['PotTransSoil'][idx] - dyn['soilevap'][idx] - dyn['ActEvapOpenWaterLand'][idx] # evaporation from saturated store wetroots = _sCurve(dyn['zi'][idx], a=static['ActRootingDepth'][idx], c=static['rootdistpar'][idx]) dyn['ActEvapSat'][idx] = min(PotTrans * wetroots, dyn['SatWaterDepth'][idx]) dyn['SatWaterDepth'][idx] = dyn['SatWaterDepth'][idx] - dyn['ActEvapSat'][idx] RestPotEvap = PotTrans - dyn['ActEvapSat'][idx] # actual evaporation from UStore layer['UStoreLayerDepth'][k,idx], dyn['ActEvapUStore'][idx], RestPotEvap = actEvap_unsat_SBM(static['ActRootingDepth'][idx], layer['UStoreLayerDepth'][k,idx], layer['UStoreLayerThickness'][k,idx], sumlayer[k], RestPotEvap, dyn['ActEvapUStore'][idx], layer['c'][k,idx], L[k], static['thetaS'][idx], static['thetaR'][idx], ust) else: # actual evaporation from UStore layer['UStoreLayerDepth'][k,idx], dyn['ActEvapUStore'][idx], RestPotEvap = actEvap_unsat_SBM(static['ActRootingDepth'][idx], layer['UStoreLayerDepth'][k,idx], layer['UStoreLayerThickness'][k,idx], sumlayer[k], RestPotEvap, dyn['ActEvapUStore'][idx], layer['c'][k,idx], L[k], static['thetaS'][idx], static['thetaR'][idx], ust) #check soil moisture balance per layer du = 0.0 for k in range(L.size-1,-1,-1): du = max(0,layer['UStoreLayerDepth'][k,idx] - L[k]*(static['thetaS'][idx]-static['thetaR'][idx])) layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] - du if k > 0: layer['UStoreLayerDepth'][k-1,idx] = layer['UStoreLayerDepth'][k-1,idx] + du Ksat = layer['KsatVerFrac'][len(L)-1,idx] * static['KsatVer'][idx] * np.exp(-static['f'][idx] * dyn['zi'][idx]) UStoreCapacity = static['SoilWaterCapacity'][idx] - dyn['SatWaterDepth'][idx] - layer['UStoreLayerDepth'][n,idx].sum() MaxCapFlux = max(0.0, min(Ksat, dyn['ActEvapUStore'][idx], UStoreCapacity, dyn['SatWaterDepth'][idx])) if dyn['zi'][idx] > static['ActRootingDepth'][idx]: CapFluxScale = static['CapScale'][idx] / (static['CapScale'][idx] + dyn['zi'][idx] - static['ActRootingDepth'][idx]) * timestepsecs / basetimestep else: CapFluxScale = 0.0 CapFlux = MaxCapFlux * CapFluxScale netCapflux = CapFlux actCapFlux = 0.0 for k in range(L.size-1,-1,-1): toadd = min(netCapflux, max(L[k]*(static['thetaS'][idx]-static['thetaR'][idx]) - layer['UStoreLayerDepth'][k,idx], 0.0)) layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] + toadd netCapflux = netCapflux - toadd actCapFlux = actCapFlux + toadd dyn['CapFlux'][idx] = actCapFlux DeepKsat = static['KsatVer'][idx] * np.exp(-static['f'][idx] * static['SoilThickness'][idx]) DeepTransfer = min(dyn['SatWaterDepth'][idx], DeepKsat) dyn['ActLeakage'][idx] = max(0.0, min(static['MaxLeakage'][idx], DeepTransfer)) r = (ast - actCapFlux - dyn['ActLeakage'][idx] - dyn['ActEvapSat'][idx] - soilevapsat) * static['DW'][idx]*1000 ssf_new[idx], dyn['zi'][idx], ExfiltSatWater = kinematic_wave_ssf(ssf_in, dyn['ssf'][idx], dyn['zi'][idx], r, static['KsatHorFrac'][idx], static['KsatVer'][idx], static['slope'][idx], static['neff'][idx], static['f'][idx], static['SoilThickness'][idx], deltaT, static['DL'][idx]*1000, static['DW'][idx]*1000, static['ssfmax'][idx]) dyn['zi'][idx] = min(dyn['zi'][idx], static['SoilThickness'][idx]) dyn['SatWaterDepth'][idx] = (static['SoilThickness'][idx] - dyn['zi'][idx]) * (static['thetaS'][idx] - static['thetaR'][idx]) n_new = np.where(dyn['zi'][idx] > sumlayer_0)[0] if len(n_new) > 1: L_new = np.concatenate((layer['UStoreLayerThickness'][n_new[0:-1],idx], np.array([dyn['zi'][idx] - sumlayer_0[n_new[-1]]]))).astype(np.float64) else: L_new = np.array([dyn['zi'][idx]]).astype(np.float64) ExfiltFromUstore = 0.0 for k in range(L.size-1,-1,-1): if (np.where(n_new == k))[0].size > 0: ExfiltFromUstore = max(0,layer['UStoreLayerDepth'][k,idx] - L_new[k]*(static['thetaS'][idx]-static['thetaR'][idx])) else: ExfiltFromUstore = layer['UStoreLayerDepth'][k,idx] layer['UStoreLayerDepth'][k,idx] = layer['UStoreLayerDepth'][k,idx] - ExfiltFromUstore if k > 0: layer['UStoreLayerDepth'][k-1,idx] = layer['UStoreLayerDepth'][k-1,idx] + ExfiltFromUstore dyn['ExfiltWater'][idx] = ExfiltSatWater + ExfiltFromUstore dyn['ExcessWater'][idx] = dyn['AvailableForInfiltration'][idx] - InfiltSoilPath + du dyn['ActInfilt'][idx] = InfiltSoilPath - du ponding_add = 0 if nrpaddyirri > 0: if static['h_p'][idx] > 0: ponding_add = min(dyn['ExfiltWater'][idx] + dyn['ExcessWater'][idx], static['h_p'][idx] - dyn['PondingDepth'][idx]) dyn['PondingDepth'][idx] = dyn['PondingDepth'][idx] + ponding_add dyn['InwaterO'][idx] = max(dyn['ExfiltWater'][idx] + dyn['ExcessWater'][idx] + dyn['RunoffLandCells'][idx] - dyn['ActEvapOpenWaterLand'][idx] - ponding_add, 0.0) * (static['xl'][idx] * static['yl'][idx]) * 0.001 / timestepsecs dyn['sumUStoreLayerDepth'][idx] = layer['UStoreLayerDepth'][:,idx].sum() # volumetric water contents per soil layer and root zone for k in range(layer['UStoreLayerThickness'][:,idx].size): if (np.where(n_new == k))[0].size > 0: if layer['UStoreLayerThickness'][k,idx] > 0: layer['vwc'][k,idx] = (layer['UStoreLayerDepth'][k,idx] + (layer['UStoreLayerThickness'][k,idx] - L_new[k]) * (static['thetaS'][idx] - static['thetaR'][idx])) / layer['UStoreLayerThickness'][k,idx] + static['thetaR'][idx] else: layer['vwc'][k,idx] = static['thetaS'][idx] layer['vwc_perc'][k,idx] = (layer['vwc'][k,idx]/static['thetaS'][idx]) * 100.0 rootStore_unsat = 0 for k in range(L_new.size): if L_new[k] > 0: rootStore_unsat = rootStore_unsat + (max(0.0, static['ActRootingDepth'][idx] - sumlayer_0[k])/L_new[k]) * layer['UStoreLayerDepth'][k,idx] dyn['RootStore_unsat'][idx] = rootStore_unsat acc_flow = np.zeros(dyn['LandRunoff'].size, dtype=dyn['LandRunoff'].dtype) acc_flow = np.concatenate((acc_flow, np.array([0], dtype=dyn['LandRunoff'].dtype))) qo_toriver_acc = np.copy(acc_flow) q = dyn['InwaterO'] / static['DL'] for v in range(0,it_kinL): qo_new = np.zeros(dyn['LandRunoff'].size, dtype=dyn['LandRunoff'].dtype) qo_new = np.concatenate((qo_new, np.array([0], dtype=dyn['LandRunoff'].dtype))) for i in range(len(nodes)): for j in range(len(nodes[i])): idx = nodes[i][j] nbs = nodes_up[i][j] if static['River'][idx]: ind = np.where(ldd_[nbs] != ldd_[idx]) chanperc = np.zeros(ldd_[nbs].size) chanperc[ind] = slope_[nbs][ind]/(slope_[idx]+slope_[nbs][ind]) if static['SW'][idx] > 0.0: qo_in = np.sum((1-chanperc)*qo_new[nbs]) qo_toriver_vol = np.sum(chanperc*qo_new[nbs]) * (timestepsecs/it_kinL) else: qo_in = 0.0 qo_toriver_vol = np.sum(qo_new[nbs]) * (timestepsecs/it_kinL) else: qo_in = np.sum(qo_new[nbs]) qo_toriver_vol = 0.0 qo_new[idx] = kinematic_wave(qo_in, dyn['LandRunoff'][idx], q[idx], dyn['AlphaL'][idx], static['Beta'][idx], timestepsecs/it_kinL, static['DL'][idx]) acc_flow[idx] = acc_flow[idx] + qo_new[idx] * (timestepsecs/it_kinL) dyn['Qo_in'][idx] = dyn['Qo_in'][idx] + qo_in * (timestepsecs/it_kinL) qo_toriver_acc[idx] = qo_toriver_acc[idx] + qo_toriver_vol if static['SW'][idx] > 0: WaterLevelL = (dyn['AlphaL'][idx] * np.power(qo_new[idx], static['Beta'][idx])) / static['SW'][idx] Pl = static['SW'][idx] + (2.0 * WaterLevelL) dyn['AlphaL'][idx] = static['AlpTermR'][idx] * np.power(Pl, static['AlpPow'][idx]) dyn['LandRunoff'][idx]= qo_new[idx] qo_new = acc_flow/timestepsecs dyn['qo_toriver'][:] = qo_toriver_acc[:-1]/timestepsecs dyn['Qo_in'][:] = dyn['Qo_in'][:] / timestepsecs dyn['SoilWatbal'][:] = (dyn['ActInfilt'][:] - ((dyn['SatWaterDepth'][:] + dyn['sumUStoreLayerDepth'][:]) - (sumUSold[:] + SWDold[:])) + (dyn['CellInFlow'][:]-ssf_new[:-1])/(static['DW'][:]*static['DL'][:]*1000*1000) - dyn['ExfiltWater'][:] - dyn['soilevap'][:] - dyn['ActEvapUStore'][:] - dyn['ActEvapSat'][:] - dyn['ActLeakage'][:]) return ssf_new[:-1], qo_new[:-1], dyn, layer def SnowPackHBV(Snow, SnowWater, Precipitation, Temperature, TTI, TT, TTM, Cfmax, WHC): """ HBV Type snowpack modelling using a Temperature degree factor. All correction factors (RFCF and SFCF) are set to 1. The refreezing efficiency factor is set to 0.05. :param Snow: :param SnowWater: :param Precipitation: :param Temperature: :param TTI: :param TT: :param TTM: :param Cfmax: :param WHC: :return: Snow,SnowMelt,Precipitation """ RFCF = 1.0 # correction factor for rainfall CFR = 0.05000 # refreeing efficiency constant in refreezing of freewater in snow SFCF = 1.0 # correction factor for snowfall RainFrac = pcr.ifthenelse( 1.0 * TTI == 0.0, pcr.ifthenelse(Temperature <= TT, pcr.scalar(0.0), pcr.scalar(1.0)), pcr.min((Temperature - (TT - TTI / 2)) / TTI, pcr.scalar(1.0)), ) RainFrac = pcr.max( RainFrac, pcr.scalar(0.0) ) # fraction of precipitation which falls as rain SnowFrac = 1 - RainFrac # fraction of precipitation which falls as snow Precipitation = ( SFCF * SnowFrac * Precipitation + RFCF * RainFrac * Precipitation ) # different correction for rainfall and snowfall SnowFall = SnowFrac * Precipitation # snowfall depth RainFall = RainFrac * Precipitation # rainfall depth PotSnowMelt = pcr.ifthenelse( Temperature > TTM, Cfmax * (Temperature - TTM), pcr.scalar(0.0) ) # Potential snow melt, based on temperature PotRefreezing = pcr.ifthenelse( Temperature < TTM, Cfmax * CFR * (TTM - Temperature), 0.0 ) # Potential refreezing, based on temperature Refreezing = pcr.ifthenelse( Temperature < TTM, pcr.min(PotRefreezing, SnowWater), 0.0 ) # actual refreezing # No landuse correction here SnowMelt = pcr.min(PotSnowMelt, Snow) # actual snow melt Snow = Snow + SnowFall + Refreezing - SnowMelt # dry snow content SnowWater = SnowWater - Refreezing # free water content in snow MaxSnowWater = Snow * WHC # Max water in the snow SnowWater = ( SnowWater + SnowMelt + RainFall ) # Add all water and potentially supersaturate the snowpack RainFall = pcr.max(SnowWater - MaxSnowWater, 0.0) # rain + surpluss snowwater SnowWater = SnowWater - RainFall return Snow, SnowWater, SnowMelt, RainFall, SnowFall class WflowModel(pcraster.framework.DynamicModel): """ .. versionchanged:: 0.91 - Calculation of GWScale moved to resume() to allow fitting. .. versionadded:: 0.91 - added S-curve for freezing soil infiltration reduction calculations .. todo:: - add slope based quick-runoff -> less percolation on hillslopes... """ def __init__(self, cloneMap, Dir, RunDir, configfile): pcraster.framework.DynamicModel.__init__(self) self.UStoreLayerDepth = [] self.caseName = os.path.abspath(Dir) self.clonemappath = os.path.join(os.path.abspath(Dir), "staticmaps", cloneMap) pcr.setclone(self.clonemappath) self.runId = RunDir self.Dir = os.path.abspath(Dir) self.configfile = configfile self.SaveDir = os.path.join(self.Dir, self.runId) def irrigationdemand(self, pottrans, acttrans, irareas): """ Determine irrigation water demand from the difference bewteen potential transpiration and actual transpiration. :param pottrans: potential transpiration (epot minus interception and soil/open water evaporation) :param acttrans: actual transpiration :param ir_areas: maps of irrigation areas :return: demand """ Et_diff = pcr.areaaverage(pottrans - acttrans, pcr.nominal(irareas)) # Now determine demand in m^3/s for each area sqmarea = pcr.areatotal(self.reallength * self.reallength, pcr.nominal(irareas)) m3sec = Et_diff * sqmarea / 1000.0 / self.timestepsecs return Et_diff, m3sec def updateRunOff(self): """ Updates the kinematic wave reservoir. Should be run after updates to Q """ self.WaterLevelR = (self.AlphaR * pow(self.RiverRunoff, self.Beta)) / self.Bw # wetted perimeter (m) Pr = self.Bw + (2 * self.WaterLevelR) # Alpha self.AlphaR = self.AlpTermR * pow(Pr, self.AlpPow) self.OldKinWaveVolumeR = self.KinWaveVolumeR self.KinWaveVolumeR = self.WaterLevelR * self.Bw * self.DCL self.dyn['AlphaR'] = pcr.pcr2numpy(self.AlphaR,self.mv).ravel() self.WaterLevelL = pcr.ifthenelse( self.SW > 0, (self.AlphaL * pow(self.LandRunoff, self.Beta)) / self.SW, 0.0) Pl = self.SW + (2 * self.WaterLevelL) # Alpha self.AlphaL = self.AlpTermL * pow(Pl, self.AlpPow) self.OldKinWaveVolumeL = self.KinWaveVolumeL self.KinWaveVolumeL = self.WaterLevelL * self.SW * self.DL self.dyn['AlphaL'] = pcr.pcr2numpy(self.AlphaL,self.mv).ravel() def stateVariables(self): """ returns a list of state variables that are essential to the model. This list is essential for the resume and suspend functions to work. This function is specific for each model and **must** be present. :var self.RiverRunoff: Surface runoff in the kin-wave resrvoir [m^3/s] :var self.LandRunoff: Surface runoff in the kin-wave resrvoir [m^3/s] :var self.SurfaceRunoffDyn: Surface runoff in the dyn-wave resrvoir [m^3/s] :var self.WaterLevelR: Water level in the river kin-wave reservoir [m] :var self.WaterLevelL: Water level in the land kin-wave reservoir [m] :var self.WaterLevelDyn: Water level in the dyn-wave resrvoir [m^] :var self.Snow: Snow pack [mm] :var self.SnowWater: Snow pack water [mm] :var self.TSoil: Top soil temperature [oC] :var self.UStoreDepth: Water in the Unsaturated Store [mm] :var self.SatWaterDepth: Water in the saturated store [mm] :var self.CanopyStorage: Amount of water on the Canopy [mm] :var self.ReservoirVolume: Volume of each reservoir [m^3] :var self.GlacierStore: Thickness of the Glacier in a gridcell [mm] """ states = [ "RiverRunoff", "WaterLevelR", "LandRunoff", "WaterLevelL", "SatWaterDepth", "Snow", "TSoil", "UStoreLayerDepth", "SnowWater", "CanopyStorage", "SubsurfaceFlow", ] if hasattr(self, "GlacierFrac"): states.append("GlacierStore") if hasattr(self, "ReserVoirSimpleLocs"): states.append("ReservoirVolume") if hasattr(self, "ReserVoirComplexLocs"): states.append("ReservoirWaterLevel") if hasattr(self, "nrpaddyirri"): if self.nrpaddyirri > 0: states.append("PondingDepth") return states def supplyCurrentTime(self): """ gets the current time in seconds after the start of the run """ return self.currentTimeStep() * self.timestepsecs def suspend(self): self.logger.info("Saving initial conditions...") self.wf_suspend(os.path.join(self.SaveDir, "outstate")) if self.OverWriteInit: self.logger.info("Saving initial conditions over start conditions...") self.wf_suspend(self.SaveDir + "/instate/") def parameters(self): """ Define all model parameters here that the framework should handle for the model See wf_updateparameters and the parameters section of the ini file If you use this make sure to all wf_updateparameters at the start of the dynamic section and at the start/end of the initial section """ modelparameters = [] # Static model parameters e.g. # modelparameters.append(self.ParamType(name="RunoffGeneratingGWPerc",stack="intbl/RunoffGeneratingGWPerc.tbl",type="static",default=0.1)) # 3: Input time series ################################################### self.P_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Precipitation", "/inmaps/P" ) # timeseries for rainfall self.PET_mapstack = self.Dir + configget( self.config, "inputmapstacks", "EvapoTranspiration", "/inmaps/PET" ) # timeseries for rainfall"/inmaps/PET" # potential evapotranspiration self.TEMP_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Temperature", "/inmaps/TEMP" ) # timeseries for rainfall "/inmaps/TEMP" # global radiation self.Inflow_mapstack = self.Dir + configget( self.config, "inputmapstacks", "Inflow", "/inmaps/IF" ) # timeseries for rainfall "/inmaps/IF" # in/outflow locations (abstractions) # Meteo and other forcing modelparameters.append( self.ParamType( name="Precipitation", stack=self.P_mapstack, type="timeseries", default=0.0, verbose=True, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="PotenEvap", stack=self.PET_mapstack, type="timeseries", default=0.0, verbose=True, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="Temperature", stack=self.TEMP_mapstack, type="timeseries", default=10.0, verbose=True, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="Inflow", stack=self.Inflow_mapstack, type="timeseries", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="IrrigationAreas", stack="staticmaps/wflow_irrigationareas.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="IrrigationSurfaceIntakes", stack="staticmaps/wflow_irrisurfaceintake.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="IrrigationPaddyAreas", stack="staticmaps/wflow_irrigationpaddyareas.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="IrrigationSurfaceReturn", stack="staticmaps/wflow_irrisurfacereturns.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="h_max", stack="staticmaps/wflow_hmax.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="h_min", stack="staticmaps/wflow_hmin.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) modelparameters.append( self.ParamType( name="h_p", stack="staticmaps/wflow_hp.map", type="staticmap", default=0.0, verbose=False, lookupmaps=[], ) ) return modelparameters def initial(self): """ Initial part of the model, executed only once. Reads all static data from disk *Soil* :var M.tbl: M parameter in the SBM model. Governs the decay of Ksat with depth [-] :var thetaR.tbl: Residual water content [mm/mm] :var thetaS.tbl: Saturated water content (porosity) [mm/mm] :var KsatVer.tbl: Saturated conductivity [mm/d] :var PathFrac.tbl: Fraction of compacted area per grid cell [-] :var InfiltCapSoil.tbl: Soil infiltration capacity [m/d] :var InfiltCapPath.tbl: Infiltration capacity of the compacted areas [mm/d] :var SoilMinThickness.tbl: Minimum wdepth of the soil [mm] :var SoilThickness.tbl: Maximum depth of the soil [m] :var RootingDepth.tbl: Depth of the roots [mm] :var MaxLeakage.tbl: Maximum leakage out of the soil profile [mm/d] :var CapScale.tbl: Scaling factor in the Capilary rise calculations (100) [mm/d] :var RunoffGeneratingGWPerc: Fraction of the soil depth that contributes to subcell runoff (0.1) [-] :var rootdistpar.tbl: Determine how roots are linked to water table. The number should be negative. A more negative number means that all roots are wet if the water table is above the lowest part of the roots. A less negative number smooths this. [mm] (default = -80000) *Canopy* :var CanopyGapFraction.tbl: Fraction of precipitation that does not hit the canopy directly [-] :var MaxCanopyStorage.tbl: Canopy interception storage capacity [mm] :var EoverR.tbl: Ratio of average wet canopy evaporation rate over rainfall rate [-] *Surface water* :var N.tbl: Manning's N parameter :var N_river.tbl: Manning's N parameter for cells marked as river *Snow and frozen soil modelling parameters* :var cf_soil.tbl: Soil infiltration reduction factor when soil is frozen [-] (< 1.0) :var TTI.tbl: critical temperature for snowmelt and refreezing (1.000) [oC] :var TT.tbl: defines interval in which precipitation falls as rainfall and snowfall (-1.41934) [oC] :var Cfmax.tbl: meltconstant in temperature-index ( 3.75653) [-] :var WHC.tbl: fraction of Snowvolume that can store water (0.1) [-] :var w_soil.tbl: Soil temperature smooth factor. Given for daily timesteps. (0.1125) [-] Wigmosta, <NAME>., <NAME>, <NAME>, and <NAME> (2009). """ global statistics global multpars global updateCols self.thestep = pcr.scalar(0) self.basetimestep = 86400 self.SSSF = False pcr.setglobaloption("unittrue") self.mv = -999 self.count = 0 self.logger.info("running for " + str(self.nrTimeSteps()) + " timesteps") # Set and get defaults from ConfigFile here ################################### self.Tslice = int(configget(self.config, "model", "Tslice", "1")) self.reinit = int(configget(self.config, "run", "reinit", "0")) self.OverWriteInit = int(configget(self.config, "model", "OverWriteInit", "0")) self.updating = int(configget(self.config, "model", "updating", "0")) self.updateFile = configget(self.config, "model", "updateFile", "no_set") self.TransferMethod = int( configget(self.config, "model", "transfermethod", "0") ) self.maxitsupply = int(configget(self.config, "model", "maxitsupply", "5")) self.UST = int(configget(self.config, "model", "Whole_UST_Avail", "0")) self.NRiverMethod = int(configget(self.config, "model", "nrivermethod", "1")) self.kinwaveIters = int(configget(self.config, "model", "kinwaveIters", "0")) if self.kinwaveIters == 1: self.logger.info( "Using sub timestep for kinematic wave (iterate)" ) if self.TransferMethod == 1: self.logger.info( "Applying the original topog_sbm vertical transfer formulation" ) self.sCatch = int(configget(self.config, "model", "sCatch", "0")) self.intbl = configget(self.config, "model", "intbl", "intbl") self.modelSnow = int(configget(self.config, "model", "ModelSnow", "1")) self.soilInfReduction = int(configget(self.config, "model", "soilInfRedu", "1")) sizeinmetres = int(configget(self.config, "layout", "sizeinmetres", "0")) alf = float(configget(self.config, "model", "Alpha", "60")) # TODO: make this into a list for all gauges or a map Qmax = float(configget(self.config, "model", "AnnualDischarge", "300")) self.UpdMaxDist = float(configget(self.config, "model", "UpdMaxDist", "100")) self.MaxUpdMult = float(configget(self.config, "model", "MaxUpdMult", "1.3")) self.MinUpdMult = float(configget(self.config, "model", "MinUpdMult", "0.7")) self.UpFrac = float(configget(self.config, "model", "UpFrac", "0.8")) # self.ExternalQbase=int(configget(self.config,'model','ExternalQbase','0')) self.waterdem = int(configget(self.config, "model", "waterdem", "0")) WIMaxScale = float(configget(self.config, "model", "WIMaxScale", "0.8")) self.MassWasting = int(configget(self.config, "model", "MassWasting", "0")) self.nrLayers = int(configget(self.config, "model", "nrLayers", "1")) # static maps to use (normally default) wflow_subcatch = configget( self.config, "model", "wflow_subcatch", "staticmaps/wflow_subcatch.map" ) wflow_dem = configget( self.config, "model", "wflow_dem", "staticmaps/wflow_dem.map" ) wflow_ldd = configget( self.config, "model", "wflow_ldd", "staticmaps/wflow_ldd.map" ) wflow_river = configget( self.config, "model", "wflow_river", "staticmaps/wflow_river.map" ) wflow_riverlength = configget( self.config, "model", "wflow_riverlength", "staticmaps/wflow_riverlength.map", ) wflow_riverlength_fact = configget( self.config, "model", "wflow_riverlength_fact", "staticmaps/wflow_riverlength_fact.map", ) wflow_landuse = configget( self.config, "model", "wflow_landuse", "staticmaps/wflow_landuse.map" ) wflow_soil = configget( self.config, "model", "wflow_soil", "staticmaps/wflow_soil.map" ) wflow_gauges = configget( self.config, "model", "wflow_gauges", "staticmaps/wflow_gauges.map" ) wflow_inflow = configget( self.config, "model", "wflow_inflow", "staticmaps/wflow_inflow.map" ) wflow_riverwidth = configget( self.config, "model", "wflow_riverwidth", "staticmaps/wflow_riverwidth.map" ) wflow_streamorder = configget( self.config, "model", "wflow_streamorder", "staticmaps/wflow_streamorder.map", ) # 2: Input base maps ######################################################## subcatch = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_subcatch), 0.0, fail=True) ) # Determines the area of calculations (all cells > 0) subcatch = pcr.ifthen(subcatch > 0, subcatch) self.Altitude = self.wf_readmap( os.path.join(self.Dir, wflow_dem), 0.0, fail=True ) # * pcr.scalar(pcr.defined(subcatch)) # DEM self.TopoLdd = pcr.ldd( self.wf_readmap(os.path.join(self.Dir, wflow_ldd), 0.0, fail=True) ) # Local self.TopoId = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_subcatch), 0.0, fail=True) ) # area map self.River = pcr.cover( pcr.boolean( self.wf_readmap(os.path.join(self.Dir, wflow_river), 0.0, fail=True) ), 0, ) self.RiverLength = pcr.cover( self.wf_readmap(os.path.join(self.Dir, wflow_riverlength), 0.0), 0.0 ) # Factor to multiply riverlength with (defaults to 1.0) self.RiverLengthFac = self.wf_readmap( os.path.join(self.Dir, wflow_riverlength_fact), 1.0 ) # read landuse and soilmap and make sure there are no missing points related to the # subcatchment map. Currently sets the lu and soil type type to 1 self.LandUse = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_landuse), 0.0, fail=True) ) self.LandUse = pcr.cover(self.LandUse, pcr.ordinal(subcatch > 0)) self.Soil = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_soil), 0.0, fail=True) ) self.Soil = pcr.cover(self.Soil, pcr.ordinal(subcatch > 0)) self.OutputLoc = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_gauges), 0.0, fail=True) ) # location of output gauge(s) self.InflowLoc = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_inflow), 0.0) ) # location abstractions/inflows. self.RiverWidth = self.wf_readmap(os.path.join(self.Dir, wflow_riverwidth), 0.0) # Experimental self.RunoffGenSigmaFunction = int( configget(self.config, "model", "RunoffGenSigmaFunction", "0") ) self.SubCatchFlowOnly = int( configget(self.config, "model", "SubCatchFlowOnly", "0") ) self.OutputId = pcr.ordinal( self.wf_readmap(os.path.join(self.Dir, wflow_subcatch), 0.0, fail=True) ) # location of subcatchment # Temperature correction poer cell to add self.TempCor = self.wf_readmap( self.Dir + "\\" + configget( self.config, "model", "TemperatureCorrectionMap", "staticmaps/wflow_tempcor.map", ), 0.0, ) self.ZeroMap = 0.0 * pcr.scalar(subcatch) # map with only zero's # Set static initial values here ######################################### self.pi = 3.1416 self.e = 2.7183 self.SScale = 100.0 self.Latitude = pcr.ycoordinate(pcr.boolean(self.Altitude)) self.Longitude = pcr.xcoordinate(pcr.boolean(self.Altitude)) # Read parameters NEW Method self.logger.info("Linking parameters to landuse, catchment and soil...") self.wf_updateparameters() self.RunoffGeneratingGWPerc = self.readtblDefault( self.Dir + "/" + self.intbl + "/RunoffGeneratingGWPerc.tbl", self.LandUse, subcatch, self.Soil, 0.1, ) if hasattr(self, "LAI"): # Sl must also be defined if not hasattr(self, "Sl"): logging.error( "Sl (specific leaf storage) not defined! Needed becausee LAI is defined." ) logging.error("Please add it to the modelparameters section. e.g.:") logging.error( "Sl=inmaps/clim/LCtoSpecificLeafStorage.tbl,tbl,0.5,1,inmaps/clim/LC.map" ) if not hasattr(self, "Kext"): logging.error( "Kext (canopy extinction coefficient) not defined! Needed becausee LAI is defined." ) logging.error("Please add it to the modelparameters section. e.g.:") logging.error( "Kext=inmaps/clim/LCtoExtinctionCoefficient.tbl,tbl,0.5,1,inmaps/clim/LC.map" ) if not hasattr(self, "Swood"): logging.error( "Swood wood (branches, trunks) canopy storage not defined! Needed becausee LAI is defined." ) logging.error("Please add it to the modelparameters section. e.g.:") logging.error( "Swood=inmaps/clim/LCtoBranchTrunkStorage.tbl,tbl,0.5,1,inmaps/clim/LC.map" ) self.Cmax = self.Sl * self.LAI + self.Swood self.CanopyGapFraction = pcr.exp(-self.Kext * self.LAI) self.np_CanopyGapFraction = pcr.pcr2numpy(self.CanopyGapFraction,self.mv) # TODO: Add MAXLAI and CWf lookup else: self.Cmax = self.readtblDefault( self.Dir + "/" + self.intbl + "/MaxCanopyStorage.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) self.CanopyGapFraction = self.readtblDefault( self.Dir + "/" + self.intbl + "/CanopyGapFraction.tbl", self.LandUse, subcatch, self.Soil, 0.1, ) self.EoverR = self.readtblDefault( self.Dir + "/" + self.intbl + "/EoverR.tbl", self.LandUse, subcatch, self.Soil, 0.1, ) if not hasattr(self, "DemandReturnFlowFraction"): self.DemandReturnFlowFraction = self.ZeroMap self.RootingDepth = self.readtblDefault( self.Dir + "/" + self.intbl + "/RootingDepth.tbl", self.LandUse, subcatch, self.Soil, 750.0, ) # rooting depth #: rootdistpar determien how roots are linked to water table. self.rootdistpar = self.readtblDefault( self.Dir + "/" + self.intbl + "/rootdistpar.tbl", self.LandUse, subcatch, self.Soil, -8000, ) # rrootdistpar # Soil parameters # infiltration capacity if the soil [mm/day] self.InfiltCapSoil = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/InfiltCapSoil.tbl", self.LandUse, subcatch, self.Soil, 100.0, ) * self.timestepsecs / self.basetimestep ) self.CapScale = self.readtblDefault( self.Dir + "/" + self.intbl + "/CapScale.tbl", self.LandUse, subcatch, self.Soil, 100.0, ) # # infiltration capacity of the compacted self.InfiltCapPath = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/InfiltCapPath.tbl", self.LandUse, subcatch, self.Soil, 10.0, ) * self.timestepsecs / self.basetimestep ) self.MaxLeakage = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/MaxLeakage.tbl", self.LandUse, subcatch, self.Soil, 0.0, ) * self.timestepsecs / self.basetimestep ) self.MaxPercolation = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/MaxPercolation.tbl", self.LandUse, subcatch, self.Soil, 0.0, ) * self.timestepsecs / self.basetimestep ) # areas (paths) in [mm/day] # Fraction area with compacted soil (Paths etc.) self.PathFrac = self.readtblDefault( self.Dir + "/" + self.intbl + "/PathFrac.tbl", self.LandUse, subcatch, self.Soil, 0.01, ) # thickness of the soil self.SoilThickness = self.readtblDefault( self.Dir + "/" + self.intbl + "/SoilThickness.tbl", self.LandUse, subcatch, self.Soil, 2000.0, ) self.thetaR = self.readtblDefault( self.Dir + "/" + self.intbl + "/thetaR.tbl", self.LandUse, subcatch, self.Soil, 0.01, ) self.thetaS = self.readtblDefault( self.Dir + "/" + self.intbl + "/thetaS.tbl", self.LandUse, subcatch, self.Soil, 0.6, ) # minimum thickness of soild self.SoilMinThickness = self.readtblDefault( self.Dir + "/" + self.intbl + "/SoilMinThickness.tbl", self.LandUse, subcatch, self.Soil, 500.0, ) # KsatVer = $2\inmaps\KsatVer.map self.KsatVer = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/KsatVer.tbl", self.LandUse, subcatch, self.Soil, 3000.0, ) * self.timestepsecs / self.basetimestep ) self.MporeFrac = self.readtblDefault( self.Dir + "/" + self.intbl + "/MporeFrac.tbl", self.LandUse, subcatch, self.Soil, 0.0, ) self.KsatHorFrac = self.readtblDefault( self.Dir + "/" + self.intbl + "/KsatHorFrac.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # Check if we have irrigation areas tt = pcr.pcr2numpy(self.IrrigationAreas, 0.0) self.nrirri = tt.max() # Check of we have paddy irrigation areas tt = pcr.pcr2numpy(self.IrrigationPaddyAreas, 0.0) self.nrpaddyirri = tt.max() self.Beta = pcr.scalar(0.6) # For sheetflow self.M = self.readtblDefault( self.Dir + "/" + self.intbl + "/M.tbl", self.LandUse, subcatch, self.Soil, 300.0, ) # Decay parameter in Topog_sbm self.N = self.readtblDefault( self.Dir + "/" + self.intbl + "/N.tbl", self.LandUse, subcatch, self.Soil, 0.072, ) # Manning overland flow if self.NRiverMethod == 1: self.NRiver = self.readtblDefault( self.Dir + "/" + self.intbl + "/N_River.tbl", self.LandUse, subcatch, self.Soil, 0.036, ) # Manning river if self.NRiverMethod == 2: self.NRiver = self.readtblFlexDefault( self.Dir + "/" + self.intbl + "/N_River.tbl", 0.036, wflow_streamorder ) self.WaterFrac = self.readtblDefault( self.Dir + "/" + self.intbl + "/WaterFrac.tbl", self.LandUse, subcatch, self.Soil, 0.0, ) # Fraction Open water self.et_RefToPot = self.readtblDefault( self.Dir + "/" + self.intbl + "/et_reftopot.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # Fraction Open water if self.modelSnow: # HBV Snow parameters # critical temperature for snowmelt and refreezing: TTI= 1.000 self.TTI = self.readtblDefault( self.Dir + "/" + self.intbl + "/TTI.tbl", self.LandUse, subcatch, self.Soil, 1.0, ) # TT = -1.41934 # defines interval in which precipitation falls as rainfall and snowfall self.TT = self.readtblDefault( self.Dir + "/" + self.intbl + "/TT.tbl", self.LandUse, subcatch, self.Soil, -1.41934, ) self.TTM = self.readtblDefault( self.Dir + "/" + self.intbl + "/TTM.tbl", self.LandUse, subcatch, self.Soil, -1.41934, ) # Cfmax = 3.75653 # meltconstant in temperature-index self.Cfmax = self.readtblDefault( self.Dir + "/" + self.intbl + "/Cfmax.tbl", self.LandUse, subcatch, self.Soil, 3.75653, ) # WHC= 0.10000 # fraction of Snowvolume that can store water self.WHC = self.readtblDefault( self.Dir + "/" + self.intbl + "/WHC.tbl", self.LandUse, subcatch, self.Soil, 0.1, ) # Wigmosta, <NAME>., <NAME>, <NAME>, and <NAME> (2009). self.w_soil = ( self.readtblDefault( self.Dir + "/" + self.intbl + "/w_soil.tbl", self.LandUse, subcatch, self.Soil, 0.9 * 3.0 / 24.0, ) * self.timestepsecs / self.basetimestep ) if self.soilInfReduction: self.cf_soil = pcr.min( 0.99, self.readtblDefault( self.Dir + "/" + self.intbl + "/cf_soil.tbl", self.LandUse, subcatch, self.Soil, 0.038, ), ) # Ksat reduction factor fro frozen soi # We are modelling gletchers # Determine real slope and cell length self.xl, self.yl, self.reallength = pcrut.detRealCellLength( self.ZeroMap, sizeinmetres ) self.Slope = pcr.slope(self.Altitude) # self.Slope=pcr.ifthen(pcr.boolean(self.TopoId),pcr.max(0.001,self.Slope*celllength()/self.reallength)) self.Slope = pcr.max(0.00001, self.Slope * pcr.celllength() / self.reallength) Terrain_angle = pcr.scalar(pcr.atan(self.Slope)) #self.N = pcr.ifthenelse(self.River, self.NRiver, self.N) if hasattr(self, "ReserVoirSimpleLocs") or hasattr( self, "ReserVoirComplexLocs" ): self.ReserVoirLocs = self.ZeroMap self.filter_P_PET = self.ZeroMap + 1.0 if hasattr(self, "ReserVoirSimpleLocs"): # Check if we have simple and or complex reservoirs self.ReserVoirSimpleLocs = pcr.nominal(self.ReserVoirSimpleLocs) self.ReservoirSimpleAreas = pcr.nominal(self.ReservoirSimpleAreas) tt_simple = pcr.pcr2numpy(self.ReserVoirSimpleLocs, 0.0) self.nrresSimple = tt_simple.max() self.ReserVoirLocs = self.ReserVoirLocs + pcr.cover( pcr.scalar(self.ReserVoirSimpleLocs) ) areamap = self.reallength * self.reallength res_area = pcr.areatotal(pcr.spatial(areamap), self.ReservoirSimpleAreas) resarea_pnt = pcr.ifthen(pcr.boolean(self.ReserVoirSimpleLocs), res_area) self.ResSimpleArea = pcr.ifthenelse( pcr.cover(self.ResSimpleArea, pcr.scalar(0.0)) > 0, self.ResSimpleArea, pcr.cover(resarea_pnt, pcr.scalar(0.0)), ) self.filter_P_PET = pcr.ifthenelse( pcr.boolean(pcr.cover(res_area, pcr.scalar(0.0))), res_area * 0.0, self.filter_P_PET, ) else: self.nrresSimple = 0 if hasattr(self, "ReserVoirComplexLocs"): self.ReservoirComplexAreas = pcr.nominal(self.ReservoirComplexAreas) self.ReserVoirComplexLocs = pcr.nominal(self.ReserVoirComplexLocs) tt_complex = pcr.pcr2numpy(self.ReserVoirComplexLocs, 0.0) self.nrresComplex = tt_complex.max() self.ReserVoirLocs = self.ReserVoirLocs + pcr.cover( pcr.scalar(self.ReserVoirComplexLocs) ) res_area = pcr.cover(pcr.scalar(self.ReservoirComplexAreas), 0.0) self.filter_P_PET = pcr.ifthenelse( res_area > 0, res_area * 0.0, self.filter_P_PET ) # read files self.sh = {} res_ids = pcr.ifthen(self.ResStorFunc == 2, self.ReserVoirComplexLocs) np_res_ids = pcr.pcr2numpy(res_ids, 0) np_res_ids_u = np.unique(np_res_ids[np.nonzero(np_res_ids)]) if np.size(np_res_ids_u) > 0: for item in np.nditer(np_res_ids_u): self.sh[int(item)] = np.loadtxt( self.Dir + "/" + self.intbl + "/Reservoir_SH_" + str(item) + ".tbl" ) self.hq = {} res_ids = pcr.ifthen(self.ResOutflowFunc == 1, self.ReserVoirComplexLocs) np_res_ids = pcr.pcr2numpy(res_ids, 0) np_res_ids_u = np.unique(np_res_ids[np.nonzero(np_res_ids)]) if np.size(np_res_ids_u) > 0: for item in np.nditer(np_res_ids_u): self.hq[int(item)] = np.loadtxt( self.Dir + "/" + self.intbl + "/Reservoir_HQ_" + str(item) + ".tbl", skiprows=3, ) else: self.nrresComplex = 0 if (self.nrresSimple + self.nrresComplex) > 0: self.ReserVoirLocs = pcr.ordinal(self.ReserVoirLocs) self.logger.info( "A total of " + str(self.nrresSimple) + " simple reservoirs and " + str(self.nrresComplex) + " complex reservoirs found." ) self.ReserVoirDownstreamLocs = pcr.downstream( self.TopoLdd, self.ReserVoirLocs ) self.TopoLddOrg = self.TopoLdd self.TopoLdd = pcr.lddrepair( pcr.cover( pcr.ifthen(pcr.boolean(self.ReserVoirLocs), pcr.ldd(5)), self.TopoLdd, ) ) tt_filter = pcr.pcr2numpy(self.filter_P_PET, 1.0) self.filterResArea = tt_filter.min() # Determine river width from DEM, upstream area and yearly average discharge # Scale yearly average Q at outlet with upstream are to get Q over whole catchment # Alf ranges from 5 to > 60. 5 for hardrock. large values for sediments # "<NAME> et al 2005 Controls on the channel width of rivers: # Implications for modeling fluvial incision of bedrock" if (self.nrresSimple + self.nrresComplex) > 0: upstr = pcr.catchmenttotal(1, self.TopoLddOrg) else: upstr = pcr.catchmenttotal(1, self.TopoLdd) Qscale = upstr / pcr.mapmaximum(upstr) * Qmax W = ( (alf * (alf + 2.0) ** (0.6666666667)) ** (0.375) * Qscale ** (0.375) * (pcr.max(0.0001, pcr.windowaverage(self.Slope, pcr.celllength() * 4.0))) ** (-0.1875) * self.NRiver ** (0.375) ) # should use NRiver here!!! # Use supplied riverwidth if possible, else calulate self.RiverWidth = pcr.ifthenelse(self.RiverWidth <= 0.0, W, self.RiverWidth) # soil thickness based on topographical index (see Environmental modelling: finding simplicity in complexity) # 1: calculate wetness index # 2: Scale the capacity (now actually a max capacity) based on the index, also apply a minmum capacity WI = pcr.ln( pcr.accuflux(self.TopoLdd, 1) / self.Slope ) # Topographical wetnesss. Scale WI by zone/subcatchment assuming these ara also geological units WIMax = pcr.areamaximum(WI, self.TopoId) * WIMaxScale self.SoilThickness = pcr.max( pcr.min(self.SoilThickness, (WI / WIMax) * self.SoilThickness), self.SoilMinThickness, ) self.SoilWaterCapacity = self.SoilThickness * (self.thetaS - self.thetaR) # determine number of layers based on total soil thickness UStoreLayerThickness = configget( self.config, "model", "UStoreLayerThickness", "0" ) if UStoreLayerThickness != "0": self.nrLayers = len(UStoreLayerThickness.split(",")) self.maxLayers = self.nrLayers + 1 else: UStoreLayerThickness = self.SoilThickness self.nrLayers = 1 self.maxLayers = self.nrLayers self.KsatVerFrac = [] self.c = [] for n in range(self.maxLayers): self.KsatVerFrac.append( self.readtblLayersDefault( self.Dir + "/" + self.intbl + "/KsatVerFrac.tbl", self.LandUse, subcatch, self.Soil, n, 1.0, ) ) self.c.append( self.readtblLayersDefault( self.Dir + "/" + self.intbl + "/c.tbl", self.LandUse, subcatch, self.Soil, n, 10.0, ) ) # limit roots to top 99% of first zone self.RootingDepth = pcr.min(self.SoilThickness * 0.99, self.RootingDepth) # subgrid runoff generation, determine CC (sharpness of S-Curve) for upper # en lower part and take average self.DemMax = pcr.readmap(self.Dir + "/staticmaps/wflow_demmax") self.DrainageBase = pcr.readmap(self.Dir + "/staticmaps/wflow_demmin") self.CClow = pcr.min( 100.0, -pcr.ln(1.0 / 0.1 - 1) / pcr.min(-0.1, self.DrainageBase - self.Altitude), ) self.CCup = pcr.min( 100.0, -pcr.ln(1.0 / 0.1 - 1) / pcr.min(-0.1, self.Altitude - self.DemMax) ) self.CC = (self.CClow + self.CCup) * 0.5 # Which columns/gauges to use/ignore in updating self.UpdateMap = self.ZeroMap if self.updating: _tmp = pcr.pcr2numpy(self.OutputLoc, 0.0) gaugear = _tmp touse = np.zeros(gaugear.shape, dtype="int") for thecol in updateCols: idx = (gaugear == thecol).nonzero() touse[idx] = thecol self.UpdateMap = pcr.numpy2pcr(pcr.Nominal, touse, 0.0) # Calculate distance to updating points (upstream) annd use to scale the correction # ldddist returns zero for cell at the gauges so add 1.0 tp result self.DistToUpdPt = pcr.cover( pcr.min( pcr.ldddist( self.TopoLdd, pcr.boolean(pcr.cover(self.UpdateMap, 0)), 1 ) * self.reallength / pcr.celllength(), self.UpdMaxDist, ), self.UpdMaxDist, ) # Initializing of variables self.logger.info("Initializing of model variables..") self.TopoLdd = pcr.lddmask(self.TopoLdd, pcr.boolean(self.TopoId)) catchmentcells = pcr.maptotal(pcr.scalar(self.TopoId)) # Limit lateral flow per subcatchment (make pits at all subcatch boundaries) # This is very handy for Ribasim etc... if self.SubCatchFlowOnly > 0: self.logger.info("Creating subcatchment-only drainage network (ldd)") ds = pcr.downstream(self.TopoLdd, self.TopoId) usid = pcr.ifthenelse(ds != self.TopoId, self.TopoId, 0) self.TopoLdd = pcr.lddrepair( pcr.ifthenelse(pcr.boolean(usid), pcr.ldd(5), self.TopoLdd) ) # Used to seperate output per LandUse/management classes OutZones = self.LandUse self.QMMConv = self.timestepsecs / ( self.reallength * self.reallength * 0.001 ) # m3/s --> actial mm of water over the cell # self.QMMConvUp = 1000.0 * self.timestepsecs / ( pcr.catchmenttotal(pcr.cover(1.0), self.TopoLdd) * self.reallength * self.reallength) #m3/s --> mm over upstreams temp = ( pcr.catchmenttotal(pcr.cover(1.0), self.TopoLdd) * self.reallength * 0.001 * 0.001 * self.reallength ) self.QMMConvUp = pcr.cover(self.timestepsecs * 0.001) / temp self.ToCubic = ( self.reallength * self.reallength * 0.001 ) / self.timestepsecs # m3/s self.KinWaveVolumeR = self.ZeroMap self.OldKinWaveVolumeR = self.ZeroMap self.KinWaveVolumeL = self.ZeroMap self.OldKinWaveVolumeL = self.ZeroMap self.sumprecip = self.ZeroMap # accumulated rainfall for water balance self.sumevap = self.ZeroMap # accumulated evaporation for water balance self.sumrunoff = self.ZeroMap # accumulated runoff for water balance self.sumint = self.ZeroMap # accumulated interception for water balance self.sumleakage = self.ZeroMap self.sumoutflow = self.ZeroMap self.sumsnowmelt = self.ZeroMap self.CumRad = self.ZeroMap self.SnowMelt = self.ZeroMap self.CumPrec = self.ZeroMap self.CumInwaterMM = self.ZeroMap self.CumInfiltExcess = self.ZeroMap self.CumExfiltWater = self.ZeroMap self.CumSurfaceWater = self.ZeroMap self.watbal = self.ZeroMap self.CumEvap = self.ZeroMap self.CumPotenEvap = self.ZeroMap self.CumPotenTrans = self.ZeroMap self.CumInt = self.ZeroMap self.CumRad = self.ZeroMap self.CumLeakage = self.ZeroMap self.CumPrecPol = self.ZeroMap self.SatWaterFlux = self.ZeroMap self.SumCellWatBal = self.ZeroMap self.PathInfiltExceeded = self.ZeroMap self.SoilInfiltExceeded = self.ZeroMap self.CumOutFlow = self.ZeroMap self.CumCellInFlow = self.ZeroMap self.CumIF = self.ZeroMap self.CumActInfilt = self.ZeroMap self.IRSupplymm = self.ZeroMap self.Aspect = pcr.scalar(pcr.aspect(self.Altitude)) # aspect [deg] self.Aspect = pcr.ifthenelse(self.Aspect <= 0.0, pcr.scalar(0.001), self.Aspect) # On Flat areas the Aspect function fails, fill in with average... self.Aspect = pcr.ifthenelse( pcr.defined(self.Aspect), self.Aspect, pcr.areaaverage(self.Aspect, self.TopoId), ) # Set DCL to riverlength if that is longer that the basic length calculated from grid drainlength = detdrainlength(self.TopoLdd, self.xl, self.yl) # Multiply with Factor (taken from upscaling operation, defaults to 1.0 if no map is supplied self.DCL = drainlength * pcr.max(1.0, self.RiverLengthFac) self.DCL = pcr.max(self.DCL, self.RiverLength) # m # water depth (m) # set width for kinematic wave to cell width for all cells self.Bw = detdrainwidth(self.TopoLdd, self.xl, self.yl) # However, in the main river we have real flow so set the width to the # width of the river self.Bw = pcr.ifthenelse(self.River, self.RiverWidth, self.Bw) # Add rivers to the WaterFrac, but check with waterfrac map and correct self.RiverFrac = pcr.min( 1.0, pcr.ifthenelse( self.River, (self.RiverWidth * self.DCL) / (self.xl * self.yl), 0 ), ) self.WaterFrac = pcr.max(self.WaterFrac - self.RiverFrac, 0) # term for Alpha # Correct slope for extra length of the river in a gridcel riverslopecor = drainlength / self.DCL # pcr.report(riverslopecor,"cor.map") # pcr.report(self.Slope * riverslopecor,"slope.map") self.AlpTermR = pow((self.NRiver / (pcr.sqrt(self.Slope * riverslopecor))), self.Beta) self.riverSlope = self.Slope * riverslopecor # power for Alpha self.AlpPow = (2.0 / 3.0) * self.Beta # initial approximation for Alpha self.AlpTermL = pow((self.N / (pcr.sqrt(self.Slope))), self.Beta) # calculate catchmentsize self.upsize = pcr.catchmenttotal(self.xl * self.yl, self.TopoLdd) self.csize = pcr.areamaximum(self.upsize, self.TopoId) self.wf_multparameters() # determine flow network and upstream nodes self.np_ldd = pcr.pcr2numpy(self.TopoLdd, self.mv) # ldd definitie _ldd = np.array([[7, 8, 9], [4, 5, 6], [1, 2, 3]]) _ldd_us = np.fliplr(np.flipud(_ldd)).flatten() _ldd_us = np.where(_ldd_us==5, 0, _ldd_us) # convert pcr objects to numpy for kinemativ wave surface water np_zeros = pcr.pcr2numpy(self.ZeroMap, self.mv).ravel() np_2d_zeros = pcr.pcr2numpy(self.ZeroMap, self.mv) self.neff = (self.thetaS - self.thetaR) self.f = pcr.abs((self.thetaS - self.thetaR) /self.M) self.DL = detdrainlength(self.TopoLdd, self.xl, self.yl) self.DW = (self.xl * self.yl)/self.DL # width for overland kinematic reservoir self.SW = pcr.ifthenelse(self.River, pcr.max(self.DW - self.RiverWidth,0), self.DW) layer_dtype = np.dtype( [('c', np.float64), ('UStoreLayerDepth', np.float64), ('st', np.float64), ('KsatVerFrac', np.float64), ('ActEvapUstore', np.float64), ('vwc', np.float64), ('vwc_perc', np.float64), ('UStoreLayerThickness', np.float64), ('UStest', np.float64) ]) self.layer =
np.zeros((self.maxLayers,np_zeros.size), dtype=layer_dtype)
numpy.zeros
import csv import logging import os import socket import time from collections import Counter, defaultdict, Iterator import numpy as np import torch import torch.nn.functional as F from pytorch_pretrained_bert import BertTokenizer, BertAdam from sklearn import metrics from torch.nn.modules.loss import _Loss from torchtext.data import BucketIterator from tqdm import tqdm from ensembling.ensemble_helper import load_and_eval from ensembling.secondary_cls import SecondaryCls from neural_bag.modelutils import glorot_param_init from task_A.datasets.RumourEvalDataset_BERT import RumourEval2019Dataset_BERTTriplets from task_A.frameworks.base_framework import Base_Framework from task_A.frameworks.self_att_with_bert_tokenizing import SelfAtt_BertTokenizing_Framework # this is a list of best ensemble predictions # found via find_best_ensemble_greedy method from ensemble_helper.py found_best_ensemble = [ "val_result_F1_0.57948_L_0.6698856112670224_2019-01-28_08:24_pcknot5.npy", "val_result_F1_0.57759_L_0.703442574330578_2019-01-28_00:15_pcbirger.npy", "val_result_F1_0.57623_L_0.6621931040825227_2019-01-28_00:32_pcknot5.npy", "val_result_F1_0.57526_L_0.6638631148319039_2019-01-27_08:12_pcknot4.npy", "val_result_F1_0.57423_L_0.7102468566180802_2019-01-28_17:03_pcknot5.npy", "val_result_F1_0.57371_L_0.6669414722463592_2019-01-27_00:46_pcknot5.npy", "val_result_F1_0.56750_L_0.6898565446440823_2019-01-26_20:31_pcknot4.npy", "val_result_F1_0.56656_L_0.699664715034862_2019-01-27_15:57_pcbirger.npy", "val_result_F1_0.56460_L_0.724339671515812_2019-01-28_15:53_pcbirger.npy", "val_result_F1_0.56433_L_0.663498227135592_2019-01-28_13:27_pcknot2.npy", "val_result_F1_0.56313_L_0.689033422880176_2019-01-26_20:39_pcknot4.npy", "val_result_F1_0.56069_L_0.670826427442727_2019-01-27_02:10_pcknot4.npy", "val_result_F1_0.55930_L_0.6865916204641289_2019-01-27_16:14_pcbirger.npy", "val_result_F1_0.55580_L_0.7056901221467318_2019-01-26_20:24_pcknot4.npy", "val_result_F1_0.55509_L_0.7102856230281916_2019-01-28_00:06_pcbirger.npy", "val_result_F1_0.55504_L_0.6975949840002625_2019-01-27_23:51_pcbirger.npy", "val_result_F1_0.55092_L_0.6955123813847969_2019-01-28_12:34_pcknot4.npy" ] class Ensemble_Framework(Base_Framework): def __init__(self, config: dict): super().__init__(config) # Uncomment this to run logistic regression L2 classifier # self.create_l2_optim(config, torch.nn.CrossEntropyLoss( # weight=torch.Tensor([3.8043243885040283, 1.0, 9.309523582458496, 8.90886116027832]).cuda())) # sys.exit() self.save_treshold = 999 self.modeltype = config["modeltype"] self.tokenizer = BertTokenizer.from_pretrained(self.modeltype, cache_dir="./.BERTcache", do_lower_case=True) # In these experiments I have tried to learn an optimal combination of ensemble predictions via L2 classifier # I have tried various approaches (combining predictions / pre-softmax scores) but reached bad results # As for a space constraints, this experiment did not make it into the paper def create_l2_optim(self, config, lossfunction): files = sorted(os.listdir("saved/ensemble/numpy")) train_prefix = "val_" valid = [f for f in files if f.startswith(train_prefix) and f.endswith("npy")] valid_ensemble_subset = [f"{train_prefix}{s[len('val_'):]}" for s in list(found_best_ensemble)] # result_files = [f for f in valid if "result" in f] result_files = [f for f in valid if "result" in f and f in valid_ensemble_subset] assert len(result_files) == len(valid_ensemble_subset) logging.debug(result_files) label_file = [f for f in valid if "labels" in f][0] labels = np.load(os.path.join("saved/ensemble/numpy", label_file)) result_matrices = [np.load(os.path.join("saved/ensemble/numpy", result_file)) for result_file in result_files] results = np.array(result_matrices) # experiment 2, try softmaxing logits first results = torch.Tensor(results) results = F.softmax(results, -1).numpy() results = torch.Tensor(np.concatenate(results, -1)).cuda() # experiment 1, traing LR on logits # results = np.concatenate(results, -1) # results = torch.Tensor(results).cuda() labels = torch.Tensor(labels).cuda().long() valid = [f for f in files if f.startswith("val_") and f.endswith("npy")] valid_ensemble_subset = [f"val_{s[len('val_'):]}" for s in list(found_best_ensemble)] # result_files = [f for f in valid if "result" in f] result_files = [f for f in valid if "result" in f and f in valid_ensemble_subset] assert len(result_files) == len(valid_ensemble_subset) logging.debug(result_files) label_file = [f for f in valid if "labels" in f][0] dev_labels = np.load(os.path.join("saved/ensemble/numpy", label_file)) dev_results = np.array( [np.load(os.path.join("saved/ensemble/numpy", result_file)) for result_file in result_files]) dev_results = torch.Tensor(dev_results) dev_results = F.softmax(dev_results, -1).numpy() dev_results = torch.Tensor(np.concatenate(dev_results, -1)).cuda() # dev_results = np.concatenate(dev_results, -1) # dev_results = torch.Tensor(dev_results).cuda() dev_labels = torch.Tensor(dev_labels).cuda().long() total_labels = list(dev_labels.cpu().numpy()) ens_best_F1 = 0 ens_best_distribution = None l = torch.nn.CrossEntropyLoss( weight=torch.Tensor([3.8043243885040283, 1.0, 9.309523582458496, 8.90886116027832]).cuda()) for _ in range(1000): F1, distribution = self.run_LR_training(config, dev_labels, dev_results, labels, lossfunction, results, total_labels) logging.info(f"New Best F1: {F1}") if F1 > ens_best_F1: _, _, e_f1 = load_and_eval(l, weights=distribution ) if e_f1 != F1: F1, distribution = self.run_LR_training(config, dev_labels, dev_results, labels, lossfunction, results, total_labels) ens_best_F1 = F1 ens_best_distribution = distribution logging.debug(f"New Best F1: {ens_best_F1}") logging.debug(ens_best_distribution) def run_LR_training(self, config, dev_labels, dev_results, labels, lossfunction, results, total_labels): model = SecondaryCls(config).cuda() glorot_param_init(model) optimizer = BertAdam(filter(lambda p: p.requires_grad, model.parameters()), lr=config["hyperparameters"]["learning_rate"], weight_decay=0.02) best_distribution = None best_F1 = 0 for i in range(1000): pred_logits = model(results) loss = lossfunction(pred_logits, labels) loss.backward() optimizer.step() optimizer.zero_grad() dev_pred_logits = model(dev_results) dev_loss = lossfunction(dev_pred_logits, dev_labels) maxpreds, argmaxpreds = torch.max(F.softmax(dev_pred_logits, -1), dim=1) total_preds = list(argmaxpreds.cpu().numpy()) correct_vec = argmaxpreds == dev_labels total_correct = torch.sum(correct_vec).item() loss, acc = dev_loss, total_correct / results.shape[0] F1 = metrics.f1_score(total_labels, total_preds, average="macro") if F1 > best_F1: best_F1 = F1 best_distribution = F.softmax(model.a) # logging.info( # f"Validation loss|acc|F1|BEST: {loss:.6f}|{acc:.6f}|{F1:.6f} || {best_F1} || ") return best_F1, best_distribution def fit(self, modelfunc): config = self.config fields = RumourEval2019Dataset_BERTTriplets.prepare_fields_for_text() train_data = RumourEval2019Dataset_BERTTriplets(config["train_data"], fields, self.tokenizer, max_length=config["hyperparameters"]["max_length"]) dev_data = RumourEval2019Dataset_BERTTriplets(config["dev_data"], fields, self.tokenizer, max_length=config["hyperparameters"]["max_length"]) test_data = RumourEval2019Dataset_BERTTriplets(config["test_data"], fields, self.tokenizer, max_length=config["hyperparameters"]["max_length"]) # torch.manual_seed(5246727901370826861 & ((1 << 63) - 1)) # torch.manual_seed(40) # device = torch.device("cpu") device = torch.device("cuda:0" if config['cuda'] and torch.cuda.is_available() else "cpu") create_iter = lambda data: BucketIterator(data, sort_key=lambda x: -len(x.text), sort=True, batch_size=config["hyperparameters"]["batch_size"], repeat=False, device=device) dev_iter = create_iter(dev_data) test_iter = create_iter(test_data) logging.info(f"Train examples: {len(train_data.examples)}\nValidation examples: {len(dev_data.examples)}") logging.info(f"Test examples: {len(test_data.examples)}") checkpoints = os.listdir("saved/ensemble/") modelpaths = sorted([f"saved/ensemble/{ch}" for ch in checkpoints if ch.endswith(".pt")]) logging.info(f"Running ensemble of {len(modelpaths)} models") models = [] weights = SelfAtt_BertTokenizing_Framework.get_class_weights(train_data.examples, "stance_label", 4, min_fraction=1) logging.info("class weights") logging.info(f"{str(weights.numpy().tolist())}") lossfunction = torch.nn.CrossEntropyLoss(weight=weights.to(device)) # .to(device)) soft_ensemble = False build_predictions = True check_f1s = False eval_from_npy = False train_logreg = False if train_logreg: start_time = time.time() try: model = self.create_l2_optim(config, lossfunction) except KeyboardInterrupt: logging.info('-' * 120) logging.info('Exit from training early.') finally: logging.info(f'Finished after {(time.time() - start_time) / 60} minutes.') elif eval_from_npy: start_time = time.time() try: load_and_eval(lossfunction) except KeyboardInterrupt: logging.info('-' * 120) logging.info('Exit from training early.') finally: logging.info(f'Finished after {(time.time() - start_time) / 60} minutes.') elif build_predictions: # generate .npy predictions from models start_time = time.time() try: for idx, model_path in enumerate(modelpaths): pretrained_model = torch.load( model_path) model = modelfunc.from_pretrained(self.modeltype, cache_dir="./.BERTcache", state_dict=pretrained_model.state_dict() ).to(device) model.dropout = pretrained_model.dropout logging.info("MODEL: " + model_path) suffix = model_path[model_path.index("F1"):model_path.index(".pt")] # generate prediction scores from train data # train_loss, train_acc, _, train_F1 = self.build_results(idx, model, suffix, # lossfunction, # train_iter, # config, # prefix="train_", ) # generate prediction scores from val data # validation_loss, validation_acc, val_acc_per_level, val_F1 = self.build_results(idx, model, suffix, # lossfunction, # dev_iter, # config, # prefix="val_") # generate prediction scores from test data self.build_results(idx, model, suffix, lossfunction, test_iter, config, prefix="test_", do_not_evaluate=True) # logging.info( # f"Training loss|acc|F1: {train_loss:.6f}|{train_acc:.6f}|{train_F1:.6f}") # logging.info( # f"Validation loss|acc|F1: {validation_loss:.6f}|{validation_acc:.6f}|{val_F1:.6f}") except KeyboardInterrupt: logging.info('-' * 120) logging.info('Exit from training early.') finally: logging.info(f'Finished after {(time.time() - start_time) / 60} minutes.') elif soft_ensemble: start_time = time.time() try: for modelpath in modelpaths: pretrained_model = torch.load( modelpath) model = modelfunc.from_pretrained(self.modeltype, cache_dir="./.BERTcache", state_dict=pretrained_model.state_dict() ).to(device) model.dropout = pretrained_model.dropout models.append(model) validation_loss, validation_acc, val_acc_per_level, val_F1 = self.validate_models(models, lossfunction, dev_iter, config, log_results=False) logging.info( f"Validation loss|acc|F1: {validation_loss:.6f}|{validation_acc:.6f}|{val_F1:.6f}") except KeyboardInterrupt: logging.info('-' * 120) logging.info('Exit from training early.') finally: logging.info(f'Finished after {(time.time() - start_time) / 60} minutes.') elif check_f1s: # pretrained_model = None start_time = time.time() try: for idx, modelpath in enumerate(modelpaths): pretrained_model = torch.load( modelpath) model = modelfunc.from_pretrained(self.modeltype, cache_dir="./.BERTcache", state_dict=pretrained_model.state_dict() ).to(device) model.dropout = pretrained_model.dropout logging.info(f"Model: {checkpoints[idx]}") # self.predict(f"answer_BERTF1_textonly_{idx}.json", model, dev_iter) # train_loss, train_acc, _, train_F1 = self.validate(model, lossfunction, train_iter, config, # log_results=False) validation_loss, validation_acc, val_acc_per_level, val_F1 = self.validate(model, lossfunction, dev_iter, config, log_results=False) # logging.info( # f"Training loss|acc|F1: {train_loss:.6f}|{train_acc:.6f}|{train_F1:.6f}") logging.info( f"Validation loss|acc|F1: {validation_loss:.6f}|{validation_acc:.6f}|{val_F1:.6f}") except KeyboardInterrupt: logging.info('-' * 120) logging.info('Exit from training early.') finally: logging.info(f'Finished after {(time.time() - start_time) / 60} minutes.') def build_results(self, k, model: torch.nn.Module, suffix, lossfunction: _Loss, dev_iter: Iterator, config: dict, prefix="val_", verbose=False, do_not_evaluate=False): if not os.path.exists("saved/ensemble/numpy/"): os.makedirs("saved/ensemble/numpy/") train_flag = model.training model.eval() total_examples = len(dev_iter.data()) results = np.zeros((total_examples, 4)) total_batches = len(dev_iter.data()) // dev_iter.batch_size if verbose: pbar = tqdm(total=total_batches) examples_so_far = 0 dev_loss = 0 total_correct = 0 total_correct_per_level = Counter() total_per_level = defaultdict(lambda: 0) total_labels = [] total_preds = [] ids = [] for idx, batch in enumerate(dev_iter): pred_logits = model(batch) numpy_logits = pred_logits.cpu().detach().numpy() # bsz x classes step_size = numpy_logits.shape[0] write_index = idx * dev_iter.batch_size results[write_index: write_index + step_size] = numpy_logits ids += batch.tweet_id if not do_not_evaluate: loss = lossfunction(pred_logits, batch.stance_label) branch_levels = [id.split(".", 1)[-1] for id in batch.branch_id] for branch_depth in branch_levels: total_per_level[branch_depth] += 1 correct, correct_per_level = self.calculate_correct(pred_logits, batch.stance_label, levels=branch_levels) total_correct += correct total_correct_per_level += correct_per_level examples_so_far += len(batch.stance_label) dev_loss += loss.item() maxpreds, argmaxpreds = torch.max(F.softmax(pred_logits, -1), dim=1) total_preds += list(argmaxpreds.cpu().numpy()) total_labels += list(batch.stance_label.cpu().numpy()) if verbose: pbar.set_description( f"dev loss: {dev_loss / (idx + 1):.4f}, dev acc: {total_correct / examples_so_far:.4f}") pbar.update(1) if not do_not_evaluate: loss, acc = dev_loss / total_batches, total_correct / examples_so_far total_acc_per_level = {depth: total_correct_per_level.get(depth, 0) / total for depth, total in total_per_level.items()} F1 = metrics.f1_score(total_labels, total_preds, average="macro")
np.save(f"saved/ensemble/numpy/{prefix}result_{suffix}.npy", results)
numpy.save
from unittest import TestCase from tempfile import TemporaryDirectory from pathlib import Path from giant.camera_models import PinholeModel, OwenModel, BrownModel, OpenCVModel, save, load import numpy as np import giant.rotations as at import lxml.etree as etree class TestPinholeModel(TestCase): def setUp(self): self.Class = PinholeModel def test___init__(self): model = self.Class(intrinsic_matrix=np.array([[1, 2, 3], [4, 5, 6]]), focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], estimation_parameters='basic intrinsic', a1=1, a2=2, a3=3) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 2, 3], [4, 5, 6]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['basic intrinsic']) self.assertEqual(model.a1, 1) self.assertEqual(model.a2, 2) self.assertEqual(model.a3, 3) model = self.Class(kx=1, ky=2, px=4, py=5, focal_length=10.5, field_of_view=20.5, use_a_priori=True, misalignment=[np.zeros(3), np.ones(3)], estimation_parameters=['focal_length', 'px']) np.testing.assert_array_equal(model.intrinsic_matrix, [[1, 0, 4], [0, 2, 5]]) self.assertEqual(model.focal_length, 10.5) self.assertEqual(model.field_of_view, 20.5) self.assertTrue(model.use_a_priori) self.assertEqual(model.estimation_parameters, ['focal_length', 'px']) def test_estimation_parameters(self): model = self.Class() model.estimation_parameters = 'kx' self.assertEqual(model.estimation_parameters, ['kx']) model.estimate_multiple_misalignments = False model.estimation_parameters = ['px', 'py', 'Multiple misalignments'] self.assertEqual(model.estimation_parameters, ['px', 'py', 'multiple misalignments']) self.assertTrue(model.estimate_multiple_misalignments) def test_kx(self): model = self.Class(intrinsic_matrix=np.array([[1, 0, 0], [0, 0, 0]])) self.assertEqual(model.kx, 1) model.kx = 100 self.assertEqual(model.kx, 100) self.assertEqual(model.intrinsic_matrix[0, 0], 100) def test_ky(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 3, 0]])) self.assertEqual(model.ky, 3) model.ky = 100 self.assertEqual(model.ky, 100) self.assertEqual(model.intrinsic_matrix[1, 1], 100) def test_px(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 20], [0, 3, 0]])) self.assertEqual(model.px, 20) model.px = 100 self.assertEqual(model.px, 100) self.assertEqual(model.intrinsic_matrix[0, 2], 100) def test_py(self): model = self.Class(intrinsic_matrix=np.array([[0, 0, 0], [0, 0, 10]])) self.assertEqual(model.py, 10) model.py = 100 self.assertEqual(model.py, 100) self.assertEqual(model.intrinsic_matrix[1, 2], 100) def test_a1(self): model = self.Class(temperature_coefficients=np.array([10, 0, 0])) self.assertEqual(model.a1, 10) model.a1 = 100 self.assertEqual(model.a1, 100) self.assertEqual(model.temperature_coefficients[0], 100) def test_a2(self): model = self.Class(temperature_coefficients=np.array([0, 10, 0])) self.assertEqual(model.a2, 10) model.a2 = 100 self.assertEqual(model.a2, 100) self.assertEqual(model.temperature_coefficients[1], 100) def test_a3(self): model = self.Class(temperature_coefficients=np.array([0, 0, 10])) self.assertEqual(model.a3, 10) model.a3 = 100 self.assertEqual(model.a3, 100) self.assertEqual(model.temperature_coefficients[2], 100) def test_intrinsic_matrix_inv(self): model = self.Class(kx=5, ky=10, px=100, py=-5) np.testing.assert_array_almost_equal(model.intrinsic_matrix @ np.vstack([model.intrinsic_matrix_inv, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) np.testing.assert_array_almost_equal(model.intrinsic_matrix_inv @ np.vstack([model.intrinsic_matrix, [0, 0, 1]]), [[1, 0, 0], [0, 1, 0]]) def test_get_temperature_scale(self): model = self.Class(temperature_coefficients=[1, 2, 3.]) self.assertEqual(model.get_temperature_scale(1), 7) np.testing.assert_array_equal(model.get_temperature_scale([1, 2]), [7, 35]) np.testing.assert_array_equal(model.get_temperature_scale([-1, 2.]), [-1, 35]) def test_apply_distortion(self): inputs = [[0, 0], [1, 0], [-1, 0], [1.5, 0], [-1.5, 0], [[1.5], [0]], [[1.5, -1], [0, 0]], [0, 1], [0, -1], [0, 1.5], [0, -1.5], [[0], [1.5]], [[0, 0], [1.5, -1]], [1, 1]] model = self.Class() for inp in inputs: gnom_dist = model.apply_distortion(np.array(inp)) np.testing.assert_array_almost_equal(gnom_dist, inp) def test_get_projections(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, a1=1, a2=2, a3=3) with self.subTest(misalignment=None): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=1): for point in points: gnom, _, pix = model.get_projections(point, temperature=1) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(1) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=-10.5): for point in points: gnom, _, pix = model.get_projections(point, temperature=-10.5) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(-10.5) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(gnom, gnom_true) np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[0] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[1] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point gnom, _, pix = model.get_projections(point) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() point_new = rot_mat @ point gnom, _, pix = model.get_projections(point, image=0) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) gnom, _, pix = model.get_projections(point, image=1) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(gnom, gnom_true) np.testing.assert_array_almost_equal(pix, pix_true) def test_project_onto_image(self): points = [[0, 0, 1], [-0.1, 0.2, 2.2], [[-0.1], [0.2], [2.2]], [[-0.1, 0], [0.2, 0], [2.2, 1]]] model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, a1=-1e-3, a2=1e-6, a3=-7e-8) with self.subTest(misalignment=None): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=1): for point in points: pix = model.project_onto_image(point, temperature=1) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(1) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) with self.subTest(temperature=-10.5): for point in points: pix = model.project_onto_image(point, temperature=-10.5) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true *= model.get_temperature_scale(-10.5) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, 0, np.pi]) with self.subTest(misalignment=[0, 0, np.pi]): for point in points: pix = model.project_onto_image(point) gnom_true = -model.focal_length * np.array(point[:2]) / point[2] pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[np.pi, 0, 0]) with self.subTest(misalignment=[np.pi, 0, 0]): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[0] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[0, np.pi, 0]) with self.subTest(misalignment=[0, np.pi, 0]): for point in points: pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point[:2]) / point[2] gnom_true[1] *= -1 pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[1, 0.2, 0.3]) with self.subTest(misalignment=[1, 0.2, 0.3]): rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() for point in points: point_new = rot_mat @ point pix = model.project_onto_image(point) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T np.testing.assert_array_almost_equal(pix, pix_true) model = self.Class(focal_length=8.7, kx=500, ky=500.5, px=1500, py=1500.5, misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]) model.estimate_multiple_misalignments = True with self.subTest(misalignment=[[1, 0.2, 0.3], [0, 0, np.pi]]): for point in points: rot_mat = at.rotvec_to_rotmat([1, 0.2, 0.3]).squeeze() point_new = rot_mat @ point pix = model.project_onto_image(point, image=0) gnom_true = model.focal_length * np.array(point_new[:2]) / np.array(point_new[2]) pix_true = (np.matmul(model.intrinsic_matrix[:, :2], gnom_true).T + model.intrinsic_matrix[:, 2]).T
np.testing.assert_array_almost_equal(pix, pix_true)
numpy.testing.assert_array_almost_equal
############################################################################### # apogee.spec.stack: stack APOGEE spectra in various ways ############################################################################### import numpy _BIGERR= 10.**7. def median(spec,mask=None): """ NAME: median PURPOSE: median stack a set of spectra INPUT: spec - array of spectra (nspec,nwave) mask= (None) if set, use this mask (1/True for inclusion) OUTPUT: median spectrum HISTORY: 2015-01-26 - Written - Bovy (IAS@KITP) """ if mask is None: mask= True-
numpy.isnan(spec)
numpy.isnan
# Copyright (c) 2021 Evalf # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. '''Expression parser version 2 and namespace. The syntax of an expression is as follows: * **Integers** or **decimal numbers** are denoted in the usual way. Examples: ``1``, ``1.2``, ``.2``. * **Variables** are denoted with a string of characters. The first character must not be a digit. Unlike Python variables, underscores are not allowed, as they have a special meaning. If the variable is an array with one or more axes, all those axes should be labeled with a latin character, the index, and appended to the variable with an underscore. For example an array ``a`` with two axes can be denoted with ``a_ij``. Optionally, a single numeral may be used to select an item at the concerning axis. Example: in ``a_i0`` the first axis of ``a`` is labeled ``i`` and the first element of the second axis is selected. If the same index occurs twice, the trace is taken along the concerning axes. Example: the trace of the first and third axes of ``b`` is denoted by ``b_iji``. It is invalid to specify an index more than twice. * A term, the **product** of two or more arrays or scalars, is denoted by space-separated variables, constants or compound expressions. Example: ``a b c`` denotes the product of the scalars ``a``, ``b`` and ``c``. A term may start with a number, but a number is not allowed in other parts of the term. Example: ``2 a`` denotes two times ``a``; ``2 2 a`` and ``2 a 2``` are invalid. When two arrays in a term have the same index, this index is summed. Example: ``a_i b_i`` denotes the inner product of ``a`` and ``b`` and ``A_ij b_j``` a matrix vector product. It is not allowed to use an index more than twice in a term. * The operator ``/`` denotes a **fraction**. Example: in ``a b / c d`` ``a b`` is the numerator and ``c d`` the denominator. Both the numerator and the denominator may start with a number. Example: ``2 a / 3 b``. The denominator must be a scalar. Example: ``2 / a_i b_i`` is valid, but ``2 a_i / b_i`` is not. .. warning:: This syntax is different from the Python syntax. In Python ``a*b / c*d`` is mathematically equivalent to ``a*b*d/c``. * The operators ``+`` and ``-`` denote **add** and **subtract**. Both operators should be surrounded by whitespace, e.g. ``a + b``. Both operands should have the same shape. Example: ``a_ij + b_i c_j`` is a valid, provided that the lengths of the axes with the same indices match, but ``a_ij + b_i`` is invalid. At the beginning of an expression or a compound ``-`` may be used to negate the following term. Example: in ``-a b + c`` the term ``a b`` is negated before adding ``c``. It is not allowed to negate other terms: ``a + -b`` is invalid, so is ``a -b``. * An expression surrounded by parentheses is a **compound expression** and can be used as single entity in a term. Example: ``(a_i + b_i) c_i`` denotes the inner product of ``a_i + b_i`` with ``c_i``. * **Exponentiation** is denoted by a ``^``, where the left and right operands should be a number, variable or compound expression and the right operand should be a scalar. Example: ``a^2`` denotes the square of ``a``, ``a^-2`` denotes ``a`` to the power ``-2`` and ``a^(1 / 2)`` the square root of ``a``. Note that the power has precedence over a unary minus: ``-2^2`` is interpreted as ``-(2^2)``. * An expression surrounded by square brackets or curly braces denotes the **jump** or **mean**, respectively, of the enclosed expression. Example: ``[a_i]`` denotes the jump of ``a_i`` and ``{a_i + b_i}`` denotes the mean of ``a_i + b_i``. * A **function call** is denoted by a name — following the same rules as for a variable name — optionally followed by ``_`` and indices for **generated axes**, directly followed by the left parenthesis ``(``, without a space. A function takes a single argument with any shape and returns an array with the same shape plus an axis per index listed after the underscore. The function is applied pointwise to the argument. If an index for a generated axis is also present in the argument, the trace is taken along the concerning axes after the function call. .. _`Einstein Summation Convection`: https://en.wikipedia.org/wiki/Einstein_notation ''' import typing if typing.TYPE_CHECKING: # pragma: nocover from typing_extensions import Protocol else: class _Protocol(type): def __getitem__(cls, item): return cls class Protocol(metaclass=_Protocol): pass from typing import Callable, FrozenSet, Generic, Iterable, Iterator, List, Mapping, Optional, Sequence, Set, Tuple, TypeVar, Union import functools, numpy from . import function T = TypeVar('T') class _Substring: def __init__(self, base: str, start: Optional[int] = None, stop: Optional[int] = None) -> None: self.base = base self.start = 0 if start is None else start self.stop = len(base) if stop is None else stop assert 0 <= self.start <= self.stop <= len(self.base) def __len__(self) -> int: return self.stop - self.start def __str__(self) -> str: return self.base[self.start:self.stop] def __iter__(self) -> Iterator['_Substring']: for i in range(self.start, self.stop): yield _Substring(self.base, i, i + 1) def __getitem__(self, item: Union[int, slice]) -> '_Substring': # Since this is for internal use, we use asserts instead of proper # exceptions. assert isinstance(item, (int, slice)) if isinstance(item, int): assert 0 <= item < len(self) return _Substring(self.base, self.start + item, self.start + item + 1) else: start, stop, stride = item.indices(len(self)) assert stride == 1 return _Substring(self.base, self.start + start, self.start + stop) def __contains__(self, item: str) -> bool: return self._find(_match(item))[0] >= 0 def trim(self) -> '_Substring': return self.trim_end().trim_start() def trim_start(self) -> '_Substring': start = self.start while start < self.stop and self.base[start] == ' ': start += 1 return _Substring(self.base, start, self.stop) def trim_end(self) -> '_Substring': stop = self.stop while stop > self.start and self.base[stop - 1] == ' ': stop -= 1 return _Substring(self.base, self.start, stop) def starts_with(self, prefix: str) -> bool: return str(self).startswith(prefix) def ends_with(self, suffix: str) -> bool: return str(self).endswith(suffix) def strip_prefix(self, prefix: str) -> Optional['_Substring']: return self[len(prefix):] if self.starts_with(prefix) else None def strip_suffix(self, suffix: str) -> Optional['_Substring']: return self[:len(self)-len(suffix)] if self.ends_with(suffix) else None def _find(self, *matchers: Callable[[str], int]) -> Tuple[int, int, int]: # Returns the index of the first successful matcher, the position of the # match and the length of the match, or `-1`, the length of the substring # and `0` if nothing matches. level = 0 for offset, ch in enumerate(self.base[self.start:self.stop]): if ch in (')', ']', '}', '>'): level -= 1 if level == 0: tail = self.base[self.start+offset:self.stop] for imatcher, matcher in enumerate(matchers): length = matcher(tail) if length: return imatcher, offset, length if ch in ('(', '[', '{', '<'): level += 1 return -1, len(self), 0 def split(self, *matchers: Callable[[str], int]) -> Iterator['_Substring']: # Split the substring at every non-overlapping match. n = 1 while n: _, i, n = self._find(*matchers) yield self[:i] self = self[i+n:] def isplit(self, *matchers: Callable[[str], int], first: int) -> Iterator[Tuple[int, '_Substring']]: # Split the substring at every non-overlapping match and yield both the # index of the successful matcher and the (subsequently splitted) substring # to the *right* of the match. The item to the left of the first match, or # the entire substring if nothing matches, gets `first` as matcher index. imatcher = first n = 1 while n: imatcher_next, i, n = self._find(*matchers) yield imatcher, self[:i] self = self[i+n:] imatcher = imatcher_next def partition(self, *matchers: Callable[[str], int]) -> Tuple['_Substring', '_Substring', '_Substring']: _, i, n = self._find(*matchers) return self[:i], self[i:i+n], self[i+n:] def partition_scope(self) -> Tuple['_Substring', '_Substring', '_Substring', '_Substring', '_Substring']: _, i, n = self._find(lambda tail: tail[0] in ('(', '[', '{', '<')) _, j, n = self[i:]._find(lambda tail: tail[0] in (')', ']', '}', '>')) j += i return self[:i], self[i:i+1], self[i+1:j], self[j:j+1], self[j+1:] class ExpressionSyntaxError(ValueError): def __init__(self, message: str, caret: Optional['_Substring'] = None, tilde: Optional['_Substring'] = None) -> None: expression, = {s.base for s in (caret, tilde) if s is not None} markers = ' '*len(expression) for marker, s in ('^', caret), ('~', tilde): if s is not None: n = max(1, len(s)) markers = markers[:s.start] + marker * n + markers[s.start+n:] markers = markers.rstrip() super().__init__('\n'.join((message, expression, markers))) class _InvalidDimension: def __init__(self, __actual_ndim: int) -> None: self.actual_ndim = __actual_ndim _Shape = Tuple[int, ...] class _ArrayOps(Protocol[T]): def from_int(self, __value: int) -> T: ... def from_float(self, __value: float) -> T: ... def get_variable(self, __name: str, __ndim: int) -> Optional[Union[Tuple[T, _Shape], _InvalidDimension]]: ... def call(self, __name: str, __ngenerates: int, arg: T) -> Optional[Union[Tuple[T, _Shape], _InvalidDimension]]: ... def get_element(self, __array: T, __axis: int, __index: int) -> T: ... def transpose(self, __array: T, __axes: Tuple[int, ...]) -> T: ... def trace(self, __array: T, __axis1: int, __axis2: int) -> T: ... def scope(self, __array: T) -> T: ... def mean(self, __array: T) -> T: ... def jump(self, __array: T) -> T: ... def add(self, *args: Tuple[bool, T]) -> T: ... def multiply(self, *args: T) -> T: ... def divide(self, __numerator: T, __denominator: T) -> T: ... def power(self, __base: T, __exponent: T) -> T: ... _ORDINALS = 'zeroth', 'first', 'second', 'third', 'fourth', 'fifth' def _nth(n: int) -> str: return _ORDINALS[n] if 0 <= n < len(_ORDINALS) else '{}th'.format(n) def _sp(n: int, s: str, p: str) -> str: return '{} {}'.format(n, s if n == 1 else p) def _match(s: str) -> Callable[[str], int]: def matcher(tail: str) -> int: return len(s) if tail.startswith(s) else 0 return matcher def _match_spaces(tail: str) -> int: return len(tail) - len(tail.lstrip(' ')) class _Parser(Generic[T]): def __init__(self, __array_ops: _ArrayOps[T]) -> None: self.array = __array_ops def parse_expression(self, s: _Substring) -> Tuple[T, _Shape, str, FrozenSet[str]]: s_tail = s # Parse optional leading minus. The leading minus applies to the entire # term, not to the first number, if any, e.g. `-2^2` is interpreted as # `-(2^2)`. See also # https://en.wikipedia.org/wiki/Order_of_operations#Unary_minus_sign negate = False s_try_strip = s_tail.trim_start().strip_prefix('-') if s_try_strip: s_tail = s_try_strip negate = True # Parse terms separated by ` + ` or ` - `. If the expression is empty, # `split` yields once and `self.parse_fraction` will raise an exception. unaligned = tuple((imatcher == 1, s_term, self.parse_fraction(s_term)) for imatcher, s_term in s_tail.isplit(_match(' + '), _match(' - '), first=1 if negate else 0)) # Check that all terms have the same indices and transpose all but the # first array such that all terms have the same order of indices. negate, s_first, (term, shape, indices, summed_indices) = unaligned[0] if not negate and len(unaligned) == 1: # There is only one term without unary minus. Return the term as is. return term, shape, indices, summed_indices aligned = [(negate, term)] for iterm, (negate, s_term, (term, term_shape, term_indices, term_summed_indices)) in enumerate(unaligned[1:], 2): if term_indices != indices: # The indices of the current term don't match the indices of the first # term. Check if there are no missing indices and transpose. for index in sorted(set(indices) - set(term_indices)): raise ExpressionSyntaxError('Index {} of the first term [^] is missing in the {} term [~].'.format(index, _nth(iterm)), caret=s_first.trim(), tilde=s_term.trim()) for index in sorted(set(term_indices) - set(indices)): raise ExpressionSyntaxError('Index {} of the {} term [~] is missing in the first term [^].'.format(index, _nth(iterm)), caret=s_first.trim(), tilde=s_term.trim()) axes = tuple(map(term_indices.index, indices)) term = self.array.transpose(term, axes) term_shape = tuple(map(term_shape.__getitem__, axes)) # Verify the shape of the current (transposed) term with the first # term. for n, m, index in zip(shape, term_shape, indices): if n != m: raise ExpressionSyntaxError('Index {} has length {} in the first term [^] but length {} in the {} term [~].'.format(index, n, m, _nth(iterm)), caret=s_first.trim(), tilde=s_term.trim()) aligned.append((negate, term)) summed_indices |= term_summed_indices result = self.array.add(*aligned) return result, shape, indices, summed_indices def parse_fraction(self, s: _Substring) -> Tuple[T, _Shape, str, FrozenSet[str]]: s_parts = tuple(s.split(_match(' / '))) if len(s_parts) > 2: raise ExpressionSyntaxError('Repeated fractions are not allowed. Use parentheses if necessary.', s.trim()) # Parse the numerator. numerator, shape, indices, numerator_summed_indices = self.parse_term(s_parts[0]) if len(s_parts) == 1: # There is no denominator. Return the numerator as is. return numerator, shape, indices, numerator_summed_indices # Parse the denominator. denominator, denominator_shape, denominator_indices, denominator_summed_indices = self.parse_term(s_parts[1]) # Verify and merge indices. The denominator must have dimension zero. # Summed indices of the numerator and denominator are treated as if the # numerator and denominator are multiplied. if denominator_indices: raise ExpressionSyntaxError('The denominator must have dimension zero.', s_parts[1].trim()) summed_indices = self._merge_summed_indices_same_term(s.trim(), numerator_summed_indices, denominator_summed_indices) self._verify_indices_summed(s.trim(), indices, summed_indices) return self.array.divide(numerator, denominator), shape, indices, summed_indices def parse_term(self, s: _Substring) -> Tuple[T, _Shape, str, FrozenSet[str]]: s_trimmed = s.trim() if not s_trimmed: # If the string is empty, let `parse_power` raise an exception. We # don't trim the string, because we want to highlight the entire part of # the expression that we are currently parsing. return self.parse_power(s, allow_number=True) # Split the substring at spaces and parse the items using `parse_power`. # The first items is allowed to be a number, the remainder is not. parts = tuple(self.parse_power(s_part, allow_number=i==0) for i, s_part in enumerate(s_trimmed.split(_match_spaces))) if len(parts) == 1: # There is only one item in the term. Return this item as is. return parts[0] items, shapes, indices, summed_indices = zip(*parts) shape = tuple(n for shape in shapes for n in shape) # Sum duplicate indices, e.g. index `i` in `a_ij b_ik`. return self._trace(s_trimmed, self.array.multiply(*items), shape, ''.join(indices), *summed_indices) def parse_power(self, s: _Substring, allow_number: bool) -> Tuple[T, _Shape, str, FrozenSet[str]]: s_parts = tuple(s.trim().split(_match('^'))) if len(s_parts) > 2: raise ExpressionSyntaxError('Repeated powers are not allowed. Use parentheses if necessary.', s.trim()) if len(s_parts) == 2: if s_parts[0].ends_with(' '): raise ExpressionSyntaxError('Unexpected whitespace before `^`.', s_parts[0][-1:]) if s_parts[1].starts_with(' '): raise ExpressionSyntaxError('Unexpected whitespace after `^`.', s_parts[1][:1]) # Parse the base. base, shape, indices, base_summed_indices = self.parse_item(s_parts[0], allow_number=allow_number) if len(s_parts) == 1: # There's no exponent. Return the base as is. return base, shape, indices, base_summed_indices # Parse the exponent. This should either be a scoped expression, or a signed int. s_head, s_open, s_scope, s_close, s_tail = s_parts[1].partition_scope() if not s_head and not s_tail and str(s_open) == '(' and str(s_close) == ')': exponent, exponent_shape, exponent_indices, exponent_summed_indices = self.parse_expression(s_scope) elif s_parts[1] and ('0' <= str(s_parts[1][0]) <= '9' or str(s_parts[1][0]) == '-'): exponent, exponent_shape, exponent_indices, exponent_summed_indices = self.parse_signed_int(s_parts[1]) else: raise ExpressionSyntaxError('Expected an int or scoped expression.', s_parts[1]) # Verify and merge indices. The exponent must have dimension zero. Summed # indices of the base and exponent are treated as if base and exponent are # multiplied. if exponent_indices: raise ExpressionSyntaxError('The exponent must have dimension zero.', s_parts[1]) summed_indices = self._merge_summed_indices_same_term(s.trim(), base_summed_indices, exponent_summed_indices) self._verify_indices_summed(s.trim(), indices, summed_indices) return self.array.power(base, exponent), shape, indices, summed_indices def parse_item(self, s: _Substring, allow_number: bool) -> Tuple[T, _Shape, str, FrozenSet[str]]: s_trimmed = s.trim() if allow_number: msg = 'Expected a number, variable, scope, mean, jump or function call.' else: msg = 'Expected a variable, scope, mean, jump or function call.' if any(op in s_trimmed for op in ('+', '-', '/')): msg += ' Hint: the operators `+`, `-` and `/` must be surrounded by spaces.' error = ExpressionSyntaxError(msg, s_trimmed or s) if not s_trimmed: raise error # If the expression starts with a digit or a dot, we assume this is a # number. We try to parse the expression as an int or a float, in that # order. Otherwise we raise `error`. if '0' <= str(s_trimmed[0]) <= '9' or str(s_trimmed[0]) == '.': if not allow_number: raise ExpressionSyntaxError('Numbers are only allowed at the start of a term.', s_trimmed) for parse in self.parse_unsigned_int, self.parse_unsigned_float: try: return parse(s_trimmed) except ExpressionSyntaxError: pass raise error # If the expression contains a scope, partition it and verify that opening # and closing parentheses match. If there is no scope, `head` will be the # entire expression and `scope` will be empty. s_head, s_open, s_scope, s_close, s_tail = s_trimmed.partition_scope() parentheses = {'(': ')', '[': ']', '{': '}', '<': '>'} if s_open: if not s_close: raise ExpressionSyntaxError("Unclosed `{}`.".format(s_open), caret=s_open, tilde=s_close) if parentheses[str(s_open)] != str(s_close): raise ExpressionSyntaxError("Parenthesis `{}` closed by `{}`.".format(s_open, s_close), caret=s_open, tilde=s_close) # Under no circumstances we allow anything after a scope. if s_tail: raise ExpressionSyntaxError('Unexpected symbols after scope.', s_tail) # If there are symbols (before an optional scope), assume this is a variable # (no scope) or a function (with scope). if s_head: s_name, s_underscore, s_generated_indices = s_head.partition(_match('_')) if not s_open: # There is no scope. Parse as a variable. indices = '' summed_indices = frozenset() result = self.array.get_variable(str(s_name), len(s_generated_indices)) if result is None: raise ExpressionSyntaxError('No such variable: `{}`.'.format(s_name), s_name) elif isinstance(result, _InvalidDimension): raise ExpressionSyntaxError('Expected {} for variable `{}` but got {}.'.format(_sp(result.actual_ndim, 'index', 'indices'), s_name, len(s_generated_indices)), s_trimmed) array, shape = result assert len(shape) == len(s_generated_indices), 'array backend returned an array with incorrect dimension' elif str(s_open) == '(': # Parse the argument and call the function. arg, shape, indices, summed_indices = self.parse_expression(s_scope) result = self.array.call(str(s_name), len(s_generated_indices), arg) if result is None: raise ExpressionSyntaxError('No such function: `{}`.'.format(s_name), s_name) elif isinstance(result, _InvalidDimension): raise ExpressionSyntaxError('Expected {} for axes generated by function `{}` but got {}.'.format(_sp(result.actual_ndim, 'index', 'indices'), s_name, len(s_generated_indices)), s_trimmed) array, generated_shape = result assert len(generated_shape) == len(s_generated_indices), 'array backend returned an array with incorrect dimension' shape = (*shape, *generated_shape) else: raise error # Process generated indices. If an index is numeric, get the element at # the index, otherwise add the index to result indices. for s_index in s_generated_indices: index = str(s_index) if '0' <= index <= '9': index = int(index) axis = len(indices) if index >= shape[axis]: raise ExpressionSyntaxError('Index of axis with length {} out of range.'.format(shape[axis]), s_index) array = self.array.get_element(array, axis, index) shape = shape[:axis] + shape[axis+1:] elif 'a' <= index <= 'z': indices += str(s_index) else: raise ExpressionSyntaxError('Symbol `{}` is not allowed as index.'.format(s_index), s_index) # Verify indices and sum indices that occur twice. return self._trace(s_trimmed, array, shape, indices, summed_indices) elif str(s_open) in ('(', '[', '{'): array, shape, indices, summed_indices = self.parse_expression(s_scope) array = {'(': self.array.scope, '{': self.array.mean, '[': self.array.jump}[str(s_open)](array) return array, shape, indices, summed_indices else: raise error def parse_signed_int(self, s: _Substring) -> Tuple[T, _Shape, str, FrozenSet[str]]: try: value = int(str(s.trim())) except ValueError: raise ExpressionSyntaxError('Expected an int.', s.trim() or s) from None return self.array.from_int(value), (), '', frozenset(()) def parse_unsigned_int(self, s: _Substring) -> Tuple[T, _Shape, str, FrozenSet[str]]: try: value = int(str(s.trim())) except ValueError: raise ExpressionSyntaxError('Expected an int.', s.trim() or s) from None if value < 0: raise ExpressionSyntaxError('Expected an int.', s.trim() or s) return self.array.from_int(value), (), '', frozenset(()) def parse_unsigned_float(self, s: _Substring) -> Tuple[T, _Shape, str, FrozenSet[str]]: try: value = float(str(s.trim())) except ValueError: raise ExpressionSyntaxError('Expected a float.', s.trim() or s) from None if value < 0: raise ExpressionSyntaxError('Expected a float.', s.trim() or s) return self.array.from_float(value), (), '', frozenset(()) def _verify_indices_summed(self, s: _Substring, indices: str, summed: FrozenSet[str]) -> None: # Check that none of `indices` occur in `summed`. Note that all `indices` # are assumed to be unique. If this is not the case, duplicates will # silently be ignored. for index in indices: if index in summed: raise ExpressionSyntaxError('Index {} occurs more than twice.'.format(index), s) def _merge_summed_indices_same_term(self, s: _Substring, *parts: FrozenSet[str]) -> FrozenSet[str]: # Merge `items` into a single set of indices and check that we don't have # duplicates. merged = set() # type: Set[str] for part in parts: for index in sorted(merged & part): raise ExpressionSyntaxError('Index {} occurs more than twice.'.format(index), s) merged |= part return frozenset(merged) def _trace(self, s: _Substring, array: T, shape: _Shape, indices: str, *summed_indices_parts: FrozenSet[str]) -> Tuple[T, _Shape, str, FrozenSet[str]]: # Sum duplicate indices. summed_indices = set(self._merge_summed_indices_same_term(s, *summed_indices_parts)) j = 0 while j < len(indices): index = indices[j] i = indices.index(index) if index in summed_indices: raise ExpressionSyntaxError('Index {} occurs more than twice.'.format(index), s) elif i < j: if shape[i] != shape[j]: raise ExpressionSyntaxError('Index {} is assigned to axes with different lengths: {} and {}.'.format(index, shape[i], shape[j]), s) array = self.array.trace(array, i, j) shape = shape[:i] + shape[i+1:j] + shape[j+1:] indices = indices[:i] + indices[i+1:j] + indices[j+1:] summed_indices.add(index) j -= 1 else: j += 1 return array, shape, indices, frozenset(summed_indices) class Namespace: '''Namespace for :class:`~nutils.function.Array` objects supporting assignments with tensor expressions. The :class:`Namespace` object is used to store :class:`~nutils.function.Array` objects. >>> from nutils import function >>> ns = Namespace() >>> ns.A = function.zeros([2, 3]) >>> ns.x = function.zeros([3]) >>> ns.c = 2 In addition to the assignment of :class:`~nutils.function.Array` objects, it is also possible to specify an array using a tensor expression string — see :mod:`nutils.expression_v2` for the syntax. All attributes defined in this namespace are available as variables in the expression. If the array defined by the expression has one or more dimensions the indices of the axes should be appended to the attribute name. Example: >>> ns.cAx_i = 'c A_ij x_j' It is also possible to simply evaluate an expression without storing its value in the namespace using ``expression @ ns``: >>> '2 c' @ ns Array<> >>> 'c A_ij x_j' @ ns Array<2> >>> 'A_ij' @ ns # indices are ordered alphabetically Array<2,3> Note that evaluating an expression with an incompatible length raises an exception: >>> 'A_ij + A_ji' @ ns Traceback (most recent call last): ... nutils.expression_v2.ExpressionSyntaxError: Index i has length 2 in the first term [^] but length 3 in the second term [~]. A_ij + A_ji ^^^^ ~~~~ When evaluating an expression through this namespace the following functions are available: ``opposite``, ``sin``, ``cos``, ``tan``, ``sinh``, ``cosh``, ``tanh``, ``arcsin``, ``arccos``, ``arctanh``, ``exp``, ``abs``, ``ln``, ``log``, ``log2``, ``log10``, ``sqrt``, ``sign``, ``conj``, ``real`` and ``imag``. Additional pointwise functions can be assigned to the namespace similar to variables: >>> ns.sqr = lambda u: u**2 >>> 'sqr(x_i)' @ ns # same as 'x_i^2' Array<3> ''' def __init__(self) -> None: self.opposite = function.opposite self.sin = numpy.sin self.cos = numpy.cos self.tan = numpy.tan self.sinh = numpy.sinh self.cosh = numpy.cosh self.tanh = numpy.tanh self.arcsin = numpy.arcsin self.arccos = numpy.arccos self.arctan = numpy.arctan self.arctanh = numpy.arctanh self.exp = numpy.exp self.abs = numpy.abs self.ln = numpy.log self.log = numpy.log self.log2 = numpy.log2 self.log10 = numpy.log10 self.sqrt = numpy.sqrt self.sign = numpy.sign self.conj = numpy.conj self.real = numpy.real self.imag = numpy.imag def __setattr__(self, attr: str, value: Union[function.Array, str]) -> None: name, underscore, indices = attr.partition('_') if isinstance(value, (int, float, complex, numpy.ndarray)): value = function.Array.cast(value) if hasattr(value, '__array_ufunc__') and hasattr(value, '__array_function__'): if underscore: raise AttributeError('Cannot assign an array to an attribute with an underscore.') super().__setattr__(name, value) elif isinstance(value, str): if not all('a' <= index <= 'z' for index in indices): raise AttributeError('Only lower case latin characters are allowed as indices.') if len(set(indices)) != len(indices): raise AttributeError('All indices must be unique.') ops = _FunctionArrayOps(self) array, shape, expression_indices, summed = _Parser(ops).parse_expression(_Substring(value)) assert numpy.shape(array) == shape if expression_indices != indices: for index in sorted(set(indices) - set(expression_indices)): raise AttributeError('Index {} of the namespace attribute is missing in the expression.'.format(index)) for index in sorted(set(expression_indices) - set(indices)): raise AttributeError('Index {} of the expression is missing in the namespace attribute.'.format(index)) array = ops.align(array, expression_indices, indices) super().__setattr__(name, array) elif callable(value): if underscore: raise AttributeError('Cannot assign a function to an attribute with an underscore.') super().__setattr__(name, value) else: raise AttributeError('Cannot assign an object of type {} to the namespace.'.format(type(value))) def __rmatmul__(self, expression): ops = _FunctionArrayOps(self) parser = _Parser(ops) if isinstance(expression, str): array, shape, indices, summed = parser.parse_expression(_Substring(expression)) assert numpy.shape(array) == shape array = ops.align(array, indices, ''.join(sorted(indices))) return array elif isinstance(expression, tuple): return tuple(item @ self for item in expression) elif isinstance(expression, list): return list(item @ self for item in expression) else: return NotImplemented def define_for(self, __name: str, *, gradient: Optional[str] = None, curl: Optional[str] = None, normal: Optional[str] = None, jacobians: Sequence[str] = ()) -> None: '''Define gradient, normal or jacobian for the given geometry. Parameters ---------- name : :class:`str` Define the gradient, normal or jacobian for the geometry with the given name in this namespace. gradient : :class:`str`, optional Define the gradient function with the given name. The function generates axes with the same shape as the given geometry. curl : :class:`str`, optional Define the curl function with the given name. The function generates two axes of length 3 where the last axis should be traced with an axis of the argument, e.g. `curl_ij(u_j)`. normal : :class:`str`, optional Define the normal with the given name. The normal has the same shape as the geometry. jacobians : sequence of :class:`str`, optional Define the jacobians for decreasing dimensions, starting at the dimensions of the geometry. The jacobians are always scalars. Example ------- >>> from nutils import function, mesh >>> ns = Namespace() >>> topo, ns.x = mesh.rectilinear([2, 2]) >>> ns.define_for('x', gradient='∇', normal='n', jacobians=('dV', 'dS')) >>> ns.basis = topo.basis('spline', degree=1) >>> ns.u = function.dotarg('u', ns.basis) >>> ns.v = function.dotarg('v', ns.basis) >>> res = topo.integral('-∇_i(v) ∇_i(u) dV' @ ns, degree=2) >>> res += topo.boundary.integral('∇_i(v) u n_i dS' @ ns, degree=2) ''' geom = getattr(self, __name) if gradient: setattr(self, gradient, lambda arg: function.grad(arg, geom)) if curl: if numpy.shape(geom) != (3,): raise ValueError('The curl can only be defined for a geometry with shape (3,) but got {}.'.format(numpy.shape(geom))) # Definition: `curl_ki(u_...)` := `ε_kji ∇_j(u_...)`. Should be used as # `curl_ki(u_i)`, which is equivalent to `ε_kji ∇_j(u_i)`. setattr(self, curl, lambda arg: (function.levicivita(3) * function.grad(arg, geom)[...,numpy.newaxis,:,numpy.newaxis]).sum(-2)) if normal: setattr(self, normal, function.normal(geom)) for i, jacobian in enumerate(jacobians): if i > numpy.size(geom): raise ValueError('Cannot define the jacobian {!r}: dimension is negative.'.format(jacobian)) setattr(self, jacobian, function.jacobian(geom, numpy.size(geom) - i)) def copy_(self, **replacements: Mapping[str, function.Array]) -> 'Namespace': '''Return a copy of this namespace. Parameters ---------- **replacements : :class:`nutils.function.Array` Argument replacements to apply to the copy of this namespace. Returns ------- :class:`Namespace` A copy of this namespace. ''' ns = Namespace() for attr, value in vars(self).items(): if replacements and isinstance(value, function.Array): value = function.replace_arguments(value, replacements) object.__setattr__(ns, attr, value) return ns class _FunctionArrayOps: def __init__(self, namespace: Namespace) -> None: self.namespace = namespace def align(self, array: function.Array, in_indices: str, out_indices: str) -> function.Array: assert set(in_indices) == set(out_indices) and len(in_indices) == len(out_indices) == len(set(in_indices)) return self.transpose(array, tuple(map(in_indices.index, out_indices))) def from_int(self, value: int) -> function.Array: return function.Array.cast(value) def from_float(self, value: float) -> function.Array: return function.Array.cast(value) def get_variable(self, name: str, ndim: int) -> Optional[Union[Tuple[function.Array, _Shape],_InvalidDimension]]: try: array = getattr(self.namespace, name) except AttributeError: return None if callable(array): return None elif numpy.ndim(array) == ndim: return array, numpy.shape(array) else: return _InvalidDimension(numpy.ndim(array)) def call(self, name: str, ngenerates: int, arg: function.Array) -> Optional[Union[Tuple[function.Array, _Shape],_InvalidDimension]]: try: func = getattr(self.namespace, name) except AttributeError: return None array = func(arg) assert numpy.shape(array)[:numpy.ndim(arg)] == numpy.shape(arg) if numpy.ndim(array) == numpy.ndim(arg) + ngenerates: return array, numpy.shape(array)[numpy.ndim(arg):] else: return _InvalidDimension(numpy.ndim(array) - numpy.ndim(arg)) def get_element(self, array: function.Array, axis: int, index: int) -> function.Array: assert 0 <= axis < numpy.ndim(array) and 0 <= index < numpy.shape(array)[axis] return numpy.take(array, index, axis) def transpose(self, array: function.Array, axes: Tuple[int, ...]) -> function.Array: assert numpy.ndim(array) == len(axes) return numpy.transpose(array, axes) def trace(self, array: function.Array, axis1: int, axis2: int) -> function.Array: return numpy.trace(array, axis1, axis2) def scope(self, array: function.Array) -> function.Array: return array def mean(self, array: function.Array) -> function.Array: return function.mean(array) def jump(self, array: function.Array) -> function.Array: return function.jump(array) def add(self, *args: Tuple[bool, function.Array]) -> function.Array: assert all(numpy.shape(arg) == numpy.shape(args[0][1]) for neg, arg in args[1:]) negated = (-arg if neg else arg for neg, arg in args) return functools.reduce(numpy.add, negated) def append_axes(self, array, shape): shuffle = numpy.concatenate([len(shape) + numpy.arange(numpy.ndim(array)), numpy.arange(len(shape))]) return numpy.transpose(numpy.broadcast_to(array, shape + numpy.shape(array)), shuffle) def multiply(self, *args: function.Array) -> function.Array: result = args[0] for arg in args[1:]: result = numpy.multiply(self.append_axes(result, numpy.shape(arg)), arg) return result def divide(self, numerator: function.Array, denominator: function.Array) -> function.Array: assert
numpy.ndim(denominator)
numpy.ndim
#!/usr/bin/python ######################################################################################################################## # # Copyright (c) 2014, Regents of the University of California # All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the # following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following # disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the # following disclaimer in the documentation and/or other materials provided with the distribution. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, # WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ######################################################################################################################## """ADC library """ import laygo import numpy as np import os #import logging;logging.basicConfig(level=logging.DEBUG) def generate_boundary(laygen, objectname_pfix, placement_grid, devname_bottom, devname_top, devname_left, devname_right, shape_bottom=None, shape_top=None, shape_left=None, shape_right=None, transform_bottom=None, transform_top=None, transform_left=None, transform_right=None, origin=np.array([0, 0])): #generate a boundary structure to resolve boundary design rules pg = placement_grid #parameters if shape_bottom == None: shape_bottom = [np.array([1, 1]) for d in devname_bottom] if shape_top == None: shape_top = [np.array([1, 1]) for d in devname_top] if shape_left == None: shape_left = [np.array([1, 1]) for d in devname_left] if shape_right == None: shape_right = [np.array([1, 1]) for d in devname_right] if transform_bottom == None: transform_bottom = ['R0' for d in devname_bottom] if transform_top == None: transform_top = ['R0' for d in devname_top] if transform_left == None: transform_left = ['R0' for d in devname_left] if transform_right == None: transform_right = ['R0' for d in devname_right] #bottom dev_bottom=[] dev_bottom.append(laygen.place("I" + objectname_pfix + 'BNDBTM0', devname_bottom[0], pg, xy=origin, shape=shape_bottom[0], transform=transform_bottom[0])) for i, d in enumerate(devname_bottom[1:]): dev_bottom.append(laygen.relplace("I" + objectname_pfix + 'BNDBTM'+str(i+1), d, pg, dev_bottom[-1].name, shape=shape_bottom[i+1], transform=transform_bottom[i+1])) dev_left=[] dev_left.append(laygen.relplace("I" + objectname_pfix + 'BNDLFT0', devname_left[0], pg, dev_bottom[0].name, direction='top', shape=shape_left[0], transform=transform_left[0])) for i, d in enumerate(devname_left[1:]): dev_left.append(laygen.relplace("I" + objectname_pfix + 'BNDLFT'+str(i+1), d, pg, dev_left[-1].name, direction='top', shape=shape_left[i+1], transform=transform_left[i+1])) dev_right=[] dev_right.append(laygen.relplace("I" + objectname_pfix + 'BNDRHT0', devname_right[0], pg, dev_bottom[-1].name, direction='top', shape=shape_right[0], transform=transform_right[0])) for i, d in enumerate(devname_right[1:]): dev_right.append(laygen.relplace("I" + objectname_pfix + 'BNDRHT'+str(i+1), d, pg, dev_right[-1].name, direction='top', shape=shape_right[i+1], transform=transform_right[i+1])) dev_top=[] dev_top.append(laygen.relplace("I" + objectname_pfix + 'BNDTOP0', devname_top[0], pg, dev_left[-1].name, direction='top', shape=shape_top[0], transform=transform_top[0])) for i, d in enumerate(devname_top[1:]): dev_top.append(laygen.relplace("I" + objectname_pfix + 'BNDTOP'+str(i+1), d, pg, dev_top[-1].name, shape=shape_top[i+1], transform=transform_top[i+1])) dev_right=[] return [dev_bottom, dev_top, dev_left, dev_right] def generate_sarlogic_array(laygen, objectname_pfix, templib_logic, placement_grid, routing_grid_m2m3, routing_grid_m3m4, routing_grid_m4m5, num_bits=8, num_bits_row=4, m_space_4x=0, m_space_2x=0, m_space_1x=0, origin=np.array([0, 0])): """generate cap driver array """ pg = placement_grid rg_m2m3 = routing_grid_m2m3 rg_m3m4 = routing_grid_m3m4 rg_m4m5 = routing_grid_m4m5 num_row=int(num_bits/num_bits_row) tap_name='tap' slogic_name='sarlogic' space_1x_name = 'space_1x' space_2x_name = 'space_2x' space_4x_name = 'space_4x' # placement itapl=[] islogic=[] itapr=[] isp4x=[] isp2x=[] isp1x=[] for i in range(num_row): if i%2==0: tf='R0' else: tf='MX' if i==0: itapl.append(laygen.place(name="I" + objectname_pfix + 'TAPL0', templatename=tap_name, gridname=pg, xy=origin, template_libname=templib_logic)) else: itapl.append(laygen.relplace(name = "I" + objectname_pfix + 'TAPL'+str(i), templatename = tap_name, gridname = pg, refinstname = itapl[-1].name, transform=tf, direction = 'top', template_libname=templib_logic)) islogic.append(laygen.relplace(name = "I" + objectname_pfix + 'CLG'+str(i), templatename = slogic_name, gridname = pg, refinstname = itapl[-1].name, shape=
np.array([num_bits_row, 1])
numpy.array
# -*- coding: utf-8 -*- # pylint: disable=invalid-name, too-many-arguments, too-many-branches, # pylint: disable=too-many-locals, too-many-instance-attributes, too-many-lines """ This module implements the linear Kalman filter in both an object oriented and procedural form. The KalmanFilter class implements the filter by storing the various matrices in instance variables, minimizing the amount of bookkeeping you have to do. All Kalman filters operate with a predict->update cycle. The predict step, implemented with the method or function predict(), uses the state transition matrix F to predict the state in the next time period (epoch). The state is stored as a gaussian (x, P), where x is the state (column) vector, and P is its covariance. Covariance matrix Q specifies the process covariance. In Bayesian terms, this prediction is called the *prior*, which you can think of colloquially as the estimate prior to incorporating the measurement. The update step, implemented with the method or function `update()`, incorporates the measurement z with covariance R, into the state estimate (x, P). The class stores the system uncertainty in S, the innovation (residual between prediction and measurement in measurement space) in y, and the Kalman gain in k. The procedural form returns these variables to you. In Bayesian terms this computes the *posterior* - the estimate after the information from the measurement is incorporated. Whether you use the OO form or procedural form is up to you. If matrices such as H, R, and F are changing each epoch, you'll probably opt to use the procedural form. If they are unchanging, the OO form is perhaps easier to use since you won't need to keep track of these matrices. This is especially useful if you are implementing banks of filters or comparing various KF designs for performance; a trivial coding bug could lead to using the wrong sets of matrices. This module also offers an implementation of the RTS smoother, and other helper functions, such as log likelihood computations. The Saver class allows you to easily save the state of the KalmanFilter class after every update This module expects NumPy arrays for all values that expect arrays, although in a few cases, particularly method parameters, it will accept types that convert to NumPy arrays, such as lists of lists. These exceptions are documented in the method or function. Examples -------- The following example constructs a constant velocity kinematic filter, filters noisy data, and plots the results. It also demonstrates using the Saver class to save the state of the filter at each epoch. .. code-block:: Python import matplotlib.pyplot as plt import numpy as np from filterpy.kalman import KalmanFilter from filterpy.common import Q_discrete_white_noise, Saver r_std, q_std = 2., 0.003 cv = KalmanFilter(dim_x=2, dim_z=1) cv.x = np.array([[0., 1.]]) # position, velocity cv.F = np.array([[1, dt],[ [0, 1]]) cv.R = np.array([[r_std^^2]]) f.H = np.array([[1., 0.]]) f.P = np.diag([.1^^2, .03^^2) f.Q = Q_discrete_white_noise(2, dt, q_std**2) saver = Saver(cv) for z in range(100): cv.predict() cv.update([z + randn() * r_std]) saver.save() # save the filter's state saver.to_array() plt.plot(saver.x[:, 0]) # plot all of the priors plt.plot(saver.x_prior[:, 0]) # plot mahalanobis distance plt.figure() plt.plot(saver.mahalanobis) This code implements the same filter using the procedural form x = np.array([[0., 1.]]) # position, velocity F = np.array([[1, dt],[ [0, 1]]) R = np.array([[r_std^^2]]) H = np.array([[1., 0.]]) P = np.diag([.1^^2, .03^^2) Q = Q_discrete_white_noise(2, dt, q_std**2) for z in range(100): x, P = predict(x, P, F=F, Q=Q) x, P = update(x, P, z=[z + randn() * r_std], R=R, H=H) xs.append(x[0, 0]) plt.plot(xs) For more examples see the test subdirectory, or refer to the book cited below. In it I both teach Kalman filtering from basic principles, and teach the use of this library in great detail. FilterPy library. http://github.com/rlabbe/filterpy Documentation at: https://filterpy.readthedocs.org Supporting book at: https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python This is licensed under an MIT license. See the readme.MD file for more information. Copyright 2014-2018 <NAME>. """ from __future__ import absolute_import, division from copy import deepcopy from math import log, exp, sqrt import sys import warnings import numpy as np from numpy import dot, zeros, eye, isscalar, shape import numpy.linalg as linalg from filterpy.stats import logpdf from filterpy.common import pretty_str, reshape_z class KalmanFilter(object): r""" Implements a Kalman filter. You are responsible for setting the various state variables to reasonable values; the defaults will not give you a functional filter. For now the best documentation is my free book Kalman and Bayesian Filters in Python [2]_. The test files in this directory also give you a basic idea of use, albeit without much description. In brief, you will first construct this object, specifying the size of the state vector with dim_x and the size of the measurement vector that you will be using with dim_z. These are mostly used to perform size checks when you assign values to the various matrices. For example, if you specified dim_z=2 and then try to assign a 3x3 matrix to R (the measurement noise matrix you will get an assert exception because R should be 2x2. (If for whatever reason you need to alter the size of things midstream just use the underscore version of the matrices to assign directly: your_filter._R = a_3x3_matrix.) After construction the filter will have default matrices created for you, but you must specify the values for each. It’s usually easiest to just overwrite them rather than assign to each element yourself. This will be clearer in the example below. All are of type numpy.array. Examples -------- Here is a filter that tracks position and velocity using a sensor that only reads position. First construct the object with the required dimensionality. .. code:: from filterpy.kalman import KalmanFilter f = KalmanFilter (dim_x=2, dim_z=1) Assign the initial value for the state (position and velocity). You can do this with a two dimensional array like so: .. code:: f.x = np.array([[2.], # position [0.]]) # velocity or just use a one dimensional array, which I prefer doing. .. code:: f.x = np.array([2., 0.]) Define the state transition matrix: .. code:: f.F = np.array([[1.,1.], [0.,1.]]) Define the measurement function: .. code:: f.H = np.array([[1.,0.]]) Define the covariance matrix. Here I take advantage of the fact that P already contains np.eye(dim_x), and just multiply by the uncertainty: .. code:: f.P *= 1000. I could have written: .. code:: f.P = np.array([[1000., 0.], [ 0., 1000.] ]) You decide which is more readable and understandable. Now assign the measurement noise. Here the dimension is 1x1, so I can use a scalar .. code:: f.R = 5 I could have done this instead: .. code:: f.R = np.array([[5.]]) Note that this must be a 2 dimensional array, as must all the matrices. Finally, I will assign the process noise. Here I will take advantage of another FilterPy library function: .. code:: from filterpy.common import Q_discrete_white_noise f.Q = Q_discrete_white_noise(dim=2, dt=0.1, var=0.13) Now just perform the standard predict/update loop: while some_condition_is_true: .. code:: z = get_sensor_reading() f.predict() f.update(z) do_something_with_estimate (f.x) **Procedural Form** This module also contains stand alone functions to perform Kalman filtering. Use these if you are not a fan of objects. **Example** .. code:: while True: z, R = read_sensor() x, P = predict(x, P, F, Q) x, P = update(x, P, z, R, H) See my book Kalman and Bayesian Filters in Python [2]_. You will have to set the following attributes after constructing this object for the filter to perform properly. Please note that there are various checks in place to ensure that you have made everything the 'correct' size. However, it is possible to provide incorrectly sized arrays such that the linear algebra can not perform an operation. It can also fail silently - you can end up with matrices of a size that allows the linear algebra to work, but are the wrong shape for the problem you are trying to solve. Parameters ---------- dim_x : int Number of state variables for the Kalman filter. For example, if you are tracking the position and velocity of an object in two dimensions, dim_x would be 4. This is used to set the default size of P, Q, and u dim_z : int Number of of measurement inputs. For example, if the sensor provides you with position in (x,y), dim_z would be 2. dim_u : int (optional) size of the control input, if it is being used. Default value of 0 indicates it is not used. compute_log_likelihood : bool (default = True) Computes log likelihood by default, but this can be a slow computation, so if you never use it you can turn this computation off. Attributes ---------- x : numpy.array(dim_x, 1) Current state estimate. Any call to update() or predict() updates this variable. P : numpy.array(dim_x, dim_x) Current state covariance matrix. Any call to update() or predict() updates this variable. x_prior : numpy.array(dim_x, 1) Prior (predicted) state estimate. The *_prior and *_post attributes are for convienence; they store the prior and posterior of the current epoch. Read Only. P_prior : numpy.array(dim_x, dim_x) Prior (predicted) state covariance matrix. Read Only. x_post : numpy.array(dim_x, 1) Posterior (updated) state estimate. Read Only. P_post : numpy.array(dim_x, dim_x) Posterior (updated) state covariance matrix. Read Only. z : numpy.array Last measurement used in update(). Read only. R : numpy.array(dim_z, dim_z) Measurement noise matrix Q : numpy.array(dim_x, dim_x) Process noise matrix F : numpy.array() State Transition matrix H : numpy.array(dim_z, dim_x) Measurement function y : numpy.array Residual of the update step. Read only. K : numpy.array(dim_x, dim_z) Kalman gain of the update step. Read only. S : numpy.array System uncertainty (P projected to measurement space). Read only. SI : numpy.array Inverse system uncertainty. Read only. log_likelihood : float log-likelihood of the last measurement. Read only. likelihood : float likelihood of last measurement. Read only. Computed from the log-likelihood. The log-likelihood can be very small, meaning a large negative value such as -28000. Taking the exp() of that results in 0.0, which can break typical algorithms which multiply by this value, so by default we always return a number >= sys.float_info.min. mahalanobis : float mahalanobis distance of the innovation. Read only. inv : function, default numpy.linalg.inv If you prefer another inverse function, such as the Moore-Penrose pseudo inverse, set it to that instead: kf.inv = np.linalg.pinv This is only used to invert self.S. If you know it is diagonal, you might choose to set it to filterpy.common.inv_diagonal, which is several times faster than numpy.linalg.inv for diagonal matrices. alpha : float Fading memory setting. 1.0 gives the normal Kalman filter, and values slightly larger than 1.0 (such as 1.02) give a fading memory effect - previous measurements have less influence on the filter's estimates. This formulation of the Fading memory filter (there are many) is due to <NAME> [1]_. References ---------- .. [1] <NAME>. "Optimal State Estimation." <NAME>. p. 208-212. (2006) .. [2] <NAME>. "Kalman and Bayesian Filters in Python" https://github.com/rlabbe/Kalman-and-Bayesian-Filters-in-Python """ def __init__(self, dim_x, dim_z, dim_u=0): if dim_x < 1: raise ValueError('dim_x must be 1 or greater') if dim_z < 1: raise ValueError('dim_z must be 1 or greater') if dim_u < 0: raise ValueError('dim_u must be 0 or greater') self.dim_x = dim_x self.dim_z = dim_z self.dim_u = dim_u self.x = zeros((dim_x, 1)) # state self.P = eye(dim_x) # uncertainty covariance self.Q = eye(dim_x) # process uncertainty self.B = None # control transition matrix self.F = eye(dim_x) # state transition matrix self.H = zeros((dim_z, dim_x)) # Measurement function self.R = eye(dim_z) # state uncertainty self._alpha_sq = 1. # fading memory control self.M = np.zeros((dim_z, dim_z)) # process-measurement cross correlation self.z = np.array([[None]*self.dim_z]).T # gain and residual are computed during the innovation step. We # save them so that in case you want to inspect them for various # purposes self.K = np.zeros((dim_x, dim_z)) # kalman gain self.y = zeros((dim_z, 1)) self.S = np.zeros((dim_z, dim_z)) # system uncertainty self.SI = np.zeros((dim_z, dim_z)) # inverse system uncertainty # identity matrix. Do not alter this. self._I = np.eye(dim_x) # these will always be a copy of x,P after predict() is called self.x_prior = self.x.copy() self.P_prior = self.P.copy() # these will always be a copy of x,P after update() is called self.x_post = self.x.copy() self.P_post = self.P.copy() # Only computed only if requested via property self._log_likelihood = log(sys.float_info.min) self._likelihood = sys.float_info.min self._mahalanobis = None self.inv = np.linalg.inv def predict(self, u=None, B=None, F=None, Q=None): """ Predict next state (prior) using the Kalman filter state propagation equations. Parameters ---------- u : np.array Optional control vector. If not `None`, it is multiplied by B to create the control input into the system. B : np.array(dim_x, dim_z), or None Optional control transition matrix; a value of None will cause the filter to use `self.B`. F : np.array(dim_x, dim_x), or None Optional state transition matrix; a value of None will cause the filter to use `self.F`. Q : np.array(dim_x, dim_x), scalar, or None Optional process noise matrix; a value of None will cause the filter to use `self.Q`. """ if B is None: B = self.B if F is None: F = self.F if Q is None: Q = self.Q elif isscalar(Q): Q = eye(self.dim_x) * Q # x = Fx + Bu if B is not None and u is not None: self.x =
dot(F, self.x)
numpy.dot
# CMPSPEC contains METHODS TO COMPUTE THE POWER SPECTRUM # GIVEN AS INPUT 1D, 2D, 3D FIELD """ Author: <NAME> date: 14/05/20 """ # ___ __ _ _ ____ _ _ ____ __ __ _ ___ ____ ____ ____ ___ ____ ____ __ # / __)/ \ ( \/ )( _ \/ )( \(_ _)( )( ( \ / __) / ___)( _ \( __)/ __)(_ _)( _ \ / _\ # ( (__( O )/ \/ \ ) __/) \/ ( )( )( / /( (_ \ \___ \ ) __/ ) _)( (__ )( ) // \ # \___)\__/ \_)(_/(__) \____/ (__) (__)\_)__) \___/ (____/(__) (____)\___) (__) (__\_)\_/\_/ import numpy as np from numpy.fft import fftn # ____ _ _ __ __ ____ _ _ # / ___)( \/ ) / \ / \(_ _)/ )( \ # \___ \/ \/ \( O )( O ) )( ) __ ( # (____/\_)(_/ \__/ \__/ (__) \_)(_/ # Function for smoothing the spectrum # only for visualisation def movingaverage(interval, window_size): window = np.ones(int(window_size)) / float(window_size) return np.convolve(interval, window, 'same') # __ ____ ____ __ ____ __ ____ ____ ____ ____ ___ ____ ____ _ _ _ _ # / \ ___( \ ( __)( )( __)( ) ( \ / ___)( _ \( __)/ __)(_ _)( _ \/ )( \( \/ ) # (_/ /(___)) D ( ) _) )( ) _) / (_/\ ) D ( \___ \ ) __/ ) _)( (__ )( ) /) \/ (/ \/ \ # (__) (____/ (__) (__)(____)\____/(____/ (____/(__) (____)\___) (__) (__\_)\____/\_)(_/ # Method to compute spectrum from 1D Field def compute1Dspectrum(r,lx, smooth): """ Parameters: ---------------------------------------------------------------- r: float-vector The 1D random field lx: float the domain size in the x-direction. nx: integer the number of grid points in the x-direction smooth: boolean Active/Disactive smooth function for visualisation ----------------------------------------------------------------- """ nx = len(r) nt = nx n = nx rh = fftn(r)/nt # calculate energy in fourier domain tkeh = (rh * np.conj(rh)).real k0x = 2.0*np.pi/lx knorm = k0x kxmax = nx / 2 wave_numbers = knorm*np.arange(0,n) # array of wavenumbers tke_spectrum = np.zeros(len(wave_numbers)) for kx in range(-nx//2, nx//2-1): rk = np.sqrt(kx**2) k = int(np.round(rk)) tke_spectrum[k] = tke_spectrum[k] + tkeh[kx] tke_spectrum = tke_spectrum/knorm knyquist = knorm * nx / 2 # If smooth parameter is TRUE: Smooth the computed spectrum # ONLY for Visualisation if smooth: tkespecsmooth = movingaverage(tke_spectrum, 5) # smooth the spectrum tkespecsmooth[0:4] = tke_spectrum[0:4] # get the first 4 values from the original data tke_spectrum = tkespecsmooth # return knyquist, wave_numbers, tke_spectrum # ____ ____ ____ __ ____ __ ____ ____ ____ ____ ___ ____ ____ _ _ _ _ # (___ \ ___( \ ( __)( )( __)( ) ( \ / ___)( _ \( __)/ __)(_ _)( _ \/ )( \( \/ ) # / __/(___)) D ( ) _) )( ) _) / (_/\ ) D ( \___ \ ) __/ ) _)( (__ )( ) /) \/ (/ \/ \ # (____) (____/ (__) (__)(____)\____/(____/ (____/(__) (____)\___) (__) (__\_)\____/\_)(_/ # Method to compute spectrum from 2D Field def compute2Dspectrum(r,lx, ly, smooth): """ Parameters: ---------------------------------------------------------------- r: float-vector The 2D random field lx: float the domain size in the x-direction. nx: integer the number of grid points in the x-direction smooth: boolean Active/Disactive smooth function for visualisation ----------------------------------------------------------------- """ nx = len(r[:,0]) ny = len(r[0,:]) nt = nx*ny n = nx rh = fftn(r)/nt # calculate energy in fourier domain tkeh = (rh *
np.conj(rh)
numpy.conj
import os import cv2 import sqlite3 import argparse import numpy as np import matplotlib.pyplot as plt # Parser for path to database file: def parse_args() -> tuple: """ Function to parse user argument :return: input_path and output_path """ ap = argparse.ArgumentParser(description='Converting colmap output files into ORB descriptors.') ap.add_argument('-p', '--input_path', required=True) ap.add_argument('-o', '--output_path', type=str, default=None) args = vars(ap.parse_args()) return args['input_path'], args['output_path'] def get_descriptors(cursor, img_list: list) -> list: """ get list of descriptors for each image :param cursor: sqlite3.connect().cursor :param img_list: list of images :return dsk: list of descriptors """ dsk = [] for image_id, _ in img_list: cursor.execute('SELECT data FROM descriptors WHERE image_id=?;', (image_id,)) row = next(cursor) if row[0] is None: dsk.append(np.zeros((0, 128), dtype=np.uint8)) else: dsk.append(np.frombuffer(row[0], dtype=np.uint8).reshape(-1, 128)) return dsk def get_3d_points(input_path: str) -> list: """ get a list of 3d points from the points.txt file :param input_path: path to points.txt file :return points: list of points """ points = [] path = os.path.join(input_path, 'points3D.txt') with open(path, 'r') as file: lines = file.readlines() for line in lines: line = line.strip() if len(line) > 0 and line[0] != "#": elements = line.split() xyz = np.array(tuple(map(float, elements[1:4]))) image_ids = np.array(tuple(map(int, elements[8::2]))) point2d_ids = np.array(tuple(map(int, elements[9::2]))) error = float(elements[7]) points.append([xyz, image_ids, point2d_ids, error]) return points def plot_2d(file_name: str, output_path: str, threshold=500) -> None: """ Create a 2d plot of the reconstructed model :param file_name: path to points.txt file :param output_path: path to save the plot :param threshold: threshold for filter outlier points :return points: list of points """ x = [] y = [] z = [] with open(file_name, "r") as f: for line in f.readlines(): if "#" not in line: data = line.split(" ") x_val = float(data[0]) y_val = float(data[2]) z_val = float(data[1]) # filter outliers if abs(x_val) < threshold and abs(y_val) < threshold and abs(z_val) < threshold: x.append(x_val) y.append(y_val) z.append(z_val) fig = plt.figure() plt.scatter(x, y, linewidth=0.1, s=2) fig.savefig(os.path.join(output_path, 'sparse_plot.png')) def main(): plot_map = True # Parse input arguments: input_path, output_path = parse_args() if output_path is None: output_path = input_path # Connect to the database and create cursor object: connection = sqlite3.connect(os.path.join(input_path, 'database.db')) cursor = connection.cursor() # Get list of images (img_id, img_name): cursor.execute('SELECT image_id, name FROM images;') images = list(row for row in cursor) # Get list of descriptors: descriptors = get_descriptors(cursor, images) # End SQL connection: cursor.close() connection.close() # Get list 3D points: points_3D = get_3d_points(input_path) # Compute mean ORB descriptors for all 3D points: feature_desc = [] for point in points_3D: dsc = [] for d in range(len(point[1])): img_id = point[1][d] - 1 pt_id = point[2][d] if pt_id < len(descriptors[img_id]): dsc.append(descriptors[img_id][pt_id]) if len(dsc) != 0: mean_dsc =
np.mean(dsc, axis=0)
numpy.mean
# -*- coding: utf-8 -*- """ This Python 3.3 module implements the cubic Snyder equal area map projection (CSEA) as described in [Snyd1992]_. .. [Snyd1992] <NAME>, An equal-area map projection for polyhedral globes, Cartographica 29 (1992), 10--21. CHANGELOG: - <NAME> (AR), 2013-01-31: Initial version. - AR, 2013-02-08: Fixed a bug in the xy-positions of the square faces. - AR, 2013-07-23: Ported to Python 3.3. NOTE: All lengths are measured in meters and all angles are measured in radians unless indicated otherwise. By 'ellipsoid' below, i mean an oblate ellipsoid of revolution. """ #***************************************************************************** # Copyright (C) 2012 <NAME> <<EMAIL>> # # Distributed under the terms of the GNU Lesser General Public License (LGPL) # http://www.gnu.org/licenses/ #***************************************************************************** # Import third-party modules. from numpy import pi, rad2deg, deg2rad, floor, sin, cos, arccos, arctan, arctan2, sqrt, array # Import my modules. from .utils import auth_lat, auth_rad g = arctan(sqrt(2)) # Snyder approximates this as 54.73561032 degrees. tang = sqrt(2) G = pi/3 theta = pi/4 # = 2*pi divided by twice the number of sides of a square cottheta = 1 alpha = pi/2 # = 2*(pi/2 - theta) R_prime = sqrt(pi/6) # = (1/tang)*sqrt(2*(G - theta)/(sin(theta)*cos(theta))) A = pi/2 - g face_centers_lonlat = [ (-2*pi/3, A), (-pi/3, -A), (0, A), (pi/3, -A), (2*pi/3, A), (pi, -A) ] B = sqrt(pi/3) # = R_prime*tang face_centers_xy = [ (-2*B, B/2), (-B, -B/2), (0, B/2), (B, -B/2), (2*B, B/2), (3*B, -B/2) ] EPS = 1e-12 # Fuzz to avoid rounding errors. def csea_sphere(lam, phi): r""" Compute the signature function of the icosohedral Snyder equal area (ISEA) map projection of the unit sphere. INPUT: - `lam, phi` - Geodetic longitude-latitude coordinates in radians. Assume -pi <= `lam` < pi and -pi/2 <= `phi` <= pi/2. """ # (lam, phi) lies in one of these two squares: face_1 = int(floor((lam + pi)/(pi/3))) face_2 = (face_1) - 1 % 6 for i in [face_1, face_2]: lam_0, phi_0 = face_centers_lonlat[i] z = arccos(sin(phi_0)*sin(phi) +\ cos(phi_0)*cos(phi)*(cos(lam - lam_0))) if z > g: # (lam, phi) does not lie in this square continue # Might have found the correct square face. Az = arctan2(cos(phi)*sin(lam - lam_0), cos(phi_0)*sin(phi) - sin(phi_0)*cos(phi)*cos(lam - lam_0)) j = 0 while Az <= 0 or Az > alpha: if Az <= 0: Az += alpha j += 1 else: Az -= alpha j -= 1 q = arctan(tang/(cos(Az) + sin(Az)*cottheta)) if z > q + EPS: # (lam, phi) does not lie in this square continue # Found the correct square face. H = arccos(sin(Az)*sin(G)*
cos(g)
numpy.cos
from numba import jit import numpy as np def calc_normals(state) : state.tx = state.C*state.X state.tz = state.C*state.Y state.nx = -state.C*state.Y state.nz = state.C*state.X def calc_TL(state) : state.W = np.abs(state.q * state.dangle0[np.newaxis,:]) state.P = np.zeros((state.Lz,state.Lr)) loop(state) state.TL = -20*np.log10(4*np.pi*np.abs(state.P)) state.TL[np.isnan(state.TL)] = 120 state.TL[np.isinf(state.TL)] = 120 #@jit(nopython = True)#, parallel = True) def loop(state) : zz = np.linspace(state.zmin,state.zmax,state.Lz) rr = np.linspace(state.rmin,state.rmax,state.Lr) R, Z = np.meshgrid(rr,zz) #j = 7 for j in range(state.nr) : print("beam %i / %i" %(j, state.nr), end = '\r') for i in range(1,state.n_max) : if state.W[i,j] > 0 : #coords influenced by the ray j between i and i+1 rec = ((R >= state.r[i-1,j]) & (R < state.r[i,j])) #normal distance between those points and segment i n_ = np.abs( (R - state.r[i,j])*state.nx[i,j] + (Z - state.z[i,j])*state.nz[i,j]) #along ray coordinate s_ = (R - state.r[i-1,j])*state.tx[i-1,j] + (Z - state.z[i-1,j])*state.tz[i-1,j] al = s_ / np.sqrt((state.r[i-1,j] - state.r[i,j])**2 + (state.z[i-1,j] - state.z[i,j])**2) T_ = state.T[i-1,j] + al * (state.T[i,j] - state.T[i-1,j]) q_ = state.q[i-1,j] + al * (state.q[i,j] - state.q[i-1,j]) W_ = state.W[i-1,j] + al * (state.W[i,j] - state.W[i-1,j]) r_ = state.r[i-1,j] + al * (state.r[i,j] - state.r[i-1,j]) n_val = (n_ <= W_) A_ = 1/(4*np.pi) * (-1j)**state.m[i,j] * np.sqrt(np.abs(state.C[i,j]*
np.cos(state.angle_0[j])
numpy.cos
#!/usr/bin/env python # # Copyright 2019 DFKI GmbH. # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to the # following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN # NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE # USE OR OTHER DEALINGS IN THE SOFTWARE. """ https://www.sciencedirect.com/science/article/pii/S1524070311000178?via%3Dihub based on the pseudocode by <NAME> https://project.dke.maastrichtuniversity.nl/robotlab/wp-content/uploads/Bachelor-thesis-Renzo-Poddighe.pdf """ import math import numpy as np from transformations import quaternion_inverse, quaternion_multiply, quaternion_from_matrix, euler_from_quaternion from anim_utils.motion_editing.analytical_inverse_kinematics import calculate_limb_joint_rotation, calculate_limb_root_rotation, to_local_coordinate_system def sign(x): return 1 if x >= 0 else -1 def quaternion_to_av(q): """ according to lee 2000 the purely imaginary quaternion is identical to the angular velocity the sign of the real part gives the direction Since the unit quaternion space is folded by the antipodal equivalence, the angular velocity is twice as fast """ return 2 * np.array(q[1:]) * sign(q[0]) def normalize(v): return v/ np.linalg.norm(v) def get_quaternion_delta(a, b): return quaternion_multiply(quaternion_inverse(b), a) def quaternion_from_axis_angle(axis, angle): q = [1,0,0,0] q[1] = axis[0] * math.sin(angle / 2) q[2] = axis[1] * math.sin(angle / 2) q[3] = axis[2] * math.sin(angle / 2) q[0] = math.cos(angle / 2) return normalize(q) def get_offset_quat(a, b): a_len = np.linalg.norm(a) b_len = np.linalg.norm(b) if a_len > 0 and b_len > 0: q = quaternion_from_vector_to_vector(a/a_len,b/b_len) q /= np.linalg.norm(q) return q else: return [1,0,0,0] def quaternion_from_vector_to_vector(a, b): """src: http://stackoverflow.com/questions/1171849/finding-quaternion-representing-the-rotation-from-one-vector-to-another http://wiki.ogre3d.org/Quaternion+and+Rotation+Primer""" v =
np.cross(a, b)
numpy.cross
import gammalib import numpy as np import matplotlib.pyplot as plt from astropy.io import fits import pdb def format_ax(ax): for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(14) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(14) ax.xaxis.set_ticks_position('both') ax.yaxis.set_ticks_position('both') ax.grid() return def cube_flux(model,emin,emax): # get data filename = model.spatial().filename().file() hdulist = fits.open(filename) cube = hdulist[0].data energies = hdulist[1].data['Energy'] binsize1 = np.abs(hdulist[0].header['CDELT1']) binsize2 = np.abs(hdulist[0].header['CDELT2']) # multiply by solid angle (only works for tangential projection or for reference latitude ~0) cube *= np.deg2rad(binsize1) * np.deg2rad(binsize2) fluxes = np.sum(cube, axis=(1, 2)) # correct by spectral model for s, energy in enumerate(energies): fluxes[s] *= model.spectral().eval(gammalib.GEnergy(np.double(energy),'MeV')) # select energy range # emin, emax are in TeV and the energy vector in MeV # just select on bins, may be inaccurate close to threshold fluxes = fluxes[(energies >= 1.e6 * emin) & (energies <= 1.e6 * emax)] energies = energies[(energies >= 1.e6 * emin) & (energies <= 1.e6 * emax)] # integrate over energy in piece-wise power law approximation gamma = - (np.log(fluxes[1:]) - np.log(fluxes[:-1])) / (np.log(energies[1:]) - np.log(energies[:-1])) # integral flux in individual bins between two nodes int = fluxes[:-1] * energies[:-1] / (-gamma + 1) * (np.power(energies[1:]/energies[:-1],-gamma+1) - 1) # sum over bins int = np.sum(int) return int def flux_Crab(model,Emin,Emax): emin = gammalib.GEnergy(Emin,'TeV') emax = gammalib.GEnergy(Emax,'TeV') # deal with special case of cubes if model.spatial().type() == 'DiffuseMapCube': # get cube flux flux = cube_flux(model,Emin,Emax) else: flux = model.spectral().flux(emin, emax) # convert to Crab units # Set Crab TeV spectral model based on a power law crab = gammalib.GModelSpectralPlaw(5.7e-16, -2.48, gammalib.GEnergy(0.3, 'TeV')) # calculate crab flux over the same energy range crab_flux = crab.flux(emin, emax) # remormalize crab flux so that it matches the Meyer model > 1 TeV (consistent with gamma-cat) crab_flux_1TeV = crab.flux(gammalib.GEnergy(1.,'TeV'), gammalib.GEnergy(1000.,'TeV')) # (Meyer model, flux > 1 TeV in ph cm-2 s-1) crab_flux *= 2.0744340476909142e-11 / crab_flux_1TeV flux /= crab_flux return flux def dist_from_gammalib(models,emin=1.,emax=1000): #extracts flux, longitude and latitude distribution from gammalib model container fluxes = [] lons = [] lats = [] names = [] radii = [] for model in models: if model.classname() == 'GModelSky': src_dir = get_model_dir(model) lons.append(src_dir.l_deg()) lats.append(src_dir.b_deg()) rad = get_model_radius(model) radii.append(rad) flux = flux_Crab(model,emin,emax) fluxes.append(flux) names.append(model.name()) else: pass return lons, lats, radii, fluxes, names def get_model_dir(model): """ extracts sky direction for either analytical model or DiffuseMap :param model: ~gammalib.GModelSky :return: src_dir: ~gammalib.GSkyDir """ if model.spatial().type() == 'DiffuseMap': # retrieve direction from map src_dir = model.spatial().region().centre() elif model.spatial().type() == 'DiffuseMapCube': # region does not work, extract manually from the map # call the energies method to load the cube model.spatial().energies() # assume it is center of the map sl = model.spatial().cube().extract(0) ctr_pix = gammalib.GSkyPixel((sl.nx() - 1) / 2, (sl.ny() - 1) / 2) src_dir = sl.pix2dir(ctr_pix) else: # retrieve direction from analytical model src_dir = model.spatial().dir() return src_dir def get_model_radius(model): """ extracts radius for extended source :param model: ~gammalib.GModelSky :return: radius: float """ try: if model.spatial().type() == 'DiffuseMapCube': # region not implemented in gammalib, extract manually extent of the map # call the energies method to load the cube model.spatial().energies() # half size along x direction slice = model.spatial().cube().extract(0) ctr_pix = gammalib.GSkyPixel((slice.nx() - 1) / 2, (slice.ny() - 1) / 2) ctr_dir = slice.pix2dir(ctr_pix) bor_pix = gammalib.GSkyPixel(0., (slice.ny() - 1) / 2) bor_dir = slice.pix2dir(bor_pix) radius = bor_dir.dist_deg(ctr_dir) else: circle = gammalib.GSkyRegionCircle(model.spatial().region()) radius = circle.radius() except: print('Cannot extract radius for model {} with spatial model type {}'.format( model.name(), model.spatial().type())) return radius def delete_source_fom(distx,disty,radr, frlog): fom = np.sqrt((distx / 180) ** 2 + (disty / 10) ** 2 + (radr / 1.) ** 2 + (frlog >= 0) * (frlog / 0.6) ** 2 + (frlog < 0) * (frlog / 0.3) ** 2) return fom def pop_source(d,name): # remove source from dictionary by name # boolean mask to identify sources to keep in final dictionary m = (d['name'] != name) # handle composites for which name is an array if len(np.shape(m)) > 1: m = np.product(m, axis=1) # both names must coincide to be the same composite m = m.astype('bool') for key in d.keys(): if key == 'name': pass else: d[key] = d[key][m] d['name'] = d['name'][m] return d def find_source_to_delete(d,lon,lat,rad,flux, radmin =0.05): # calculate distance in lon and lat distx = np.abs(d['GLON'] - lon) distx[distx > 180] = 360 - distx[distx > 180] disty = d['GLAT'] - lat #dist = np.sqrt(distx**2 + disty**2) # calculate radius relative difference # take into the fact that current instruments cannot resolve objects with radii < 0.05 deg # based on minimum measured size in HGPS if rad < radmin: rad = radmin radr = 0.5 * (np.maximum(d['radius'],radmin) - rad) / (np.maximum(d['radius'],radmin) + rad) # calculate flux_ratio log frlog = np.log10(d['flux']/flux) # figure of merit to decide which source to eliminate fom = delete_source_fom(distx,disty,radr,frlog) # eliminate closer source = minimum fom s = np.where(fom == np.min(fom)) name = d['name'][s][0] d = pop_source(d,name) return name, d, distx[s], disty[s], radr[s], frlog[s] def get_syn_model(filename,fmin,bmax,emin=1.,emax=1000.): """ Load synthetic population already given in gammalib format :param filename: str, name of XML file :param fmin: float, minimum flux (Crab) :param emin: float, minimum energy for flux computation (TeV) :param emax: float, maximum energy for flux computation (TeV) :return: ~gammalib.GModels, dic, output models and dictionary of their properties """ # load input models models models = gammalib.GModels(filename) # parameter distribution for the requested energy range lons, lats, radii, fluxes, names = dist_from_gammalib(models,emin=emin,emax=emax) # output models outmodels = gammalib.GModels() for s, model in enumerate(models): if fluxes[s] > fmin and np.abs(lats[s]) < bmax: outmodels.append(model) else: pass # regenerate distributions for standard energy range lons, lats, radii, fluxes, names = dist_from_gammalib(outmodels,emin=1.,emax=1000.) # create dictionary with source parameters d = {'name' : np.array(names), 'GLON' : np.array(lons), 'GLAT' : np.array(lats), 'radius' : np.array(radii), 'flux' : np.array(fluxes)} return outmodels, d def plot_del_sources(distx,disty,radr, frlog,namestr,namefull): fig4 = plt.figure('Deleted {} XY'.format(namefull)) ax4 = plt.subplot() ax4.set_xlabel("Longitude distance (deg)", fontsize=14) ax4.set_ylabel('Latitude distance (deg)', fontsize=14) format_ax(ax4) ax4.scatter(distx, disty) # add FOM contours xmin, xmax = ax4.get_xlim() ymin, ymax = ax4.get_ylim() xv, yv = np.meshgrid(np.linspace(xmin, xmax, 50), np.linspace(ymin, ymax, 50)) fom = delete_source_fom(xv, yv, 0.2, 0.3) cs = ax4.contour(xv, yv, fom) ax4.clabel(cs, inline=1, fontsize=10) fig4.savefig('{}XY.png'.format(namestr), dpi=300) fig5 = plt.figure('Deleted {} Flux-radius'.format(namefull)) ax5 = plt.subplot() ax5.set_xlabel("Relative radius difference", fontsize=14) ax5.set_ylabel('Log10(flux ratio)', fontsize=14) format_ax(ax5) ax5.scatter(radr, frlog) # add FOM contours xmin, xmax = ax5.get_xlim() ymin, ymax = ax5.get_ylim() xv, yv = np.meshgrid(np.linspace(xmin, xmax, 50), np.linspace(ymin, ymax, 50)) fom = delete_source_fom(20, 2, xv, yv) cs = ax5.contour(xv, yv, fom) ax5.clabel(cs, inline=1, fontsize=10) fig5.savefig('{}Flux-rad.png'.format(namestr), dpi=300) return def set_composites(pwn_dict,snr_dict, outfilename = None): # create arrays to store output quantities names = [] lons = np.array([]) lats = np.array([]) radii =
np.array([])
numpy.array
# from sklearn.manifold import TSNE, LocallyLinearEmbedding from tsnecuda import TSNE as cudaTSNE import matplotlib.pyplot as plt import torchvision.models as models import torch import wandb import numpy as np import pcl.loader import pcl.builder # from utils import * import torchvision.transforms as transforms from clustering import * from sklearn.cluster import DBSCAN import os import math import torchvision.datasets as datasets from PIL import ImageFilter, Image import umap import cuml # import umap.plot class CIFAR10Instance_w_label(datasets.CIFAR10): def __getitem__(self, index): """ Args: index (int): Index Returns: tuple: (image, index) """ img, target = self.data[index], self.targets[index] # doing this so that it is consistent with all other datasets # to return a PIL Image img = Image.fromarray(img) # print(img.shape) if self.transform is not None: img = self.transform(img) # print(img.shape) return img, index, target def compute_features(eval_loader, model, low_dim=128, gpu=0): print('Computing features...') model.eval() features = torch.zeros(len(eval_loader.dataset),low_dim).cuda(gpu) targets = torch.zeros(len(eval_loader.dataset), dtype=torch.long) for i, (images, index, target) in enumerate(tqdm(eval_loader)): with torch.no_grad(): images = images.cuda(gpu, non_blocking=True) feat = model(images,is_eval=True) features[index] = feat targets[index] = target # dist.barrier() # dist.all_reduce(features, op=dist.ReduceOp.SUM) return features.cpu(), targets def load_data(data='cifar', aug_plus=True): """ Parameters ---------- args : argparse.ArgumentParser the command line arguments relevant to fetching data Returns ------- train_dataset : torch.utils.data.Dataset torch dataset for training data eval_dataset : torch.utils.data.Dataset torch dataset for evaluation data """ if data == 'cifar': # Data loading code # traindir = os.path.join(args.data, 'train') normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.247, 0.243, 0.261]) if aug_plus: # MoCo v2's aug: similar to SimCLR https://arxiv.org/abs/2002.05709 augmentation = [ transforms.RandomResizedCrop(32, scale=(0.2, 1.)), transforms.RandomApply([ transforms.ColorJitter(0.4, 0.4, 0.4, 0.1) # not strengthened ], p=0.8), transforms.RandomGrayscale(p=0.2), transforms.RandomApply([pcl.loader.GaussianBlur([.1, 2.])], p=0.5), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] else: # MoCo v1's aug: same as InstDisc https://arxiv.org/abs/1805.01978 augmentation = [ transforms.RandomResizedCrop(32, scale=(0.2, 1.)), transforms.RandomGrayscale(p=0.2), transforms.ColorJitter(0.4, 0.4, 0.4, 0.4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize ] # center-crop augmentation eval_augmentation = transforms.Compose([ transforms.Resize(32), transforms.CenterCrop(32), transforms.ToTensor(), normalize ]) train_dataset = CIFAR10Instance_w_label( 'data', train=True, transform=pcl.loader.TwoCropsTransform(transforms.Compose(augmentation)), download=True) eval_dataset = CIFAR10Instance_w_label( 'data', train=True, transform=eval_augmentation, download=True) return train_dataset, eval_dataset def im2cluster_to_centroids(x, im2cluster): # returns an np.ndarray of c_i, where each c_i is the mean of all inputs with cluster i centroids = np.zeros((max(im2cluster) + 1, len(x[0]))) # (num_clusters, C) # unique_clusters = set(im2cluster) counts = np.zeros(max(im2cluster) + 1) # (num_clusters) for idx in range(len(x)): cluster = im2cluster[idx] centroids[cluster] += x[idx] counts[cluster] += 1 centroids = centroids / np.expand_dims(counts, axis=1) # taking mean of vectors in each cluster # normalizing since means won't lie on the unit sphere after taking mean (could be like in the middle, this is especially likely for noise class) centroids = centroids / np.linalg.norm(centroids, axis=1).reshape(-1, 1) return centroids def l2_distance(x, y): return np.linalg.norm(x - y) def run_dbscan(x, minPts=200, minSamples=0, temperature=0.2, eps=0.3): # make sure the parser args has the necessary dbscan parameters (eps, minPts) - ADDED # x = x.numpy() # this is already done before calling the function # n = x.shape[0] # number of samples # d = x.shape[1] # dimension print('performing dbscan clustering') results = {'im2cluster':[],'centroids':[],'density':[],'sampled_protos':[]} # x = x.numpy() pca = PCA(n_components = 20) features = pca.fit_transform(x) # print(pca.explained_variance_ratio_) # im2cluster = db.labels_ if minSamples: clusterer = hdbscan.HDBSCAN(min_cluster_size=minPts, min_samples=minSamples) else: clusterer = hdbscan.HDBSCAN(min_cluster_size=minPts) # clusterer = DBSCAN(eps=eps, min_samples=minPts, n_jobs=-1, metric='euclidean').fit(features) # run DBSCAN # im2cluster = clusterer.labels_ im2cluster = clusterer.fit_predict(features) if -1 in im2cluster: # so that noise data is in cluster 0 instead of -1 im2cluster += 1 centroids = im2cluster_to_centroids(x, im2cluster) # density = np.ones(len(set(im2cluster))) * args.temperature Dcluster = [[] for c in range(len(centroids))] for im,i in enumerate(im2cluster): # Dcluster[i].append(D[im][0]) Dcluster[i].append(l2_distance(centroids[i], x[im])) # concentration estimation (phi) density = np.zeros(len(centroids)) for i,dist in enumerate(Dcluster): if len(dist)>1: density[i] = (np.asarray(dist)).mean()/np.log(len(dist)+10) # i got rid of the **0.5 since then we aren't actually doing l2 distances? idk why the authors did it (tbd) #if cluster only has one point, use the max to estimate its concentration dmax = density.max() for i,dist in enumerate(Dcluster): if len(dist)<=1: density[i] = dmax density = density.clip(np.percentile(density,10),np.percentile(density,90)) #clamp extreme values for stability density = temperature*density/density.mean() #scale the mean to temperature im2cluster = torch.LongTensor(im2cluster).cuda(gpu) unique_clusters = set(im2cluster.tolist()) print(unique_clusters) density = torch.Tensor(density).cuda(gpu) centroids = torch.Tensor(centroids).cuda(gpu) # centroids = nn.functional.normalize(centroids, p=args.norm_p, dim=1) # hmmmm ? results['centroids'].append(centroids) results['density'].append(density) results['im2cluster'].append(im2cluster) # run dbscan, and then select a random core point from each cluster to be the centroid return results # density = np.ones(len(set(im2cluster))) * args.temperature def run_kmeans(x, num_cluster=['250'], centroid_sampling=False, temperature=0.2): """ Args: x: data to be clustered """ print('performing kmeans clustering') results = {'im2cluster':[],'centroids':[],'density':[],'sampled_protos':[]} for seed, num_cluster in enumerate(num_cluster): # intialize faiss clustering parameters d = x.shape[1] k = int(num_cluster) clus = faiss.Clustering(d, k) clus.verbose = True clus.niter = 20 clus.nredo = 5 clus.seed = seed clus.max_points_per_centroid = 1000 clus.min_points_per_centroid = 10 res = faiss.StandardGpuResources() cfg = faiss.GpuIndexFlatConfig() cfg.useFloat16 = False # originally False cfg.device = 0 # cfg.device = 1 #REMEMBER TO CHANGE THIS index = faiss.GpuIndexFlatL2(res, d, cfg) clus.train(x, index) D, I = index.search(x, 1) # for each sample, find cluster distance and assignments im2cluster = [int(n[0]) for n in I] # get cluster centroids centroids = faiss.vector_to_array(clus.centroids).reshape(k,d) # sample-to-centroid distances for each cluster Dcluster = [[] for c in range(k)] indices_per_cluster = [[] for c in range(k)] # for next step - random sampling for im,i in enumerate(im2cluster): Dcluster[i].append(D[im][0]) indices_per_cluster[i].append(im) if centroid_sampling: # print("WTF") # sample a random point from each cluster to act as a prototype rather than the centroid # sampled_protos = [np.zeros((len(indices_per_cluster[i]), d)) for i in range(k)] sampled_protos = [0 for i in range(k)] for i in range(k): # if there are no points other than the centroid (empty), this won't work # print(len(indices_per_cluster[i])) selected_proto_id = random.choice(indices_per_cluster[i % num_cluster]) sampled_protos[i] = selected_proto_id # sampled_protos[i] = x[indices_per_cluster[i]] # concentration estimation (phi) density = np.zeros(k) for i,dist in enumerate(Dcluster): if len(dist)>1: d = (np.asarray(dist)**0.5).mean()/np.log(len(dist)+10) density[i] = d #if cluster only has one point, use the max to estimate its concentration dmax = density.max() for i,dist in enumerate(Dcluster): if len(dist)<=1: density[i] = dmax density = density.clip(np.percentile(density,10),np.percentile(density,90)) #clamp extreme values for stability density = temperature*density/density.mean() #scale the mean to temperature # convert to cuda Tensors for broadcast centroids = torch.Tensor(centroids).cuda() centroids = nn.functional.normalize(centroids, p=2, dim=1) # hmmmm ? if centroid_sampling: for i in range(k): sampled_protos[i] = torch.Tensor(sampled_protos[i]).cuda() im2cluster = torch.LongTensor(im2cluster).cuda() density = torch.Tensor(density).cuda() results['centroids'].append(centroids) results['density'].append(density) results['im2cluster'].append(im2cluster) if centroid_sampling: results['sampled_protos'].append(sampled_protos) return results def calculate_kn_distance(X,k): kn_distance = [] for i in range(len(X)): eucl_dist = [] for j in range(len(X)): # eucl_dist.append( # math.sqrt( # ((X[i,0] - X[j,0]) ** 2) + # ((X[i,1] - X[j,1]) ** 2))) eucl_dist.append(np.linalg.norm(X[i] - X[j])) eucl_dist.sort() kn_distance.append(eucl_dist[k]) return kn_distance # visualizing the data print('Visualizing Representations...') # methods = [LocallyLinearEmbedding(n_components=2, method='standard'), TSNE(n_components=2, init='pca')] # tsne = TSNE(n_components=2, perplexity=45, learning_rate=200, verbose=1) # methods = tsne def plot_tsne(num_classes=20, num_samples=10000): features, classes = compute_features(eval_loader, model, low_dim=low_dim, gpu=gpu) features[torch.norm(features,dim=1)>1.5] /= 2 #account for the few samples that are computed twice features = features.numpy() # results = run_dbscan(features) # results = run_kmeans(features) # im2cluster = results['im2cluster'][0].tolist() # remember to turn this back to a list restricted_classes = [i for i in classes if i < num_classes] features = features[np.array(classes) < num_classes] print(len(restricted_classes)) print(len(features)) features = features[:num_samples] restricted_classes = restricted_classes[:num_samples] hparams = [2500] fig = plt.figure(figsize=(25,25)) for i, hparam in enumerate(hparams): print('hparam: {}'.format(i)) # tsne = TSNE(n_components=2, perplexity=30, learning_rate=hparam, verbose=1, n_jobs=-1, n_iter=2500) tsne = cudaTSNE(n_components=2, perplexity=50, learning_rate=600, verbose=1, n_iter=hparam) y = tsne.fit_transform(features) if len(hparams) == 1: ax = fig.add_subplot(1, len(hparams), i + 1) else: ax = fig.add_subplot(3, len(hparams)//3 + 1, i + 1) ax.scatter(y[:, 0], y[:, 1], c=restricted_classes) ax.set_title('hparam: {}'.format(hparam)) if not os.path.exists('imgs/tsne_{}'.format(checkpoint_id[0])): os.makedirs('imgs/tsne_{}'.format(checkpoint_id[0])) save_path = 'imgs/tsne_{}/tsne_{}_{}'.format(checkpoint_id[0], checkpoint_id[0], checkpoint_id[1]) fig.savefig(save_path) print('Figure saved to : {}'.format(save_path)) def plot_umap(num_classes=20, num_samples=10000): features, classes = compute_features(eval_loader, model, low_dim=low_dim, gpu=gpu) features[torch.norm(features,dim=1)>1.5] /= 2 #account for the few samples that are computed twice features = features.numpy() # results = run_dbscan(features) # results = run_kmeans(features) # im2cluster = results['im2cluster'][0].tolist() # remember to turn this back to a list restricted_classes = np.array([i for i in classes if i < num_classes]) features = features[np.array(classes) < num_classes] features = features[:num_samples] restricted_classes = restricted_classes[:num_samples] hparams = [2500] for i, hparam in enumerate(hparams): print('hparam: {}'.format(i)) reducer = umap.UMAP(n_neighbors = 30, min_dist=0.1, n_components=2, metric='cosine') y = reducer.fit_transform(features) # ax = umap.plot.points(reducer, labels=restricted_classes) # need to change this ax.set_title('hparam: {}'.format(hparam)) if not os.path.exists('imgs/umap_{}'.format(checkpoint_id[0])): os.makedirs('imgs/umap_{}'.format(checkpoint_id[0])) save_path = 'imgs/umap_{}/umap_{}_{}'.format(checkpoint_id[0], checkpoint_id[0], checkpoint_id[1]) # save_path = 'imgs/umap_{}/umap_{}_{}'.format(checkpoint_id[0], 'cosine', checkpoint_id[1]) # fig = ax.get_figure() ax.figure.savefig(save_path) print('Figure saved to : {}'.format(save_path)) def plot_progression(checkpoint_id, num_rows=3, num_progressions=9, num_classes=20, num_samples=10000, algorithm = 'umap', true_classes=True): checkpoints = os.listdir('pcl_cifar10_{}'.format(checkpoint_id[0])) checkpoints.sort() assert num_progressions <= len(checkpoints), 'Not enough checkpoints saved.' checkpoints = [checkpoints[i] for i in range(0, len(checkpoints), len(checkpoints) // (num_progressions-1))][:num_progressions-1] + [checkpoints[-1]] fig, axes = plt.subplots(num_rows, len(checkpoints)//num_rows + 1 if len(checkpoints) % num_rows != 0 else len(checkpoints)//num_rows, figsize=(40,25)) print(checkpoints) for i, checkpoint_file in enumerate(checkpoints): # print(checkpoints) # print(checkpoint_file) epoch = checkpoint_file[11:15] # just the 4-digit checkpoint epoch print('epoch: {}'.format(epoch)) checkpoint = torch.load('pcl_cifar10_{}/{}'.format(checkpoint_id[0], checkpoint_file)) model.load_state_dict(checkpoint['state_dict']) features, classes = compute_features(eval_loader, model, low_dim=low_dim, gpu=gpu) features[torch.norm(features,dim=1)>1.5] /= 2 #account for the few samples that are computed twice features = features.numpy() restricted_classes = np.array([i for i in classes if i < num_classes]) features = features[np.array(classes) < num_classes] features = features[:num_samples] restricted_classes = restricted_classes[:num_samples] if algorithm == 'umap': # reducer = umap.UMAP(n_neighbors = 60, min_dist=0.1, n_components=2, metric='cosine') reducer = cuml.UMAP(n_neighbors=60, min_dist=0.1, n_components=2, n_epochs=1000) y = reducer.fit_transform(features) elif algorithm == 'tsne': tsne = cudaTSNE(n_components=2, perplexity=50, learning_rate=600, verbose=1, n_iter=2500, metric='euclidean') y = tsne.fit_transform(features) if true_classes: scatter = axes.flat[i].scatter(y[:, 0], y[:, 1], c = restricted_classes, cmap='Spectral', s=3) else: with torch.no_grad(): results = run_dbscan(features, minPts=200, minSamples=0, temperature=0.2) # results = run_kmeans(features, num_cluster=['250']) im2cluster = results['im2cluster'][0].tolist() # remember to turn this back to a list scatter = axes.flat[i].scatter(y[:, 0], y[:, 1], c = im2cluster, cmap='Spectral', s=3) # restricting num_classes does not work here # legend = axes.flat[i].legend(*scatter.legend_elements(), loc='lower left', title="Classes") # axes.flat[i].add_artist(legend) axes.flat[i].set_title('epoch: {}'.format(epoch)) axes.flat[-1].legend(*scatter.legend_elements(), loc='lower left', title="Classes", bbox_to_anchor=(1.00, 0), prop={'size': 25}) fig.suptitle('{}_{}: {}'.format(algorithm, checkpoint_id[0], 'Cifar Classes' if true_classes else 'Clustering Classes'), fontsize=20) if not os.path.exists('imgs/{}_{}'.format(algorithm, checkpoint_id[0])): os.makedirs('imgs/{}_{}'.format(algorithm, checkpoint_id[0])) save_path = 'imgs/{}_{}/{}_{}'.format(algorithm, checkpoint_id[0], 'progression', 'true_classes' if true_classes else 'cluster_classes') fig.savefig(save_path) print('Figure saved to : {}'.format(save_path)) def plot_comparison(checkpoint_id, num_progressions=5, num_classes=20, num_samples=10000, algorithm = 'umap'): checkpoints = os.listdir('pcl_cifar10_{}'.format(checkpoint_id[0])) checkpoints.sort() assert num_progressions <= len(checkpoints), 'Not enough checkpoints saved.' checkpoints = [checkpoints[i] for i in range(0, len(checkpoints), len(checkpoints) // (num_progressions-1))][:num_progressions-1] + [checkpoints[-1]] # fig, axes = plt.subplots(len(checkpoints), 2, figsize=(30,50)) fig, axes = plt.subplots(2, len(checkpoints), figsize=(60,30)) print(checkpoints) for i, checkpoint_file in enumerate(checkpoints): # print(checkpoints) # print(checkpoint_file) epoch = checkpoint_file[11:15] # just the 4-digit checkpoint epoch print('epoch: {}'.format(epoch)) checkpoint = torch.load('pcl_cifar10_{}/{}'.format(checkpoint_id[0], checkpoint_file)) model.load_state_dict(checkpoint['state_dict']) features, classes = compute_features(eval_loader, model, low_dim=low_dim, gpu=gpu) features[torch.norm(features,dim=1)>1.5] /= 2 #account for the few samples that are computed twice features = features.numpy() restricted_classes =
np.array([i for i in classes if i < num_classes])
numpy.array
import numpy as np import numpy.ma as ma import argparse import os import sys sys.path.append(os.path.join(os.path.dirname(__file__), '..', 'lib')) import mutrel import inputparser from common import Models MISSING = -1 def load_mutrels(mutrel_args): mutrels = {} for mutrel_arg in mutrel_args: mutrel_name, mutrel_path = mutrel_arg.split('=', 1) assert mutrel_name not in mutrels, '%s is duplicate' % mutrel_name if os.path.exists(mutrel_path): mrel = np.load(mutrel_path) mutrels[mutrel_name] = mutrel.Mutrel(vids=mrel['vids'], rels=mrel['rels']) else: mutrels[mutrel_name] = None return mutrels def discard_garbage(mutrels, clustered, garbage, ignore_garbage_for): for name in list(mutrels.keys()): if mutrels[name] is None: continue vids = mutrels[name].vids assert set(vids) == clustered | garbage, 'vids do not match expected set for %s' % name gidxs = [idx for idx, vid in enumerate(vids) if vid in garbage] if name not in ignore_garbage_for: for garbrels in (mutrels[name].rels[gidxs,:,Models.garbage], mutrels[name].rels[:,gidxs,Models.garbage].T): # Garbage mutations should have posterior that coclusters with # themselves, but that renders them garbage to every other mutation # (including other garbage) G, M = garbrels.shape # `expected` shape, given `G` garbage variants and `M` total variants: `GxM` expected = np.ones((G, M)) expected[np.arange(G),gidxs] = 0 assert np.allclose(expected, garbrels), '%s garbage relations are wrong' % name mutrels[name] = mutrel.remove_variants_by_vidx(mutrels[name], gidxs) assert set(mutrels[name].vids) == clustered def _score_distl1(rels, truth): # Compute mean L1 distance. M = len(rels) dist = np.sum(np.abs(rels - truth), axis=2) assert np.allclose(dist, dist.T) assert np.allclose(0, np.diag(dist)) # A pairwise mutrel vector can have a maximum L1 distance of 2, when no # elements have overlap with each other. Normalize this so scores can be # interpreted as "mean proportion of miscalled relations", given hard 0/1 # calls for relation types. dist /= 2 # Distances may be slightly higher than 1 because of floating point error. # Set these to exactly 1. dist[np.logical_and(dist > 1, np.isclose(1, dist))] = 1 assert np.all(0 <= dist) and np.all(dist <= 1) # Take entries below main diagonal. dist_lower = np.tril(dist, 1) assert dist_lower.shape == (M, M) # There are (M choose 2) elements below the diagonal, so divide by this # when computing mean. score = np.sum(dist_lower) / (0.5*M*(M - 1)) return score def _compute_kld(P, Q): for A in (P, Q): assert np.all(A >= 0) assert np.allclose(1, np.sum(A, axis=2)) logP = ma.log2(ma.masked_equal(P, 0)) logQ = ma.log2(
ma.masked_equal(Q, 0)
numpy.ma.masked_equal
from operator import pos from numpy.core.defchararray import array from quadrotor_env import quad, sensor from quadrotor_control import Controller from quadrotor_estimator import MEKF from quaternion_euler_utility import euler_quat from scipy.spatial.transform import Rotation as R import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D #Quadrotor Model Object quad_model = quad(t_step=0.01, n=1, training=False, euler=0, direct_control=0, T=1, clipped=True) sens = sensor(quad_model) # seed = quad_model.seed(2) #Trajectory Generator ---> Obtain positions, velocities and accelerations references vectors inner_length = 1 controller = Controller(total_time = 10, sample_time = 0.01, inner_length = inner_length) x_wp = np.array([[0.2, 0.3, 0.4, 0.5, 0.6]]).T y_wp = np.array([[0, 0, 0.2, 0.3, 0.3]]).T z_wp = np.array([[2, 2.5, 3, 3, 3]]).T psi_wp = np.array([[0, 0, 0, np.pi/4, np.pi/2]]).T t = [0, 5, 10, 15, 20] step = 0.01 _, _, x_matrix = controller.getCoeff_snap(x_wp, t) _, _, y_matrix = controller.getCoeff_snap(y_wp, t) _, _, z_matrix = controller.getCoeff_snap(z_wp, t) _, _, psi_matrix = controller.getCoeff_accel(psi_wp, t) x_ref, dotx_ref, ddotx_ref, _, _ = controller.evaluate_equations_snap(t, step, x_matrix) y_ref, doty_ref, ddoty_ref, _, _ = controller.evaluate_equations_snap(t, step, y_matrix) z_ref, dotz_ref, ddotz_ref, _, _ = controller.evaluate_equations_snap(t, step, z_matrix) psi_ref, _, _ = controller.evaluate_equations_accel(t, step, psi_matrix) # x_ref, dotx_ref, ddotx_ref, y_ref, doty_ref, ddoty_ref, z_ref, dotz_ref, ddotz_ref, psiInt = controller.trajectory_generator(radius=1, frequency=np.pi/15, max_h=7, min_h=4) outer_length = len(x_ref) #Get initial states x_atual, _ = quad_model.reset(
np.array([0.2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0])
numpy.array
import numpy as np from numpy.testing import assert_equal, assert_, assert_raises import pandas as pd import pandas.util.testing as tm import pytest from statsmodels.base import data as sm_data from statsmodels.formula import handle_formula_data from statsmodels.regression.linear_model import OLS from statsmodels.genmod.generalized_linear_model import GLM from statsmodels.genmod import families from statsmodels.discrete.discrete_model import Logit # FIXME: do not leave commented-out, enable or move/remove # class TestDates(object): # @classmethod # def setup_class(cls): # nrows = 10 # cls.dates_result = cls.dates_results = np.random.random(nrows) # # def test_dates(self): # np.testing.assert_equal(data.wrap_output(self.dates_input, 'dates'), # self.dates_result) class TestArrays(object): @classmethod def setup_class(cls): cls.endog = np.random.random(10) cls.exog = np.c_[np.ones(10), np.random.random((10, 2))] cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_result = cls.col_input = np.random.random(nvars) cls.row_result = cls.row_input = np.random.random(nrows) cls.cov_result = cls.cov_input = np.random.random((nvars, nvars)) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = 'y' cls.row_labels = None def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog) np.testing.assert_equal(self.data.exog, self.exog) def test_attach(self): data = self.data # this makes sure what the wrappers need work but not the wrapped # results themselves np.testing.assert_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) np.testing.assert_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) np.testing.assert_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) def test_names(self): data = self.data np.testing.assert_equal(data.xnames, self.xnames) np.testing.assert_equal(data.ynames, self.ynames) def test_labels(self): # HACK: because numpy master after NA stuff assert_equal fails on # pandas indices # FIXME: see if this can be de-hacked np.testing.assert_(np.all(self.data.row_labels == self.row_labels)) class TestArrays2dEndog(TestArrays): @classmethod def setup_class(cls): super(TestArrays2dEndog, cls).setup_class() cls.endog = np.random.random((10, 1)) cls.exog = np.c_[np.ones(10), np.random.random((10, 2))] cls.data = sm_data.handle_data(cls.endog, cls.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.squeeze()) np.testing.assert_equal(self.data.exog, self.exog) class TestArrays1dExog(TestArrays): @classmethod def setup_class(cls): super(TestArrays1dExog, cls).setup_class() cls.endog = np.random.random(10) exog = np.random.random(10) cls.data = sm_data.handle_data(cls.endog, exog) cls.exog = exog[:, None] cls.xnames = ['x1'] cls.ynames = 'y' def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog.squeeze()) class TestDataFrames(TestArrays): @classmethod def setup_class(cls): cls.endog = pd.DataFrame(np.random.random(10), columns=['y_1']) exog = pd.DataFrame(np.random.random((10, 2)), columns=['x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' cls.row_labels = cls.exog.index def test_orig(self): tm.assert_frame_equal(self.data.orig_endog, self.endog) tm.assert_frame_equal(self.data.orig_exog, self.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog.values) def test_attach(self): data = self.data # this makes sure what the wrappers need work but not the wrapped # results themselves tm.assert_series_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) tm.assert_series_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) tm.assert_frame_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) class TestDataFramesWithMultiIndex(TestDataFrames): @classmethod def setup_class(cls): cls.endog = pd.DataFrame(np.random.random(10), columns=['y_1']) mi = pd.MultiIndex.from_product([['x'], ['1', '2']]) exog = pd.DataFrame(np.random.random((10, 2)), columns=mi) exog_flattened_idx = pd.Index(['const', 'x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog_flattened_idx) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog_flattened_idx, columns=exog_flattened_idx) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' cls.row_labels = cls.exog.index class TestLists(TestArrays): @classmethod def setup_class(cls): super(TestLists, cls).setup_class() cls.endog = np.random.random(10).tolist() cls.exog = np.c_[np.ones(10), np.random.random((10, 2))].tolist() cls.data = sm_data.handle_data(cls.endog, cls.exog) class TestRecarrays(TestArrays): @classmethod def setup_class(cls): super(TestRecarrays, cls).setup_class() cls.endog = np.random.random(9).view([('y_1', 'f8')]).view(np.recarray) exog = np.random.random(9*3).view([('const', 'f8'), ('x_1', 'f8'), ('x_2', 'f8')]).view(np.recarray) exog['const'] = 1 cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.view(float, type=np.ndarray)) np.testing.assert_equal(self.data.exog, self.exog.view((float, 3), type=np.ndarray)) class TestStructarrays(TestArrays): @classmethod def setup_class(cls): super(TestStructarrays, cls).setup_class() cls.endog = np.random.random(9).view([('y_1', 'f8')]).view(np.recarray) exog = np.random.random(9*3).view([('const', 'f8'), ('x_1', 'f8'), ('x_2', 'f8')]).view(np.recarray) exog['const'] = 1 cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.view(float, type=np.ndarray)) np.testing.assert_equal(self.data.exog, self.exog.view((float, 3), type=np.ndarray)) class TestListDataFrame(TestDataFrames): @classmethod def setup_class(cls): cls.endog = np.random.random(10).tolist() exog = pd.DataFrame(np.random.random((10, 2)), columns=['x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y' cls.row_labels = cls.exog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog) np.testing.assert_equal(self.data.exog, self.exog.values) def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) tm.assert_frame_equal(self.data.orig_exog, self.exog) class TestDataFrameList(TestDataFrames): @classmethod def setup_class(cls): cls.endog = pd.DataFrame(np.random.random(10), columns=['y_1']) exog = pd.DataFrame(np.random.random((10, 2)), columns=['x1', 'x2']) exog.insert(0, 'const', 1) cls.exog = exog.values.tolist() cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = 'y_1' cls.row_labels = cls.endog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog) def test_orig(self): tm.assert_frame_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog) class TestArrayDataFrame(TestDataFrames): @classmethod def setup_class(cls): cls.endog = np.random.random(10) exog = pd.DataFrame(np.random.random((10, 2)), columns=['x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y' cls.row_labels = cls.exog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog) np.testing.assert_equal(self.data.exog, self.exog.values) def test_orig(self): np.testing.assert_equal(self.data.orig_endog, self.endog) tm.assert_frame_equal(self.data.orig_exog, self.exog) class TestDataFrameArray(TestDataFrames): @classmethod def setup_class(cls): cls.endog = pd.DataFrame(np.random.random(10), columns=['y_1']) exog = pd.DataFrame(np.random.random((10, 2)), columns=['x1', 'x2']) # names mimic defaults exog.insert(0, 'const', 1) cls.exog = exog.values cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = 'y_1' cls.row_labels = cls.endog.index def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog) def test_orig(self): tm.assert_frame_equal(self.data.orig_endog, self.endog) np.testing.assert_equal(self.data.orig_exog, self.exog) class TestSeriesDataFrame(TestDataFrames): @classmethod def setup_class(cls): cls.endog = pd.Series(np.random.random(10), name='y_1') exog = pd.DataFrame(np.random.random((10, 2)), columns=['x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = 'y_1' cls.row_labels = cls.exog.index def test_orig(self): tm.assert_series_equal(self.data.orig_endog, self.endog) tm.assert_frame_equal(self.data.orig_exog, self.exog) class TestSeriesSeries(TestDataFrames): @classmethod def setup_class(cls): cls.endog = pd.Series(np.random.random(10), name='y_1') exog = pd.Series(np.random.random(10), name='x_1') cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 1 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=[exog.name]) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=[exog.name], columns=[exog.name]) cls.xnames = ['x_1'] cls.ynames = 'y_1' cls.row_labels = cls.exog.index def test_orig(self): tm.assert_series_equal(self.data.orig_endog, self.endog) tm.assert_series_equal(self.data.orig_exog, self.exog) def test_endogexog(self): np.testing.assert_equal(self.data.endog, self.endog.values.squeeze()) np.testing.assert_equal(self.data.exog, self.exog.values[:, None]) def test_alignment(): # Fix Issue GH#206 from statsmodels.datasets.macrodata import load_pandas d = load_pandas().data # growth rates gs_l_realinv = 400 * np.log(d['realinv']).diff().dropna() gs_l_realgdp = 400 * np.log(d['realgdp']).diff().dropna() lint = d['realint'][:-1] # incorrect indexing for test purposes endog = gs_l_realinv # re-index because they will not conform to lint realgdp = gs_l_realgdp.reindex(lint.index, method='bfill') data = dict(const=np.ones_like(lint), lrealgdp=realgdp, lint=lint) exog = pd.DataFrame(data) # TODO: which index do we get?? np.testing.assert_raises(ValueError, OLS, *(endog, exog)) class TestMultipleEqsArrays(TestArrays): @classmethod def setup_class(cls): cls.endog = np.random.random((10, 4)) cls.exog = np.c_[np.ones(10), np.random.random((10, 2))] cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 neqs = 4 cls.col_result = cls.col_input = np.random.random(nvars) cls.row_result = cls.row_input = np.random.random(nrows) cls.cov_result = cls.cov_input = np.random.random((nvars, nvars)) cls.cov_eq_result = cls.cov_eq_input = np.random.random((neqs, neqs)) cls.col_eq_result = cls.col_eq_input = np.array((neqs, nvars)) cls.xnames = ['const', 'x1', 'x2'] cls.ynames = ['y1', 'y2', 'y3', 'y4'] cls.row_labels = None def test_attach(self): data = self.data # this makes sure what the wrappers need work but not the wrapped # results themselves np.testing.assert_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) np.testing.assert_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) np.testing.assert_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) np.testing.assert_equal(data.wrap_output(self.cov_eq_input, 'cov_eq'), self.cov_eq_result) np.testing.assert_equal(data.wrap_output(self.col_eq_input, 'columns_eq'), self.col_eq_result) class TestMultipleEqsDataFrames(TestDataFrames): @classmethod def setup_class(cls): cls.endog = endog = pd.DataFrame(np.random.random((10, 4)), columns=['y_1', 'y_2', 'y_3', 'y_4']) exog = pd.DataFrame(np.random.random((10, 2)), columns=['x_1', 'x_2']) exog.insert(0, 'const', 1) cls.exog = exog cls.data = sm_data.handle_data(cls.endog, cls.exog) nrows = 10 nvars = 3 neqs = 4 cls.col_input = np.random.random(nvars) cls.col_result = pd.Series(cls.col_input, index=exog.columns) cls.row_input = np.random.random(nrows) cls.row_result = pd.Series(cls.row_input, index=exog.index) cls.cov_input = np.random.random((nvars, nvars)) cls.cov_result = pd.DataFrame(cls.cov_input, index=exog.columns, columns=exog.columns) cls.cov_eq_input = np.random.random((neqs, neqs)) cls.cov_eq_result = pd.DataFrame(cls.cov_eq_input, index=endog.columns, columns=endog.columns) cls.col_eq_input = np.random.random((nvars, neqs)) cls.col_eq_result = pd.DataFrame(cls.col_eq_input, index=exog.columns, columns=endog.columns) cls.xnames = ['const', 'x_1', 'x_2'] cls.ynames = ['y_1', 'y_2', 'y_3', 'y_4'] cls.row_labels = cls.exog.index def test_attach(self): data = self.data tm.assert_series_equal(data.wrap_output(self.col_input, 'columns'), self.col_result) tm.assert_series_equal(data.wrap_output(self.row_input, 'rows'), self.row_result) tm.assert_frame_equal(data.wrap_output(self.cov_input, 'cov'), self.cov_result) tm.assert_frame_equal(data.wrap_output(self.cov_eq_input, 'cov_eq'), self.cov_eq_result) tm.assert_frame_equal(data.wrap_output(self.col_eq_input, 'columns_eq'), self.col_eq_result) class TestMissingArray(object): @classmethod def setup_class(cls): X = np.random.random((25, 4)) y = np.random.random(25) y[10] = np.nan X[2, 3] = np.nan X[14, 2] = np.nan cls.y, cls.X = y, X @pytest.mark.smoke def test_raise_no_missing(self): # GH#1700 sm_data.handle_data(np.random.random(20), np.random.random((20, 2)), 'raise') def test_raise(self): with pytest.raises(Exception): # TODO: be more specific about exception sm_data.handle_data(self.y, self.X, 'raise') def test_drop(self): y = self.y X = self.X combined = np.c_[y, X] idx = ~np.isnan(combined).any(axis=1) y = y[idx] X = X[idx] data = sm_data.handle_data(self.y, self.X, 'drop') np.testing.assert_array_equal(data.endog, y) np.testing.assert_array_equal(data.exog, X) def test_none(self): data = sm_data.handle_data(self.y, self.X, 'none', hasconst=False) np.testing.assert_array_equal(data.endog, self.y) np.testing.assert_array_equal(data.exog, self.X) assert data.k_constant == 0 def test_endog_only_raise(self): with pytest.raises(Exception): # TODO: be more specific about exception sm_data.handle_data(self.y, None, 'raise') def test_endog_only_drop(self): y = self.y y = y[~np.isnan(y)] data = sm_data.handle_data(self.y, None, 'drop') np.testing.assert_array_equal(data.endog, y) def test_mv_endog(self): y = self.X y = y[~np.isnan(y).any(axis=1)] data = sm_data.handle_data(self.X, None, 'drop') np.testing.assert_array_equal(data.endog, y) def test_extra_kwargs_2d(self): sigma = np.random.random((25, 25)) sigma = sigma + sigma.T - np.diag(np.diag(sigma)) data = sm_data.handle_data(self.y, self.X, 'drop', sigma=sigma) idx = ~np.isnan(np.c_[self.y, self.X]).any(axis=1) sigma = sigma[idx][:, idx] np.testing.assert_array_equal(data.sigma, sigma) def test_extra_kwargs_1d(self): weights = np.random.random(25) data = sm_data.handle_data(self.y, self.X, 'drop', weights=weights) idx = ~np.isnan(np.c_[self.y, self.X]).any(axis=1) weights = weights[idx] np.testing.assert_array_equal(data.weights, weights) class TestMissingPandas(object): @classmethod def setup_class(cls): X = np.random.random((25, 4)) y = np.random.random(25) y[10] = np.nan X[2, 3] = np.nan X[14, 2] = np.nan cls.y = pd.Series(y) cls.X = pd.DataFrame(X) @pytest.mark.smoke def test_raise_no_missing(self): # GH#1700 sm_data.handle_data(pd.Series(np.random.random(20)), pd.DataFrame(np.random.random((20, 2))), 'raise') def test_raise(self): with pytest.raises(Exception): # TODO: be more specific about exception sm_data.handle_data(self.y, self.X, 'raise') def test_drop(self): y = self.y X = self.X combined = np.c_[y, X] idx = ~np.isnan(combined).any(axis=1) y = y.loc[idx] X = X.loc[idx] data = sm_data.handle_data(self.y, self.X, 'drop') np.testing.assert_array_equal(data.endog, y.values) tm.assert_series_equal(data.orig_endog, self.y.loc[idx]) np.testing.assert_array_equal(data.exog, X.values) tm.assert_frame_equal(data.orig_exog, self.X.loc[idx]) def test_none(self): data = sm_data.handle_data(self.y, self.X, 'none', hasconst=False) np.testing.assert_array_equal(data.endog, self.y.values) np.testing.assert_array_equal(data.exog, self.X.values) assert data.k_constant == 0 def test_endog_only_raise(self): with pytest.raises(Exception): # TODO: be more specific about exception sm_data.handle_data(self.y, None, 'raise') def test_endog_only_drop(self): y = self.y y = y.dropna() data = sm_data.handle_data(self.y, None, 'drop') np.testing.assert_array_equal(data.endog, y.values) def test_mv_endog(self): y = self.X y = y.loc[~np.isnan(y.values).any(axis=1)] data = sm_data.handle_data(self.X, None, 'drop') np.testing.assert_array_equal(data.endog, y.values) def test_labels(self): labels = pd.Index([0, 1, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24]) data = sm_data.handle_data(self.y, self.X, 'drop') np.testing.assert_(data.row_labels.equals(labels)) class TestConstant(object): @classmethod def setup_class(cls): from statsmodels.datasets.longley import load_pandas cls.data = load_pandas() def test_array_constant(self): exog = self.data.exog.copy() exog['const'] = 1 data = sm_data.handle_data(self.data.endog.values, exog.values) np.testing.assert_equal(data.k_constant, 1) np.testing.assert_equal(data.const_idx, 6) def test_pandas_constant(self): exog = self.data.exog.copy() exog['const'] = 1 data = sm_data.handle_data(self.data.endog, exog) np.testing.assert_equal(data.k_constant, 1) np.testing.assert_equal(data.const_idx, 6) def test_pandas_noconstant(self): exog = self.data.exog.copy() data = sm_data.handle_data(self.data.endog, exog) np.testing.assert_equal(data.k_constant, 0) np.testing.assert_equal(data.const_idx, None) def test_array_noconstant(self): exog = self.data.exog.copy() data = sm_data.handle_data(self.data.endog.values, exog.values) np.testing.assert_equal(data.k_constant, 0) np.testing.assert_equal(data.const_idx, None) class TestHandleMissing(object): def test_pandas(self): df = tm.makeDataFrame() df.values[[2, 5, 10], [2, 3, 1]] = np.nan y, X = df[df.columns[0]], df[df.columns[1:]] data, _ = sm_data.handle_missing(y, X, missing='drop') df = df.dropna() y_exp, X_exp = df[df.columns[0]], df[df.columns[1:]] tm.assert_frame_equal(data['exog'], X_exp) tm.assert_series_equal(data['endog'], y_exp) def test_arrays(self): arr = np.random.randn(20, 4) arr[[2, 5, 10], [2, 3, 1]] = np.nan y, X = arr[:, 0], arr[:, 1:] data, _ = sm_data.handle_missing(y, X, missing='drop') bools_mask = np.ones(20, dtype=bool) bools_mask[[2, 5, 10]] = False y_exp = arr[bools_mask, 0] X_exp = arr[bools_mask, 1:] np.testing.assert_array_equal(data['endog'], y_exp) np.testing.assert_array_equal(data['exog'], X_exp) def test_pandas_array(self): df = tm.makeDataFrame() df.values[[2, 5, 10], [2, 3, 1]] = np.nan y, X = df[df.columns[0]], df[df.columns[1:]].values data, _ = sm_data.handle_missing(y, X, missing='drop') df = df.dropna() y_exp, X_exp = df[df.columns[0]], df[df.columns[1:]].values np.testing.assert_array_equal(data['exog'], X_exp) tm.assert_series_equal(data['endog'], y_exp) def test_array_pandas(self): df = tm.makeDataFrame() df.values[[2, 5, 10], [2, 3, 1]] = np.nan y, X = df[df.columns[0]].values, df[df.columns[1:]] data, _ = sm_data.handle_missing(y, X, missing='drop') df = df.dropna() y_exp, X_exp = df[df.columns[0]].values, df[df.columns[1:]] tm.assert_frame_equal(data['exog'], X_exp) np.testing.assert_array_equal(data['endog'], y_exp) def test_noop(self): df = tm.makeDataFrame() df.values[[2, 5, 10], [2, 3, 1]] = np.nan y, X = df[df.columns[0]], df[df.columns[1:]] data, _ = sm_data.handle_missing(y, X, missing='none') y_exp, X_exp = df[df.columns[0]], df[df.columns[1:]] tm.assert_frame_equal(data['exog'], X_exp) tm.assert_series_equal(data['endog'], y_exp) class CheckHasConstant(object): def test_hasconst(self): for x, result in zip(self.exogs, self.results): mod = self.mod(self.y, x) assert_equal(mod.k_constant, result[0]) assert_equal(mod.data.k_constant, result[0]) if result[1] is None: assert_(mod.data.const_idx is None) else: assert_equal(mod.data.const_idx, result[1]) # extra check after fit, some models raise on singular fit_kwds = getattr(self, 'fit_kwds', {}) try: res = mod.fit(**fit_kwds) except np.linalg.LinAlgError: pass else: assert_equal(res.model.k_constant, result[0]) assert_equal(res.model.data.k_constant, result[0]) @classmethod def setup_class(cls): # create data np.random.seed(0) cls.y_c = np.random.randn(20) cls.y_bin = (cls.y_c > 0).astype(int) x1 = np.column_stack((np.ones(20), np.zeros(20))) result1 = (1, 0) x2 = np.column_stack((np.arange(20) < 10.5, np.arange(20) > 10.5)).astype(float) result2 = (1, None) x3 = np.column_stack((np.arange(20), np.zeros(20))) result3 = (0, None) x4 = np.column_stack((np.arange(20), np.zeros((20, 2)))) result4 = (0, None) x5 = np.column_stack((np.zeros(20), 0.5 * np.ones(20))) result5 = (1, 1) x5b = np.column_stack((np.arange(20), np.ones((20, 3)))) result5b = (1, 1) x5c = np.column_stack((np.arange(20), np.ones((20, 3)) * [0.5, 1, 1])) result5c = (1, 2) # implicit and zero column x6 = np.column_stack((np.arange(20) < 10.5, np.arange(20) > 10.5, np.zeros(20))).astype(float) result6 = (1, None) x7 = np.column_stack((np.arange(20) < 10.5, np.arange(20) > 10.5, np.zeros((20, 2)))).astype(float) result7 = (1, None) cls.exogs = (x1, x2, x3, x4, x5, x5b, x5c, x6, x7) cls.results = (result1, result2, result3, result4, result5, result5b, result5c, result6, result7) cls._initialize() class TestHasConstantOLS(CheckHasConstant): @classmethod def _initialize(cls): cls.mod = OLS cls.y = cls.y_c class TestHasConstantGLM(CheckHasConstant): @staticmethod def mod(y, x): return GLM(y, x, family=families.Binomial()) @classmethod def _initialize(cls): cls.y = cls.y_bin class TestHasConstantLogit(CheckHasConstant): @classmethod def _initialize(cls): cls.mod = Logit cls.y = cls.y_bin cls.fit_kwds = {'disp': False} def test_dtype_object(): # see GH#880 X = np.random.random((40, 2)) df = pd.DataFrame(X) df[2] = np.random.randint(2, size=40).astype('object') df['constant'] = 1 y = pd.Series(np.random.randint(2, size=40)) np.testing.assert_raises(ValueError, sm_data.handle_data, y, df) def test_formula_missing_extra_arrays(): np.random.seed(1) # because patsy cannot turn off missing data-handling as of 0.3.0, we need # separate tests to make sure that missing values are handled correctly # when going through formulas # there is a handle_formula_data step # then there is the regular handle_data step # see GH#2083 # the untested cases are endog/exog have missing. extra has missing. # endog/exog are fine. extra has missing. # endog/exog do or do not have missing and extra has wrong dimension y = np.random.randn(10) y_missing = y.copy() y_missing[[2, 5]] = np.nan X = np.random.randn(10) X_missing = X.copy() X_missing[[1, 3]] = np.nan weights = np.random.uniform(size=10) weights_missing = weights.copy() weights_missing[[6]] = np.nan weights_wrong_size = np.random.randn(12) data = {'y': y, 'X': X, 'y_missing': y_missing, 'X_missing': X_missing, 'weights': weights, 'weights_missing': weights_missing} data = pd.DataFrame.from_dict(data) data['constant'] = 1 formula = 'y_missing ~ X_missing' ((endog, exog), missing_idx, design_info) = handle_formula_data(data, None, formula, depth=2, missing='drop') kwargs = {'missing_idx': missing_idx, 'missing': 'drop', 'weights': data['weights_missing']} model_data = sm_data.handle_data(endog, exog, **kwargs) data_nona = data.dropna() assert_equal(data_nona['y'].values, model_data.endog) assert_equal(data_nona[['constant', 'X']].values, model_data.exog) assert_equal(data_nona['weights'].values, model_data.weights) tmp = handle_formula_data(data, None, formula, depth=2, missing='drop') (endog, exog), missing_idx, design_info = tmp weights_2d = np.random.randn(10, 10) weights_2d[[8, 7], [7, 8]] = np.nan # symmetric missing values kwargs.update({'weights': weights_2d, 'missing_idx': missing_idx}) model_data2 = sm_data.handle_data(endog, exog, **kwargs) good_idx = [0, 4, 6, 9] assert_equal(data.loc[good_idx, 'y'], model_data2.endog) assert_equal(data.loc[good_idx, ['constant', 'X']], model_data2.exog) assert_equal(weights_2d[good_idx][:, good_idx], model_data2.weights) tmp = handle_formula_data(data, None, formula, depth=2, missing='drop') (endog, exog), missing_idx, design_info = tmp kwargs.update({'weights': weights_wrong_size, 'missing_idx': missing_idx}) assert_raises(ValueError, sm_data.handle_data, endog, exog, **kwargs) def test_raise_nonfinite_exog(): # we raise now in the has constant check before hitting the linear algebra from statsmodels.tools.sm_exceptions import MissingDataError x =
np.arange(10)
numpy.arange
import numpy as np import os import sys import math from Find_neighbors import find_neighbors def atoms_dist(a, b, latt_mat): """ Return the distance between atoms a and b. Arguments: ------------------- a, b : array or list, dim = (1, 3) Coordinates of two atoms in the cell. latt_mat : array, dim = (3, 3) Matrix consisting of lacttice vectors a, b and c. Returns: ------------------- rtype : float """ return np.linalg.norm(np.dot((a - b), latt_mat), 2) def extract_training_data(num = 5000, cutoff_radius = 2.6, augment = False, multi = False): """ Calculate Fe coordination numbers around oxygen. Return training, cross-validation, and test sets. Fourteen Li3FeO3.5 POSCARs are used. 170 data points for each XANES spectrum. If calculating the average coordination number by averaging 49 spectra together, augment is sent to True, and we use regression. Arguments: ---------------------------- num: the number of combinations of 49 spectra desired cutoff_radius: the maximum length, in angstroms, an Fe atom can be from an oxygen such that it contributes to the oxygen's Fe coordination number augment: signals whether to use data augmentation to generate data by averaging 49 spectra at a time multi: signals whether it's the multi-task learning model, and we need to extract both coordination number and charge data Returns: ---------------------------- shuffled_X[:, :divider1] : array (170, 64% of data) Training set input shuffled_X[:, divider1:divider2] : array (170, 16% of data) Dev set input shuffled_X[:, divider2:] : array (170, 20% of data) Test set input shuffled_Y[:, :divider1] : array (1, 64% of data) Training set output shuffled_Y[:, divider1:divider2] : array (1, 16% of data) Dev set output shuffled_Y[:, divider2:] : array (1, 20% of data) Test set output numOutputNodes : int Number of nodes of output layer, max(Fe coordination number) + 1 """ X = np.zeros((170, 1), float) # 170 is the number of data points in the spectrum Y = [] if multi: Y2 = np.zeros((1, 1), float) # extract the data, stored in three separate directories if not multi: # there is no charge data for these three POSCARs, so do not use if in multi-task learning for i in ['0K', '15ps', '20ps']: prefix = "./new_data/original/" FeCoorNum = [] tmp = np.loadtxt(prefix + i + "_Combo_O_all.dat") # energy range [-1 eV ~ 14 eV], 170 data points X = np.concatenate((X, tmp[436:606, 1:]), 1) for O_index in range(1, 50): # cycles through the 49 oxygen atoms present res = find_neighbors('O' + str(O_index), cutoff_radius, prefix + "POSCAR_" + i) FeCoorNum.append(len(res['Fe'])) # this adds the calculated Fe coordination number for this particular oxygen atom Y = Y + FeCoorNum for n in ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10']: prefix = "./new_data/300k/" FeCoorNum = [] tmp = np.loadtxt(prefix + n + "/Combo_O_all.dat") X = np.concatenate((X, tmp[438:608, 1:]), 1) for O_index in range(1, 50): res = find_neighbors('O' + str(O_index), cutoff_radius, prefix + n + "/CONTCAR") FeCoorNum.append(len(res['Fe'])) Y = Y + FeCoorNum if multi: charges = np.loadtxt(prefix + n + "/charge.dat").reshape(1, 49) Y2 = np.concatenate((Y2, charges), 1) for n in ['01', '02', '03', '04', '05']: prefix = "./new_data/1000K/" FeCoorNum = [] tmp = np.loadtxt(prefix + n + "/Combo_O_all.dat") X = np.concatenate((X, tmp[438:608, 1:]), 1) for O_index in range(1, 50): res = find_neighbors('O' + str(O_index), cutoff_radius, prefix + n + "/CONTCAR") FeCoorNum.append(len(res['Fe'])) Y = Y + FeCoorNum if multi: charges = np.loadtxt(prefix + n + "/charge.dat").reshape(1, 49) Y2 = np.concatenate((Y2, charges), 1) X = np.delete(X, 0, 1) # remove the first column of zeros used to initialize X if augment: X, Y = data_augmentation(X, Y, num) # computes averaged spectra and labels Y = np.array(Y).reshape(1, X.shape[1]) if multi: Y2 = np.delete(Y2, 0, 1) Y2 = np.array(Y2).reshape(1, X.shape[1]) if augment: numOutputNodes = 1 else: numOutputNodes = int(Y.max()) + 1 # shuffle the input data m = X.shape[1] np.random.seed(0) # used if consistency is desired permutation = list(np.random.permutation(m)) shuffled_X = X[:, permutation] shuffled_Y = Y[:, permutation] # generate training, development, and test sets (64:16:20 ratio) divider1 = math.floor(m*16/25) divider2 = math.floor(m*4/5) # normalization: compute the mean and stdev for only the training data, and subtract from the whole data set mu = np.mean(shuffled_X[:, :divider1], axis=1).reshape(170, 1) std = np.std(shuffled_X[:, :divider1], axis=1).reshape(170, 1) shuffled_X = (shuffled_X - mu) / std if multi: shuffled_Y2 = Y2[:, permutation] return shuffled_X[:, :divider1], shuffled_X[:, divider1:divider2], shuffled_X[:, divider2:], shuffled_Y[:, :divider1], \ shuffled_Y[:, divider1:divider2], shuffled_Y[:, divider2:], shuffled_Y2[:, :divider1], shuffled_Y2[:, divider1:divider2], \ shuffled_Y2[:, divider2:], numOutputNodes else: return shuffled_X[:, :divider1], shuffled_X[:, divider1:divider2], shuffled_X[:, divider2:], shuffled_Y[:, :divider1], \ shuffled_Y[:, divider1:divider2], shuffled_Y[:, divider2:], numOutputNodes def data_augmentation(X, Y, num): """ Given data set X and its corresponding labels Y, augments the data by averaging 49 spectra and labels together. Arguments: ---------------------------- X, Y: the original spectra and corresponding labels num: number of new spectra desired (bounded by the number of examples, choose 49) Returns: ---------------------------- bigX, bigY: augmented versions of X and Y """ bigX = np.zeros((170, 1), float) bigY = np.zeros((5, 1), float) # the labels can be 0, 1, 2, 3, or 4; this allows us to keep track of how many spectra of each individual label are used Y = np.array(Y).reshape(1, len(Y)) Y_one_hot = np.zeros((5, Y.size)) # creates a one-hot vector with Y Y_one_hot[Y.astype(int), np.arange(Y.size)] = 1 np.random.seed(0) # for consistency for n in range(num): # repeat to get a 'num' number of samples indices = np.random.choice(Y.size, 49, replace = False) # randomly selects 49 columns to use, without replacement chooseX = X[:, indices] chooseY = Y_one_hot[:, indices] newX = np.sum(chooseX, axis=1).reshape((170, 1)) / 49 # averages 49 spectra newY = np.sum(chooseY, axis=1).reshape((5, 1)) / 49 # averages 49 labels bigX = np.concatenate((bigX, newX), 1) bigY = np.concatenate((bigY, newY), 1) # remove the first column of zeros that we used to initialize bigX and bigY bigX = np.delete(bigX, 0, 1) bigY = np.delete(bigY, 0, 1) weights = np.array([0,1,2,3,4]) bigY = np.matmul(weights, bigY).reshape((1, num)) # finds the weighted average of all labels return bigX, bigY def real_averaged_spectra(num = 10000, cutoff_radius = 2.6): """ Returns the average spectrum and coordination number from each POSCAR. The 49 spectra are all taken from the same POSCAR file, rather than in data_augmentation, where a set of random 49 are taken. """ X = np.zeros((170, 1), float) # 170 is the number of data points in the spectrum Y = [] X_avg = np.zeros((170, 1), float) Y_avg = np.zeros((5, 1), float) # extract the data, stored in three separate directories for i in ['0K', '15ps', '20ps']: prefix = "./new_data/original/" FeCoorNum = [] tmp = np.loadtxt(prefix + i + "_Combo_O_all.dat") # energy range [-1 eV ~ 14 eV], 170 data points X = np.concatenate((X, tmp[436:606, 1:]), 1) for O_index in range(1, 50): # cycles through the 49 oxygen atoms present res = find_neighbors('O' + str(O_index), cutoff_radius, prefix + "POSCAR_" + i) FeCoorNum.append(len(res['Fe'])) # this adds the calculated Fe coordination number for this particular oxygen atom Y = Y + FeCoorNum for n in ['01', '02', '03', '04', '05', '06', '07', '08', '09', '10']: prefix = "./new_data/300k/" FeCoorNum = [] tmp = np.loadtxt(prefix + n + "/Combo_O_all.dat") X = np.concatenate((X, tmp[438:608, 1:]), 1) for O_index in range(1, 50): res = find_neighbors('O' + str(O_index), cutoff_radius, prefix + n + "/CONTCAR") FeCoorNum.append(len(res['Fe'])) Y = Y + FeCoorNum for n in ['01', '02', '03', '04', '05']: prefix = "./new_data/1000K/" FeCoorNum = [] tmp = np.loadtxt(prefix + n + "/Combo_O_all.dat") X = np.concatenate((X, tmp[438:608, 1:]), 1) for O_index in range(1, 50): res = find_neighbors('O' + str(O_index), cutoff_radius, prefix + n + "/CONTCAR") FeCoorNum.append(len(res['Fe'])) Y = Y + FeCoorNum X_old = np.delete(X, 0, 1) # remove the first column of zeros used to initialize X Y_new = np.array(Y).reshape(1, len(Y)) Y_one_hot = np.zeros((5, Y_new.size)) # creates a one-hot vector with Y Y_one_hot[Y_new.astype(int), np.arange(Y_new.size)] = 1 for i in range(18): # 18, because there are 18 POSCAR/CONTCAR files chooseX = X[:, i*49:(i+1)*49] chooseY = Y_one_hot[:, i*49:(i+1)*49] newX = np.sum(chooseX, axis=1).reshape((170, 1)) / 49 # averages 49 spectra together newY = np.sum(chooseY, axis=1).reshape((5, 1)) / 49 # averages 49 labels together X_avg = np.concatenate((X_avg, newX), 1) Y_avg = np.concatenate((Y_avg, newY), 1) # remove the first column of zeros that we used to initialize bigX and bigY X_avg = np.delete(X_avg, 0, 1) Y_avg = np.delete(Y_avg, 0, 1) weights = np.array([0,1,2,3,4]) Y_avg = np.matmul(weights, Y_avg).reshape((1, 18)) # finds the weighted average of all labels X, _ = data_augmentation(X_old, Y, num) # computes the averaged spectra used in training divider1 = math.floor(X.shape[1]*16/25) # preprocessing on the real spectra: compute the mean and stdev for only the training data # then use these values on the real averaged spectra, because mu = np.mean(X[:, :divider1], axis=1).reshape(170, 1) std =
np.std(X[:, :divider1], axis=1)
numpy.std
# Author: <NAME> <<EMAIL>> # # License: BSD 3 clause from __future__ import print_function import locale from warnings import warn import time from scipy.optimize import curve_fit from sklearn.base import BaseEstimator from sklearn.utils import check_random_state, check_array from sklearn.utils.validation import check_is_fitted from sklearn.metrics import pairwise_distances from sklearn.preprocessing import normalize from sklearn.neighbors import KDTree try: import joblib except ImportError: # sklearn.externals.joblib is deprecated in 0.21, will be removed in 0.23 from sklearn.externals import joblib import numpy as np import scipy.sparse from scipy.sparse import tril as sparse_tril, triu as sparse_triu import scipy.sparse.csgraph import numba import umap.distances as dist import umap.sparse as sparse from umap.utils import ( submatrix, ts, csr_unique, fast_knn_indices, ) from umap.spectral import spectral_layout from umap.layouts import ( optimize_layout_euclidean, optimize_layout_generic, optimize_layout_inverse, ) from pynndescent import NNDescent from pynndescent.distances import named_distances as pynn_named_distances from pynndescent.sparse import sparse_named_distances as pynn_sparse_named_distances locale.setlocale(locale.LC_NUMERIC, "C") INT32_MIN = np.iinfo(np.int32).min + 1 INT32_MAX = np.iinfo(np.int32).max - 1 SMOOTH_K_TOLERANCE = 1e-5 MIN_K_DIST_SCALE = 1e-3 NPY_INFINITY = np.inf DISCONNECTION_DISTANCES = { "correlation": 1, "cosine": 1, "hellinger": 1, "jaccard": 1, "dice": 1, } def flatten_iter(container): for i in container: if isinstance(i, (list, tuple)): for j in flatten_iter(i): yield j else: yield i def flattened(container): return tuple(flatten_iter(container)) def breadth_first_search(adjmat, start, min_vertices): explored = [] queue = [start] levels = {} levels[start] = 0 max_level = np.inf visited = [start] while queue: node = queue.pop(0) explored.append(node) if max_level == np.inf and len(explored) > min_vertices: max_level = max(levels.values()) if levels[node] + 1 < max_level: neighbors = adjmat[node].indices for neighbour in neighbors: if neighbour not in visited: queue.append(neighbour) visited.append(neighbour) levels[neighbour] = levels[node] + 1 return np.array(explored) def raise_disconnected_warning( edges_removed, vertices_disconnected, disconnection_distance, total_rows, threshold=0.1, verbose=False, ): """A simple wrapper function to avoid large amounts of code repetition.""" if verbose & (vertices_disconnected == 0) & (edges_removed > 0): print( f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges. " f"This is not a problem as no vertices were disconnected." ) elif (vertices_disconnected > 0) & ( vertices_disconnected <= threshold * total_rows ): warn( f"A few of your vertices were disconnected from the manifold. This shouldn't cause problems.\n" f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges.\n" f"It has only fully disconnected {vertices_disconnected} vertices.\n" f"Use umap.utils.disconnected_vertices() to identify them.", ) elif vertices_disconnected > threshold * total_rows: warn( f"A large number of your vertices were disconnected from the manifold.\n" f"Disconnection_distance = {disconnection_distance} has removed {edges_removed} edges.\n" f"It has fully disconnected {vertices_disconnected} vertices.\n" f"You might consider using find_disconnected_points() to find and remove these points from your data.\n" f"Use umap.utils.disconnected_vertices() to identify them.", ) @numba.njit( locals={ "psum": numba.types.float32, "lo": numba.types.float32, "mid": numba.types.float32, "hi": numba.types.float32, }, fastmath=True, ) # benchmarking `parallel=True` shows it to *decrease* performance def smooth_knn_dist(distances, k, n_iter=64, local_connectivity=1.0, bandwidth=1.0): """Compute a continuous version of the distance to the kth nearest neighbor. That is, this is similar to knn-distance but allows continuous k values rather than requiring an integral k. In essence we are simply computing the distance such that the cardinality of fuzzy set we generate is k. Parameters ---------- distances: array of shape (n_samples, n_neighbors) Distances to nearest neighbors for each samples. Each row should be a sorted list of distances to a given samples nearest neighbors. k: float The number of nearest neighbors to approximate for. n_iter: int (optional, default 64) We need to binary search for the correct distance value. This is the max number of iterations to use in such a search. local_connectivity: int (optional, default 1) The local connectivity required -- i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. bandwidth: float (optional, default 1) The target bandwidth of the kernel, larger values will produce larger return values. Returns ------- knn_dist: array of shape (n_samples,) The distance to kth nearest neighbor, as suitably approximated. nn_dist: array of shape (n_samples,) The distance to the 1st nearest neighbor for each point. """ target = np.log2(k) * bandwidth rho = np.zeros(distances.shape[0], dtype=np.float32) result = np.zeros(distances.shape[0], dtype=np.float32) mean_distances = np.mean(distances) for i in range(distances.shape[0]): lo = 0.0 hi = NPY_INFINITY mid = 1.0 # TODO: This is very inefficient, but will do for now. FIXME ith_distances = distances[i] non_zero_dists = ith_distances[ith_distances > 0.0] if non_zero_dists.shape[0] >= local_connectivity: index = int(np.floor(local_connectivity)) interpolation = local_connectivity - index if index > 0: rho[i] = non_zero_dists[index - 1] if interpolation > SMOOTH_K_TOLERANCE: rho[i] += interpolation * ( non_zero_dists[index] - non_zero_dists[index - 1] ) else: rho[i] = interpolation * non_zero_dists[0] elif non_zero_dists.shape[0] > 0: rho[i] = np.max(non_zero_dists) for n in range(n_iter): psum = 0.0 for j in range(1, distances.shape[1]): d = distances[i, j] - rho[i] if d > 0: psum += np.exp(-(d / mid)) else: psum += 1.0 if np.fabs(psum - target) < SMOOTH_K_TOLERANCE: break if psum > target: hi = mid mid = (lo + hi) / 2.0 else: lo = mid if hi == NPY_INFINITY: mid *= 2 else: mid = (lo + hi) / 2.0 result[i] = mid # TODO: This is very inefficient, but will do for now. FIXME if rho[i] > 0.0: mean_ith_distances = np.mean(ith_distances) if result[i] < MIN_K_DIST_SCALE * mean_ith_distances: result[i] = MIN_K_DIST_SCALE * mean_ith_distances else: if result[i] < MIN_K_DIST_SCALE * mean_distances: result[i] = MIN_K_DIST_SCALE * mean_distances return result, rho def nearest_neighbors( X, n_neighbors, metric, metric_kwds, angular, random_state, low_memory=True, use_pynndescent=True, n_jobs=-1, verbose=False, ): """Compute the ``n_neighbors`` nearest points for each data point in ``X`` under ``metric``. This may be exact, but more likely is approximated via nearest neighbor descent. Parameters ---------- X: array of shape (n_samples, n_features) The input data to compute the k-neighbor graph of. n_neighbors: int The number of nearest neighbors to compute for each sample in ``X``. metric: string or callable The metric to use for the computation. metric_kwds: dict Any arguments to pass to the metric computation function. angular: bool Whether to use angular rp trees in NN approximation. random_state: np.random state The random state to use for approximate NN computations. low_memory: bool (optional, default False) Whether to pursue lower memory NNdescent. verbose: bool (optional, default False) Whether to print status data during the computation. Returns ------- knn_indices: array of shape (n_samples, n_neighbors) The indices on the ``n_neighbors`` closest points in the dataset. knn_dists: array of shape (n_samples, n_neighbors) The distances to the ``n_neighbors`` closest points in the dataset. rp_forest: list of trees The random projection forest used for searching (if used, None otherwise) """ if verbose: print(ts(), "Finding Nearest Neighbors") if metric == "precomputed": # Note that this does not support sparse distance matrices yet ... # Compute indices of n nearest neighbors knn_indices = fast_knn_indices(X, n_neighbors) # knn_indices = np.argsort(X)[:, :n_neighbors] # Compute the nearest neighbor distances # (equivalent to np.sort(X)[:,:n_neighbors]) knn_dists = X[np.arange(X.shape[0])[:, None], knn_indices].copy() # Prune any nearest neighbours that are infinite distance apart. disconnected_index = knn_dists == np.inf knn_indices[disconnected_index] = -1 knn_search_index = None else: # TODO: Hacked values for now n_trees = min(64, 5 + int(round((X.shape[0]) ** 0.5 / 20.0))) n_iters = max(5, int(round(np.log2(X.shape[0])))) knn_search_index = NNDescent( X, n_neighbors=n_neighbors, metric=metric, metric_kwds=metric_kwds, random_state=random_state, n_trees=n_trees, n_iters=n_iters, max_candidates=60, low_memory=low_memory, n_jobs=n_jobs, verbose=verbose, ) knn_indices, knn_dists = knn_search_index.neighbor_graph if verbose: print(ts(), "Finished Nearest Neighbor Search") return knn_indices, knn_dists, knn_search_index @numba.njit( locals={ "knn_dists": numba.types.float32[:, ::1], "sigmas": numba.types.float32[::1], "rhos": numba.types.float32[::1], "val": numba.types.float32, }, parallel=True, fastmath=True, ) def compute_membership_strengths( knn_indices, knn_dists, sigmas, rhos, return_dists=False, bipartite=False, ): """Construct the membership strength data for the 1-skeleton of each local fuzzy simplicial set -- this is formed as a sparse matrix where each row is a local fuzzy simplicial set, with a membership strength for the 1-simplex to each other data point. Parameters ---------- knn_indices: array of shape (n_samples, n_neighbors) The indices on the ``n_neighbors`` closest points in the dataset. knn_dists: array of shape (n_samples, n_neighbors) The distances to the ``n_neighbors`` closest points in the dataset. sigmas: array of shape(n_samples) The normalization factor derived from the metric tensor approximation. rhos: array of shape(n_samples) The local connectivity adjustment. return_dists: bool (optional, default False) Whether to return the pairwise distance associated with each edge bipartite: bool (optional, default False) Does the nearest neighbour set represent a bipartite graph? That is are the nearest neighbour indices from the same point set as the row indices? Returns ------- rows: array of shape (n_samples * n_neighbors) Row data for the resulting sparse matrix (coo format) cols: array of shape (n_samples * n_neighbors) Column data for the resulting sparse matrix (coo format) vals: array of shape (n_samples * n_neighbors) Entries for the resulting sparse matrix (coo format) dists: array of shape (n_samples * n_neighbors) Distance associated with each entry in the resulting sparse matrix """ n_samples = knn_indices.shape[0] n_neighbors = knn_indices.shape[1] rows = np.zeros(knn_indices.size, dtype=np.int32) cols = np.zeros(knn_indices.size, dtype=np.int32) vals = np.zeros(knn_indices.size, dtype=np.float32) if return_dists: dists = np.zeros(knn_indices.size, dtype=np.float32) else: dists = None for i in range(n_samples): for j in range(n_neighbors): if knn_indices[i, j] == -1: continue # We didn't get the full knn for i # If applied to an adjacency matrix points shouldn't be similar to themselves. # If applied to an incidence matrix (or bipartite) then the row and column indices are different. if (bipartite == False) & (knn_indices[i, j] == i): val = 0.0 elif knn_dists[i, j] - rhos[i] <= 0.0 or sigmas[i] == 0.0: val = 1.0 else: val = np.exp(-((knn_dists[i, j] - rhos[i]) / (sigmas[i]))) rows[i * n_neighbors + j] = i cols[i * n_neighbors + j] = knn_indices[i, j] vals[i * n_neighbors + j] = val if return_dists: dists[i * n_neighbors + j] = knn_dists[i, j] return rows, cols, vals, dists def fuzzy_simplicial_set( X, n_neighbors, random_state, metric, metric_kwds={}, knn_indices=None, knn_dists=None, angular=False, set_op_mix_ratio=1.0, local_connectivity=1.0, apply_set_operations=True, verbose=False, return_dists=None, ): """Given a set of data X, a neighborhood size, and a measure of distance compute the fuzzy simplicial set (here represented as a fuzzy graph in the form of a sparse matrix) associated to the data. This is done by locally approximating geodesic distance at each point, creating a fuzzy simplicial set for each such point, and then combining all the local fuzzy simplicial sets into a global one via a fuzzy union. Parameters ---------- X: array of shape (n_samples, n_features) The data to be modelled as a fuzzy simplicial set. n_neighbors: int The number of neighbors to use to approximate geodesic distance. Larger numbers induce more global estimates of the manifold that can miss finer detail, while smaller values will focus on fine manifold structure to the detriment of the larger picture. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or function (optional, default 'euclidean') The metric to use to compute distances in high dimensional space. If a string is passed it must match a valid predefined metric. If a general metric is required a function that takes two 1d arrays and returns a float can be provided. For performance purposes it is required that this be a numba jit'd function. Valid string metrics include: * euclidean (or l2) * manhattan (or l1) * cityblock * braycurtis * canberra * chebyshev * correlation * cosine * dice * hamming * jaccard * kulsinski * ll_dirichlet * mahalanobis * matching * minkowski * rogerstanimoto * russellrao * seuclidean * sokalmichener * sokalsneath * sqeuclidean * yule * wminkowski Metrics that take arguments (such as minkowski, mahalanobis etc.) can have arguments passed via the metric_kwds dictionary. At this time care must be taken and dictionary elements must be ordered appropriately; this will hopefully be fixed in the future. metric_kwds: dict (optional, default {}) Arguments to pass on to the metric, such as the ``p`` value for Minkowski distance. knn_indices: array of shape (n_samples, n_neighbors) (optional) If the k-nearest neighbors of each point has already been calculated you can pass them in here to save computation time. This should be an array with the indices of the k-nearest neighbors as a row for each data point. knn_dists: array of shape (n_samples, n_neighbors) (optional) If the k-nearest neighbors of each point has already been calculated you can pass them in here to save computation time. This should be an array with the distances of the k-nearest neighbors as a row for each data point. angular: bool (optional, default False) Whether to use angular/cosine distance for the random projection forest for seeding NN-descent to determine approximate nearest neighbors. set_op_mix_ratio: float (optional, default 1.0) Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local_connectivity: int (optional, default 1) The local connectivity required -- i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. return_dists: bool or None (optional, default None) Whether to return the pairwise distance associated with each edge. Returns ------- fuzzy_simplicial_set: coo_matrix A fuzzy simplicial set represented as a sparse matrix. The (i, j) entry of the matrix represents the membership strength of the 1-simplex between the ith and jth sample points. """ if knn_indices is None or knn_dists is None: knn_indices, knn_dists, _ = nearest_neighbors( X, n_neighbors, metric, metric_kwds, angular, random_state, verbose=verbose, ) knn_dists = knn_dists.astype(np.float32) sigmas, rhos = smooth_knn_dist( knn_dists, float(n_neighbors), local_connectivity=float(local_connectivity), ) rows, cols, vals, dists = compute_membership_strengths( knn_indices, knn_dists, sigmas, rhos, return_dists ) result = scipy.sparse.coo_matrix( (vals, (rows, cols)), shape=(X.shape[0], X.shape[0]) ) result.eliminate_zeros() if apply_set_operations: transpose = result.transpose() prod_matrix = result.multiply(transpose) result = ( set_op_mix_ratio * (result + transpose - prod_matrix) + (1.0 - set_op_mix_ratio) * prod_matrix ) result.eliminate_zeros() if return_dists is None: return result, sigmas, rhos else: if return_dists: dmat = scipy.sparse.coo_matrix( (dists, (rows, cols)), shape=(X.shape[0], X.shape[0]) ) dists = dmat.maximum(dmat.transpose()).todok() else: dists = None return result, sigmas, rhos, dists @numba.njit() def fast_intersection(rows, cols, values, target, unknown_dist=1.0, far_dist=5.0): """Under the assumption of categorical distance for the intersecting simplicial set perform a fast intersection. Parameters ---------- rows: array An array of the row of each non-zero in the sparse matrix representation. cols: array An array of the column of each non-zero in the sparse matrix representation. values: array An array of the value of each non-zero in the sparse matrix representation. target: array of shape (n_samples) The categorical labels to use in the intersection. unknown_dist: float (optional, default 1.0) The distance an unknown label (-1) is assumed to be from any point. far_dist float (optional, default 5.0) The distance between unmatched labels. Returns ------- None """ for nz in range(rows.shape[0]): i = rows[nz] j = cols[nz] if (target[i] == -1) or (target[j] == -1): values[nz] *= np.exp(-unknown_dist) elif target[i] != target[j]: values[nz] *= np.exp(-far_dist) return @numba.jit() def fast_metric_intersection( rows, cols, values, discrete_space, metric, metric_args, scale ): """Under the assumption of categorical distance for the intersecting simplicial set perform a fast intersection. Parameters ---------- rows: array An array of the row of each non-zero in the sparse matrix representation. cols: array An array of the column of each non-zero in the sparse matrix representation. values: array of shape An array of the values of each non-zero in the sparse matrix representation. discrete_space: array of shape (n_samples, n_features) The vectors of categorical labels to use in the intersection. metric: numba function The function used to calculate distance over the target array. scale: float A scaling to apply to the metric. Returns ------- None """ for nz in range(rows.shape[0]): i = rows[nz] j = cols[nz] dist = metric(discrete_space[i], discrete_space[j], *metric_args) values[nz] *= np.exp(-(scale * dist)) return @numba.njit() def reprocess_row(probabilities, k=15, n_iters=32): target = np.log2(k) lo = 0.0 hi = NPY_INFINITY mid = 1.0 for n in range(n_iters): psum = 0.0 for j in range(probabilities.shape[0]): psum += pow(probabilities[j], mid) if np.fabs(psum - target) < SMOOTH_K_TOLERANCE: break if psum < target: hi = mid mid = (lo + hi) / 2.0 else: lo = mid if hi == NPY_INFINITY: mid *= 2 else: mid = (lo + hi) / 2.0 return np.power(probabilities, mid) @numba.njit() def reset_local_metrics(simplicial_set_indptr, simplicial_set_data): for i in range(simplicial_set_indptr.shape[0] - 1): simplicial_set_data[ simplicial_set_indptr[i] : simplicial_set_indptr[i + 1] ] = reprocess_row( simplicial_set_data[simplicial_set_indptr[i] : simplicial_set_indptr[i + 1]] ) return def reset_local_connectivity(simplicial_set, reset_local_metric=False): """Reset the local connectivity requirement -- each data sample should have complete confidence in at least one 1-simplex in the simplicial set. We can enforce this by locally rescaling confidences, and then remerging the different local simplicial sets together. Parameters ---------- simplicial_set: sparse matrix The simplicial set for which to recalculate with respect to local connectivity. Returns ------- simplicial_set: sparse_matrix The recalculated simplicial set, now with the local connectivity assumption restored. """ simplicial_set = normalize(simplicial_set, norm="max") if reset_local_metric: simplicial_set = simplicial_set.tocsr() reset_local_metrics(simplicial_set.indptr, simplicial_set.data) simplicial_set = simplicial_set.tocoo() transpose = simplicial_set.transpose() prod_matrix = simplicial_set.multiply(transpose) simplicial_set = simplicial_set + transpose - prod_matrix simplicial_set.eliminate_zeros() return simplicial_set def discrete_metric_simplicial_set_intersection( simplicial_set, discrete_space, unknown_dist=1.0, far_dist=5.0, metric=None, metric_kws={}, metric_scale=1.0, ): """Combine a fuzzy simplicial set with another fuzzy simplicial set generated from discrete metric data using discrete distances. The target data is assumed to be categorical label data (a vector of labels), and this will update the fuzzy simplicial set to respect that label data. TODO: optional category cardinality based weighting of distance Parameters ---------- simplicial_set: sparse matrix The input fuzzy simplicial set. discrete_space: array of shape (n_samples) The categorical labels to use in the intersection. unknown_dist: float (optional, default 1.0) The distance an unknown label (-1) is assumed to be from any point. far_dist: float (optional, default 5.0) The distance between unmatched labels. metric: str (optional, default None) If not None, then use this metric to determine the distance between values. metric_scale: float (optional, default 1.0) If using a custom metric scale the distance values by this value -- this controls the weighting of the intersection. Larger values weight more toward target. Returns ------- simplicial_set: sparse matrix The resulting intersected fuzzy simplicial set. """ simplicial_set = simplicial_set.tocoo() if metric is not None: # We presume target is now a 2d array, with each row being a # vector of target info if metric in dist.named_distances: metric_func = dist.named_distances[metric] else: raise ValueError("Discrete intersection metric is not recognized") fast_metric_intersection( simplicial_set.row, simplicial_set.col, simplicial_set.data, discrete_space, metric_func, tuple(metric_kws.values()), metric_scale, ) else: fast_intersection( simplicial_set.row, simplicial_set.col, simplicial_set.data, discrete_space, unknown_dist, far_dist, ) simplicial_set.eliminate_zeros() return reset_local_connectivity(simplicial_set) def general_simplicial_set_intersection( simplicial_set1, simplicial_set2, weight=0.5, right_complement=False ): if right_complement: result = simplicial_set1.tocoo() else: result = (simplicial_set1 + simplicial_set2).tocoo() left = simplicial_set1.tocsr() right = simplicial_set2.tocsr() sparse.general_sset_intersection( left.indptr, left.indices, left.data, right.indptr, right.indices, right.data, result.row, result.col, result.data, mix_weight=weight, right_complement=right_complement, ) return result def general_simplicial_set_union(simplicial_set1, simplicial_set2): result = (simplicial_set1 + simplicial_set2).tocoo() left = simplicial_set1.tocsr() right = simplicial_set2.tocsr() sparse.general_sset_union( left.indptr, left.indices, left.data, right.indptr, right.indices, right.data, result.row, result.col, result.data, ) return result def make_epochs_per_sample(weights, n_epochs): """Given a set of weights and number of epochs generate the number of epochs per sample for each weight. Parameters ---------- weights: array of shape (n_1_simplices) The weights ofhow much we wish to sample each 1-simplex. n_epochs: int The total number of epochs we want to train for. Returns ------- An array of number of epochs per sample, one for each 1-simplex. """ result = -1.0 * np.ones(weights.shape[0], dtype=np.float64) n_samples = n_epochs * (weights / weights.max()) result[n_samples > 0] = float(n_epochs) / n_samples[n_samples > 0] return result def simplicial_set_embedding( data, graph, n_components, initial_alpha, a, b, gamma, negative_sample_rate, n_epochs, init, random_state, metric, metric_kwds, densmap, densmap_kwds, output_dens, output_metric=dist.named_distances_with_gradients["euclidean"], output_metric_kwds={}, euclidean_output=True, parallel=False, verbose=False, ): """Perform a fuzzy simplicial set embedding, using a specified initialisation method and then minimizing the fuzzy set cross entropy between the 1-skeletons of the high and low dimensional fuzzy simplicial sets. Parameters ---------- data: array of shape (n_samples, n_features) The source data to be embedded by UMAP. graph: sparse matrix The 1-skeleton of the high dimensional fuzzy simplicial set as represented by a graph for which we require a sparse matrix for the (weighted) adjacency matrix. n_components: int The dimensionality of the euclidean space into which to embed the data. initial_alpha: float Initial learning rate for the SGD. a: float Parameter of differentiable approximation of right adjoint functor b: float Parameter of differentiable approximation of right adjoint functor gamma: float Weight to apply to negative samples. negative_sample_rate: int (optional, default 5) The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. n_epochs: int (optional, default 0) The number of training epochs to be used in optimizing the low dimensional embedding. Larger values result in more accurate embeddings. If 0 is specified a value will be selected based on the size of the input dataset (200 for large datasets, 500 for small). init: string How to initialize the low dimensional embedding. Options are: * 'spectral': use a spectral embedding of the fuzzy 1-skeleton * 'random': assign initial embedding positions at random. * A numpy array of initial embedding positions. random_state: numpy RandomState or equivalent A state capable being used as a numpy random state. metric: string or callable The metric used to measure distance in high dimensional space; used if multiple connected components need to be layed out. metric_kwds: dict Key word arguments to be passed to the metric function; used if multiple connected components need to be layed out. densmap: bool Whether to use the density-augmented objective function to optimize the embedding according to the densMAP algorithm. densmap_kwds: dict Key word arguments to be used by the densMAP optimization. output_dens: bool Whether to output local radii in the original data and the embedding. output_metric: function Function returning the distance between two points in embedding space and the gradient of the distance wrt the first argument. output_metric_kwds: dict Key word arguments to be passed to the output_metric function. euclidean_output: bool Whether to use the faster code specialised for euclidean output metrics parallel: bool (optional, default False) Whether to run the computation using numba parallel. Running in parallel is non-deterministic, and is not used if a random seed has been set, to ensure reproducibility. verbose: bool (optional, default False) Whether to report information on the current progress of the algorithm. Returns ------- embedding: array of shape (n_samples, n_components) The optimized of ``graph`` into an ``n_components`` dimensional euclidean space. aux_data: dict Auxiliary output returned with the embedding. When densMAP extension is turned on, this dictionary includes local radii in the original data (``rad_orig``) and in the embedding (``rad_emb``). """ graph = graph.tocoo() graph.sum_duplicates() n_vertices = graph.shape[1] if n_epochs <= 0: # For smaller datasets we can use more epochs if graph.shape[0] <= 10000: n_epochs = 500 else: n_epochs = 200 # Use more epochs for densMAP if densmap: n_epochs += 200 graph.data[graph.data < (graph.data.max() / float(n_epochs))] = 0.0 graph.eliminate_zeros() if isinstance(init, str) and init == "random": embedding = random_state.uniform( low=-10.0, high=10.0, size=(graph.shape[0], n_components) ).astype(np.float32) elif isinstance(init, str) and init == "spectral": # We add a little noise to avoid local minima for optimization to come initialisation = spectral_layout( data, graph, n_components, random_state, metric=metric, metric_kwds=metric_kwds, ) expansion = 10.0 / np.abs(initialisation).max() embedding = (initialisation * expansion).astype( np.float32 ) + random_state.normal( scale=0.0001, size=[graph.shape[0], n_components] ).astype( np.float32 ) else: init_data = np.array(init) if len(init_data.shape) == 2: if np.unique(init_data, axis=0).shape[0] < init_data.shape[0]: tree = KDTree(init_data) dist, ind = tree.query(init_data, k=2) nndist = np.mean(dist[:, 1]) embedding = init_data + random_state.normal( scale=0.001 * nndist, size=init_data.shape ).astype(np.float32) else: embedding = init_data epochs_per_sample = make_epochs_per_sample(graph.data, n_epochs) head = graph.row tail = graph.col weight = graph.data rng_state = random_state.randint(INT32_MIN, INT32_MAX, 3).astype(np.int64) aux_data = {} if densmap or output_dens: if verbose: print(ts() + " Computing original densities") dists = densmap_kwds["graph_dists"] mu_sum = np.zeros(n_vertices, dtype=np.float32) ro = np.zeros(n_vertices, dtype=np.float32) for i in range(len(head)): j = head[i] k = tail[i] D = dists[j, k] * dists[j, k] # match sq-Euclidean used for embedding mu = graph.data[i] ro[j] += mu * D ro[k] += mu * D mu_sum[j] += mu mu_sum[k] += mu epsilon = 1e-8 ro = np.log(epsilon + (ro / mu_sum)) if densmap: R = (ro - np.mean(ro)) / np.std(ro) densmap_kwds["mu"] = graph.data densmap_kwds["mu_sum"] = mu_sum densmap_kwds["R"] = R if output_dens: aux_data["rad_orig"] = ro embedding = ( 10.0 * (embedding - np.min(embedding, 0)) / (np.max(embedding, 0) - np.min(embedding, 0)) ).astype(np.float32, order="C") if euclidean_output: embedding = optimize_layout_euclidean( embedding, embedding, head, tail, n_epochs, n_vertices, epochs_per_sample, a, b, rng_state, gamma, initial_alpha, negative_sample_rate, parallel=parallel, verbose=verbose, densmap=densmap, densmap_kwds=densmap_kwds, ) else: embedding = optimize_layout_generic( embedding, embedding, head, tail, n_epochs, n_vertices, epochs_per_sample, a, b, rng_state, gamma, initial_alpha, negative_sample_rate, output_metric, tuple(output_metric_kwds.values()), verbose=verbose, ) if output_dens: if verbose: print(ts() + " Computing embedding densities") # Compute graph in embedding (knn_indices, knn_dists, rp_forest,) = nearest_neighbors( embedding, densmap_kwds["n_neighbors"], "euclidean", {}, False, random_state, verbose=verbose, ) emb_graph, emb_sigmas, emb_rhos, emb_dists = fuzzy_simplicial_set( embedding, densmap_kwds["n_neighbors"], random_state, "euclidean", {}, knn_indices, knn_dists, verbose=verbose, return_dists=True, ) emb_graph = emb_graph.tocoo() emb_graph.sum_duplicates() emb_graph.eliminate_zeros() n_vertices = emb_graph.shape[1] mu_sum = np.zeros(n_vertices, dtype=np.float32) re = np.zeros(n_vertices, dtype=np.float32) head = emb_graph.row tail = emb_graph.col for i in range(len(head)): j = head[i] k = tail[i] D = emb_dists[j, k] mu = emb_graph.data[i] re[j] += mu * D re[k] += mu * D mu_sum[j] += mu mu_sum[k] += mu epsilon = 1e-8 re = np.log(epsilon + (re / mu_sum)) aux_data["rad_emb"] = re return embedding, aux_data @numba.njit() def init_transform(indices, weights, embedding): """Given indices and weights and an original embeddings initialize the positions of new points relative to the indices and weights (of their neighbors in the source data). Parameters ---------- indices: array of shape (n_new_samples, n_neighbors) The indices of the neighbors of each new sample weights: array of shape (n_new_samples, n_neighbors) The membership strengths of associated 1-simplices for each of the new samples. embedding: array of shape (n_samples, dim) The original embedding of the source data. Returns ------- new_embedding: array of shape (n_new_samples, dim) An initial embedding of the new sample points. """ result = np.zeros((indices.shape[0], embedding.shape[1]), dtype=np.float32) for i in range(indices.shape[0]): for j in range(indices.shape[1]): for d in range(embedding.shape[1]): result[i, d] += weights[i, j] * embedding[indices[i, j], d] return result def init_graph_transform(graph, embedding): """Given a bipartite graph representing the 1-simplices and strengths between the new points and the original data set along with an embedding of the original points initialize the positions of new points relative to the strengths (of their neighbors in the source data). If a point is in our original data set it embeds at the original points coordinates. If a point has no neighbours in our original dataset it embeds as the np.nan vector. Otherwise a point is the weighted average of it's neighbours embedding locations. Parameters ---------- graph: csr_matrix (n_new_samples, n_samples) A matrix indicating the the 1-simplices and their associated strengths. These strengths should be values between zero and one and not normalized. One indicating that the new point was identical to one of our original points. embedding: array of shape (n_samples, dim) The original embedding of the source data. Returns ------- new_embedding: array of shape (n_new_samples, dim) An initial embedding of the new sample points. """ result = np.zeros((graph.shape[0], embedding.shape[1]), dtype=np.float32) for row_index in range(graph.shape[0]): num_neighbours = len(graph[row_index].indices) if num_neighbours == 0: result[row_index] = np.nan continue for col_index in graph[row_index].indices: if graph[row_index, col_index] == 1: result[row_index, :] = embedding[col_index, :] break for d in range(embedding.shape[1]): result[row_index, d] += ( graph[row_index, col_index] / num_neighbours * embedding[col_index, d] ) return result @numba.njit() def init_update(current_init, n_original_samples, indices): for i in range(n_original_samples, indices.shape[0]): n = 0 for j in range(indices.shape[1]): for d in range(current_init.shape[1]): if indices[i, j] < n_original_samples: n += 1 current_init[i, d] += current_init[indices[i, j], d] for d in range(current_init.shape[1]): current_init[i, d] /= n return def find_ab_params(spread, min_dist): """Fit a, b params for the differentiable curve used in lower dimensional fuzzy simplicial complex construction. We want the smooth curve (from a pre-defined family with simple gradient) that best matches an offset exponential decay. """ def curve(x, a, b): return 1.0 / (1.0 + a * x ** (2 * b)) xv = np.linspace(0, spread * 3, 300) yv = np.zeros(xv.shape) yv[xv < min_dist] = 1.0 yv[xv >= min_dist] = np.exp(-(xv[xv >= min_dist] - min_dist) / spread) params, covar = curve_fit(curve, xv, yv) return params[0], params[1] class UMAP(BaseEstimator): """Uniform Manifold Approximation and Projection Finds a low dimensional embedding of the data that approximates an underlying manifold. Parameters ---------- n_neighbors: float (optional, default 15) The size of local neighborhood (in terms of number of neighboring sample points) used for manifold approximation. Larger values result in more global views of the manifold, while smaller values result in more local data being preserved. In general values should be in the range 2 to 100. n_components: int (optional, default 2) The dimension of the space to embed into. This defaults to 2 to provide easy visualization, but can reasonably be set to any integer value in the range 2 to 100. metric: string or function (optional, default 'euclidean') The metric to use to compute distances in high dimensional space. If a string is passed it must match a valid predefined metric. If a general metric is required a function that takes two 1d arrays and returns a float can be provided. For performance purposes it is required that this be a numba jit'd function. Valid string metrics include: * euclidean * manhattan * chebyshev * minkowski * canberra * braycurtis * mahalanobis * wminkowski * seuclidean * cosine * correlation * haversine * hamming * jaccard * dice * russelrao * kulsinski * ll_dirichlet * hellinger * rogerstanimoto * sokalmichener * sokalsneath * yule Metrics that take arguments (such as minkowski, mahalanobis etc.) can have arguments passed via the metric_kwds dictionary. At this time care must be taken and dictionary elements must be ordered appropriately; this will hopefully be fixed in the future. n_epochs: int (optional, default None) The number of training epochs to be used in optimizing the low dimensional embedding. Larger values result in more accurate embeddings. If None is specified a value will be selected based on the size of the input dataset (200 for large datasets, 500 for small). learning_rate: float (optional, default 1.0) The initial learning rate for the embedding optimization. init: string (optional, default 'spectral') How to initialize the low dimensional embedding. Options are: * 'spectral': use a spectral embedding of the fuzzy 1-skeleton * 'random': assign initial embedding positions at random. * A numpy array of initial embedding positions. min_dist: float (optional, default 0.1) The effective minimum distance between embedded points. Smaller values will result in a more clustered/clumped embedding where nearby points on the manifold are drawn closer together, while larger values will result on a more even dispersal of points. The value should be set relative to the ``spread`` value, which determines the scale at which embedded points will be spread out. spread: float (optional, default 1.0) The effective scale of embedded points. In combination with ``min_dist`` this determines how clustered/clumped the embedded points are. low_memory: bool (optional, default False) For some datasets the nearest neighbor computation can consume a lot of memory. If you find that UMAP is failing due to memory constraints consider setting this option to True. This approach is more computationally expensive, but avoids excessive memory use. set_op_mix_ratio: float (optional, default 1.0) Interpolate between (fuzzy) union and intersection as the set operation used to combine local fuzzy simplicial sets to obtain a global fuzzy simplicial sets. Both fuzzy set operations use the product t-norm. The value of this parameter should be between 0.0 and 1.0; a value of 1.0 will use a pure fuzzy union, while 0.0 will use a pure fuzzy intersection. local_connectivity: int (optional, default 1) The local connectivity required -- i.e. the number of nearest neighbors that should be assumed to be connected at a local level. The higher this value the more connected the manifold becomes locally. In practice this should be not more than the local intrinsic dimension of the manifold. repulsion_strength: float (optional, default 1.0) Weighting applied to negative samples in low dimensional embedding optimization. Values higher than one will result in greater weight being given to negative samples. negative_sample_rate: int (optional, default 5) The number of negative samples to select per positive sample in the optimization process. Increasing this value will result in greater repulsive force being applied, greater optimization cost, but slightly more accuracy. transform_queue_size: float (optional, default 4.0) For transform operations (embedding new points using a trained model_ this will control how aggressively to search for nearest neighbors. Larger values will result in slower performance but more accurate nearest neighbor evaluation. a: float (optional, default None) More specific parameters controlling the embedding. If None these values are set automatically as determined by ``min_dist`` and ``spread``. b: float (optional, default None) More specific parameters controlling the embedding. If None these values are set automatically as determined by ``min_dist`` and ``spread``. random_state: int, RandomState instance or None, optional (default: None) If int, random_state is the seed used by the random number generator; If RandomState instance, random_state is the random number generator; If None, the random number generator is the RandomState instance used by `np.random`. metric_kwds: dict (optional, default None) Arguments to pass on to the metric, such as the ``p`` value for Minkowski distance. If None then no arguments are passed on. angular_rp_forest: bool (optional, default False) Whether to use an angular random projection forest to initialise the approximate nearest neighbor search. This can be faster, but is mostly on useful for metric that use an angular style distance such as cosine, correlation etc. In the case of those metrics angular forests will be chosen automatically. target_n_neighbors: int (optional, default -1) The number of nearest neighbors to use to construct the target simplcial set. If set to -1 use the ``n_neighbors`` value. target_metric: string or callable (optional, default 'categorical') The metric used to measure distance for a target array is using supervised dimension reduction. By default this is 'categorical' which will measure distance in terms of whether categories match or are different. Furthermore, if semi-supervised is required target values of -1 will be trated as unlabelled under the 'categorical' metric. If the target array takes continuous values (e.g. for a regression problem) then metric of 'l1' or 'l2' is probably more appropriate. target_metric_kwds: dict (optional, default None) Keyword argument to pass to the target metric when performing supervised dimension reduction. If None then no arguments are passed on. target_weight: float (optional, default 0.5) weighting factor between data topology and target topology. A value of 0.0 weights entirely on data, a value of 1.0 weights entirely on target. The default of 0.5 balances the weighting equally between data and target. transform_seed: int (optional, default 42) Random seed used for the stochastic aspects of the transform operation. This ensures consistency in transform operations. verbose: bool (optional, default False) Controls verbosity of logging. unique: bool (optional, default False) Controls if the rows of your data should be uniqued before being embedded. If you have more duplicates than you have n_neighbour you can have the identical data points lying in different regions of your space. It also violates the definition of a metric. For to map from internal structures back to your data use the variable _unique_inverse_. densmap: bool (optional, default False) Specifies whether the density-augmented objective of densMAP should be used for optimization. Turning on this option generates an embedding where the local densities are encouraged to be correlated with those in the original space. Parameters below with the prefix 'dens' further control the behavior of this extension. dens_lambda: float (optional, default 2.0) Controls the regularization weight of the density correlation term in densMAP. Higher values prioritize density preservation over the UMAP objective, and vice versa for values closer to zero. Setting this parameter to zero is equivalent to running the original UMAP algorithm. dens_frac: float (optional, default 0.3) Controls the fraction of epochs (between 0 and 1) where the density-augmented objective is used in densMAP. The first (1 - dens_frac) fraction of epochs optimize the original UMAP objective before introducing the density correlation term. dens_var_shift: float (optional, default 0.1) A small constant added to the variance of local radii in the embedding when calculating the density correlation objective to prevent numerical instability from dividing by a small number output_dens: float (optional, default False) Determines whether the local radii of the final embedding (an inverse measure of local density) are computed and returned in addition to the embedding. If set to True, local radii of the original data are also included in the output for comparison; the output is a tuple (embedding, original local radii, embedding local radii). This option can also be used when densmap=False to calculate the densities for UMAP embeddings. disconnection_distance: float (optional, default np.inf or maximal value for bounded distances) Disconnect any vertices of distance greater than or equal to disconnection_distance when approximating the manifold via our k-nn graph. This is particularly useful in the case that you have a bounded metric. The UMAP assumption that we have a connected manifold can be problematic when you have points that are maximally different from all the rest of your data. The connected manifold assumption will make such points have perfect similarity to a random set of other points. Too many such points will artificially connect your space. """ def __init__( self, n_neighbors=15, n_components=2, metric="euclidean", metric_kwds=None, output_metric="euclidean", output_metric_kwds=None, n_epochs=None, learning_rate=1.0, init="spectral", min_dist=0.1, spread=1.0, low_memory=True, n_jobs=-1, set_op_mix_ratio=1.0, local_connectivity=1.0, repulsion_strength=1.0, negative_sample_rate=5, transform_queue_size=4.0, a=None, b=None, random_state=None, angular_rp_forest=False, target_n_neighbors=-1, target_metric="categorical", target_metric_kwds=None, target_weight=0.5, transform_seed=42, transform_mode="embedding", force_approximation_algorithm=False, verbose=False, unique=False, densmap=False, dens_lambda=2.0, dens_frac=0.3, dens_var_shift=0.1, output_dens=False, disconnection_distance=None, ): self.n_neighbors = n_neighbors self.metric = metric self.output_metric = output_metric self.target_metric = target_metric self.metric_kwds = metric_kwds self.output_metric_kwds = output_metric_kwds self.n_epochs = n_epochs self.init = init self.n_components = n_components self.repulsion_strength = repulsion_strength self.learning_rate = learning_rate self.spread = spread self.min_dist = min_dist self.low_memory = low_memory self.set_op_mix_ratio = set_op_mix_ratio self.local_connectivity = local_connectivity self.negative_sample_rate = negative_sample_rate self.random_state = random_state self.angular_rp_forest = angular_rp_forest self.transform_queue_size = transform_queue_size self.target_n_neighbors = target_n_neighbors self.target_metric = target_metric self.target_metric_kwds = target_metric_kwds self.target_weight = target_weight self.transform_seed = transform_seed self.transform_mode = transform_mode self.force_approximation_algorithm = force_approximation_algorithm self.verbose = verbose self.unique = unique self.densmap = densmap self.dens_lambda = dens_lambda if densmap else 0.0 self.dens_frac = dens_frac if densmap else 0.0 self.dens_var_shift = dens_var_shift self.output_dens = output_dens self.disconnection_distance = disconnection_distance self.n_jobs = n_jobs self.a = a self.b = b def _validate_parameters(self): if self.set_op_mix_ratio < 0.0 or self.set_op_mix_ratio > 1.0: raise ValueError("set_op_mix_ratio must be between 0.0 and 1.0") if self.repulsion_strength < 0.0: raise ValueError("repulsion_strength cannot be negative") if self.min_dist > self.spread: raise ValueError("min_dist must be less than or equal to spread") if self.min_dist < 0.0: raise ValueError("min_dist cannot be negative") if not isinstance(self.init, str) and not isinstance(self.init, np.ndarray): raise ValueError("init must be a string or ndarray") if isinstance(self.init, str) and self.init not in ("spectral", "random",): raise ValueError('string init values must be "spectral" or "random"') if ( isinstance(self.init, np.ndarray) and self.init.shape[1] != self.n_components ): raise ValueError("init ndarray must match n_components value") if not isinstance(self.metric, str) and not callable(self.metric): raise ValueError("metric must be string or callable") if self.negative_sample_rate < 0: raise ValueError("negative sample rate must be positive") if self._initial_alpha < 0.0: raise ValueError("learning_rate must be positive") if self.n_neighbors < 2: raise ValueError("n_neighbors must be greater than 1") if self.target_n_neighbors < 2 and self.target_n_neighbors != -1: raise ValueError("target_n_neighbors must be greater than 1") if not isinstance(self.n_components, int): if isinstance(self.n_components, str): raise ValueError("n_components must be an int") if self.n_components % 1 != 0: raise ValueError("n_components must be a whole number") try: # this will convert other types of int (eg. numpy int64) # to Python int self.n_components = int(self.n_components) except ValueError: raise ValueError("n_components must be an int") if self.n_components < 1: raise ValueError("n_components must be greater than 0") if self.n_epochs is not None and ( self.n_epochs <= 10 or not isinstance(self.n_epochs, int) ): raise ValueError("n_epochs must be a positive integer of at least 10") if self.metric_kwds is None: self._metric_kwds = {} else: self._metric_kwds = self.metric_kwds if self.output_metric_kwds is None: self._output_metric_kwds = {} else: self._output_metric_kwds = self.output_metric_kwds if self.target_metric_kwds is None: self._target_metric_kwds = {} else: self._target_metric_kwds = self.target_metric_kwds # check sparsity of data upfront to set proper _input_distance_func & # save repeated checks later on if scipy.sparse.isspmatrix_csr(self._raw_data): self._sparse_data = True else: self._sparse_data = False # set input distance metric & inverse_transform distance metric if callable(self.metric): in_returns_grad = self._check_custom_metric( self.metric, self._metric_kwds, self._raw_data ) if in_returns_grad: _m = self.metric @numba.njit(fastmath=True) def _dist_only(x, y, *kwds): return _m(x, y, *kwds)[0] self._input_distance_func = _dist_only self._inverse_distance_func = self.metric else: self._input_distance_func = self.metric self._inverse_distance_func = None warn( "custom distance metric does not return gradient; inverse_transform will be unavailable. " "To enable using inverse_transform method method, define a distance function that returns " "a tuple of (distance [float], gradient [np.array])" ) elif self.metric == "precomputed": if self.unique: raise ValueError("unique is poorly defined on a precomputed metric") warn( "using precomputed metric; transform will be unavailable for new data and inverse_transform " "will be unavailable for all data" ) self._input_distance_func = self.metric self._inverse_distance_func = None elif self.metric == "hellinger" and self._raw_data.min() < 0: raise ValueError("Metric 'hellinger' does not support negative values") elif self.metric in dist.named_distances: if self._sparse_data: if self.metric in sparse.sparse_named_distances: self._input_distance_func = sparse.sparse_named_distances[ self.metric ] else: raise ValueError( "Metric {} is not supported for sparse data".format(self.metric) ) else: self._input_distance_func = dist.named_distances[self.metric] try: self._inverse_distance_func = dist.named_distances_with_gradients[ self.metric ] except KeyError: warn( "gradient function is not yet implemented for {} distance metric; " "inverse_transform will be unavailable".format(self.metric) ) self._inverse_distance_func = None else: raise ValueError("metric is neither callable nor a recognised string") # set output distance metric if callable(self.output_metric): out_returns_grad = self._check_custom_metric( self.output_metric, self._output_metric_kwds ) if out_returns_grad: self._output_distance_func = self.output_metric else: raise ValueError( "custom output_metric must return a tuple of (distance [float], gradient [np.array])" ) elif self.output_metric == "precomputed": raise ValueError("output_metric cannnot be 'precomputed'") elif self.output_metric in dist.named_distances_with_gradients: self._output_distance_func = dist.named_distances_with_gradients[ self.output_metric ] elif self.output_metric in dist.named_distances: raise ValueError( "gradient function is not yet implemented for {}.".format( self.output_metric ) ) else: raise ValueError( "output_metric is neither callable nor a recognised string" ) # set angularity for NN search based on metric if self.metric in ( "cosine", "correlation", "dice", "jaccard", "ll_dirichlet", "hellinger", ): self.angular_rp_forest = True if self.n_jobs < -1 or self.n_jobs == 0: raise ValueError("n_jobs must be a postive integer, or -1 (for all cores)") if self.dens_lambda < 0.0: raise ValueError("dens_lambda cannot be negative") if self.dens_frac < 0.0 or self.dens_frac > 1.0: raise ValueError("dens_frac must be between 0.0 and 1.0") if self.dens_var_shift < 0.0: raise ValueError("dens_var_shift cannot be negative") self._densmap_kwds = { "lambda": self.dens_lambda, "frac": self.dens_frac, "var_shift": self.dens_var_shift, "n_neighbors": self.n_neighbors, } if self.densmap: if self.output_metric not in ("euclidean", "l2"): raise ValueError( "Non-Euclidean output metric not supported for densMAP." ) # This will be used to prune all edges of greater than a fixed value from our knn graph. # We have preset defaults described in DISCONNECTION_DISTANCES for our bounded measures. # Otherwise a user can pass in their own value. if self.disconnection_distance is None: self._disconnection_distance = DISCONNECTION_DISTANCES.get( self.metric, np.inf ) elif isinstance(self.disconnection_distance, int) or isinstance( self.disconnection_distance, float ): self._disconnection_distance = self.disconnection_distance else: raise ValueError("disconnection_distance must either be None or a numeric.") def _check_custom_metric(self, metric, kwds, data=None): # quickly check to determine whether user-defined # self.metric/self.output_metric returns both distance and gradient if data is not None: # if checking the high-dimensional distance metric, test directly on # input data so we don't risk violating any assumptions potentially # hard-coded in the metric (e.g., bounded; non-negative) x, y = data[np.random.randint(0, data.shape[0], 2)] else: # if checking the manifold distance metric, simulate some data on a # reasonable interval with output dimensionality x, y = np.random.uniform(low=-10, high=10, size=(2, self.n_components)) if scipy.sparse.issparse(data): metric_out = metric(x.indices, x.data, y.indices, y.data, **kwds) else: metric_out = metric(x, y, **kwds) # True if metric returns iterable of length 2, False otherwise return hasattr(metric_out, "__iter__") and len(metric_out) == 2 def _populate_combined_params(self, *models): self.n_neighbors = flattened([m.n_neighbors for m in models]) self.metric = flattened([m.metric for m in models]) self.metric_kwds = flattened([m.metric_kwds for m in models]) self.output_metric = flattened([m.output_metric for m in models]) self.n_epochs = flattened( [m.n_epochs if m.n_epochs is not None else -1 for m in models] ) if all([x == -1 for x in self.n_epochs]): self.n_epochs = None self.init = flattened([m.init for m in models]) self.n_components = flattened([m.n_components for m in models]) self.repulsion_strength = flattened([m.repulsion_strength for m in models]) self.learning_rate = flattened([m.learning_rate for m in models]) self.spread = flattened([m.spread for m in models]) self.min_dist = flattened([m.min_dist for m in models]) self.low_memory = flattened([m.low_memory for m in models]) self.set_op_mix_ratio = flattened([m.set_op_mix_ratio for m in models]) self.local_connectivity = flattened([m.local_connectivity for m in models]) self.negative_sample_rate = flattened([m.negative_sample_rate for m in models]) self.random_state = flattened([m.random_state for m in models]) self.angular_rp_forest = flattened([m.angular_rp_forest for m in models]) self.transform_queue_size = flattened([m.transform_queue_size for m in models]) self.target_n_neighbors = flattened([m.target_n_neighbors for m in models]) self.target_metric = flattened([m.target_metric for m in models]) self.target_metric_kwds = flattened([m.target_metric_kwds for m in models]) self.target_weight = flattened([m.target_weight for m in models]) self.transform_seed = flattened([m.transform_seed for m in models]) self.force_approximation_algorithm = flattened( [m.force_approximation_algorithm for m in models] ) self.verbose = flattened([m.verbose for m in models]) self.unique = flattened([m.unique for m in models]) self.densmap = flattened([m.densmap for m in models]) self.dens_lambda = flattened([m.dens_lambda for m in models]) self.dens_frac = flattened([m.dens_frac for m in models]) self.dens_var_shift = flattened([m.dens_var_shift for m in models]) self.output_dens = flattened([m.output_dens for m in models]) self.a = flattened([m.a for m in models]) self.b = flattened([m.b for m in models]) self._a = flattened([m._a for m in models]) self._b = flattened([m._b for m in models]) def __mul__(self, other): check_is_fitted( self, attributes=["graph_"], msg="Only fitted UMAP models can be combined" ) check_is_fitted( other, attributes=["graph_"], msg="Only fitted UMAP models can be combined" ) if self.graph_.shape[0] != other.graph_.shape[0]: raise ValueError("Only models with the equivalent samples can be combined") result = UMAP() result._populate_combined_params(self, other) result.graph_ = general_simplicial_set_intersection( self.graph_, other.graph_, 0.5 ) result.graph_ = reset_local_connectivity(result.graph_, True) if scipy.sparse.csgraph.connected_components(result.graph_)[0] > 1: warn( "Combined graph is not connected but multi-component layout is unsupported. " "Falling back to random initialization." ) init = "random" else: init = "spectral" result.densmap = np.any(result.densmap) result.output_dens = np.any(result.output_dens) result._densmap_kwds = { "lambda": np.max(result.dens_lambda), "frac": np.max(result.dens_frac), "var_shift": np.max(result.dens_var_shift), "n_neighbors": np.max(result.n_neighbors), } if result.n_epochs is None: n_epochs = -1 else: n_epochs = np.max(result.n_epochs) result.embedding_, aux_data = simplicial_set_embedding( None, result.graph_, np.min(result.n_components),
np.min(result.learning_rate)
numpy.min
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # Standard library imports import math from collections import defaultdict from typing import Any, List, NamedTuple, Optional, Set # Third-party imports import numpy as np # First-party imports from gluonts.core.component import validated from gluonts.core.exception import assert_data_error from gluonts.gluonts_tqdm import tqdm class ScaleHistogram: """ Scale histogram of a timeseries dataset This counts the number of timeseries whose mean of absolute values is in the `[base ** i, base ** (i+1)]` range for all possible `i`. The number of entries with empty target is counted separately. Parameters ---------- base Log-width of the histogram's buckets. bin_counts empty_target_count """ @validated() def __init__( self, base: float = 2.0, bin_counts: Optional[dict] = None, empty_target_count: int = 0, ) -> None: self._base = base self.bin_counts = defaultdict( int, {} if bin_counts is None else bin_counts ) self.empty_target_count = empty_target_count self.__init_args__ = dict( base=self._base, bin_counts=self.bin_counts, empty_target_count=empty_target_count, ) def bucket_index(self, target_values): assert len(target_values) > 0 scale = np.mean(np.abs(target_values)) scale_bin = int(math.log(scale + 1.0, self._base)) return scale_bin def add(self, target_values): if len(target_values) > 0: bucket = self.bucket_index(target_values) self.bin_counts[bucket] = self.bin_counts[bucket] + 1 else: self.empty_target_count = self.empty_target_count + 1 def count(self, target): if len(target) > 0: return self.bin_counts[self.bucket_index(target)] else: return self.empty_target_count def __len__(self): return self.empty_target_count + sum(self.bin_counts.values()) def __eq__(self, other): return ( isinstance(other, ScaleHistogram) and self.bin_counts == other.bin_counts and self.empty_target_count == other.empty_target_count and self._base == other._base ) def __str__(self): string_repr = [ 'count of scales in {min}-{max}:{count}'.format( min=self._base ** base_index - 1, max=self._base ** (base_index + 1) - 1, count=count, ) for base_index, count in sorted( self.bin_counts.items(), key=lambda x: x[0] ) ] return '\n'.join(string_repr) class DatasetStatistics(NamedTuple): """ A NamedTuple to store the statistics of a Dataset. """ cats: List[Set[int]] integer_dataset: bool max_target: float mean_abs_target: float mean_target: float mean_target_length: float min_target: float num_dynamic_feat: int num_missing_values: int num_time_observations: int num_time_series: int scale_histogram: ScaleHistogram def __str__(self): # gets a pretty string representation of all dataset statistics return "\n".join( [f"{var_name}: {var}" for var_name, var in self._asdict().items()] ) def __eq__(self, other): for x, y in zip(self._asdict().values(), other._asdict().values()): if isinstance(x, float): if abs(x - y) > abs(0.0001 * x): return False elif x != y: return False return True # TODO: reorganize modules to avoid circular dependency # TODO: and substitute Any with Dataset def calculate_dataset_statistics(ts_dataset: Any) -> DatasetStatistics: """ Computes the statistics of a given Dataset. Parameters ---------- ts_dataset Dataset of which to compute the statistics. Returns ------- DatasetStatistics NamedTuple containing the statistics. """ num_time_observations = 0 num_time_series = 0 min_target = 1e20 max_target = -1e20 sum_target = 0.0 sum_abs_target = 0.0 integer_dataset = True observed_cats: Optional[List[Set[int]]] = None num_cats: Optional[int] = None num_dynamic_feat: Optional[int] = None num_missing_values = 0 scale_histogram = ScaleHistogram() with tqdm(enumerate(ts_dataset, start=1), total=len(ts_dataset)) as it: for num_time_series, ts in it: target = ts['target'] observed_target = target[~
np.isnan(target)
numpy.isnan
""" cgl_fairness Copyright (c) 2022-present NAVER Corp. MIT license """ import numpy as np import random from data_handler import SSLDataset class TabularDataset(SSLDataset): """Adult dataset.""" # 1 idx -> sensi # 2 idx -> label # 3 idx -> filename or feature (image / tabular) def __init__(self, dataset, sen_attr_idx, **kwargs): super(TabularDataset, self).__init__(**kwargs) self.sen_attr_idx = sen_attr_idx dataset_train, dataset_test = dataset.split([0.8], shuffle=True, seed=0) # features, labels = self._balance_test_set(dataset) self.dataset = dataset_train if (self.split == 'train') or ('group' in self.version) else dataset_test features = np.delete(self.dataset.features, self.sen_attr_idx, axis=1) mean, std = self._get_mean_n_std(dataset_train.features) features = (features - mean) / std self.groups = np.expand_dims(self.dataset.features[:, self.sen_attr_idx], axis=1) self.labels = np.squeeze(self.dataset.labels) # self.features = self.dataset.features self.features = np.concatenate((self.groups, self.dataset.labels, features), axis=1) # For prepare mean and std from the train dataset self.num_data, self.idxs_per_group = self._data_count(self.features, self.num_groups, self.num_classes) # if semi-supervised learning, if self.sv_ratio < 1: # we want the different supervision according to the seed random.seed(self.seed) self.features, self.num_data, self.idxs_per_group = self.ssl_processing(self.features, self.num_data, self.idxs_per_group, ) if 'group' in self.version: a, b = self.num_groups, self.num_classes self.num_groups, self.num_classes = b, a def get_dim(self): return self.dataset.features.shape[-1] def __getitem__(self, idx): features = self.features[idx] group = features[0] label = features[1] feature = features[2:] if 'group' in self.version: return np.float32(feature), 0, label, np.int64(group), (idx, 0) else: return np.float32(feature), 0, group,
np.int64(label)
numpy.int64
# METIS PROJECT 5 - KOJAK # # module of all pytorch-related code for Kojak import audiomod from pymongo import MongoClient import pandas as pd import numpy as np from sklearn import metrics import torch import torch.utils.data as data_utils from torch.autograd import Variable import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from collections import defaultdict, OrderedDict from copy import deepcopy import pickle import time import os import matplotlib.pyplot as plt # GLOBAL VARIABLES AND OBJECTS client = MongoClient( "mongodb://{}:{}@{}/kojak".format( os.environ['mdbUN'], os.environ['mdbPW'], os.environ['mdbIP'] ) ) kdb = client.kojak rs = torch.manual_seed(42) # DATA LOADING class SpectroDataset(data_utils.Dataset): """ Spectrogram dataset class --- INIT PARAMS dataset_name: name of dataset as labeled in MongoDB (str) group: 'train' or 'test' or 'val', must be present in records of dataset_name (str) scaling: factor by which to scale the spectrogram dimensions, e.g. a factor of 0.5 would make a spectrogram 1/4 the size (int, float) dir_in: path to directory in which .wav files reside (str) trasform: transform function or functions if not None """ def __init__( self, datagroup_df, scaling=1, dir_in="../audio/wav_chunked", transform=None ): self.sample_frame = datagroup_df self.scaling = scaling # this is a dictionary of audio parameters necessary for scaling # spectrograms during creation self.audio_params = { 'hl': 256, 'n_fft': 1024, 'n_mels': 512 } self.dir_in = dir_in self.transform = transform def __len__(self): return self.sample_frame.shape[0] def __getitem__(self, ix): """Creates and returns spectrogram of requested item""" chunk_id = self.sample_frame.loc[ix, 'chunk_id'] y, sr = audiomod.audio_loader(chunk_id) sample = audiomod.make_spectro( y, sr, hl = int(self.audio_params['hl'] / self.scaling), n_fft = int(self.audio_params['n_fft'] / self.scaling), n_mels = int(self.audio_params['n_mels'] * self.scaling) ) # add singleton dimension sample = np.expand_dims(sample, 0) # normalize on -1 to 1 scale as done in PyTorch tutorial sample = normalize_spec(sample, low=-1) # convert to torch float tensor sample = torch.from_numpy(sample).float() if self.transform: sample = self.transform(sample) return sample, self.sample_frame.loc[ix, 'actual'], chunk_id # CNN ARCHITECTURES class CNN_cpcpff(nn.Module): """ params: Pass input params as a dictionary where each item is a layer and each value is a list, following this convention: Convolutional: c1: [kernel, stride, channels_out] Max Pooling: p1: [kernel, stride] Fully Connected: f1: [channels_in, channels_out] For example: params = { 'c1': [5,1,10], 'p1': [2,2], 'c2': [5,1,20], 'p2': [2,2], 'f1': [2600,50], 'f2': [50,2] } All list values must be integers. rs: random seed (int) normal: if True, update parameters with normal distribution based with mean = 0 and std = 1 / sqrt(input_dims * kernel_w * kernel_h) (bool) """ def __init__(self, params, rs=23, normal=True): super(CNN_cpcpff, self).__init__() self.p = params self.rs = rs self.seed_gen = torch.manual_seed(self.rs) # in channels, out channels, kernel, stride=s self.conv1 = nn.Conv2d(1, self.p['c1'][2], self.p['c1'][0], stride=self.p['c1'][1]) # 2x2 kernel, stride=2 -- stride defaults to kernel self.pool1 = nn.MaxPool2d(self.p['p1'][0], self.p['p1'][1]) self.conv2 = nn.Conv2d(self.p['c1'][2], self.p['c2'][2], self.p['c2'][0], stride=self.p['c2'][1]) self.pool2 = nn.MaxPool2d(self.p['p2'][0], self.p['p2'][1]) self.fc1 = nn.Linear(self.p['f1'][0], self.p['f1'][1]) self.fc2 = nn.Linear(self.p['f2'][0], self.p['f2'][1]) if normal: self.apply(init_norm_auto) # do I need to clear this? self.seed_gen = None def forward(self, x, softmax=False): x = self.pool1(F.relu(self.conv1(x))) x = self.pool2(F.relu(self.conv2(x))) x = x.view(x.size(0), -1) # need to reshape for fully connected layer x = F.relu(self.fc1(x)) x = F.relu(self.fc2(x)) # make this an optional? if softmax: x = F.softmax(x) return x def save_myself(self, fname, dir_out='../data'): """ Saves current object as a .pkl file. --- fname: filename of choice (str) dir_out: path to save directory (str) """ # add timestamp here fpath = os.path.join(dir_out, fname + '.p') with open(fpath, 'wb') as pf: pickle.dump(self, pf) # CNN DESIGN HELPERS def reduce_axis(pix_in, kernel_size, stride, drop_last=False): """ Calculate output pixels along one axis given input pixels, filter size, and stride. --- IN pix_in: number of pixels along input axis (int) kernel_size: assuming a square filter, pixels on one side (int) stride: pixels per step (int) drop_last: if True, ignore pixels on last step if fewer than filter_dim (bool) OUT pix_out: number of pixels along output axis """ pix_out = (pix_in - kernel_size) // stride + 1 if not drop_last: if (pix_in - kernel_size) % stride > 0: pix_out += 1 return pix_out def cnn_pixels_out(dim_in, layers, drop_last=False): """ Computes CNN output pixels given input dimensions and layer info. Assumes a square kernel and drop_last=False for reduce_axis process. --- IN dim_in: (C, W, H) format, where each is an integer (tup or list) layers: ((kernel, stride, filters_out), ...) format, where each is an int. If a max pooling layer, set filters to 0 (tup or list) OUT pixels_out: number of pixels going into FC layer (int) """ c = dim_in[0] w = dim_in[1] h = dim_in[2] print("{} x {} x {}".format(c,w,h)) for layer in layers: if layer[2] != 0: c = layer[2] w = reduce_axis(w, layer[0], layer[1], drop_last=drop_last) h = reduce_axis(h, layer[0], layer[1], drop_last=drop_last) print("{} x {} x {}".format(c,w,h)) return c * w * h # MODEL UTILITY FUNCTIONS def normalize_spec(ndarray, low=0, high=1, min_db=-80): """ Normalize dB-scale spectrogram from low-high given min dB at creation. """ factor = min_db / (high-low) # might just be able to do ndarray /= -min_db # would invert the image though ndarray -= factor ndarray /= abs(factor) return ndarray def init_norm_auto(m): """Based on self.reset_parameters() in nn.Linear and nn.Conv2n""" seed_gen = torch.manual_seed(23) # print(m) if isinstance(m, nn.Conv2d) or isinstance(m, nn.Linear): if isinstance(m, nn.Conv2d): n = m.in_channels for k in m.kernel_size: n *= k if isinstance(m, nn.Linear): n = m.weight.size(1) std = 1. / np.sqrt(n) m.weight.data.normal_(mean=0, std=std) if m.bias is not None: m.bias.data.normal_(mean=0, std=std) # print(m.weight) def fit(cnn, dataset, optimizer, criterion, num_epochs, batch_size, minibatches=None ): """ Runs feed-forward and back-prop to train CNN model. *** ROLL INTO CNN CLASS? --- IN cnn: CNN instance dataset: built SpectroDataset object optimizer: PyTorch optimizer for back-prop criterion: PyTorch loss object for loss metric num_epochs: number of times to cycle through data (int) batch_size: number of records per batch (int) minibatches: print loss and time every n minibatches (COMING SOON) (int) OUT loss_by_epoch: average loss per epoch (ndarray) """ train_loader = data_utils.DataLoader( dataset, batch_size=batch_size, shuffle=True, num_workers=2, drop_last=True ) # if this throws errors, it's probably because of switch to array # loss_by_epoch = np.array([]) loss_by_epoch = [] for epoch in range(num_epochs): print("Epoch", epoch+1) running_loss = 0.0 loss_per_batch = np.array([]) before = deepcopy(cnn.state_dict()['conv2.weight']) then = time.perf_counter() for i, data in enumerate(train_loader, 1): sub_then = time.perf_counter() # separate input data and labels, dump chunk IDs spectros, labels, _ = data # wrap in Variable for GD spectros, labels = Variable(spectros), Variable(labels) # zero parameter gradients, else accumulate optimizer.zero_grad() # forward prop outputs = cnn(spectros) # calculate loss loss = criterion(outputs, labels) # backprop loss.backward() # update weights optimizer.step() # verbosity sub_now = time.perf_counter() print("\r * {} loss: {:.3f}\tTime: {:.3f} ms" .format(i, loss.data[0], (sub_now-sub_then)*1000), end='') loss_per_batch = np.append(loss_per_batch, loss.data[0]) running_loss += loss.data[0] # # print every n minibatches # running_loss += loss.data[0] # if i%minibatches == minibatches: # print('[%d, %5d] loss: %.3f' % ( # epoch+1, i, running_loss/minibatches)) # running_loss = 0.0 now = time.perf_counter() after = cnn.state_dict()['conv2.weight'] update = not np.allclose(before.numpy(), after.numpy()) avg_loss = running_loss/i loss_by_epoch.append(loss_per_batch) print("\r * Avg loss: {:.3f}\tTime: {:.3f} ms" .format(running_loss/i, (now-then)*1000)) print(" * Weights updated:", update) print('\n\aTraining Complete') return np.vstack(loss_by_epoch) def predict(cnn, dataset, batch_size=4, res_format='df'): """ Predicts values on trained CNN. *** ROLL INTO CNN CLASS? --- IN cnn: trained CNN instance dataset: built SpectroDataset object batch_size: number of records per batch res_format: results format, either 'df' for pandas dataframe or 'dict' for dictionary (str) OUT results: if 'dict', dictionary with chunk ID as key, and a tuple of (actual, predicted, output_array) as value (dict); if 'df', pandas dataframe """ loader = data_utils.DataLoader( dataset, batch_size=batch_size, shuffle=False, # set for False for test set num_workers=2 ) results = {} # could clean this up to load it straight into df instead of dict for data in loader: spectros, labels, chunk_ids = data outputs = cnn(Variable(spectros), softmax=True) _, pred = torch.max(outputs.data, 1) for c_id, y, y_hat, out in zip(chunk_ids, labels, pred, outputs.data): results[c_id] = (y, y_hat, out) if res_format == 'df': results = results_to_df(results) return results def results_to_df(results): """ Converts predict results to Pandas dataframe. --- IN results: dictionary generated by results function (dict) OUT df: pandas dataframe of results """ cols = ['chunk_id', 'actual', 'pred', 'p0', 'p1'] results_trans = OrderedDict.fromkeys(cols) for k in results_trans.keys(): results_trans[k] = [] for k, v in results.items(): for col, val in zip(cols, [k, v[0], v[1], v[2][0], v[2][1]]): results_trans[col].append(val) df = pd.DataFrame(results_trans) return df # SCORING, CV, GRID SEARCH def get_scores(train_df, test_df, verbose=True): """ Calculates accuracy, recall, and specificity for train and test predictions. ### add precision? --- IN train_df: predict results df of train set test_df: predict results df of test set OUT scores_dict: scores bundle (dict) """ scores_dict = defaultdict(list) score_types = [ 'acc', # 'pre', 'rec', 'spec' ] for df in [train_df, test_df]: df_scores = [] df_scores.append( metrics.accuracy_score(df.actual, df.pred)) # df_scores.append( # metrics.precision_score(df.actual, df.pred)) df_scores.append( metrics.recall_score(df.actual, df.pred)) df_scores.append( metrics.recall_score(df.actual, df.pred, pos_label=0)) for n, s in zip(score_types, df_scores): scores_dict[n].append(s) return scores_dict def print_scores(scores_dict, title=None): """ Print scores in table given scores dictionary as created by get_scores(). --- IN scores_dict: dictionary of classification scores (dict) title: title, if given (str) NO OUT """ if title: print(title) print("Score\tTrain\tTest") print("-" * 24) for score in scores_dict.keys(): print("{}\t{:.3f}\t{:.3f}".format( score.capitalize(), scores_dict[score][0], scores_dict[score][1]) ) def crossval( cnn_params, datagroup_df, scaling, optim_partial, criterion, num_epochs, batch_size, folds=4, rs=23 ): """ Performs cross validation on dataset with model, optimizer, criterion, and hyperparameters as specified. --- IN cnn: untrained CNN model object datagroup_df: dataframe of datagroup (df) scaling: degree of scaling to apply to spectros, 0-1 (float) optim_partial: partial object of optimizer, with all parameters preset criterion: loss/error criterion object on which to optimize num_epochs: number of epochs to run per fold (int) batch_size: number of spectros per batch (int) folds: number of folds for cross val (int) rs: random seed for torch random generator (int) OUT scores_cv: average scores per fold, in- and out-of-sample (dict) scores_bundle: in- and out-of-sample scores for each fold (dict) losses_per_fold: list of avg loss per epoch for each fold (list) """ # add folds column to dataset df df = audiomod.assign_cv_groups(datagroup_df, folds=folds) scores_bundle = {} losses_per_fold = [] for i in range(folds): print("\n*** Fold {} ***".format(i+1)) train_df = (df[df.cv != i] .filter(['chunk_id', 'actual']) .reset_index(drop=True)) test_df = (df[df.cv == i] .filter(['chunk_id', 'actual']) .reset_index(drop=True)) # sanity check of tt lengths print("\nTrain set length: {}".format(train_df.shape[0])) print("Test set length: {}".format(test_df.shape[0])) # create dataset objects for train and test train_dataset = SpectroDataset(train_df, scaling=scaling) test_dataset = SpectroDataset(test_df, scaling=scaling) # spawn model with specified parameters cnn = CNN_cpcpff(cnn_params, rs=rs) print("Random seed: {}\n".format(cnn.rs)) # train model loss_by_epoch = fit( cnn, train_dataset, optim_partial(cnn.parameters()), criterion, num_epochs, batch_size ) losses_per_fold.append(loss_by_epoch) # get in- and out-of-sample predictions train_res = predict(cnn, train_dataset) test_res = predict(cnn, test_dataset) # calculate scores scores_fold = get_scores(train_res, test_res) scores_bundle[i] = scores_fold print("\n", end="") print_scores(scores_fold) scores_cv = defaultdict(list) # cycle through fold, score, and train/test to average all scores for score_type in scores_fold.keys(): for ix in range(2): score_sum = 0 for fold in range(folds): score_sum += scores_bundle[fold][score_type][ix] scores_cv[score_type].append(score_sum / folds) print("\n", end="") print_scores(scores_cv, "CV Average Scores") return scores_cv, scores_bundle, losses_per_fold # OTHER UTILITIES def tensor_stats(tensor): """ Prints basic stats for any torch tensor. --- IN tensor: any torch tensor NO OUT """ print("Min:", tensor.min()) print("Max:", tensor.max()) print("Mean:", tensor.mean()) print("Std:", tensor.std()) print("Shape:", tensor.size()) def plot_loss( lbe, model_name, plot_values='all', line_style='b-', save=False, fname=None ): """ Plots the loss by epoch. --- IN lbe: list of avg loss at the end of each epoch (list) model_name: name of model (str) plot_values: if 'all', plots loss for each batch; if 'epoch', plots average loss per epoch (str) NO OUT """ msg = "plot_values must be 'all' or 'epoch'" assert plot_values == 'all' or plot_values == 'epoch', msg if isinstance(lbe, list): lbe = np.array([
np.array(l)
numpy.array
# -*- coding: utf-8 -*- """ Created on Tue Sep 22 10:56:58 2020 @author: Amirh """ from ..utils._base_feature_selector import BaseFeatureSelector from ..functions import ff import numpy as np import time import itertools from pathos.multiprocessing import ProcessingPool as Pool from sklearn.base import clone import random class PlusLMinusR(BaseFeatureSelector): def __init__(self, model, n_f, weight, scoring, l=3, r=2, cv=None, verbose= True, random_state=None, n_jobs = 1,**kwargs): """ PLus-L Minus-R is a sequential algorithm that iteratively adds L features and removes R features from the selection, using sequential forwards selection (SFS) and sequential backward selection (SBS). This algorithm includes forward and backaward sequential selection. If L is bigger R, the algorithm starts with SFS and adds L feature then removes R features using SBS. If R is bigger than L, the algorithm starts with SBS and removes R features then adds L features using SFS. Parameters ---------- model : class Instantiated Sklearn regression or classification estimator. n_f : int Number of features needed to be extracted. weight : int Maximization or minimization objective, for maximization use +1 and for mimization use -1. scoring : callable Callable sklearn score or customized score function that takes in y_pred and y_true l : int, optional Number of features to add using sequential forward selection (SFS). The default is 3. r : int, optional Number of features to remove using sequential backward selection (SBS). The default is 2. cv : class, optional Instantiated sklearn cross-validation class. The default is None. random_state : int, optional Determines the random state for random number generation, cross-validation, and classifier/regression model setting. The default is None. n_jobs : int, optional Number of cores to use for multiprocessing. The default is 1, no multiprocessing is used. Returns ------- Instantiated Optimziation model class. """ super().__init__(scoring=scoring, n_f = n_f,**kwargs) # ============================================================================= # checking the input arguments # ============================================================================= if n_f != int(n_f): raise ValueError("n_f should be an integer") if l != int(l): raise ValueError("l should be an integer") if r != int(r): raise ValueError("r should be an integer") if weight != int(weight): raise ValueError("wieght should be an integer either -1 or +1") try: self.fitness = ff except: raise ImportError("Cannot find/import ff.py defined in the same directory") self.model = model self.n_f = n_f self.cv = cv self.weight = weight self.scoring = scoring self.l = l self.r = r self.verbose = verbose self.random_state = random_state self.n_jobs = n_jobs random.seed(self.random_state) np.random.seed(self.random_state) try: self.cv.random_state = self.random_state self.cv.shuffle = True except: pass try: self.model.random_state = self.random_state except: pass def fit(self,x,y,decor=None,scale=False, test_size = None,**kwargs): """ Fit the model to input data X and target values Y, with extra optional arguments for preprocessing data. Parameters ---------- x : ndarray or sparse matrix of shape (n_samples, n_features) Input data. y : ndarray of shape (n_samples,) Target values. decor : tuple or float, optional Decorrellation parameter. If a number in range [0,1] is chosen then the input features that have a correllation factor above the give value, are removed. If tuple of (string, float [0,1]) is chosen then the input data features are ranked based on their feature importance method, indicated by the string, then decorrelated and the ones with higher importance are retained. The string could be one from the following: "variance" "f_test" "mutual_info" "chi2" "pearson" The default is None. scale : bool, optional Wether to scale the input data or not (centering and scaling). The default is False. test_size : float, optional Represents the portion of input data to be included for test split. Needs to be between 0 and 1. The default is None. Attributes ---------- best_fits: Vector of shape (n_iter,) Fitness values of each iteration. best_sol: Vector of shape (n_f,) Indices of selected fetures after preprocessing input data. best_sol_acc: float Optimized fitness value for the identified solution. model_best: Class Regression/classification estimator given to the optimization algorithm. At this stage model_best = model Returns ------- Vector of shape (n_f,) Indices of selected fetures of the original input data (prior to preprocessing). If no deocr is given, this equals to best_sol. Vector of shape (n_iter,) Fitness values of each iteration. """ self.load(x,y,decor=decor,scale=scale) if test_size is not None: self.train_test_split(test_size, random_state=self.random_state,**kwargs) a = time.time() # if x_train is defined if hasattr(self, 'x_train') and hasattr(self, 'x_test') and hasattr(self, 'y_train') and hasattr(self, 'y_test'): self._test = True else: self._test = False self.best_fits = self._optimize() self.best_sol = self.sel_features self.best_sol_acc = self.sel_features_acc self.best_features = self.best_sol self.model_best = clone(self.model) if self.verbose: print("Optimization completed in {:.2f} seconds".format(time.time() - a)) print("Best feature set is {}, {:.4f}".format(np.array(self.x_cols[self.sel_features]), self.sel_features_acc)) return self.x_cols[self.sel_features], self.best_fits def _pool_fitness_calc_single(self,indices): if self._test: models = list(self.model for i in indices) cv_models = list(self.cv for i in indices) xs = list(self.x_train[:,i].reshape(-1,1) for i in indices) ys = list(self.y_train for i in indices) xtests = list(self.x_test[:,i].reshape(-1,1) for i in indices) ytests = list(self.y_test for i in indices) scorers = list(self.scorer for i in indices) if self.n_jobs == 1: fitness_values = np.array(list(map(self.fitness.calculate_fitness,models, cv_models,scorers, xs,ys,xtests,ytests)))[:,0] elif self.n_jobs > 1 : with Pool(self.n_jobs) as pool: fitness_values = np.array(pool.map(self.fitness.calculate_fitness,models, cv_models,scorers, xs,ys,xtests,ytests))[:,0] elif self.n_jobs == -1 : with Pool(self.n_jobs) as pool: fitness_values = np.array(pool.map(self.fitness.calculate_fitness,models, cv_models,scorers, xs,ys,xtests,ytests))[:,0] else: models = list(self.model for i in indices) cv_models = list(self.cv for i in indices) xs = list(self.x[:,i].reshape(-1,1) for i in indices) ys = list(self.y for i in indices) scorers = list(self.scorer for i in indices) if self.n_jobs == 1: fitness_values = np.array(list(map(self.fitness.calculate_fitness,models, cv_models,scorers, xs,ys)))[:,0] elif self.n_jobs > 1 : with Pool(self.n_jobs) as pool: fitness_values = np.array(pool.map(self.fitness.calculate_fitness,models, cv_models,scorers, xs,ys))[:,0] elif self.n_jobs == -1 : with Pool() as pool: fitness_values = np.array(pool.map(self.fitness.calculate_fitness,models, cv_models,scorers, xs,ys))[:,0] return fitness_values def _pool_fitness_calc_multiple(self,indices): if self._test: models = list(self.model for i in indices) cv_models = list(self.cv for i in indices) xs = list(self.x_train[:,i] for i in indices) ys = list(self.y_train for i in indices) xtests = list(self.x_test[:,i] for i in indices) ytests = list(self.y_test for i in indices) scorers = list(self.scorer for i in indices) if self.n_jobs == 1: fitness_values = np.array(list(map(self.fitness.calculate_fitness, models, cv_models,scorers, xs, ys, xtests, ytests)))[:,0] elif self.n_jobs > 1 : with Pool(self.n_jobs) as pool: fitness_values = np.array(pool.map(self.fitness.calculate_fitness, models, cv_models,scorers, xs, ys, xtests, ytests))[:,0] elif self.n_jobs == -1: with Pool() as pool: fitness_values = np.array(pool.map(self.fitness.calculate_fitness, models, cv_models,scorers, xs, ys, xtests, ytests))[:,0] else: models = list(self.model for i in indices) cv_models = list(self.cv for i in indices) xs = list(self.x[:,i] for i in indices) ys = list(self.y for i in indices) scorers = list(self.scorer for i in indices) if self.n_jobs == 1: fitness_values = np.array(list(map(self.fitness.calculate_fitness, models, cv_models,scorers, xs, ys)))[:,0] elif self.n_jobs > 1: with Pool(self.n_jobs) as pool: fitness_values = np.array(pool.map(self.fitness.calculate_fitness, models, cv_models,scorers, xs, ys))[:,0] elif self.n_jobs == -1: with Pool() as pool: fitness_values = np.array(pool.map(self.fitness.calculate_fitness, models, cv_models,scorers, xs, ys))[:,0] return fitness_values def _optimize(self): """ optimize when train and test sets are avaialble """ if self.l == self.r: raise ValueError('L and R cannot be euqal.') elif self.l > self.r: """ starting with an empty list and consequently running SFS and SBS """ self.sel_features = [] sel_features = [] features_available = list(range(self.x.shape[1])) self.best_fits = [] while len(self.sel_features) != self.n_f: # running Sequential Forward Selection L times # finding the first best feature new_indices = [sel_features + [j] for j in features_available] if len(self.sel_features) == 0: fitness_values = self._pool_fitness_calc_single(features_available) else: fitness_values = self._pool_fitness_calc_multiple(new_indices) for i in range(self.l): if self.weight == 1: attr_index = np.argmax(fitness_values) elif self.weight == -1: attr_index = np.argmin(fitness_values) # appending the feature to the selected feature list #sel_features.extend([z for z in new_indices[attr_index] if z not in sel_features]) sel_features = new_indices[attr_index] # deleting the best found feature from the feature indices set #features_available = [z for z in features_available if z not in new_indices[attr_index]] features_available.remove(sel_features[-1]) # if last iteration, dont calculate and go to SBS if i != self.l-1: new_indices = [sel_features + [j] for j in features_available] if len(new_indices[0]) != 1: fitness_values = self._pool_fitness_calc_multiple(new_indices) else: fitness_values = self._pool_fitness_calc_single(new_indices) # running Sequential Backward selection R times # getting every combination of features available new_indices = list(itertools.combinations(sel_features,len(sel_features)-1)) if len(new_indices[0]) != 1: fitness_values = self._pool_fitness_calc_multiple(new_indices) else: fitness_values = self._pool_fitness_calc_single(new_indices) for i in range(self.r): if self.weight == 1: attr_index = np.argmax(fitness_values) elif self.weight == -1: attr_index = np.argmin(fitness_values) # appending the feature to the selected feature list so it can be identified later features_available.extend([z for z in sel_features if z not in new_indices[attr_index]]) # updating sel_features sel_features = list(new_indices[attr_index]) # if last iteration, dont calculate nad go to SFS if i != self.r-1: # recalculating fitness of every combination of remaining feature sets new_indices = list(itertools.combinations(sel_features,len(sel_features)-1)) if len(new_indices[0]) != 1: fitness_values = self._pool_fitness_calc_multiple(new_indices) else: fitness_values = self._pool_fitness_calc_single(new_indices) self.sel_features = sel_features self.sel_features_acc = fitness_values[attr_index] if self.verbose: print("Features: {} Fitness_score: {:.4} ".format(self.sel_features,self.sel_features_acc)) self.best_fits.append(self.sel_features_acc) if len(self.sel_features) == self.l: self.sel_features = self.sel_features[:self.n_f] elif self.l < self.r: """ starting with a full list and consequently running SBS and SFS """ self.sel_features = list(range(self.x.shape[1])) sel_features = list(range(self.x.shape[1])) features_available = [] self.best_fits = [] while len(self.sel_features) != self.n_f: # running Sequential Backward Selection R times # removing one feature and calculating fitness values using combination new_indices = list(itertools.combinations(self.sel_features,len(self.sel_features)-1)) fitness_values = self._pool_fitness_calc_multiple(new_indices) for i in range(self.r): # the worst feature is the one that when removed, the smallest drop in accuracy is seen if self.weight == 1: attr_index =
np.argmax(fitness_values)
numpy.argmax
#!/usr/bin/python # -*- encoding: utf-8 -*- from logger import * from models.deeplabv3plus import Deeplab_v3plus from cityscapes import CityScapes from configs import config_factory import torch import torch.nn as nn from torch.utils.data import DataLoader import torch.nn.functional as F import torch.distributed as dist import os import sys import os.path as osp import logging import time import numpy as np from tqdm import tqdm import argparse def parse_args(): parse = argparse.ArgumentParser() parse.add_argument( '--local_rank', dest = 'local_rank', type = int, default = -1, ) return parse.parse_args() class MscEval(object): def __init__(self, cfg, *args, **kwargs): self.cfg = cfg self.distributed = dist.is_initialized() ## dataloader dsval = CityScapes(cfg, mode='val') sampler = None if self.distributed: sampler = torch.utils.data.distributed.DistributedSampler(dsval) self.dl = DataLoader(dsval, batch_size = cfg.eval_batchsize, sampler = sampler, shuffle = False, num_workers = cfg.eval_n_workers, drop_last = False) def __call__(self, net): ## evaluate hist_size = (self.cfg.n_classes, self.cfg.n_classes) hist = np.zeros(hist_size, dtype=np.float32) if dist.is_initialized() and dist.get_rank()!=0: diter = enumerate(self.dl) else: diter = enumerate(tqdm(self.dl)) for i, (imgs, label) in diter: N, _, H, W = label.shape probs = torch.zeros((N, self.cfg.n_classes, H, W)) probs.requires_grad = False for sc in self.cfg.eval_scales: new_hw = [int(H*sc), int(W*sc)] with torch.no_grad(): im = F.interpolate(imgs, new_hw, mode='bilinear', align_corners=True) im = im.cuda() out = net(im) out = F.interpolate(out, (H, W), mode='bilinear', align_corners=True) prob = F.softmax(out, 1) probs += prob.cpu() if self.cfg.eval_flip: out = net(torch.flip(im, dims=(3,))) out = torch.flip(out, dims=(3,)) out = F.interpolate(out, (H, W), mode='bilinear', align_corners=True) prob = F.softmax(out, 1) probs += prob.cpu() del out, prob probs = probs.data.numpy() preds = np.argmax(probs, axis=1) hist_once = self.compute_hist(preds, label.data.numpy().squeeze(1)) hist = hist + hist_once if self.distributed: hist = torch.tensor(hist).cuda() dist.all_reduce(hist, dist.ReduceOp.SUM) hist = hist.cpu().numpy().astype(np.float32) IOUs =
np.diag(hist)
numpy.diag
""" This library collects a bunch of Optimizers inspired by the paper The older optimizers are stored in Optimizer.py. Those classes are equipped with a `step_simple` function taking in scores and codes to generate the next batch of codes. """ # from matplotlib import use as use_backend # use_backend("Agg") import matplotlib.pylab as plt # plt.ioff() # import os import time import sys # import utils import numpy as np from numpy.linalg import norm from numpy.random import randn from numpy import sqrt, zeros, abs, floor, log, log2, eye, exp from geometry_utils import ExpMap, VecTransport, radial_proj, orthogonalize, renormalize orig_stdout = sys.stdout #%% Classic Optimizers as Reference class CholeskyCMAES: """ Note this is a variant of CMAES Cholesky suitable for high dimensional optimization""" def __init__(self, space_dimen, population_size=None, init_sigma=3.0, init_code=None, Aupdate_freq=10, maximize=True, random_seed=None, optim_params={}): N = space_dimen self.space_dimen = space_dimen # Overall control parameter self.maximize = maximize # if the program is to maximize or to minimize # Strategy parameter setting: Selection if population_size is None: self.lambda_ = int(4 + floor(3 * log2(N))) # population size, offspring number # the relation between dimension and population size. else: self.lambda_ = population_size # use custom specified population size mu = self.lambda_ / 2 # number of parents/points for recombination # Select half the population size as parents weights = log(mu + 1 / 2) - (log(np.arange(1, 1 + floor(mu)))) # muXone array for weighted recombination self.mu = int(floor(mu)) self.weights = weights / sum(weights) # normalize recombination weights array mueff = self.weights.sum() ** 2 / sum(self.weights ** 2) # variance-effectiveness of sum w_i x_i self.weights.shape = (1, -1) # Add the 1st dim 1 to the weights mat self.mueff = mueff # add to class variable self.sigma = init_sigma # Note by default, sigma is None here. print("Space dimension: %d, Population size: %d, Select size:%d, Optimization Parameters:\nInitial sigma: %.3f" % (self.space_dimen, self.lambda_, self.mu, self.sigma)) # Strategy parameter settiself.weightsng: Adaptation self.cc = 4 / (N + 4) # defaultly 0.0009756 self.cs = sqrt(mueff) / (sqrt(mueff) + sqrt(N)) # 0.0499 self.c1 = 2 / (N + sqrt(2)) ** 2 # 1.1912701410022985e-07 if "cc" in optim_params.keys(): # if there is outside value for these parameter, overwrite them self.cc = optim_params["cc"] if "cs" in optim_params.keys(): self.cs = optim_params["cs"] if "c1" in optim_params.keys(): self.c1 = optim_params["c1"] self.damps = 1 + self.cs + 2 * max(0, sqrt((mueff - 1) / (N + 1)) - 1) # damping for sigma usually close to 1 print("cc=%.3f, cs=%.3f, c1=%.3f damps=%.3f" % (self.cc, self.cs, self.c1, self.damps)) if init_code is not None: self.init_x = np.asarray(init_code) self.init_x.shape = (1, N) else: self.init_x = None # FIXED Nov. 1st self.xmean = zeros((1, N)) self.xold = zeros((1, N)) # Initialize dynamic (internal) strategy parameters and constants self.pc = zeros((1, N)) self.ps = zeros((1, N)) # evolution paths for C and sigma self.A = eye(N, N) # covariant matrix is represent by the factors A * A '=C self.Ainv = eye(N, N) self.eigeneval = 0 # track update of B and D self.counteval = 0 if Aupdate_freq is None: self.update_crit = self.lambda_ / self.c1 / N / 10 else: self.update_crit = Aupdate_freq * self.lambda_ self.chiN = sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N ** 2)) # expectation of ||N(0,I)|| == norm(randn(N,1)) in 1/N expansion formula self._istep = 0 def step_simple(self, scores, codes): """ Taking scores and codes to return new codes, without generating images Used in cases when the images are better handled in outer objects like Experiment object """ # Note it's important to decide which variable is to be saved in the `Optimizer` object # Note to confirm with other code, this part is transposed. # set short name for everything to simplify equations N = self.space_dimen lambda_, mu, mueff, chiN = self.lambda_, self.mu, self.mueff, self.chiN cc, cs, c1, damps = self.cc, self.cs, self.c1, self.damps sigma, A, Ainv, ps, pc, = self.sigma, self.A, self.Ainv, self.ps, self.pc, # Sort by fitness and compute weighted mean into xmean if self.maximize is False: code_sort_index = np.argsort( scores) # add - operator it will do maximization. else: code_sort_index = np.argsort(-scores) # scores = scores[code_sort_index] # Ascending order. minimization if self._istep == 0: # Population Initialization: if without initialization, the first xmean is evaluated from weighted average all the natural images if self.init_x is None: select_n = len(code_sort_index[0:mu]) temp_weight = self.weights[:, :select_n] / np.sum(self.weights[:, :select_n]) # in case the codes is not enough self.xmean = temp_weight @ codes[code_sort_index[0:mu], :] else: self.xmean = self.init_x else: self.xold = self.xmean self.xmean = self.weights @ codes[code_sort_index[0:mu], :] # Weighted recombination, new mean value # Cumulation statistics through steps: Update evolution paths randzw = self.weights @ self.randz[code_sort_index[0:mu], :] ps = (1 - cs) * ps + sqrt(cs * (2 - cs) * mueff) * randzw pc = (1 - cc) * pc + sqrt(cc * (2 - cc) * mueff) * randzw @ A # Adapt step size sigma sigma = sigma * exp((cs / damps) * (norm(ps) / chiN - 1)) # self.sigma = self.sigma * exp((self.cs / self.damps) * (norm(ps) / self.chiN - 1)) print("sigma: %.2f" % sigma) # Update A and Ainv with search path if self.counteval - self.eigeneval > self.update_crit: # to achieve O(N ^ 2) do decomposition less frequently self.eigeneval = self.counteval t1 = time.time() v = pc @ Ainv normv = v @ v.T # Directly update the A Ainv instead of C itself A = sqrt(1 - c1) * A + sqrt(1 - c1) / normv * ( sqrt(1 + normv * c1 / (1 - c1)) - 1) * v.T @ pc # FIXME, dimension error, # FIXED aug.13th Ainv = 1 / sqrt(1 - c1) * Ainv - 1 / sqrt(1 - c1) / normv * ( 1 - 1 / sqrt(1 + normv * c1 / (1 - c1))) * Ainv @ v.T @ v t2 = time.time() print("A, Ainv update! Time cost: %.2f s" % (t2 - t1)) # Generate new sample by sampling from Gaussian distribution new_samples = zeros((self.lambda_, N)) self.randz = randn(self.lambda_, N) # save the random number for generating the code. for k in range(self.lambda_): new_samples[k:k + 1, :] = self.xmean + sigma * (self.randz[k, :] @ A) # m + sig * Normal(0,C) # Clever way to generate multivariate gaussian!! # Stretch the guassian hyperspher with D and transform the # ellipsoid by B mat linear transform between coordinates self.counteval += 1 self.sigma, self.A, self.Ainv, self.ps, self.pc = sigma, A, Ainv, ps, pc, self._istep += 1 return new_samples #%% Optimizers that use pre-computed Hessian information class HessCMAES: """ Note this is a variant of CMAES Cholesky suitable for high dimensional optimization""" def __init__(self, space_dimen, population_size=None, cutoff=None, init_sigma=3.0, init_code=None, Aupdate_freq=10, maximize=True, random_seed=None, optim_params={}): if cutoff is None: cutoff = space_dimen N = cutoff self.code_len = space_dimen self.space_dimen = cutoff # Overall control parameter self.maximize = maximize # if the program is to maximize or to minimize # Strategy parameter setting: Selection if population_size is None: self.lambda_ = int(4 + floor(3 * log2(N))) # population size, offspring number # the relation between dimension and population size. else: self.lambda_ = population_size # use custom specified population size mu = self.lambda_ / 2 # number of parents/points for recombination # Select half the population size as parents weights = log(mu + 1 / 2) - (log(np.arange(1, 1 + floor(mu)))) # muXone array for weighted recombination self.mu = int(floor(mu)) self.weights = weights / sum(weights) # normalize recombination weights array mueff = self.weights.sum() ** 2 / sum(self.weights ** 2) # variance-effectiveness of sum w_i x_i self.weights.shape = (1, -1) # Add the 1st dim 1 to the weights mat self.mueff = mueff # add to class variable self.sigma = init_sigma # Note by default, sigma is None here. print("Space dimension: %d, Population size: %d, Select size:%d, Optimization Parameters:\nInitial sigma: %.3f" % (self.space_dimen, self.lambda_, self.mu, self.sigma)) # Strategy parameter settiself.weightsng: Adaptation self.cc = 4 / (N + 4) # defaultly 0.0009756 self.cs = sqrt(mueff) / (sqrt(mueff) + sqrt(N)) # 0.0499 self.c1 = 2 / (N + sqrt(2)) ** 2 # 1.1912701410022985e-07 if "cc" in optim_params.keys(): # if there is outside value for these parameter, overwrite them self.cc = optim_params["cc"] if "cs" in optim_params.keys(): self.cs = optim_params["cs"] if "c1" in optim_params.keys(): self.c1 = optim_params["c1"] self.damps = 1 + self.cs + 2 * max(0, sqrt((mueff - 1) / (N + 1)) - 1) # damping for sigma usually close to 1 print("cc=%.3f, cs=%.3f, c1=%.3f damps=%.3f" % (self.cc, self.cs, self.c1, self.damps)) if init_code is not None: self.init_x = np.asarray(init_code).reshape(1,-1) # if self.init_x.shape[1] == space_dimen: # self.projection = True # elif self.init_x.shape[1] == cutoff: # self.projection = False # else: # raise ValueError else: self.init_x = None # FIXED Nov. 1st self.xmean = zeros((1, N)) self.xold = zeros((1, N)) # Initialize dynamic (internal) strategy parameters and constants self.pc = zeros((1, space_dimen)) self.ps = zeros((1, N)) # evolution paths for C and sigma self.A = eye(N, space_dimen, ) # covariant matrix is represent by the factors A * A '=C self.Ainv = eye(space_dimen, N, ) self.eigeneval = 0 # track update of B and D self.counteval = 0 if Aupdate_freq is None: self.update_crit = self.lambda_ / self.c1 / N / 10 else: self.update_crit = Aupdate_freq * self.lambda_ self.chiN = sqrt(N) * (1 - 1 / (4 * N) + 1 / (21 * N ** 2)) # expectation of ||N(0,I)|| == norm(randn(N,1)) in 1/N expansion formula self._istep = 0 def set_Hessian(self, eigvals, eigvects, cutoff=None, expon=1/2.5): cutoff = self.space_dimen self.eigvals = eigvals[:cutoff] self.eigvects = eigvects[:, :cutoff] self.scaling = self.eigvals ** (-expon) self.A = self.scaling[:,np.newaxis] * self.eigvects.T # cutoff by spacedimen self.Ainv = (1 / self.scaling[np.newaxis,:]) * self.eigvects # spacedimen by cutoff # if self.projection: # self.init_x = self.init_x @ self.Ainv def step_simple(self, scores, codes): """ Taking scores and codes to return new codes, without generating images Used in cases when the images are better handled in outer objects like Experiment object """ # Note it's important to decide which variable is to be saved in the `Optimizer` object # Note to confirm with other code, this part is transposed. # set short name for everything to simplify equations N = self.space_dimen lambda_, mu, mueff, chiN = self.lambda_, self.mu, self.mueff, self.chiN cc, cs, c1, damps = self.cc, self.cs, self.c1, self.damps sigma, A, Ainv, ps, pc, = self.sigma, self.A, self.Ainv, self.ps, self.pc, # Sort by fitness and compute weighted mean into xmean if self.maximize is False: code_sort_index = np.argsort( scores) # add - operator it will do maximization. else: code_sort_index = np.argsort(-scores) # scores = scores[code_sort_index] # Ascending order. minimization if self._istep == 0: # Population Initialization: if without initialization, the first xmean is evaluated from weighted average all the natural images if self.init_x is None: select_n = len(code_sort_index[0:mu]) temp_weight = self.weights[:, :select_n] / np.sum(self.weights[:, :select_n]) # in case the codes is not enough self.xmean = temp_weight @ codes[code_sort_index[0:mu], :] else: self.xmean = self.init_x else: self.xold = self.xmean self.xmean = self.weights @ codes[code_sort_index[0:mu], :] # Weighted recombination, new mean value # Cumulation statistics through steps: Update evolution paths randzw = self.weights @ self.randz[code_sort_index[0:mu], :] ps = (1 - cs) * ps + sqrt(cs * (2 - cs) * mueff) * randzw pc = (1 - cc) * pc + sqrt(cc * (2 - cc) * mueff) * randzw @ A # Adapt step size sigma sigma = sigma * exp((cs / damps) * (norm(ps) / chiN - 1)) # self.sigma = self.sigma * exp((self.cs / self.damps) * (norm(ps) / self.chiN - 1)) print("sigma: %.2f" % sigma) # Update A and Ainv with search path if self.counteval - self.eigeneval > self.update_crit: # to achieve O(N ^ 2) do decomposition less frequently self.eigeneval = self.counteval t1 = time.time() v = pc @ Ainv # (1, spacedimen) * (spacedimen, N) -> (1,N) normv = v @ v.T # Directly update the A Ainv instead of C itself A = sqrt(1 - c1) * A + sqrt(1 - c1) / normv * ( sqrt(1 + normv * c1 / (1 - c1)) - 1) * v.T @ pc # FIXME, dimension error Ainv = 1 / sqrt(1 - c1) * Ainv - 1 / sqrt(1 - c1) / normv * ( 1 - 1 / sqrt(1 + normv * c1 / (1 - c1))) * Ainv @ v.T @ v t2 = time.time() print("A, Ainv update! Time cost: %.2f s" % (t2 - t1)) # Generate new sample by sampling from Gaussian distribution new_samples = zeros((self.lambda_, N)) self.randz = randn(self.lambda_, N) # save the random number for generating the code. new_samples = self.xmean + sigma * self.randz @ A self.counteval += self.lambda_ # Clever way to generate multivariate gaussian!! # Stretch the guassian hyperspher with D and transform the # ellipsoid by B mat linear transform between coordinates self.sigma, self.A, self.Ainv, self.ps, self.pc = sigma, A, Ainv, ps, pc, self._istep += 1 return new_samples #%% New Optimizers from the paper. class HessAware_ADAM: def __init__(self, space_dimen, population_size=40, lr=0.1, mu=1, nu=0.9, maximize=True): self.dimen = space_dimen # dimension of input space self.B = population_size # population batch size self.mu = mu # scale of estimating gradient self.nu = nu # update rate for D self.lr = lr # learning rate (step size) of moving along gradient self.grad = np.zeros((1, self.dimen)) # estimated gradient self.D = np.ones((1, self.dimen)) # running average of gradient square self.Hdiag = np.ones((1, self.dimen)) # Diagonal of estimated Hessian self.innerU = np.zeros((self.B, self.dimen)) # inner random vectors with covariance matrix Id self.outerV = np.zeros((self.B, self.dimen)) # outer random vectors with covariance matrix H^{-1} self.xcur = np.zeros((1, self.dimen)) # current base point self.xnew = np.zeros((1, self.dimen)) # new base point self.fcur = 0 # f(xcur) self.fnew = 0 # f(xnew) self._istep = 0 # step counter self.maximize = maximize # maximize / minimize the function def step_simple(self, scores, codes): ''' Assume the 1st row of codes is the xnew new starting point ''' # set short name for everything to simplify equations N = self.dimen if self._istep == 0: # Population Initialization: if without initialization, the first xmean is evaluated from weighted average all the natural images self.xcur = codes[0:1, :] self.xnew = codes[0:1, :] else: # self.xcur = self.xnew # should be same as following self.xcur = codes[0:1, :] self.weights = (scores - scores[0]) / self.mu HAgrad = self.weights[1:] @ (codes[1:] - self.xcur) / self.B # it doesn't matter if it includes the 0 row! if self.maximize is True: self.xnew = self.xcur + self.lr * HAgrad # add - operator it will do maximization. else: self.xnew = self.xcur - self.lr * HAgrad self.D = self.nu * self.D + (1 - self.nu) * HAgrad ** 2 # running average of gradient square # Missing square before self.Hdiag = self.D / (1 - self.nu ** self._istep) # Diagonal of estimated Hessian # Generate new sample by sampling from Gaussian distribution new_samples = zeros((self.B + 1, N)) self.innerU = randn(self.B, N) # save the random number for generating the code. self.outerV = self.innerU / sqrt(self.Hdiag) # H^{-1/2}U new_samples[0:1, :] = self.xnew new_samples[1: , :] = self.xnew + self.mu * self.outerV # m + sig * Normal(0,C) self._istep += 1 return new_samples #%% class HessAware_Gauss: """Gaussian Sampling method for estimating Hessian""" def __init__(self, space_dimen, population_size=40, lr=0.1, mu=1, Lambda=0.9, Hupdate_freq=5, maximize=True): self.dimen = space_dimen # dimension of input space self.B = population_size # population batch size self.mu = mu # scale of the Gaussian distribution to estimate gradient assert Lambda > 0 self.Lambda = Lambda # diagonal regularizer for Hessian matrix self.lr = lr # learning rate (step size) of moving along gradient self.grad = np.zeros((1, self.dimen)) # estimated gradient self.innerU = np.zeros((self.B, self.dimen)) # inner random vectors with covariance matrix Id self.outerV = np.zeros((self.B, self.dimen)) # outer random vectors with covariance matrix H^{-1}, equals self.innerU @ H^{-1/2} self.xcur = np.zeros((1, self.dimen)) # current base point self.xnew = np.zeros((1, self.dimen)) # new base point self.fcur = 0 # f(xcur) self.fnew = 0 # f(xnew) self.Hupdate_freq = int(Hupdate_freq) # Update Hessian (add additional samples every how many generations) self.HB = population_size # Batch size of samples to estimate Hessian, can be different from self.B self.HinnerU = np.zeros((self.HB, self.dimen)) # sample deviation vectors for Hessian construction # SVD of the weighted HinnerU for Hessian construction self.HessUC = np.zeros((self.HB, self.dimen)) # Basis vector for the linear subspace defined by the samples self.HessD = np.zeros(self.HB) # diagonal values of the Lambda matrix self.HessV = np.zeros((self.HB, self.HB)) # seems not used.... self.HUDiag = np.zeros(self.HB) self.hess_comp = False self._istep = 0 # step counter self.maximize = maximize # maximize / minimize the function def step_hessian(self, scores): '''Currently only use part of the samples to estimate hessian, maybe need more ''' fbasis = scores[0] fpos = scores[-2*self.HB:-self.HB] fneg = scores[-self.HB:] weights = abs((fpos + fneg - 2 * fbasis) / 2 / self.mu ** 2 / self.HB) # use abs to enforce positive definiteness C = sqrt(weights[:, np.newaxis]) * self.HinnerU # or the sqrt may not work. # H = C^TC + Lambda * I self.HessV, self.HessD, self.HessUC = np.linalg.svd(C, full_matrices=False) self.HUDiag = 1 / sqrt(self.HessD ** 2 + self.Lambda) - 1 / sqrt(self.Lambda) print("Hessian Samples Spectrum", self.HessD) print("Hessian Samples Full Power:%f \nLambda:%f" % ((self.HessD ** 2).sum(), self.Lambda) ) def step_simple(self, scores, codes): ''' Assume the 1st row of codes is the xnew new starting point ''' # set short name for everything to simplify equations N = self.dimen if self.hess_comp: # if this flag is True then more samples have been added to the trial self.step_hessian(scores) # you should only get images for gradient estimation, get rid of the Hessian samples, or make use of it to estimate gradient codes = codes[:self.B+1, :] scores = scores[:self.B+1] self.hess_comp = False if self._istep == 0: # Population Initialization: if without initialization, the first xmean is evaluated from weighted average all the natural images self.xcur = codes[0:1, :] self.xnew = codes[0:1, :] else: # self.xcur = self.xnew # should be same as following line self.xcur = codes[0:1, :] self.weights = (scores - scores[0]) / self.mu # estimate gradient from the codes and scores HAgrad = self.weights[1:] @ (codes[1:] - self.xcur) / self.B # it doesn't matter if it includes the 0 row! print("Estimated Gradient Norm %f"%np.linalg.norm(HAgrad)) if self.maximize is True: self.xnew = self.xcur + self.lr * HAgrad # add - operator it will do maximization. else: self.xnew = self.xcur - self.lr * HAgrad # Generate new sample by sampling from Gaussian distribution new_samples = zeros((self.B + 1, N)) self.innerU = randn(self.B, N) # Isotropic gaussian distributions self.outerV = self.innerU / sqrt(self.Lambda) + ((self.innerU @ self.HessUC.T) * self.HUDiag) @ self.HessUC # H^{-1/2}U new_samples[0:1, :] = self.xnew new_samples[1: , :] = self.xnew + self.mu * self.outerV # m + sig * Normal(0,C) if self._istep % self.Hupdate_freq == 0: # add more samples to next batch for hessian computation self.hess_comp = True self.HinnerU = randn(self.HB, N) H_pos_samples = self.xnew + self.mu * self.HinnerU H_neg_samples = self.xnew - self.mu * self.HinnerU new_samples = np.concatenate((new_samples, H_pos_samples, H_neg_samples), axis=0) self._istep += 1 return new_samples def rankweight(lambda_, mu=None): """ Rank weight inspired by CMA-ES code mu is the cut off number, how many samples will be kept while `lambda_ - mu` will be ignore """ if mu is None: mu = lambda_ / 2 # number of parents/points for recombination # Defaultly Select half the population size as parents weights = zeros(int(lambda_)) mu_int = int(floor(mu)) weights[:mu_int] = log(mu + 1 / 2) - (log(np.arange(1, 1 + floor(mu)))) # muXone array for weighted recombination weights = weights / sum(weights) return weights # Major Classes. class HessAware_Gauss_Spherical: """Gaussian Sampling method for estimating Hessian""" def __init__(self, space_dimen, population_size=40, lr=0.1, mu=1, Lambda=0.9, Hupdate_freq=5, sphere_norm=300, maximize=True, rankweight=False): self.dimen = space_dimen # dimension of input space self.B = population_size # population batch size self.mu = mu # scale of the Gaussian distribution to estimate gradient assert Lambda > 0 self.Lambda = Lambda # diagonal regularizer for Hessian matrix self.lr = lr # learning rate (step size) of moving along gradient self.sphere_norm = sphere_norm self.tang_codes = zeros((self.B, self.dimen)) self.grad = np.zeros((1, self.dimen)) # estimated gradient self.innerU = np.zeros((self.B, self.dimen)) # inner random vectors with covariance matrix Id self.outerV = np.zeros( (self.B, self.dimen)) # outer random vectors with covariance matrix H^{-1}, equals self.innerU @ H^{-1/2} self.xcur = np.zeros((1, self.dimen)) # current base point self.xnew = np.zeros((1, self.dimen)) # new base point self.fcur = 0 # f(xcur) self.fnew = 0 # f(xnew) self.Hupdate_freq = int(Hupdate_freq) # Update Hessian (add additional samples every how many generations) self.HB = population_size # Batch size of samples to estimate Hessian, can be different from self.B self.HinnerU = np.zeros((self.HB, self.dimen)) # sample deviation vectors for Hessian construction # SVD of the weighted HinnerU for Hessian construction self.HessUC = np.zeros((self.HB, self.dimen)) # Basis vector for the linear subspace defined by the samples self.HessD = np.zeros(self.HB) # diagonal values of the Lambda matrix self.HessV = np.zeros((self.HB, self.HB)) # seems not used.... self.HUDiag = np.zeros(self.HB) self.hess_comp = False self._istep = 0 # step counter self.maximize = maximize # maximize / minimize the function self.rankweight = rankweight # Switch between using raw score as weight VS use rank weight as score print( "Spereical Space dimension: %d, Population size: %d, Optimization Parameters:\n Exploration: %.3f\n Learning rate: %.3f" % (self.dimen, self.B, self.mu, self.lr)) if self.rankweight: if select_cutoff is None: self.select_cutoff = int(population_size / 2) else: self.select_cutoff = select_cutoff print("Using rank weight, selection size: %d\n" % self.select_cutoff) def step_hessian(self, scores): '''Currently not implemented in Spherical Version.''' fbasis = scores[0] fpos = scores[-2 * self.HB:-self.HB] fneg = scores[-self.HB:] weights = abs( (fpos + fneg - 2 * fbasis) / 2 / self.mu ** 2 / self.HB) # use abs to enforce positive definiteness C = sqrt(weights[:, np.newaxis]) * self.HinnerU # or the sqrt may not work. # H = C^TC + Lambda * I self.HessV, self.HessD, self.HessUC = np.linalg.svd(C, full_matrices=False) self.HUDiag = 1 / sqrt(self.HessD ** 2 + self.Lambda) - 1 / sqrt(self.Lambda) print("Hessian Samples Spectrum", self.HessD) print("Hessian Samples Full Power:%f \nLambda:%f" % ((self.HessD ** 2).sum(), self.Lambda)) def step_simple(self, scores, codes): ''' Assume the 1st row of codes is the xnew new starting point ''' # set short name for everything to simplify equations N = self.dimen if self.hess_comp: # if this flag is True then more samples have been added to the trial self.step_hessian(scores) # you should only get images for gradient estimation, get rid of the Hessian samples, or make use of it to estimate gradient codes = codes[:self.B + 1, :] scores = scores[:self.B + 1] self.hess_comp = False if self._istep == 0: # Population Initialization: if without initialization, the first xmean is evaluated from weighted average all the natural images print('First generation\n') self.xcur = codes[0:1, :] self.xnew = codes[0:1, :] # No reweighting as there should be a single code else: # self.xcur = self.xnew # should be same as following line self.xcur = codes[0:1, :] if self.rankweight is False: # use the score difference as weight # B normalizer should go here larger cohort of codes gives more estimates self.weights = (scores[1:] - scores[0]) / self.B # / self.mu else: # use a function of rank as weight, not really gradient. if self.maximize is False: # note for weighted recombination, the maximization flag is here. code_rank = np.argsort(np.argsort(scores[1:])) # add - operator it will do maximization. else: code_rank = np.argsort(np.argsort(-scores[1:])) # Consider do we need to consider the basis code and score here? Or no? # Note the weights here are internally normalized s.t. sum up to 1, no need to normalize more. self.weights = rankweight(len(scores) - 1, mu=self.select_cutoff)[ code_rank] # map the rank to the corresponding weight of recombination # estimate gradient from the codes and scores # HAgrad = self.weights[1:] @ (codes[1:] - self.xcur) / self.B # it doesn't matter if it includes the 0 row! HAgrad = self.weights[np.newaxis, :] @ self.tang_codes print("Estimated Gradient Norm %f" % np.linalg.norm(HAgrad)) if self.rankweight is False: if self.maximize is True: self.xnew = ExpMap(self.xcur, self.lr * HAgrad) # add - operator it will do maximization. else: self.xnew = ExpMap(self.xcur, - self.lr * HAgrad) else: self.xnew = ExpMap(self.xcur, self.lr * HAgrad) # vtan_new = VecTransport(self.xcur, self.xnew, vtan_old) # uni_vtan_old = vtan_old / np.linalg.norm(vtan_old); # uni_vtan_new = vtan_new / np.linalg.norm(vtan_new); # uniform the tangent vector # Generate new sample by sampling from Gaussian distribution self.tang_codes = zeros((self.B, N)) # Tangent vectors of exploration new_samples = zeros((self.B + 1, N)) self.innerU = randn(self.B, N) # Isotropic gaussian distributions self.outerV = self.innerU / sqrt(self.Lambda) + ( (self.innerU @ self.HessUC.T) * self.HUDiag) @ self.HessUC # H^{-1/2}U new_samples[0:1, :] = self.xnew self.tang_codes[:, :] = self.mu * self.outerV # m + sig * Normal(0,C) new_samples[1:, ] = ExpMap(self.xnew, self.tang_codes) if (self._istep + 1) % self.Hupdate_freq == 0: # add more samples to next batch for hessian computation self.hess_comp = True self.HinnerU = randn(self.HB, N) H_pos_samples = self.xnew + self.mu * self.HinnerU H_neg_samples = self.xnew - self.mu * self.HinnerU new_samples = np.concatenate((new_samples, H_pos_samples, H_neg_samples), axis=0) self._istep += 1 self._curr_samples = new_samples / norm(new_samples, axis=1)[:, np.newaxis] * self.sphere_norm return self._curr_samples class HessAware_Gauss_Cylind: """ Cylindrical Evolution, Both angular and radial. """ def __init__(self, space_dimen, population_size=40, population_kept=None, lr_norm=0.5, mu_norm=5, lr_sph=2, mu_sph=0.005, Lambda=1, Hupdate_freq=201, max_norm=300, maximize=True, rankweight=False): self.dimen = space_dimen # dimension of input space self.B = population_size # population batch size assert Lambda > 0 self.Lambda = Lambda # diagonal regularizer for Hessian matrix self.lr_norm = lr_norm # learning rate (step size) of moving along gradient self.mu_norm = mu_norm # scale of the Gaussian distribution to estimate gradient self.lr_sph = lr_sph self.mu_sph = mu_sph self.sphere_flag = True # initialize the whole system as linear? self.max_norm = max_norm self.tang_codes = zeros((self.B, self.dimen)) self.grad = np.zeros((1, self.dimen)) # estimated gradient self.innerU = np.zeros((self.B, self.dimen)) # inner random vectors with covariance matrix Id self.outerV = np.zeros( (self.B, self.dimen)) # outer random vectors with covariance matrix H^{-1}, equals self.innerU @ H^{-1/2} self.xcur = np.zeros((1, self.dimen)) # current base point self.xnew = np.zeros((1, self.dimen)) # new base point self.fcur = 0 # f(xcur) self.fnew = 0 # f(xnew) self.Hupdate_freq = int(Hupdate_freq) # Update Hessian (add additional samples every how many generations) self.HB = population_size # Batch size of samples to estimate Hessian, can be different from self.B self.HinnerU = np.zeros((self.HB, self.dimen)) # sample deviation vectors for Hessian construction # SVD of the weighted HinnerU for Hessian construction self.HessUC = np.zeros((self.HB, self.dimen)) # Basis vector for the linear subspace defined by the samples self.HessD = np.zeros(self.HB) # diagonal values of the Lambda matrix self.HessV = np.zeros((self.HB, self.HB)) # seems not used.... self.HUDiag = np.zeros(self.HB) self.hess_comp = False self._istep = 0 # step counter self.maximize = maximize # maximize / minimize the function self.rankweight = rankweight # Switch between using raw score as weight VS use rank weight as score print("Spereical Space dimension: %d, Population size: %d, Optimization Parameters:\n" "Norm Exploration Range %.3f Learning rate: %.3f\n Angular Exploration Range:%.3f Learning Rate: %.3f" % (self.dimen, self.B, self.mu_norm, self.lr_norm, self.mu_sph, self.lr_sph)) if rankweight: self.BKeep = population_kept if population_kept is not None else int(self.B // 2) print("Using rank based weights. Keep population size: %d" % (self.BKeep)) def step_hessian(self, scores): ''' Currently not implemented in Spherical Version. ''' raise NotImplementedError # fbasis = scores[0] # fpos = scores[-2 * self.HB:-self.HB] # fneg = scores[-self.HB:] # weights = abs( # (fpos + fneg - 2 * fbasis) / 2 / self.mu ** 2 / self.HB) # use abs to enforce positive definiteness # C = sqrt(weights[:, np.newaxis]) * self.HinnerU # or the sqrt may not work. # # H = C^TC + Lambda * I # self.HessV, self.HessD, self.HessUC = np.linalg.svd(C, full_matrices=False) # self.HUDiag = 1 / sqrt(self.HessD ** 2 + self.Lambda) - 1 / sqrt(self.Lambda) # print("Hessian Samples Spectrum", self.HessD) # print("Hessian Samples Full Power:%f \nLambda:%f" % ((self.HessD ** 2).sum(), self.Lambda)) def step_simple(self, scores, codes): ''' Assume the 1st row of codes is the xnew new starting point ''' # set short name for everything to simplify equations N = self.dimen if self.hess_comp: # if this flag is True then more samples have been added to the trial raise NotImplementedError self.step_hessian(scores) # you should only get images for gradient estimation, get rid of the Hessian samples, or make use of it to estimate gradient codes = codes[:self.B + 1, :] scores = scores[:self.B + 1] self.hess_comp = False if self._istep == 0: # Population Initialization: if without initialization, the first xmean is evaluated from weighted average all the natural images print('First generation\n') self.xcur = codes[0:1, :] self.xnew = codes[0:1, :] # No reweighting as there should be a single code else: # self.xcur = self.xnew # should be same as following line self.xcur = codes[0:1, :] if self.rankweight is False: # use the score difference as weight # B normalizer should go here larger cohort of codes gives more estimates self.weights = (scores[:] - scores[0]) / self.B # / self.mu else: # use a function of rank as weight, not really gradient. if self.maximize is False: # note for weighted recombination, the maximization flag is here. code_rank = np.argsort(np.argsort(scores[:])) # add - operator it will do maximization. else: code_rank = np.argsort(np.argsort(-scores[:])) # Consider do we need to consider the basis code and score here? Or no? # Note the weights here are internally normalized s.t. sum up to 1, no need to normalize more. self.weights = rankweight(len(scores), mu=self.BKeep)[code_rank] # map the rank to the corresponding weight of recombination # estimate gradient from the codes and scores # HAgrad = self.weights[1:] @ (codes[1:] - self.xcur) / self.B # it doesn't matter if it includes the 0 row! tang_codes_aug = np.concatenate((np.zeros((1, self.tang_codes.shape[1])), self.tang_codes), axis=0) HAgrad = self.weights[np.newaxis, :] @ tang_codes_aug # self.tang_codes # Changed to take the current location into account. normgrad = self.weights[np.newaxis, 1:] @ (self.code_norms - norm(self.xcur)) # Recombine norms to get, print("Estimated Angular Gradient Norm %f" % norm(HAgrad)) print("Estimated Radial Gradient Norm %f" % normgrad) mov_sign = -1 if (not self.maximize) and (not self.rankweight) else 1 normnew = np.minimum(self.max_norm, norm( self.xcur) + mov_sign * self.lr_norm * normgrad) # use the new norm to normalize ynew self.xnew = ExpMap(self.xcur, mov_sign * self.lr_sph * HAgrad) # add - operator it will do maximization. self.xnew = renormalize(self.xnew, normnew) # Generate new sample by sampling from Gaussian distribution self.innerU = randn(self.B, N) # Isotropic gaussian distributions self.outerV = self.innerU / sqrt(self.Lambda) + ( (self.innerU @ self.HessUC.T) * self.HUDiag) @ self.HessUC # H^{-1/2}U self.tang_codes = self.mu_sph * self.outerV # m + sig * Normal(0,C) self.tang_codes = orthogonalize(self.xnew, self.tang_codes) # Tangent vectors of exploration new_norms = norm(self.xnew) + self.mu_norm * randn(self.B) new_norms = np.minimum(self.max_norm, new_norms) new_samples = zeros((self.B + 1, N)) new_samples[0:1, :] = self.xnew new_samples[1:, ] = ExpMap(self.xnew, self.tang_codes) new_samples[1:, ] = renormalize(new_samples[1:, ], new_norms) print("norm of new samples", norm(new_samples, axis=1)) self.code_norms = new_norms # doesn't include the norm of the basis vector. if (self._istep + 1) % self.Hupdate_freq == 0: # add more samples to next batch for hessian computation self.hess_comp = True self.HinnerU = randn(self.HB, N) H_pos_samples = self.xnew + self.mu * self.HinnerU H_neg_samples = self.xnew - self.mu * self.HinnerU new_samples = np.concatenate((new_samples, H_pos_samples, H_neg_samples), axis=0) self._istep += 1 return new_samples #% class HessEstim_Gauss: """Code to generate samples and estimate Hessian from it""" def __init__(self, space_dimen): self.dimen = space_dimen self.HB = 0 self.std = 2 def GaussSampling(self, xmean, batch=100, std=2): xmean = xmean.reshape(1, -1) self.std = std self.HB = batch self.HinnerU = randn(self.HB, self.dimen) # / sqrt(self.dimen) # make it unit var along the code vector dimension H_pos_samples = xmean + self.std * self.HinnerU H_neg_samples = xmean - self.std * self.HinnerU new_samples = np.concatenate((xmean, H_pos_samples, H_neg_samples), axis=0) return new_samples def HessEstim(self, scores): fbasis = scores[0] fpos = scores[-2 * self.HB:-self.HB] fneg = scores[-self.HB:] weights = abs( (fpos + fneg - 2 * fbasis) / 2 / self.std ** 2 / self.HB) # use abs to enforce positive definiteness C = sqrt(weights[:, np.newaxis]) * self.HinnerU # or the sqrt may not work. # H = C^TC + Lambda * I self.HessV, self.HessD, self.HessUC = np.linalg.svd(C, full_matrices=False) # self.HessV.shape = (HB, HB); self.HessD.shape = (HB,), self.HessUC.shape = (HB, dimen) # self.HUDiag = 1 / sqrt(self.HessD ** 2 + self.Lambda) - 1 / sqrt(self.Lambda) print("Hessian Samples Spectrum", self.HessD) print("Hessian Samples Full Power:%f" % ((self.HessD ** 2).sum())) return self.HessV, self.HessD, self.HessUC #% class HessAware_Gauss_DC: """Gaussian Sampling method for estimating Hessian""" def __init__(self, space_dimen, population_size=40, lr=0.1, mu=1, Lambda=0.9, Hupdate_freq=5, maximize=True, max_norm=300, rankweight=False, nat_grad=False): self.dimen = space_dimen # dimension of input space self.B = population_size # population batch size self.mu = mu # scale of the Gaussian distribution to estimate gradient assert Lambda > 0 self.Lambda = Lambda # diagonal regularizer for Hessian matrix self.lr = lr # learning rate (step size) of moving along gradient self.grad = np.zeros((1, self.dimen)) # estimated gradient self.innerU = np.zeros((self.B, self.dimen)) # inner random vectors with covariance matrix Id self.outerV = np.zeros((self.B, self.dimen)) # outer random vectors with covariance matrix H^{-1}, equals self.innerU @ H^{-1/2} self.xnew = np.zeros((1, self.dimen)) # new base point self.xscore = 0 self.Hupdate_freq = int(Hupdate_freq) # Update Hessian (add additional samples every how many generations) self.HB = population_size # Batch size of samples to estimate Hessian, can be different from self.B self.HinnerU = np.zeros((self.HB, self.dimen)) # sample deviation vectors for Hessian construction # SVD of the weighted HinnerU for Hessian construction self.HessUC = np.zeros((self.HB, self.dimen)) # Basis vector for the linear subspace defined by the samples self.HessD = np.zeros(self.HB) # diagonal values of the Lambda matrix self.HessV = np.zeros((self.HB, self.HB)) # seems not used.... self.HUDiag = np.zeros(self.HB) self.hess_comp = False self._istep = 0 # step counter self.maximize = maximize # maximize / minimize the function self.code_stored = np.array([]).reshape((0, self.dimen)) self.score_stored = np.array([]) self.N_in_samp = 0 self.max_norm = max_norm self.nat_grad = nat_grad # use the natural gradient definition, or normal gradient. self.rankweight = rankweight def new_generation(self, init_score, init_code): self.xscore = init_score self.score_stored = np.array([]) self.xnew = init_code self.code_stored = np.array([]).reshape((0, self.dimen)) self.N_in_samp = 0 def compute_hess(self, scores, Lambda_Frac=100): '''Currently only use part of the samples to estimate hessian, maybe need more ''' fbasis = self.xscore fpos = scores[:self.HB] fneg = scores[-self.HB:] weights = abs((fpos + fneg - 2 * fbasis) / 2 / self.mu ** 2 / self.HB) # use abs to enforce positive definiteness C = sqrt(weights[:, np.newaxis]) * self.HinnerU # or the sqrt may not work. # H = C^TC + Lambda * I self.HessV, self.HessD, self.HessUC = np.linalg.svd(C, full_matrices=False) self.Lambda = (self.HessD ** 2).sum() / Lambda_Frac self.HUDiag = 1 / sqrt(self.HessD ** 2 + self.Lambda) - 1 / sqrt(self.Lambda) print("Hessian Samples Spectrum", self.HessD) print("Hessian Samples Full Power:%f \nLambda:%f" % ((self.HessD ** 2).sum(), self.Lambda) ) def compute_grad(self, scores): # add the new scores to storage self.score_stored = np.concatenate((self.score_stored, scores), axis=0) if self.score_stored.size else scores if self.rankweight is False: # use the score difference as weight # B normalizer should go here larger cohort of codes gives more estimates self.weights = (self.score_stored - self.xscore) / self.score_stored.size # / self.mu # assert(self.N_in_samp == self.score_stored.size) else: # use a function of rank as weight, not really gradient. # Note descent check **could be** built into ranking weight? # If not better just don't give weights to that sample if self.maximize is False: # note for weighted recombination, the maximization flag is here. code_rank = np.argsort(np.argsort( self.score_stored)) # add - operator it will do maximization. else: code_rank = np.argsort(np.argsort(-self.score_stored)) # Consider do we need to consider the basis code and score here? Or no? # Note the weights here are internally normalized s.t. sum up to 1, no need to normalize more. self.weights = rankweight(len(self.score_stored), mu=20)[code_rank] # map the rank to the corresponding weight of recombination # only keep the top 20 codes and recombine them. if self.nat_grad: # if or not using the Hessian to rescale the codes hagrad = self.weights @ (self.code_stored - self.xnew) # /self.mu else: Hdcode = self.Lambda * (self.code_stored - self.xnew) + ( ((self.code_stored - self.xnew) @ self.HessUC.T) * self.HessD **2) @ self.HessUC hagrad = self.weights @ Hdcode # /self.mu print("Gradient Norm %.2f" % (np.linalg.norm(hagrad))) # if self.rankweight is False: # if self.maximize: # ynew = radial_proj(self.xnew + self.lr * hagrad, max_norm=self.max_norm) # else: # ynew = radial_proj(self.xnew - self.lr * hagrad, max_norm=self.max_norm) # else: # if using rankweight, then the maximization if performed in the recombination step. # ynew = radial_proj(self.xnew + self.lr * hagrad, max_norm=self.max_norm) mov_sign = -1 if (not self.maximize) and (not self.rankweight) else 1 ynew = radial_proj(self.xnew + mov_sign * self.lr * hagrad, max_norm=self.max_norm) return ynew def generate_sample(self, samp_num=None, hess_comp=False): ''' Assume the 1st row of codes is the xnew new starting point ''' N = self.dimen # Generate new sample by sampling from Gaussian distribution if hess_comp: # self.hess_comp = True self.HinnerU = randn(self.HB, N) H_pos_samples = self.xnew + self.mu * self.HinnerU H_neg_samples = self.xnew - self.mu * self.HinnerU new_samples = np.concatenate((H_pos_samples, H_neg_samples), axis=0) # new_samples = radial_proj(new_samples, self.max_norm) else: new_samples = zeros((samp_num, N)) self.innerU = randn(samp_num, N) # Isotropic gaussian distributions self.outerV = self.innerU / sqrt(self.Lambda) + ( (self.innerU @ self.HessUC.T) * self.HUDiag) @ self.HessUC # H^{-1/2}U # new_samples[0:1, :] = self.xnew new_samples[:, :] = self.xnew + self.mu * self.outerV # m + sig * Normal(0,C) self.mu * new_samples = radial_proj(new_samples, self.max_norm) self.code_stored = np.concatenate((self.code_stored, new_samples), axis=0) if self.code_stored.size else new_samples self.N_in_samp += samp_num return new_samples # set short name for everything to simplify equations #% class HessAware_ADAM_DC: """Gaussian Sampling method for estimating Hessian""" def __init__(self, space_dimen, population_size=40, lr=0.1, mu=1, nu=0.9, maximize=True, max_norm=300): self.dimen = space_dimen # dimension of input space self.B = population_size # population batch size self.mu = mu # scale of estimating gradient self.nu = nu # update rate for D self.lr = lr # learning rate (step size) of moving along gradient self.grad = np.zeros((1, self.dimen)) # estimated gradient self.D = np.ones((1, self.dimen)) # running average of gradient square self.Hdiag = np.ones((1, self.dimen)) # Diagonal of estimated Hessian self.innerU = np.zeros((self.B, self.dimen)) # inner random vectors with covariance matrix Id self.outerV = np.zeros((self.B, self.dimen)) # outer random vectors with covariance matrix H^{-1} self.xnew =
np.zeros((1, self.dimen))
numpy.zeros
#!/usr/bin/python3 ''' Abstract: This is a program for ploting probability distribution of labels. Usage: plot_prob_dist.py [AI dir] Editor and Practicer: Jacob975 ################################## # Python3 # # This code is made in python3 # ################################## 20180730 #################################### update log 20180730 version alpha 1: 1. The code works 20191016 version alpha 2: 1. Assign star as blue, YSO as red. ''' import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import tensorflow as tf import numpy as np import time from sys import argv import os import itertools from colour import Color from sed_test_cnn import bias_variable, weight_variable from convert_lib import ensemble_mjy_to_mag import convert_lib # Assign RGB color to represent stars, galaxies, and YSOs. def assign_color(color_code): bgr_color_code = np.transpose([ color_code[:,2], color_code[:,1], color_code[:,0] ]) sgys_color = [Color(rgb = tuple(bgr_color_code[i])).hex_l for i in range(len(bgr_color_code))] sgys_color = np.asarray(sgys_color) return sgys_color def plot_prob(arti_mag, sgys_color, sort_order): # Print the color for each IR3 slice print ("IR3") for i, IR3 in enumerate(IR3_arti_mag): if i%10 != 0: continue if i%20 == 0: plt.close() fig = plt.figure( figsize = (8,8) ) ax = fig.add_subplot(111, projection='3d') ax.scatter( xs = arti_mag[np.where(arti_mag[:,0] == IR3[0]), 0], ys = arti_mag[np.where(arti_mag[:,0] == IR3[0]), 1], zs = arti_mag[np.where(arti_mag[:,0] == IR3[0]), 2], zdir='z', s=20, c = sgys_color[np.where(arti_mag[:,0] == IR3[0])], depthshade=False) plt.tick_params( top='off', bottom='off', left='off', right='off', labelleft='off', labelbottom='off', ) ax.set_xlim(
np.amin(IR3_arti_mag[:,0])
numpy.amin
import os import unittest import matplotlib.pyplot as plt import numpy as np import tensorflow.keras.backend as K from tensorflow import keras import EggNet from EggNet.Reader import MnistDataDownloader, MnistDataReader, DataSetType class MnistConvTestCase(unittest.TestCase): def test_blur(self): k = EggNet.make_gauss_kernel() cl = EggNet.Conv2dLayer(in_channels=1, out_channels=1, kernel_size=5) loader = MnistDataDownloader("../../test/MNIST/") path_img, path_lbl = loader.get_path(DataSetType.TRAIN) reader = MnistDataReader(path_img, path_lbl) for lbl, img in reader.get_next(4): img = img.astype(np.float) / 255.0 img = np.reshape(img, newshape=[-1, 28, 28, 1]) k = np.reshape(k, newshape=[k.shape[0], k.shape[1], 1, 1]) cl.kernel = k img_out = cl(img) # Check the dimensions self.assertEqual(img_out.shape, (4, 28, 28, 1)) # Uncomment to see the image img_out = np.reshape(img_out, newshape=[1, 4 * 28, 28, 1]) img_out = np.squeeze(img_out) plt.imshow(img_out, cmap='gray', vmin=0.0, vmax=1.0) plt.show() break def test_tensorflow_parameter_0(self): r1 = EggNet.ReshapeLayer(newshape=[-1, 28, 28, 1]) cn1 = EggNet.Conv2dLayer(in_channels=1, out_channels=16, kernel_size=3, activation='relu') # [? 28 28 16] checkpoint_path = "test/training_1/cp.ckpt" checkpoint_dir = os.path.abspath(os.path.dirname(checkpoint_path)) os.path.join(checkpoint_dir, "model_config.json") if not os.path.exists(checkpoint_dir): raise RuntimeError("There is no trained model data!") # Reload the model from the 2 files we saved with open(os.path.join(checkpoint_dir, "model_config.json")) as json_file: json_config = json_file.read() model = keras.models.model_from_json(json_config) model.load_weights(os.path.join(checkpoint_dir, "weights.h5")) # Print a summary Ws = model.get_weights() # See Keras Documentation # https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D # # Default ordering of weights for Conv: (batch, height, width, channels) # Default ordering of weights for Dense self.assertEqual(cn1.kernel.shape, Ws[0].shape) self.assertEqual(cn1.b.shape, Ws[1].shape) # Assign values cn1.kernel = Ws[0] cn1.b = Ws[1] layers = [r1, cn1, ] interesting_layers = [1] # don't care about reshape layers n = EggNet.Network(layers) loader = MnistDataDownloader("../../test/MNIST/") path_img, path_lbl = loader.get_path(DataSetType.TRAIN) reader = MnistDataReader(path_img, path_lbl) for lbls, imgs in reader.get_next(10): imgs = imgs.astype(np.float) / 255.0 imgs_r = np.reshape(imgs, newshape=[-1, 28, 28, 1]) # Check the tensorflow model y_keras = model.predict(imgs) # Keras Model Debug inp = model.input # input placeholder outputs = [layer.output for layer in model.layers] # all layer outputs outputs = [outputs[i] for i in (1, 2, 3, 4, 6, 8)] # remove dropout, reshape functors = [K.function([inp], [out]) for out in outputs] # evaluation functions layer_outs = [func([imgs, 1.]) for func in functors] # print(layer_outs) # Check the results of the own made NN y, zs = n.forward_intermediate(imgs_r) zs = [zs[i] for i in interesting_layers] # remove reshape layers eps = 0.1 index = 0 for l_keras_out, l_out in zip(layer_outs, zs): err = np.abs((l_keras_out - l_out).flatten()) # print(l_keras_out - l_out) # err_image = 1.0 * (np.abs(l_keras_out - l_out) > eps) # # err_image = np.reshape(err_image[], newshape=(1, -1, 28, 1)) # err_image = np.squeeze(err_image[0, :, :, 0]) # plt.imshow(err_image, vmin=0.0, vmax=1.0, cmap='gray') # plt.show() right_indices = indices(err < eps, lambda b: b) false_indices = indices(err > eps, lambda b: b) wrong_values = err[false_indices] # print(wrong_values) if not np.all(right_indices): print("error in layer ", index) index += 1 lbls_pred_keras = y_keras.argmax(axis=1) lbls_pred = y.argmax(axis=1) print("Original: ", lbls.reshape(-1)) print("Keras: ", lbls_pred_keras.reshape(-1)) print("Our Model: ", lbls_pred.reshape(-1)) break # img_out = np.reshape(imgs, newshape=[1, -1, 28, 1]) # img_out = np.squeeze(img_out) # plt.imshow(img_out, cmap='gray', vmin=0.0, vmax=1.0) # plt.show() def test_tensorflow_parameter(self): r1 = EggNet.ReshapeLayer(newshape=[-1, 28, 28, 1]) cn1 = EggNet.Conv2dLayer(in_channels=1, out_channels=16, kernel_size=3, activation='relu') # [? 28 28 16] mp1 = EggNet.MaxPool2dLayer(size=2) # [? 14 14 16] cn2 = EggNet.Conv2dLayer(in_channels=16, out_channels=32, kernel_size=3, activation='relu') # [? 14 14 32] mp2 = EggNet.MaxPool2dLayer(size=2) # [? 7 7 32] r2 = EggNet.ReshapeLayer(newshape=[-1, 32 * 7 * 7]) fc1 = EggNet.FullyConnectedLayer(input_size=32 * 7 * 7, output_size=64, activation='relu') fc2 = EggNet.FullyConnectedLayer(input_size=64, output_size=10, activation='softmax') checkpoint_path = "test/training_1/cp.ckpt" checkpoint_dir = os.path.abspath(os.path.dirname(checkpoint_path)) os.path.join(checkpoint_dir, "model_config.json") if not os.path.exists(checkpoint_dir): raise RuntimeError("There is no trained model data!") # Reload the model from the 2 files we saved with open(os.path.join(checkpoint_dir, "model_config.json")) as json_file: json_config = json_file.read() model = keras.models.model_from_json(json_config) model.load_weights(os.path.join(checkpoint_dir, "weights.h5")) # Print a summary Ws = model.get_weights() # K0 = Ws[0] # plt.imshow(K0[:,:,1,1], vmin=0.0, vmax=1.0, cmap='gray') # plt.show() # See Keras Documentation # https://www.tensorflow.org/api_docs/python/tf/keras/layers/Conv2D # # Default ordering of weights for Conv: (batch, height, width, channels) # Default ordering of weights for Dense self.assertEqual(cn1.kernel.shape, Ws[0].shape) self.assertEqual(cn1.b.shape, Ws[1].shape) self.assertEqual(cn2.kernel.shape, Ws[2].shape) self.assertEqual(cn2.b.shape, Ws[3].shape) self.assertEqual(fc1.W.shape, Ws[4].shape) self.assertEqual(fc1.b.shape, Ws[5].shape) self.assertEqual(fc2.W.shape, Ws[6].shape) self.assertEqual(fc2.b.shape, Ws[7].shape) # Assign values cn1.kernel = Ws[0] cn1.b = Ws[1] cn2.kernel = Ws[2] cn2.b = Ws[3] fc1.W = Ws[4] fc1.b = Ws[5] fc2.W = Ws[6] fc2.b = Ws[7] layers = [r1, cn1, mp1, cn2, mp2, r2, fc1, fc2] interesting_layers = [1, 2, 3, 4, 6, 7] # don't care about reshape layers net = EggNet.Network(layers) loader = MnistDataDownloader("../../test/MNIST/") path_img, path_lbl = loader.get_path(DataSetType.TRAIN) reader = MnistDataReader(path_img, path_lbl) for lbls, imgs in reader.get_next(20): imgs = imgs.astype(np.float) / 255.0 imgs_r =
np.reshape(imgs, newshape=[-1, 28, 28, 1])
numpy.reshape
import logging import numpy as np import os import tempfile import xml.etree.ElementTree as ET from collections import OrderedDict, defaultdict from functools import lru_cache import torch from fvcore.common.file_io import PathManager from detectron2.data import MetadataCatalog from detectron2.utils import comm from detectron2.evaluation.evaluator import DatasetEvaluator ids_to_names = {} ids_to_names[0] = 'hand' ids_to_names[1] = 'no_contact' ids_to_names[2] = 'self_contact' ids_to_names[3] = 'other_person_contact' ids_to_names[4] = 'object_contact' class PascalVOCContactHandsEvaluator(DatasetEvaluator): """ Evaluate Pascal VOC AP. It contains a synchronization, therefore has to be called from all ranks. Note that this is a rewrite of the official Matlab API. The results should be similar, but not identical to the one produced by the official API. """ def __init__(self, dataset_name): """ Args: dataset_name (str): name of the dataset, e.g., "voc_2007_test" """ self._dataset_name = dataset_name meta = MetadataCatalog.get(dataset_name) self._anno_file_template = os.path.join(meta.dirname, "Annotations", "{}.xml") self._image_set_path = os.path.join(meta.dirname, "ImageSets", "Main", meta.split + ".txt") self._class_names = meta.thing_classes assert meta.year in [2007, 2012], meta.year self._is_2007 = meta.year == 2007 self._cpu_device = torch.device("cpu") self._logger = logging.getLogger(__name__) def reset(self): self._predictions = defaultdict(list) # class name -> list of prediction strings def process(self, inputs, outputs): for input, output in zip(inputs, outputs): image_id = input["image_id"] instances = output["instances"].to(self._cpu_device) boxes = instances.pred_boxes.tensor.numpy() scores = instances.scores.tolist() classes = instances.pred_classes.tolist() cats = instances.pred_cats.numpy() for box, score, _cls, cat in zip(boxes, scores, classes, cats): xmin, ymin, xmax, ymax = box nc, sc, pc, oc = cat #print(nc, sc, pc, oc) # The inverse of data loading logic in `datasets/pascal_voc.py` xmin += 1 ymin += 1 self._predictions[_cls].append( f"{image_id} {score:.10f} {xmin:.1f} {ymin:.1f} {xmax:.1f} {ymax:.1f} {nc:.10f} {sc:.10f} {pc:.10f} {oc:.10f}" ) def evaluate(self): """ Returns: dict: has a key "segm", whose value is a dict of "AP", "AP50", and "AP75". """ all_predictions = comm.gather(self._predictions, dst=0) if not comm.is_main_process(): return predictions = defaultdict(list) for predictions_per_rank in all_predictions: for clsid, lines in predictions_per_rank.items(): predictions[clsid].extend(lines) del all_predictions self._logger.info( "Evaluating {} using {} metric. " "Note that results do not use the official Matlab API.".format( self._dataset_name, 2007 if self._is_2007 else 2012 ) ) with tempfile.TemporaryDirectory(prefix="pascal_voc_eval_") as dirname: res_file_template = os.path.join(dirname, "{}.txt") aps = defaultdict(list) # iou -> ap per class for cls_id, cls_name in enumerate(self._class_names): lines = predictions.get(cls_id, [""]) with open(res_file_template.format(cls_name), "w") as f: f.write("\n".join(lines)) thresh = 50 APs = voc_eval( res_file_template, self._anno_file_template, self._image_set_path, cls_name, ovthresh=thresh / 100.0, use_07_metric=self._is_2007, ) ret = OrderedDict() ret["APs"] = {"hand": APs["hand"]["ap"], "No Contact": APs["no_contact"]["ap"], "Self Contact": APs["self_contact"]["ap"], "Other Person Contact": APs["other_person_contact"]["ap"], "Object Contact": APs["object_contact"]["ap"], "Mean Contact AP": APs["mAP_contact"] } return ret ############################################################################## # # Below code is modified from # https://github.com/rbgirshick/py-faster-rcnn/blob/master/lib/datasets/voc_eval.py # -------------------------------------------------------- # Fast/er R-CNN # Licensed under The MIT License [see LICENSE for details] # Written by <NAME> # -------------------------------------------------------- """Python implementation of the PASCAL VOC devkit's AP evaluation code.""" @lru_cache(maxsize=None) def parse_rec(filename): """Parse a PASCAL VOC xml file.""" with PathManager.open(filename) as f: tree = ET.parse(f) objects = [] for obj in tree.findall("object"): obj_struct = {} obj_struct["name"] = obj.find("name").text obj_struct["pose"] = obj.find("pose").text obj_struct["truncated"] = int(obj.find("truncated").text) obj_struct["difficult"] = int(obj.find("difficult").text) bbox = obj.find("bndbox") obj_struct["bbox"] = [ int(bbox.find("xmin").text), int(bbox.find("ymin").text), int(bbox.find("xmax").text), int(bbox.find("ymax").text), ] contact_state = obj.find("contact_state").text contact_state = contact_state.split(',')[0:4] cats = [float(c) for c in contact_state] obj_struct["contact_state"] = cats objects.append(obj_struct) return objects def voc_ap(rec, prec, use_07_metric=False): """Compute VOC AP given precision and recall. If use_07_metric is true, uses the VOC 07 11-point method (default:False). """ if use_07_metric: # 11 point metric ap = 0.0 for t in np.arange(0.0, 1.1, 0.1): if np.sum(rec >= t) == 0: p = 0 else: p = np.max(prec[rec >= t]) ap = ap + p / 11.0 else: # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.0], rec, [1.0])) mpre = np.concatenate(([0.0], prec, [0.0])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap def voc_eval(detpath, annopath, imagesetfile, classname, ovthresh=0.5, use_07_metric=False): """ Top level function that does the PASCAL VOC evaluation. detpath: Path to detections detpath.format(classname) should produce the detection results file. annopath: Path to annotations annopath.format(imagename) should be the xml annotations file. imagesetfile: Text file containing the list of images, one image per line. classname: Category name (duh) [ovthresh]: Overlap threshold (default = 0.5) [use_07_metric]: Whether to use VOC07's 11 point AP computation (default False) """ APs = {} mAP_contact = 0 for cat_idx in range(5): # assumes detections are in detpath.format(classname) # assumes annotations are in annopath.format(imagename) # assumes imagesetfile is a text file with each line an image name # first load gt # read list of images with PathManager.open(imagesetfile, "r") as f: lines = f.readlines() imagenames = [x.strip() for x in lines] # load annots recs = {} for imagename in imagenames: recs[imagename] = parse_rec(annopath.format(imagename)) # extract gt objects for this class class_recs = {} npos = 0 for imagename in imagenames: R = [obj for obj in recs[imagename] if obj["name"] == classname] bbox = np.array([x["bbox"] for x in R]) difficult = np.array([x["difficult"] for x in R]).astype(np.bool) gt_cats = np.array([x["contact_state"] for x in R]) if cat_idx > 0: # Process gt boxes to remove ones marked with unsure contact states bbox_orig = np.array([x["bbox"] for x in R]) keepmask = gt_cats[:, cat_idx-1] < 2 bbox = bbox_orig[keepmask] gt_cats = gt_cats[keepmask] difficult = difficult[keepmask] unsure_bbox = bbox_orig[~keepmask] # Select gt boxes with contact state 'cat_idx-1'. bbox = bbox[gt_cats[:, cat_idx-1] == 1, :] difficult = difficult[gt_cats[:, cat_idx-1] == 1] det = [False] * bbox.shape[0] npos = npos + bbox.shape[0] if cat_idx > 0: class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det, "unsure_bbox": unsure_bbox} else: class_recs[imagename] = {"bbox": bbox, "difficult": difficult, "det": det} # read dets detfile = detpath.format(classname) with open(detfile, "r") as f: lines = f.readlines() splitlines = [x.strip().split(" ") for x in lines] image_ids = [x[0] for x in splitlines] confidence = np.array([float(x[1]) for x in splitlines]) BB = np.array([[float(z) for z in x[2:6]] for x in splitlines]).reshape(-1, 4) det_cats = np.array([[float(z) for z in x[6:]] for x in splitlines]).reshape(-1, 4) if cat_idx > 0: # Multiply contact score with detection score for joint detection and contact confidence = confidence * det_cats[:, cat_idx-1] # sort by confidence sorted_ind = np.argsort(-confidence) BB = BB[sorted_ind, :] image_ids = [image_ids[x] for x in sorted_ind] # Process detections which overlaps with unsure boxes if cat_idx > 0: nd = len(image_ids) indicator = [] for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf unsure_bbox = R["unsure_bbox"].astype(float) if unsure_bbox.shape[0] > 0: # compute overlaps # intersection ixmin = np.maximum(unsure_bbox[:, 0], bb[0]) iymin = np.maximum(unsure_bbox[:, 1], bb[1]) ixmax = np.minimum(unsure_bbox[:, 2], bb[2]) iymax = np.minimum(unsure_bbox[:, 3], bb[3]) iw = np.maximum(ixmax - ixmin + 1.0, 0.0) ih = np.maximum(iymax - iymin + 1.0, 0.0) inters = iw * ih # union uni = ( (bb[2] - bb[0] + 1.0) * (bb[3] - bb[1] + 1.0) + (unsure_bbox[:, 2] - unsure_bbox[:, 0] + 1.0) * (unsure_bbox[:, 3] - unsure_bbox[:, 1] + 1.0) - inters ) overlaps = inters / uni num_unsure_bbox = len(overlaps) keepmask_det = np.sum(overlaps==0.0) == num_unsure_bbox indicator.append(keepmask_det) else: indicator.append(True) BB = BB[indicator, :] image_ids = [image_ids[i] for i in range(len(image_ids)) if indicator[i]] # go down dets and mark TPs and FPs nd = len(image_ids) tp = np.zeros(nd) fp = np.zeros(nd) for d in range(nd): R = class_recs[image_ids[d]] bb = BB[d, :].astype(float) ovmax = -np.inf BBGT = R["bbox"].astype(float) if BBGT.size > 0: # compute overlaps # intersection ixmin = np.maximum(BBGT[:, 0], bb[0]) iymin = np.maximum(BBGT[:, 1], bb[1]) ixmax =
np.minimum(BBGT[:, 2], bb[2])
numpy.minimum
import unittest import numpy as np from desc.grid import LinearGrid from desc.basis import polyder_vec, polyval_vec, powers, jacobi, fourier from desc.basis import PowerSeries, DoubleFourierSeries, FourierZernikeBasis class TestBasis(unittest.TestCase): """Tests Basis classes""" def test_polyder(self): """Tests polyder_vec function """ p0 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]]) p1 = polyder_vec(p0, 1) p2 = polyder_vec(p0, 2) correct_p1 = np.array([[0, 2, 0], [0, 0, 1], [0, 0, 0], [0, 2, 1]]) correct_p2 = np.array([[0, 0, 2], [0, 0, 0], [0, 0, 0], [0, 0, 2]]) np.testing.assert_allclose(p1, correct_p1, atol=1e-8) np.testing.assert_allclose(p2, correct_p2, atol=1e-8) def test_polyval(self): """Tests polyval_vec function """ p = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [1, 1, 1]]) x = np.linspace(0, 1, 11) correct_vals = np.array([x**2, x,
np.ones_like(x)
numpy.ones_like
import argparse import decoding_data import matplotlib.pyplot as plt import numpy as np import os import pandas import plots parser = argparse.ArgumentParser() parser.add_argument("decoder_group_dir", type=str, help="path to decoder group directory") parser.add_argument('--include-conditional', dest='include_conditional', action='store_true') parser.set_defaults(include_conditional=False) parser.add_argument('--include-output', dest='include_output', action='store_true') parser.set_defaults(include_output=False) args = parser.parse_args() decoder_group_dir = args.decoder_group_dir include_conditional = args.include_conditional include_output = args.include_output out_dir = decoder_group_dir regression_stats_path = decoding_data.get_group_regression_stats_path(decoder_group_dir) regression_data_path = decoding_data.get_group_regression_data_path(decoder_group_dir) df = pandas.read_csv(regression_stats_path) df_individual = pandas.read_csv(regression_data_path) network_ids = df_individual["network_id"].unique() n_networks = len(network_ids) key_label_dict = { "hidden_state": "state (t)", "hidden_gates_tplus1": "gates (t+1)", "hidden_all": "state (t)\nand\ngates (t+1)", "output": "output (t)", "io_confidence": "optimal confidence (t)", "io_evidence": "optimal log-odds (t)", "io_lr_tplus1": "optimal learning rate (t+1)", "io_confidence_0": r"$(1 | 0)$", "io_confidence_1": r"$(1 | 1)$", "io_confidence_xt": r"$(1 | x_{t})$", "io_confidence_1minusxt": r"$(1 | \overline{x_{t}})$", "io_evidence_0": r"$(1 | 0)$", "io_evidence_1": r"$(1 | 1)$", "io_evidence_xt": r"$(1 | x_{t})$", "io_evidence_1minusxt": r"$(1 | \overline{x_{t}})$", "io_lr_tplus1_0": r"$(1 | 0)$", "io_lr_tplus1_1": r"$(1 | 1)$", "io_lr_tplus1_xt": r"$(1 | x_{t})$", "io_lr_tplus1_1minusxt": r"$(1 | \overline{x_{t}})$", } plots.configure_plot_style() color = "#6bbceb" predictor_keys = decoding_data.get_confidence_predictor_keys(decoder_group_dir) if include_output: predictor_keys.insert(0, "output") n_groups = len(predictor_keys) is_markov = "io_confidence_1" in df["outcome"].unique() if is_markov: # Markov case outcome_formats = ["{:}_0", "{:}_1"] if include_conditional: outcome_formats += ["{:}_xt", "{:}_1minusxt"] outcome_kinds = ["io_confidence", "io_evidence", "io_lr_tplus1"] outcome_keys_by_kind = [ [ s.format(kind) for s in outcome_formats] for kind in outcome_kinds ] for i_kind, kind in enumerate(outcome_kinds): outcome_keys = outcome_keys_by_kind[i_kind] n_outcomes = len(outcome_keys) figsize = (6.4, 4.8 * n_groups * n_outcomes / 3.) ypos = np.arange(n_outcomes) # fig = plt.figure(figsize=figsize) fig, axes = plt.subplots(nrows=n_groups, sharex=True, # figsize=figsize ) plt.subplots_adjust(hspace=0.05) plt.xlabel(r"median variance explained ($r^2$)") plt.xlim(0, 100.2) plt.xticks(range(0, 101, 10)) axes[-1].xaxis.set_major_formatter(plots.get_formatter_percent()) plt.suptitle(key_label_dict[kind].capitalize()) for i_predictor, predictor in enumerate(predictor_keys): r2_medians = np.empty((n_outcomes)) r2_errors = np.empty((2, n_outcomes)) r2_values =
np.empty((n_outcomes, n_networks))
numpy.empty
# A system that uses a genetic algorithm to generate a target sentence import random import matplotlib.pyplot as plt import numpy as np import string import seaborn as sns sns.set() def fitness_function(individual, target_sentence='Hello World'): """ computes the score of the individual based on its performance approaching the target sentence. """ assert len(target_sentence) == len(individual) score = np.sum([ individual[i] == target_sentence[i] for i in range(len(target_sentence)) ]) return score # Discrete class GeneticAlgorithm: def __init__(self, fitness_function, num_attributes=2, population_size=100, crossover_prob=.75, mutation_prob=.05): self.fitness_function = fitness_function self.num_attributes = num_attributes self.population_size = population_size self.crossover_prob = crossover_prob self.mutation_prob = mutation_prob self.population = None self.population_avg_score = 0 self.fitness_scores = None self.fittest_individuals = None def initialize_population(self): """ init a population of individuals args: num_attributes: length of each individual (attributes) population_size: number of individuals returns: population_size lists of n length each. """ attributes = [] for attribute in range(self.num_attributes): attributes.append( np.random.choice( list(string.punctuation + string.ascii_letters + string.whitespace), size=self.population_size)) self.population = np.array(attributes).T def compute_fitness_score(self): """ computing the fitness score of the population. args: individual: numpy array representing the chromosomes of the parent. returns: population_size lists of n length each. """ scores = np.array([ self.fitness_function(individual) for individual in self.population ]) self.fitness_scores = scores def roulette_wheel_selection(self): """ Select the fittest individuals based on their fitness scores. each individual is associated with its index in the input array. --- Args: fitness_scores: numpy array of fitness score of each individual Returns: parents: np array of two individuals chosen from the population. """ sum_scores = np.sum(np.abs(self.fitness_scores)) selection_prob = np.abs(self.fitness_scores) / sum_scores parents = random.choices(self.population, weights=selection_prob, k=2) return parents def run(self): def cross_over(parents): """ produces a new individual by combining the genetic information of both parents. args: individual_1: numpy array representing the chromosomes of the first parent. individual_2: numpy array representing the chromosomes of the second parent. returns: child: newly created individual by cross over of the two parents. """ if np.random.uniform() <= self.crossover_prob: parent_1, parent_2 = parents crossover_point = np.random.choice( range(1, self.num_attributes)) child = np.concatenate( (parent_1[:crossover_point], parent_2[crossover_point:])) return child else: return random.choices(parents)[0] def mutate(individual): """ produces a new individual by mutating the original one. args: individual: numpy array representing the chromosomes of the parent. returns: new: newly mutated individual. """ new_individual = [] for attribute in individual: if np.random.uniform() <= self.mutation_prob: new_individual.append(random.choice(string.ascii_letters)) else: new_individual.append(attribute) return new_individual new_population = [] # reproduce the new population for _ in range(self.population_size): parents = self.roulette_wheel_selection() child = cross_over(parents) child = mutate(child) new_population.append(child) self.population =
np.array(new_population)
numpy.array
"""Test suite for linear trust-region subsolvers.""" import math from collections import namedtuple import numpy as np import pytest from estimagic.optimization.linear_subsolvers import improve_geomtery_trsbox_linear from estimagic.optimization.linear_subsolvers import minimize_trsbox_linear from numpy.testing import assert_array_almost_equal as aaae @pytest.mark.parametrize( "model_gradient, lower_bounds, upper_bounds, delta, expected", [ ( np.array([1.0, 0.0, 1.0]), -np.ones(3), np.ones(3), 2.0, np.array([-1.0, 0.0, -1.0]), ), ( np.array([0.00028774, 0.00763968, 0.01217268]), -np.ones(3), np.ones(3), 9.5367431640625e-05, np.array([-1.90902854e-06, -5.06859218e-05, -8.07603861e-05]), ), ( np.array([0.00028774, 0.00763968, 0.01217268]), np.array([0, -1, -1]), np.ones(3), 0.1, np.array([0.0, -5.31586927e-02, -8.47003742e-02]), ), ( np.arange(5) * 0.1, -np.ones(5), np.ones(5), 0.1, np.array([0.0, -0.01825742, -0.03651484, -0.05477226, -0.07302967]), ), ( np.arange(4, -1, -1) * 0.1, -np.ones(5), np.ones(5), 0.1, np.array([-0.07302967, -0.05477226, -0.03651484, -0.01825742, 0]), ), ( np.arange(5) * 0.1, np.array([-1, -1, 0, -1, -1]), np.array([1, 1, 0.2, 0.2, 1]), 0.1, np.array([0.0, -1.96116135e-02, 0.0, -5.88348405e-02, -7.84464541e-02]), ), (
np.arange(4, -1, -1)
numpy.arange
import numpy as np import matplotlib.pyplot as plt import scipy as sp from active_learning_cfd.cfd_regressor import load_regression_history_repetitions from active_learning_cfd.error_measures import calculate_error, mean_relative_error from matplotlib import rc from cycler import cycler rc("text", usetex=True) plt.style.use("tableau-colorblind10") colors = plt.rcParams["axes.prop_cycle"] linestyle_cycler = colors + cycler( "linestyle", ["--", "-", ":", "-.", "-", "-", "-", "-", "-", "-"] ) rc("axes", prop_cycle=linestyle_cycler) case_name = "orifice" reference_filename = "reference_solution.csv" figsize = [6.4, 2.5] reference_solution = np.genfromtxt(reference_filename, delimiter=",") X_true = reference_solution[:, 0:-1] y_true = reference_solution[:, -1] strategy_list = ( ["gp_52_greedyio", "GP (Matern 5/2)"], ["gp_rbf_greedyio", "GP (RBF)"], ["gp_cubic_greedyio", "GP (Cubic)"], ["lin_greedyio", "Linear"], ["rfr_greedyio", "Random forest"], ["svr_greedyio", "Support vector"], ["nn_greedyio", "Multilayer perceptron"], ) plt.figure(figsize=figsize) plt.xlabel("Samples") plt.ylabel("$\epsilon$ [\%]") plt.ylim([0, 80]) for name, label in strategy_list: regression_history_all = load_regression_history_repetitions( "regression_" + name, case_name ) n_samples_list = regression_history_all[0][0].keys() error_samples = sorted(n_samples_list) error_avgs = np.zeros(len(n_samples_list)) error_min = np.zeros(len(n_samples_list)) error_max = np.zeros(len(n_samples_list)) error_repetitions = np.zeros(len(n_samples_list)) for i, n_samples in enumerate(error_samples): error_list = [] for regression_history, features_range in regression_history_all: error = calculate_error( X_true, y_true, regression_history[n_samples], features_range, error_measure=mean_relative_error, ) error_list.append(error) error_avgs[i] = np.average(error_list) error_min[i], error_max[i] = sp.stats.t.interval( 0.95, len(error_list) - 1, loc=np.mean(error_list), scale=sp.stats.sem(error_list), ) error_repetitions[i] = len(error_list) plt.plot(error_samples, error_avgs * 100, label="\\small " + label) plt.fill_between(error_samples, error_min * 100, error_max * 100, alpha=0.5) plt.xlim([0, 60]) plt.text( 0.9, 0.9, "Case 2", horizontalalignment="left", verticalalignment="top", transform=plt.gca().transAxes, ) plt.tight_layout() plt.savefig(case_name + "_regressions.png", dpi=400) sampling_list = ( ["gp_52_std", "Variational"], ["gp_52_greedyi", "Greedy I"], ["gp_52_greedyo", "Greedy O"], ["gp_52_greedyio", "Greedy I/O"], ["gp_52_rdm", "Random"], ) plt.figure(figsize=figsize) plt.xlabel("Samples") plt.ylabel("$\epsilon$ [\%]") for name, label in sampling_list: regression_history_all = load_regression_history_repetitions( "regression_" + name, case_name ) n_samples_list = regression_history_all[0][0].keys() error_samples = sorted(n_samples_list) error_avgs = np.zeros(len(n_samples_list)) error_min = np.zeros(len(n_samples_list)) error_max = np.zeros(len(n_samples_list)) error_repetitions = np.zeros(len(n_samples_list)) for i, n_samples in enumerate(error_samples): error_list = [] for regression_history, features_range in regression_history_all: error = calculate_error( X_true, y_true, regression_history[n_samples], features_range, error_measure=mean_relative_error, ) error_list.append(error) error_avgs[i] =
np.average(error_list)
numpy.average
""" Copyright 2018 <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import cvxpy import numpy as np from itertools import combinations_with_replacement from sigpy.signomials import Signomial, relative_coeff_vector __NUMERIC_TYPES__ = (int, float, np.int_, np.float_) def sage_dual(s, level=0, additional_cons=None): """ :param s: a Signomial object. :param level: a nonnegative integer :param additional_cons: a list of CVXPY Constraint objects over the variables in s.c (unless you are working with SAGE polynomials, there likely won't be any of these). :return: a CVXPY Problem object representing the dual formulation for s_{SAGE}^{(level)} In the discussion that follows, let s satisfy s.alpha[0,:] == np.zeros((1,n)). When level == 0, the returned CVXPY problem has the following explicit form: min (s.c).T * v s.t. v[0] == 1 v[i] * ln(v[i] / v[j]) <= (s.alpha[i,:] - s.alpha[j,:]) * mu[i] for i \in N0, j \in Nc0, j != i. mu[i] \in R^{s.n} for i \in N0 v \in R^{s.m}_{+} where N = { i : s.c[i] < 0}, N0 = union(N, {0}), Nc = { i : s.c[i] >= 0}, and Nc0 = union(Nc, {0}). When level > 0, the form of the optimization problem is harder to state explicitly. At a high level, the resultant CVXPY problem is the same as above, with the following modifications: (1) we introduce a multiplier signomial t_mul = Signomial(s.alpha, np.ones(s.m)) ** level, (2) as well as a constant signomial t_cst = Signomial(s.alpha, [1, 0, ..., 0]). (3) Then "s" is replaced by s_mod == s * t_mul, (4) and "v[0] == 1" is replaced by a * v == 1, where vector "a" is an appropriate permutation of (t_mul * t_cst).c, and finally (5) the index sets N0 and Nc0 are replaced by N_I = union(N, I) and Nc_I = union(Nc, I) for I = { i | a[i] != 0 }. """ # Signomial definitions (for the objective). s_mod = Signomial(s.alpha_c) t_mul = Signomial(s.alpha, np.ones(s.m)) ** level lagrangian = (s_mod - cvxpy.Variable(name='gamma')) * t_mul s_mod = s_mod * t_mul # C_SAGE^STAR (v must belong to the set defined by these constraints). v = cvxpy.Variable(shape=(lagrangian.m, 1), name='v') constraints = relative_c_sage_star(lagrangian, v) # Equality constraint (for the Lagrangian to be bounded). a = relative_coeff_vector(t_mul, lagrangian.alpha) a = a.reshape(a.size, 1) constraints.append(a.T * v == 1) # Objective definition and problem creation. obj_vec = relative_coeff_vector(s_mod, lagrangian.alpha) obj = cvxpy.Minimize(obj_vec * v) if additional_cons is not None: constraints += additional_cons prob = cvxpy.Problem(obj, constraints) # Add fields that we can access later. prob.s_mod = s_mod prob.s = s prob.level = level return prob def relative_c_sage_star(s, v): """ Given the Signomial s and a CVXPY variable "v", return a list of CVXPY Constraint objects such that v is a conic dual variable to the constraint "s.c \in C_{SAGE}(s.alpha)". :param s: a Signomial object :param v: a CVXPY Variable with v.size == s.m. :return a list of CVXPY Constraint objects. Remark 1: The CVXPY function kl_div operates in a way that differs from the relative entropy function as described in the literature on SAGE relaxations. Refer to the CVXPY documentation if our usage seems odd. Remark 2: This implementation is vectorized to minimize the length of the list "constraints". By doing this we significantly speed up the process of CVXPY converting our problem to its internal standard form. """ alpha, c = s.alpha_c_arrays() if s.m <= 2: return [v >= 0] non_constants = [i for i, c_i in enumerate(c) if not isinstance(c_i, __NUMERIC_TYPES__)] N_I = [i for i, c_i in enumerate(c) if (i in non_constants) or c_i < 0] Nc_I = [i for i, c_i in enumerate(c) if (i in non_constants) or c_i > 0] # variable definitions mu = cvxpy.Variable(shape=(len(N_I), s.n), name=('mu_' + str(v.id))) # constraints constraints = [] for i, ii in enumerate(N_I): # i = the index used for "mu", ii = index used for alpha and v j_neq_ii = [j for j in Nc_I if j != ii] expr1 = v[ii] * np.ones((len(j_neq_ii), 1)) expr2 = cvxpy.kl_div(expr1, v[j_neq_ii]) + expr1 - v[j_neq_ii] expr3 = (alpha[ii, :] - alpha[j_neq_ii, :]) * mu[i, :].T constraints.append(expr2 <= cvxpy.reshape(expr3, (len(j_neq_ii), 1))) constraints.append(v[list(set(N_I + Nc_I))] >= 0) return constraints def sage_primal(s, level=0, special_multiplier=None, additional_cons=None): """ :param s: a Signomial object. :param level: a nonnegative integer :param special_multiplier: an optional parameter, applicable when level > 0. Must be a nonzero SAGE function. :param additional_cons: a list of CVXPY Constraint objects over the variables in s.c (unless you are working with SAGE polynomials, there likely won't be any of these). :return: a CVXPY Problem object representing the primal formulation for s_{SAGE}^{(level)} Unlike the sage_dual, this formulation can be stated in full generality without too much trouble. We define a multiplier signomial "t" as either the standard multiplier (Signomial(s.alpha, np.ones(s.n))), or a user-provided multiplier. We then return a CVXPY Problem representing max gamma s.t. s_mod.c \in C_{SAGE}(s_mod.alpha) where s_mod := (t ** level) * (s - gamma). Our implementation of Signomial objects allows CVXPY variables in the coefficient vector c. As a result, the mapping "gamma \to s_mod.c" is an affine function that takes in a CVXPY Variable and returns a CVXPY Expression. This makes it very simple to represent "s_mod.c \in C_{SAGE}(s_mod.alpha)" via CVXPY Constraints. The work defining the necessary CVXPY variables and constructing the CVXPY constraints is handled by the function "c_sage." """ if special_multiplier is None: t = Signomial(s.alpha, np.ones(s.m)) else: # noinspection PyTypeChecker if np.all(special_multiplier.c == 0): raise RuntimeError('The multiplier must be a nonzero signomial.') # test if SAGE prob = sage_feasibility(special_multiplier) if prob.solve() < 0: raise RuntimeError('The multiplier must be a SAGE function.') t = special_multiplier gamma = cvxpy.Variable(name='gamma') s_mod = (s - gamma) * (t ** level) s_mod.remove_terms_with_zero_as_coefficient() constraints = relative_c_sage(s_mod) obj = cvxpy.Maximize(gamma) if additional_cons is not None: constraints += additional_cons prob = cvxpy.Problem(obj, constraints) # Add fields that we can access later. prob.s_mod = s_mod prob.s = s prob.level = level return prob def relative_c_sage(s): """ Given a signomial "s", return a list of CVXPY Constraint objects over CVXPY Variables c_vars and nu_vars such that s is SAGE iff c_vars and nu_vars satisfy every constraint in this list. :param s: a Signomial object (likely with the property that s.c is a CVXPY Expression). :return: constraints - a list of CVXPY Constraint objects. """ if s.m <= 2: return [cvxpy.vstack(s.c.tolist()) >= 0] alpha, c = s.alpha_c_arrays() non_constants = [i for i, c_i in enumerate(c) if not isinstance(c_i, __NUMERIC_TYPES__)] N_I = [i for i, c_i in enumerate(c) if (i in non_constants) or (c_i < 0)] c_vars = dict() nu_vars = dict() constraints = [] for i in N_I: c_i, nu_i, constrs_i = relative_c_age(s, i) c_vars[i] = c_i nu_vars[i] = nu_i constraints += constrs_i # Now the constraints that the c_vars sum to c. vec_expr = sum(c_vars.values()) c = cvxpy.vstack(c.tolist()) constraints.append(vec_expr == c) return constraints def relative_c_age(s, i): constraints = list() idx_set = np.arange(s.m) != i # variable definitions c_var = cvxpy.Variable(shape=(s.m, 1), name='c^{(' + str(i) + '})_' + str(s)) nu_var = cvxpy.Variable(shape=(s.m-1, 1), name='nu^{(' + str(i) + '})_' + str(s), nonneg=True) # variable non-negativity constraints constraints.append(c_var[idx_set] >= 0) # main constraints constraints.append( (s.alpha[idx_set, :] - s.alpha[i, :]).T * nu_var == np.zeros(shape=(s.n, 1))) # convex cover constraint kl_expr1 = cvxpy.kl_div(nu_var, np.exp(1) * c_var[idx_set]) kl_expr2 = nu_var -
np.exp(1)
numpy.exp
"""RESQML grid module handling IJK cartesian grids.""" # note: only IJK Grid format supported at present # see also rq_import.py # Nexus is a registered trademark of the Halliburton Company import logging log = logging.getLogger(__name__) import numpy as np import resqpy.grid_surface as rqgs import resqpy.olio.grid_functions as gf import resqpy.olio.uuid as bu import resqpy.olio.write_hdf5 as rwh5 import resqpy.olio.xml_et as rqet import resqpy.crs as rqc from resqpy.olio.base import BaseResqpy from ._transmissibility import transmissibility, half_cell_transmissibility from ._extract_functions import extract_grid_parent, extract_extent_kji, extract_grid_is_right_handed, \ extract_k_direction_is_down, extract_geometry_time_index, extract_crs_uuid, extract_k_gaps, \ extract_pillar_shape, extract_has_split_coordinate_lines, extract_children, extract_stratigraphy, \ extract_inactive_mask, extract_property_collection, set_k_direction_from_points from ._write_hdf5_from_caches import _write_hdf5_from_caches from ._write_nexus_corp import write_nexus_corp from ._defined_geometry import pillar_geometry_is_defined, cell_geometry_is_defined, geometry_defined_for_all_cells, \ set_geometry_is_defined, geometry_defined_for_all_pillars, cell_geometry_is_defined_ref, \ pillar_geometry_is_defined_ref from ._faults import find_faults, fault_throws, fault_throws_per_edge_per_column from ._face_functions import clear_face_sets, make_face_sets_from_pillar_lists, make_face_set_from_dataframe, \ set_face_set_gcs_list_from_dict, is_split_column_face, split_column_faces, face_centre, face_centres_kji_01 from ._points_functions import point_areally, point, points_ref, point_raw, unsplit_points_ref, corner_points, \ invalidate_corner_points, interpolated_points, x_section_corner_points, split_x_section_points, \ unsplit_x_section_points, uncache_points, horizon_points, split_horizon_points, \ centre_point_list, interpolated_point, split_gap_x_section_points, \ centre_point, z_corner_point_depths, coordinate_line_end_points, set_cached_points_from_property, \ find_cell_for_point_xy, split_horizons_points from ._create_grid_xml import _create_grid_xml from ._pillars import create_column_pillar_mapping, pillar_foursome, pillar_distances_sqr, nearest_pillar, nearest_rod from ._cell_properties import thickness, volume, pinched_out, cell_inactive, interface_length, interface_vector, \ interface_lengths_kji, interface_vectors_kji, poly_line_for_cell from ._connection_sets import fault_connection_set, pinchout_connection_set, k_gap_connection_set from ._xyz import xyz_box, xyz_box_centre, bounding_box, composite_bounding_box, z_inc_down, \ check_top_and_base_cell_edge_directions, local_to_global_crs, global_to_local_crs from ._pixel_maps import pixel_maps, pixel_map_for_split_horizon_points import warnings class Grid(BaseResqpy): """Class for RESQML Grid (extent and geometry) within RESQML model object.""" resqml_type = 'IjkGridRepresentation' @property def nk_plus_k_gaps(self): """Returns the number of layers including any K gaps.""" if self.nk is None: return None if self.k_gaps is None: return self.nk return self.nk + self.k_gaps def __init__(self, parent_model, uuid = None, find_properties = True, geometry_required = True, title = None, originator = None, extra_metadata = {}): """Create a Grid object and optionally populate from xml tree. arguments: parent_model (model.Model object): the model which this grid is part of uuid (uuid.UUID, optional): if present, the new grid object is populated from the RESQML object find_properties (boolean, default True): if True and uuid is present, a grid property collection is instantiated as an attribute, holding properties for which this grid is the supporting representation geometry_required (boolean, default True): if True and no geometry node exists in the xml, an assertion error is raised; ignored if uuid is None title (str, optional): citation title for new grid; ignored if loading from xml originator (str, optional): name of person creating the grid; defaults to login id; ignored if loading from xml extra_metadata (dict, optional): dictionary of extra metadata items to add to the grid; ignored if loading from xml returns: a newly created Grid object notes: only IJK grids are handled at the moment (the resqml standard also defines 5 other varieties) :meta common: """ # note: currently only handles IJK grids self.parent_grid_uuid = None #: parent grid when this is a local grid self.parent_window = None #: FineCoarse cell index mapping info between self and parent grid self.is_refinement = None #: True indicates self is a refinement wrt. parent; False means coarsening self.local_grid_uuid_list = None #: LGR & LGC children list self.grid_representation = None #: flavour of grid, currently 'IjkGrid' or 'IjkBlockGrid'; not much used self.geometry_root = None #: xml node at root of geometry sub-tree self.extent_kji = None #: size of grid: (nk, nj, ni) self.ni = self.nj = self.nk = None #: duplicated extent information as individual integers self.crs_uuid = None #: uuid of the coordinate reference system used by the grid's geometry self.crs = None #: Crs object self.points_cached = None #: numpy array of raw points data; loaded on demand # Following are only relevant to structured grid varieties self.grid_is_right_handed = None #: boolean indicating ijk handedness self.k_direction_is_down = None #: boolean indicating dominant direction of k increase self.pillar_shape = None #: string: often 'curved' is used, even for straight pillars self.has_split_coordinate_lines = None #: boolean; affects dimensionality of points array self.split_pillars_count = None #: int self.k_gaps = None #: int; number of k gaps, or None self.k_gap_after_array = None #: 1D numpy bool array of extent nk-1, or None self.k_raw_index_array = None #: 1D numpy int array of extent nk, or None self.geometry_defined_for_all_pillars_cached = None self.geometry_defined_for_all_cells_cached = None self.xyz_box_cached = None #: numpy array of shape (2, 3) being (min max, x y z) self.property_collection = None #: GridPropertyCollection object self.inactive = None #: numpy bool array: inactive cell mask (not native resqml - derived from active property) self.all_inactive = None #: numpy bool indicating whether all cells are inactive self.active_property_uuid = None #: uuid of property holding active cell boolean array (used to populate inactive) self.pinchout = None #: numpy bool array: pinchout mask, only set on demand (not native resqml) self.grid_skin = None #: outer skin of grid as a GridSkin object, computed and cached on demand self.stratigraphic_column_rank_uuid = None #: optional reference for interpreting stratigraphic units self.stratigraphic_units = None #: optional array of unit indices (one per layer or K gap) self.time_index = None #: optional time index for dynamic geometry self.time_series_uuid = None #: optional time series for dynamic geometry super().__init__(model = parent_model, uuid = uuid, title = title, originator = originator, extra_metadata = extra_metadata) if not self.title: self.title = 'ROOT' if uuid is not None: if geometry_required: assert self.geometry_root is not None, 'grid geometry not present in xml' if find_properties: self.extract_property_collection() def _load_from_xml(self): # Extract simple attributes from xml and set as attributes in this resqpy object grid_root = self.root assert grid_root is not None self.grid_representation = 'IjkGrid' # this attribute not much used self.extract_extent_kji() self.nk = self.extent_kji[0] # for convenience available as individual attribs as well as np triplet self.nj = self.extent_kji[1] self.ni = self.extent_kji[2] self.geometry_root = rqet.find_tag(grid_root, 'Geometry') if self.geometry_root is None: self.geometry_defined_for_all_pillars_cached = True self.geometry_defined_for_all_cells_cached = True self.pillar_shape = 'straight' self.has_split_coordinate_lines = False self.k_direction_is_down = True # arbitrary, as 'down' is rather meaningless without a crs if self.extra_metadata is not None: crs_uuid = self.extra_metadata.get('crs uuid') if crs_uuid is not None: self.set_crs(crs_uuid) else: self.extract_crs_uuid() self.set_crs() self.extract_has_split_coordinate_lines() self.extract_grid_is_right_handed() pillar_geometry_is_defined(self) # note: if there is no geometry at all, resqpy sets this True cell_geometry_is_defined(self) # note: if there is no geometry at all, resqpy sets this True self.extract_pillar_shape() self.extract_k_direction_is_down() self.extract_geometry_time_index() self.extract_k_gaps() if self.geometry_root is None: assert not self.k_gaps, 'K gaps present in grid without geometry' self.extract_parent() self.extract_children() # self.create_column_pillar_mapping() # mapping now created on demand in other methods self.extract_inactive_mask() self.extract_stratigraphy() def set_modified(self, update_xml = False, update_hdf5 = False): """Assigns a new uuid to this grid; also calls set_modified() for parent model. arguments: update_xml (boolean, default False): if True, the uuid is modified in the xml tree for the grid part update_hdf5: (boolean, default False): if True, the uuid in the hdf5 internal path names for the datasets (arrays) for the grid are updated returns: the new uuid for this grid object notes: a resqml object should be thought of as immutable; therefore when modifying an object, it is preferable to assign it a new unique identifer which this method does for a grid; the hdf5 internal path names held in xml are only updated if both update_xml and update_hdf5 are True; if the grid object has been created using the Model.copy_part() method, it is not necessary to call this function as a new uuid will already have been assigned; NB: relationships are not updated by this function, including the relationship to the hdf5 external part """ old_uuid = self.uuid self.uuid = bu.new_uuid() if old_uuid is not None: log.info('changing uuid for grid from: ' + str(old_uuid) + ' to: ' + str(self.uuid)) else: log.info('setting new uuid for grid: ' + str(self.uuid)) if update_xml: rqet.patch_uuid_in_part_root(self.root, self.uuid) self.model.add_part('obj_IjkGridRepresentation', self.uuid, self.root) self.model.remove_part(rqet.part_name_for_object('obj_IjkGridRepresentation', old_uuid)) if update_hdf5: hdf5_uuid_list = self.model.h5_uuid_list(self.root) for ext_uuid in hdf5_uuid_list: hdf5_file = self.model.h5_access(ext_uuid, mode = 'r+') rwh5.change_uuid(hdf5_file, old_uuid, self.uuid) if update_xml and update_hdf5: self.model.change_uuid_in_hdf5_references(self.root, old_uuid, self.uuid) self.model.set_modified() return self.uuid def cell_count(self, active_only = False, non_pinched_out_only = False, geometry_defined_only = False): """Returns number of cells in grid; optionally limited by active, non-pinched-out, or having geometry. arguments: active_only (boolean, default False): if True, the count of active cells is returned non_pinched_out_only (boolean, default False): if True, the count of cells with vertical thickness greater than 0.001 (units are crs vertical units) is returned geometry_defined_only (boolean, default False): if True, the count of cells which have a defined geometry is returned (a zero thickness cell may still have a defined geometry) returns: integer being the number of cells in the grid """ # todo: elsewhere: setting of active array from boolean array or zero pore volume if not (active_only or non_pinched_out_only or geometry_defined_only): return np.prod(self.extent_kji) if non_pinched_out_only: self.pinched_out(cache_pinchout_array = True) return self.pinchout.size - np.count_nonzero(self.pinchout) if active_only: if self.all_inactive: return 0 if self.inactive is not None: return self.inactive.size - np.count_nonzero(self.inactive) else: geometry_defined_only = True if geometry_defined_only: if geometry_defined_for_all_cells(self, cache_array = True): return np.prod(self.extent_kji) return np.count_nonzero(self.array_cell_geometry_is_defined) return None def natural_cell_index(self, cell_kji0): """Returns a single integer for the cell, being the index into a flattened array.""" return (cell_kji0[0] * self.nj + cell_kji0[1]) * self.ni + cell_kji0[2] def natural_cell_indices(self, cell_kji0s): """Returns a numpy integer array with a value for each of the cells, being the index into a flattened array. argument: cell_kji0s: numpy integer array of shape (..., 3) being a list of cell indices in kji0 protocol returns: numpy integer array of shape (...,) being the equivalent natural cell indices (for a flattened array of cells) """ return (cell_kji0s[..., 0] * self.nj + cell_kji0s[..., 1]) * self.ni + cell_kji0s[..., 2] def denaturalized_cell_index(self, c0): """Returns a 3 element cell_kji0 index (as a tuple) for the cell with given natural index.""" k0, ji0 = divmod(c0, self.nj * self.ni) j0, i0 = divmod(ji0, self.ni) return (k0, j0, i0) def denaturalized_cell_indices(self, c0s): """Returns an integer array holding kji0 indices for the cells with given natural indices. argument: c0s: numpy integer array of shape (..., 3) being natural cell indices (for a flattened array) returns: numpy integer array of shape (..., 3) being the equivalent kji0 protocol cell indices """ k0s, ji0s = divmod(c0s, self.nj * self.ni) j0s, i0s = divmod(ji0s, self.ni) return np.stack((k0s, j0s, i0s), axis = -1) def resolve_geometry_child(self, tag, child_node = None): """If xml child node is None, looks for tag amongst children of geometry root. arguments: tag (string): the tag of the geometry child node of interest child_node (optional): the already resolved xml root of the child, or None returns: xml node of child of geometry node for this grid, which matches tag note: if child_node argument is not None, it is simply returned; if child_node is None, the geometry node for this grid is scanned for a child with matching tag """ if child_node is not None: return child_node return rqet.find_tag(self.geometry_root, tag) def _set_k_raw_index_array(self): """Sets the layering raw index array based on the k gap after boolean array.""" if self.k_gap_after_array is None: self.k_raw_index_array = None return self.k_raw_index_array = np.empty((self.nk,), dtype = int) gap_count = 0 for k in range(self.nk): self.k_raw_index_array[k] = k + gap_count if k < self.nk - 1 and self.k_gap_after_array[k]: gap_count += 1 assert gap_count == self.k_gaps, 'inconsistency in k gap data' def set_parent(self, parent_grid_uuid, self_is_refinement, parent_window): """Set relationship with respect to a parent grid. arguments: parent_grid_uuid (uuid.UUID): the uuid of the parent grid self_is_refinement (boolean): if True, this grid is a refinement of the subset of the parent grid; if False, this grid is a coarsening parent_window: (olio.fine_coarse.FineCoarse object): slice mapping information in K, j & I axes; note that self_is_refinement determines which of the 2 grids is fine and which is coarse """ if self.parent_grid_uuid is not None: log.warning('overwriting parent grid information') self.parent_grid_uuid = parent_grid_uuid if parent_grid_uuid is None: self.parent_window = None self.is_refinement = None else: parent_window.assert_valid() self.parent_window = parent_window self.is_refinement = self_is_refinement def actual_pillar_shape(self, patch_metadata = False, tolerance = 0.001): """Returns actual shape of pillars. arguments: patch_metadata (boolean, default False): if True, the actual shape replaces whatever was in the metadata tolerance (float, default 0.001): a length value (in units of grid xy units) used as a Manhattan distance limit in the xy plane when considering whether a point lies 'on' a straight line returns: string: 'vertical', 'straight' or 'curved' note: setting patch_metadata True will affect the attribute in this Grid object; however, it will not be preserved unless the create_xml() method is called, followed at some point with model.store_epc() """ pillar_shape = gf.actual_pillar_shape(self.points_ref(masked = False), tolerance = tolerance) if patch_metadata: self.pillar_shape = pillar_shape return pillar_shape def cache_all_geometry_arrays(self): """Loads from hdf5 into memory all the arrays defining the grid geometry. returns: None notes: call this method if much grid geometry processing is coming up, to save having to worry about individual caching arguments to many other methods; this method does not create a column to pillar mapping which will often also be needed; the arrays are cached as direct attributes to this grid object; the names, shapes and types of the attributes are: array_cell_geometry_is_defined (nk, nj, ni) bool array_pillar_geometry_is_defined (nj + 1, ni + 1) bool points_cached (nk + 1, nj + 1, ni + 1, 3) or (nk + 1, np, 3) float (np = number of primary pillars) split_pillar_indices_cached (nps) int (nps = number of primary pillars that are split) cols_for_split_pillars (npxc) int (npxc = number of column corners using extra pillars due to splitting) cols_for_split_pillars_cl (npx) int (npx = number of extra pillars due to splitting) the last 3 are only present when the grid has one or more split pillars; the split pillar data includes the use of a 'jagged' array (effectively an array of lists represented as a linear array and a 'cumulative length' index array) :meta common: """ # todo: recheck the description of split pillar arrays given in the doc string cell_geometry_is_defined(self, cache_array = True) pillar_geometry_is_defined(self, cache_array = True) self.point(cache_array = True) if self.has_split_coordinate_lines: split_root = None if not hasattr(self, 'split_pillar_indices_cached'): split_root = self.resolve_geometry_child('SplitCoordinateLines') # assert(rqet.node_type(split_root) == 'ColumnLayerSplitCoordinateLines') pillar_indices_root = rqet.find_tag(split_root, 'PillarIndices') h5_key_pair = self.model.h5_uuid_and_path_for_node(pillar_indices_root) self.model.h5_array_element(h5_key_pair, index = None, cache_array = True, object = self, array_attribute = 'split_pillar_indices_cached', dtype = 'int') if not hasattr(self, 'cols_for_split_pillars'): if split_root is None: split_root = self.resolve_geometry_child('SplitCoordinateLines') cpscl_root = rqet.find_tag(split_root, 'ColumnsPerSplitCoordinateLine') cpscl_elements_root = rqet.find_tag(cpscl_root, 'Elements') h5_key_pair = self.model.h5_uuid_and_path_for_node(cpscl_elements_root) self.model.h5_array_element(h5_key_pair, index = None, cache_array = True, object = self, array_attribute = 'cols_for_split_pillars', dtype = 'int') cpscl_cum_length_root = rqet.find_tag(cpscl_root, 'CumulativeLength') h5_key_pair = self.model.h5_uuid_and_path_for_node(cpscl_cum_length_root) self.model.h5_array_element(h5_key_pair, index = None, cache_array = True, object = self, array_attribute = 'cols_for_split_pillars_cl', dtype = 'int') def column_is_inactive(self, col_ji0): """Returns True if all the cells in the specified column are inactive. arguments: col_ji0 (int pair): the (j0, i0) column indices returns: boolean: True if all the cells in the column are inactive; False if at least one cell is active """ self.extract_inactive_mask() if self.inactive is None: return False # no inactive mask indicates all cells are active return
np.all(self.inactive[:, col_ji0[0], col_ji0[1]])
numpy.all
# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Pure Python helper methods for :mod:`bezier.triangle`. .. |eacute| unicode:: U+000E9 .. LATIN SMALL LETTER E WITH ACUTE :trim: """ import functools import operator import numpy as np from bezier.hazmat import curve_helpers from bezier.hazmat import helpers as _py_helpers from bezier.hazmat import intersection_helpers _MAX_POLY_SUBDIVISIONS = 5 _SIGN = np.sign # pylint: disable=no-member _FLOAT64 = np.float64 # pylint: disable=no-member _SAME_CURVATURE = "Tangent curves have same curvature." _WRONG_CURVE = "Start and end node not defined on same curve" CLASSIFICATION_T = intersection_helpers.IntersectionClassification # NOTE: The ``SUBDIVIDE`` matrices are public since used in # the ``triangle`` module. LINEAR_SUBDIVIDE_A = ( np.asfortranarray([[2, 1, 1], [0, 1, 0], [0, 0, 1]], dtype=_FLOAT64) / 2.0 ) LINEAR_SUBDIVIDE_B = ( np.asfortranarray([[0, 1, 1], [1, 0, 1], [1, 1, 0]], dtype=_FLOAT64) / 2.0 ) LINEAR_SUBDIVIDE_C = ( np.asfortranarray([[1, 0, 0], [1, 2, 1], [0, 0, 1]], dtype=_FLOAT64) / 2.0 ) LINEAR_SUBDIVIDE_D = ( np.asfortranarray([[1, 0, 0], [0, 1, 0], [1, 1, 2]], dtype=_FLOAT64) / 2.0 ) QUADRATIC_SUBDIVIDE_A = ( np.asfortranarray( [ [4, 2, 1, 2, 1, 1], [0, 2, 2, 0, 1, 0], [0, 0, 1, 0, 0, 0], [0, 0, 0, 2, 1, 2], [0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 1], ], dtype=_FLOAT64, ) / 4.0 ) QUADRATIC_SUBDIVIDE_B = ( np.asfortranarray( [ [0, 0, 1, 0, 1, 1], [0, 1, 0, 1, 1, 2], [1, 0, 0, 1, 0, 1], [0, 1, 2, 1, 1, 0], [2, 1, 0, 1, 1, 0], [1, 1, 1, 0, 0, 0], ], dtype=_FLOAT64, ) / 4.0 ) QUADRATIC_SUBDIVIDE_C = ( np.asfortranarray( [ [1, 0, 0, 0, 0, 0], [2, 2, 0, 1, 0, 0], [1, 2, 4, 1, 2, 1], [0, 0, 0, 1, 0, 0], [0, 0, 0, 1, 2, 2], [0, 0, 0, 0, 0, 1], ], dtype=_FLOAT64, ) / 4.0 ) QUADRATIC_SUBDIVIDE_D = ( np.asfortranarray( [ [1, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0], [2, 1, 0, 2, 0, 0], [0, 1, 2, 0, 2, 0], [1, 1, 1, 2, 2, 4], ], dtype=_FLOAT64, ) / 4.0 ) CUBIC_SUBDIVIDE_A = ( np.asfortranarray( [ [8, 4, 2, 1, 4, 2, 1, 2, 1, 1], [0, 4, 4, 3, 0, 2, 2, 0, 1, 0], [0, 0, 2, 3, 0, 0, 1, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 4, 2, 1, 4, 2, 3], [0, 0, 0, 0, 0, 2, 2, 0, 2, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 2, 1, 3], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], ], dtype=_FLOAT64, ) / 8.0 ) CUBIC_SUBDIVIDE_B = ( np.asfortranarray( [ [0, 0, 0, 1, 0, 0, 1, 0, 1, 1], [0, 0, 1, 0, 0, 1, 1, 1, 2, 3], [0, 1, 0, 0, 1, 1, 0, 2, 1, 3], [1, 0, 0, 0, 1, 0, 0, 1, 0, 1], [0, 0, 1, 3, 0, 1, 2, 1, 1, 0], [0, 2, 2, 0, 2, 2, 2, 2, 2, 0], [3, 1, 0, 0, 2, 1, 0, 1, 1, 0], [0, 1, 2, 3, 1, 1, 1, 0, 0, 0], [3, 2, 1, 0, 1, 1, 1, 0, 0, 0], [1, 1, 1, 1, 0, 0, 0, 0, 0, 0], ], dtype=_FLOAT64, ) / 8.0 ) CUBIC_SUBDIVIDE_C = ( np.asfortranarray( [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [3, 2, 0, 0, 1, 0, 0, 0, 0, 0], [3, 4, 4, 0, 2, 2, 0, 1, 0, 0], [1, 2, 4, 8, 1, 2, 4, 1, 2, 1], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 2, 2, 0, 2, 0, 0], [0, 0, 0, 0, 1, 2, 4, 2, 4, 3], [0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1, 2, 3], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1], ], dtype=_FLOAT64, ) / 8.0 ) CUBIC_SUBDIVIDE_D = ( np.asfortranarray( [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [3, 1, 0, 0, 2, 0, 0, 0, 0, 0], [0, 2, 2, 0, 0, 2, 0, 0, 0, 0], [0, 0, 1, 3, 0, 0, 2, 0, 0, 0], [3, 2, 1, 0, 4, 2, 0, 4, 0, 0], [0, 1, 2, 3, 0, 2, 4, 0, 4, 0], [1, 1, 1, 1, 2, 2, 2, 4, 4, 8], ], dtype=_FLOAT64, ) / 8.0 ) QUARTIC_SUBDIVIDE_A = ( np.asfortranarray( [ [16, 8, 4, 2, 1, 8, 4, 2, 1, 4, 2, 1, 2, 1, 1], [0, 8, 8, 6, 4, 0, 4, 4, 3, 0, 2, 2, 0, 1, 0], [0, 0, 4, 6, 6, 0, 0, 2, 3, 0, 0, 1, 0, 0, 0], [0, 0, 0, 2, 4, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 8, 4, 2, 1, 8, 4, 2, 6, 3, 4], [0, 0, 0, 0, 0, 0, 4, 4, 3, 0, 4, 4, 0, 3, 0], [0, 0, 0, 0, 0, 0, 0, 2, 3, 0, 0, 2, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 4, 2, 1, 6, 3, 6], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 3, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1, 4], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], ], dtype=_FLOAT64, ) / 16.0 ) QUARTIC_SUBDIVIDE_B = ( np.asfortranarray( [ [0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1], [0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 2, 1, 3, 4], [0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 2, 1, 3, 3, 6], [0, 1, 0, 0, 0, 1, 1, 0, 0, 2, 1, 0, 3, 1, 4], [1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 1], [0, 0, 0, 1, 4, 0, 0, 1, 3, 0, 1, 2, 1, 1, 0], [0, 0, 2, 3, 0, 0, 2, 3, 3, 2, 3, 4, 3, 3, 0], [0, 3, 2, 0, 0, 3, 3, 2, 0, 4, 3, 2, 3, 3, 0], [4, 1, 0, 0, 0, 3, 1, 0, 0, 2, 1, 0, 1, 1, 0], [0, 0, 1, 3, 6, 0, 1, 2, 3, 1, 1, 1, 0, 0, 0], [0, 3, 4, 3, 0, 3, 3, 3, 3, 2, 2, 2, 0, 0, 0], [6, 3, 1, 0, 0, 3, 2, 1, 0, 1, 1, 1, 0, 0, 0], [0, 1, 2, 3, 4, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [4, 3, 2, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ], dtype=_FLOAT64, ) / 16.0 ) QUARTIC_SUBDIVIDE_C = ( np.asfortranarray( [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [6, 6, 4, 0, 0, 3, 2, 0, 0, 1, 0, 0, 0, 0, 0], [4, 6, 8, 8, 0, 3, 4, 4, 0, 2, 2, 0, 1, 0, 0], [1, 2, 4, 8, 16, 1, 2, 4, 8, 1, 2, 4, 1, 2, 1], [0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 3, 2, 0, 0, 2, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 3, 4, 4, 0, 4, 4, 0, 3, 0, 0], [0, 0, 0, 0, 0, 1, 2, 4, 8, 2, 4, 8, 3, 6, 4], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 2, 0, 3, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4, 3, 6, 6], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 4], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1], ], dtype=_FLOAT64, ) / 16.0 ) QUARTIC_SUBDIVIDE_D = ( np.asfortranarray( [ [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [4, 1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 3, 2, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 2, 3, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 4, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0], [6, 3, 1, 0, 0, 6, 2, 0, 0, 4, 0, 0, 0, 0, 0], [0, 3, 4, 3, 0, 0, 4, 4, 0, 0, 4, 0, 0, 0, 0], [0, 0, 1, 3, 6, 0, 0, 2, 6, 0, 0, 4, 0, 0, 0], [4, 3, 2, 1, 0, 6, 4, 2, 0, 8, 4, 0, 8, 0, 0], [0, 1, 2, 3, 4, 0, 2, 4, 6, 0, 4, 8, 0, 8, 0], [1, 1, 1, 1, 1, 2, 2, 2, 2, 4, 4, 4, 8, 8, 16], ], dtype=_FLOAT64, ) / 16.0 ) _WEIGHTS_SUBDIVIDE0 = np.asfortranarray([1.0, 0.0, 0.0]) _WEIGHTS_SUBDIVIDE1 = np.asfortranarray([0.5, 0.5, 0.0]) _WEIGHTS_SUBDIVIDE2 =
np.asfortranarray([0.5, 0.0, 0.5])
numpy.asfortranarray
import torch import torch.nn as nn import numpy as np import argparse import soundfile as sf import os from analyzer import Tanhize, read_whole_features,pw2wav from torch.autograd import Variable from datetime import datetime parser = argparse.ArgumentParser(description='Voice Convert.py') parser.add_argument('--corpus_name', default='vcc2016', help='Corpus name') parser.add_argument('--src', default='SF1', help='source speaker [SF1 - SM2]') parser.add_argument('--trg', default='TM3', help='target speaker [SF1 - TM3]') parser.add_argument('--output_dir', default='./logdir', help='root of output dir') parser.add_argument('--model_name', default='./model/vawgan.pt', help='load ./model/[vawgan.pt]') parser.add_argument('--file_pattern', default='./dataset/vcc2016/bin/Testing Set/{}/*.bin', help='file pattern') parser.add_argument('--speaker_list', default='./etc/speakers.tsv', help='Speaker list (one speaker per line)') args = parser.parse_args() def nh_to_nchw(x): return x.reshape(-1,1,513,1) def convert_f0(f0, src, trg): print(f0) print(np.fromfile(os.path.join('./etc', '{}.npf'.format(src)), np.float32)) print(np.fromfile(os.path.join('./etc', '{}.npf'.format(trg)), np.float32)) mu_s, std_s = np.fromfile(os.path.join('./etc', '{}.npf'.format(src)), np.float32) mu_t, std_t = np.fromfile(os.path.join('./etc', '{}.npf'.format(trg)), np.float32) print('//') lf0 = np.where(f0 > 1., np.log(f0), f0) print(lf0) print('//') lf0 =
np.where(lf0 > 1., (lf0 - mu_s)/std_s * std_t + mu_t, lf0)
numpy.where
# BSD 3-Clause License; see https://github.com/scikit-hep/awkward-1.0/blob/main/LICENSE import pytest # noqa: F401 import numpy as np # noqa: F401 import awkward as ak # noqa: F401 to_list = ak._v2.operations.convert.to_list """includes test_0117, test_0110, test_0042, test_0127, test_0198, test_0446, test_0585, test_0590, test_0612, test_0724, test_0866, test_0973 """ def test_flatten_ListOffsetArray(): array = ak._v2.highlevel.Array([[1.1, 2.2, 3.3], [], [4.4, 5.5]]).layout assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array) ) == [ 1.1, 2.2, 3.3, 4.4, 5.5, ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[1:]) ) == [4.4, 5.5] array = ak._v2.highlevel.Array( [[[0.0, 1.1, 2.2], [], [3.3, 4.4]], [], [[5.5]], [[], [6.6, 7.7, 8.8, 9.9]]] ).layout assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array) ) == [ [0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [], [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[1:]) ) == [ [5.5], [], [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[:, 1:]) ) == [ [], [3.3, 4.4], [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=2) ) == [ [0.0, 1.1, 2.2, 3.3, 4.4], [], [5.5], [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[1:], axis=2) ) == [ [], [5.5], [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[:, 1:], axis=2) ) == [ [3.3, 4.4], [], [], [6.6, 7.7, 8.8, 9.9], ] array = ak._v2.highlevel.Array( np.arange(2 * 3 * 5 * 7).reshape(2, 3, 5, 7).tolist() ).layout assert ( ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=1) ) == np.arange(2 * 3 * 5 * 7).reshape(2 * 3, 5, 7).tolist() ) assert ( ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=2) ) == np.arange(2 * 3 * 5 * 7).reshape(2, 3 * 5, 7).tolist() ) assert ( ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=3) ) == np.arange(2 * 3 * 5 * 7).reshape(2, 3, 5 * 7).tolist() ) array = ak._v2.highlevel.Array( ak._v2.operations.convert.from_iter( np.arange(2 * 3 * 5 * 7).reshape(2, 3, 5, 7).tolist(), highlevel=False ) ).layout assert ( ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=1) ) == np.arange(2 * 3 * 5 * 7).reshape(2 * 3, 5, 7).tolist() ) assert ( ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=2) ) == np.arange(2 * 3 * 5 * 7).reshape(2, 3 * 5, 7).tolist() ) assert ( ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=3) ) == np.arange(2 * 3 * 5 * 7).reshape(2, 3, 5 * 7).tolist() ) array = ak._v2.highlevel.Array(np.arange(2 * 3 * 5 * 7).reshape(2, 3, 5, 7)).layout assert ( ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=1) ) == np.arange(2 * 3 * 5 * 7).reshape(2 * 3, 5, 7).tolist() ) assert ( ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=2) ) == np.arange(2 * 3 * 5 * 7).reshape(2, 3 * 5, 7).tolist() ) assert ( ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=3) ) == np.arange(2 * 3 * 5 * 7).reshape(2, 3, 5 * 7).tolist() ) def test_flatten_IndexedArray(): array = ak._v2.highlevel.Array( [[1.1, 2.2, None, 3.3], None, [], None, [4.4, 5.5], None] ).layout assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array) ) == [ 1.1, 2.2, None, 3.3, 4.4, 5.5, ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[1:]) ) == [4.4, 5.5] array = ak._v2.highlevel.Array( [ [[0.0, 1.1, 2.2], None, None, [3.3, 4.4]], [], [[5.5]], [[], [6.6, 7.7, 8.8, 9.9]], ] ).layout assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=2) ) == [ [0.0, 1.1, 2.2, 3.3, 4.4], [], [5.5], [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[1:], axis=2) ) == [ [], [5.5], [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[:, 1:], axis=2) ) == [ [3.3, 4.4], [], [], [6.6, 7.7, 8.8, 9.9], ] array = ak._v2.highlevel.Array( [ [[0.0, 1.1, 2.2], [3.3, 4.4]], [], [[5.5]], None, None, [[], [6.6, 7.7, 8.8, 9.9]], ] ).layout assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=2) ) == [ [0.0, 1.1, 2.2, 3.3, 4.4], [], [5.5], None, None, [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[1:], axis=2) ) == [ [], [5.5], None, None, [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[:, 1:], axis=2) ) == [ [3.3, 4.4], [], [], None, None, [6.6, 7.7, 8.8, 9.9], ] array = ak._v2.highlevel.Array( [ [[0.0, 1.1, None, 2.2], None, [], None, [3.3, 4.4]], None, [], [[5.5]], None, [[], [6.6, None, 7.7, 8.8, 9.9], None], ] ).layout assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array) ) == [ [0.0, 1.1, None, 2.2], None, [], None, [3.3, 4.4], [5.5], [], [6.6, None, 7.7, 8.8, 9.9], None, ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=2) ) == [ [0.0, 1.1, None, 2.2, 3.3, 4.4], None, [], [5.5], None, [6.6, None, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[1:], axis=2) ) == [ None, [], [5.5], None, [6.6, None, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[:, 1:], axis=2) ) == [ [3.3, 4.4], None, [], [], None, [6.6, None, 7.7, 8.8, 9.9], ] content = ak._v2.operations.convert.from_iter( [[0.0, 1.1, 2.2], [], [3.3, 4.4], [5.5], [6.6, 7.7, 8.8, 9.9]], highlevel=False ) index = ak._v2.index.Index64(np.array([2, 1, 0, 3, 3, 4], dtype=np.int64)) array = ak._v2.contents.IndexedArray(index, content) assert to_list(array) == [ [3.3, 4.4], [], [0.0, 1.1, 2.2], [5.5], [5.5], [6.6, 7.7, 8.8, 9.9], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array) ) == [ 3.3, 4.4, 0.0, 1.1, 2.2, 5.5, 5.5, 6.6, 7.7, 8.8, 9.9, ] content = ak._v2.operations.convert.from_iter( [[[0.0, 1.1, 2.2], [], [3.3, 4.4]], [], [[5.5]], [[], [6.6, 7.7, 8.8, 9.9]]], highlevel=False, ) index = ak._v2.index.Index64(np.array([2, 2, 1, 0, 3], dtype=np.int64)) array = ak._v2.contents.IndexedArray(index, content) assert to_list(array) == [ [[5.5]], [[5.5]], [], [[0.0, 1.1, 2.2], [], [3.3, 4.4]], [[], [6.6, 7.7, 8.8, 9.9]], ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=2) ) == [ [5.5], [5.5], [], [0.0, 1.1, 2.2, 3.3, 4.4], [6.6, 7.7, 8.8, 9.9], ] def test_flatten_RecordArray(): array = ak._v2.highlevel.Array( [ {"x": [], "y": [[3, 3, 3]]}, {"x": [[1]], "y": [[2, 2]]}, {"x": [[2], [2]], "y": [[1]]}, {"x": [[3], [3], [3]], "y": [[]]}, ] ).layout assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array, axis=2) ) == [ {"x": [], "y": [3, 3, 3]}, {"x": [1], "y": [2, 2]}, {"x": [2, 2], "y": [1]}, {"x": [3, 3, 3], "y": []}, ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[1:], axis=2) ) == [ {"x": [1], "y": [2, 2]}, {"x": [2, 2], "y": [1]}, {"x": [3, 3, 3], "y": []}, ] assert ak._v2.operations.convert.to_list( ak._v2.operations.structure.flatten(array[:, 1:], axis=2) ) == [ {"x": [], "y": []}, {"x": [], "y": []}, {"x": [2], "y": []}, {"x": [3, 3], "y": []}, ] def test_flatten_UnionArray(): content1 = ak._v2.operations.convert.from_iter( [[1.1], [2.2, 2.2], [3.3, 3.3, 3.3]], highlevel=False ) content2 = ak._v2.operations.convert.from_iter( [[[3, 3, 3], [3, 3, 3], [3, 3, 3]], [[2, 2], [2, 2]], [[1]]], highlevel=False ) tags = ak._v2.index.Index8(
np.array([0, 1, 0, 1, 0, 1], dtype=np.int8)
numpy.array
""" Tests that are in the documentation. If they break the documentation is wrong! If there is any change to the code please also change the examples to accommodate the changes. """ from autode.species import Species from autode.species import Molecule from autode.config import Config from autode.mol_graphs import split_mol_across_bond from autode.atoms import Atom import numpy as np import os here = os.path.dirname(os.path.abspath(__file__)) def test_species(): species = Species(name='species', atoms=None, charge=0, mult=1) assert species.n_atoms == 0 h2 = Species(name='H2', charge=0, mult=1, atoms=[Atom('H'), Atom('H')]) assert h2.n_atoms == 2 # Expecting both atoms to be initialised at the origin assert np.linalg.norm(h2.atoms[0].coord - h2.atoms[1].coord) < 1E-6 atom1, atom2 = h2.atoms atom1.translate(vec=
np.array([1.0, 0.0, 0.0])
numpy.array
''' This file will be used to generate voxel data sets from the meshes by voxelizing the vertices. The high level overview is that we need to supply a list of directory paths to where the stl files are housed. We will then extract the vertices data, and we will create voxels in this file. ''' import os from coord_change import Global2Local_Coord import scipy.io as sio import skimage import numpy as np import trimesh import pandas as pd import sys from scipy import ndimage import h5py import pickle def stl_load_to_vertex_array(path_to_stl, bone): ''' This function will take the path to the frame location according to laterality, and it will return a mesh object loaded according to what laterality and patient has been specified in path. input: path_to_stl --> the path to specific laterality ~/data/activity/patient/laterality bone --> either 'Tibia' or 'Femur' to specify which bone to load output: mesh --> returns a trimesh mesh object that has been loaded ''' last_path_split = path_to_stl.split(os.sep)[-1] new_path = os.path.join(os.path.normpath(path_to_stl[:-3]), 'stl') if last_path_split.lower() == 'lt': if bone.lower() == 'femur': mesh = trimesh.load(os.path.join(new_path, 'LFemur.stl')) elif bone.lower() == 'tibia': mesh = trimesh.load(os.path.join(new_path, 'LTibia.stl')) elif last_path_split.lower() == 'rt': if bone.lower() == 'femur': mesh = trimesh.load(os.path.join(new_path, 'RFemur.stl')) elif bone.lower() == 'tibia': mesh = trimesh.load(os.path.join(new_path, 'RTibia.stl')) return mesh def voxel_from_array(mesh_vertices, spacing=0.5): ''' This function will take in a matrix of the location of mesh vertices. It will then take the vertices and transform them into a binary voxel data set with a 1 located in the bin if a corresponding point is to be found. It will return the voxelized matrix. input: mesh_vertices --> expects np.array of locations of mesh vertices spacing --> the spacing of the voxels in mm output: bin_mat --> a binary voxelized matrix wtih 1's corresponding to points with a corresponding vertex ''' mesh_min_vec = np.min(mesh_vertices, axis=0) mesh_min_mat = mesh_vertices - mesh_min_vec range_vec = mesh_vertices.max(axis=0) - mesh_vertices.min(axis=0) bins_vec = np.ceil(range_vec / spacing) bin_mat = np.zeros(bins_vec.astype('int32') + 2) for indx in range(mesh_vertices.shape[0]): # print(int(np.floor(mesh_min_mat[indx, 0] / spacing))) # print(int(np.floor(mesh_min_mat[indx, 1] / spacing))) # print(int(np.floor(mesh_min_mat[indx, 2] / spacing))) # print(type(int(np.floor(mesh_min_mat[indx, 0] / spacing)))) # print(type(int(np.floor(mesh_min_mat[indx, 1] / spacing)))) # print(type(int(np.floor(mesh_min_mat[indx, 2] / spacing)))) bin_mat[int(np.floor(mesh_min_mat[indx, 0] / spacing)):int(np.ceil(mesh_min_mat[indx, 0] / spacing)) + 1, int(np.floor(mesh_min_mat[indx, 1] / spacing)):int(np.ceil(mesh_min_mat[indx, 1] / spacing)) + 1, int(np.floor(mesh_min_mat[indx, 2] / spacing)):int(np.ceil(mesh_min_mat[indx, 2] / spacing)) + 1] = 1 return bin_mat.astype('int8') def extract_stl_to_voxel(mesh_obj, PTS_file, voxelize_dim=0.5): ''' In sum, this function will: 1) take an STL file loaded as a mesh object and take the PTS file loaded as a pandas object 2) using the PTS file, determine local coordinate frame and shift STL point cloud to new local coordinate frame 3) voxelize the vertices of the point cloud to binary, depending on if a vertex would be in the corresponding voxel 4) return an array of both 3D voxel models for loaded model function extract_stl_to_voxel(path_to_frame, voxelize_dim=0.5) input: mesh_obj --> loaded trimesh mesh object (stl file) PTS_file --> loaded pandas voxelize_dim --> the scale of creating new voxel map output: 3D binary voxel model as an array This function assumes it will be passed the loaded trimesh mesh as an argument. This function will produce an a NumPy array of the binary voxel data. In doing so, this function will also translate the points in the stl file to the local coordinate frame defined through the PTS files: PTS file: ---> defines the new X and Z directions of the local coordinate system X Coordinate system: From PTS row 1 to PTS row 0 Z Coordinate system: From PTS row 3 to PTS row 2 The origin of the new coordinate system is defined to be halfway between the two anatomical points, which demarcate the x-axis. From these two coordinates, we can determine the Y axis, via the cross product of the unit vectors: Y = cross(z,x) ''' PTS_file = np.array(PTS_file) X_vec = np.array(PTS_file[0, :] - PTS_file[1, :]) Z_vec_pre =
np.array(PTS_file[2, :] - PTS_file[3, :])
numpy.array
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core from paddle.fluid.op import Operator import paddle.fluid as fluid def output_hist(out): hist, _ = np.histogram(out, range=(-5, 10)) hist = hist.astype("float32") hist /= float(out.size) prob = 0.1 * np.ones((10)) return hist, prob def output_hist_diag(out): diag_num = min(out.shape) for i in range(diag_num): assert abs(out[i][i] - 1.0) < 1e-9 # ignore diagonal elements out[i][i] = 100 hist, _ = np.histogram(out, range=(-5, 10)) hist = hist.astype("float32") hist /= float(out.size) prob = 0.1 * np.ones((10)) return hist, prob class TestUniformRandomOp(OpTest): def setUp(self): self.op_type = "uniform_random" self.inputs = {} self.init_attrs() self.outputs = {"Out": np.zeros((1000, 784)).astype("float32")} def init_attrs(self): self.attrs = { "shape": [1000, 784], "min": -5.0, "max": 10.0, "seed": 10 } self.output_hist = output_hist def test_check_output(self): self.check_output_customized(self.verify_output) def verify_output(self, outs): hist, prob = self.output_hist(np.array(outs[0])) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) class TestUniformRandomOpWithDiagInit(TestUniformRandomOp): def init_attrs(self): self.attrs = { "shape": [1000, 784], "min": -5.0, "max": 10.0, "seed": 10, "diag_num": 784, "diag_step": 784, "diag_val": 1.0 } self.output_hist = output_hist_diag class TestUniformRandomOpSelectedRows(unittest.TestCase): def get_places(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) return places def test_check_output(self): for place in self.get_places(): self.check_with_place(place) def check_with_place(self, place): scope = core.Scope() out = scope.var("X").get_selected_rows() op = Operator( "uniform_random", Out="X", shape=[4, 784], min=-5.0, max=10.0, seed=10) op.run(scope, place) self.assertEqual(out.get_tensor().shape(), [4, 784]) hist, prob = output_hist(np.array(out.get_tensor())) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) class TestUniformRandomOpSelectedRowsWithDiagInit( TestUniformRandomOpSelectedRows): def check_with_place(self, place): scope = core.Scope() out = scope.var("X").get_selected_rows() op = Operator( "uniform_random", Out="X", shape=[4, 784], min=-5.0, max=10.0, seed=10, diag_num=4, diag_step=784, diag_val=1.0) op.run(scope, place) self.assertEqual(out.get_tensor().shape(), [4, 784]) hist, prob = output_hist_diag(np.array(out.get_tensor())) self.assertTrue( np.allclose( hist, prob, rtol=0, atol=0.01), "hist: " + str(hist)) class TestUniformRandomOpApi(unittest.TestCase): def test_api(self): x = fluid.layers.data('x', shape=[16], dtype='float32', lod_level=1) y = fluid.layers.fc(x, size=16, param_attr=fluid.initializer.Uniform( low=-0.5, high=0.5, seed=10, diag_num=16, diag_step=16, diag_val=1.0)) place = fluid.CPUPlace() x_tensor = fluid.create_lod_tensor(
np.random.rand(3, 16)
numpy.random.rand
# coding: utf-8 import datetime import ssl import random from PIL import ImageFilter, Image import pytesseract import numpy import simplejson as json from requests.adapters import HTTPAdapter from requests.packages.urllib3.poolmanager import PoolManager from io import open class EntrustProp(object): Limit = 'limit' Market = 'market' class Ssl3HttpAdapter(HTTPAdapter): def init_poolmanager(self, connections, maxsize, block=False): self.poolmanager = PoolManager( num_pools=connections, maxsize=maxsize, block=block, ssl_version=ssl.PROTOCOL_TLSv1) def file2dict(path): with open(path, encoding='utf-8') as f: return json.load(f) def get_stock_type(stock_code): """判断股票ID对应的证券市场 匹配规则 ['50', '51', '60', '90', '110'] 为 sh ['00', '13', '18', '15', '16', '18', '20', '30', '39', '115'] 为 sz ['5', '6', '9'] 开头的为 sh, 其余为 sz :param stock_code:股票ID, 若以 'sz', 'sh' 开头直接返回对应类型,否则使用内置规则判断 :return 'sh' or 'sz'""" assert type(stock_code) is str, 'stock code need str type' if stock_code.startswith(('sh', 'sz')): return stock_code[:2] if stock_code.startswith( ('50', '51', '60', '73', '90', '110', '113', '132', '204', '78')): return 'sh' if stock_code.startswith( ('00', '13', '18', '15', '16', '18', '20', '30', '39', '115', '1318')): return 'sz' if stock_code.startswith(('5', '6', '9')): return 'sh' return 'sz' def recognize_verify_code(image_path, broker='ht'): """识别验证码,返回识别后的字符串,使用 tesseract 实现 :param image_path: 图片路径 :param broker: 券商 ['ht', 'yjb', 'gf', 'yh'] :return recognized: verify code string""" if broker in ['ht', 'yjb']: return detect_image_result(image_path) elif broker == 'gf': return detect_gf_result(image_path) elif broker == 'yh': return detect_yh_result(image_path) def detect_gf_result(image_path): img = Image.open(image_path) if hasattr(img, "width"): width, height = img.width, img.height else: width, height = img.size for x in range(width): for y in range(height): if img.getpixel((x, y)) < (100, 100, 100): img.putpixel((x, y), (256, 256, 256)) gray = img.convert('L') two = gray.point(lambda x: 0 if 68 < x < 90 else 256) min_res = two.filter(ImageFilter.MinFilter) med_res = min_res.filter(ImageFilter.MedianFilter) for _ in range(2): med_res = med_res.filter(ImageFilter.MedianFilter) res = pytesseract.image_to_string(med_res) return res.replace(' ', '') def detect_image_result(image_path): img = Image.open(image_path) for x in range(img.width): for y in range(img.height): (r, g, b) = img.getpixel((x, y)) if r > 100 and g > 100 and b > 100: img.putpixel((x, y), (256, 256, 256)) res = pytesseract.image_to_string(img) return res def detect_yh_result(image_path): img = Image.open(image_path) brightness = list() for x in range(img.width): for y in range(img.height): (r, g, b) = img.getpixel((x, y)) brightness.append(r + g + b) avgBrightness = int(
numpy.mean(brightness)
numpy.mean
"""QA plots for UM model.""" from __future__ import print_function, division import numpy as np import matplotlib.pyplot as plt from matplotlib import gridspec from matplotlib.ticker import NullFormatter from astroML.stats import binned_statistic_2d from scipy.ndimage.filters import gaussian_filter import corner __all__ = ['plot_logmh_sig_logms_tot', 'plot_logmh_logms_tot', 'display_obs_smf', 'show_smf', 'plot_mtot_minn_smf', 'plot_dsigma_profiles', 'plot_best_fit_scatter_relation', 'plot_best_fit_shmr', 'plot_mcmc_trace', 'plot_mcmc_corner', 'plot_mass_scatter_fsat_trends'] ORG = plt.get_cmap('OrRd') ORG_2 = plt.get_cmap('YlOrRd') BLU = plt.get_cmap('PuBu') BLK = plt.get_cmap('Greys') PUR = plt.get_cmap('Purples') GRN = plt.get_cmap('Greens') plt.rcParams['figure.dpi'] = 100.0 plt.rc('text', usetex=True) def plot_logmh_sig_logms_tot(logmh_cen, sig_logms_tot, sigms_a, sigms_b): """Log Mh v.s. sig(Log Ms_tot).""" fig = plt.figure(figsize=(6, 6)) fig.subplots_adjust(left=0.19, right=0.995, bottom=0.13, top=0.995, wspace=0.00, hspace=0.00) ax1 = fig.add_subplot(111) ax1.grid(linestyle='--', linewidth=2, alpha=0.4, zorder=0) for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(20) ax1.plot(logmh_cen, sigms_a * (np.asarray(logmh_cen) - 15.3) + sigms_b, linewidth=3.0, linestyle='--', alpha=0.5) ax1.scatter(logmh_cen, sig_logms_tot, s=70, alpha=0.8, edgecolor='k') ax1.text(0.25, 0.09, r"$a=%5.2f\ b=%5.2f$" % (sigms_a, sigms_b), verticalalignment='bottom', horizontalalignment='center', fontsize=20, transform=ax1.transAxes) ax1.set_xlabel(r'$\log M_{\mathrm{vir}}$', fontsize=25) ax1.set_ylabel(r'$\sigma_{\log M_{\star, \rm Total}}$', fontsize=28) return fig def plot_logmh_logms_tot(logmh, logms_tot, shmr_a, shmr_b): """Log Mh v.s. Log Ms_tot.""" fig = plt.figure(figsize=(6, 6)) fig.subplots_adjust(left=0.19, right=0.995, bottom=0.13, top=0.995, wspace=0.00, hspace=0.00) ax1 = fig.add_subplot(111) ax1.grid(linestyle='--', linewidth=2, alpha=0.4, zorder=0) for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(20) hexbin = ax1.hexbin(logmh, logms_tot, gridsize=(45, 30), alpha=0.7, bins='log', mincnt=10, edgecolor='none', cmap='Oranges') cbar_ax = fig.add_axes([0.22, 0.92, 0.5, 0.05]) cbar = fig.colorbar(hexbin, cax=cbar_ax, orientation="horizontal") cbar.set_label(r'$\log \mathrm{N}$') cbar.solids.set_edgecolor("face") logmh_cen = np.linspace(np.nanmin(logmh), np.nanmax(logmh), 50) ax1.plot(logmh_cen, shmr_a * logmh_cen + shmr_b, linewidth=3.0, linestyle='--', alpha=0.5) ax1.text(0.75, 0.09, r"$a=%5.2f\ b=%5.2f$" % (shmr_a, shmr_b), verticalalignment='bottom', horizontalalignment='center', fontsize=20, transform=ax1.transAxes) ax1.set_xlabel(r'$\log M_{\mathrm{vir}}$', fontsize=25) ax1.set_ylabel(r'$\log M_{\star, \rm Total}$', fontsize=25) return fig def display_obs_smf(obs_smf_mtot, obs_smf_minn, obs_smf_full=None, label_mtot=r'$M_{\star,\ 100\mathrm{kpc}}$', label_mfull=r'$M_{\star,\ \mathrm{S82}}$', label_minn=r'$M_{\star,\ 10\mathrm{kpc}}$'): """Display observed stellar mass functions.""" if obs_smf_full is None: smf_list = [obs_smf_mtot, obs_smf_minn] label_list = [label_mtot, label_minn] else: obs_smf_full['logm_mean'] += 0.1 smf_list = [obs_smf_mtot, obs_smf_minn, obs_smf_full] label_list = [label_mtot, label_minn, label_mfull] return show_smf(smf_list, label_list, text=r'$\mathrm{HSC}$') def show_smf(smf_list, label_list=None, text=None, loc=1, legend_fontsize=20): """Plot stellar mass functions.""" fig = plt.figure(figsize=(7, 6)) fig.subplots_adjust(left=0.17, right=0.994, bottom=0.12, top=0.994, wspace=0.00, hspace=0.00) ax1 = fig.add_subplot(111) ax1.grid(linestyle='--', linewidth=2, alpha=0.5, zorder=0) m_list = ['o', '+', 's', 'h', 'x', 'H', '8', 'v', '<', '>'] s_list = [15, 30, 20, 20, 30, 15, 15, 20, 20, 20] a_list = [0.4, 0.25, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3, 0.3] c_list = ['#1f77b4', '#ff7f0e', '#2ca02c', '#d62728', '#9467bd', '#8c564b', '#e377c2', '#7f7f7f', '#bcbd22', '#17becf'] if label_list is not None: assert len(smf_list) == len(label_list) for ii, smf in enumerate(smf_list): if label_list is not None: label_use = label_list[ii] else: label_use = '__no_lable__' ax1.fill_between(smf['logm_mean'], np.log10(smf['smf_low']), np.log10(smf['smf_upp']), alpha=a_list[ii], facecolor=c_list[ii], label=label_use) ax1.scatter(smf['logm_mean'], np.log10(smf['smf']), marker=m_list[ii], c=c_list[ii], s=s_list[ii], label='__no_label') ax1.set_xlim(11.19, 12.35) ax1.set_ylim(-7.9, -2.4) for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(20) ax1.legend(fontsize=legend_fontsize, loc=loc) ax1.set_xlabel(r'$\log (M_{\star}/M_{\odot})$', fontsize=25) ax1.set_ylabel((r'$\mathrm{d}N/\mathrm{d}\log M_{\star}\ $' r'$[{\mathrm{Mpc}^{-3}}{\mathrm{dex}^{-1}}]$'), size=25) if text is not None: ax1.text(0.15, 0.06, text, verticalalignment='bottom', horizontalalignment='center', fontsize=25, transform=ax1.transAxes) return fig def plot_mtot_minn_smf(obs_smf_tot, obs_smf_inn, obs_logms_tot, obs_logms_inn, um_smf_tot, um_smf_inn, logms_mod_tot, logms_mod_inn, obs_smf_full=None, shmr_a=None, shmr_b=None, sigms_a=None, sigms_b=None, um_smf_tot_all=None, not_table=False, x_label='Tot', y_label='Inn'): """Plot the UM predicted M100-M10 plane and their SMFs.""" fig, axes = plt.subplots(2, figsize=(7, 9)) fig.subplots_adjust(left=0.145, right=0.995, bottom=0.085, top=0.995, wspace=0.00, hspace=0.21) ax1 = axes[0] ax2 = axes[1] # Scatter plot if len(logms_mod_tot) > len(obs_logms_tot): ax1.scatter(logms_mod_tot, logms_mod_inn, label=r'$\mathrm{Model}$', s=10, alpha=0.6, marker='o', c='royalblue') ax1.scatter(obs_logms_tot, obs_logms_inn, label=r'$\mathrm{Data}$', s=15, alpha=0.5, marker='+', c='lightsalmon') else: ax1.scatter(obs_logms_tot, obs_logms_inn, label=r'$\mathrm{Data}$', s=10, alpha=0.6, marker='o', c='lightsalmon') ax1.scatter(logms_mod_tot, logms_mod_inn, label=r'$\mathrm{Model}$', s=15, alpha=0.5, marker='+', c='royalblue') ax1.legend(fontsize=20, loc='lower right') ax1.grid(linestyle='--', linewidth=2, alpha=0.3, zorder=0) ax1.set_xlabel(r'$\log M_{\star,\ \mathrm{%s,\ UM}}$' % x_label, fontsize=25) ax1.set_ylabel(r'$\log M_{\star,\ \mathrm{%s,\ UM}}$' % y_label, fontsize=25) ax1.set_xlim(np.nanmin(logms_mod_tot) - 0.09, np.nanmax(logms_mod_tot) + 0.09) ax1.set_ylim(np.nanmin(logms_mod_inn) - 0.02, np.nanmax(logms_mod_inn) + 0.09) if shmr_a is not None and shmr_b is not None: seg1 = (r'$\log M_{\star} = %6.3f \times$' % shmr_a) seg2 = (r'$\log M_{\rm halo} + %6.3f$' % shmr_b) ax1.text(0.26, 0.91, (seg1 + seg2), verticalalignment='bottom', horizontalalignment='center', fontsize=12, transform=ax1.transAxes) if sigms_a is not None and sigms_b is not None: seg1 = (r'$\sigma(\log M_{\star}) = %6.3f \times$' % sigms_a) seg2 = (r'$\log M_{\rm halo} + %6.3f$' % sigms_b) ax1.text(0.26, 0.83, (seg1 + seg2), verticalalignment='bottom', horizontalalignment='center', fontsize=12, transform=ax1.transAxes) # Full SMF in the background if available # +0.1 dex is a magic number to convert S82 SMF from BC03 to # FSPS model ax2.grid(linestyle='--', linewidth=2, alpha=0.3, zorder=0) if obs_smf_full is not None: ax2.errorbar(obs_smf_full['logm_mean'] + 0.15, np.log10(obs_smf_full['smf']), (np.log10(obs_smf_full['smf_upp']) - np.log10(obs_smf_full['smf'])), fmt='o', color='seagreen', ecolor='seagreen', alpha=0.9, marker='s', label=r'$\mathrm{Data:\ PRIMUS}$', zorder=0) if um_smf_tot_all is not None: ax2.plot(um_smf_tot_all['logm_mean'], np.log10(um_smf_tot_all['smf']), linewidth=1.5, linestyle='--', c='royalblue', label='__no_label__') # SMF plot ax2.fill_between(obs_smf_tot['logm_mean'], np.log10(obs_smf_tot['smf_low']), np.log10(obs_smf_tot['smf_upp']), facecolor='steelblue', edgecolor='none', interpolate=True, alpha=0.4, label=r'$\mathrm{Data:\ }M_{\star,\ {\rm %s}}$' % x_label) ax2.fill_between(obs_smf_inn['logm_mean'], np.log10(obs_smf_inn['smf_low']), np.log10(obs_smf_inn['smf_upp']), facecolor='lightsalmon', edgecolor='none', interpolate=True, alpha=0.4, label=r'$\mathrm{Data:\ }M_{\star,\ {\rm %s}}$' % y_label) ax2.scatter(obs_smf_inn['logm_mean'], np.log10(obs_smf_inn['smf']), marker='h', c='lightsalmon', s=20, label='__no_label__', alpha=1.0) ax2.scatter(obs_smf_tot['logm_mean'], np.log10(obs_smf_tot['smf']), marker='h', c='steelblue', s=20, label='__no_label__', alpha=1.0) if isinstance(um_smf_inn, (list,)): for ii, smf in enumerate(um_smf_inn): if ii == 0: if not_table: ax2.plot(obs_smf_inn['logm_mean'], np.log10(smf), linewidth=1, linestyle='-', c='salmon', alpha=0.7, label=r'$\mathrm{UM:\ Minn}$') else: ax2.plot(smf['logm_mean'], np.log10(smf['smf']), linewidth=1, linestyle='-', c='salmon', alpha=0.7, label=r'$\mathrm{UM:\ Minn}$') else: if not_table: ax2.plot(obs_smf_inn['logm_mean'], np.log10(smf), linewidth=1, linestyle='-', c='salmon', alpha=0.7, label='__no_label__') else: ax2.plot(smf['logm_mean'], np.log10(smf['smf']), linewidth=1, linestyle='-', c='salmon', alpha=0.7, label='__no_label__') else: if not_table: ax2.plot(obs_smf_inn['logm_mean'], np.log10(um_smf_inn), linewidth=4, linestyle='--', c='salmon', label=r'$\mathrm{UM:\ }M_{\star,\ {\rm %s}}$' % y_label) else: ax2.plot(um_smf_inn['logm_mean'], np.log10(um_smf_inn['smf']), linewidth=4, linestyle='--', c='salmon', label=r'$\mathrm{UM:\ }M_{\star,\ {\rm %s}}$' % y_label) if isinstance(um_smf_tot, (list,)): for ii, smf in enumerate(um_smf_tot): if ii == 0: if not_table: ax2.plot(obs_smf_tot['logm_mean'], np.log10(smf), linewidth=1, linestyle='-', c='royalblue', alpha=0.7, label=r'$\mathrm{UM:\ }M_{\star,\ {\rm %s}}$' % x_label) else: ax2.plot(smf['logm_mean'], np.log10(smf['smf']), linewidth=1, linestyle='-', c='royalblue', alpha=0.7, label=r'$\mathrm{UM:\ }M_{\star,\ {\rm %s}}$' % x_label) else: if not_table: ax2.plot(obs_smf_tot['logm_mean'], np.log10(smf), linewidth=1, linestyle='-', c='royalblue', alpha=0.7, label='__no_label__') else: ax2.plot(smf['logm_mean'], np.log10(smf['smf']), linewidth=1, linestyle='-', c='royalblue', alpha=0.7, label='__no_label__') else: if not_table: ax2.plot(obs_smf_tot['logm_mean'], np.log10(um_smf_tot), linewidth=4, linestyle='--', c='royalblue', label=r'$\mathrm{UM:\ }M_{\star,\ {\rm %s}}$' % x_label) else: ax2.plot(um_smf_tot['logm_mean'], np.log10(um_smf_tot['smf']), linewidth=4, linestyle='--', c='royalblue', label=r'$\mathrm{UM:\ }M_{\star,\ {\rm %s}}$' % x_label) ax2.legend(fontsize=15, loc='upper right') ax2.set_xlabel(r'$\log (M_{\star}/M_{\odot})$', fontsize=25) ax2.set_ylabel((r'$\mathrm{d}N/\mathrm{d}\log M_{\star}\ $' r'$[{\mathrm{Mpc}^{-3}}{\mathrm{dex}^{-1}}]$'), size=25) mask_inn = np.log10(obs_smf_inn['smf']) > -7.5 mask_tot = np.log10(obs_smf_tot['smf']) > -7.5 ax2.set_xlim(np.nanmin(obs_smf_inn[mask_inn]['logm_mean']) - 0.15, np.nanmax(obs_smf_tot[mask_tot]['logm_mean']) + 0.45) if obs_smf_full is not None: ax2.set_ylim(np.nanmin(np.log10(obs_smf_inn[mask_inn]['smf'])) - 0.2, np.nanmax(np.log10(obs_smf_full['smf']))) else: ax2.set_ylim(np.nanmin(np.log10(obs_smf_inn[mask_inn]['smf'])) - 0.2, np.nanmax(np.log10(obs_smf_tot[mask_tot]['smf'])) + 0.8) for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in ax2.xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in ax2.yaxis.get_major_ticks(): tick.label.set_fontsize(20) # fig.savefig('asap_mtot_minn_smf.pdf', dpi=100) return fig def plot_dsigma_profiles(obs_wl_dsigma, um_wl_profs, um_mhalo=None, each_col=3, reference=None): """Plot the UM predicted weak lensing profiles.""" obs_wl_n_bin = len(obs_wl_dsigma) if obs_wl_n_bin <= each_col: n_row = obs_wl_n_bin n_col = 1 else: n_row = each_col n_col = int(np.ceil(obs_wl_n_bin / each_col)) fig = plt.figure(figsize=(4 * n_col, 3.5 * n_row)) fig.subplots_adjust(left=0.08, right=0.995, bottom=0.09, top=0.995, wspace=0.00, hspace=0.00) gs = gridspec.GridSpec(n_row, n_col) gs.update(wspace=0.0, hspace=0.00) y_min_arr = np.array([np.nanmin(prof['dsigma']) for prof in obs_wl_dsigma]) y_min_arr = np.where(y_min_arr <= 0.0, np.nan, y_min_arr) y_max_arr = np.array([np.nanmax(prof['dsigma']) for prof in obs_wl_dsigma]) y_min = np.nanmin(y_min_arr) * 0.8 y_max = np.nanmax(y_max_arr) * 1.9 if reference is not None: ref_prof = obs_wl_dsigma[reference] else: ref_prof = None for ii in range(obs_wl_n_bin): col_id = int(np.floor(ii / n_row)) row_id = int(n_row - (ii + 1 - col_id * n_row)) ax = plt.subplot(gs[row_id, col_id]) ax.loglog() ax.grid(linestyle='--', linewidth=1.5, alpha=0.4, zorder=0) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(25) for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(25) if ref_prof is not None: ax.plot(ref_prof['r_mpc'], ref_prof['dsigma'], linewidth=3.0, color=GRN(0.8), linestyle='--', alpha=0.9) # Observed WL profile obs_prof = obs_wl_dsigma[ii] ax.errorbar( obs_prof['r_mpc'], obs_prof['dsigma'], obs_prof['dsigma_err'], fmt='o', color='salmon', ecolor='lightsalmon', markersize=9, alpha=0.9) ax.plot( obs_prof['r_mpc'], obs_prof['dsigma'], linewidth=1.5, color='salmon', alpha=0.5) if reference is not None and reference == ii: ax.text(0.04, 0.41, r'$\mathrm{Ref}$', verticalalignment='center', horizontalalignment='left', fontsize=23.0, transform=ax.transAxes, color=GRN(0.8), alpha=1.0) # Label the mass range ax.text(0.04, 0.29, r'${\rm Bin: %d}$' % (ii + 1), verticalalignment='center', horizontalalignment='left', fontsize=23.0, transform=ax.transAxes, color='k', alpha=1.0) ax.text( 0.04, 0.18, r"$\log M_{\rm tot}:[%5.2f,%5.2f]$" % ( obs_prof['min_logm1'], obs_prof['max_logm1']), verticalalignment='center', horizontalalignment='left', fontsize=17.0, transform=ax.transAxes, color='k', alpha=1.0) ax.text( 0.04, 0.08, r"$\log M_{\rm inn}:[%5.2f,%5.2f]$" % ( obs_prof['min_logm2'], obs_prof['max_logm2']), verticalalignment='center', horizontalalignment='left', fontsize=17.0, transform=ax.transAxes, color='k', alpha=1.0) # Predicted WL profile if isinstance(um_wl_profs[0], (list,)): for dsig in um_wl_profs: ax.plot(obs_prof['r_mpc'], dsig[ii], linewidth=2.5, color='royalblue', alpha=0.7) else: ax.scatter(obs_prof['r_mpc'], um_wl_profs[ii], marker='h', s=20, c='b', alpha=0.9) ax.plot(obs_prof['r_mpc'], um_wl_profs[ii], linewidth=4.0, color='royalblue', alpha=0.7) if um_mhalo is not None: ax.text(0.54, 0.90, r"$[%5.2f \pm %5.2f]$" % um_mhalo[ii], verticalalignment='center', horizontalalignment='left', fontsize=20.0, transform=ax.transAxes, color='royalblue') # X, Y Limits x_min = np.min(obs_prof['r_mpc']) * 0.2 x_max = np.max(obs_prof['r_mpc']) * 1.8 ax.set_xlim(x_min, x_max) ax.set_ylim(y_min, y_max) if col_id != 0: ax.yaxis.set_major_formatter(NullFormatter()) else: ax.set_ylabel(r'$\Delta\Sigma$ $[M_{\odot}/{\rm pc}^2]$', fontsize=30) if row_id == (n_row - 1): ax.set_xlabel(r'$r_{\rm p}$ ${\rm [Mpc]}$', fontsize=30) else: ax.xaxis.set_major_formatter(NullFormatter()) # fig.savefig('asap_dsigma_profs.pdf', dpi=120) return fig def plot_best_fit_scatter_relation(sigms_a, sigms_b, min_scatter=0.02): """Log Mh v.s. sig(Log Ms_tot).""" fig = plt.figure(figsize=(6, 6)) fig.subplots_adjust(left=0.19, right=0.995, bottom=0.13, top=0.995, wspace=0.00, hspace=0.00) ax1 = fig.add_subplot(111) ax1.grid(linestyle='--', linewidth=2, alpha=0.4, zorder=0) for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(20) logmh_cen = np.linspace(11.5, 15.4, 1000) sig_ms = sigms_a * (np.asarray(logmh_cen) - 15.3) + sigms_b sig_ms = np.where(sig_ms <= min_scatter, min_scatter, sig_ms) ax1.plot(logmh_cen, sig_ms, linewidth=4.0, linestyle='--', alpha=0.8) ax1.text(0.25, 0.09, r"$a=%5.2f\ b=%5.2f$" % (sigms_a, sigms_b), verticalalignment='bottom', horizontalalignment='center', fontsize=20, transform=ax1.transAxes) ax1.set_xlabel(r'$\log M_{\mathrm{vir}}$', fontsize=25) ax1.set_ylabel(r'$\sigma_{\log M_{\star, \rm Total}}$', fontsize=28) return fig def plot_best_fit_shmr(shmr_a, shmr_b): """Log Mh v.s. Log Ms_tot.""" fig = plt.figure(figsize=(6, 6)) fig.subplots_adjust(left=0.19, right=0.995, bottom=0.13, top=0.995, wspace=0.00, hspace=0.00) ax1 = fig.add_subplot(111) ax1.grid(linestyle='--', linewidth=2, alpha=0.4, zorder=0) for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(20) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(20) logmh_cen = np.linspace(11.5, 15.0, 50) ax1.plot(logmh_cen, shmr_a * logmh_cen + shmr_b, linewidth=5.0, linestyle='--', alpha=0.8) ax1.text(0.75, 0.09, r"$a=%5.2f\ b=%5.2f$" % (shmr_a, shmr_b), verticalalignment='bottom', horizontalalignment='center', fontsize=20, transform=ax1.transAxes) ax1.set_xlabel(r'$\log M_{\mathrm{vir}}$', fontsize=25) ax1.set_ylabel(r'$\log M_{\star, \rm Total}$', fontsize=25) return fig def plot_mcmc_trace(mcmc_chains, mcmc_labels, mcmc_best=None, figsize=None, mcmc_burnin=None, burnin_alpha=0.2, trace_alpha=0.2): """Traceplot for MCMC results.""" if figsize is None: if mcmc_burnin is not None: fig = plt.figure(figsize=(12, 15)) else: fig = plt.figure(figsize=(10, 15)) else: fig = plt.figure(figsize=figsize) fig.subplots_adjust(hspace=0.0, wspace=0.0, bottom=0.027, top=0.97, left=0.06, right=0.94) # I want the plot of individual walkers to span 2 columns nparam = len(mcmc_labels) if mcmc_burnin is not None: gs = gridspec.GridSpec(nparam, 5) else: gs = gridspec.GridSpec(nparam, 3) if mcmc_best is not None: assert len(mcmc_best) == len(mcmc_labels) for ii, param in enumerate(mcmc_labels): # Getthe chains from burn-in process and the final sampling process param_chain = mcmc_chains[:, :, ii] if mcmc_burnin is not None: param_burnin = mcmc_burnin[:, :, ii] # Get the range of Y-axis y_min = np.min([np.min(param_chain), np.min(param_burnin)]) y_max = np.max([np.max(param_chain), np.max(param_burnin)]) else: y_min = np.min(param_chain) y_max = np.max(param_chain) # Maximum variance of the walkers max_var = max(np.var(param_chain[:, :], axis=1)) # Trace plot if mcmc_burnin is None: ax1 = plt.subplot(gs[ii, :2]) else: ax1 = plt.subplot(gs[ii, 2:4]) ax1.yaxis.grid(linewidth=1.5, linestyle='--', alpha=0.5) for walker in param_chain: ax1.plot(np.arange(len(walker)), walker, alpha=trace_alpha, drawstyle="steps", color=ORG_2(1.0 - np.var(walker) / max_var)) if mcmc_burnin is None: ax1.set_ylabel(param, fontsize=28, labelpad=18, color='k') # Don't show ticks on the y-axis ax1.tick_params(labelleft=False) # For the plot on the bottom, add an x-axis label. Hide all others if ii != (nparam - 1): ax1.tick_params(labelbottom=False) else: for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(20) # Posterior histograms ax2 = plt.subplot(gs[ii, -1]) ax2.grid(linewidth=1.5, linestyle='--', alpha=0.5) ax2.hist(
np.ravel(param_chain[:, :])
numpy.ravel
# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import test_utils as tu from tensorflow.compiler.tests import xla_test from tensorflow.python.platform import googletest from tensorflow.python.framework import constant_op from tensorflow.python.framework import ops from tensorflow.python.keras import layers from tensorflow.python.ops import array_ops from tensorflow.python.ops import gen_array_ops from tensorflow.python.ops import init_ops from tensorflow.python.ops import math_ops from tensorflow.python.ops import nn from tensorflow.python.ops import nn_ops from tensorflow.python.ops import variable_scope from tensorflow.python.ops import variables from tensorflow.python.training import gradient_descent class ConvGraphCachingTest(xla_test.XLATestCase): def testConvolutionsMatch(self): with self.session() as sess: with ops.device("/device:IPU:0"): x = array_ops.placeholder(np.float32, shape=[1, 4, 4, 2]) with variable_scope.variable_scope("vs", use_resource=True): y = layers.Conv2D(2, 1, use_bias=False, kernel_initializer=init_ops.ones_initializer())(x) y = layers.Conv2D(2, 1, use_bias=False, kernel_initializer=init_ops.ones_initializer())(y) report = tu.ReportJSON(self, sess) sess.run(variables.global_variables_initializer()) report.reset() sess.run(y, {x: np.zeros([1, 4, 4, 2])}) report.parse_log() # Would fail if there were two convolutions in the graph as they would be # called conv2d and conv2d_1 ok = [ '__seed*', 'Copy_', 'vs/conv2d/Conv2D/convolution.*/Conv_1x1', 'Copy_' ] report.assert_all_compute_sets_and_list(ok) self.assertAllEqual(report.get_ml_type_counts(), [2, 0, 0, 0]) def testConvolutionsDontMatchDifferentTypes(self): with self.session() as sess: with ops.device("/device:IPU:0"): x = array_ops.placeholder(np.float32, shape=[1, 4, 4, 2]) with variable_scope.variable_scope("vs", use_resource=True): y = layers.Conv2D(2, 1, use_bias=False, kernel_initializer=init_ops.ones_initializer(), dtype=np.float32)(x) y = math_ops.cast(y, np.float16) y = layers.Conv2D(2, 1, use_bias=False, kernel_initializer=init_ops.ones_initializer(), dtype=np.float16)(y) report = tu.ReportJSON(self, sess) sess.run(variables.global_variables_initializer()) report.reset() sess.run(y, {x: np.zeros([1, 4, 4, 2])}) report.parse_log() # Matches two convolutions ok = [ '__seed*', 'Copy_*weightsRearranged', 'Copy_', 'Copy_vs/*/OnTileCopy-0', 'vs/conv2d/Conv2D/convolution.*/Conv_1x1', 'vs/Cast/convert.*/Cast', 'vs/conv2d_1/Conv2D/convolution.*/Conv_1x1' ] report.assert_all_compute_sets_and_list(ok) self.assertAllEqual(report.get_ml_type_counts(), [2, 0, 0, 0]) def testConvolutionsDontMatchDifferentShapes(self): with self.session() as sess: with ops.device("/device:IPU:0"): x = array_ops.placeholder(np.float32, shape=[1, 4, 4, 2]) with variable_scope.variable_scope("vs", use_resource=True): y = layers.Conv2D(2, 1, use_bias=False, kernel_initializer=init_ops.ones_initializer())(x) y = array_ops.reshape(y, [1, 2, 8, 2]) y = layers.Conv2D(2, 1, use_bias=False, kernel_initializer=init_ops.ones_initializer())(y) report = tu.ReportJSON(self, sess) sess.run(variables.global_variables_initializer()) report.reset() sess.run(y, {x:
np.zeros([1, 4, 4, 2])
numpy.zeros
# -*- coding: utf-8 -*- """ Created on Mon Oct 4 23:31:45 2021 @author: <NAME> """ import numpy as np from hypergraph_propagation import propagate, prepare_hypergraph_propagation from utils.retrieval_component import connect_nodup #retrieval_dataset='roxford' #retrieval_dataset='rparis' retrieval_dataset='R1Moxford' #retrieval_dataset='R1Mparis' HYPERGRAPH_PROPAGATION=1 #COMMUNITY_SELECTION=0 COMMUNITY_SELECTION=1 # only calculate the uncertainty score, but do not apply geometric verification #Mention: to use the option COMMUNITY_SELECTION=2, you should extract the local features for all the dataset image firstly. #COMMUNITY_SELECTION=2 # calculate the uncertainty score. IF the score is large, use geometric verification to find a new start point #load the features if retrieval_dataset=='roxford': vecs=np.load('features/roxford_np_delg_features/a_global_vecs.npy').T # (2048,4993) qvecs=np.load('features/roxford_np_delg_features/a_global_qvecs.npy').T #(2048,70) elif retrieval_dataset=='rparis': vecs=np.load('features/rparis_np_delg_features/a_global_vecs.npy').T qvecs=np.load('features/rparis_np_delg_features/a_global_qvecs.npy').T elif retrieval_dataset=='R1Moxford': distractors=np.load('features/distractor_np_delg_features/a_global_vecs.npy').T vecs=np.load('features/roxford_np_delg_features/a_global_vecs.npy').T # (2048,4993) vecs=np.concatenate((vecs,distractors),axis=1) #() del distractors qvecs=np.load('features/roxford_np_delg_features/a_global_qvecs.npy').T #(2048,70) elif retrieval_dataset=='R1Mparis': distractors=
np.load('features/distractor_np_delg_features/a_global_vecs.npy')
numpy.load
#!/usr/bin/env python # -*- coding: utf-8 -*- ## Project: SCRIPT - March 2018 ## Contact: <NAME> - <EMAIL> import sys import os import glob import os from argparse import ArgumentParser import soundfile as sf from concurrent.futures import ProcessPoolExecutor from functools import partial from tqdm import tqdm import subprocess import scipy.interpolate import numpy as np #from generate import read_est_file empty_array = np.zeros((0,0)) # TODO: const def interpolate_through_unvoiced(data, vuv=empty_array): assert len(data.shape) == 2, 'interpolate_through_unvoiced only accepts 2D arrays' if vuv.size == empty_array.size: assert data.shape[1] == 1, 'To find voicing from the data itself, use data with only a single channel' voiced_ix = np.where( data > 0.0 )[0] ## equiv to np.nonzero(y) else: voiced_ix = np.where( vuv > 0.0 )[0] mean_voiced = data[voiced_ix, ...].mean(axis=0) ## using fill_value='extrapolate' creates very extreme values where there are long initial/final silences ### TODO: this seems to affect denormalisation rather than training, look at extracintg stats and even training without regard to interpolated values? interpolator = scipy.interpolate.interp1d(voiced_ix, data[voiced_ix, ...], kind='linear', \ axis=0, bounds_error=False, fill_value=mean_voiced) data_interpolated = interpolator(np.arange(data.shape[0])) # .reshape((-1,1))) voicing_flag =
np.zeros((data.shape[0], 1))
numpy.zeros
""" Input/Output tools for working with binary data. The Stata input tools were originally written by <NAME> as part of PyDTA. You can find more information here http://presbrey.mit.edu/PyDTA See also --------- numpy.lib.io """ from struct import unpack, calcsize, pack from struct import error as struct_error import datetime import sys import numpy as np from numpy.lib._iotools import _is_string_like, easy_dtype from statsmodels.compatnp.py3k import asbytes, asstr import statsmodels.tools.data as data_util from pandas import isnull def is_py3(): import sys if sys.version_info[0] == 3: return True return False PY3 = is_py3() _date_formats = ["%tc", "%tC", "%td", "%tw", "%tm", "%tq", "%th", "%ty"] def _datetime_to_stata_elapsed(date, fmt): """ Convert from datetime to SIF. http://www.stata.com/help.cgi?datetime Parameters ---------- date : datetime.datetime The date to convert to the Stata Internal Format given by fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty """ if not isinstance(date, datetime.datetime): raise ValueError("date should be datetime.datetime format") stata_epoch = datetime.datetime(1960, 1, 1) if fmt in ["%tc", "tc"]: delta = date - stata_epoch return (delta.days * 86400000 + delta.seconds*1000 + delta.microseconds/1000) elif fmt in ["%tC", "tC"]: from warnings import warn warn("Stata Internal Format tC not supported.") return date elif fmt in ["%td", "td"]: return (date- stata_epoch).days elif fmt in ["%tw", "tw"]: return (52*(date.year-stata_epoch.year) + (date - datetime.datetime(date.year, 1, 1)).days / 7) elif fmt in ["%tm", "tm"]: return (12 * (date.year - stata_epoch.year) + date.month - 1) elif fmt in ["%tq", "tq"]: return 4*(date.year-stata_epoch.year) + int((date.month - 1)/3) elif fmt in ["%th", "th"]: return 2 * (date.year - stata_epoch.year) + int(date.month > 6) elif fmt in ["%ty", "ty"]: return date.year else: raise ValueError("fmt %s not understood" % fmt) def _stata_elapsed_date_to_datetime(date, fmt): """ Convert from SIF to datetime. http://www.stata.com/help.cgi?datetime Parameters ---------- date : int The Stata Internal Format date to convert to datetime according to fmt fmt : str The format to convert to. Can be, tc, td, tw, tm, tq, th, ty Examples -------- >>> _stata_elapsed_date_to_datetime(52, "%tw") datetime.datetime(1961, 1, 1, 0, 0) Notes ----- datetime/c - tc milliseconds since 01jan1960 00:00:00.000, assuming 86,400 s/day datetime/C - tC - NOT IMPLEMENTED milliseconds since 01jan1960 00:00:00.000, adjusted for leap seconds date - td days since 01jan1960 (01jan1960 = 0) weekly date - tw weeks since 1960w1 This assumes 52 weeks in a year, then adds 7 * remainder of the weeks. The datetime value is the start of the week in terms of days in the year, not ISO calendar weeks. monthly date - tm months since 1960m1 quarterly date - tq quarters since 1960q1 half-yearly date - th half-years since 1960h1 yearly date - ty years since 0000 If you don't have pandas with datetime support, then you can't do milliseconds accurately. """ #NOTE: we could run into overflow / loss of precision situations here # casting to int, but I'm not sure what to do. datetime won't deal with # numpy types and numpy datetime isn't mature enough / we can't rely on # pandas version > 0.7.1 #TODO: IIRC relative delta doesn't play well with np.datetime? date = int(date) stata_epoch = datetime.datetime(1960, 1, 1) if fmt in ["%tc", "tc"]: from dateutil.relativedelta import relativedelta return stata_epoch + relativedelta(microseconds=date*1000) elif fmt in ["%tC", "tC"]: from warnings import warn warn("Encountered %tC format. Leaving in Stata Internal Format.") return date elif fmt in ["%td", "td"]: return stata_epoch + datetime.timedelta(int(date)) elif fmt in ["%tw", "tw"]: # does not count leap days - 7 days is a week year = datetime.datetime(stata_epoch.year + date // 52, 1, 1) day_delta = (date % 52 ) * 7 return year + datetime.timedelta(int(day_delta)) elif fmt in ["%tm", "tm"]: year = stata_epoch.year + date // 12 month_delta = (date % 12 ) + 1 return datetime.datetime(year, month_delta, 1) elif fmt in ["%tq", "tq"]: year = stata_epoch.year + date // 4 month_delta = (date % 4) * 3 + 1 return datetime.datetime(year, month_delta, 1) elif fmt in ["%th", "th"]: year = stata_epoch.year + date // 2 month_delta = (date % 2) * 6 + 1 return datetime.datetime(year, month_delta, 1) elif fmt in ["%ty", "ty"]: if date > 0: return datetime.datetime(date, 1, 1) else: # don't do negative years bc can't mix dtypes in column raise ValueError("Year 0 and before not implemented") else: raise ValueError("Date fmt %s not understood" % fmt) ### Helper classes for StataReader ### class _StataMissingValue(object): """ An observation's missing value. Parameters ----------- offset value Attributes ---------- string value Notes ----- More information: <http://www.stata.com/help.cgi?missing> """ def __init__(self, offset, value): self._value = value if type(value) is int or type(value) is long: self._str = value-offset is 1 and \ '.' or ('.' + chr(value-offset+96)) else: self._str = '.' string = property(lambda self: self._str, doc="The Stata representation of \ the missing value: '.', '.a'..'.z'") value = property(lambda self: self._value, doc='The binary representation \ of the missing value.') def __str__(self): return self._str __str__.__doc__ = string.__doc__ class _StataVariable(object): """ A dataset variable. Not intended for public use. Parameters ---------- variable_data Attributes ----------- format : str Stata variable format. See notes for more information. index : int Zero-index column index of variable. label : str Data Label name : str Variable name type : str Stata data type. See notes for more information. value_format : str Value format. Notes ----- More information: http://www.stata.com/help.cgi?format """ def __init__(self, variable_data): self._data = variable_data def __int__(self): return self.index def __str__(self): return self.name index = property(lambda self: self._data[0], doc='the variable\'s index \ within an observation') type = property(lambda self: self._data[1], doc='the data type of \ variable\n\nPossible types are:\n{1..244:string, b:byte, h:int, l:long, \ f:float, d:double)') name = property(lambda self: self._data[2], doc='the name of the variable') format = property(lambda self: self._data[4], doc='the variable\'s Stata \ format') value_format = property(lambda self: self._data[5], doc='the variable\'s \ value format') label = property(lambda self: self._data[6], doc='the variable\'s label') __int__.__doc__ = index.__doc__ __str__.__doc__ = name.__doc__ class StataReader(object): """ Stata .dta file reader. Provides methods to return the metadata of a Stata .dta file and a generator for the data itself. Parameters ---------- file : file-like A file-like object representing a Stata .dta file. missing_values : bool If missing_values is True, parse missing_values and return a Missing Values object instead of None. encoding : string, optional Used for Python 3 only. Encoding to use when reading the .dta file. Defaults to `locale.getpreferredencoding` See also -------- statsmodels.lib.io.genfromdta Notes ----- This is known only to work on file formats 113 (Stata 8/9), 114 (Stata 10/11), and 115 (Stata 12). Needs to be tested on older versions. Known not to work on format 104, 108. If you have the documentation for older formats, please contact the developers. For more information about the .dta format see http://www.stata.com/help.cgi?dta http://www.stata.com/help.cgi?dta_113 """ _header = {} _data_location = 0 _col_sizes = () _has_string_data = False _missing_values = False #type code #-------------------- #str1 1 = 0x01 #str2 2 = 0x02 #... #str244 244 = 0xf4 #byte 251 = 0xfb (sic) #int 252 = 0xfc #long 253 = 0xfd #float 254 = 0xfe #double 255 = 0xff #-------------------- #NOTE: the byte type seems to be reserved for categorical variables # with a label, but the underlying variable is -127 to 100 # we're going to drop the label and cast to int DTYPE_MAP = dict(zip(range(1,245), ['a' + str(i) for i in range(1,245)]) + \ [(251, np.int16),(252, np.int32),(253, int), (254, np.float32), (255, np.float64)]) TYPE_MAP = range(251)+list('bhlfd') #NOTE: technically, some of these are wrong. there are more numbers # that can be represented. it's the 27 ABOVE and BELOW the max listed # numeric data type in [U] 12.2.2 of the 11.2 manual MISSING_VALUES = { 'b': (-127,100), 'h': (-32767, 32740), 'l': (-2147483647, 2147483620), 'f': (-1.701e+38, +1.701e+38), 'd': (-1.798e+308, +8.988e+307) } def __init__(self, fname, missing_values=False, encoding=None): if encoding == None: import locale self._encoding = locale.getpreferredencoding() else: self._encoding = encoding self._missing_values = missing_values self._parse_header(fname) def file_headers(self): """ Returns all .dta file headers. out: dict Has keys typlist, data_label, lbllist, varlist, nvar, filetype, ds_format, nobs, fmtlist, vlblist, time_stamp, srtlist, byteorder """ return self._header def file_format(self): """ Returns the file format. Returns ------- out : int Notes ----- Format 113: Stata 8/9 Format 114: Stata 10/11 Format 115: Stata 12 """ return self._header['ds_format'] def file_label(self): """ Returns the dataset's label. Returns ------- out: string """ return self._header['data_label'] def file_timestamp(self): """ Returns the date and time Stata recorded on last file save. Returns ------- out : str """ return self._header['time_stamp'] def variables(self): """ Returns a list of the dataset's StataVariables objects. """ return map(_StataVariable, zip(range(self._header['nvar']), self._header['typlist'], self._header['varlist'], self._header['srtlist'], self._header['fmtlist'], self._header['lbllist'], self._header['vlblist'])) def dataset(self, as_dict=False): """ Returns a Python generator object for iterating over the dataset. Parameters ---------- as_dict : bool, optional If as_dict is True, yield each row of observations as a dict. If False, yields each row of observations as a list. Returns ------- Generator object for iterating over the dataset. Yields each row of observations as a list by default. Notes ----- If missing_values is True during instantiation of StataReader then observations with _StataMissingValue(s) are not filtered and should be handled by your applcation. """ try: self._file.seek(self._data_location) except Exception: pass if as_dict: vars = map(str, self.variables()) for i in range(len(self)): yield dict(zip(vars, self._next())) else: for i in range(self._header['nobs']): yield self._next() ### Python special methods def __len__(self): """ Return the number of observations in the dataset. This value is taken directly from the header and includes observations with missing values. """ return self._header['nobs'] def __getitem__(self, k): """ Seek to an observation indexed k in the file and return it, ordered by Stata's output to the .dta file. k is zero-indexed. Prefer using R.data() for performance. """ if not (type(k) is int or type(k) is long) or k < 0 or k > len(self)-1: raise IndexError(k) loc = self._data_location + sum(self._col_size()) * k if self._file.tell() != loc: self._file.seek(loc) return self._next() ### Private methods def _null_terminate(self, s, encoding): if PY3: # have bytes not strings, so must decode null_byte = asbytes('\x00') try: s = s.lstrip(null_byte)[:s.index(null_byte)] except: pass return s.decode(encoding) else: null_byte = asbytes('\x00') try: return s.lstrip(null_byte)[:s.index(null_byte)] except: return s def _parse_header(self, file_object): self._file = file_object encoding = self._encoding # parse headers self._header['ds_format'] = unpack('b', self._file.read(1))[0] if self._header['ds_format'] not in [113, 114, 115]: raise ValueError("Only file formats >= 113 (Stata >= 9)" " are supported. Got format %s. Please report " "if you think this error is incorrect." % self._header['ds_format']) byteorder = self._header['byteorder'] = unpack('b', self._file.read(1))[0]==0x1 and '>' or '<' self._header['filetype'] = unpack('b', self._file.read(1))[0] self._file.read(1) nvar = self._header['nvar'] = unpack(byteorder+'h', self._file.read(2))[0] self._header['nobs'] = unpack(byteorder+'i', self._file.read(4))[0] self._header['data_label'] = self._null_terminate(self._file.read(81), encoding) self._header['time_stamp'] = self._null_terminate(self._file.read(18), encoding) # parse descriptors typlist =[ord(self._file.read(1)) for i in range(nvar)] self._header['typlist'] = [self.TYPE_MAP[typ] for typ in typlist] self._header['dtyplist'] = [self.DTYPE_MAP[typ] for typ in typlist] self._header['varlist'] = [self._null_terminate(self._file.read(33), encoding) for i in range(nvar)] self._header['srtlist'] = unpack(byteorder+('h'*(nvar+1)), self._file.read(2*(nvar+1)))[:-1] if self._header['ds_format'] <= 113: self._header['fmtlist'] = \ [self._null_terminate(self._file.read(12), encoding) \ for i in range(nvar)] else: self._header['fmtlist'] = \ [self._null_terminate(self._file.read(49), encoding) \ for i in range(nvar)] self._header['lbllist'] = [self._null_terminate(self._file.read(33), encoding) for i in range(nvar)] self._header['vlblist'] = [self._null_terminate(self._file.read(81), encoding) for i in range(nvar)] # ignore expansion fields # When reading, read five bytes; the last four bytes now tell you the # size of the next read, which you discard. You then continue like # this until you read 5 bytes of zeros. while True: data_type = unpack(byteorder+'b', self._file.read(1))[0] data_len = unpack(byteorder+'i', self._file.read(4))[0] if data_type == 0: break self._file.read(data_len) # other state vars self._data_location = self._file.tell() self._has_string_data = len(filter(lambda x: type(x) is int, self._header['typlist'])) > 0 self._col_size() def _calcsize(self, fmt): return type(fmt) is int and fmt or \ calcsize(self._header['byteorder']+fmt) def _col_size(self, k = None): """Calculate size of a data record.""" if len(self._col_sizes) == 0: self._col_sizes = map(lambda x: self._calcsize(x), self._header['typlist']) if k == None: return self._col_sizes else: return self._col_sizes[k] def _unpack(self, fmt, byt): d = unpack(self._header['byteorder']+fmt, byt)[0] if fmt[-1] in self.MISSING_VALUES: nmin, nmax = self.MISSING_VALUES[fmt[-1]] if d < nmin or d > nmax: if self._missing_values: return _StataMissingValue(nmax, d) else: return None return d def _next(self): typlist = self._header['typlist'] if self._has_string_data: data = [None]*self._header['nvar'] for i in range(len(data)): if type(typlist[i]) is int: data[i] = self._null_terminate(self._file.read(typlist[i]), self._encoding) else: data[i] = self._unpack(typlist[i], self._file.read(self._col_size(i))) return data else: return map(lambda i: self._unpack(typlist[i], self._file.read(self._col_size(i))), range(self._header['nvar'])) def _open_file_binary_write(fname, encoding): if hasattr(fname, 'write'): #if 'b' not in fname.mode: return fname if PY3: return open(fname, "wb", encoding=encoding) else: return open(fname, "wb") def _set_endianness(endianness): if endianness.lower() in ["<", "little"]: return "<" elif endianness.lower() in [">", "big"]: return ">" else: # pragma : no cover raise ValueError("Endianness %s not understood" % endianness) def _dtype_to_stata_type(dtype): """ Converts dtype types to stata types. Returns the byte of the given ordinal. See TYPE_MAP and comments for an explanation. This is also explained in the dta spec. 1 - 244 are strings of this length 251 - chr(251) - for int8 and int16, byte 252 - chr(252) - for int32, int 253 - chr(253) - for int64, long 254 - chr(254) - for float32, float 255 - chr(255) - double, double If there are dates to convert, then dtype will already have the correct type inserted. """ #TODO: expand to handle datetime to integer conversion if dtype.type == np.string_: return chr(dtype.itemsize) elif dtype.type == np.object_: # try to coerce it to the biggest string # not memory efficient, what else could we do? return chr(244) elif dtype == np.float64: return chr(255) elif dtype == np.float32: return chr(254) elif dtype == np.int64: return chr(253) elif dtype == np.int32: return chr(252) elif dtype == np.int8 or dtype == np.int16: # ok to assume bytes? return chr(251) else: # pragma : no cover raise ValueError("Data type %s not currently understood. " "Please report an error to the developers." % dtype) def _dtype_to_default_stata_fmt(dtype): """ Maps numpy dtype to stata's default format for this type. Not terribly important since users can change this in Stata. Semantics are string -> "%DDs" where DD is the length of the string float64 -> "%10.0g" float32 -> "%9.0g" int64 -> "%9.0g" int32 -> "%9.0g" int16 -> "%9.0g" int8 -> "%8.0g" """ #TODO: expand this to handle a default datetime format? if dtype.type == np.string_: return "%" + str(dtype.itemsize) + "s" elif dtype.type == np.object_: return "%244s" elif dtype == np.float64: return "%10.0g" elif dtype == np.float32: return "%9.0g" elif dtype == np.int64: return "%9.0g" elif dtype == np.int32: return "%8.0g" elif dtype == np.int8 or dtype == np.int16: # ok to assume bytes? return "%8.0g" else: # pragma : no cover raise ValueError("Data type %s not currently understood. " "Please report an error to the developers." % dtype) def _pad_bytes(name, length): """ Takes a char string and pads it wih null bytes until it's length chars """ return name + "\x00" * (length - len(name)) def _default_names(nvar): """ Returns default Stata names v1, v2, ... vnvar """ return ["v%d" % i for i in range(1,nvar+1)] def _convert_datetime_to_stata_type(fmt): """ Converts from one of the stata date formats to a type in TYPE_MAP """ if fmt in ["tc", "%tc", "td", "%td", "tw", "%tw", "tm", "%tm", "tq", "%tq", "th", "%th", "ty", "%ty"]: return np.float64 # Stata expects doubles for SIFs else: raise ValueError("fmt %s not understood" % fmt) def _maybe_convert_to_int_keys(convert_dates, varlist): new_dict = {} for key in convert_dates: if not convert_dates[key].startswith("%"): # make sure proper fmts convert_dates[key] = "%" + convert_dates[key] if key in varlist: new_dict.update({varlist.index(key) : convert_dates[key]}) else: if not isinstance(key, int): raise ValueError("convery_dates key is not in varlist " "and is not an int") new_dict.update({key : convert_dates[key]}) return new_dict _type_converters = {253 : np.long, 252 : int} class StataWriter(object): """ A class for writing Stata binary dta files from array-like objects Parameters ---------- fname : file path or buffer Where to save the dta file. data : array-like Array-like input to save. Pandas objects are also accepted. convert_dates : dict Dictionary mapping column of datetime types to the stata internal format that you want to use for the dates. Options are 'tc', 'td', 'tm', 'tw', 'th', 'tq', 'ty'. Column can be either a number or a name. encoding : str Default is latin-1. Note that Stata does not support unicode. byteorder : str Can be ">", "<", "little", or "big". The default is None which uses `sys.byteorder` Returns ------- writer : StataWriter instance The StataWriter instance has a write_file method, which will write the file to the given `fname`. Examples -------- >>> writer = StataWriter('./data_file.dta', data) >>> writer.write_file() Or with dates >>> writer = StataWriter('./date_data_file.dta', date, {2 : 'tw'}) >>> writer.write_file() """ #type code #-------------------- #str1 1 = 0x01 #str2 2 = 0x02 #... #str244 244 = 0xf4 #byte 251 = 0xfb (sic) #int 252 = 0xfc #long 253 = 0xfd #float 254 = 0xfe #double 255 = 0xff #-------------------- #NOTE: the byte type seems to be reserved for categorical variables # with a label, but the underlying variable is -127 to 100 # we're going to drop the label and cast to int DTYPE_MAP = dict(zip(range(1,245), ['a' + str(i) for i in range(1,245)]) + \ [(251, np.int16),(252, np.int32),(253, int), (254, np.float32), (255, np.float64)]) TYPE_MAP = range(251)+list('bhlfd') MISSING_VALUES = { 'b': 101, 'h': 32741, 'l' : 2147483621, 'f': 1.7014118346046923e+38, 'd': 8.98846567431158e+307} def __init__(self, fname, data, convert_dates=None, encoding="latin-1", byteorder=None): self._convert_dates = convert_dates # attach nobs, nvars, data, varlist, typlist if data_util._is_using_pandas(data, None): self._prepare_pandas(data) elif data_util._is_array_like(data, None): data = np.asarray(data) if data_util._is_structured_ndarray(data): self._prepare_structured_array(data) else: if convert_dates is not None: raise ValueError("Not able to convert dates in a plain" " ndarray.") self._prepare_ndarray(data) else: # pragma : no cover raise ValueError("Type %s for data not understood" % type(data)) if byteorder is None: byteorder = sys.byteorder self._byteorder = _set_endianness(byteorder) self._encoding = encoding self._file = _open_file_binary_write(fname, encoding) def _write(self, to_write): """ Helper to call asbytes before writing to file for Python 3 compat. """ self._file.write(asbytes(to_write)) def _prepare_structured_array(self, data): self.nobs = len(data) self.nvar = len(data.dtype) self.data = data self.datarows = iter(data) dtype = data.dtype descr = dtype.descr if dtype.names is None: varlist = _default_names(nvar) else: varlist = dtype.names # check for datetime and change the type convert_dates = self._convert_dates if convert_dates is not None: convert_dates = _maybe_convert_to_int_keys(convert_dates, varlist) self._convert_dates = convert_dates for key in convert_dates: descr[key] = ( descr[key][0], _convert_datetime_to_stata_type(convert_dates[key]) ) dtype = np.dtype(descr) self.varlist = varlist self.typlist = [_dtype_to_stata_type(dtype[i]) for i in range(self.nvar)] self.fmtlist = [_dtype_to_default_stata_fmt(dtype[i]) for i in range(self.nvar)] # set the given format for the datetime cols if convert_dates is not None: for key in convert_dates: self.fmtlist[key] = convert_dates[key] def _prepare_ndarray(self, data): if data.ndim == 1: data = data[:,None] self.nobs, self.nvar = data.shape self.data = data self.datarows = iter(data) #TODO: this should be user settable dtype = data.dtype self.varlist = _default_names(self.nvar) self.typlist = [_dtype_to_stata_type(dtype) for i in range(self.nvar)] self.fmtlist = [_dtype_to_default_stata_fmt(dtype) for i in range(self.nvar)] def _prepare_pandas(self, data): #NOTE: we might need a different API / class for pandas objects so # we can set different semantics - handle this with a PR to pandas.io class DataFrameRowIter(object): def __init__(self, data): self.data = data def __iter__(self): for i, row in data.iterrows(): yield row data = data.reset_index() self.datarows = DataFrameRowIter(data) self.nobs, self.nvar = data.shape self.data = data self.varlist = data.columns.tolist() dtypes = data.dtypes convert_dates = self._convert_dates if convert_dates is not None: convert_dates = _maybe_convert_to_int_keys(convert_dates, self.varlist) self._convert_dates = convert_dates for key in convert_dates: new_type = _convert_datetime_to_stata_type(convert_dates[key]) dtypes[key] = np.dtype(new_type) self.typlist = [_dtype_to_stata_type(dt) for dt in dtypes] self.fmtlist = [_dtype_to_default_stata_fmt(dt) for dt in dtypes] # set the given format for the datetime cols if convert_dates is not None: for key in convert_dates: self.fmtlist[key] = convert_dates[key] def write_file(self): self._write_header() self._write_descriptors() self._write_variable_labels() # write 5 zeros for expansion fields self._write(_pad_bytes("", 5)) if self._convert_dates is None: self._write_data_nodates() else: self._write_data_dates() #self._write_value_labels() def _write_header(self, data_label=None, time_stamp=None): byteorder = self._byteorder # ds_format - just use 114 self._write(pack("b", 114)) # byteorder self._write(byteorder == ">" and "\x01" or "\x02") # filetype self._write("\x01") # unused self._write("\x00") # number of vars, 2 bytes self._write(pack(byteorder+"h", self.nvar)[:2]) # number of obs, 4 bytes self._write(pack(byteorder+"i", self.nobs)[:4]) # data label 81 bytes, char, null terminated if data_label is None: self._write(self._null_terminate(_pad_bytes("", 80), self._encoding)) else: self._write(self._null_terminate(_pad_bytes(data_label[:80], 80), self._encoding)) # time stamp, 18 bytes, char, null terminated # format dd Mon yyyy hh:mm if time_stamp is None: time_stamp = datetime.datetime.now() elif not isinstance(time_stamp, datetime): raise ValueError("time_stamp should be datetime type") self._write(self._null_terminate( time_stamp.strftime("%d %b %Y %H:%M"), self._encoding)) def _write_descriptors(self, typlist=None, varlist=None, srtlist=None, fmtlist=None, lbllist=None): nvar = self.nvar # typlist, length nvar, format byte array for typ in self.typlist: self._write(typ) # varlist, length 33*nvar, char array, null terminated for name in self.varlist: name = self._null_terminate(name, self._encoding) name = _pad_bytes(asstr(name[:32]), 33) self._write(name) # srtlist, 2*(nvar+1), int array, encoded by byteorder srtlist = _pad_bytes("", (2*(nvar+1))) self._write(srtlist) # fmtlist, 49*nvar, char array for fmt in self.fmtlist: self._write(_pad_bytes(fmt, 49)) # lbllist, 33*nvar, char array #NOTE: this is where you could get fancy with pandas categorical type for i in range(nvar): self._write(_pad_bytes("", 33)) def _write_variable_labels(self, labels=None): nvar = self.nvar if labels is None: for i in range(nvar): self._write(_pad_bytes("", 81)) def _write_data_nodates(self): data = self.datarows byteorder = self._byteorder TYPE_MAP = self.TYPE_MAP typlist = self.typlist for row in data: #row = row.squeeze().tolist() # needed for structured arrays for i,var in enumerate(row): typ = ord(typlist[i]) if typ <= 244: # we've got a string if len(var) < typ: var = _pad_bytes(asstr(var), len(var) + 1) self._write(var) else: try: self._write(pack(byteorder+TYPE_MAP[typ], var)) except struct_error: # have to be strict about type pack won't do any # kind of casting self._write(pack(byteorder+TYPE_MAP[typ], _type_converters[typ](var))) def _write_data_dates(self): convert_dates = self._convert_dates data = self.datarows byteorder = self._byteorder TYPE_MAP = self.TYPE_MAP MISSING_VALUES = self.MISSING_VALUES typlist = self.typlist for row in data: #row = row.squeeze().tolist() # needed for structured arrays for i,var in enumerate(row): typ = ord(typlist[i]) #NOTE: If anyone finds this terribly slow, there is # a vectorized way to convert dates, see genfromdta for going # from int to datetime and reverse it. will copy data though if i in convert_dates: var = _datetime_to_stata_elapsed(var, self.fmtlist[i]) if typ <= 244: # we've got a string if isnull(var): var = "" # missing string if len(var) < typ: var = _pad_bytes(var, len(var) + 1) self._write(var) else: if isnull(var): # this only matters for floats var = MISSING_VALUES[typ] self._write(pack(byteorder+TYPE_MAP[typ], var)) def _null_terminate(self, s, encoding): null_byte = '\x00' if PY3: s += null_byte return s.encode(encoding) else: s += null_byte return s def genfromdta(fname, missing_flt=-999., encoding=None, pandas=False, convert_dates=True): """ Returns an ndarray or DataFrame from a Stata .dta file. Parameters ---------- fname : str or filehandle Stata .dta file. missing_flt : numeric The numeric value to replace missing values with. Will be used for any numeric value. encoding : string, optional Used for Python 3 only. Encoding to use when reading the .dta file. Defaults to `locale.getpreferredencoding` pandas : bool Optionally return a DataFrame instead of an ndarray convert_dates : bool If convert_dates is True, then Stata formatted dates will be converted to datetime types according to the variable's format. """ if isinstance(fname, basestring): fhd = StataReader(open(fname, 'rb'), missing_values=False, encoding=encoding) elif not hasattr(fname, 'read'): raise TypeError("The input should be a string or a filehandle. "\ "(got %s instead)" % type(fname)) else: fhd = StataReader(fname, missing_values=False, encoding=encoding) # validate_names = np.lib._iotools.NameValidator(excludelist=excludelist, # deletechars=deletechars, # case_sensitive=case_sensitive) #TODO: This needs to handle the byteorder? header = fhd.file_headers() types = header['dtyplist'] nobs = header['nobs'] numvars = header['nvar'] varnames = header['varlist'] fmtlist = header['fmtlist'] dataname = header['data_label'] labels = header['vlblist'] # labels are thrown away unless DataArray # type is used data = np.zeros((nobs,numvars)) stata_dta = fhd.dataset() dt = np.dtype(zip(varnames, types)) data = np.zeros((nobs), dtype=dt) # init final array for rownum,line in enumerate(stata_dta): # doesn't handle missing value objects, just casts # None will only work without missing value object. if None in line: for i,val in enumerate(line): #NOTE: This will only be scalar types because missing strings # are empty not None in Stata if val is None: line[i] = missing_flt data[rownum] = tuple(line) if pandas: from pandas import DataFrame data = DataFrame.from_records(data) if convert_dates: cols = np.where(map(lambda x : x in _date_formats, fmtlist))[0] for col in cols: i = col col = data.columns[col] data[col] = data[col].apply(_stata_elapsed_date_to_datetime, args=(fmtlist[i],)) elif convert_dates: #date_cols = np.where(map(lambda x : x in _date_formats, # fmtlist))[0] # make the dtype for the datetime types cols = np.where(map(lambda x : x in _date_formats, fmtlist))[0] dtype = data.dtype.descr dtype = [(dt[0], object) if i in cols else dt for i,dt in enumerate(dtype)] data = data.astype(dtype) # have to copy for col in cols: def convert(x): return _stata_elapsed_date_to_datetime(x, fmtlist[col]) data[data.dtype.names[col]] = map(convert, data[data.dtype.names[col]]) return data def savetxt(fname, X, names=None, fmt='%.18e', delimiter=' '): """ Save an array to a text file. This is just a copy of numpy.savetxt patched to support structured arrays or a header of names. Does not include py3 support now in savetxt. Parameters ---------- fname : filename or file handle If the filename ends in ``.gz``, the file is automatically saved in compressed gzip format. `loadtxt` understands gzipped files transparently. X : array_like Data to be saved to a text file. names : list, optional If given names will be the column header in the text file. If None and X is a structured or recarray then the names are taken from X.dtype.names. fmt : str or sequence of strs A single format (%10.5f), a sequence of formats, or a multi-format string, e.g. 'Iteration %d -- %10.5f', in which case `delimiter` is ignored. delimiter : str Character separating columns. See Also -------- save : Save an array to a binary file in NumPy ``.npy`` format savez : Save several arrays into a ``.npz`` compressed archive Notes ----- Further explanation of the `fmt` parameter (``%[flag]width[.precision]specifier``): flags: ``-`` : left justify ``+`` : Forces to preceed result with + or -. ``0`` : Left pad the number with zeros instead of space (see width). width: Minimum number of characters to be printed. The value is not truncated if it has more characters. precision: - For integer specifiers (eg. ``d,i,o,x``), the minimum number of digits. - For ``e, E`` and ``f`` specifiers, the number of digits to print after the decimal point. - For ``g`` and ``G``, the maximum number of significant digits. - For ``s``, the maximum number of characters. specifiers: ``c`` : character ``d`` or ``i`` : signed decimal integer ``e`` or ``E`` : scientific notation with ``e`` or ``E``. ``f`` : decimal floating point ``g,G`` : use the shorter of ``e,E`` or ``f`` ``o`` : signed octal ``s`` : string of characters ``u`` : unsigned decimal integer ``x,X`` : unsigned hexadecimal integer This explanation of ``fmt`` is not complete, for an exhaustive specification see [1]_. References ---------- .. [1] `Format Specification Mini-Language <http://docs.python.org/library/string.html# format-specification-mini-language>`_, Python Documentation. Examples -------- >>> savetxt('test.out', x, delimiter=',') # x is an array >>> savetxt('test.out', (x,y,z)) # x,y,z equal sized 1D arrays >>> savetxt('test.out', x, fmt='%1.4e') # use exponential notation """ if _is_string_like(fname): if fname.endswith('.gz'): import gzip fh = gzip.open(fname, 'wb') else: fh = file(fname, 'w') elif hasattr(fname, 'seek'): fh = fname else: raise ValueError('fname must be a string or file handle') X = np.asarray(X) # Handle 1-dimensional arrays if X.ndim == 1: # Common case -- 1d array of numbers if X.dtype.names is None: X =
np.atleast_2d(X)
numpy.atleast_2d
import math import functools import numpy as np from pylsd import lsd import cv2 as cv from mex_files.alignments_slow_python import use_alignments_slow from mex_files.alignments_fast_python import use_alignments_fast from gmm_mml import GmmMml import matplotlib.pyplot as plt import matplotlib import scipy import matplotlib.lines as mlines from sklearn.cluster import AgglomerativeClustering # there is a problem with sign function in python so this is a workaround # https://stackoverflow.com/questions/1986152/why-doesnt-python-have-a-sign-function #sign = functools.partial(math.copysign, 1) class params: def __init__(self, w, h, focal_ratio=1.05455933619402): self.w = w self.h = h self.LENGTH_THRESHOLD = 30.71 # param to change # self.LENGTH_THRESHOLD = math.sqrt(self.w + self.h)/self.LENGTH_THRESHOLD self.GMM_KS = [5,5,5] self.REFINE_THRESHOLD = 0.375 # theta self.VARIATION_THRESHOLD = 0.15 # (\zeta) self.DUPLICATES_THRESHOLD = 0.1# (\delta) self.MAX_POINTS_ACCELERATION = 100 # use acceleration if number of points is larger than this self.MANHATTAN = True self.ppd = [2, 2] # principal point = [W,H]/prms.ppd ; values taken from YUD self.FOCAL_RATIO = focal_ratio # default for YUD def detect_vps_given_lines(frame_gray, prms,lines, frame_to_draw=None, old_straight=[], old_twisted=[]): """ given lines with shape [n x 4] computes vps """ denoised_lanes = denoise_lanes(lines, prms) if(len(denoised_lanes) > 0): points_staright, points_twisted = convert_to_PClines(denoised_lanes, prms) else: points_staright , points_twisted = [], [], [] # # if(len(old_straight) > 0 and len(old_twisted) >0): # print('before appending ', np.shape(points_staright), np.shape(points_twisted), np.shape(old_straight), np.shape(old_twisted)) # if(len(points_staright)>0): # points_staright = np.r_[points_staright, old_straight] # else: # points_staright = old_straight # if(len(points_twisted) > 0): # points_twisted = np.r_[points_twisted, points_twisted] # print('after appending ', np.shape(points_staright), np.shape(points_twisted), np.shape(old_straight), np.shape(old_twisted)) # print(np.shape(points_staright),np.shape(points_twisted)) if(len(points_staright) == 0 or len(points_twisted) == 0): return [] detections_straight, m1, b1 = find_detections(points_staright, prms) detections_twisted, m2, b2 = find_detections(points_twisted, prms) print('detections', np.shape(detections_straight),np.shape(detections_twisted)) if(len(detections_straight) == 0 and len(detections_twisted) == 0): return [], [], [] # gather initial vanishing point detections mvp_all, NFAs = read_detections_as_vps(detections_straight, m1, b1, detections_twisted, m2 ,b2, prms) print('\n\n\nbefore appending ', np.shape(points_staright), np.shape(points_twisted), np.shape(mvp_all)) # refine detections, this returns 2 x ? array ? is the vps left after refining mvp_all = refine_detections(mvp_all, lines, prms) print('after appending ', np.shape(points_staright), np.shape(points_twisted), np.shape(mvp_all)) mvp_all,NFAs = remove_dublicates(mvp_all, NFAs, prms) for i in range(len(mvp_all[0])): p1 = np.int32(mvp_all[:, i]) cv.circle(frame_to_draw,tuple(p1),5,(0,255,0),3) return mvp_all.T, points_staright, points_twisted # return as n x2 shape where n is the number of vps def detect_vps(frame_gray, prms, frame_to_draw=None, points_staright_old=[], points_twisted_old=[]): lines = lsd.lsd(np.array(frame_gray, np.float32)) lines = lines[:,0:4] for i in range(lines.shape[0]): pt1 = (int(lines[i, 0]), int(lines[i, 1])) pt2 = (int(lines[i, 2]), int(lines[i, 3])) if(not frame_to_draw is None): cv.line(frame_to_draw, pt1,pt2, (0, 0, 255), 1) denoised_lanes = denoise_lanes(lines, prms) if(len(denoised_lanes) > 0): points_staright, points_twisted = convert_to_PClines(denoised_lanes, prms) else: points_staright , points_twisted = [], [] detections_straight, m1, b1 = find_detections(points_staright, prms) detections_twisted, m2, b2 = find_detections(points_twisted, prms) if(len(detections_straight) == 0 and len(detections_twisted) == 0): return [] # gather initial vanishing point detections mvp_all, NFAs = read_detections_as_vps(detections_straight, m1, b1, detections_twisted, m2 ,b2, prms) # refine detections, this returns 2 x ? array ? is the vps left after refining mvp_all = refine_detections(mvp_all, lines, prms) mvp_all,NFAs = remove_dublicates(mvp_all, NFAs, prms) for i in range(len(mvp_all[0])): p1 = np.int32(mvp_all[:, i]) cv.circle(frame_to_draw,tuple(p1),5,(0,255,0),3) return mvp_all.T# return as n x2 shape where n is the number of vps print("please finish manhattan world") # TO DO the manhattan world #def compute_horizon_line_manhattan(mvp_all, NFAs, lines_lsd, prms): # # computes horizontal line from vps using the NFA values to apply # # orthogonality constraintes # # this is conversion of matlab code written by <NAME> # # Converting author : Majidov Ikhtiyor # H = prms.w # W = prms.h # # # york urban parameters (given) # # focal = 6.05317058975369 # # pixelSize = 0.00896875 # # pp = [307.551305282635, 251.454244960136] # pp = np.array([W, H])/prms.ppd # FOCAL_RATIO = prms.FOCAL_RATIO # # my_vps = image_to_gaussian_sphere(mvp_all, W, H, FOCAL_RATIO, pp) # def remove_dublicates(vps, NFAs, prms): # vps is 2 x n array n is the number of points THRESHOLD = prms.DUPLICATES_THRESHOLD #agglomerative clustering using single link if(len(vps[0]) == 1): return vps, NFAs clus,n_clus = aggclus(vps.T, THRESHOLD) final_vps = [] final_NFAs = [] for i in range(n_clus): args =
np.where(clus == i)
numpy.where
import numpy as np from nitime.lazy import scipy from nitime.lazy import scipy_signal as signal from nitime.lazy import scipy_fftpack as fftpack from nitime import descriptors as desc from nitime import utils as tsu from nitime import algorithms as tsa from nitime import timeseries as ts from .base import BaseAnalyzer class SpectralAnalyzer(BaseAnalyzer): """ Analyzer object for spectral analysis""" def __init__(self, input=None, method=None, BW=None, adaptive=False, low_bias=False): """ The initialization of the Parameters ---------- input: time-series objects method: dict (optional), The method spec used in calculating 'psd' see :func:`algorithms.get_spectra` for details. BW: float (optional), In 'spectrum_multi_taper' The bandwidth of the windowing function will determine the number tapers to use. This parameters represents trade-off between frequency resolution (lower main lobe BW for the taper) and variance reduction (higher BW and number of averaged estimates). adaptive : {True/False} In 'spectrum_multi_taper', use an adaptive weighting routine to combine the PSD estimates of different tapers. low_bias: {True/False} In spectrum_multi_taper, use bias correction Examples -------- >>> np.set_printoptions(precision=4) # for doctesting >>> t1 = ts.TimeSeries(data = np.arange(0,1024,1).reshape(2,512), ... sampling_rate=np.pi) >>> s1 = SpectralAnalyzer(t1) >>> s1.method['this_method'] 'welch' >>> s1.method['Fs'] # doctest: +ELLIPSIS 3.1415926535... Hz >>> f,s = s1.psd >>> f array([ 0. , 0.0491, 0.0982, 0.1473, 0.1963, 0.2454, 0.2945, 0.3436, 0.3927, 0.4418, 0.4909, 0.54 , 0.589 , 0.6381, 0.6872, 0.7363, 0.7854, 0.8345, 0.8836, 0.9327, 0.9817, 1.0308, 1.0799, 1.129 , 1.1781, 1.2272, 1.2763, 1.3254, 1.3744, 1.4235, 1.4726, 1.5217, 1.5708]) >>> s[0,0] # doctest: +ELLIPSIS 1128276.92538360... """ BaseAnalyzer.__init__(self, input) self.method = method if self.method is None: self.method = {'this_method': 'welch', 'Fs': self.input.sampling_rate} self.BW = BW self.adaptive = adaptive self.low_bias = low_bias @desc.setattr_on_read def psd(self): """ The standard output for this analyzer is a tuple f,s, where: f is the frequency bands associated with the discrete spectral components and s is the PSD calculated using :func:`mlab.psd`. """ NFFT = self.method.get('NFFT', 64) Fs = self.input.sampling_rate detrend = self.method.get('detrend', tsa.mlab.detrend_none) window = self.method.get('window', tsa.mlab.window_hanning) n_overlap = self.method.get('n_overlap', int(np.ceil(NFFT / 2.0))) if np.iscomplexobj(self.input.data): psd_len = NFFT dt = complex else: psd_len = NFFT / 2.0 + 1 dt = float #If multi-channel data: if len(self.input.data.shape) > 1: psd_shape = (self.input.shape[:-1] + (psd_len,)) flat_data = np.reshape(self.input.data, (-1, self.input.data.shape[-1])) flat_psd = np.empty((flat_data.shape[0], psd_len), dtype=dt) for i in range(flat_data.shape[0]): #'f' are the center frequencies of the frequency bands #represented in the psd. These are identical in each iteration #of the loop, so they get reassigned into the same variable in #each iteration: temp, f = tsa.mlab.psd(flat_data[i], NFFT=NFFT, Fs=Fs, detrend=detrend, window=window, noverlap=n_overlap) flat_psd[i] = temp.squeeze() psd = np.reshape(flat_psd, psd_shape).squeeze() else: psd, f = tsa.mlab.psd(self.input.data, NFFT=NFFT, Fs=Fs, detrend=detrend, window=window, noverlap=n_overlap) return f, psd @desc.setattr_on_read def cpsd(self): """ This outputs both the PSD and the CSD calculated using :func:`algorithms.get_spectra`. Returns ------- (f,s): tuple f: Frequency bands over which the psd/csd are calculated and s: the n by n by len(f) matrix of PSD (on the main diagonal) and CSD (off diagonal) """ self.welch_method = self.method self.welch_method['this_method'] = 'welch' self.welch_method['Fs'] = self.input.sampling_rate f, spectrum_welch = tsa.get_spectra(self.input.data, method=self.welch_method) return f, spectrum_welch @desc.setattr_on_read def periodogram(self): """ This is the spectrum estimated as the FFT of the time-series Returns ------- (f,spectrum): f is an array with the frequencies and spectrum is the complex-valued FFT. """ return tsa.periodogram(self.input.data, Fs=self.input.sampling_rate) @desc.setattr_on_read def spectrum_fourier(self): """ This is the spectrum estimated as the FFT of the time-series Returns ------- (f,spectrum): f is an array with the frequencies and spectrum is the complex-valued FFT. """ data = self.input.data sampling_rate = self.input.sampling_rate fft = fftpack.fft if np.any(np.iscomplex(data)): # Get negative frequencies, as well as positive: f = np.linspace(-sampling_rate/2., sampling_rate/2., data.shape[-1]) spectrum_fourier = np.fft.fftshift(fft(data)) else: f = tsu.get_freqs(sampling_rate, data.shape[-1]) spectrum_fourier = fft(data)[..., :f.shape[0]] return f, spectrum_fourier @desc.setattr_on_read def spectrum_multi_taper(self): """ The spectrum and cross-spectra, computed using :func:`multi_taper_csd' """ if np.iscomplexobj(self.input.data): psd_len = self.input.shape[-1] dt = complex else: psd_len = self.input.shape[-1] / 2 + 1 dt = float #Initialize the output spectrum_multi_taper = np.empty((self.input.shape[:-1] + (psd_len,)), dtype=dt) #If multi-channel data: if len(self.input.data.shape) > 1: for i in range(self.input.data.shape[0]): # 'f' are the center frequencies of the frequency bands # represented in the MT psd. These are identical in each # iteration of the loop, so they get reassigned into the same # variable in each iteration: f, spectrum_multi_taper[i], _ = tsa.multi_taper_psd( self.input.data[i], Fs=self.input.sampling_rate, BW=self.BW, adaptive=self.adaptive, low_bias=self.low_bias) else: f, spectrum_multi_taper, _ = tsa.multi_taper_psd(self.input.data, Fs=self.input.sampling_rate, BW=self.BW, adaptive=self.adaptive, low_bias=self.low_bias) return f, spectrum_multi_taper class FilterAnalyzer(desc.ResetMixin): """ A class for performing filtering operations on time-series and producing the filtered versions of the time-series Parameters ---------- time_series: A nitime TimeSeries object. lb,ub: float (optional) Lower and upper band of a pass-band into which the data will be filtered. Default: 0, Nyquist boxcar_iterations: int (optional) For box-car filtering, how many times to iterate over the data while convolving with a box-car function. Default: 2 gpass: float (optional) For iir filtering, the pass-band maximal ripple loss (default: 1) gstop: float (optional) For iir filtering, the stop-band minimal attenuation (default: 60). filt_order: int (optional) For iir/fir filtering, the order of the filter. Note for fir filtering, this needs to be an even number. Default: 64 iir_ftype: str (optional) The type of filter to be used in iir filtering (see scipy.signal.iirdesign for details). Default 'ellip' fir_win: str The window to be used in fir filtering (see scipy.signal.firwin for details). Default: 'hamming' Note ---- All filtering methods used here keep the original DC component of the signal. """ def __init__(self, time_series, lb=0, ub=None, boxcar_iterations=2, filt_order=64, gpass=1, gstop=60, iir_ftype='ellip', fir_win='hamming'): #Initialize all the local variables you will need for all the different #filtering methods: self.data = time_series.data self.sampling_rate = time_series.sampling_rate self.ub = ub self.lb = lb self.time_unit = time_series.time_unit self._boxcar_iterations = boxcar_iterations self._gstop = gstop self._gpass = gpass self._filt_order = filt_order self._ftype = iir_ftype self._win = fir_win def filtfilt(self, b, a, in_ts=None): """ Zero-phase delay filtering (either iir or fir). Parameters ---------- a,b: filter coefficients in_ts: time-series object. This allows to replace the input. Instead of analyzing this analyzers input data, analyze some other time-series object Note ---- This is a wrapper around scipy.signal.filtfilt """ # Switch in the new in_ts: if in_ts is not None: data = in_ts.data Fs = in_ts.sampling_rate else: data = self.data Fs = self.sampling_rate #filtfilt only operates channel-by-channel, so we need to loop over the #channels, if the data is multi-channel data: if len(data.shape) > 1: out_data = np.empty(data.shape, dtype=data.dtype) for i in range(data.shape[0]): out_data[i] = signal.filtfilt(b, a, data[i]) #Make sure to preserve the DC: dc = np.mean(data[i]) out_data[i] -= np.mean(out_data[i]) out_data[i] += dc else: out_data = signal.filtfilt(b, a, data) #Make sure to preserve the DC: dc = np.mean(data) out_data -= np.mean(out_data) out_data += dc return ts.TimeSeries(out_data, sampling_rate=Fs, time_unit=self.time_unit) @desc.setattr_on_read def fir(self): """ Filter the time-series using an FIR digital filter. Filtering is done back and forth (using scipy.signal.filtfilt) to achieve zero phase delay """ #Passband and stop-band are expressed as fraction of the Nyquist #frequency: if self.ub is not None: ub_frac = self.ub / (self.sampling_rate / 2.) else: ub_frac = 1.0 lb_frac = self.lb / (self.sampling_rate / 2.) if lb_frac < 0 or ub_frac > 1: e_s = "The lower-bound or upper bound used to filter" e_s += " are beyond the range 0-Nyquist. You asked for" e_s += " a filter between" e_s += "%s and %s percent of" % (lb_frac * 100, ub_frac * 100) e_s += "the Nyquist frequency" raise ValueError(e_s) n_taps = self._filt_order + 1 #This means the filter order you chose was too large (needs to be #shorter than a 1/3 of your time-series ) if n_taps > self.data.shape[-1] * 3: e_s = "The filter order chosen is too large for this time-series" raise ValueError(e_s) # a is always 1: a = [1] sig = ts.TimeSeries(data=self.data, sampling_rate=self.sampling_rate) #Lowpass: if ub_frac < 1: b = signal.firwin(n_taps, ub_frac, window=self._win) sig = self.filtfilt(b, a, sig) #High-pass if lb_frac > 0: #Includes a spectral inversion: b = -1 * signal.firwin(n_taps, lb_frac, window=self._win) b[n_taps / 2] = b[n_taps / 2] + 1 sig = self.filtfilt(b, a, sig) return sig @desc.setattr_on_read def iir(self): """ Filter the time-series using an IIR filter. Filtering is done back and forth (using scipy.signal.filtfilt) to achieve zero phase delay """ #Passband and stop-band are expressed as fraction of the Nyquist #frequency: if self.ub is not None: ub_frac = self.ub / (self.sampling_rate / 2.) else: ub_frac = 1.0 lb_frac = self.lb / (self.sampling_rate / 2.) # For the band-pass: if lb_frac > 0 and ub_frac < 1: wp = [lb_frac, ub_frac] ws = [np.max([lb_frac - 0.1, 0]), np.min([ub_frac + 0.1, 1.0])] # For the lowpass: elif lb_frac == 0: wp = ub_frac ws =
np.min([ub_frac + 0.1, 0.9])
numpy.min
# automatically create pdf containing seperate images and merged images. # seperate images under ./plot_seperate_xt # merged under ./ # shortage1: memory consuming(3.83G on my computer), but can be improved # shortage2: parallel not supported yet import matplotlib as mpl from mpl_toolkits.mplot3d import Axes3D import numpy as np import matplotlib.pyplot as plt import functions as fn import os from PyPDF2 import PdfFileWriter, PdfFileReader #from matplotlib.backends.backend_pdf import PdfPages if not os.path.exists("plot_seperate_xt"): os.makedirs("plot_seperate_xt") # Creating a routine that appends files to the output file def append_pdf(input,output): [output.addPage(input.getPage(page_num)) for page_num in range(input.numPages)] # Creating an object where pdf pages are appended to output = PdfFileWriter() tdata, ttarget, tlabel = fn.get_training_data() for i in range(3000): tempdata = np.array([[0,0,0]]) for j in range(300): if (tdata[i][j] == 0).all(): continue temp = np.expand_dims(tdata[i][j], axis=0) tempdata = np.append(tempdata, temp, axis=0) tempdata = np.delete(tempdata, 0, 0) t_data = tempdata.transpose((1, 0)) mpl.rcParams['legend.fontsize'] = 10 fig = plt.figure() ax = fig.gca(projection='3d') ax.set_xlabel('x') ax.set_ylabel('t') ax.set_zlabel('y') ax.view_init(-90, 0) ax.set_title(i) x = t_data[0] y = t_data[1] t = t_data[2] x_target = np.linspace(ttarget[i][0], ttarget[i][0], 1000) y_target = np.linspace(np.mean(t_data[1]), np.mean(t_data[1]), 1000) #y_target = np.linspace(ttarget[i][1], ttarget[i][1], 1000) t_target = np.linspace(
np.min(t_data[2])
numpy.min
import numpy as np """ Coordinate transformation module. All methods accept arrays as input with each row as a position. """ a = 6378137 b = 6356752.3142 esq = 6.69437999014 * 0.001 e1sq = 6.73949674228 * 0.001 def geodetic2ecef(geodetic, radians=False): geodetic = np.array(geodetic) input_shape = geodetic.shape geodetic = np.atleast_2d(geodetic) ratio = 1.0 if radians else (np.pi / 180.0) lat = ratio*geodetic[:,0] lon = ratio*geodetic[:,1] alt = geodetic[:,2] xi = np.sqrt(1 - esq * np.sin(lat)**2) x = (a / xi + alt) * np.cos(lat) * np.cos(lon) y = (a / xi + alt) * np.cos(lat) * np.sin(lon) z = (a / xi * (1 - esq) + alt) * np.sin(lat) ecef = np.array([x, y, z]).T return ecef.reshape(input_shape) def ecef2geodetic(ecef, radians=False): """ Convert ECEF coordinates to geodetic using ferrari's method """ # Save shape and export column ecef = np.atleast_1d(ecef) input_shape = ecef.shape ecef =
np.atleast_2d(ecef)
numpy.atleast_2d
import h5py import numpy as np from pathlib import Path import json def test_unpack_again(): files = [ Path("data_{0:06d}.npy".format(i)) for i in range(10) ] assert all([f.exists() for f in files]) arrays = [ np.load(f) for f in files ] output = Path("test.h5") h5o = h5py.File(str(output)) for fi,ar in zip(files[3:5],arrays[3:5]): h5o.create_dataset(str(fi), data=ar, compression="lzf") h5o.close() assert output.exists() assert output.stat().st_size > 0 assert output.stat().st_size < sum([ f.stat().st_size for f in files[3:5]]) print(output.stat().st_size, sum([ f.stat().st_size for f in files[3:5]])) output.unlink() def test_reloaded(): files = [ Path("data_{0:06d}.npy".format(i)) for i in range(10) ] assert all([f.exists() for f in files]) arrays = [ np.load(f) for f in files ] output = Path("test.h5") h5o = h5py.File(str(output)) for fi,ar in zip(files[3:5],arrays[3:5]): h5o.create_dataset(str(fi), data=ar, compression="lzf") h5o.close() del h5o reh5 = h5py.File(str(output)) assert str(files[3]) in reh5 arr3 = reh5[str(files[3])] assert
np.array_equal(arr3,arrays[3])
numpy.array_equal
print("Importing libraries") import time from skimage.io import imread from skimage.transform import resize from sknn.mlp import Classifier, Convolution, Layer import glob import os import pickle import numpy as np from sklearn.cross_validation import StratifiedKFold as KFold from sklearn.metrics import classification_report, log_loss import warnings from skimage import morphology from skimage import measure warnings.filterwarnings("ignore") print("Modules Imported") start_time = time.time() # -------------------------------------------------------------------------------------------------------------- # print("Loading and preparing features datasets") dir_names = list(set(glob.glob(os.path.join("competition_data","train", "*"))\ ).difference(set(glob.glob(os.path.join("competition_data","train","*.*"))))) dir_names = sorted(dir_names) # Calculate the number of images in the folder numberofImages = 0 for folder in dir_names: for fileNames in os.walk(folder): add = len(fileNames[-1]) numberofImages += add # ----------------------------------------------------------------------------------------------------------- # # Calculates the Y vector of labels and the X matrix of features as the differences btw images and the classes mean pix = 25 X = np.zeros((numberofImages, pix**2), dtype=float) y = np.zeros((numberofImages)) namesClasses = list() label = 0 i = 0 for folder in dir_names: currentClass = folder.split(os.pathsep)[-1] # Creates a list of classes names as strings namesClasses.append(currentClass) # Idem for fileNameDir in os.walk(folder): for fileName in fileNameDir[2]: if fileName[-4:] != ".jpg": continue nameFileImage = "{0}{1}{2}".format(fileNameDir[0], os.sep, fileName) image = imread(nameFileImage, as_grey=True) image = resize(image, (pix, pix)) # Resizing is done image = np.array(image, dtype=np.float) image =
np.reshape(image, (1, pix ** 2))
numpy.reshape
#!/usr/bin/env python ''' Training code made by <NAME> <<EMAIL>> Based on many other examples around Internet Visit our website at www.theconstruct.ai ''' import sys import gym import numpy import time import numpy as np from gym import wrappers from std_msgs.msg import Float64 # ROS packages required import rospy import rospkg # import our training environment import cart_pole_3d_env from rl_algorithms.ddqn import DQNAgent if __name__ == '__main__': rospy.init_node('cart_pole_3d_gym', anonymous=True, log_level=rospy.WARN) reward_publisher = rospy.Publisher('/cart_pole_3d/reward', Float64, queue_size=1) # Create the Gym environment env = gym.make('CartPole3D-v0') rospy.loginfo("Gym environment done") # Set the logging system # Where we define all of output training to stored. # rospack = rospkg.RosPack() # pkg_path = rospack.get_path('cart_pole_3d_training_pkg') # outdir = pkg_path + '/training_results' # env = wrappers.Monitor(env, outdir, force=True) # rospy.loginfo("Monitor Wrapper started") last_time_steps = numpy.ndarray(0) #define last time step. # Loads parameters from the ROS param server Alpha = rospy.get_param("/cart_pole_3d/alpha") Epsilon = rospy.get_param("/cart_pole_3d/epsilon") Gamma = rospy.get_param("/cart_pole_3d/gamma") epsilon_discount = rospy.get_param("/cart_pole_3d/epsilon_discount") nepisodes = rospy.get_param("/cart_pole_3d/nepisodes") nsteps = rospy.get_param("/cart_pole_3d/nsteps") running_step = rospy.get_param("/cart_pole_3d/running_step") batch_size = 32 state_size = 3 action_size = env.action_space.n agent = DQNAgent(state_size=state_size, action_size=action_size) start_time = time.time() highest_reward = 0 scores = [] episodes = [] # Starts the main training loop: the one about the episodes to do for episode in range(nepisodes): rospy.logwarn(">>>>>>>>>> START EPISODE ==>" + str(episode)+ " <<<<<<<<<<<<<") done = False score = 0 step = 0 # rospy.logwarn("length: " + str(len(agent.memory))) # Initialize the environment and get first state of the robot observation = env.reset() state = np.reshape(observation, [1, state_size]) episode_time = rospy.get_rostime().to_sec() # for each episode, we test the robot for nsteps while not done: # rospy.logwarn("############### Start Step=>" + str(step)) step +=1 # Pick an action based on the current state action = agent.act(state) # Execute the action in the environment and get feedback observation, reward, done, info = env.step(action) next_state =
np.reshape(observation, [1, state_size])
numpy.reshape
import numpy as np import pylab as plt from scipy.signal import find_peaks from astropy.io import fits from astropy import constants as c from astropy import units as u from astropy.coordinates import SkyCoord, GCRS from astropy.time import Time from astropy.table import Table import os from src.BAGLE import model from src.BAGLE import model_fitter from src.BAGLE.fake_data import * import time import pdb import pytest from astropy.time import Time from astropy.coordinates import solar_system_ephemeris, EarthLocation, spherical_to_cartesian, cartesian_to_spherical from astropy.coordinates import get_body_barycentric, get_body, get_moon, get_body_barycentric_posvel # Always generate the same fake data. np.random.seed(0) def test_PSPL_other(): mL = 10.0 # msun t0 = 57000.00 xS0 = np.array([0.000, 0.000]) # beta = -0.4 # mas beta = 1.4 # mas muS = np.array([8.0, 0.0]) # muL = np.array([-7.0, 0.00]) muL = np.array([0.00, 0.00]) dL = 4000.0 dS = 8000.0 b_sff = 1.0 mag_src = 19.0 run_test_PSPL(mL, t0, xS0, beta, muS, muL, dL, dS, b_sff, mag_src, outdir='tests/test_pspl_other/') return def test_PSPL_belokurov(): # Scenario from Belokurov and Evans 2002 (Figure 1) # Note that this isn't a direct comparison; because we don't have parallax. mL = 0.5 # msun t0 = 57160.00 xS0 = np.array([0.000, 0.000]) beta = -7.41 # mas muS = np.array([-2.0, 7.0]) muL = np.array([90.00, -24.71]) dL = 150.0 dS = 1500.0 b_sff = 1.0 mag_src = 19.0 run_test_PSPL(mL, t0, xS0, beta, muS, muL, dL, dS, b_sff, mag_src, outdir='tests/test_pspl_belokurov/') return def run_test_PSPL(mL, t0, xS0, beta, muS, muL, dL, dS, b_sff, mag_src, outdir=''): if (outdir != '') and (outdir != None): os.makedirs(outdir, exist_ok=True) pspl = model.PSPL_PhotAstrom_noPar_Param1(mL, t0, beta, dL, dL / dS, xS0[0], xS0[1], muL[0], muL[1], muS[0], muS[1], [b_sff], [mag_src]) t = np.arange(t0 - 3000, t0 + 3000, 1) dt = t - pspl.t0 A = pspl.get_amplification(t) shift = pspl.get_centroid_shift(t) shift_amp = np.linalg.norm(shift, axis=1) # Plot the amplification plt.figure(1) plt.clf() plt.plot(dt, 2.5 * np.log10(A), 'k.') plt.xlabel('t - t0 (MJD)') plt.ylabel('2.5 * log(A)') plt.savefig(outdir + 'amp_v_time.png') # Plot the positions of everything lens_pos = pspl.xL0 + np.outer(dt / model.days_per_year, pspl.muL) * 1e-3 srce_pos = pspl.xS0 + np.outer(dt / model.days_per_year, pspl.muS) * 1e-3 imag_pos = srce_pos + (shift * 1e-3) plt.figure(2) plt.clf() plt.plot(lens_pos[:, 0], lens_pos[:, 1], 'r--', mfc='none', mec='red') plt.plot(srce_pos[:, 0], srce_pos[:, 1], 'b--', mfc='none', mec='blue') plt.plot(imag_pos[:, 0], imag_pos[:, 1], 'b-') lim = 0.005 plt.xlim(lim, -lim) # arcsec plt.ylim(-lim, lim) plt.xlabel('dRA (arcsec)') plt.ylabel('dDec (arcsec)') plt.title('Zoomed-in') plt.savefig(outdir + 'on_sky_zoomed.png') plt.figure(3) plt.clf() plt.plot(lens_pos[:, 0], lens_pos[:, 1], 'r--', mfc='none', mec='red') plt.plot(srce_pos[:, 0], srce_pos[:, 1], 'b--', mfc='none', mec='blue') plt.plot(imag_pos[:, 0], imag_pos[:, 1], 'b-') lim = 0.05 plt.xlim(lim, -lim) # arcsec plt.ylim(-lim, lim) plt.xlabel('dRA (arcsec)') plt.ylabel('dDec (arcsec)') plt.title('Zoomed-out') plt.savefig(outdir + 'on_sky.png') plt.figure(4) plt.clf() plt.plot(dt, shift_amp) plt.xlabel('t - t0 (MJD)') plt.ylabel('Astrometric Shift (mas)') plt.savefig(outdir + 'shift_amp_v_t.png') plt.figure(5) plt.clf() plt.plot(shift[:, 0], shift[:, 1]) plt.gca().invert_xaxis() plt.xlabel('RA Shift (mas)') plt.ylabel('Dec Shift (mas)') plt.xlim(1.5, -1.5) plt.ylim(-0.5, 2.5) plt.savefig(outdir + 'shift_on_sky.png') plt.close(6) f, (ax1, ax2, ax3) = plt.subplots(3, sharex=True) f.subplots_adjust(hspace=0) ax1.plot(dt / pspl.tE, shift[:, 0] / pspl.thetaE_amp, 'k-') ax2.plot(dt / pspl.tE, shift[:, 1] / pspl.thetaE_amp, 'k-') ax3.plot(dt / pspl.tE, shift_amp / pspl.thetaE_amp, 'k-') ax3.set_xlabel('(t - t0) / tE)') ax1.set_ylabel(r'dX / $\theta_E$') ax2.set_ylabel(r'dY / $\theta_E$') ax3.set_ylabel(r'dT / $\theta_E$') ax1.set_ylim(-0.4, 0.4) ax2.set_ylim(-0.4, 0.4) ax3.set_ylim(0, 0.4) plt.savefig(outdir + 'shift_v_t.png') print('Einstein radius: ', pspl.thetaE_amp) print('Einstein crossing time: ', pspl.tE) return pspl def test_pspl_parallax_belokurov(): outdir = 'tests/test_pspl_parallax_belokurov/' dim_ang = u.dimensionless_angles() # Scenario from Belokurov and Evans 2002 (Figure 1) # Parameters specified in the paper: mL = 0.5 * u.M_sun dL = 150.0 * u.pc dS = 1500.0 * u.pc vL = 70 * u.km / u.s # assuming this is \tilde{v} u0 = 0.303 # Einstein radii # Parameters we calculate from above or guess. # raL = 17.5 * 15.0 # in decimal degrees # decL = -30.0 raL = 10.5 * 15.0 # in decimal degrees decL = 20.0 imag = 19.0 muS = np.array([-1.75, 6.0]) # Measured from Figure 1 # muL = (vL / dL).to(u.mas/u.yr, equivalencies=dim_ang) # mas/yr muRelAmp = (vL / dL).to(u.mas / u.yr, equivalencies=dim_ang) # Note this is in the literature convention of muRel = muL - muS. # We typically use the opposite. muL = np.array( [((muRelAmp.value ** 2 - muS[1] ** 2) ** 0.5 + muS[0]), 0.0]) # muL = np.array([-muL.value, 0.0]) # muL = np.array([-muL.value, 0.0]) thetaE = ((4.0 * c.G * mL / c.c ** 2) * ((1. / dL) - (1. / dS))) ** 0.5 thetaE = thetaE.to(u.mas, equivalencies=dim_ang) # mas xS0amp = u0 * thetaE # in mas xS0 = (muL / np.linalg.norm(muL))[::-1] * xS0amp xS0 = np.array([0.0, 0.0]) * u.mas # xS0_E = -0.5 # xS0 = np.array([xS0_E, -(1.0**2 - xS0_E**2)**0.5]) * xS0amp piRel = (u.AU / dL) - (u.AU / dS) piRel = piRel.to(u.mas, equivalencies=dim_ang) # vtilde = 1 * u.AU / (piE * tE) # vtilde = 1 * u.AU / (piE * (thetaE / muRel)) # vtilde = 1 * u.AU * muRel / (piE * thetaE) # vtilde = 1 * u.AU * muRel / ((piRel / thetaE) * thetaE) # vtilde = 1 * u.AU * muRel / piRel # muRelAmp = vtilde * piRel / (1 * u.AU) # muRel = muL - muS # muRelAmp = vL * piRel / u.AU muRelAmp = muRelAmp.to(u.mas / u.yr) muRel = muL - muS # opposite sign to our convention print('mu_rel = [{0:4.2f}, {1:4.2f}] (opposite to our convention)'.format(muRel[0], muRel[1])) print('mu_rel_amp = {0:4.2f}'.format(muRelAmp)) print('mu_rel_amp = {0:4.2f}'.format(np.linalg.norm(muRel))) print('v_tilde = {0:4.2f}'.format( (muRelAmp * dL).to(u.km / u.s, equivalencies=dim_ang))) print('mu_L = [{0:4.2f}, {1:4.2f}], '.format(muL[0], muL[1])) print('mu_S = [{0:4.2f}, {1:4.2f}], '.format(muS[0], muS[1])) print('thetaE = {0:4.2f}'.format(thetaE)) print('piRel = {0:4.2f}'.format(piRel)) print('xS0amp = {0:4.2f}'.format(xS0amp)) print('xS0 = [{0:4.2f}, {1:4.2f}], '.format(xS0[0], xS0[1])) beta = -xS0amp # mas # t0 = 57160.00 # MJD t0 = 57290.00 # MJD # muS = np.array([-2.0, 7.0]) # muL = np.array([90.00, -24.71]) # Convert out of astropy units mL = mL.value xS0 = xS0.value / 1e3 beta = beta.value dL = dL.value dS = dS.value # muL = np.array([0, 0]) b_sff = 1.0 run_test_pspl_parallax(raL, decL, mL, t0, xS0, beta, muS, muL, dL, dS, b_sff, imag, outdir='tests/test_pspl_parallax_belokurov/') # Modify some axis limits to match the published figure. plt.figure(2) plt.gca().set_aspect('auto') plt.arrow(1, 10, muL[0] / 50.0, muL[1] / 50.0, head_width=0.8, head_length=0.5, color='black') plt.arrow(1, 10, muS[0] / 3.0, muS[1] / 3.0, head_width=0.3, head_length=1, color='blue') plt.text(3.5, 7, r'$\mu_L$ = {0:.1f} mas/yr'.format(np.linalg.norm(muL)), color='black', fontsize=12) plt.text(0, 12, r'$\mu_S$ = {0:.1f} mas/yr'.format(np.linalg.norm(muS)), color='blue', fontsize=12) plt.gcf().set_size_inches(8, 5) plt.subplots_adjust(bottom=0.2) plt.ylim(-16, 16) plt.xlim(4, -4) plt.xlabel(r'$\Delta \alpha^*$ (mas)') plt.ylabel(r'$\Delta \delta$ (mas)') plt.legend(loc='lower right', fontsize=12) plt.savefig(outdir + 'pspl_parallax_belokurov.png') return def test_pspl_parallax_han2000(): # Scenario from Han+ 2000 (Figure 1) raL = 80.89375 # LMC R.A. decL = -69.75611 # LMC Dec. mL = 0.5 # msun dL = 10000.0 dS = 50000.0 xS0 = np.array([0.000, 0.0001]) # arcsec? tE = 100.0 # days u0amp = 0.2 inv_dist_diff = (1.0 / (dL * u.pc)) - (1.0 / (dS * u.pc)) thetaE = u.rad * np.sqrt( (4.0 * c.G * mL * u.M_sun / c.c ** 2) * inv_dist_diff) thetaE_amp = thetaE.to('mas').value # mas muRelAmp = thetaE_amp / (tE / 365.25) print(thetaE_amp, muRelAmp) beta = -u0amp * thetaE_amp # mas muS = np.array([muRelAmp / 2 ** 0.5, -muRelAmp / 2 ** 0.5]) muL = np.array([0.0, 0.0]) t0 = 57190.00 # ?? b_sff = 1.0 imag = 19.0 run_test_pspl_parallax(raL, decL, mL, t0, xS0, beta, muS, muL, dL, dS, b_sff, imag, outdir='tests/test_pspl_parallax_han2000/') return def test_pspl_parallax_bulge1(): # Scenario from Belokurov and Evans 2002 (Figure 1) raL = 17.5 * 15.0 # in degrees decL = -30.0 mL = 10.0 # msun t0 = 57650.0 xS0 = np.array([0.000, 0.000]) beta = 3.0 # mas muS = np.array([-4.0, -4.0]) muL = np.array([-6.0, -10.0]) dL = 3000.0 dS = 6000.0 b_sff = 1.0 imag = 19.0 run_test_pspl_parallax(raL, decL, mL, t0, xS0, beta, muS, muL, dL, dS, b_sff, imag, outdir='tests/test_pspl_par_bulge1/') return def run_test_pspl_parallax(raL, decL, mL, t0, xS0, beta, muS, muL, dL, dS, b_sff, mag_src, outdir=''): if (outdir != '') and (outdir != None): os.makedirs(outdir, exist_ok=True) # No parallax pspl_n = model.PSPL_PhotAstrom_noPar_Param1(mL, t0, beta, dL, dL / dS, xS0[0], xS0[1], muL[0], muL[1], muS[0], muS[1], [b_sff], [mag_src]) print('pspl_n.u0', pspl_n.u0) print('pspl_n.muS', pspl_n.muS) print('pspl_n.u0_hat', pspl_n.u0_hat) print('pspl_n.thetaE_hat', pspl_n.thetaE_hat) # With parallax pspl_p = model.PSPL_PhotAstrom_Par_Param1(mL, t0, beta, dL, dL / dS, xS0[0], xS0[1], muL[0], muL[1], muS[0], muS[1], [b_sff], [mag_src], raL=raL, decL=decL) t = np.arange(t0 - 1000, t0 + 1000, 1) dt = t - pspl_n.t0 A_n = pspl_n.get_amplification(t) A_p = pspl_p.get_amplification(t) xS_n = pspl_n.get_astrometry(t) xS_p_unlens = pspl_p.get_astrometry_unlensed(t) xS_p_lensed = pspl_p.get_astrometry(t) xL_p = pspl_p.get_lens_astrometry(t) # Plot the amplification fig1 = plt.figure(1) plt.clf() f1_1 = fig1.add_axes((0.20, 0.3, 0.75, 0.6)) plt.plot(dt, 2.5 * np.log10(A_n), 'b-', label='No parallax') plt.plot(dt, 2.5 * np.log10(A_p), 'r-', label='Parallax') plt.legend(fontsize=10) plt.ylabel('2.5 * log(A)') f1_1.set_xticklabels([]) f2_1 = fig1.add_axes((0.20, 0.1, 0.75, 0.2)) plt.plot(dt, 2.5 * (np.log10(A_p) - np.log10(A_n)), 'k-', label='Par - No par') plt.axhline(0, linestyle='--', color='k') plt.legend(fontsize=10) plt.ylabel('Diff') plt.xlabel('t - t0 (MJD)') plt.savefig(outdir + 'amp_v_time.png') print("save to " + outdir) # Plot the positions of everything fig2 = plt.figure(2) plt.clf() plt.plot(xS_n[:, 0] * 1e3, xS_n[:, 1] * 1e3, 'r--', mfc='none', mec='red', label='Src, No parallax model') plt.plot(xS_p_unlens[:, 0] * 1e3, xS_p_unlens[:, 1] * 1e3, 'b--', mfc='none', mec='blue', label='Src, Parallax model, unlensed') plt.plot(xL_p[:, 0] * 1e3, xL_p[:, 1] * 1e3, 'k--', mfc='none', mec='grey', label='Lens') plt.plot(xS_p_lensed[:, 0] * 1e3, xS_p_lensed[:, 1] * 1e3, 'b-', label='Src, Parallax model, lensed') plt.legend(fontsize=10) plt.gca().invert_xaxis() plt.xlabel('R.A. (mas)') plt.ylabel('Dec. (mas)') plt.axis('equal') lim = 20 print('LIM = ', lim) # plt.xlim(lim, -lim) # arcsec # plt.ylim(-lim, lim) # plt.axis('tight') # plt.xlim(0.7, -0.7) # plt.ylim(-0.7, 0.7) plt.savefig(outdir + 'on_sky.png') # Check just the astrometric shift part. shift_n = pspl_n.get_centroid_shift(t) # mas shift_p = (xS_p_lensed - xS_p_unlens) * 1e3 # mas shift_n_amp = np.linalg.norm(shift_n, axis=1) shift_p_amp = np.linalg.norm(shift_p, axis=1) fig3 = plt.figure(3) plt.clf() f1_3 = fig3.add_axes((0.20, 0.3, 0.75, 0.6)) plt.plot(dt, shift_n_amp, 'r--', label='No parallax model') plt.plot(dt, shift_p_amp, 'b--', label='Parallax model') plt.ylabel('Astrometric Shift (mas)') plt.legend(fontsize=10) f1_3.set_xticklabels([]) f2_3 = fig3.add_axes((0.20, 0.1, 0.75, 0.2)) plt.plot(dt, shift_p_amp - shift_n_amp, 'k-', label='Par - No par') plt.legend(fontsize=10) plt.axhline(0, linestyle='--', color='k') plt.ylabel('Diff (mas)') plt.xlabel('t - t0 (MJD)') plt.savefig(outdir + 'shift_amp_v_t.png') fig4 = plt.figure(4) plt.clf() plt.plot(shift_n[:, 0], shift_n[:, 1], 'r-', label='No parallax') plt.plot(shift_p[:, 0], shift_p[:, 1], 'b-', label='Parallax') plt.axhline(0, linestyle='--') plt.axvline(0, linestyle='--') plt.gca().invert_xaxis() plt.legend(fontsize=10) plt.xlabel('Shift RA (mas)') plt.ylabel('Shift Dec (mas)') plt.axis('equal') plt.savefig(outdir + 'shift_on_sky.png') print('Einstein radius: ', pspl_n.thetaE_amp, pspl_p.thetaE_amp) print('Einstein crossing time: ', pspl_n.tE, pspl_n.tE) return def test_pspl_parallax_paczynski1998(t0=57000): """ I can't quite get this one to match!!! Why not? Maybe they kept in the parallax of the source? i.e. just removed proper motions. """ outdir = 'tests/test_pspl_parallax_paczynski1998/' if (outdir != '') and (outdir != None): os.makedirs(outdir, exist_ok=True) # Scenarios from Paczynski 1998 raL = 80.89375 # LMC R.A. raL = 240.0 # LMC R.A. # decL = -69.75611 # LMC Dec. decL = -71.74 # LMC Dec. This is the sin \beta = -0.99 where \beta = mL = 0.3 # msun # t0 = 57000.00 xS0 = np.array([0.000, 0.088e-3]) # arcsec beta = 0.088 # mas # muS = np.array([-3.18, -0.28]) # muL = np.array([0.0, 0.0]) muS = np.array([-4.18, -0.28]) muL = np.array([0.0, 0.0]) # muS = np.array([-2.4, -0.00000001]) # muL = np.array([0.0, 0.0]) dL = 10e3 # 10 kpc dS = 50e3 # 50 kpc in LMC b_sff = 1.0 mag_src = 19.0 # No parallax pspl_n = model.PSPL_PhotAstrom_noPar_Param1(mL, t0, beta, dL, dL / dS, xS0[0], xS0[1], muL[0], muL[1], muS[0], muS[1], [b_sff], [mag_src]) print('pspl_n.u0', pspl_n.u0) print('pspl_n.muS', pspl_n.muS) print('pspl_n.u0_hat', pspl_n.u0_hat) print('pspl_n.thetaE_hat', pspl_n.thetaE_hat) # With parallax pspl_p = model.PSPL_PhotAstrom_Par_Param1(mL, t0, beta, dL, dL / dS, xS0[0], xS0[1], muL[0], muL[1], muS[0], muS[1], [b_sff], [mag_src], raL=raL, decL=decL) print('pspl_p.u0', pspl_p.u0) print('pspl_p.muS', pspl_p.muS) print('pspl_p.u0_hat', pspl_p.u0_hat) print('pspl_p.thetaE_hat', pspl_p.thetaE_hat) # t = np.arange(56000, 58000, 1) t = np.arange(t0 - 500, t0 + 500, 1) dt = t - pspl_n.t0 A_n = pspl_n.get_amplification(t) A_p = pspl_p.get_amplification(t) xS_n = pspl_n.get_astrometry(t) xS_p_unlens = pspl_p.get_astrometry_unlensed(t) xS_p_lensed = pspl_p.get_astrometry(t) xL_p_unlens = pspl_p.get_lens_astrometry(t) thetaS = (xS_p_unlens - xL_p_unlens) * 1e3 # mas u = thetaS / pspl_p.tE thetaS_lensed = (xS_p_lensed - xL_p_unlens) * 1e3 # mas shift_n = pspl_n.get_centroid_shift(t) # mas shift_p = (xS_p_lensed - xS_p_unlens) * 1e3 # mas shift_n_amp = np.linalg.norm(shift_n, axis=1) shift_p_amp = np.linalg.norm(shift_p, axis=1) # Plot the amplification fig1 = plt.figure(1) plt.clf() f1_1 = fig1.add_axes((0.1, 0.3, 0.8, 0.6)) plt.plot(dt, 2.5 * np.log10(A_n), 'b-', label='No parallax') plt.plot(dt, 2.5 * np.log10(A_p), 'r-', label='Parallax') plt.legend() plt.ylabel('2.5 * log(A)') f1_1.set_xticklabels([]) f2_1 = fig1.add_axes((0.1, 0.1, 0.8, 0.2)) plt.plot(dt, 2.5 * (np.log10(A_p) - np.log10(A_n)), 'k-', label='Par - No par') plt.axhline(0, linestyle='--', color='k') plt.legend() plt.ylabel('Diff') plt.xlabel('t - t0 (MJD)') idx = np.argmin(np.abs(t - t0)) plt.savefig(outdir + 'fig1.png') # Plot the positions of everything fig2 = plt.figure(2) plt.clf() plt.plot(xS_n[:, 0], xS_n[:, 1], 'r--', mfc='none', mec='red', label='No parallax model') plt.plot(xS_p_unlens[:, 0], xS_p_unlens[:, 1], 'b--', mfc='blue', mec='blue', label='Parallax model, unlensed') plt.plot(xS_p_lensed[:, 0], xS_p_lensed[:, 1], 'b-', label='Parallax model, lensed') plt.plot(xL_p_unlens[:, 0], xL_p_unlens[:, 1], 'g--', mfc='none', mec='green', label='Parallax model, Lens') plt.plot(xS_n[idx, 0], xS_n[idx, 1], 'rx') plt.plot(xS_p_unlens[idx, 0], xS_p_unlens[idx, 1], 'bx') plt.plot(xS_p_lensed[idx, 0], xS_p_lensed[idx, 1], 'bx') plt.plot(xL_p_unlens[idx, 0], xL_p_unlens[idx, 1], 'gx') plt.legend() plt.gca().invert_xaxis() # lim = 0.05 # plt.xlim(lim, -lim) # arcsec # plt.ylim(-lim, lim) # plt.xlim(0.006, -0.006) # arcsec # plt.ylim(-0.02, 0.02) plt.xlabel('R.A. (")') plt.ylabel('Dec. (")') plt.savefig(outdir + 'fig2.png') # Check just the astrometric shift part. fig3 = plt.figure(3) plt.clf() f1_3 = fig3.add_axes((0.2, 0.3, 0.7, 0.6)) plt.plot(dt, shift_n_amp, 'r--', label='No parallax model') plt.plot(dt, shift_p_amp, 'b--', label='Parallax model') plt.legend(fontsize=10) plt.ylabel('Astrometric Shift (mas)') f1_3.set_xticklabels([]) f2_3 = fig3.add_axes((0.2, 0.1, 0.7, 0.2)) plt.plot(dt, shift_p_amp - shift_n_amp, 'k-', label='Par - No par') plt.legend() plt.axhline(0, linestyle='--', color='k') plt.xlabel('t - t0 (MJD)') plt.ylabel('Res.') plt.savefig(outdir + 'fig3.png') fig4 = plt.figure(4) plt.clf() plt.plot(shift_n[:, 0], shift_n[:, 1], 'r-', label='No parallax') plt.plot(shift_p[:, 0], shift_p[:, 1], 'b-', label='Parallax') plt.axhline(0, linestyle='--') plt.axvline(0, linestyle='--') plt.gca().invert_xaxis() plt.legend(loc='upper left') plt.xlabel('Shift RA (mas)') plt.ylabel('Shift Dec (mas)') plt.axis('equal') plt.savefig(outdir + 'fig4.png') plt.figure(5) plt.clf() plt.plot(thetaS[:, 0], shift_p[:, 0], 'r-', label='RA') plt.plot(thetaS[:, 1], shift_p[:, 1], 'b-', label='Dec') plt.xlabel('thetaS (")') plt.ylabel('Shift (mas)') plt.savefig(outdir + 'fig5.png') plt.figure(6) plt.clf() plt.plot(thetaS[:, 0], thetaS[:, 1], 'r-', label='Unlensed') plt.plot(thetaS_lensed[:, 0], thetaS_lensed[:, 1], 'b-', label='Lensed') plt.axvline(0, linestyle='--', color='k') plt.legend() plt.xlabel('thetaS_E (")') plt.ylabel('thetaS_N (")') plt.savefig(outdir + 'fig6.png') print('Einstein radius: ', pspl_n.thetaE_amp, pspl_p.thetaE_amp) print('Einstein crossing time: ', pspl_n.tE, pspl_n.tE) return def test_pspl_parallax_boden1998(t0=57000): """ I can get this one to match Figure 6 of Boden et al. 1998. """ # Scenarios from Paczynski 1998 raL = 80.89375 # LMC R.A. decL = -71.74 # LMC Dec. This is the sin \beta = -0.99 where \beta = mL = 0.1 # msun xS0 = np.array([0.000, 0.088e-3]) # arcsec beta = -0.16 # mas same as p=0.4 muS = np.array([-2.0, 1.5]) muL = np.array([0.0, 0.0]) dL = 8e3 # 10 kpc dS = 50e3 # 50 kpc in LMC b_sff = 1.0 mag_src = 19.0 # No parallax pspl_n = model.PSPL_PhotAstrom_noPar_Param1(mL, t0, beta, dL, dL / dS, xS0[0], xS0[1], muL[0], muL[1], muS[0], muS[1], [b_sff], [mag_src]) print('pspl_n.u0', pspl_n.u0) print('pspl_n.muS', pspl_n.muS) print('pspl_n.u0_hat', pspl_n.u0_hat) print('pspl_n.thetaE_hat', pspl_n.thetaE_hat) # With parallax pspl_p = model.PSPL_PhotAstrom_Par_Param1(mL, t0, beta, dL, dL / dS, xS0[0], xS0[1], muL[0], muL[1], muS[0], muS[1], [b_sff], [mag_src], raL=raL, decL=decL) print('pspl_p.u0', pspl_p.u0) print('pspl_p.muS', pspl_p.muS) print('pspl_p.u0_hat', pspl_p.u0_hat) print('pspl_p.thetaE_hat', pspl_p.thetaE_hat) # t = np.arange(56000, 58000, 1) t = np.arange(t0 - 500, t0 + 500, 1) dt = t - pspl_n.t0 A_n = pspl_n.get_amplification(t) A_p = pspl_p.get_amplification(t) xS_n = pspl_n.get_astrometry(t) xS_p_unlens = pspl_p.get_astrometry_unlensed(t) xS_p_lensed = pspl_p.get_astrometry(t) xL_p_unlens = pspl_p.get_lens_astrometry(t) thetaS = (xS_p_unlens - xL_p_unlens) * 1e3 # mas u = thetaS / pspl_p.tE thetaS_lensed = (xS_p_lensed - xL_p_unlens) * 1e3 # mas shift_n = pspl_n.get_centroid_shift(t) # mas shift_p = (xS_p_lensed - xS_p_unlens) * 1e3 # mas shift_n_amp = np.linalg.norm(shift_n, axis=1) shift_p_amp = np.linalg.norm(shift_p, axis=1) # Plot the amplification fig1 = plt.figure(1) plt.clf() f1_1 = fig1.add_axes((0.1, 0.3, 0.8, 0.6)) plt.plot(dt, 2.5 * np.log10(A_n), 'b-', label='No parallax') plt.plot(dt, 2.5 * np.log10(A_p), 'r-', label='Parallax') plt.legend() plt.ylabel('2.5 * log(A)') f1_1.set_xticklabels([]) f2_1 = fig1.add_axes((0.1, 0.1, 0.8, 0.2)) plt.plot(dt, 2.5 * (np.log10(A_p) - np.log10(A_n)), 'k-', label='Par - No par') plt.axhline(0, linestyle='--', color='k') plt.legend() plt.ylabel('Diff') plt.xlabel('t - t0 (MJD)') idx = np.argmin(np.abs(t - t0)) # Plot the positions of everything fig2 = plt.figure(2) plt.clf() plt.plot(xS_n[:, 0], xS_n[:, 1], 'r--', mfc='none', mec='red', label='No parallax model') plt.plot(xS_p_unlens[:, 0], xS_p_unlens[:, 1], 'b--', mfc='blue', mec='blue', label='Parallax model, unlensed') plt.plot(xS_p_lensed[:, 0], xS_p_lensed[:, 1], 'b-', label='Parallax model, lensed') plt.plot(xL_p_unlens[:, 0], xL_p_unlens[:, 1], 'g--', mfc='none', mec='green', label='Parallax model, Lens') plt.plot(xS_n[idx, 0], xS_n[idx, 1], 'rx') plt.plot(xS_p_unlens[idx, 0], xS_p_unlens[idx, 1], 'bx') plt.plot(xS_p_lensed[idx, 0], xS_p_lensed[idx, 1], 'bx') plt.plot(xL_p_unlens[idx, 0], xL_p_unlens[idx, 1], 'gx') plt.legend() plt.gca().invert_xaxis() # lim = 0.05 # plt.xlim(lim, -lim) # arcsec # plt.ylim(-lim, lim) # plt.xlim(0.006, -0.006) # arcsec # plt.ylim(-0.02, 0.02) plt.xlabel('R.A. (")') plt.ylabel('Dec. (")') # Check just the astrometric shift part. fig3 = plt.figure(3) plt.clf() f1_3 = fig3.add_axes((0.2, 0.3, 0.7, 0.6)) plt.plot(dt, shift_n_amp, 'r--', label='No parallax model') plt.plot(dt, shift_p_amp, 'b--', label='Parallax model') plt.legend(fontsize=10) plt.ylabel('Astrometric Shift (mas)') f1_3.set_xticklabels([]) f2_3 = fig3.add_axes((0.2, 0.1, 0.7, 0.2)) plt.plot(dt, shift_p_amp - shift_n_amp, 'k-', label='Par - No par') plt.legend() plt.axhline(0, linestyle='--', color='k') plt.xlabel('t - t0 (MJD)') plt.ylabel('Res.') fig4 = plt.figure(4) plt.clf() plt.plot(shift_n[:, 0], shift_n[:, 1], 'r-', label='No parallax') plt.plot(shift_p[:, 0], shift_p[:, 1], 'b-', label='Parallax') plt.axhline(0, linestyle='--') plt.axvline(0, linestyle='--') plt.gca().invert_xaxis() plt.legend(loc='upper left') plt.xlabel('Shift RA (mas)') plt.ylabel('Shift Dec (mas)') plt.axis('equal') plt.figure(5) plt.clf() plt.plot(thetaS[:, 0], shift_p[:, 0], 'r-', label='RA') plt.plot(thetaS[:, 1], shift_p[:, 1], 'b-', label='Dec') plt.xlabel('thetaS (")') plt.ylabel('Shift (mas)') plt.figure(6) plt.clf() plt.plot(thetaS[:, 0], thetaS[:, 1], 'r-', label='Unlensed') plt.plot(thetaS_lensed[:, 0], thetaS_lensed[:, 1], 'b-', label='Lensed') plt.axvline(0, linestyle='--', color='k') plt.legend() plt.xlabel('thetaS_E (")') plt.ylabel('thetaS_N (")') print('Einstein radius: ', pspl_n.thetaE_amp, pspl_p.thetaE_amp) print('Einstein crossing time: ', pspl_n.tE, pspl_n.tE) return def test_PSPL_phot_Lu2016(): """ Compare observed photometry to model for OB120169 as listed in Table 6 (photometry solution #1. """ raL = (17.0 + (49.0 / 60.) + (51.38 / 3600.0)) * 15.0 # degrees decL = -35 + (22.0 / 60.0) + (28.0 / 3600.0) t0 = 56026.03 u0_amp = -0.222 tE = 135.0 piE_E = -0.058 piE_N = 0.11 b_sff = [1.1] mag_src = [19.266] # Read in the OGLE I-band photometry. tests_dir = os.path.dirname(os.path.realpath(__file__)) dat = Table.read(tests_dir + '/OB120169_phot.dat', format='ascii') dat['col1'] -= 2400000.5 dat.rename_column('col1', 'mjd') dat.rename_column('col2', 'I') dat.rename_column('col3', 'Ierr') t_mod = np.arange(dat['mjd'].min(), dat['mjd'].max(), 10) def plot_data_model(dat, t_mod, I_mod, I_mod_at_tobs, fig_num=1, title=''): plt.clf() f, (ax1, ax2) = plt.subplots(2, sharex=True, sharey=False, num=fig_num, gridspec_kw={'height_ratios': [3, 1]}) plt.subplots_adjust(hspace=0) ax1.errorbar(dat['mjd'], dat['I'], yerr=dat['Ierr'], fmt='.', alpha=0.5, color='red') ax1.plot(t_mod, I_mod, color='black') ax2.errorbar(dat['mjd'], dat['I'] - I_mod_at_tobs, yerr=dat['Ierr'], fmt='.', alpha=0.5, color='red') ax2.axhline(0, color='black') ax1.invert_yaxis() ax1.set_ylabel('I-band') ax2.set_ylabel('Resid.') ax2.set_xlabel('Time (MJD)') ax1.set_title(title) return ########## # Test #0: PSPL_phot - no blending ########## mod = model.PSPL_Phot_noPar_Param1(t0, u0_amp, tE, piE_E, piE_N, [1.0], mag_src) I_mod = mod.get_photometry(t_mod) I_mod_at_tobs = mod.get_photometry(dat['mjd']) plt.figure(1) plot_data_model(dat, t_mod, I_mod, I_mod_at_tobs, fig_num=1, title='PSPL_phot b_sff=0') ########## # Test #1: PSPL_phot ########## mod = model.PSPL_Phot_noPar_Param1(t0, u0_amp, tE, piE_E, piE_N, b_sff, mag_src) I_mod = mod.get_photometry(t_mod) I_mod_at_tobs = mod.get_photometry(dat['mjd']) plt.figure(2) plot_data_model(dat, t_mod, I_mod, I_mod_at_tobs, fig_num=2, title='PSPL_phot') ########## # Test #1: PSPL_phot_parallax ########## mod = model.PSPL_Phot_Par_Param1(t0, u0_amp, tE, piE_E, piE_N, b_sff, mag_src, raL=raL, decL=decL) I_mod = mod.get_photometry(t_mod) I_mod_at_tobs = mod.get_photometry(dat['mjd']) plt.figure(3) plot_data_model(dat, t_mod, I_mod, I_mod_at_tobs, fig_num=3, title='PSPL_phot_parallax') return def test_pspl_parallax2_bulge(): outdir = 'tests/test_pspl_par2_bulge1/' if (outdir != '') and (outdir != None): os.makedirs(outdir, exist_ok=True) # Scenario from Belokurov and Evans 2002 (Figure 1) raL = 17.5 * 15.0 # in degrees decL = -30.0 mL = 10.0 # msun t0 = 57650.0 xS0 = np.array([0.000, 0.000]) beta = 3.0 # mas muS = np.array([-4.0, -4.0]) muL = np.array([-6.0, -10.0]) dL = 3000.0 dS = 6000.0 b_sff = 1.0 mag_src = 19.0 pspl_par1 = model.PSPL_PhotAstrom_Par_Param1(mL, t0, beta, dL, dL / dS, xS0[0], xS0[1], muL[0], muL[1], muS[0], muS[1], [b_sff], [mag_src], raL=raL, decL=decL) pspl_par2 = model.PSPL_PhotAstrom_Par_Param2(pspl_par1.t0, pspl_par1.u0_amp, pspl_par1.tE, pspl_par1.thetaE_amp, pspl_par1.piS, pspl_par1.piE_E, pspl_par1.piE_N, pspl_par1.xS0[0], pspl_par1.xS0[1], pspl_par1.muS[0], pspl_par1.muS[1], [b_sff], [mag_src], raL=raL, decL=decL) members1 = vars(pspl_par1) members2 = vars(pspl_par2) # Check results with assertions for kk in members1.keys(): if kk in members2.keys(): print('{0:13s} {1:25s} {2:25s}'.format(kk, str(members1[kk]), str(members2[kk]))) np.testing.assert_almost_equal(members1[kk], members2[kk], 3) t = np.arange(t0 - 1000, t0 + 1000, 1) dt = t - pspl_par1.t0 mag_out1 = pspl_par1.get_photometry(t) mag_out2 = pspl_par2.get_photometry(t) plt.figure(1) plt.clf() plt.plot(t, mag_out1, 'k-', label='mod 1') plt.plot(t, mag_out2, 'r-', label='mod 2') plt.legend() plt.gca().invert_yaxis() plt.xlabel('Time (days)') plt.ylabel('Magnitude') plt.savefig(outdir + 'comp_mod_phot.png') upos_out1 = pspl_par1.get_astrometry_unlensed(t) upos_out2 = pspl_par2.get_astrometry_unlensed(t) pos_out1 = pspl_par1.get_astrometry(t) pos_out2 = pspl_par2.get_astrometry(t) plt.figure(2) plt.clf() plt.plot(t, upos_out1[:, 0] * 1e3, 'k--', label='mod 1 unlens') plt.plot(t, upos_out2[:, 0] * 1e3, 'r--', label='mod 2 unlens') plt.plot(t, pos_out1[:, 0] * 1e3, 'k-', label='mod 1') plt.plot(t, pos_out2[:, 0] * 1e3, 'r-', label='mod 2') plt.legend() plt.xlabel('Time (days)') plt.ylabel(r'$\alpha^*$ (mas)') plt.savefig(outdir + 'comp_mod_posX.png') plt.figure(3) plt.clf() plt.plot(t, upos_out1[:, 1] * 1e3, 'k--', label='mod 1 unlens') plt.plot(t, upos_out2[:, 1] * 1e3, 'r--', label='mod 2 unlens') plt.plot(t, pos_out1[:, 1] * 1e3, 'k-', label='mod 1') plt.plot(t, pos_out2[:, 1] * 1e3, 'r-', label='mod 2') plt.legend() plt.xlabel('Time (days)') plt.ylabel(r'$\delta$ (mas)') plt.savefig(outdir + 'comp_mod_posX.png') plt.figure(4) plt.clf() plt.plot(upos_out1[:, 0] * 1e3, upos_out1[:, 1] * 1e3, 'k--', label='mod 1 unlens') plt.plot(upos_out2[:, 0] * 1e3, upos_out2[:, 1] * 1e3, 'r--', label='mod 2 unlens') plt.plot(pos_out1[:, 0] * 1e3, pos_out1[:, 1] * 1e3, 'k-', label='mod 1') plt.plot(pos_out2[:, 0] * 1e3, pos_out2[:, 1] * 1e3, 'r-', label='mod 2') plt.xlabel(r'$\alpha^*$ (mas)') plt.ylabel(r'$\delta$ (mas)') plt.legend() plt.savefig(outdir + 'comp_mod_posX.png') t = np.arange(t0 - 1000, t0 + 1000, 10) dt = t - pspl_par1.t0 # Compare that we get some the same things out of the two models. np.testing.assert_almost_equal(pspl_par1.mL, pspl_par2.mL, 3) np.testing.assert_almost_equal(pspl_par1.dL, pspl_par2.dL) np.testing.assert_almost_equal(pspl_par1.dS, pspl_par2.dS) np.testing.assert_almost_equal(pspl_par1.piS, pspl_par2.piS) np.testing.assert_almost_equal(pspl_par1.piL, pspl_par2.piL) np.testing.assert_almost_equal(pspl_par1.muS, pspl_par2.muS) np.testing.assert_almost_equal(pspl_par1.muL, pspl_par2.muL) np.testing.assert_almost_equal(pspl_par1.muRel, pspl_par2.muRel) A_1 = pspl_par1.get_amplification(t) A_2 = pspl_par2.get_amplification(t) np.testing.assert_almost_equal(A_1, A_2) xS_1 = pspl_par1.get_astrometry(t) xS_2 = pspl_par2.get_astrometry(t) np.testing.assert_almost_equal(xS_1, xS_2) xS_unlens_1 = pspl_par1.get_astrometry_unlensed(t) xS_unlens_2 = pspl_par2.get_astrometry_unlensed(t) np.testing.assert_almost_equal(xS_unlens_1, xS_unlens_2) xL_1 = pspl_par1.get_lens_astrometry(t) xL_2 = pspl_par2.get_lens_astrometry(t) np.testing.assert_almost_equal(xL_1, xL_2) # Check just the astrometric shift part. shift_1 = pspl_par1.get_centroid_shift(t) # mas shift_2 = pspl_par2.get_centroid_shift(t) # mas np.testing.assert_almost_equal(shift_1, shift_2) return def compare_lumlens_parallax_bulge(): raL_in = 17.30 * 15. # Bulge R.A. decL_in = -29.0 mL_in = 10.0 # msun t0_in = 57000.0 xS0_in = np.array([0.000, 0.088e-3]) # arcsec beta_in = 2.0 # mas same as p=0.4 muS_in = np.array([-5.0, 0.0]) muL_in = np.array([0.0, 0.0]) dL_in = 4000.0 # pc dS_in = 8000.0 # pc b_sff_in = 0.5 mag_src_in = 19.0 pspl_ll = model.PSPL_PhotAstrom_LumLens_Par_Param1(mL=mL_in, t0=t0_in, beta=beta_in, dL=dL_in, dL_dS=dL_in / dS_in, xS0_E=xS0_in[0], xS0_N=xS0_in[1], muL_E=muL_in[0], muL_N=muL_in[1], muS_E=muS_in[0], muS_N=muS_in[1], raL=raL_in, decL=decL_in, b_sff=[b_sff_in], mag_src=[mag_src_in]) pspl = model.PSPL_PhotAstrom_Par_Param1(mL=mL_in, t0=t0_in, beta=beta_in, dL=dL_in, dL_dS=dL_in / dS_in, xS0_E=xS0_in[0], xS0_N=xS0_in[1], muL_E=muL_in[0], muL_N=muL_in[1], muS_E=muS_in[0], muS_N=muS_in[1], raL=raL_in, decL=decL_in, b_sff=[b_sff_in], mag_src=[mag_src_in]) t = np.linspace(t0_in - 1500, t0_in + 1500, 1000) mag = pspl.get_photometry(t) pos = pspl.get_astrometry(t) pos_src = pspl.get_astrometry_unlensed(t) mag_ll = pspl_ll.get_photometry(t) pos_ll = pspl_ll.get_astrometry(t) pos_src_ll = pspl_ll.get_astrometry_unlensed(t) plt.figure(1) plt.clf() plt.subplots_adjust(left=0.2) # plt.plot(pos[:, 0], pos[:, 1], label='Dark Lens') # plt.plot(pos_ll[:, 0], pos_ll[:, 1], label='Lum Lens') # plt.plot(pos_src[:, 0], pos_src[:, 1], label='Dark Unlens') # plt.plot(pos_src_ll[:, 0], pos_src_ll[:, 1], label='Lum Unlens') plt.plot((pos[:, 0] - pos_src[:, 0])*1E3, (pos[:, 1] - pos_src[:, 1])*1E3, label='Dark Lens') plt.plot((pos_ll[:, 0] - pos_src_ll[:, 0])*1E3, (pos_ll[:, 1] - pos_src_ll[:, 1])*1E3, label='Lum Lens') plt.legend() plt.axis('equal') plt.xlabel('$\delta_{c,x}$ (mas)') plt.ylabel('$\delta_{c,y}$ (mas)') plt.show() # plt.figure(2) plt.clf() plt.plot(t, mag, label='Dark Lens') plt.plot(t, mag_ll, label='Lum Lens') plt.gca().invert_yaxis() plt.xlabel('Time') plt.ylabel('Mag') plt.legend() plt.show() def test_parallax(): """ Compare our parallax vector and motion equations with Astropy (which now has it implemented and is well tested with Gaia analysis. """ # Make a parallax model to use our code directly. raL_in = 17.30 * 15. # Bulge R.A. decL_in = -29.0 mL_in = 10.0 # msun t0_in = 57000.0 xS0_in = np.array([0.000, 0.000]) # arcsec beta_in = 2.0 # mas same as p=0.4 muS_in = np.array([0.0, 0.0]) muL_in = np.array([-5.0, 0.0]) dL_in = 4000.0 # pc dS_in = 8000.0 # pc b_sff_in = 1.0 mag_src_in = 19.0 ########## # BAGLE ########## pspl = model.PSPL_PhotAstrom_Par_Param1(mL_in, t0_in, beta_in, dL_in, dL_in / dS_in, xS0_in[0], xS0_in[1], muL_in[0], muL_in[1], muS_in[0], muS_in[1], [b_sff_in], [mag_src_in], raL=raL_in, decL=decL_in) # Fetch the astrometry for the unlensed source and lens. # Note these are the positions in the observers geocentric frame; but # fixed to stars reference. t = np.linspace(-2 * pspl.tE, 2 * pspl.tE, 300) # in days (MJD) t += t0_in xS_bagle = pspl.get_astrometry_unlensed(t) * 1e3 * u.mas # in mas xL_bagle = pspl.get_lens_astrometry(t) * 1e3 * u.mas # in mas ########## # Astropy ########## # Now make an Astropy coordinate for the same source object # with the same position, proper motion, distance and calculate # the source trajectory vs. time. t_obj = Time(t, format='mjd') #### REF # First we need a reference point at the RA and Dec that will # serve as the origin point for our relative coordinate system. print(f'c0 coords = {raL_in:.10f}, {decL_in:.10f}') c0 = SkyCoord(raL_in * u.deg, decL_in * u.deg, pm_ra_cosdec=0.0 * u.mas / u.yr, pm_dec=0.0 * u.mas / u.yr, distance=1e6 * u.Mpc, obstime=Time(t0_in, format='mjd')) # Propogate the motion (velocity and parallax) to the correct times). x0_astropy_icrs = c0.apply_space_motion(new_obstime=t_obj) x0_astropy_gcrs = x0_astropy_icrs.transform_to('gcrs') x0_apy_ra = x0_astropy_gcrs.ra x0_apy_dec = x0_astropy_gcrs.dec cosd = np.cos(x0_apy_dec.to('radian')) #### SOURCE # Define the source coordinates (with the correct proper motion and distance). raS0 = (raL_in * u.deg) + (pspl.xS0[0] * u.deg / 3600) decS0 = (decL_in * u.deg) + (pspl.xS0[1] * u.deg / 3600) print(f'S0 coords = {raS0:.10f}, {decS0:.10f}') cS = SkyCoord(raS0, decS0, pm_ra_cosdec=muS_in[0] * u.mas / u.yr, pm_dec=muS_in[1] * u.mas / u.yr, distance=dS_in * u.pc, obstime=Time(t0_in, format='mjd')) # Propogate the motion (velocity and parallax) to the correct times). xS_astropy_icrs = cS.apply_space_motion(new_obstime=t_obj) xS_astropy_gcrs = xS_astropy_icrs.transform_to('gcrs') xS_apy_ra = xS_astropy_gcrs.ra xS_apy_dec = xS_astropy_gcrs.dec dxS_apy = (xS_apy_ra - x0_apy_ra ).to('mas') * cosd dyS_apy = (xS_apy_dec - x0_apy_dec).to('mas') xS_astropy = np.vstack([dxS_apy.value, dyS_apy.value]).T * u.mas #### LENS raL0 = (raL_in * u.deg) + (pspl.xL0[0] * u.deg / 3600) decL0 = (decL_in * u.deg) + (pspl.xL0[1] * u.deg / 3600) print(f'L0 coords = {raL0:.10f}, {decL0:.10f}') cL = SkyCoord(raL0, decL0, pm_ra_cosdec=muL_in[0] * u.mas / u.yr, pm_dec=muL_in[1] * u.mas / u.yr, distance=dL_in * u.pc, obstime=Time(t0_in, format='mjd')) xL_astropy_icrs = cL.apply_space_motion(new_obstime=t_obj) xL_astropy_gcrs = xL_astropy_icrs.transform_to('gcrs') xL_apy_ra = xL_astropy_gcrs.ra xL_apy_dec = xL_astropy_gcrs.dec print(f'xL_apy_ra = {xL_apy_ra[0]}, {xL_apy_ra[-1]}') print(f'xL_apy_dec = {xL_apy_dec[0]}, {xL_apy_dec[-1]}') print(f'x0_apy_ra = {x0_apy_ra[0]}, {x0_apy_ra[-1]}') print(f'x0_apy_dec = {x0_apy_dec[0]}, {x0_apy_dec[-1]}') dxL_apy = (xL_apy_ra - x0_apy_ra ).to('mas') * cosd dyL_apy = (xL_apy_dec - x0_apy_dec).to('mas') xL_astropy = np.vstack([dxL_apy.value, dyL_apy.value]).T * u.mas ########## # Casey's conversion. ########## from microlens.jlu import helio_geo_conversion as hgc print('!!! Casey conversions') foo = hgc.convert_helio_to_geo_phot(raL_in, decL_in, t0_in, pspl.u0_amp, pspl.tE, pspl.piE[0], pspl.piE[1], t0_in) t0_geo_casey = foo[0] u0_geo_casey = foo[1] tE_geo_casey = foo[2] piEE_geo_casey = foo[3] piEN_geo_casey = foo[4] ########## # Gould 2004 version: ########## # # Set the ephemeris t0_obj = Time(t0_in, format='mjd') solar_system_ephemeris.set('builtin') # Get the position and velocity of the Earth in the barycentric frame. Earth_t0 = get_body_barycentric_posvel('Earth', t0_obj) Earth_t = get_body_barycentric_posvel('Earth', t_obj) Earth_pos_t0 = Earth_t0[0].get_xyz() Earth_vel_t0 = Earth_t0[1].get_xyz() Earth_pos_t = Earth_t[0].get_xyz() Earth_vel_t = Earth_t[1].get_xyz() # This is the position of the Sun w.r.t. to the Earth at time t0 (in geocentric frame) Sun_pos_t0 = -Earth_pos_t0 Sun_vel_t0 = -Earth_vel_t0 Sun_pos_t = -Earth_pos_t Sun_vel_t = -Earth_vel_t # Calculate the 3D delta-s(t) vector as defined in Gould 2004 (in IRCS rectilinear): # # ds(t) = s(t) - v_earth(t0) * (t - t0) - s(t0) # ds_gould_3d = Sun_pos_t - (Sun_vel_t0 *(t_obj - t0_obj)[:, None]).T ds_gould_3d -= Sun_pos_t0[:, None] # Project onto East and North -- identical code to PyLIMA target_angles_in_the_sky = [raL_in * np.pi / 180, decL_in * np.pi / 180] Target = np.array( [np.cos(target_angles_in_the_sky[1]) * np.cos(target_angles_in_the_sky[0]), np.cos(target_angles_in_the_sky[1]) * np.sin(target_angles_in_the_sky[0]), np.sin(target_angles_in_the_sky[1])]) East = np.array([-np.sin(target_angles_in_the_sky[0]), np.cos(target_angles_in_the_sky[0]), 0.0]) North = np.cross(Target, East) Sun_pos_t0_EN = np.array([np.dot(Sun_pos_t0.value, East), np.dot(Sun_pos_t0.value, North)]) * u.AU Sun_vel_t0_EN = np.array([np.dot(Sun_vel_t0.value, East), np.dot(Sun_vel_t0.value, North)]) * u.AU / u.day Sun_pos_t_EN = np.zeros([len(t), 2], dtype=float) Sun_vel_t_EN = np.zeros([len(t), 2], dtype=float) ds_gould_2d = np.zeros([len(t), 2], dtype=float) for tt in range(len(t)): # Note, positions still in AU, velocities in AU/day. Sun_pos_t_EN[tt] = np.array([np.dot(Sun_pos_t.value[:, tt], East), np.dot(Sun_pos_t.value[:, tt], North)]) Sun_vel_t_EN[tt] = np.array([np.dot(Sun_vel_t.value[:, tt], East), np.dot(Sun_vel_t.value[:, tt], North)]) ds_gould_2d[tt] = np.array([np.dot(ds_gould_3d.value[:, tt], East), np.dot(ds_gould_3d.value[:, tt], North)]) Sun_pos_t_EN *= u.AU Sun_vel_t_EN *= u.AU/u.day ds_gould_2d *= u.AU # ds_gould_2d = Sun_pos_t_EN - (Sun_vel_t0_EN *(t_obj.value - t0_obj.value)[:, None]) # ds_gould_2d -= Sun_pos_t0_EN[:, None].T # Calculate d-tau and d-beta dtau = ds_gould_2d[:, 0]/u.AU * pspl.piE[0] + ds_gould_2d[:, 1]/u.AU * pspl.piE[1] dbeta = ds_gould_2d[:, 0]/u.AU * pspl.piE[1] - ds_gould_2d[:, 1]/u.AU * pspl.piE[0] # dtau = np.dot(pspl.piE, ds_gould_2d) # dbeta = np.cross(pspl.piE, ds_gould_2d.T) # Need to convert to t0_geo at tr... pick a reference time (arbitrarily choose t0): A = (pspl.muRel[0] / pspl.thetaE_amp) / u.yr - (pspl.piE_amp * Sun_vel_t0_EN[0] / u.AU) B = (pspl.muRel[1] / pspl.thetaE_amp) / u.yr - (pspl.piE_amp * Sun_vel_t0_EN[1] / u.AU) t0_obj_geotr = (-1 / (A**2 + B**2)) * ( A*pspl.u0[0] + B*pspl.u0[1] - A*pspl.piE_amp*Sun_pos_t0_EN[0]/u.AU - B*pspl.piE_amp*Sun_pos_t0_EN[1]/u.AU) t0_obj_geotr += t0_obj # Need to convert to u0_geo at tr # u0_geotr = pspl.u0 u0_geotr = (((pspl.muRel / pspl.thetaE_amp) / u.yr) * (t0_obj_geotr.value - t0_obj.value) * u.day).to('') u0_geotr -= (pspl.piE_amp * Sun_pos_t0_EN / u.AU) u0_geotr += pspl.u0 # Need to convert u0 amplitude. u0_amp_geotr = np.linalg.norm(u0_geotr) # Need to convert to tE_geo at tr tE_geotr = (pspl.tE * u.day * np.linalg.norm(pspl.muRel) * u.mas / u.yr) / (np.hypot(A, B) * pspl.thetaE_amp * u.mas) # Just for comparison, lets also calculate piE and muRel in both frames. muRel_geotr = (pspl.muRel * u.mas / u.yr) - (pspl.piE_amp * pspl.thetaE_amp * u.mas * Sun_vel_t0_EN / u.AU) piE_geotr = pspl.piE_amp * muRel_geotr / np.linalg.norm(muRel_geotr) print(f'pspl.muRel = {pspl.muRel}') print(f'pspl.thetaE_amp = {pspl.thetaE_amp}') print(f'A = {A}') print(f'B = {B}') print(f'Sun vel at t0 (East) = {Sun_vel_t0_EN[0]}') print(f'u0E: pspl = {pspl.u0[0]:.3f}, geotr = {u0_geotr[0]:.3f}') print(f'u0N: pspl = {pspl.u0[1]:.3f}, geotr = {u0_geotr[1]:.3f}') print(f'u0_amp: pspl = {pspl.u0_amp:.3f}, geotr = {np.linalg.norm(u0_geotr):.3f}, geotr_c = {u0_geo_casey:.3f}') print(f't0: pspl = {t0_obj.value:.2f}, geotr = {t0_obj_geotr.value:.2f}, geotr_c = {t0_geo_casey:.2f}') print(f'tE: pspl = {pspl.tE:.3f}, geotr = {tE_geotr:.3f}, geotr_c = {tE_geo_casey:.3f}') print(f'muRelE: pspl = {pspl.muRel[0]:.3f}, geotr = {muRel_geotr[0]:.3f}') print(f'muRelN: pspl = {pspl.muRel[1]:.3f}, geotr = {muRel_geotr[1]:.3f}') print(f'piEE: pspl = {pspl.piE[0]:.4f}, geotr = {piE_geotr[0]:.4f}, geotr_c = {piEE_geo_casey:.4f}') print(f'piEN: pspl = {pspl.piE[1]:.4f}, geotr = {piE_geotr[1]:.4f}, geotr_c = {piEN_geo_casey:.4f}') # Calculate tau (in relative proper motion direction) and beta (in u0 direction) tau = ((t_obj.value - t0_obj_geotr.value) * u.day / tE_geotr) + dtau beta = u0_amp_geotr + dbeta tau_vec = tau * muRel_geotr.T / np.linalg.norm(muRel_geotr) beta_vec = beta * u0_geotr.T / np.lingalg.norm(u0_geotr) print('t = ', t[0:500:80]) print('tau = ', tau[0:500:80]) print('dtau = ', dtau[0:500:80]) print('beta = ', beta[0:500:80]) print('dbeta = ', dbeta[0:500:80]) u_bagel = (xS_bagle - xL_bagle) / (pspl.thetaE_amp * u.mas) u_astropy = (xS_astropy - xL_astropy) / (pspl.thetaE_amp * u.mas) u_gould = tau_vec + beta_vec xL_gould = xL_bagle xS_gould = (u_gould * pspl.thetaE_amp * u.mas) + xL_gould # Position of source w.r.t. lens in Gould frame. print('t = ', t[0:500:80]) print('xL_bagle = ', xL_bagle[0:500:80]) print('xL_astropy = ', xL_astropy[0:500:80]) print('xL_gould = ', xL_gould[0:500:80]) print('xS_bagle = ', xS_bagle[0:500:80]) print('xS_astropy = ', xS_astropy[0:500:80]) print('xS_gould = ', xS_gould[0:500:80]) print('lens pos (mas), vel (mas/yr) = ', pspl.xL0 * 1e3, pspl.muL) print('sorc pos (mas), vel (mas/yr) = ', pspl.xS0 * 1e3, pspl.muS) # Calculate the residuals. resid = xS_astropy - xS_bagle # mas plt.figure(1, figsize=(10, 3)) plt.subplots_adjust(wspace=0.7) plt.subplot(1, 3, 1) plt.plot(t, xS_bagle[:, 0], color='red') plt.plot(t, xS_astropy[:, 0], linestyle='--', color='black') plt.plot(t, xS_gould[:, 0], linestyle='-.', color='blue') plt.xlabel('Time (MJD)') plt.ylabel(r'$\Delta\alpha^*$ (mas)') plt.subplot(1, 3, 2) plt.plot(t, xS_bagle[:, 1], color='red') plt.plot(t, xS_astropy[:, 1], linestyle='--', color='black') plt.plot(t, xS_gould[:, 1], linestyle='-.', color='blue') plt.xlabel('Time (MJD)') plt.ylabel(r'$\Delta\delta$ (mas)') plt.subplot(1, 3, 3) plt.plot(xS_bagle[:, 0], xS_bagle[:, 1], color='red', label='Our code') plt.plot(xS_astropy[:, 0], xS_astropy[:, 1], linestyle='-.', color='black', label='Astropy') plt.xlabel(r'$\Delta\alpha^*$ (mas)') plt.ylabel(r'$\Delta\delta$ (mas)') plt.legend(fontsize=10) plt.axis('equal') plt.figure(2, figsize=(10, 3)) plt.subplots_adjust(wspace=0.7) plt.subplot(1, 3, 1) plt.plot(t, u_bagel[:, 0], color='red') plt.plot(t, u_astropy[:, 0], linestyle='--', color='black') plt.plot(t, u_gould[:, 0], linestyle='-.', color='blue') plt.xlabel('Time (MJD)') plt.ylabel(r'$\Delta\alpha^*$ ($\theta_E$)') plt.subplot(1, 3, 2) plt.plot(t, u_bagel[:, 1], color='red') plt.plot(t, u_astropy[:, 1], linestyle='--', color='black') plt.plot(t, u_gould[:, 1], linestyle='-.', color='blue') plt.xlabel('Time (MJD)') plt.ylabel(r'$\Delta\delta$ ($\theta_E$)') plt.subplot(1, 3, 3) plt.plot(u_bagel[:, 0], u_bagel[:, 1], color='red', label='Our code') plt.plot(u_astropy[:, 0], u_astropy[:, 1], linestyle='-.', color='black', label='Astropy') plt.xlabel(r'$\Delta\alpha^*$ ($\theta_E$)') plt.ylabel(r'$\Delta\delta$ ($\theta_E$)') plt.legend(fontsize=10) plt.axis('equal') plt.figure() plt.plot(t, resid[:, 0], 'b--', label=r'$\Delta\alpha^*$ diff') plt.plot(t, resid[:, 1], 'r--', label=r'$\Delta\delta$ diff') plt.xlabel('Time (MJD)') plt.ylabel('Residuals (mas)') plt.legend(fontsize=10) # Check that they return the same value to within 10 micro-arcsec # np.testing.assert_almost_equal(xS_astropy, xS_bagle, decimal=2) return def testing_astropy_parallax(): from astropy.coordinates import SkyCoord, GCRS from astropy.time import Time import astropy.units as u ra = 17.5 * 15.0 * u.deg dec = -29 * u.deg dist = 8000.0 * u.pc sc = SkyCoord(ra, dec, pm_ra_cosdec=0.0 * u.mas / u.yr, pm_dec=0.0 * u.mas / u.yr, distance=dist, obstime=Time(57000.0, format='mjd')) sc0 = SkyCoord(ra, dec, pm_ra_cosdec=0.0 * u.mas / u.yr, pm_dec=0.0 * u.mas / u.yr, distance=1e6 * u.Mpc, obstime=Time(57000.0, format='mjd')) t = np.arange(56000, 58000) t_obj = Time(t, format='mjd') sc_t_icrs = sc.apply_space_motion(new_obstime=t_obj) sc_t_gcrs = sc_t_icrs.transform_to('gcrs') sc_t_icrs0 = sc0.apply_space_motion(new_obstime=t_obj) sc_t_gcrs0 = sc_t_icrs0.transform_to('gcrs') ra_t = sc_t_gcrs.ra dec_t = sc_t_gcrs.dec cosd_t = np.cos(dec_t.to('radian')) ra0_t = sc_t_gcrs0.ra dec0_t = sc_t_gcrs0.dec # dra = ((ra_t - ra) * cosd_t).to('arcsec') # in arcsec # ddec = (dec_t - dec).to('arcsec') # in arcsec dra = ((ra_t - ra0_t) * cosd_t).to('arcsec') # in arcsec ddec = (dec_t - dec0_t).to('arcsec') # in arcsec plt.figure(1, figsize=(10, 3)) plt.subplots_adjust(wspace=0.7) parallax_pred = 1.0 / dist.value parallax_meas = np.max(np.hypot(dra.value, ddec.value)) print('Predicted parallax from manual calculation:') print(' {0:.2f} mas'.format(parallax_pred * 1e3)) print('Total parallax from astrpy calculation:') print(' {0:.2f} mas'.format(parallax_meas * 1e3)) plt.subplot(1, 3, 1) plt.plot(t, dra.to('mas'), color='black') plt.xlabel('Time (MJD)') plt.ylabel(r'$\Delta \alpha^*$ (mas)') plt.axhline(parallax_pred * 1e3, color='red', linestyle='--') plt.subplot(1, 3, 2) plt.plot(t, ddec.to('mas'), color='black') plt.xlabel('Time (MJD)') plt.ylabel(r'$\Delta \delta$ (mas)') plt.title('Star Distance = ' + str(dist)) plt.subplot(1, 3, 3) plt.plot(dra.to('mas'), ddec.to('mas'), color='black') plt.xlabel(r'$\Delta \alpha^*$ (mas)') plt.ylabel(r'$\Delta \delta$ (mas)') plt.axis('equal') return def plot_PSBL(psbl, t_obs): """ Make some standard plots for PSBL. """ images, amps = psbl.get_all_arrays(t_obs) ########## # Photometry ########## phot = psbl.get_photometry(t_obs, amp_arr=amps) # Plot the photometry plt.figure(1) plt.clf() plt.plot(t_obs, phot, 'r-') plt.ylabel('Photometry (mag)') plt.xlabel('Time (MJD)') plt.gca().invert_yaxis() ########## # Astrometry ########## if psbl.astrometryFlag: # Find the points closest to t0 t0idx = np.argmin(np.abs(t_obs - psbl.t0)) xL1, xL2 = psbl.get_resolved_lens_astrometry(t_obs) xL1 *= 1e3 xL2 *= 1e3 xS_unlens = psbl.get_astrometry_unlensed(t_obs) * 1e3 xS_lensed = psbl.get_astrometry(t_obs, image_arr=images, amp_arr=amps) * 1e3 dxS = (xS_lensed - xS_unlens) # Plot the positions of everything plt.figure(2) plt.clf() plt.plot(xS_unlens[:, 0], xS_unlens[:, 1], 'b--', mfc='blue', mec='blue') plt.plot(xS_lensed[:, 0], xS_lensed[:, 1], 'b-') plt.plot(xL1[:, 0], xL1[:, 1], 'g--', mfc='none', mec='green') plt.plot(xL2[:, 0], xL2[:, 1], 'g--', mfc='none', mec='dark green') plt.plot(xS_unlens[t0idx, 0], xS_unlens[t0idx, 1], 'bx', mfc='blue', mec='blue', label='xS, unlensed') plt.plot(xS_lensed[t0idx, 0], xS_lensed[t0idx, 1], 'bo', label='xS, lensed') plt.plot(xL1[t0idx, 0], xL1[t0idx, 1], 'gs', mfc='green', mec='green', label='Primary lens') plt.plot(xL2[t0idx, 0], xL2[t0idx, 1], 'gs', mfc='none', mec='green', label='Secondary lens') plt.legend() plt.gca().invert_xaxis() plt.xlabel('R.A. (mas)') plt.ylabel('Dec. (mas)') # Check just the astrometric shift part. plt.figure(3) plt.clf() plt.plot(t_obs, dxS[:, 0], 'r--', label='R.A.') plt.plot(t_obs, dxS[:, 1], 'b--', label='Dec.') plt.legend(fontsize=10) plt.ylabel('Astrometric Shift (mas)') plt.xlabel('Time (MJD)') plt.figure(4) plt.clf() plt.plot(dxS[:, 0], dxS[:, 1], 'r-') plt.axhline(0, linestyle='--') plt.axvline(0, linestyle='--') plt.gca().invert_xaxis() plt.xlabel('Shift RA (mas)') plt.ylabel('Shift Dec (mas)') plt.axis('equal') print('Einstein radius: ', psbl.thetaE_amp) print('Einstein crossing time: ', psbl.tE) return def plot_PSBL_compare(psbl1, label1, psbl2, label2, t_obs): """ Make some standard plots for PSBL. """ images1, amps1 = psbl1.get_all_arrays(t_obs) images2, amps2 = psbl2.get_all_arrays(t_obs) ########## # Photometry ########## phot1 = psbl1.get_photometry(t_obs, amp_arr=amps1) phot2 = psbl2.get_photometry(t_obs, amp_arr=amps2) # Plot the photometry plt.figure(1) plt.clf() plt.plot(t_obs, phot1, 'r-', label=label1) plt.plot(t_obs, phot2, 'b-', label=label2) plt.legend() plt.ylabel('Photometry (mag)') plt.xlabel('Time (MJD)') plt.gca().invert_yaxis() ########## # Astrometry ########## if psbl1.astrometryFlag: # Find the points closest to t0 t0idx1 = np.argmin(np.abs(t_obs - psbl1.t0)) t0idx2 = np.argmin(np.abs(t_obs - psbl2.t0)) xL1_1, xL2_1 = psbl1.get_resolved_lens_astrometry(t_obs) xL1_1 *= 1e3 xL2_1 *= 1e3 xL1_2, xL2_2 = psbl2.get_resolved_lens_astrometry(t_obs) xL1_2 *= 1e3 xL2_2 *= 1e3 xS_unlens1 = psbl1.get_astrometry_unlensed(t_obs) * 1e3 xS_unlens2 = psbl2.get_astrometry_unlensed(t_obs) * 1e3 xS_lensed1 = psbl1.get_astrometry(t_obs, image_arr=images1, amp_arr=amps1) * 1e3 xS_lensed2 = psbl2.get_astrometry(t_obs, image_arr=images2, amp_arr=amps2) * 1e3 dxS1 = (xS_lensed1 - xS_unlens1) dxS2 = (xS_lensed2 - xS_unlens2) # Plot the positions of everything plt.figure(2) plt.clf() plt.plot(xS_unlens1[:, 0], xS_unlens1[:, 1], 'b--', mfc='blue', mec='blue') plt.plot(xS_unlens2[:, 0], xS_unlens2[:, 1], 'b--', mfc='blue', mec='blue', alpha=0.2) plt.plot(xS_lensed1[:, 0], xS_lensed1[:, 1], 'b-') plt.plot(xS_lensed2[:, 0], xS_lensed2[:, 1], 'b-', alpha=0.2) plt.plot(xL1_1[:, 0], xL1_1[:, 1], 'g--', mfc='none', mec='green') plt.plot(xL1_2[:, 0], xL1_2[:, 1], 'g--', mfc='none', mec='green', alpha=0.2) plt.plot(xL2_1[:, 0], xL2_1[:, 1], 'g--', mfc='none', mec='dark green') plt.plot(xL2_2[:, 0], xL2_2[:, 1], 'g--', mfc='none', mec='dark green', alpha=0.2) # Plot closest approach points. plt.plot(xS_unlens1[t0idx1, 0], xS_unlens1[t0idx1, 1], 'bx', mfc='blue', mec='blue', label='xS, unlensed, ' + label1) plt.plot(xS_unlens2[t0idx2, 0], xS_unlens2[t0idx2, 1], 'bx', mfc='blue', mec='blue', alpha=0.2, label='xS, unlensed, ' + label2) plt.plot(xS_lensed1[t0idx1, 0], xS_lensed1[t0idx1, 1], 'bo', label='xS, lensed, ' + label1) plt.plot(xS_lensed2[t0idx2, 0], xS_lensed2[t0idx2, 1], 'bo', alpha=0.2, label='xS, lensed, ' + label2) plt.plot(xL1_1[t0idx1, 0], xL1_1[t0idx1, 1], 'gs', mfc='green', mec='green', label='Primary lens, ' + label1) plt.plot(xL1_2[t0idx2, 0], xL1_2[t0idx2, 1], 'gs', mfc='green', mec='green', alpha=0.2, label='Primary lens, ' + label2) plt.plot(xL2_1[t0idx1, 0], xL2_1[t0idx1, 1], 'gs', mfc='none', mec='green', label='Secondary lens, ' + label1) plt.plot(xL2_2[t0idx2, 0], xL2_2[t0idx2, 1], 'gs', mfc='none', mec='green', alpha=0.2, label='Secondary lens, ' + label2) plt.legend(fontsize=10) plt.gca().invert_xaxis() plt.xlabel('R.A. (mas)') plt.ylabel('Dec. (mas)') # Check just the astrometric shift part. plt.figure(3) plt.clf() plt.plot(t_obs, dxS1[:, 0], 'r--', label='R.A., ' + label1) plt.plot(t_obs, dxS1[:, 1], 'r-.', label='Dec., ' + label1) plt.plot(t_obs, dxS2[:, 0], 'b--', label='R.A., ' + label2, alpha=0.2) plt.plot(t_obs, dxS2[:, 1], 'b-.', label='Dec., ' + label2, alpha=0.2) plt.legend(fontsize=10) plt.ylabel('Astrometric Shift (mas)') plt.xlabel('Time (MJD)') plt.figure(4) plt.clf() plt.plot(dxS1[:, 0], dxS1[:, 1], 'r-', label=label1) plt.plot(dxS2[:, 0], dxS2[:, 1], 'b-', label=label2, alpha=0.2) plt.axhline(0, linestyle='--') plt.axvline(0, linestyle='--') plt.legend() plt.gca().invert_xaxis() plt.xlabel('Shift RA (mas)') plt.ylabel('Shift Dec (mas)') plt.axis('equal') print('Einstein radius: ', psbl1.thetaE_amp, psbl2.thetaE_amp) # Print some common stuff print('tE: ', psbl1.tE, psbl2.tE) print('u0_amp: ', psbl1.u0_amp, psbl2.u0_amp) return def test_PSBL_PhotAstrom_noPar_Param2(): """ General testing of PSBL... caustic crossings. """ raL = 259.5 decL = -29.0 t0 = 57000 u0 = 0.3 # in units of Einstein radii tE = 200.0 piE_E = 0.01 piE_N = -0.01 b_sff = np.array([1.0]) mag_src = np.array([18]) thetaE = 3.0 # in mas xS0_E = 0.0 xS0_N = 0.01 muS_E = 3.0 muS_N = 0.0 piS = (1.0 / 8000.0) * 1e3 # mas q = 0.8 # M2 / M1 sep = 3.0 # mas alpha = 135.0 psbl = model.PSBL_PhotAstrom_noPar_Param2(t0, u0, tE, thetaE, piS, piE_E, piE_N, xS0_E, xS0_N, muS_E, muS_N, q, sep, alpha, b_sff, mag_src, raL=raL, decL=decL, root_tol=1e-4) t_obs = np.arange(56000.0, 58000.0, 3) plot_PSBL(psbl, t_obs) # Check that we have some extreme magnifications since this # is caustic crossing. phot = psbl.get_photometry(t_obs) assert phot.min() < 16 return def test_PSBL_Phot_noPar_Param1(): """ General testing of PSBL... caustic crossings. """ # NOTE this gives the same model as in test_PSBL_Phot_noPar_Param1() raL = 259.5 decL = -29.0 t0 = 57000 u0 = 0.3 # in units of Einstein radii tE = 200.0 piE_E = 0.01 piE_N = -0.01 b_sff = np.array([1.0]) mag_src = np.array([18]) q = 0.8 # M2 / M1 #sep = 3e-3 # in arcsec sep = 1.0 # in Einstein radii alpha = 135.0 # PA of binary on the sky phi_piE = np.degrees(np.arctan2(piE_N, piE_E)) # PA of muRel on the sky phi = alpha - phi_piE # relative angle between binary and muRel. print('alpha = ', alpha, ' deg') print('phi_piE = ', phi_piE, ' deg') print('phi = ', phi, ' deg') psbl = model.PSBL_Phot_noPar_Param1(t0, u0, tE, piE_E, piE_N, q, sep, phi, b_sff, mag_src, raL=raL, decL=decL, root_tol=1e-4) t_obs = np.arange(56000.0, 58000.0, 3) plot_PSBL(psbl, t_obs) # Check that we have some extreme magnifications since this # is caustic crossing. phot = psbl.get_photometry(t_obs) assert phot.max() > 15 return def test_PSBL_PhotAstrom_Par_Param2(): """ General testing of PSBL... caustic crossings. """ raL = 259.5 decL = -29.0 t0 = 57000 u0 = 0.3 # in units of Einstein radii tE = 200.0 piE_E = 0.01 piE_N = -0.01 b_sff = np.array([1.0]) mag_src = np.array([18]) thetaE = 3.0 # in mas xS0_E = 0.0 xS0_N = 0.01 muS_E = 3.0 muS_N = 0.0 piS = (1.0 / 8000.0) * 1e3 # mas q = 0.8 # M2 / M1 sep = 3.0 # mas alpha = 135.0 psbl_n = model.PSBL_PhotAstrom_noPar_Param2(t0, u0, tE, thetaE, piS, piE_E, piE_N, xS0_E, xS0_N, muS_E, muS_N, q, sep, alpha, b_sff, mag_src, raL=raL, decL=decL, root_tol=1e-4) psbl_p = model.PSBL_PhotAstrom_Par_Param2(t0, u0, tE, thetaE, piS, piE_E, piE_N, xS0_E, xS0_N, muS_E, muS_N, q, sep, alpha, b_sff, mag_src, raL=raL, decL=decL, root_tol=1e-4) t_obs = np.arange(56000.0, 58000.0, 3) plot_PSBL_compare(psbl_n, 'No Parallax', psbl_p, 'Parallax', t_obs) # Check that we have some extreme magnifications since this # is caustic crossing. phot1 = psbl_n.get_photometry(t_obs) phot2 = psbl_p.get_photometry(t_obs) assert phot1.min() < 16 assert phot2.min() < 16 print('Sep (in thetaE, no par): ', psbl_n.sep / psbl_n.thetaE_amp) print('Sep (in thetaE, with par): ', psbl_p.sep / psbl_p.thetaE_amp) print('m1 (in thetaE**2, not mass): ', psbl_n.m1 / (psbl_n.thetaE_amp*1e-3)**2, psbl_p.m1 / (psbl_p.thetaE_amp*1e-3)**2) print('m2 (in thetaE**2, not mass): ', psbl_n.m2 / (psbl_n.thetaE_amp*1e-3)**2, psbl_p.m2 / (psbl_p.thetaE_amp*1e-3)**2) ########## # Recalculate u calculation from complex_pos() to debug. ########## # Calculate the position of the source w.r.t. lens (in Einstein radii) # Distance along muRel direction tau = (t_obs - psbl_p.t0) / psbl_p.tE tau = tau.reshape(len(tau), 1) # Distance along u0 direction -- always constant with time. u0 = psbl_p.u0.reshape(1, len(psbl_p.u0)) thetaE_hat = psbl_p.thetaE_hat.reshape(1, len(psbl_p.thetaE_hat)) # Total distance u = u0 + tau * thetaE_hat # Incorporate parallax parallax_vec = model.parallax_in_direction(psbl_p.raL, psbl_p.decL, t_obs) u -= psbl_p.piE_amp * parallax_vec t0dx = np.argmin(np.abs(tau)) print('u = ') print(u[t0dx-5:t0dx+5, :]) w, z1, z2 = psbl_p.get_complex_pos(t_obs) comp = psbl_p.get_complex_pos(t_obs) images_p, amps_p = psbl_p.get_all_arrays(t_obs) amp_arr_msk = np.ma.masked_invalid(amps_p) amp = np.sum(amp_arr_msk, axis=1) #print(images_p[t0dx-5:t0dx+5]) # print(amps_p[t0dx-5:t0dx+5]) # Get the astrometry in the lens rest frame in units of thetaE xL = psbl_p.get_lens_astrometry(t_obs) # in arcsec xL1, xL2 = psbl_p.get_resolved_lens_astrometry(t_obs) # in arcsec xS_u = psbl_p.get_astrometry_unlensed(t_obs) # in arcsec u2 = (xS_u - xL) / (psbl_p.thetaE_amp * 1e-3) # -- this should basically be u w_new = u2 z1_new = (xL1 - xL) / (psbl_p.thetaE_amp * 1e-3) z2_new = (xL2 - xL) / (psbl_p.thetaE_amp * 1e-3) print('w: ') print(w[t0dx-5:t0dx+5] / (psbl_p.thetaE_amp * 1e-3)) print(w_new[t0dx-5:t0dx+5]) print('z1: ') print(z1[t0dx-5:t0dx+5] / (psbl_p.thetaE_amp * 1e-3)) print(z1_new[t0dx-5:t0dx+5]) print('z12 ') print(z2[t0dx-5:t0dx+5] / (psbl_p.thetaE_amp * 1e-3)) print(z2_new[t0dx-5:t0dx+5]) print('u2 = ') print(u2[t0dx-5:t0dx+5]) return def test_PSBL_Phot_Par_Param1(): """ General testing of PSBL... caustic crossings. """ # NOTE this gives the same model as in test_PSBL_Phot_noPar_Param1() raL = 259.5 decL = -29.0 t0 = 57000 u0 = 0.3 # in units of Einstein radii tE = 200.0 piE_E = 0.01 piE_N = -0.01 b_sff = np.array([1.0]) mag_src = np.array([18]) q = 0.8 # M2 / M1 sep = 1.0 # in Einstein radii alpha = 135.0 # PA of binary on the sky phi_piE = np.degrees(np.arctan2(piE_N, piE_E)) # PA of muRel on the sky phi = alpha - phi_piE # relative angle between binary and muRel. print('alpha = ', alpha, ' deg') print('phi_piE = ', phi_piE, ' deg') print('phi = ', phi, ' deg') psbl_n = model.PSBL_Phot_noPar_Param1(t0, u0, tE, piE_E, piE_N, q, sep, phi, b_sff, mag_src, raL=raL, decL=decL, root_tol=1e-4) psbl_p = model.PSBL_Phot_Par_Param1(t0, u0, tE, piE_E, piE_N, q, sep, phi, b_sff, mag_src, raL=raL, decL=decL, root_tol=1e-4) t_obs = np.arange(56000.0, 58000.0, 3) plot_PSBL_compare(psbl_n, 'No Parallax', psbl_p, 'Parallax', t_obs) # Check that we have some extreme magnifications since this # is caustic crossing. phot1 = psbl_n.get_photometry(t_obs) phot2 = psbl_p.get_photometry(t_obs) assert phot1.min() < 16 assert phot2.min() < 16 print('Sep (in thetaE, no par): ', psbl_n.sep) print('Sep (in thetaE, with par): ', psbl_p.sep) print('m1 (in thetaE**2, not mass): ', psbl_n.m1, psbl_p.m1) print('m2 (in thetaE**2, not mass): ', psbl_n.m2, psbl_p.m2) ########## # Recalculate u calculation from complex_pos() to debug. ########## # Calculate the position of the source w.r.t. lens (in Einstein radii) # Distance along muRel direction tau = (t_obs - psbl_p.t0) / psbl_p.tE tau = tau.reshape(len(tau), 1) # Distance along u0 direction -- always constant with time. u0 = psbl_p.u0.reshape(1, len(psbl_p.u0)) thetaE_hat = psbl_p.thetaE_hat.reshape(1, len(psbl_p.thetaE_hat)) # Total distance u = u0 + tau * thetaE_hat # Incorporate parallax parallax_vec = model.parallax_in_direction(psbl_p.raL, psbl_p.decL, t_obs) u -= psbl_p.piE_amp * parallax_vec t0dx = np.argmin(np.abs(tau)) print('u = ') print(u[t0dx-5:t0dx+5, :]) w, z1, z2 = psbl_p.get_complex_pos(t_obs) images_p, amps_p = psbl_p.get_all_arrays(t_obs) amp_arr_msk = np.ma.masked_invalid(amps_p) amp = np.sum(amp_arr_msk, axis=1) print('w: ') print(w[t0dx-5:t0dx+5]) print('z1: ') print(z1[t0dx-5:t0dx+5]) print('z2: ') print(z2[t0dx-5:t0dx+5]) return def test_PSBL_phot_vs_pyLIMA(): from pyLIMA import microlmodels from pyLIMA import event from pyLIMA import telescopes from pyLIMA import microltoolbox from pyLIMA import microlmodels # Parameters -- common to ours and pyLIMA t0 = 55775.0 u0_amp = 0.5 tE = 60.0 mag_src = 16 b_sff = 0.5 q = 1.0 sep = 0.6 phi = 125.0 res = plot_compare_vs_pylima(t0, u0_amp, tE, mag_src, b_sff, q, sep, phi) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 # Change t0: t0_new = 56000.0 res = plot_compare_vs_pylima(t0_new, u0_amp, tE, mag_src, b_sff, q, sep, phi) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 # Change u0_amp: u0_amp_new = 0.4 res = plot_compare_vs_pylima(t0_new, u0_amp_new, tE, mag_src, b_sff, q, sep, phi) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 # Change tE: tE_new = 120.0 res = plot_compare_vs_pylima(t0, u0_amp, tE_new, mag_src, b_sff, q, sep, phi) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 # Change sep: sep_new = 0.3 res = plot_compare_vs_pylima(t0, u0_amp, tE, mag_src, b_sff, q, sep_new, phi) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 # Change phi: phi_new = 0.3 res = plot_compare_vs_pylima(t0, u0_amp, tE, mag_src, b_sff, q, sep, phi_new) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 # Change mag_src: mag_src_new = 18 res = plot_compare_vs_pylima(t0, u0_amp, tE, mag_src_new, b_sff, q, sep, phi) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 # Change b_sff: b_sff_new = 0.5 res = plot_compare_vs_pylima(t0, u0_amp, tE, mag_src, b_sff_new, q, sep, phi) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 # Change q q_new = 0.8 res = plot_compare_vs_pylima(t0, u0_amp, tE, mag_src, b_sff, q_new, sep, phi) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 return def plot_compare_vs_pylima(t0, u0_amp, tE, mag_src, b_sff, q, sep, phi, piEE=0.1, piEN=0.1): """All input values are our model definitions. Note piEE and piEN should be arbitrary. But might want to check just in case. """ from pyLIMA import microlmodels from pyLIMA import event from pyLIMA import telescopes from pyLIMA import microltoolbox from pyLIMA import microlmodels phi_rad = np.radians(phi) # These are arbitrary in the Phot-noParallax model. piEE = 0.1 piEN = 0.1 # Our --> PyLIMA conversions pylima_q = 1.0 / q q_prime = (1.0 - q) / (2.0 * (1 + q)) pylima_u0 = u0_amp + q_prime * sep * np.sin(phi_rad) pylima_t0 = t0 + q_prime * sep * tE * np.cos(phi_rad) # Note that pylima_phi = phi log_q = np.log10(pylima_q) log_s = np.log10(sep) # Load up some artificial data for pyLIMA... need this for time array definition. pylima_data = np.loadtxt(os.path.dirname(model.__file__) + '/tests/OB120169_phot.dat') pylima_data[:, 1] = 1e5 time_jd = pylima_data[:, 0] time_mjd = time_jd - 2400000.5 pylima_tel = telescopes.Telescope(name='OGLE', camera_filter='I', light_curve_flux=pylima_data) pylima_ev = event.Event() pylima_ev.name = 'Fubar' pylima_ev.telescopes.append(pylima_tel) pylima_mod = microlmodels.create_model('PSBL', pylima_ev) pylima_mod.define_model_parameters() pylima_mod.blend_flux_ratio = False tmp_params = [pylima_t0 + 2400000.5, pylima_u0, tE, log_s, log_q, phi_rad] pylima_par = pylima_mod.compute_pyLIMA_parameters(tmp_params) pylima_par.fs_OGLE = microltoolbox.magnitude_to_flux(mag_src) pylima_par.fb_OGLE = pylima_par.fs_OGLE * (1.0 - b_sff) / b_sff pylima_amp = pylima_mod.model_magnification(pylima_tel, pylima_par) pylima_lcurve, sf, bf = pylima_mod.compute_the_microlensing_model(pylima_tel, pylima_par) pylima_lcurve_mag = microltoolbox.flux_to_magnitude(pylima_lcurve) # Compute our model psbl = model.PSBL_Phot_noPar_Param1(t0, u0_amp, tE, piEE, piEN, q, sep, phi, [b_sff], [mag_src], root_tol=1e-8) our_mag = psbl.get_photometry(time_mjd) plt.figure(1, figsize=(11, 6)) plt.clf() f1 = plt.gcf().add_axes([0.4, 0.35, 0.57, 0.6]) f2 = plt.gcf().add_axes([0.4, 0.15, 0.57, 0.2]) f1.get_shared_x_axes().join(f1, f2) f1.set_xticklabels([]) f1.plot(time_mjd, pylima_lcurve_mag, 'ko', label='pyLIMA') f1.plot(time_mjd, our_mag, 'r.', label='Ours') f1.invert_yaxis() f1.set_xlabel('MJD (day)') f1.set_ylabel('I (mag)') f1.legend() f2.plot(time_mjd, pylima_lcurve_mag - our_mag, 'k.') f2.set_xlabel('MJD (day)') f2.set_ylabel('PyL-Ours') tleft = 0.03 ttop = 0.7 ttstep = 0.05 fig = plt.gcf() fig.text(tleft, ttop - 0*ttstep, 't0 = {0:.1f} (MJD)'.format(t0), fontsize=12) fig.text(tleft, ttop - 1*ttstep, 't0_pyL = {0:.1f} (MJD)'.format(pylima_t0), fontsize=12) fig.text(tleft, ttop - 2*ttstep, 'u0 = {0:.3f}'.format(u0_amp), fontsize=12) fig.text(tleft, ttop - 3*ttstep, 'u0_pyL = {0:.3f}'.format(pylima_u0), fontsize=12) fig.text(tleft, ttop - 4*ttstep, 'tE = {0:.1f} (day)'.format(tE), fontsize=12) fig.text(tleft, ttop - 5*ttstep, 'q = {0:.5f}'.format(q), fontsize=12) fig.text(tleft, ttop - 6*ttstep, 'q_pyL = {0:.5f}'.format(pylima_q), fontsize=12) fig.text(tleft, ttop - 7*ttstep, 'sep = {0:.5f}'.format(sep), fontsize=12) fig.text(tleft, ttop - 8*ttstep, 'phi = {0:.1f}'.format(phi), fontsize=12) fig.text(tleft, ttop - 9*ttstep, 'b_sff = {0:.2f}'.format(b_sff), fontsize=12) fig.text(tleft, ttop - 10*ttstep, 'mag_src = {0:.1f}'.format(mag_src), fontsize=12) max_delta = np.max(np.abs(pylima_lcurve_mag - our_mag)) if max_delta > 1e-6: fig.text(tleft, 0.05, '!!BAD!!', fontsize=16, color='red') plt.savefig('PSBL_phot_vs_pyLIMA.png') return (time_mjd, pylima_lcurve_mag, our_mag, max_delta) def test_PSPL_phot_vs_pyLIMA(): from pyLIMA import microlmodels from pyLIMA import event from pyLIMA import telescopes from pyLIMA import microltoolbox from pyLIMA import microlmodels # Parameters -- common to ours and pyLIMA ra = 267.4640833333333 dec = -34.62555555555556 t0 = 55775.0 u0_amp = 0.5 tE = 200.0 piEE = 0.5 piEN = -0.1 mag_src = 16 b_sff = 0.5 # res = plot_compare_vs_pylima_pspl(ra, dec, t0, u0_amp, tE, piEE, piEN, mag_src, b_sff, parallax=False) # t_mjd, mag_pyl, mag_our, max_delta = res # assert max_delta < 1e-6 res = plot_compare_vs_pylima_pspl(ra, dec, t0, u0_amp, tE, piEE, piEN, mag_src, b_sff, parallax=True) t_mjd, mag_pyl, mag_our, max_delta = res assert max_delta < 1e-6 return def plot_compare_vs_pylima_pspl(ra, dec, t0, u0_amp, tE, piEE, piEN, mag_src, b_sff, parallax=True): """ Compare pyLIMA to our models with some plots. Input parameters are in our conventions and heliocentric coordinate system. """ from pyLIMA import microlmodels from pyLIMA import event from pyLIMA import telescopes from pyLIMA import microltoolbox from pyLIMA import microlmodels # To convert between pyLIMA (geocentric) and Ours (heliocentric), we will # need some info about the Sun's position and velocity. # First define the reference time: We will use our t0 as the reference time. t0_par = t0 + 2400000.5 # JD t0_ref = t0_par #t0_ref += 10.0 #### # Full Astropy Version #### # Make a temporary muRel from astropy.coordinates import SkyCoord, GCRS, FK5 from astropy.time import TimeJD, Time from astropy.coordinates import solar_system_ephemeris # muRel_helio = 3.0 * u.mas / u.yr # dist = 6.0 * u.kpc # targ = SkyCoord(ra * u.deg, dec * u.deg, distance=dist, # pm_ra_cosdec = piEE*muRel_helio, # pm_dec = piEN*muRel_helio, # radial_velocity = 0 * u.km / u.s, # frame=FK5(equinox=Time(2000, format='jyear'))) # solar_system_ephemeris.set('builtin') # foo = targ.transform_to(GCRS(obstime=Time(t0_ref, format='jd', scale='tai'))) # print('targ = ', targ) # print('foo = ', foo) # Above is useless because it includes the whole velocity on the sky. # Get the position and velocity of the Earth in the barycentric frame. # with solar_system_ephemeris.set('jpl'): with solar_system_ephemeris.set('builtin'): time_jd_reference = Time(t0_ref, format='jd') Earth_pos_t0_par = get_body_barycentric_posvel('Earth', time_jd_reference) print('Earth pos (bary) = ', Earth_pos_t0_par[0]) print('Earth vel (bary) = ', Earth_pos_t0_par[1]) # This is the position of the Sun w.r.t. to the Earth at time t0 (in geocentric frame) Sun_pos_t0_par = -Earth_pos_t0_par[0] Sun_vel_t0_par = -Earth_pos_t0_par[1] # Project sidereal RA and Dec into geocentric equatorial rectangular coordinates. # See "Rectangular coordinates" section here: # https://en.wikipedia.org/wiki/Equatorial_coordinate_system # This code matches pyLIMA. target_angles_in_the_sky = [ra * np.pi / 180, dec * np.pi / 180] Target = np.array( [np.cos(target_angles_in_the_sky[1]) * np.cos(target_angles_in_the_sky[0]), np.cos(target_angles_in_the_sky[1]) * np.sin(target_angles_in_the_sky[0]), np.sin(target_angles_in_the_sky[1])]) East = np.array([-np.sin(target_angles_in_the_sky[0]), np.cos(target_angles_in_the_sky[0]), 0.0]) North = np.cross(Target, East) print('East (geo) = ', East) print('North (geo) = ', North) Earth_vel_t0_par_proj = np.array([np.dot(Earth_pos_t0_par[1].xyz.to('AU/day').value, East), np.dot(Earth_pos_t0_par[1].xyz.to('AU/day').value, North)]) print('Earth vel (EN projected, AU/day) = ', Earth_vel_t0_par_proj) au_day_to_km_s = 1731.45683 print('Earth vel (EN projected, km/s) = ', Earth_vel_t0_par_proj * au_day_to_km_s) # Unit vector pointing towards the Sun (projected onto the sky): Sun_pos_t0_par_proj = np.array([np.dot(Sun_pos_t0_par.xyz.to('AU').value, East), np.dot(Sun_pos_t0_par.xyz.to('AU').value, North)]) Sun_pos_t0_par_proj_unit = Sun_pos_t0_par_proj / np.linalg.norm( Sun_pos_t0_par_proj ) # Project velocity from RA and Dec into geocentric equatorial rectangular coordinates. # Note units will be in AU / day. Sun_vel_t0_par_proj = np.array([np.dot(Sun_vel_t0_par.xyz.to('AU/day').value, East), np.dot(Sun_vel_t0_par.xyz.to('AU/day').value, North)]) print('Sun pos (geo) = ', Sun_pos_t0_par) print('Sun pos (geo, EN projected) = ', Sun_pos_t0_par_proj) print('Sun pos (geo, EN projected, unit) = ', Sun_pos_t0_par_proj_unit) print() # Compare this projected Sun vector to the parallax vector we use in our code. par_vec = model.parallax_in_direction(ra, dec, np.array([t0])) print('Parallax Vector from PSPL = ', par_vec) print() print('Sun vel (geo)= ', Sun_vel_t0_par) print('Sun vel (geo, EN projected (AU/day)) = ', Sun_vel_t0_par_proj) print('Sun vel (geo, EN projected (km/s)) = ', Sun_vel_t0_par_proj * au_day_to_km_s) ##### # Load up some artificial data for pyLIMA... need this for time array definition. ##### pylima_data = np.loadtxt(os.path.dirname(model.__file__) + '/tests/OB120169_phot.dat') pylima_data[:, 1] = 1e5 time_jd = pylima_data[:, 0] time_mjd = time_jd - 2400000.5 ##### # Compute our model ##### print('Making our model') if parallax: pspl = model.PSPL_Phot_Par_Param1(t0, u0_amp, tE, piEE, piEN, [b_sff], [mag_src], raL=ra, decL=dec) else: pspl = model.PSPL_Phot_noPar_Param1(t0, u0_amp, tE, piEE, piEN, [b_sff], [mag_src], raL=ra, decL=dec) our_mag = pspl.get_photometry(time_mjd) # our_xL = pspl.get_lens_astrometry(time_mjd) # our_xS = pspl.get_astrometry_unlensed(time_mjd) # our_u = our_xS - our_xL ##### # Compute pyLIMA model ##### piE = pspl.piE_amp # Sun_vel_t0_par_proj is in units of AU / days. # Convert to unitless by multiplying: # Sun_vel_t0_par_proj [AU / day] * tE [days] * piE^2 / 1 AU # tmpEE_geo = piEE - (Sun_vel_t0_par_proj[0] * tE * piE**2) # unitless. # tmpEN_geo = piEN - (Sun_vel_t0_par_proj[1] * tE * piE**2) tmpEE_geo = piEE - (Sun_vel_t0_par_proj[0] * tE * piE) # unitless. tmpEN_geo = piEN - (Sun_vel_t0_par_proj[1] * tE * piE) tmp_geo = np.hypot(tmpEE_geo, tmpEN_geo) print('tmp_geo = ', tmp_geo) print('piE = ', piE) piEE_geo = tmpEE_geo * piE / tmp_geo piEN_geo = tmpEN_geo * piE / tmp_geo print('piE_vec helio = ', piEE, piEN) print('piE_vec geo = ', piEE_geo, piEN_geo) tE_geo = tE * piE / tmp_geo print() # u0_vec_geo = pspl.u0 + (((t0_ref - t0_par)/tE)*pspl.thetaE_hat) - (piE * par_vec) u0_vec_geo = pspl.u0 + (((t0_ref - t0_par)/tE)*pspl.thetaE_hat) - (piE * Sun_pos_t0_par_proj_unit) u0_geo = np.linalg.norm(u0_vec_geo) print('u0_vec_geo = ', u0_vec_geo) print('pspl.u0 = ', pspl.u0) print('u0_geo = ', u0_geo) print('Making pyLIMA model') pylima_u0 = u0_geo pylima_t0 = t0_ref pylima_piEE = -piEE_geo pylima_piEN = -piEN_geo pylima_tE = tE_geo pylima_tel = telescopes.Telescope(name='OGLE', camera_filter='I', light_curve_flux=pylima_data) pylima_ev = event.Event() pylima_ev.name = 'Fubar' pylima_ev.telescopes.append(pylima_tel) pylima_ev.ra = ra pylima_ev.dec = dec if parallax: pylima_mod = microlmodels.create_model('PSPL', pylima_ev, parallax=['Annual', pylima_t0 ]) tmp_params = [pylima_t0, pylima_u0, pylima_tE, pylima_piEN, pylima_piEE] else: pylima_mod = microlmodels.create_model('PSPL', pylima_ev) tmp_params = [pylima_t0, pylima_u0, pylima_tE] pylima_mod.define_model_parameters() pylima_mod.blend_flux_ratio = False pylima_par = pylima_mod.compute_pyLIMA_parameters(tmp_params) pylima_par.fs_OGLE = microltoolbox.magnitude_to_flux(mag_src) pylima_par.fb_OGLE = pylima_par.fs_OGLE * (1.0 - b_sff) / b_sff print('piEE: pylima = ', pylima_par.piEE, ' ours = ', piEE) print('piEN: pylima = ', pylima_par.piEN, ' ours = ', piEN) pylima_amp = pylima_mod.model_magnification(pylima_tel, pylima_par) pylima_lcurve, sf, bf = pylima_mod.compute_the_microlensing_model(pylima_tel, pylima_par) pylima_lcurve_mag = microltoolbox.flux_to_magnitude(pylima_lcurve) pylima_x, pylima_y, pylima_s = pylima_mod.source_trajectory(pylima_tel, pylima_t0, pylima_u0, pylima_tE, pylima_par) plt.figure(1, figsize=(11, 6)) plt.clf() f1 = plt.gcf().add_axes([0.4, 0.35, 0.57, 0.6]) f2 = plt.gcf().add_axes([0.4, 0.15, 0.57, 0.2]) f1.get_shared_x_axes().join(f1, f2) f1.set_xticklabels([]) f1.plot(time_mjd, pylima_lcurve_mag, 'ko', label='pyLIMA') f1.plot(time_mjd, our_mag, 'r.', label='Ours') f1.invert_yaxis() f1.set_xlabel('MJD (day)') f1.set_ylabel('I (mag)') f1.legend() f2.plot(time_mjd, pylima_lcurve_mag - our_mag, 'k.') f2.set_xlabel('MJD (day)') f2.set_ylabel('PyL-Ours') tleft = 0.03 ttop = 0.8 ttstep = 0.05 fig = plt.gcf() fig.text(tleft, ttop - 0*ttstep, 'raL = {0:.2f} (deg)'.format(ra), fontsize=12) fig.text(tleft, ttop - 1*ttstep, 'decL = {0:.2f} (deg)'.format(dec), fontsize=12) fig.text(tleft, ttop - 2*ttstep, 't0 = {0:.1f} (MJD)'.format(t0), fontsize=12) fig.text(tleft, ttop - 3*ttstep, 'u0 = {0:.3f}'.format(u0_amp), fontsize=12) fig.text(tleft, ttop - 4*ttstep, 'u0_pyL = {0:.3f}'.format(pylima_u0), fontsize=12) fig.text(tleft, ttop - 5*ttstep, 'tE = {0:.1f} (day)'.format(tE), fontsize=12) fig.text(tleft, ttop - 6*ttstep, 'tE_pyL = {0:.1f} (day)'.format(pylima_tE), fontsize=12) fig.text(tleft, ttop - 7*ttstep, 'piEE (S-L) = {0:.4f}'.format(piEE), fontsize=12) fig.text(tleft, ttop - 8*ttstep, 'piEE_pyL (L-S) = {0:.4f}'.format(pylima_piEE), fontsize=12) fig.text(tleft, ttop - 9*ttstep, 'piEN (S-L) = {0:.4f}'.format(piEN), fontsize=12) fig.text(tleft, ttop - 10*ttstep, 'piEN_pyL (L-S) = {0:.4f}'.format(pylima_piEN), fontsize=12) fig.text(tleft, ttop - 11*ttstep, 'b_sff = {0:.2f}'.format(b_sff), fontsize=12) fig.text(tleft, ttop - 12*ttstep, 'mag_src = {0:.1f}'.format(mag_src), fontsize=12) max_delta = np.max(np.abs(pylima_lcurve_mag - our_mag)) if max_delta > 1e-6: fig.text(tleft, 0.05, '!!BAD!!', fontsize=16, color='red') plt.savefig('PSPL_phot_vs_pyLIMA.png') # plt.figure(2, figsize=(11, 6)) # plt.clf() # f3 = plt.gcf().add_axes([0.4, 0.60, 0.57, 0.3]) # f4 = plt.gcf().add_axes([0.4, 0.15, 0.57, 0.3]) # f3.get_shared_x_axes().join(f3, f4) # f3.plot(time_mjd, pylima_x, 'ko', label='pyLIMA') # f3.plot(time_mjd, our_u[:, 0], 'r.', label='Ours') # f4.plot(time_mjd, pylima_y, 'ko', label='pyLIMA') # f4.plot(time_mjd, our_u[:, 1], 'r.', label='Ours') return (time_mjd, pylima_lcurve_mag, our_mag, max_delta) def test_u0_hat_thetaE_hat(): """ Tests for: u0_hat_from_thetaE_hat() thetaE_hat_from_u0_hat() """ # Tests the current code implementation: # Defines beta = u0_amp sign convention # opposite of how Andy Gould (2004) does. Ours has: # beta > 0 means u0_E > 0 # u0_amp > 0 mean u0_E > 0 # E_hat = np.array([1.0, 0.0]) N_hat = np.array([0.0, 1.0]) ########## # Test 1: # u0 sign: +, + # muRel sign: +, - ########## u0_hatE_in = 0.3 u0_hatN_in = (1.0 - u0_hatE_in**2)**0.5 u0_hat_in = np.array([u0_hatE_in, u0_hatN_in]) # direction of relative proper motion vector # Same as thetaE_hat muRel_hatE_in = (1.0 - u0_hatE_in**2)**0.5 muRel_hatN_in = -0.3 muRel_hat_in = np.array([muRel_hatE_in, muRel_hatN_in]) # Should be positive. # in units of thetaE, opposite sign as beta???? NOT SURE ANYMORE. u0amp_in = np.hypot(u0_hatE_in, u0_hatN_in) * np.cross(u0_hat_in, N_hat) * 1.0 # Test u0_hat = model.u0_hat_from_thetaE_hat(muRel_hat_in, u0amp_in) assert u0_hat[0] == u0_hat_in[0] assert u0_hat[1] == u0_hat_in[1] assert np.sign(u0_hat[0]) == np.sign(u0amp_in) ########## # Test 2 # u0 sign: -, + # muRel sign: +, + ########## u0_hatE_in = -0.3 u0_hatN_in = (1.0 - u0_hatE_in**2)**0.5 u0_hat_in = np.array([u0_hatE_in, u0_hatN_in]) # direction of relative proper motion vector # Same as thetaE_hat muRel_hatE_in = (1.0 - u0_hatE_in**2)**0.5 muRel_hatN_in = 0.3 muRel_hat_in = np.array([muRel_hatE_in, muRel_hatN_in]) # Should be negative. u0amp_in = np.hypot(u0_hatE_in, u0_hatN_in) * np.cross(u0_hat_in, N_hat) * 1.0 # Test u0_hat = model.u0_hat_from_thetaE_hat(muRel_hat_in, u0amp_in) assert u0_hat[0] == u0_hat_in[0] assert u0_hat[1] == u0_hat_in[1] assert np.sign(u0_hat[0]) == np.sign(u0amp_in) ########## # Test 3 # u0 sign: -, - # muRel sign: -, + ########## u0_hatE_in = -0.3 u0_hatN_in = -(1.0 - u0_hatE_in**2)**0.5 u0_hat_in = np.array([u0_hatE_in, u0_hatN_in]) # direction of relative proper motion vector # Same as thetaE_hat muRel_hatE_in = -(1.0 - u0_hatE_in**2)**0.5 muRel_hatN_in = 0.3 muRel_hat_in = np.array([muRel_hatE_in, muRel_hatN_in]) # Should be negative. u0amp_in = np.hypot(u0_hatE_in, u0_hatN_in) * np.cross(u0_hat_in, N_hat) * 1.0 # Test u0_hat = model.u0_hat_from_thetaE_hat(muRel_hat_in, u0amp_in) assert u0_hat[0] == u0_hat_in[0] assert u0_hat[1] == u0_hat_in[1] assert np.sign(u0_hat[0]) == np.sign(u0amp_in) ########## # Test 4 # u0 sign: +, - # muRel sign: +, + ########## u0_hatE_in = 0.3 u0_hatN_in = -(1.0 - u0_hatE_in**2)**0.5 u0_hat_in = np.array([u0_hatE_in, u0_hatN_in]) # direction of relative proper motion vector # Same as thetaE_hat muRel_hatE_in = (1.0 - u0_hatE_in**2)**0.5 muRel_hatN_in = 0.3 muRel_hat_in = np.array([muRel_hatE_in, muRel_hatN_in]) # Should be negative. u0amp_in = np.hypot(u0_hatE_in, u0_hatN_in) * np.cross(u0_hat_in, N_hat) * 1.0 # Test u0_hat = model.u0_hat_from_thetaE_hat(muRel_hat_in, u0amp_in) assert u0_hat[0] == u0_hat_in[0] assert u0_hat[1] == u0_hat_in[1] assert np.sign(u0_hat[0]) == np.sign(u0amp_in) return def test_PSBL_get_photometry_nans(): # This set of parameters reproduces the problem. raL = 255.9785152922 decL = -26.7699679331 mL1 = 0.5449857890 mL2 = 0.2513479648 t0 = -445.5166414077 xS0 = [0, 0] beta = 63.1888232379 muL = [-5.64504014, -5.63716286] muS = [-4.60154964, -5.37112324] dL = 6971.8480854741 dS = 13330.5805517047 sep = 205.1250722516 alpha = -496.2173351517 mag_src = 10.6950225830 b_sff = 0.0005696291 psbl = model.PSBL_PhotAstrom_Par_Param1(mL1, mL2, t0, xS0[0], xS0[1], beta, muL[0], muL[1], muS[0], muS[1], dL, dS, sep, alpha, [b_sff], [mag_src], raL=raL, decL=decL, root_tol=1e-8) print(f't0 = {psbl.t0:.1f} MJD') print(f'tE = {psbl.tE:.1f} days') duration = 100 # tE time_steps = 5000 tmin = psbl.t0 - ((duration / 2.0) * psbl.tE) tmax = psbl.t0 + ((duration / 2.0) * psbl.tE) dt = np.linspace(tmin, tmax, time_steps) dt = dt[1780:1788] img, amp = psbl.get_all_arrays(dt) phot = psbl.get_photometry(dt, amp_arr=amp) # print('dt = ', dt) # print('poht = ', phot) # print('amp = ') # print(amp) # Check that we have both NaNs and valid values # in our amplifications for testing. idx_nan = np.where(np.isnan(amp).sum(axis=1) == 5)[0] print(amp.shape) assert len(idx_nan) > 0 assert len(idx_nan) != amp.shape[0] # Check that the amp=nans are returned as masked. assert np.sum(phot.mask[idx_nan]) == len(idx_nan) # Check that the data itself has nan (not junk values) # print(phot) # print(phot.data) # print(phot.mask) # print(phot.data[idx_nan[0]]) assert np.isnan(phot.data[idx_nan]).sum() == len(idx_nan) return def test_PSBL_too_many_peaks3(): raL = 267.9828892936 decL = -26.4253612405 mL1 = 1.1694705685 mL2 = 6.8748978010 t0 = 272.1230025420 xS0 = [0, 0] beta = 56.9742058606 muL = [-3.19572701, -5.71742749] muS = [-3.50599981, -6.20537068] dL = 3693.8211092591 dS = 8293.3433805508 sep = 0.9251665444 alpha = 147.6 mag_src = 5.1452097893 b_sff = 0.2092014345 psbl = model.PSBL_PhotAstrom_Par_Param1(mL1, mL2, t0, xS0[0], xS0[1], beta, muL[0], muL[1], muS[0], muS[1], dL, dS, sep, alpha, [b_sff], [mag_src], raL=raL, decL=decL, root_tol=1e-8) print(f't0 = {psbl.t0:.1f} MJD') print(f'tE = {psbl.tE:.1f} days') # Print out some angles to see when things might be a problem. phi_muRel = np.degrees(np.arctan2(muS[1] - muL[1], muS[0] - muL[0]) - np.arctan2(1, 0)) phi = alpha - phi_muRel print(f'phi_muRel = {phi_muRel} deg') print(f'phi = {phi} deg') print(f'alpha = {alpha} deg') duration = 100 # tE time_steps = 5000 tmin = psbl.t0 - 5000 tmax = psbl.t0 + 5000 dt = np.linspace(tmin, tmax, time_steps) img_arr, amp_arr = psbl.get_all_arrays(dt) phot = psbl.get_photometry(dt, amp_arr=amp_arr) plt.figure(1) plt.clf() plt.plot(dt, phot) ax = plt.gca() ax.invert_yaxis() ax.ticklabel_format(useOffset=False) return def test_PSBL_too_many_peaks_621(): raL = 255.9785152922 decL = -26.7699679331 mL1 = 0.5449857890 mL2 = 0.2513479648 t0 = -445.5166414077 xS0 = [0, 0] beta = 63.1888232379 muL = [-5.64504014, -5.63716286] muS = [-4.60154964, -5.37112324] dL = 6971.8480854741 dS = 13330.5805517047 sep = 205.1250722516 alpha = -496.2173351517 mag_src = 10.6950225830 b_sff = 0.0005696291 psbl = model.PSBL_PhotAstrom_Par_Param1(mL1, mL2, t0, xS0[0], xS0[1], beta, muL[0], muL[1], muS[0], muS[1], dL, dS, sep, alpha, [b_sff], [mag_src], raL=raL, decL=decL, root_tol=1e-8) print(f't0 = {psbl.t0:.1f} MJD') print(f'tE = {psbl.tE:.1f} days') # Print out some angles to see when things might be a problem. phi_muRel = np.degrees(np.arctan2(muS[1] - muL[1], muS[0] - muL[0]) - np.arctan2(1, 0)) phi = alpha - phi_muRel print(f'phi_muRel = {phi_muRel} deg') print(f'phi = {phi} deg') print(f'alpha = {alpha} deg') duration = 100 # tE time_steps = 100 tmin = psbl.t0 - 2 tmax = psbl.t0 + 2 # time_steps = 10000 # tmin = psbl.t0 - 1000 # tmax = psbl.t0 + 1000 dt = np.linspace(tmin, tmax, time_steps) img_arr, amp_arr = psbl.get_all_arrays(dt) phot = psbl.get_photometry(dt, amp_arr=amp_arr) print(amp_arr[0:5], img_arr[0:5]) plt.figure(1) plt.clf() plt.plot(dt, phot, 'k.-') ax = plt.gca() ax.invert_yaxis() ax.ticklabel_format(useOffset=False) return # Testing GP classes. def test_GP_classes(plot=False): """ Make sure can instantiate. """ t0 = 57000 u0_amp = 0.5 tE = 150 piE_E = 0.05 piE_N = 0.05 b_sff = 0.9 mag_src = 17.0 gp_log_sigma = 0.1 gp_log_rho = 1.0 gp_log_So = 0.1 gp_log_omegao = 0.1 raL = 17.30 * 15. decL = -29.0 gp_rho = 1.0 gp_log_omegaofour_So = 0.1 np.random.seed(42) data_stuff = fake_correlated_data(t0 = t0, u0_amp = u0_amp, tE = tE, piE_E = piE_E, piE_N = piE_N, b_sff = b_sff, mag_src = mag_src, gp_log_sigma = gp_log_sigma, gp_log_rho = gp_log_rho, gp_log_So = gp_log_So, gp_log_omegao = gp_log_omegao, raL = raL, decL = decL) pspl_model_in = data_stuff[0] data23_uncorr = data_stuff[1] data23 = data_stuff[2] params = data_stuff[3] model2 = model.PSPL_Phot_Par_GP_Param1(t0, u0_amp, tE, piE_E, piE_N, b_sff, mag_src, gp_log_sigma, gp_log_rho, gp_log_So, gp_log_omegao, raL=raL, decL=decL) model3 = model.PSPL_Phot_noPar_GP_Param1(t0, u0_amp, tE, piE_E, piE_N, b_sff, mag_src, gp_log_sigma, gp_log_rho, gp_log_So, gp_log_omegao, raL=raL, decL=decL) # Put in some assert statements to make sure things don't break in the future. times = np.arange(56000, 58000, 100) ########## # Note: Model 2 should match data (both with parallax) within errors. ########## # Test that model 2 photometry is sensible (with no GP). mod2_phot_good = np.array([16.88473035, 16.88425742, 16.88347207, 16.88227126, 16.87984510, 16.87418014, 16.86227960, 16.83498515, 16.74673373, 16.48463579, 16.11297016, 16.43088797, 16.75054887, 16.83643682, 16.86184533, 16.87410198, 16.87991725, 16.88227589, 16.88345499, 16.88426179]) mod2_phot_out = model2.get_photometry(times) np.testing.assert_allclose(mod2_phot_out, mod2_phot_good, rtol=1e-5) # Test the model 2 GP photometry... seed is fixed so this should remain identical. But I loosened tolerance mod2_gpphot_good = np.array([16.88473035, 17.08646751, 16.74805916, 16.68253705, 16.87984509, 16.96989977, 16.6386355, 16.83498515, 16.85998419, 16.51997825, 16.12006682, 16.43088797, 16.61076884, 16.70502475, 16.93342688, 16.87410206, 16.87479723, 16.94838136, 16.88345499, 17.01714564]) mod2_gpphot_out, mod2_gpphot_std_out = model2.get_photometry_with_gp(data23['t_phot1'], data23['mag1'], data23['mag_err1'], t_pred=times) np.testing.assert_allclose(mod2_phot_out, mod2_phot_good, rtol=1e-2) # Test that we get the PSPL model out that we put in. (no GP) mod2_phot_out_at_tobs = model2.get_photometry(data23_uncorr['t_phot1']) np.testing.assert_allclose(mod2_phot_out_at_tobs, data23_uncorr['mag1'], rtol=0.3) if plot: plt.figure(1) plt.clf() plt.plot(times, mod2_gpphot_out, 'k-', label='With GP') plt.plot(times, mod2_phot_out, 'r-', label='No GP') plt.xlabel('MJD') plt.ylabel('Mag') plt.gca().invert_yaxis() plt.legend() plt.title('test_GP: model2') ########## # Note: Model 3 should NOT match data (model without parallax, data with parallax) ########## # Test that model 2 photometry is sensible (with no GP). mod3_phot_good = np.array([16.88470908, 16.88426858, 16.88352731, 16.88220882, 16.87970123, 16.87452809, 16.86275283, 16.83268396, 16.74634087, 16.48738257, 16.09854878, 16.48738257, 16.74634087, 16.83268396, 16.86275283, 16.87452809, 16.87970123, 16.88220882, 16.88352731, 16.88426858]) mod3_phot_out = model3.get_photometry(times) np.testing.assert_allclose(mod3_phot_out, mod3_phot_good, rtol=1e-5) # Test the model 2 GP photometry... seed is fixed so this should remain identical. But I loosened tolerance mod3_gpphot_good = np.array([16.88470908, 17.08646752, 16.74805921, 16.68253668, 16.87970122, 16.96989985, 16.63863561, 16.83268396, 16.85998404, 16.51997894, 16.12006319, 16.48738257, 16.61076444, 16.70502078, 16.93406828, 16.87452817, 16.874797, 16.94838128, 16.88352731, 17.01714565]) mod3_gpphot_out, mod3_gpphot_std_out = model3.get_photometry_with_gp(data23['t_phot1'], data23['mag1'], data23['mag_err1'], t_pred=times) np.testing.assert_allclose(mod3_phot_out, mod3_phot_good, rtol=1e-5) return def test_FSPL_classes(plot=False): """ Make sure can instantiate. """ mL = 10 t0 = 57000 beta = 2 dL = 4000 dS = 8000 xS0_E = 0.0 xS0_N = 0.08E-3 muS_E = -4.18 muS_N = -0.28 muL_E = 5.0 muL_N = -0.16 radius = 1e-3 b_sff = 0.9 mag_src = 19.0 raL = 17.30 * 15. decL = -29.0 # Array of times we will sample on. time_arr = np.linspace(t0-1000, t0+1000, 1000) def test_fspl_once(r_in, n_in, phot_arr_good, mod='FSPL'): # Make the model tstart = time.time() if mod == 'FSPL': tmp_mod = model.FSPL_PhotAstrom_Par_Param1(mL, t0, beta, dL, dS, xS0_E, xS0_N, muL_E, muL_N, muS_E, muS_N, r_in, b_sff, mag_src, n_in, raL=raL, decL=decL) else: tmp_mod = model.PSPL_PhotAstrom_Par_Param1(mL, t0, beta, dL, dL/dS, xS0_E, xS0_N, muL_E, muL_N, muS_E, muS_N, b_sff, mag_src, raL=raL, decL=decL) # Generate photometry phot_arr = tmp_mod.get_photometry(time_arr) # When working, fetch 10 points, evenly distributed and # save as the "right answer" in the individual tests below. # print(repr(phot_arr[::100])) # GET GOOD # Check against good data
np.testing.assert_allclose(phot_arr[::100], phot_arr_good, rtol=1e-6)
numpy.testing.assert_allclose
import cv2 from mapUtils import angleToCenter, distanceToCenter, fractalnoise, normalize import numpy as np import matplotlib.pyplot as plt def get_image(): # image2 = normalize(angleToCenter((300, 300))) image1 = 1 - normalize(distanceToCenter((300, 300))) image3 = normalize(fractalnoise((300, 300), 2)) image = image1 * image3 thres = 0.3 image =
np.clip((image - thres) * 100.0 + thres, 0, 1)
numpy.clip
import pandas as pd import numpy as np from pandas_datareader import data import matplotlib.pyplot as plt import yaml import sys import math plt.style.use('ggplot') def LoadConfig( yamlpath: str)-> dict: config = yaml.load( open(yamlpath, 'r'), Loader=yaml.FullLoader) return config def GetData( ticker : str, start_date : str, end_date : str)-> pd.DataFrame: """Getting historic price data from yahoo finance. Arguments: ticker {str} start_date {str} end_date {str} Returns: pd.DataFrame --> the output price dataframe """ return data.DataReader(ticker,'yahoo', start_date, end_date) def PlotOptimalSharpeRatio(Agent): plt.plot(range(len(Agent.epoch_training)),Agent.epoch_training, color ="navy") plt.title("Sharpe ratio optimization") plt.xlabel("Number of Iterations") plt.ylabel("Sharpe Ratio") plt.grid(True) plt.savefig("outputfiles/graphs/Sharpe ratio optimization {} SMA noFeatures.png".format(str(Agent.input_size)), dpi=300) plt.close def PlotTraining(Agent): fig, ax = plt.subplots(nrows=3, figsize=(20, 10)) t =
np.linspace(1, Agent.trading_periods, Agent.trading_periods)
numpy.linspace
import math import os import random import sys import time import cv2 import numpy as np import torch import torch.nn as nn from torch.autograd import Variable from skimage.morphology import skeletonize def str2bool(v): if isinstance(v, bool): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("Boolean value expected.") def ensure_dir(path): if not os.path.exists(path): os.makedirs(path) def setSeed(config): if config["seed"] is None: manualSeed = np.random.randint(1, 10000) else: manualSeed = config["seed"] print("Random Seed: ", manualSeed) np.random.seed(manualSeed) torch.manual_seed(manualSeed) random.seed(manualSeed) torch.cuda.manual_seed_all(manualSeed) def getParllelNetworkStateDict(state_dict): from collections import OrderedDict new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v return new_state_dict def to_variable(tensor, volatile=False, requires_grad=True): return Variable(tensor.long().cuda(), requires_grad=requires_grad) def weights_init(model, manual_seed=7): np.random.seed(manual_seed) torch.manual_seed(manual_seed) random.seed(manual_seed) torch.cuda.manual_seed_all(manual_seed) for m in model.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2.0 / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def weights_normal_init(model, manual_seed=7): np.random.seed(manual_seed) torch.manual_seed(manual_seed) random.seed(manual_seed) torch.cuda.manual_seed_all(manual_seed) for m in model.modules(): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): m.weight.data.normal_(0.0, 0.02) elif isinstance(m, nn.BatchNorm2d): m.weight.data.normal_(1.0, 0.02) m.bias.data.fill_(0) def performAngleMetrics( train_loss_angle_file, val_loss_angle_file, epoch, hist, is_train=True, write=False ): pixel_accuracy = np.diag(hist).sum() / hist.sum() mean_accuracy = np.diag(hist) / hist.sum(1) mean_iou = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist)) freq = hist.sum(1) / hist.sum() fwavacc = (freq[freq > 0] * mean_iou[freq > 0]).sum() if write and is_train: train_loss_angle_file.write( "[%d], Pixel Accuracy:%.3f, Mean Accuracy:%.3f, Mean IoU:%.3f, Freq.Weighted Accuray:%.3f \n" % ( epoch, 100 * pixel_accuracy, 100 * np.nanmean(mean_accuracy), 100 * np.nanmean(mean_iou), 100 * fwavacc, ) ) elif write and not is_train: val_loss_angle_file.write( "[%d], Pixel Accuracy:%.3f, Mean Accuracy:%.3f, Mean IoU:%.3f, Freq.Weighted Accuray:%.3f \n" % ( epoch, 100 * pixel_accuracy, 100 * np.nanmean(mean_accuracy), 100 * np.nanmean(mean_iou), 100 * fwavacc, ) ) return 100 * pixel_accuracy, 100 *
np.nanmean(mean_iou)
numpy.nanmean
# run octave from python (IO code ) # This code will run the IO code and produce the plots for RMSE and save the out put data # Created by <NAME> # <EMAIL> # ----------------------------------------------------------------------------------- # DO not change any line here, it will be changed automatically by the io_scrpt.sh!! # ----------------------------------------------------------------------------------- from oct2py import octave import pandas as pd import csv from sklearn.metrics import mean_squared_error import matplotlib.pyplot as plt import numpy as np from RMSE_MAPS_INGO import read_data_from_mistral as rdfm from CCLM_OUTS import Plot_CCLM import cartopy.crs as ccrs #from Plot_RMSE_SPREAD_main import plot_rmse_spread as prs # ============================================= NAMELIST ========================================== SEAS='DJF' NN=1000#number of observations should be read from previous funcions!!!! month_length=20 SEAS='DJF' Vari = 'T_2M' buffer=20 timesteps=10 # number of the seasons (years) start_time=0 #name_2 = 'member_relax_3_big_00_' + Vari + '_ts_splitseas_1979_2015_' + SEAS + '.nc' name_2 = 'tg_0.44deg_rot_v15.0_' + SEAS + '_1979_2015_remapbil.nc' member=0 DIR="path_oi" DIR_exp="path_dir"+"/" # ================================================================================================= octave.run(DIR+"run_IO.m") # Running the Octave Interface from python! # ------------------------------------------------------------------------------------------------- LAT = pd.read_csv(DIR_exp+"Trash/LAT.csv", header=None) LON = pd.read_csv(DIR_exp+"Trash/LON.csv", header=None) Forecast_3 = np.array(pd.read_csv(DIR_exp+'Trash/SEASON_MEAN1' + '_' + SEAS + '.csv', header=None))#Reading the Forecast values t_f = np.zeros((month_length,Forecast_3.shape[0],Forecast_3.shape[1])) for month in range(0, month_length):# Reading the ensemble forecast for each month! t_f[month,:,:] = pd.read_csv(DIR_exp+'Trash/SEASON_MEAN' + str(month) + '_' + SEAS + '.csv', header=None) t_f = np.array(t_f) ## add correction to forecast : # declare zero matrix which will be filled result_IO = np.zeros((month_length,Forecast_3.shape[0],Forecast_3.shape[1])) result = np.zeros((Forecast_3.shape[0],Forecast_3.shape[1])) for i in range(0,month_length): fil=DIR + 'fi' + str(member) + str(i) +'.csv' result=np.array(list(csv.reader(open(fil,"rb"),delimiter=','))).astype('float') result_IO[i,:,:] = np.squeeze(t_f[i,:,:]) + result # plot differences pdf_name= 'last_m100_l20_'+str(member)+'.pdf' #t_o, lat_o, lon_o, rlat_o, rlon_o =rdfm(dir='/work/bb1029/b324045/work5/03/member_relax_3_big_00/post/', # the observation (default run without shifting) # name=name_2, # var=Vari) #t_o, lat_o, lon_o, rlat_o, rlon_o =rdfm(dir='NETCDFS_CCLM/03/member_relax_3_big_00/post/', # the observation (default run without shifting) # name=name_2, # var=Vari) t_o, lat_o, lon_o, rlat_o, rlon_o =rdfm(dir='/NETCDFS_CCLM/eobs/', # the observation (default run without shifting) name=name_2, var=Vari) dext_lon = t_o.shape[2] - (2 * buffer) dext_lat = t_o.shape[1] - (2 * buffer) start_lon=(buffer+4) start_lat=(buffer-4) ##TODO: make it a function: #def f(x): # if x==-9999: # return float('NaN') # else: # return x #f2 = np.vectorize(f) #t_o= f2(t_o) #t_o=t_o.squeeze() #t_o = t_o.data #t_o[np.isnan(t_o)] = np.nanmean(t_o) ##end todo #t_o[t_o<-900]=float('NaN') #t_o[np.isnan(t_o)]=float(0.0) forecast = result_IO obs = t_o[0:month_length, buffer:buffer + dext_lat, buffer:buffer + dext_lon] RMSE=np.zeros((forecast.shape[1],forecast.shape[2])) RMSE_TIME_SERIES=
np.zeros(forecast.shape[0])
numpy.zeros
import PIL import io import os import itertools import cv2 import uuid import tensorflow as tf import numpy as np import pandas as pd from pathlib import Path from object_detection.utils import dataset_util from jigsaw.model_utils.base.mask import LabeledImageMask from jigsaw.model_utils.types import BoundingBox class InstanceImageMask(LabeledImageMask): training_type = "Instance Segmentation" verbose_write = False def __init__(self, image_id, image_path, image_type, label_boxes, mask_path, label_masks, binary_masks, xdim, ydim): super().__init__(image_id, image_path, image_type, mask_path, label_masks, xdim, ydim) self.label_boxes = label_boxes self.binary_masks = binary_masks @classmethod def construct(cls, image_id, **kwargs): """Constructs a LabeledImageMask object from a set of standard files Args: image_id (str): the unique ID for this image Returns: LabeledImageMask: the object representative of this semantically- labeled image """ try: skip_background = kwargs["skip_background"] except KeyError: skip_background = True if cls.temp_dir is None: cwd = Path.cwd() data_dir = cwd / 'data' else: data_dir = cls.temp_dir mask_filepath = data_dir / f'mask_{image_id}.png' mask_filepath = str( mask_filepath.absolute()) # cv2.imread doesn't like Path objects. labels_filepath = data_dir / f'labels_{image_id}.csv' image_filepath = None image_type = None file_extensions = [".png", ".jpg", ".jpeg"] for extension in file_extensions: temp_filepath = data_dir / f'image_{image_id}{extension}' if os.path.exists(data_dir / f'image_{image_id}{extension}'): image_filepath = data_dir / f'image_{image_id}{extension}' image_type = extension break if image_filepath is None: raise ValueError("Hmm, there doesn't seem to be a valid image filepath.") labels_df = pd.read_csv(labels_filepath, index_col="label") image_mask = cv2.imread(mask_filepath) ydim, xdim, _ = image_mask.shape label_masks = {} for label, color in labels_df.iterrows(): if label == "background" and skip_background: continue color_bgr = np.array([color["B"], color["G"], color["R"]]) label_masks[label] = color_bgr label_boxes = [] binary_masks = [] image_mask = cv2.imread(mask_filepath) r = 2 b = 0 g = 1 for label, color in label_masks.items(): if label == 'panel_left' or label == 'panel_right': label = 'solar_panel' matched = False x = [-2 -1, 0, 1, 2] iters = [p for p in itertools.product(x, repeat=3)] mask = np.zeros(image_mask.shape, dtype=np.uint8) for i in iters: c = np.add(color, np.array(i)) match = np.where((image_mask == c).all(axis=2)) y, x = match if len(y) != 0 and len(x) != 0: mask[match] = [255, 255, 255] matched = True cls.add_label_int(label) if not matched: continue rows = np.any(mask, axis=1) cols = np.any(mask, axis=0) ymin, ymax =
np.where(rows)
numpy.where
from __future__ import print_function ''' This module should be organized as follows: Main function: chi_estimate() = returns chi_n, chi_b - calls: wealth.get_wealth_data() - returns data moments on wealth distribution labor.labor_data_moments() - returns data moments on labor supply minstat() - returns min of statistical objective function model_moments() - returns model moments SS.run_SS() - return SS distributions ''' ''' ------------------------------------------------------------------------ Last updated: 7/27/2016 Uses a simulated method of moments to calibrate the chi_n adn chi_b parameters of OG-USA. This py-file calls the following other file(s): wealth.get_wealth_data() labor.labor_data_moments() SS.run_SS This py-file creates the following other file(s): None ------------------------------------------------------------------------ ''' import numpy as np import scipy.optimize as opt import pandas as pd import os try: import cPickle as pickle except ImportError: import pickle from . import wealth from . import labor from . import SS from . import utils def chi_n_func(s, a0, a1, a2, a3, a4): chi_n = a0 + a1 * s + a2 * s ** 2 + a3 * s ** 3 + a4 * s ** 4 return chi_n def chebyshev_func(x, a0, a1, a2, a3, a4): func = np.polynomial.chebyshev.chebval(x, [a0, a1, a2, a3, a4]) return func def chi_estimate(p, client=None): ''' -------------------------------------------------------------------- This function calls others to obtain the data momements and then runs the simulated method of moments estimation by calling the minimization routine. INPUTS: income_tax_parameters = length 4 tuple, (analytical_mtrs, etr_params, mtrx_params, mtry_params) ss_parameters = length 21 tuple, (J, S, T, BW, beta, sigma, alpha, Z, delta, ltilde, nu, g_y,\ g_n_ss, tau_payroll, retire, mean_income_data,\ h_wealth, p_wealth, m_wealth, b_ellipse, upsilon) iterative_params = [2,] vector, vector with max iterations and tolerance for SS solution chi_guesses = [J+S,] vector, initial guesses of chi_b and chi_n stacked together baseline_dir = string, path where baseline results located OTHER FUNCTIONS AND FILES CALLED BY THIS FUNCTION: wealth.compute_wealth_moments() labor.labor_data_moments() minstat() OBJECTS CREATED WITHIN FUNCTION: wealth_moments = [J+2,] array, wealth moments from data labor_moments = [S,] array, labor moments from data data_moments = [J+2+S,] array, wealth and labor moments stacked bnds = [S+J,] array, bounds for parameter estimates chi_guesses_flat = [J+S,] vector, initial guesses of chi_b and chi_n stacked min_arg = length 6 tuple, variables needed for minimizer est_output = dictionary, output from minimizer chi_params = [J+S,] vector, parameters estimates for chi_b and chi_n stacked objective_func_min = scalar, minimum of statistical objective function OUTPUT: ./baseline_dir/Calibration/chi_estimation.pkl RETURNS: chi_params -------------------------------------------------------------------- ''' baseline_dir="./OUTPUT" #chi_b_guess = np.ones(80) # a0 = 5.38312524e+01 # a1 = -1.55746248e+00 # a2 = 1.77689237e-02 # a3 = -8.04751667e-06 # a4 = 5.65432019e-08 """ Kei's Vals a0 = 170 a1 = -2.19154735e+00 a2 = -2.22817460e-02 a3 = 4.49993507e-04 a4 = -1.34197054e-06 """ """ Adam's Vals 1 a0 = 2.59572155e+02 a1 = -2.35122641e+01 a2 = 4.27581467e-01 a3 = -3.40808933e-03 a4 = 1.00404321e-05 """ a0 = 1.16807470e+03#5.19144310e+02 a1 = -1.05805189e+02#-4.70245283e+01 a2 = 1.92411660e+00#8.55162933e-01 a3 = -1.53364020e-02#-6.81617866e-03 a4 = 4.51819445e-05#2.00808642e-05 sixty_plus_chi = 10000 params_init =
np.array([a0, a1, a2, a3, a4])
numpy.array
#! # # REFERENCES # util_ManualOverlapGrid.py # 20160906-Pankow-ProgressPortingNRVariantToMaster/util_ManualOverlapGrid.py # import scipy.linalg as linalg import numpy as np def fit_quadratic(x,y,x0=None,variable_symmetry_list=None,gamma_x=None,prior_x_gamma=None,prior_quadratic_gamma=None,verbose=False,n_digits=None,hard_regularize_negative=False,hard_regularize_scale=1): """ Simple least squares to a quadratic. Written out in long form so I can impose priors as needed on (a) the fit coefficients [=regularization] and (b) the 'x' coordinates. INPUT: x = array so x[0] , x[1], x[2] are points. y = array of y values OUTPUT peak_val_est, best_val_est, my_fisher_est, linear_term_est, fit_here : python function providing best fit. Usually what you want, but cannot be pickled/saved to text OPTIONAL variable_symmetry_list = list of length x, indicating symmetry under ONE discrete symmetry (so far) """ x0_val = np.zeros(len(x[0])) if not (x0 is None): if verbose: print(" Fisher: Using reference point ", x0) x0_val = x0 dim = len(x[0]) npts = len(x) if verbose: print(" Fisher : dimension, npts = " ,dim, npts) # Constant, linear, quadratic functions. # Beware of lambda: f_list = [(lambda x: k) for k in range(5)] does not work, but this does # f_list = [(lambda x,k=k: k) for k in range(5)] f0 = [lambda z: np.ones(len(z),dtype=np.float128)] # indx_lookup_linear = {} # protect against packing errors # indx_here = len(f0) # f_linear = [] # for k in np.arange(dim): # f_linear.append( (lambda z,k=k,x0V=x0_val: z.T[k] - x0V[k])) # indx_lookup_linear[k] =indx_here # indx_here+=1 f_linear = [(lambda z,k=k,x0V=x0_val: z.T[k] - x0V[k]) for k in np.arange(dim)] f_quad = [] indx_lookup = {} indx_here =len(f0)+len(f_linear) for k in np.arange(dim): for q in range(k,dim): if variable_symmetry_list: if variable_symmetry_list[k]*variable_symmetry_list[q] <0: if verbose: print(" Not including quadratic term because of symmetry", (k,q)) continue # skip the remaining part f_quad.append( (lambda z,k=k,q=q: (z.T[k] - x0_val[k])*(z.T[q]-x0_val[q])) ) indx_lookup[(k,q)] = indx_here indx_here+=1 f_list=f0+f_linear + f_quad n_params_model = len(f_list) if verbose: print(" ---- Dimension: --- ", n_params_model) print(" ---- index pattern (paired only; for manual identification of quadratic terms) --- ") print(indx_lookup) # if verbose: # print " ---- check quadratic --- " # for pair in indx_lookup: # fn_now = f_list[indx_lookup[pair]] # print " Grid test " , pair, fn_now(np.array([1,0])), fn_now(np.array([0,1])), fn_now(np.array([1,1])) ,fn_now(np.array([1,-1])) F = np.matrix(np.zeros((len(x), n_params_model),dtype=np.float128)) for q in np.arange(n_params_model): fval = f_list[q](np.array(x,dtype=np.float128)) F[:,q] = np.reshape(fval, (len(x),1)) gamma = np.matrix( np.diag(np.ones(npts,dtype=np.float128))) if not(gamma_x is None): gamma = np.matrix(gamma_x) Gamma = F.T * gamma * F # Fisher matrix for the fit Sigma = linalg.inv(Gamma) # Covariance matrix for the fit. WHICH CODE YOU USE HERE IS VERY IMPORTANT. # if verbose: # print " -- should be identity (error here is measure of overall error) --- " # print " Fisher: Matrix inversion/manipulation error ", np.linalg.norm(Sigma*Gamma - np.eye(len(Sigma))) , " which can be large if the fit coordinates are not centered near the peak" # print " -- --- " lambdaHat = np.array((Sigma* F.T*gamma* np.matrix(y).T))[:,0] # point estimate for the fit parameters (i.e., fisher matrix and best fit point) if n_digits: lambdaHat = np.array(map(lambda z: round(z,n_digits),lambdaHat)) if verbose: print(" Fisher: LambdaHat = ", lambdaHat) if verbose: print(" Generating predictive function ") def fit_here(x): return np.sum(list(map(lambda z: z[1]*z[0](x), zip(f_list,lambdaHat) )),axis=0) if verbose: my_resid = y - fit_here(x) print(" Fisher: Residuals ", np.std(my_resid)) ### ### Reconstructing quadratic terms: a bonus item ### constant_term_est = lambdaHat[0] # Constant term linear_term_est = lambdaHat[1:dim+1] # Coefficient of linear terms my_fisher_est = np.zeros((dim,dim),dtype=np.float64) # A SIGNIFICANT LIMITATION... for pair in indx_lookup: k = pair[0]; q=pair[1]; indx_here = indx_lookup[pair] my_fisher_est[k,q] += -lambdaHat[indx_here] my_fisher_est[q,k] += -lambdaHat[indx_here] # this will produce a factor of 2 if the two terms are identical if not(prior_x_gamma is None) and (prior_x_gamma.shape == my_fisher_est.shape): my_fisher_est += prior_x_gamma if verbose: print(" Fisher: ", my_fisher_est) print(" Fisher: Sanity check (-0.5)*Fisher matrix vs components (diagonal only) : ", -0.5*my_fisher_est, "versus", lambdaHat) my_fisher_est_inv = linalg.inv(my_fisher_est) # SEE INVERSE DISCUSSION if verbose: print(" Fisher: Matrix inversion/manipulation error test 2", np.linalg.norm(np.dot(my_fisher_est,my_fisher_est_inv) - np.eye(len(my_fisher_est)))) peak_val_est = float(constant_term_est) +np.dot(linear_term_est, np.dot(my_fisher_est_inv,linear_term_est))/2 best_val_est = x0_val + np.dot(my_fisher_est_inv,linear_term_est) # estimated peak location, including correction for reference point if verbose: print(" Fisher : Sanity check: peak value estimate = ", peak_val_est, " which arises as a delicate balance between ", constant_term_est, " and ", np.dot(linear_term_est, np.dot(my_fisher_est_inv,linear_term_est))/2) print(" Fisher : Best coordinate estimate = ", best_val_est) print(" Fisher : eigenvalues (original) ", np.linalg.eig(my_fisher_est)) if hard_regularize_negative: w,v = np.linalg.eig(my_fisher_est) indx_neg = w<0 # usually we are regularizing placements in spin ... this provides us with error in that dimension w[indx_neg] = hard_regularize_scale # 1./np.min( np.std(x,axis=0))**2 # use scatterplot of input points to set scale of this dimension my_fisher_est = np.dot(v.T,np.dot(np.diag(w),v)) # reconstruct matrix, after regularization return [peak_val_est, best_val_est, my_fisher_est, linear_term_est,fit_here] def fit_quadratic_and_resample(x,y,npts,rho_fac=1,x0=None,gamma_x=None,prior_x_gamma=None,prior_quadratic_gamma=None,verbose=False,n_digits=None,hard_regularize_negative=False,hard_regularize_scale=1): """ Simple least squares to a quadratic, *and* resamples from the quadratic derived from the fit. Critical for iterative evaluation of - Fisher matrix - lnLmarg (ILE) TO DO: - implement non-stochastic placement as option (e.g., like effectiveFisher.py) """ # Find the fit the_quadratic_results = fit_quadratic(x,y,x0=x0,gamma_x=gamma_x,prior_x_gamma=prior_x_gamma,prior_quadratic_gamma=prior_quadratic_gamma,n_digits=n_digits,hard_regularize_negative=hard_regularize_negative,hard_regularize_scale=hard_regularize_scale) peak_val_est, best_val_est, my_fisher_est, linear_term_est,fit_here = the_quadratic_results # Use the inverse covariance mattrix my_fisher_est_inv = linalg.pinv(my_fisher_est) # SEE INVERSE DISCUSSION x_new = np.random.multivariate_normal(best_val_est,my_fisher_est_inv/(rho_fac*rho_fac),size=npts) return x_new if __name__ == "__main__": import argparse import sys import numpy as np print(" Testing quadratic fit code ") print(" Two dimensions ") x1 = np.linspace(-5,5,40) x2 =
np.linspace(-1,1,10)
numpy.linspace
import numpy as np import time class SVM(): def __init__(self, max_iter=10000, kernel='rbf', C=1.0, gamma=0.001): self.max_iter = max_iter if kernel == 'linear': self.kernel = self.linear_kernel elif kernel == 'sigmoid': self.kernel = self.sigmoid_kernel else: self.kernel = self.rbf_kernel self.kernel = self.sigmoid_kernel if kernel=='sigmoid' else self.rbf_kernel self.C = C self.gamma = gamma def fit(self, X, y): t1 = time.time() # 初期化 n, d = X.shape[0], X.shape[1] alpha = np.zeros((n)) kernel = self.kernel count = 0 while count < self.max_iter: count += 1 alpha_prev = np.copy(alpha) for j in range(0, n): i = j while i == j: i = np.random.randint(0, n) x_i, x_j, y_i, y_j = X[i,:], X[j,:], y[i], y[j] k_ij = kernel(x_i, x_i, self.gamma) + kernel(x_j, x_j, self.gamma) - 2 * kernel(x_i, x_j, self.gamma) if k_ij == 0: continue alpha_prime_j, alpha_prime_i = alpha[j], alpha[i] (L, H) = self.compute_L_H(self.C, alpha_prime_j, alpha_prime_i, y_j, y_i) # パラメータの更新 self.w = np.dot(alpha * y, X) self.b = np.mean(y - np.dot(self.w.T, X.T)) # 予測誤差 E_i = self.E(x_i, y_i, self.w, self.b) E_j = self.E(x_j, y_j, self.w, self.b) # alphaの更新 alpha[j] = alpha_prime_j + float(y_j * (E_i - E_j))/k_ij alpha[j] = max(alpha[j], L) alpha[j] = min(alpha[j], H) alpha[i] = alpha_prime_i + y_i*y_j * (alpha_prime_j - alpha[j]) # 収束判定 diff = np.linalg.norm(alpha - alpha_prev) if diff < 0.001: break # パラメータの決定 self.b = np.mean(y - np.dot(self.w.T, X.T)) if self.kernel == self.linear_kernel: self.w = np.dot(alpha * y, X) # 処理時間 t2 = time.time() self.elapsed_time = t2 - t1 def predict(self, X): return self.h(X, self.w, self.b) # 予測 def h(self, X, w, b): return np.sign(np.dot(w.T, X.T) + b).astype(int) # 予測誤差 def E(self, x_k, y_k, w, b): return self.h(x_k, w, b) - y_k def compute_L_H(self, C, alpha_prime_j, alpha_prime_i, y_j, y_i): if(y_i != y_j): return (max(0, alpha_prime_j - alpha_prime_i), min(C, C - alpha_prime_i + alpha_prime_j)) else: return (max(0, alpha_prime_i + alpha_prime_j - C), min(C, alpha_prime_i + alpha_prime_j)) # カーネルを定義 def linear_kernel(self, x1, x2): return np.dot(x1, x2.T) def sigmoid_kernel(self, x1, x2, gamma): return 1 / (1 + np.exp(-gamma * np.dot(x1, x2.T))) def rbf_kernel(self, x1, x2, gamma): return (np.exp(-gamma *
np.linalg.norm(x1 - x2)
numpy.linalg.norm
from math import isclose import numpy as np import scipy.spatial class PointData: def __init__(self, left, point, right): self.left = left self.point = point self.right = right self.between = between_neighbors(left, point, right) self.offset = midpoint_projection_offset(left, point, right) def __eq__(self, other): if isinstance(self, other.__class__): return all([ np.array_equal(self.left, other.left), np.array_equal(self.point, other.point), np.array_equal(self.right, other.right), (self.between == other.between), isclose(self.offset, other.offset), ]) return NotImplemented def less_or_close(a, b, *args, **kwargs): # Use isclose for handling effective equivalence return a < b or isclose(a, b, *args, **kwargs) def neighbor_window(seq, index, count=1): if len(seq) < (count + 2): raise ValueError("seq must have at least 3 elements to have neighbors") if index < 1 or index > (len(seq) - (count + 1)): raise IndexError(f"Index must fall between 1 and len(seq) - 2 to have neighbors: (index={index}, seq={seq})") return seq[index - 1:index + count + 1] def modified_point_list(seq): if len(seq) < 3: raise ValueError("seq must have at least 3 elements to have neighbors") if not np.array_equal(seq[0], seq[-1]): raise ValueError("First and last element must match") return_seq = [] for pnt in tuple(seq) + (seq[1],): try: if len(pnt) == 2: return_seq.append(np.asarray(pnt)) continue except TypeError: raise ValueError("each element in seq must have len(2)") return return_seq def point_window_iter(seq): # Iterates over groups of three points, where the input seq # has first and last the same, then add a final group with the # first/last element in the middle elem_wrapped_seq = seq + (seq[1],) for i in range(1, len(elem_wrapped_seq) - 1): yield neighbor_window(elem_wrapped_seq, i) def within_tolerance(value, within, float_tol=1e-9): if (within < 0): raise ValueError('Argument "within" cannot be negative') abs_value = abs(value) return less_or_close(abs_value, within, rel_tol=float_tol) def midpoint_projection_offset(pnt1, pnt2, pnt3): outer_vec = pnt3 - pnt1 norm_outer = np.linalg.norm(outer_vec) return abs(np.cross(outer_vec, pnt1 - pnt2) / norm_outer) def between_neighbors(pnt1, pnt2, pnt3): """Midpoint projected onto neighboring points line is contained in segment""" # Make sure the projection of the midpoint lies between the outer points outer_vec = pnt3 - pnt1 norm_outer = np.linalg.norm(outer_vec) scalar_proj = np.dot(pnt2 - pnt1, outer_vec / norm_outer) return ( less_or_close(0, scalar_proj) and less_or_close(scalar_proj, norm_outer) ) def points_inline(pnt1, pnt2, pnt3, tolerance, float_tol=1e-9): """Check if the middle point lies on the line between 1 and 2 withing tolerance""" mid_offset = midpoint_projection_offset(pnt1, pnt2, pnt3) # First check point is inline within tolerence is_inline = within_tolerance(mid_offset, tolerance, float_tol) # Make sure the projection of the midpoint lies between the outer points is_between = between_neighbors(pnt1, pnt2, pnt3) return is_inline and is_between def get_radians(pnt1, pnt2, pnt3): v1 = pnt1 - pnt2 v2 = pnt3 - pnt2 return np.arccos(np.dot(v1, v2) / (
np.linalg.norm(v1)
numpy.linalg.norm
import os import glob import pathlib import numpy as np import matplotlib.pyplot as plt from sklearn.metrics import roc_auc_score, average_precision_score, precision_recall_curve, roc_curve from sklearn.utils.fixes import signature from skimage.measure import compare_ssim as ssim from scipy.misc import imread from scipy.io import loadmat, savemat from ROC import assessment from ProgressBar import ProgressBar import cv2 os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2' def check_path(dataset, cube_size): cube_str = '%d_%d_%d' % tuple(cube_size) assert cube_str in dataset['cube_dir'] # [SECTION] IMAGE PROCESSING # important: load as gray image (i.e. 1 channel) def resize(datum, size): assert len(datum.shape) == 2 ret = cv2.resize(datum.astype(float), tuple(size)) return ret def load_images_and_resize(dataset, new_size=[120, 160], train=True, force_recalc=False, return_entire_data=False): img_dir = dataset['path_train' if train else 'path_test'] n_images = np.sum(count_sequence_n_frame(dataset, test=not train)) print('number of images: ', n_images) n_clip = dataset['n_clip_train' if train else 'n_clip_test'] # if return_entire_data: resized_image_data = np.empty((n_images, new_size[0], new_size[1], 1), dtype=np.float32) idx = 0 # for i in range(n_clip): clip_path = '%s/%s%s/' % (img_dir, 'Train' if train else 'Test', str(i+1).zfill(3)) print(clip_path) # image img_files = sorted(glob.glob(clip_path + '*.tif')) saved_image_file = '%s/%s_image_clip_%d.npz' % (dataset['cube_dir'], 'training' if train else 'test', i+1) if os.path.isfile(saved_image_file) and not force_recalc: image_data = np.load(saved_image_file)['image'] else: image_data = np.array([resize(imread(img_file, 'L')/255., (new_size[1], new_size[0])) for img_file in img_files]).astype(np.float32) np.savez_compressed(saved_image_file, image=image_data) print('clip', i+1, image_data.shape) if return_entire_data: resized_image_data[idx:idx+len(image_data)] = image_data idx += len(image_data) # if return_entire_data: return resized_image_data def load_images_single_clip(dataset, clip_idx, indices, train=True): assert clip_idx in np.arange(dataset['n_clip_train' if train else 'n_clip_test']) img_dir = dataset['path_train' if train else 'path_test'] n_images = count_sequence_n_frame(dataset, test=not train)[clip_idx] print('number of images: ', n_images) # clip_path = '%s/%s%s/' % (img_dir, 'Train' if train else 'Test', str(clip_idx+1).zfill(3)) print(clip_path) # image img_files = sorted(glob.glob(clip_path + '*.tif')) image_data = np.array([imread(img_files[idx])/255. for idx in indices]).astype(np.float32) print('clip', clip_idx+1, image_data.shape) return image_data # [SECTION] CUBE PROCESSING def split_cubes(dataset, clip_idx, cube_size, training_set=True, force_recalc=False, dist_thresh=None): check_path(dataset, cube_size) n_clip = dataset['n_clip_train' if training_set else 'n_clip_test'] assert clip_idx in range(n_clip) print('clip %2d/%2d' % (clip_idx + 1, n_clip)) # load from file if existed saved_cube_file = '%s/%s_cubes_clip_%d_size_%d_%d_%d.npz' % \ (dataset['cube_dir'], 'training' if training_set else 'test', clip_idx + 1, cube_size[0], cube_size[1], cube_size[2]) if os.path.isfile(saved_cube_file) and not force_recalc: loader = np.load(saved_cube_file) cubes = loader['data'] mapping = loader['mapping'] return cubes, mapping # first load image data from file saved_image_file = '%s/%s_image_clip_%d.npz' % (dataset['cube_dir'], 'training' if training_set else 'test', clip_idx + 1) if not os.path.isfile(saved_image_file): print('image file not found! (%s)' % saved_image_file) return None, None image_data = np.load(saved_image_file)['image'] h, w = image_data.shape[1:3] assert h % cube_size[0] == 0 assert w % cube_size[1] == 0 h_grid, w_grid = np.array([h, w])//cube_size[:2] # split images to cubes d_grid = len(image_data) + 1 - cube_size[2] cubes = np.zeros(np.concatenate(([h_grid * w_grid * d_grid], cube_size), axis=0), dtype=np.float32) mapping = np.zeros((h_grid * w_grid * d_grid, 4), dtype=int) print(cubes.shape, image_data.shape) for j in range(d_grid): for k in range(h_grid): for l in range(w_grid): cubes[j*h_grid*w_grid+k*w_grid+l] = np.moveaxis(image_data[j:j+cube_size[2], k*cube_size[0]:(k+1)*cube_size[0], l*cube_size[1]:(l+1)*cube_size[1]], 0, -1) mapping[j*h_grid*w_grid+k*w_grid+l] = [clip_idx, j, k, l] if dist_thresh is not None and training_set: successive_dist = np.array([np.mean(abs(cubes[i]-cubes[i+1])) for i in range(len(cubes)-1)]) idx = np.where(successive_dist >= dist_thresh)[0] cubes, mapping = cubes[idx], mapping[idx] print('new shape:', cubes.shape, image_data.shape) np.savez_compressed(saved_cube_file, data=cubes, mapping=mapping) return cubes, mapping def calc_n_cube_in_set(dataset, h, w, cube_size, training_set=True): check_path(dataset, cube_size) assert h % cube_size[0] == 0 assert w % cube_size[1] == 0 h_grid, w_grid = np.array([h, w])//cube_size[:2] sequence_n_frame = count_sequence_n_frame(dataset, test=not training_set) n_cube = np.sum([((n_frame + 1 - cube_size[2]) * h_grid * w_grid) for n_frame in sequence_n_frame]) return n_cube def load_all_cubes_in_set(dataset, h, w, cube_size, training_set=True): check_path(dataset, cube_size) n_cube_in_set = calc_n_cube_in_set(dataset, h, w, cube_size, training_set=training_set) n_clip = dataset['n_clip_train' if training_set else 'n_clip_test'] # cubes = np.zeros(np.concatenate(([n_cube_in_set], cube_size), axis=0), dtype=np.float32) mapping = np.zeros((n_cube_in_set, 4), dtype=int) idx = 0 for clip_idx in range(n_clip): tmp_cubes, tmp_mapping = split_cubes(dataset, clip_idx, cube_size, training_set=training_set) assert len(tmp_cubes) == len(tmp_mapping) cubes[idx:idx+len(tmp_cubes)] = tmp_cubes mapping[idx:idx+len(tmp_mapping)] = tmp_mapping idx += len(tmp_mapping) # to work with thresholding motion in training samples item_sum = np.array([np.sum(item) for item in cubes]) idx = np.where(item_sum == 0.0)[0] cubes = np.delete(cubes, idx, axis=0) mapping = np.delete(mapping, idx, axis=0) print(cubes.shape, mapping.shape) # return cubes, mapping # get sequence of number of clip's frames def count_sequence_n_frame(dataset, test=True): sequence_n_frame = np.zeros(dataset['n_clip_test' if test else 'n_clip_train'], dtype=int) for i in range(len(sequence_n_frame)): clip_path = '%s/%s%s/' % (dataset['path_test' if test else 'path_train'], 'Test' if test else 'Train', str(i+1).zfill(3)) sequence_n_frame[i] = len(sorted(glob.glob(clip_path + '*.tif'))) return sequence_n_frame # 1: abnormal, 0: normal def get_test_frame_labels(dataset, sequence_n_frame, cube_size, is_subway=False): ground_truth = dataset['ground_truth'] assert len(ground_truth) == len(sequence_n_frame) labels_select_last = np.zeros(0, dtype=int) labels_select_first = np.zeros(0, dtype=int) labels_select_mid = np.zeros(0, dtype=int) labels_full = np.zeros(0, dtype=int) for i in range(len(sequence_n_frame)): if not is_subway: seg = ground_truth[i] # label of full frames tmp_labels =
np.zeros(sequence_n_frame[i])
numpy.zeros
from .pa_rb_env import ( PAEnv, Node ) import numpy as np from pathlib import Path log2 = np.log2 cues = { 0: Node(0.1, 0, 'cue'), 1: Node(-0.1, 0, 'cue'), } devices = { 0: { 't_device': Node(0, 0.5, 't_device'), 'r_devices': { 0: Node(0, 0.6, 'r_device') } }, 1: { 't_device': Node(0, -0.5, 't_device'), 'r_devices': { 0: Node(0, -0.6, 'r_device') } } } def equal(unit, target): tolerance = 1e-6 * np.ones_like(target) return (np.abs(unit - target) < tolerance).all() def test_init_pos(): """test position constraint""" env = PAEnv(n_level=4) def dis(node, target): return np.sqrt( (node.x - target.x) ** 2 + (node.y - target.y) ** 2 ) # test bs cues assert all( env.r_bs <= dis(usr, env.station) <= env.R_bs for usr in env.cues.values() ) # test devices for cluster in env.devices.values(): t_device, r_devices = cluster['t_device'], cluster['r_devices'] assert env.r_bs <= dis(t_device, env.station) <= ( env.R_bs - env.R_dev) assert all( env.r_dev <= dis(r_device, t_device) <= env.R_dev for r_device in r_devices.values() ) def test_jakes(): # TODO test stastic features of jakes # target_std, target_mean = 0.429, 1.253 # Rayleigh Distribution # x_len, y_len, Ns = H_set.shape # h_std = np.mean([ # H_set[x, y, :].std() # for x in range(x_len) # for y in range(y_len) # ]) # assert (h_std - target_std) / target_std < 0.1 # h_mean = np.mean([ # H_set[x, y, :].mean() # for x in range(x_len) # for y in range(y_len) # ]) # assert (h_mean - target_mean) / target_mean < 0.05 pass def test_init_path_loss(): """test distance, since lognormal is random""" env = PAEnv(n_level=4, n_pair=2, m_cue=2) env.cues = cues env.devices = devices env.init_path_loss() distance_matrix = env.distance_matrix target_dis = np.array( [ [0.1, 1.1, np.sqrt(0.26), np.sqrt(0.26), 0.5], [1.1, 0.1, np.sqrt(0.26), np.sqrt(0.26), 0.5], [0.6, 0.6, 0.1, 0.1, 0.503], [np.sqrt(0.37), np.sqrt(0.37), 0.503, 0.2, 0.1], [np.sqrt(0.37), np.sqrt(0.37), 0.2, 0.503, 0.1], ] ) assert equal(distance_matrix, target_dis) def test_get_recv_powers(): """test get_recv_powers""" env = PAEnv(n_level=4, n_pair=2, m_cue=1) power = np.array([ [0.01, 0], [0, 0.01], [0.1, 0], [0, 0.1], ]) emit_powers = np.tile(np.expand_dims(power, axis=1), (1, env.n_channel, 1)) fading = np.array([ [1.1e-2, 1.2e-2, 1.3e-2, 1.4e-2], [2.1e-2, 2.2e-2, 2.3e-2, 2.4e-2], [3.1e-2, 3.2e-2, 3.3e-2, 3.4e-2], [4.1e-2, 4.2e-2, 4.3e-2, 4.4e-2], ]) recv_powers = env.get_recv_powers(emit_powers, fading) target_recv_powers = np.array([ [[1.1e-4, 0], [1.2e-4, 0], [1.3e-4, 0], [1.4e-4, 0]], [[0, 2.1e-4], [0, 2.2e-4], [0, 2.3e-4], [0, 2.4e-4]], [[3.1e-3, 0], [3.2e-3, 0], [3.3e-3, 0], [3.4e-3, 0]], [[0, 4.1e-3], [0, 4.2e-3], [0, 4.3e-3], [0, 4.4e-3]], ]) assert equal(recv_powers, target_recv_powers) def test_get_rates(): """test get_rates""" env = PAEnv(n_level=4, n_pair=2, m_cue=1) recv_powers = np.array([ [[1.1e-4, 0], [1.2e-4, 0], [1.3e-4, 0], [1.4e-4, 0]], [[0, 2.1e-4], [0, 2.2e-4], [0, 2.3e-4], [0, 2.4e-4]], [[3.1e-3, 0], [3.2e-3, 0], [3.3e-3, 0], [3.4e-3, 0]], [[0, 4.1e-3], [0, 4.2e-3], [0, 4.3e-3], [0, 4.4e-3]], ]) rates = env.get_rates(recv_powers) _rate = np.array([ log2(1+1.1/31), log2(1+2.2/42), log2(1+33/1.3), log2(1+44/2.4) ]) target_rates = (_rate * np.ones((env.n_channel, env.n_channel))).T assert equal(rates, target_rates) def test_get_indices(): """test get_indices""" env = PAEnv(n_level=4, n_pair=2, m_cue=1, sorter="recv_power", m_state=2) power = np.array([ [0.01, 0], [0, 0.01], [0.1, 0], [0, 0.1], ]) emit_powers = np.tile(np.expand_dims(power, axis=1), (1, env.n_channel, 1)) fading = np.array([ [1.1e-2, 1.2e-2, 1.3e-2, 1.4e-2], [2.1e-2, 2.2e-2, 2.3e-2, 2.4e-2], [3.1e-2, 3.2e-2, 3.3e-2, 3.4e-2], [4.1e-2, 4.2e-2, 4.3e-2, 4.4e-2], ]) recv_powers = env.get_recv_powers(emit_powers, fading) rates = env.get_rates(recv_powers) metrics = emit_powers, recv_powers, rates, fading # rx_indice don't need test tx_indice, rx_indice = env.get_indices(*metrics) target_tx_indice = np.array([ [3, 3, 3, 2], [0, 1, 2, 3] ]) assert equal(tx_indice, target_tx_indice) def test_get_rewards(): env = PAEnv(n_level=4, n_pair=2, m_cue=1, sorter="recv_power", m_state=2) power = np.array([ [0.01, 0], [0, 0.01], [0.1, 0], [0, 0.1], ]) emit_powers = np.tile(np.expand_dims(power, axis=1), (1, env.n_channel, 1)) fading = np.array([ [1.1e-2, 1.2e-2, 1.3e-2, 1.4e-2], [2.1e-2, 2.2e-2, 2.3e-2, 2.4e-2], [3.1e-2, 3.2e-2, 3.3e-2, 3.4e-2], [4.1e-2, 4.2e-2, 4.3e-2, 4.4e-2], ]) recv_powers = env.get_recv_powers(emit_powers, fading) rates = env.get_rates(recv_powers) metrics = emit_powers, recv_powers, rates, fading indices = env.get_indices(*metrics) rewards = env.get_rewards(rates, indices) target_rewards = np.array([ log2(1+1.1/31) + log2(1+44/2.4), log2(1+2.2/42) + log2(1+44/2.4), log2(1+33/1.3) + log2(1+44/2.4), log2(1+44/2.4) + log2(1+33/1.3), ])[:2] assert equal(rewards, target_rewards) def test_get_states(): # test m_state env = PAEnv(n_level=4, n_pair=2, m_cue=1, m_state=8, metrics=['emit_power', 'recv_power', 'rate'], sorter='recv_power') assert env.m_state == 4 env = PAEnv(n_level=4, n_pair=2, m_cue=1, m_state=2, metrics=['emit_power', 'recv_power', 'rate'], sorter='recv_power') power = np.array([ [0.01, 0], [0, 0.01], [0.1, 0], [0, 0.1], ]) emit_powers = np.tile(np.expand_dims(power, axis=1), (1, env.n_channel, 1)) fading = np.array([ [1.1e-2, 1.2e-2, 1.3e-2, 1.4e-2], [2.1e-2, 2.2e-2, 2.3e-2, 2.4e-2], [3.1e-2, 3.2e-2, 3.3e-2, 3.4e-2], [4.1e-2, 4.2e-2, 4.3e-2, 4.4e-2], ]) recv_powers = env.get_recv_powers(emit_powers, fading) rates = env.get_rates(recv_powers) metrics = emit_powers, recv_powers, rates, fading indices = env.get_indices(*metrics) states = env.get_states(*metrics, indices=indices) _recv = np.array([ [[1.1e-4, 0], [1.2e-4, 0], [1.3e-4, 0], [1.4e-4, 0]], [[0, 2.1e-4], [0, 2.2e-4], [0, 2.3e-4], [0, 2.4e-4]], [[3.1e-3, 0], [3.2e-3, 0], [3.3e-3, 0], [3.4e-3, 0]], [[0, 4.1e-3], [0, 4.2e-3], [0, 4.3e-3], [0, 4.4e-3]], ]) _rate = np.array([ log2(1+1.1/31), log2(1+2.2/42), log2(1+33/1.3), log2(1+44/2.4) ]) target_states = np.array([ np.concatenate([power[3],power[0],_recv[3][0],_recv[0][0],[_rate[3], _rate[0]]]), np.concatenate([power[3],power[1],_recv[3][1],_recv[1][1],[_rate[3], _rate[1]]]), np.concatenate([power[3],power[2],_recv[3][2],_recv[2][2],[_rate[3], _rate[2]]]), np.concatenate([power[2],power[3],_recv[2][3],_recv[3][3],[_rate[2], _rate[3]]]), ])[:2] assert equal(states, target_states) def test_sorter(): # now only recv_power can be sorter pass def test_seed(): env = PAEnv(n_level=4, m_cue=1, seed=123) # this is func in PAEnv to random pos def random_point(min_r, radius, ox=0, oy=0): theta = np.random.random() * 2 * np.pi r = np.random.uniform(min_r, radius**2) x, y = np.cos(theta) * np.sqrt(r),
np.sin(theta)
numpy.sin
""" Worlds and bodies for agents whose habitats are ordered sequences of vectors. """ import os from configuration import config as cfg from micropsi_core.world.world import World from micropsi_core.world.worldadapter import WorldAdapter, ArrayWorldAdapter import numpy as np from datetime import datetime class TimeSeries(World): """ A world that cycles through a fixed time series loaded from a file. The file should be a numpy archive with the following fields: 'data': numpy array of shape (nr of ids) x (nr of timestamps) 'timestamps', a list of timestamps - the legend for the data's second axis 'ids': a list of IDs - the legend for data's first axis. """ supported_worldadapters = ['TimeSeriesRunner'] assets = { 'js': "timeseries/timeseries.js", 'template': 'timeseries/timeseries.tpl' } def __init__(self, filename, world_type="TimeSeries", name="", owner="", engine=None, uid=None, version=1, config={}): World.__init__(self, filename, world_type=world_type, name=name, owner=owner, uid=uid, version=version, config=config) self.data['assets'] = self.assets filename = config.get('time_series_data_file', "timeseries.npz") if os.path.isabs(filename): path = filename else: path = os.path.join(cfg['micropsi2']['data_directory'], filename) self.logger.info("loading timeseries from %s for world %s" % (path, uid)) self.realtime_per_entry = int(config['realtime_per_entry']) self.last_realtime_step = datetime.utcnow().timestamp() * 1000 try: with np.load(path) as f: self.timeseries = f['data'] self.ids = f['ids'] self.timestamps = f['timestamps'] except IOError as error: self.logger.error("Could not load data file %s, error was: %s" % (path, str(error))) self.ids = [0] self.timeseries[[0, 0, 0]] self.timestamps = [0] self.len_ts = 1 return # todo use the new configurable world options. dummydata = config['dummy_data'] == "True" z_transform = config['z_transform'] == "True" clip_and_scale = config['clip_and_scale'] == "True" sigmoid = config['sigmoid'] == "True" self.shuffle = config['shuffle'] == "True" if clip_and_scale and sigmoid: self.logger.warn("clip_and_scale and sigmoid cannot both be configured, choosing sigmoid") clip_and_scale = False def sigm(X): """ sigmoid that avoids float overflows for very small inputs. expects a numpy float array. """ cutoff = np.log(np.finfo(X.dtype).max) - 1 X[np.nan_to_num(X) <= -cutoff] = -cutoff return 1. / (1. + np.exp(-X)) if (z_transform or clip_and_scale or sigmoid) and not dummydata: data_z = np.empty_like(self.timeseries) data_z[:] = np.nan pstds = [] for i, row in enumerate(self.timeseries): if not np.all(np.isnan(row)): std = np.sqrt(np.nanvar(row)) if std > 0: if not clip_and_scale: row_z = (row - np.nanmean(row)) / std if clip_and_scale: row_z = row - np.nanmean(row) pstd = std * 4 row_z[np.nan_to_num(row_z) > pstd] = pstd row_z[np.nan_to_num(row_z) < -pstd] = -pstd row_z = ((row_z / pstd) + 1) * 0.5 data_z[i,:] = row_z self.timeseries = data_z if not sigmoid else sigm(data_z) if dummydata: self.logger.warn("! Using dummy data") n_ids = self.timeseries.shape[0] self.timeseries = np.tile(
np.random.rand(n_ids,1)
numpy.random.rand
import numpy as np from scipy.linalg import logm from sklearn.base import TransformerMixin from pyriemann.tangentspace import TangentSpace class Riemann(TransformerMixin): def __init__(self, n_fb=9, metric='riemann'): self.n_fb = n_fb self.ts = [TangentSpace(metric=metric) for fb in range(n_fb)] # Tangent Space Learning def fit(self, X, y): for fb in range(self.n_fb): self.ts[fb].fit(X[:, fb, :, :]) return self def transform(self, X): n_sub, n_fb, p, _ = X.shape Xout = np.empty((n_sub, n_fb, p*(p+1)//2)) for fb in range(n_fb): Xout[:, fb, :] = self.ts[fb].transform(X[:, fb, :, :]) return Xout.reshape(n_sub, -1) # (sub, fb * c*(c+1)/2) class Diag(TransformerMixin): def __init__(self): return None def fit(self, X, y): return self def transform(self, X): n_sub, n_fb, n_compo, _ = X.shape Xout = np.empty((n_sub, n_fb, n_compo)) for sub in range(n_sub): for fb in range(n_fb): Xout[sub, fb] = np.diag(X[sub, fb]) return Xout.reshape(n_sub, -1) # (sub, fb * n_compo) class LogDiag(TransformerMixin): def __init__(self): return None def fit(self, X, y): return self def transform(self, X): n_sub, n_fb, n_compo, _ = X.shape Xout = np.empty((n_sub, n_fb, n_compo)) for sub in range(n_sub): for fb in range(n_fb): Xout[sub, fb] = np.log10(np.diag(X[sub, fb])) return Xout.reshape(n_sub, -1) # (sub, fb * n_compo) class NaiveVec(TransformerMixin): def __init__(self, method): self.method = method return None def fit(self, X, y): return self def transform(self, X): n_sub, n_fb, n_compo, _ = X.shape q = int(n_compo * (n_compo+1) / 2) Xout = np.empty((n_sub, n_fb, q)) for sub in range(n_sub): for fb in range(n_fb): if self.method == 'upper': Xout[sub, fb] = X[sub, fb][np.triu_indices(n_compo)] elif self.method == 'upperlog': logmat = logm(X[sub, fb]) Xout[sub, fb] = logmat[np.triu_indices(n_compo)] elif self.method == 'logdiag+upper': logdiag = np.log10(np.diag(X[sub, fb])) upper = X[sub, fb][np.triu_indices(n_compo, k=1)] Xout[sub, fb] = np.concatenate((logdiag, upper), axis=None) return Xout.reshape(n_sub, -1) # (sub, fb * c*(c+1)/2) def to_quotient(C, rank): d, U = np.linalg.eigh(C) U = U[:, -rank:] d = d[-rank:] Y = U * np.sqrt(d) return Y def distance2(S1, S2, rank=None): Sq = sqrtm(S1, rank) P = sqrtm(np.dot(Sq,
np.dot(S2, Sq)
numpy.dot
import tempfile import numpy as np from numpy.testing import assert_array_equal import pisces.io.readwaveform as rwf def test_read_s3(): # 100 big-endian 3-byte samples from an s3 file BYTS = (b'\x00\x01\x02\x00\x00\xc4\x00\x00}\x00\x00P\xff\xff\x08\xff\xfe\xfd\x00\x00\xa3\x00' b'\x00\xa6\xff\xfe\xca\x00\x00\xca\x00\x01\x9d\xff\xff\x10\xff\xff5\xff\xffT\xff\xffV' b'\xff\xff\xce\x00\x00J\x00\x00\xf4\x00\x01g\x00\x01\x7f\x00\x00\x01\xff\xff!\x00\x00=' b'\x00\x00\xb3\x00\x00,\x00\x00c\x00\x00\xb6\x00\x00z\xff\xff\x98\xff\xff.\x00\x00@\x00' b'\x01\x1f\x00\x00\xc0\x00\x00\x11\x00\x01\x18\x00\x01b\xff\xff\xc9\x00\x00\x14\x00' b'\x01A\x00\x01q\x00\x00u\xff\xff\xa8\x00\x00\x8a\xff\xff\xe2\xff\xff\x11\x00\x01\r' b'\x00\x00\x86\xff\xfe\xf3\x00\x00\xd9\x00\x00I\xff\xff1\x00\x01\xdd\x00\x01s\x00\x00Q' b'\x00\x01\xab\x00\x00\xb0\x00\x00\x1b\x00\x00\xb0\xff\xff\x07\xff\xff\xd8\x00\x01\x8c' b'\xff\xffh\xff\xffo\x00\x00#\xff\xff\xae\xff\xff\xc5\xff\xff`\x00\x00.\x00\x01\x13' b'\x00\x00\xb9\xff\xff\xf9\x00\x00(\xff\xff\xc2\xff\xfe\xe9\xff\xff\xca\x00\x01%\x00' b'\x00\xe3\xff\xffO\xff\xfe\x82\x00\x00\x00\x00\x01\x17\xff\xff\xab\x00\x00A\x00\x00e' b'\xff\xff\xb4\x00\x00,\x00\x00Q\x00\x01\x80\xff\xfe\xfd\xff\xfd\xb0\xff\xff\xad\x00' b'\x00\x10\x00\x01\xe8\x00\x01\x15\xff\xff\xcf\x00\x00\xde\x00\x00\x9f\xff\xff\x85\xff' b'\xff5\x00\x01\x8f') # 100 corresponding values from the s3 file data = np.array([258, 196, 125, 80, -248, -259, 163, 166, -310, 202, 413, -240, -203, -172, -170, -50, 74, 244, 359, 383, 1, -223, 61, 179, 44, 99, 182, 122, -104, -210, 64, 287, 192, 17, 280, 354, -55, 20, 321, 369, 117, -88, 138, -30, -239, 269, 134, -269, 217, 73, -207, 477, 371, 81, 427, 176, 27, 176, -249, -40, 396, -152, -145, 35, -82, -59, -160, 46, 275, 185, -7, 40, -62, -279, -54, 293, 227, -177, -382, 0, 279, -85, 65, 101, -76, 44, 81, 384, -259, -592, -83, 16, 488, 277, -49, 222, 159, -123, -203, 399], dtype=np.int32) with tempfile.SpooledTemporaryFile() as f: f.write(BYTS) f.seek(0) s3 = rwf.read_s3(f, 0, 100)
assert_array_equal(s3, data)
numpy.testing.assert_array_equal
import numpy as np from sklearn.datasets import * import matplotlib.pyplot as plt import seaborn as sns seapal = sns.color_palette('Paired') sns.set_style('ticks') from IPython import embed def f(x, w): if len(w) == 2: y = -w[0]/w[1] *
np.array(x)
numpy.array
#!/usr/bin/env python # coding: utf-8 get_ipython().run_line_magic('matplotlib', 'inline') import numpy as np from matplotlib import pyplot as plt from scipy.linalg import block_diag from iam.all_three_layers import IAM, features_binary, alphabet, corpus, FeatureLayer, feature_count, Connection iam = IAM() # # Present the ambiguous input # We need to present features consistent with both 'WORK' and 'WORR' # Features that are both in K and R rk_common_features = [min(K_f, K_r) for (K_f, K_r) in zip(features_binary['K'], features_binary['R'])] rk_common_features # All features ambiguous_input = np.array([ features_binary['W'], features_binary['O'], features_binary['R'], rk_common_features ]) ambiguous_input def present_ambiguous_input(): iam.feature_layer.activations = ambiguous_input.astype(float) # # Test def get_letter_activation(position, letter): return iam.letter_layer.activations[position, alphabet.index(letter)] def get_word_activation(word): word_index = corpus.word.tolist().index(word.lower()) return iam.word_layer.activations[word_index] def take_snapshot(): for letter, activation_list in letter_activations_history.items(): activation_list.append(get_letter_activation(position=3, letter=letter)) for word, activation_list in word_activations_history.items(): activation_list.append(get_word_activation(word)) letter_activations_history = dict(K=[], R = [], D = []) word_activations_history = dict(WORK=[], WORD=[], WEAK=[], WEAR=[]) iam.reset_nodes() present_ambiguous_input() take_snapshot() for _ in range(40): iam.run_cycle() take_snapshot() plt.figure(figsize=(10, 6)) plt.plot(np.array(list(letter_activations_history.values())).T) plt.legend(list(letter_activations_history.keys()), loc='upper left') plt.grid() plt.yticks(np.arange(-0.2, 1.1, 0.1)); # ![](work-word_letter-activation-plots.png) # - In our simulation, "D" gets uninhibited, in the article, "D" stayst at -0.2 # - In our simulation, "R" gets a bit activated (~0.1) and then decays towards 0, in the article, "R" grows steadily towards ~0.35 plt.figure(figsize=(10, 6)) plt.plot(np.array(list(word_activations_history.values())).T) plt.legend(list(word_activations_history.keys()), loc='upper left') plt.grid() plt.yticks(np.arange(-0.2, 1.1, 0.1)); # ![](work-word_word-activation-plots.png) # - "WORD" get less activate at the peak (~0.03) than in the article (~0.1). # - "WEAK" and "WEAR" plateau later in our simulation. # # Absence detectors # There are two main differences between our implementation and the one from the article: # - we don't have absence detectors, # - word resting levels do not depend on the frequency. # # More likely, it is the absence detectors that drive the difference in letter activations. # There are fewer feature nodes to excite "R" (absence detectors of features absent in both "R" and "K") and inhibit "D" (features absent in "R" and "K" but present in "D"). class AbsenceDetectorLayer(FeatureLayer): def present_word(self, word): """Show a word to the model""" features_absent = 1 -
np.array([features_binary[letter] for letter in word])
numpy.array
import torch import numpy import bionetwork import plotting import pandas import saveSimulations import matplotlib.pyplot as plt import copy import seaborn as sns #Load network networkList, nodeNames, modeOfAction = bionetwork.loadNetwork('data/KEGGnet-Model.tsv') annotation = pandas.read_csv('data/KEGGnet-Annotation.tsv', sep='\t') uniprot2gene = dict(zip(annotation['code'], annotation['name'])) bionetParams = bionetwork.trainingParameters(iterations = 60, clipping=5, leak=0.01, spectralTarget=0.9) spectralCapacity = numpy.exp(numpy.log(1e-2)/bionetParams['iterations']) inputAmplitude = 3 projectionAmplitude = 1.2 inName = annotation.loc[annotation['ligand'],'code'].values outName = annotation.loc[annotation['TF'],'code'].values inName = numpy.intersect1d(nodeNames, inName) outName = numpy.intersect1d(nodeNames, outName) outNameGene = [uniprot2gene[x] for x in outName] nodeNameGene = [uniprot2gene[x] for x in nodeNames] parameterizedModel = bionetwork.model(networkList, nodeNames, modeOfAction, inputAmplitude, projectionAmplitude, inName, outName, bionetParams) parameterizedModel = bionetwork.loadParam('synthNetScreen/equationParams.txt', parameterizedModel, nodeNames) #Generate data def generateData(parameterizedModel, N = 500, simultaniousInput = 5): numberOfInputs = parameterizedModel.inputLayer.weights.shape[0] X = torch.zeros(N, len(inName), dtype=torch.double) for i in range(1, N): #skip 0 to include a ctrl sample i.e. zero input X[i, (i-1) % numberOfInputs] = torch.rand(1, dtype=torch.double) #stimulate each receptor at least once X[i, numpy.random.randint(0, numberOfInputs, simultaniousInput-1)] = torch.rand(simultaniousInput-1, dtype=torch.double) Y, YfullRef = parameterizedModel(X) Y = Y.detach() X = X.detach() YfullRef = YfullRef.detach() return X, Y, YfullRef criterion1 = torch.nn.MSELoss(reduction='mean') # X, Y, YfullRef = generateData(parameterizedModel, 500) # importantWeights = numpy.zeros(parameterizedModel.network.weights.shape[0]) # referenceWeights = parameterizedModel.network.weights.detach().clone() # for i in range(len(importantWeights)): # #zero out weight # parameterizedModel.network.weights.data[i] = 0 # Yhat, Yfull = parameterizedModel(X) # importantWeights[i] = criterion1(Yhat, Y).item() # #reset weight # parameterizedModel.network.weights.data[i] = referenceWeights[i] # print(i, importantWeights[i]) #importantWeights = importantWeights[0:10] #selectedWeights = numpy.flip(numpy.argsort(importantWeights)) #selectedWeights = selectedWeights[0:10] selectedWeights = numpy.array([163, 607, 29, 80, 375, 793, 760, 370, 274, 276], dtype=int) groundTruth = networkList[:, selectedWeights[0]] print(numpy.array(nodeNameGene)[groundTruth]) #Identify consistently important interactions # def getImportantNodes(parameterizedModel, networkList): # totalSamples = 100 # totalN = 500 # countWeights = numpy.zeros(parameterizedModel.network.weights.shape[0]) # topWeights = 10 # for i in range(totalSamples): # X, Y, YfullRef = generateData(parameterizedModel, totalN) # variabilityOfProteins = torch.std(YfullRef, axis=0) # jointVariability = variabilityOfProteins[networkList[0]] * variabilityOfProteins[networkList[1]] # variabilityAndWeight = jointVariability * model.network.weights # selectedWeights = numpy.flip(numpy.argsort(numpy.abs(variabilityAndWeight.detach().numpy()))) # selectedWeights = selectedWeights[0:topWeights] # countWeights[selectedWeights] += 1 # return countWeights # weightImportance = getImportantNodes(parameterizedModel, networkList) #print(weightImportance) N = 400 X, Y, YfullRef = generateData(parameterizedModel, N) Xtest, Ytest, YfullRef = generateData(parameterizedModel, N) #%% def executeErrorModel(model2, errorModel, dataIn, stateIn): dataError = errorModel(stateIn) #dataError = errorModel(dataIn) Yin = model2.inputLayer(dataIn) Yin = Yin + dataError YhatFull = model2.network(Yin) Yhat = model2.projectionLayer(YhatFull) return Yhat, YhatFull, dataError model2 = copy.deepcopy(parameterizedModel) model2.network.weights.data[selectedWeights[0]] = 0 latentSize = 200 batchSize = 50 maxIter = 2000 L1 = 1e-4 Yhat, referenceState = model2(Xtest) Yhat, referenceStateTest = model2(Xtest) referenceState = referenceState.detach() referenceStateTest = referenceStateTest.detach() baseLine = criterion1(Yhat, Ytest) #Define network:s # errorModel = torch.nn.Sequential(*[torch.nn.Linear(len(inName), latentSize, bias=True), # torch.nn.LeakyReLU(), # torch.nn.Linear(latentSize, latentSize, bias=True), # torch.nn.LeakyReLU(), # torch.nn.Linear(latentSize, latentSize, bias=True), # torch.nn.LeakyReLU(), # torch.nn.Linear(latentSize, latentSize, bias=True), # torch.nn.LeakyReLU(), # torch.nn.Linear(latentSize, len(nodeNames), bias=True)]) # errorModel = errorModel.double() errorModel = torch.nn.Sequential(*[torch.nn.Linear(referenceState.shape[1], latentSize, bias=True), torch.nn.LeakyReLU(), torch.nn.Linear(latentSize, latentSize, bias=True), torch.nn.LeakyReLU(), torch.nn.Linear(latentSize, latentSize, bias=True), torch.nn.LeakyReLU(), torch.nn.Linear(latentSize, latentSize, bias=True), torch.nn.LeakyReLU(), torch.nn.Linear(latentSize, len(nodeNames), bias=True)]) errorModel = errorModel.double() #Setup optimizer optimizer = torch.optim.Adam(errorModel.parameters(), lr=1, weight_decay=1e-3) resetState = optimizer.state.copy() #Evaluate network stats = plotting.initProgressObject(maxIter) e=0 for e in range(e, maxIter): curLr = bionetwork.oneCycle(e, maxIter, maxHeight = 1e-4, minHeight = 1e-6, peak = 500) optimizer.param_groups[0]['lr'] = curLr curLoss = [] trainloader = bionetwork.getSamples(N, batchSize) for dataIndex in trainloader: optimizer.zero_grad() dataIn = X[dataIndex, :].view(len(dataIndex), X.shape[1]) dataOut = Y[dataIndex, :].view(len(dataIndex), Y.shape[1]) stateIn = referenceState[dataIndex, :].view(len(dataIndex), referenceState.shape[1]) Yhat, YhatFull, dataError = executeErrorModel(model2, errorModel, dataIn, stateIn) errorSparsity = L1 * torch.sum(torch.abs(dataError)) fitLoss = criterion1(Yhat, dataOut) loss = fitLoss + errorSparsity loss.backward() optimizer.step() curLoss.append(fitLoss.item()) stats = plotting.storeProgress(stats, e, loss=curLoss, lr=curLr) if (e % 200 == 0 and e > 0 and e < maxIter*0.5): optimizer.state = resetState.copy() if e % 50 == 0: Yhat, YhatFull, dataError = executeErrorModel(model2, errorModel, Xtest, referenceStateTest) fitLoss = criterion1(Ytest, Yhat) stats['test'][e] = fitLoss.item() plotting.printStats(e, stats) stats = plotting.finishProgress(stats) #%% plt.rcParams["figure.figsize"] = (4,4) plt.figure() T = numpy.array(range(stats['loss'].shape[0])) plotting.shadePlot(T, stats['loss'], stats['lossSTD']) nanFilter = numpy.isnan(stats['test'])==False plt.plot(T[nanFilter], plotting.movingaverage(stats['test'][nanFilter], 5)) #plt.plot([0, len(T)], numpy.array([1, 1])*mLoss.item(), 'black', linestyle='--') plt.plot([0, len(T)], numpy.array([1, 1])*baseLine.item(), 'red', linestyle='--') plt.xlim([0, len(T)]) plt.ylim(bottom=1e-6) plt.yscale('log') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(numpy.array(['Train', 'Test', 'Mean']), frameon=False) plt.figure() Yhat, YhatFull, dataError = executeErrorModel(model2, errorModel, X, referenceState) YtestHat, YtestHatFull, dataError = executeErrorModel(model2, errorModel, Xtest, referenceStateTest) plotting.plotComparison(Yhat, Y, YtestHat, Ytest) plt.figure() nodeNameGeneArray = numpy.array(nodeNameGene, dtype=object) dataErrorValues = dataError.detach().numpy() modelValues = YhatFull.detach().numpy() # jointValues = numpy.concatenate((modelValues, dataErrorValues), axis=1) # dataNames = 'Error_' + nodeNameGeneArray # modelNames = 'Model_' + nodeNameGeneArray # jointNames = numpy.concatenate((modelNames, dataNames), axis=0) topN = 5 meanAbsActivity = numpy.mean(numpy.abs(dataErrorValues), axis=0) candidatesTarget = numpy.flip(numpy.argsort(meanAbsActivity))[0:topN] df = pandas.DataFrame(meanAbsActivity, index=nodeNameGeneArray, columns=['Mean activity']) df = df.iloc[candidatesTarget,:] sns.barplot(data=df.T) plt.ylabel('Mean abs activity') plt.savefig("figures/missingInteractions/posthocSource.svg") #%% def sensitivityAnalysis(model, errorModel, dataIn, referenceState, selectedNode): upValue = 0.1 dataError = errorModel(referenceState) Yin = model.inputLayer(dataIn) Yin = Yin + dataError YinUp = Yin.clone() YinUp[:,selectedNode] = YinUp[:,selectedNode] + upValue ctrl = model.network(Yin) up = model.network(YinUp) sensitivity = (up-ctrl)/(1 + upValue) return sensitivity correlatedNodes = numpy.corrcoef(dataErrorValues[:,candidatesTarget[0]], y=modelValues.T) correlatedNodes = correlatedNodes[0,1:] correlatedNodes[candidatesTarget[0]] = 0 candidatesSources = numpy.flip(numpy.argsort(numpy.abs(correlatedNodes)))[0:20] # plt.figure() # df = pandas.DataFrame(numpy.abs(correlatedNodes[candidatesSources]), index=nodeNameGeneArray[candidatesSources], columns=['Correlation']) # sns.barplot(data=df.T, orient='h') # plt.xlabel('abs correlation') plt.figure() #sensitivityAnalysis sensitivity = sensitivityAnalysis(model2, errorModel, X, referenceState, candidatesTarget[0]) meanAbsSensitivity = numpy.mean(numpy.abs(sensitivity.detach().numpy()), axis=0) sensitiveNodes = numpy.argwhere(meanAbsSensitivity>1e-2).flatten() insensitiveCandididates = candidatesSources[numpy.isin(candidatesSources, sensitiveNodes)==False] plt.figure() df = pandas.DataFrame(numpy.abs(correlatedNodes), index=nodeNameGeneArray, columns=['Correlation']) df = df.iloc[insensitiveCandididates,:] sns.barplot(data=df.T, orient='h') plt.xlabel('abs correlation') plt.savefig("figures/missingInteractions/posthocTarget.svg") # correlationStructure[numpy.isnan(correlationStructure)] = 0 # numpy.fill_diagonal(correlationStructure, 0) # #correlationStructure[0:len(dataNames), 0:len(dataNames)] = 0 #ignore model-model correlations # df = pandas.DataFrame(correlationStructure[0:len(dataNames), :], index=dataNames, columns=jointNames) # valueRange= numpy.max(numpy.abs(df.values)) # #tresh = # tresh = 1e-4 * valueRange # df = df.loc[numpy.mean(numpy.abs(df))>tresh,:] # df = df.loc[:,numpy.mean(numpy.abs(df), axis=0)>tresh] # sns.clustermap(df, cmap='RdBu_r', vmin=-valueRange, vmax=valueRange) # correlationStructure = numpy.cov(jointValues.T) # correlationStructure[numpy.isnan(correlationStructure)] = 0 # numpy.fill_diagonal(correlationStructure, 0) # #correlationStructure[0:len(dataNames), 0:len(dataNames)] = 0 #ignore model-model correlations # df = pandas.DataFrame(correlationStructure[0:len(dataNames), :], index=dataNames, columns=jointNames) # valueRange= numpy.max(numpy.abs(df.values)) # #tresh = # tresh = 1e-4 * valueRange # df = df.loc[numpy.mean(numpy.abs(df))>tresh,:] # df = df.loc[:,numpy.mean(numpy.abs(df), axis=0)>tresh] # sns.clustermap(df, cmap='RdBu_r', vmin=-valueRange, vmax=valueRange) # groundTruth = networkList[:, selectedWeights[0]] # print(nodeNameGeneArray[groundTruth]) #df = pandas.DataFrame(dataErrorValues, columns=nodeNameGene) #sns.clustermap(df, cmap='RdBu_r', vmin=0, vmax=1) # correlationStructure = numpy.cov(dataErrorValues.T) # correlationStructure[numpy.isnan(correlationStructure)] = 0 # numpy.fill_diagonal(correlationStructure, 0) # df = pandas.DataFrame(correlationStructure, columns=nodeNameGene, index=nodeNameGene) # valueRange= numpy.max(numpy.abs(correlationStructure)) # tresh = valueRange # df = df.loc[numpy.sum(numpy.abs(df))>tresh,:] # df = df.loc[:,numpy.sum(numpy.abs(df), axis=0)>tresh] # sns.clustermap(df, cmap='RdBu_r', vmin=-valueRange, vmax=valueRange) #%% def executeErrorModel(model2, errorModel, dataIn, noiseLevel): dataError = errorModel(dataIn) Yin = model2.inputLayer(dataIn) Yin = Yin + dataError Yin = Yin + noiseLevel * torch.randn(Yin.shape) YhatFull = model2.network(Yin) Yhat = model2.projectionLayer(YhatFull) return Yhat, YhatFull, dataError #Setup optimizer batchSize = 50 MoAFactor = 0.1 maxIter = 3000 L1 = 1e-4 #for the sparsity of signal inputation from the fully conected layer L2 =1e-8 #for model spectralFactor = 1e-3 latentSize = 200 noiseLevel = 1e-3 model = bionetwork.model(networkList, nodeNames, modeOfAction, inputAmplitude, projectionAmplitude, inName, outName, bionetParams, 'MML', torch.double) model.inputLayer.weights.requires_grad = False model.projectionLayer.weights.requires_grad = False #model.network.balanceWeights() model.network.preScaleWeights(0.7) errorModel = torch.nn.Sequential(*[torch.nn.Linear(X.shape[1], latentSize, bias=True), torch.nn.LeakyReLU(), torch.nn.Linear(latentSize, latentSize, bias=True), torch.nn.LeakyReLU(), torch.nn.Linear(latentSize, latentSize, bias=True), torch.nn.LeakyReLU(), torch.nn.Linear(latentSize, latentSize, bias=True), torch.nn.LeakyReLU(), torch.nn.Linear(latentSize, len(nodeNames), bias=True)]) errorModel = errorModel.double() nodeDegreOut = numpy.sum(numpy.array(model.network.A.todense() != 0), axis=0) nodeDegreOut = torch.tensor(nodeDegreOut) + 1 criterion1 = torch.nn.MSELoss(reduction='mean') optimizer1 = torch.optim.Adam(model.parameters(), lr=1, weight_decay=0) optimizer2 = torch.optim.Adam(errorModel.parameters(), lr=1e-4, weight_decay=1e-3) resetState1 = optimizer1.state.copy() resetState2 = optimizer2.state.copy() mLoss = criterion1(torch.mean(Y, dim=0)*torch.ones(Y.shape), Y) print(mLoss) stats = plotting.initProgressObject(maxIter) curState = torch.rand((N, model.network.bias.shape[0]), dtype=torch.double, requires_grad=False) e = 0 for e in range(e, maxIter): curLr = bionetwork.oneCycle(e, maxIter, maxHeight = 1e-3, startHeight=1e-4, endHeight=1e-6, peak = 1000) optimizer1.param_groups[0]['lr'] = curLr curLoss = [] curEig = [] trainloader = bionetwork.getSamples(N, batchSize) #max(10, round(N * e/maxIter) for dataIndex in trainloader: model.network.weights.data[selectedWeights[0]] = 0 #simulate missing interaction dataIn = X[dataIndex, :].view(len(dataIndex), X.shape[1]) dataOut = Y[dataIndex, :].view(len(dataIndex), Y.shape[1]) optimizer1.zero_grad() optimizer2.zero_grad() Yhat, YhatFull, dataError = executeErrorModel(model, errorModel, dataIn, noiseLevel) curState[dataIndex, :] = YhatFull.detach() fitLoss = criterion1(dataOut, Yhat) signConstraint = MoAFactor * torch.sum(torch.abs(model.network.weights[model.network.getViolations(model.network.weights)])) errorSparsity = L1 * torch.sum(nodeDegreOut * torch.sum(torch.abs(dataError), axis=0)) #stateLoss = 1e-5 * bionetwork.uniformLoss(curState, dataIndex, YhatFull, maxConstraintFactor = 1, targetMax = 1/projectionAmplitude) stateLoss = 1e-5 * bionetwork.uniformLossBatch(YhatFull, maxConstraintFactor = 1, targetMax = 1/projectionAmplitude) biasLoss = L2 * torch.sum(torch.square(model.network.bias)) #absFilter = torch.abs(model.network.weights.detach())>0.001 #weightLoss = L2 * torch.sum(torch.square(model.network.weights[absFilter])) #weightLoss = L2 * (torch.sum(torch.square(model.network.weights)) + torch.sum(1/(torch.square(model.network.weights) + 0.5))) weightLoss = L2 * torch.sum(torch.square(model.network.weights)) spectralRadiusLoss, spectralRadius = bionetwork.spectralLoss(model.network, YhatFull.detach(), model.network.weights, expFactor = 10) spectralRadiusLoss = spectralFactor * spectralRadiusLoss ligandConstraint = 1e-4 * torch.sum(torch.square(model.network.bias[model.inputLayer.nodeOrder,:])) loss = fitLoss + signConstraint + biasLoss + weightLoss + stateLoss + spectralRadiusLoss + ligandConstraint + errorSparsity loss.backward() optimizer1.step() optimizer2.step() model.network.weights.data[selectedWeights[0]] = 0 #simulate missing interaction curEig.append(spectralRadius.item()) curLoss.append(fitLoss.item()) stats = plotting.storeProgress(stats, e, curLoss, curEig, curLr, violations=torch.sum(model.network.getViolations(model.network.weights)).item()) if e % 50 == 0: model.eval() Yhat, YhatFull, dataError = executeErrorModel(model, errorModel, Xtest, 0) Yhat, YhatFull = model(Xtest) fitLoss = criterion1(Ytest, Yhat) stats['test'][e] = fitLoss.item() plotting.printStats(e, stats) if e % 200 == 0 and e > 0: optimizer1.state = resetState1.copy() optimizer2.state = resetState2.copy() stats = plotting.finishProgress(stats) #%% plt.rcParams["figure.figsize"] = (5,5) plt.figure() T = numpy.array(range(stats['loss'].shape[0])) plotting.shadePlot(T, stats['loss'], stats['lossSTD']) nanFilter = numpy.isnan(stats['test'])==False plt.plot(T[nanFilter], stats['test'][nanFilter]) plt.plot([0, len(T)], numpy.array([1, 1])*mLoss.item(), 'black', linestyle='--') plt.xlim([0, len(T)]) plt.ylim(bottom=1e-6) plt.yscale('log') plt.ylabel('Loss') plt.xlabel('Epoch') plt.legend(numpy.array(['Train', 'Test', 'Mean']), frameon=False) Yhat, _ = model(X) modelPerformance = criterion1(Yhat, Y) deltaWeight = model.network.weights - parameterizedModel.network.weights deltaWeight[selectedWeights[0]] = 0 #Ignore the weight we changed deltaBias= model.network.bias - parameterizedModel.network.bias treshWeight = 1e-1 treshBias = 4e-2 differentialWeights = numpy.abs(deltaWeight.detach().numpy())>treshWeight differentialBias = numpy.abs(deltaBias.detach().numpy().flatten())>treshBias print(
numpy.array(nodeNameGene)
numpy.array
# # Copyright (c) 2020 TECHNICAL UNIVERSITY OF MUNICH, DEPARTMENT OF MECHANICAL ENGINEERING, CHAIR OF APPLIED MECHANICS, # BOLTZMANNSTRASSE 15, 85748 GARCHING/MUNICH, GERMANY, <EMAIL>. # # Distributed under 3-Clause BSD license. See LICENSE file for more information. # """ Solver module, that provides customized solvers for the global problem """ from amfeti.config_base import ConfigBase import logging import numpy as np import time from copy import copy from scipy.sparse import csr_matrix, hstack, vstack from scipy.sparse.linalg import spsolve __all__ = ['PCPGsolver', 'GMRESsolver', 'ORTHOMINsolver'] class GlobalSolverBase(ConfigBase): def __init__(self): super().__init__() def solve(self, *args): return None class PCPGsolver(GlobalSolverBase): """ Preconditioned Conjugate Projected Gradient-iterative solver, that is usually used to solve the linear global problem. This solver is an extension of the well-known iterative Conjugate Gradient methods by a preconditioner and a nullspace-projection for singular problems. Moreover, this solver supports full reorthogonalization, which is able to improve convergence, if F-orthogonality degrades during the iterations. References ---------- [1] <NAME> and <NAME> (1999): A simple and efficient extension of a class of substructure based preconditioners to heterogeneous structural mechanics problems. International Journal for Numerical Methods in Engineering 44 489--516. [2] <NAME> and <NAME> (1994): Implicit parallel processing in structural mechanics. Computational Mechanics Advances 2 1--124. [3] <NAME>, <NAME>, <NAME> (2018): Recycling of solution spaces in multipreconditioned FETI methods applied to structural dynamics. International Journal of Numerical Methods in Engineering 116 141--160 doi:10.1002/nme.5918. Attributes ---------- _config_dict : dict configuration dictionary """ def __init__(self): """ Parameters ---------- None """ super().__init__() self._config_dict = {'tolerance': 1e-7, 'max_iter': None, 'projection': None, 'precondition': None, 'energy_norm': False, 'save_history': False, 'full_reorthogonalization': False} def solve(self, F_callback, residual_callback, lambda_init): """ Solve-method of the PCPG-method Parameters ---------- F_callback : callable method, that applies the solution-vector on the system-matrix F and returns the result residual_callback : callable method, that calculates and return the system's residual from the solution-vector lambda_init : ndarray initial guess for the solution Returns ------- lambda_sol : ndarray calculated solution info_dict : dict general information on the solution-process """ logger = logging.getLogger(__name__) interface_size = len(lambda_init) if self._config_dict['max_iter'] is None: self._config_dict['max_iter'] = int(1 * interface_size) logger.info('Setting PCPG tolerance = %4.2e' % self._config_dict['tolerance']) logger.info('Setting PCPG max number of iterations = %i' % self._config_dict['max_iter']) # initialize variables info_dict = {} global_start_time = time.time() residual_hist = np.array([]) lambda_hist = np.array([]) if self._config_dict['full_reorthogonalization']: Y = dict() Q = dict() lambda_sol = np.zeros_like(lambda_init) rk = residual_callback(lambda_init) k = 0 for k in range(self._config_dict['max_iter']): wk = self._project(rk) zk = self._precondition(wk) yk = self._project(zk) if self._config_dict['full_reorthogonalization']: yk1 = yk for i in range(k): yki = Y[i] qki = Q[i] yk -= np.dot(qki, yk1) / np.dot(qki, yki) * yki elif k > 0: yk -= np.dot(qk_1, yk) /
np.dot(qk_1, yk_1)
numpy.dot
import numpy as np from collections import OrderedDict import random from ..utils.sfr_renumber import Topology from ..utils import gsflow_io from . import Defaults from flopy.modflow import ModflowSfr2 import shapefile import inspect class FlowAccumulation(object): """ Class to perform flow accumulation on a DEM (raster) or resampled to a model grid Parameters ---------- data : np.ndarray two dimensional numpy array of dem data xcenters : np.ndarray a two dimensional array of x coordinate cell centers ycenters : np.ndarray two dimensional array of y coordinate cell centers acc_type : str flow accumulation type, currently supported options are "d8" hru_type : np.array optional numpy array of hru type numbers that can be used as a masking array to exclude lakes, swales, etc... 0 == inactive 1 == land (included in flow accumulation) 2 == lake (excluded from flow accumulation) 3 == swale (excluded from flow accumulation) closed_basin : bool method to indicate that basin is closed without considering lake flow. If true hru_type 2 is used in the flow direction calculations. False ignores hru_type 2. flow_dir_array : np.ndarray previously calculated flow direction array of dimension nrow, ncol that can be supplied to FlowAccumulation verbose : bool flag to print verbose output """ def __init__( self, data, xcenters, ycenters, acc_type="d8", hru_type=None, closed_basin=False, flow_dir_array=None, verbose=False, ): self._defaults = Defaults().to_dict() # set the fa type self._acc_type = acc_type # flow directions vectors set up as top to bot, left to right self._d8_vectors = np.array([32, 64, 128, 16, 1, 8, 4, 2], dtype=int) self._quiver_u = { 32: -1, 64: 0, 128: 1, 16: -1, 1: 1, 8: -1, 4: 0, 2: 1, -1: np.nan, -2: np.nan, } self._quiver_v = { 32: 1, 64: 1, 128: 1, 16: 0, 1: 0, 8: -1, 4: -1, 2: -1, -1: np.nan, -2: np.nan, } self._inner_idx = [] self._graph = OrderedDict() self._visited = [] self._stack = [] self._dest = None self._solved_flats = {} # adds an extra row and col of data data, xcenters, ycenters, hru_type = self._buffer_data( data, xcenters, ycenters, hru_type ) self._offset = data.shape[1] self._offsets = np.array( [ (-1 * self._offset) - 1, (-1 * self._offset), (-1 * self._offset) + 1, -1, 1, self._offset - 1, self._offset, self._offset + 1, ] ) self._shape = data.shape self._data = data.ravel() self._xcenters = xcenters.ravel() self._ycenters = ycenters.ravel() self._hru_type = hru_type.ravel() self._flow_directions = np.ones((self._data.size,)) * -1 self._closed_basin = closed_basin if flow_dir_array is None: self._flow_directions = np.ones((self._data.size,)) * -1 self._closed_basin = closed_basin if self._closed_basin: self._cb_inner_idx = [] self._cb_flow_directions = np.ones((self._data.size,)) * -1 else: if self._closed_basin: err = ( "Supplying flow direction array not supported " "for closed basin." ) raise Exception(err) self._flow_directions = np.pad( flow_dir_array, 1, "constant", constant_values=-1 ).ravel() self._set_inners() # for flow accumulation self._dir_coords = { 32: (-1, -1), 64: (-1, 0), 128: (-1, 1), 16: (0, -1), 1: (0, 1), 8: (1, -1), 4: (1, 0), 2: (1, 1), } # for watersheds self._d8_vectors_r = np.array( list(reversed(self._d8_vectors)), dtype=int ) self._offset_dict = { 32: self._offsets[0], 64: self._offsets[1], 128: self._offsets[2], 16: self._offsets[3], 1: self._offsets[4], 8: self._offsets[5], 4: self._offsets[6], 2: self._offsets[7], } self._size = self._data.size self._dijkstra = False self.verbose = verbose self._wpp = None def get_dem_data(self): """ Method to get processed DEM data after flow accumulation Returns ------- np.ndarray """ return np.reshape(self._data, self._shape)[1:-1, 1:-1] def get_hru_type(self): return np.reshape(self._hru_type, self._shape)[1:-1, 1:-1] def flow_directions(self, dijkstra=False, breach=0.0): """ Method to get flow directions array Parameters ---------- dijkstra : bool method to use a modified dijkstra algorithmn to solve tricky flat areas. Default is False and uses a distance based topology method to solve flat areas. breach : float absolute value of breaching tolerance for digital dams. Use caution while applying breaching values. These should be small numbers. Returns ------- np.ndarray of flow directions """ self._dijkstra = dijkstra if np.all(self._flow_directions == -1): # builds inner indices if self._closed_basin: self._set_inners(cb=True) else: self._set_inners() # fills pits in DEM self._fill_pits() self._d8_flow_directions(breach) # reset the inners after performing the closed basin calculation if self._closed_basin: self._cb_inner_idx = list(np.copy(self._inner_idx)) self._inner_idx = [] self._set_inners() if self._closed_basin: self._cb_flow_directions = np.copy(self._flow_directions) self._flow_directions[self._hru_type == 2] = -1 flow_directions = np.copy(self._flow_directions) flow_directions.shape = self._shape return flow_directions[1:-1, 1:-1] @property def get_vectors(self): """ Method to get flow vectors array Returns ------- (u, v): tuple (np.ndarray of flow vectors) """ flow_direction = self.flow_directions() u =
np.zeros(flow_direction.shape)
numpy.zeros
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Jul 27 11:00:37 2018 Script to fit SHG interference data. The procedure fits the data twice, first with the period free, and then with the period fixed at the average of the first runs. @author: <NAME> """ import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.optimize import curve_fit import math #name for file fileout = '101618fitsHemi2.txt' #names of each fit names = ['hemi2pure1a','hemi2pure1b','hemi2salt1a','hemi2salt1b',\ 'hemi2pure2a','hemi2pure2b','hemi2salt2a','hemi2salt2b',\ 'hemi2pure3a','hemi2pure3b'] #indices to import if you have multiple files named phaseMeasureX where x is #some number, enter the first and last indices that you want to import. startNum = 16 endNum = 25 #open file for writing to f = open(fileout,'w+') #initialize data frames to hold data countsA = pd.DataFrame() countsB = pd.DataFrame() pos = pd.DataFrame() #go through each file for i in range(endNum-startNum+1): #names of each file filename = 'phaseMeasure' + str(i+startNum) + '.txt' #import countsA (signal),countsB (dark counts), and pos (stage position) countsA[names[i]] = pd.read_csv(filename,sep='\t')['countsA'] countsB[names[i]] = pd.read_csv(filename,sep='\t')['countsB'] pos[names[i]] = pd.read_csv(filename,sep='\t')['stage'] del endNum,startNum #function to find the av def findAverage(series): #set number of points per position here interval = 20 reshaped = np.reshape(series.values,(int(len(series.values)/interval),interval)) return pd.Series(np.mean(reshaped,1)) #apply function to raw data to get average data aveCountsA = countsA.apply(findAverage,axis=0) aveCountsB = countsB.apply(findAverage,axis=0) pos = pos.apply(findAverage,axis=0) del countsA,countsB #sort each for column in pos.columns: #create temp dataframe df = pd.DataFrame() #import data frome one run into temp data frame df['countsA'] = aveCountsA[column] df['countsB'] = aveCountsB[column] df['pos'] = pos[column] #sort this dataframe sdf = df.sort_values('pos') #put the sorted data back aveCountsA[column] = sdf['countsA'].values aveCountsB[column] = sdf['countsB'].values pos[column] = sdf['pos'].values del df,sdf, column #dataframe with actual counts, corrected for dark counts counts = aveCountsA.sub(aveCountsB) del aveCountsA,aveCountsB #define fit func, same as IGOR def sinFunc(x, y0, A, f, phi): return y0 + A*np.sin(f*x + phi) #DO INITIAL FITTING WITH PERIODS FREE #x values from which to plot fit function xvalues = np.linspace(0,99.7,1000) #write header for initial fits to file f.write('Initial Fits\n') f.write('Name\ty0\tA\tf\tphi\n') #array to store the frequencies from each fit, in order to then find the average fVals = np.array([]) #go through each column in dataframe for column in counts.columns: #calculate guesses for fit func y0guess = np.mean(counts[column]) Aguess = (np.amax(counts[column])-np.amin(counts[column]))/2 fguess = 0.05; phiguess = 0; guesses = [y0guess,Aguess,fguess,phiguess] #fit it popt, pcov = curve_fit(sinFunc,pos[column], counts[column],p0=guesses) #calculate standard error pstd = np.sqrt(np.diag(pcov)) # plt.figure() # plt.plot(pos[column],counts[column],'.') # yvalues = sinFunc(xvalues,popt[0],popt[1],popt[2],popt[3]) # plt.plot(xvalues,yvalues) # plt.title('First' + column) #write to file f.write(column + '\t' +'%.1f'%popt[0] +'+-'+'%.1f'%pstd[0]+ '\t'+'%.1f'%popt[1]+'+-'+'%.1f'%pstd[1]+ '\t'+'%.4f'%popt[2]+'+-'+'%.4f'%pstd[2]+ '\t'+'%.3f'%popt[3]+'+-'+'%.3f'%pstd[3]+'\n') fVals = np.append(fVals,popt[2]) #calculate average of f values, write to file fAve = np.mean(fVals) fStd = np.std(fVals) f.write('\n') f.write('f = '+'%.4f'%fAve+'+-'+'%.4f'%fStd+ '('+'%.0f'%(fStd/fAve*100)+'% error)'+'\n') f.write('lambda ='+'%.2f'%(2*np.pi/fAve)+'+-'+ '%.2f'%(2*np.pi/fAve*fStd/fAve)+'\n') f.write('\n') #SECOND ROUND OF FITTING WITH PERIOD FIXED AT AVERAGE OF PREVIOUS #write header f.write('Fits with f fixed\n') f.write('Name\ty0\tA\tf\tphi\tphi(degrees)\n') #array to store the y0s to normalize y0s = {} #x values from which to plot fit function xvalues = np.linspace(0,99.7,1000) fits = pd.DataFrame() #go through each column for column in counts.columns: #calculate guesses y0guess = np.mean(counts[column]) Aguess = (np.amax(counts[column])-
np.amin(counts[column])
numpy.amin
""" Unit tests for the problem interface.""" import sys import unittest import itertools from io import StringIO import numpy as np import openmdao.api as om from openmdao.core.driver import Driver from openmdao.test_suite.components.paraboloid import Paraboloid from openmdao.test_suite.components.sellar import SellarDerivatives, SellarDerivativesConnected from openmdao.utils.assert_utils import assert_near_equal, assert_warning import openmdao.utils.hooks as hooks from openmdao.utils.units import convert_units from openmdao.utils.om_warnings import DerivativesWarning try: from parameterized import parameterized except ImportError: from openmdao.utils.assert_utils import SkipParameterized as parameterized class SellarOneComp(om.ImplicitComponent): def initialize(self): self.options.declare('solve_y1', types=bool, default=True) self.options.declare('solve_y2', types=bool, default=True) def setup(self): # Global Design Variable self.add_input('z', val=np.array([-1., -1.])) # Local Design Variable self.add_input('x', val=2.) self.add_output('y1', val=1.0) self.add_output('y2', val=1.0) self.add_output('R_y1') self.add_output('R_y2') if self.options['solve_y1']: self.declare_partials('y1', ['x', 'z', 'y1', 'y2']) else: self.declare_partials('y1', 'y1') if self.options['solve_y2']: self.declare_partials('y2', ['z', 'y1', 'y2']) else: self.declare_partials('y2', 'y2') self.declare_partials('R_y1', ['R_y1', 'x', 'z', 'y1', 'y2']) self.declare_partials('R_y2', ['R_y2','z', 'y1', 'y2']) def apply_nonlinear(self, inputs, outputs, residuals): z0 = inputs['z'][0] z1 = inputs['z'][1] x = inputs['x'] y1 = outputs['y1'] y2 = outputs['y2'] if self.options['solve_y1']: residuals['y1'] = (z0**2 + z1 + x - 0.2*y2) - y1 else: residuals['y1'] = 0 if self.options['solve_y2']: residuals['y2'] = (y1**.5 + z0 + z1) - y2 else: residuals['y2'] = 0 residuals['R_y1'] = (z0**2 + z1 + x - 0.2*y2) - y1 - outputs['R_y1'] residuals['R_y2'] = (y1**.5 + z0 + z1) - y2 - outputs['R_y2'] def linearize(self, inputs, outputs, J): # this will look wrong in check_partials if solve_y2 = False, but its not: R['y1'] = y1^* - y1 J['y1', 'y1'] = -1. J['R_y1','R_y1'] = -1 if self.options['solve_y1']: J['y1', 'x'] = [1] J['y1', 'z'] = [2*inputs['z'][0], 1] J['y1', 'y2'] = -0.2 J['R_y1', 'x'] = [1] J['R_y1', 'z'] = [2*inputs['z'][0], 1] J['R_y1', 'y1'] = -1. J['R_y1', 'y2'] = -0.2 # this will look wrong in check_partials if solve_y2 = False, but its not" R['y1'] = y2^* - y2 J['y2','y2'] = -1 J['R_y2','R_y2'] = -1 if self.options['solve_y2']: J['y2','z'] = [1, 1] J['y2','y1'] = 0.5*outputs['y1']**-0.5 J['R_y2','y2'] = -1 J['R_y2','z'] = [1, 1] J['R_y2','y1'] = 0.5*outputs['y1']**-0.5 def solve_nonlinear(self, inputs, outputs): z0 = inputs['z'][0] z1 = inputs['z'][1] x = inputs['x'] y1 = outputs['y1'] y2 = outputs['y2'] outputs['R_y1'] = (z0**2 + z1 + x - 0.2*y2) - y1 outputs['R_y2'] = (y1**.5 + z0 + z1) - y2 class TestProblem(unittest.TestCase): def test_simple_component_model_with_units(self): class TestComp(om.ExplicitComponent): def setup(self): self.add_input('foo', units='N') self.add_output('bar', units='N') self.declare_partials('bar', 'foo') def compute(self, inputs, outputs): outputs['bar'] = inputs['foo'] def compute_partials(self, inputs, J): J['bar', 'foo'] = 1. p = om.Problem(model=TestComp()) p.setup() p.set_val('foo', 5, units='lbf') p.run_model() lbf_val = convert_units(5, 'lbf', 'N') self.assertEqual(p.get_val('foo'), lbf_val) self.assertEqual(p.get_val('bar'), lbf_val) def test_feature_simple_run_once_no_promote(self): prob = om.Problem() model = prob.model model.add_subsystem('comp', Paraboloid()) model.set_input_defaults('comp.x', 3.0) model.set_input_defaults('comp.y', -4.0) prob.setup() prob.run_model() assert_near_equal(prob['comp.f_xy'], -15.0) def test_feature_simple_run_once_input_input(self): prob = om.Problem() model = prob.model # promote the two inputs to the same name model.add_subsystem('comp1', Paraboloid(), promotes_inputs=['x']) model.add_subsystem('comp2', Paraboloid(), promotes_inputs=['x']) model.set_input_defaults('x', 3.0) prob.setup() prob.run_model() assert_near_equal(prob['comp1.f_xy'], 13.0) assert_near_equal(prob['comp2.f_xy'], 13.0) def test_feature_simple_run_once_compute_totals(self): prob = om.Problem() model = prob.model model.add_subsystem('comp', Paraboloid()) model.set_input_defaults('comp.x', 3.0) model.set_input_defaults('comp.y', -4.0) prob.setup() prob.run_model() totals = prob.compute_totals(of=['comp.f_xy'], wrt=['comp.x', 'comp.y']) assert_near_equal(totals[('comp.f_xy', 'comp.x')][0][0], -4.0) assert_near_equal(totals[('comp.f_xy', 'comp.y')][0][0], 3.0) totals = prob.compute_totals(of=['comp.f_xy'], wrt=['comp.x', 'comp.y'], return_format='dict') assert_near_equal(totals['comp.f_xy']['comp.x'][0][0], -4.0) assert_near_equal(totals['comp.f_xy']['comp.y'][0][0], 3.0) def test_feature_simple_run_once_compute_totals_scaled(self): prob = om.Problem() model = prob.model model.add_subsystem('comp', Paraboloid()) model.set_input_defaults('comp.x', 3.0) model.set_input_defaults('comp.y', -4.0) model.add_design_var('comp.x', 3.0, ref0=50.0) model.add_design_var('comp.y', -4.0) model.add_objective('comp.f_xy') prob.setup() prob.run_model() totals = prob.compute_totals(of=['comp.f_xy'], wrt=['comp.x', 'comp.y'], driver_scaling=True) assert_near_equal(totals[('comp.f_xy', 'comp.x')][0][0], 196.0) assert_near_equal(totals[('comp.f_xy', 'comp.y')][0][0], 3.0) def test_feature_simple_run_once_set_deriv_mode(self): prob = om.Problem() model = prob.model model.add_subsystem('comp', Paraboloid()) model.set_input_defaults('comp.x', 3.0) model.set_input_defaults('comp.y', -4.0) prob.setup(mode='rev') # prob.setup(mode='fwd') prob.run_model() assert_near_equal(prob['comp.f_xy'], -15.0) prob.compute_totals(of=['comp.f_xy'], wrt=['comp.x', 'comp.y']) def test_single_string_wrt_of(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 3.0)) model.add_subsystem('p2', om.IndepVarComp('y', -4.0)) model.add_subsystem('comp', Paraboloid()) model.connect('p1.x', 'comp.x') model.connect('p2.y', 'comp.y') prob.setup() prob.run_model() totals = prob.compute_totals(of='comp.f_xy', wrt='p1.x') assert_near_equal(totals[('comp.f_xy', 'p1.x')][0][0], -4.0) def test_two_var_single_string_error(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 3.0)) model.add_subsystem('p2', om.IndepVarComp('y', -4.0)) model.add_subsystem('comp', Paraboloid()) model.connect('p1.x', 'comp.x') model.connect('p2.y', 'comp.y') prob.setup() prob.run_model() with self.assertRaises(KeyError) as cm: totals = prob.compute_totals(of='comp.f_xy', wrt="p1.x, p2.y") self.assertEqual(str(cm.exception), "'p1.x, p2.y'") def test_compute_totals_cleanup(self): p = om.Problem() model = p.model model.add_subsystem('indeps1', om.IndepVarComp('x', np.ones(5))) model.add_subsystem('indeps2', om.IndepVarComp('x', np.ones(3))) model.add_subsystem('MP1', om.ExecComp('y=7*x', x=np.zeros(5), y=np.zeros(5))) model.add_subsystem('MP2', om.ExecComp('y=-3*x', x=np.zeros(3), y=np.zeros(3))) model.add_design_var('indeps1.x') model.add_design_var('indeps2.x') model.add_constraint('MP1.y') model.add_constraint('MP2.y') model.connect('indeps1.x', 'MP1.x') model.connect('indeps2.x', 'MP2.x') p.setup(mode='rev') p.run_model() J = p.compute_totals() assert_near_equal(J[('MP1.y', 'indeps1.x')], np.eye(5)*7., 1e-10) assert_near_equal(J[('MP2.y', 'indeps2.x')], np.eye(3)*-3., 1e-10) # before the bug fix, the following two derivs contained nonzero values even # though the variables involved were not dependent on each other. assert_near_equal(J[('MP2.y', 'indeps1.x')], np.zeros((3, 5)), 1e-10) assert_near_equal(J[('MP1.y', 'indeps2.x')], np.zeros((5, 3)), 1e-10) def test_set_2d_array(self): prob = om.Problem() model = prob.model model.add_subsystem(name='indeps', subsys=om.IndepVarComp(name='X_c', shape=(3, 1))) prob.setup() new_val = -5*np.ones((3, 1)) prob['indeps.X_c'] = new_val prob.final_setup() assert_near_equal(prob['indeps.X_c'], new_val, 1e-10) new_val = 2.5*np.ones(3) prob['indeps.X_c'][:, 0] = new_val prob.final_setup() assert_near_equal(prob['indeps.X_c'], new_val.reshape((3, 1)), 1e-10) assert_near_equal(prob['indeps.X_c'][:, 0], new_val, 1e-10) def test_set_checks_shape(self): model = om.Group() indep = model.add_subsystem('indep', om.IndepVarComp()) indep.add_output('num') indep.add_output('arr', shape=(10, 1)) prob = om.Problem(model) prob.setup() msg = "Incompatible shape for '.*': Expected (.*) but got (.*)" # check valid scalar value new_val = -10. prob['indep.num'] = new_val assert_near_equal(prob['indep.num'], new_val, 1e-10) # check bad scalar value bad_val = -10*np.ones((10)) prob['indep.num'] = bad_val with self.assertRaisesRegex(ValueError, "<model> <class Group>: Failed to set value of '.*': could not broadcast input array from shape (.*) into shape (.*)."): prob.final_setup() prob._initial_condition_cache = {} # check assign scalar to array arr_val = new_val*np.ones((10, 1)) prob['indep.arr'] = new_val prob.final_setup() assert_near_equal(prob['indep.arr'], arr_val, 1e-10) # check valid array value new_val = -10*np.ones((10, 1)) prob['indep.arr'] = new_val assert_near_equal(prob['indep.arr'], new_val, 1e-10) msg = "<model> <class Group>: Failed to set value of '.*': could not broadcast input array from shape (.*) into shape (.*)." # check bad array value bad_val = -10*np.ones((9,1)) with self.assertRaisesRegex(ValueError, msg): prob['indep.arr'] = bad_val # check valid list value new_val = new_val.tolist() prob['indep.arr'] = new_val assert_near_equal(prob['indep.arr'], new_val, 1e-10) # check bad list value bad_val = bad_val.tolist() with self.assertRaisesRegex(ValueError, msg): prob['indep.arr'] = bad_val def test_compute_totals_basic(self): # Basic test for the method using default solvers on simple model. prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) prob.setup(check=False, mode='fwd') prob.set_solver_print(level=0) prob.run_model() of = ['f_xy'] wrt = ['x', 'y'] derivs = prob.compute_totals(of=of, wrt=wrt) assert_near_equal(derivs['f_xy', 'x'], [[-6.0]], 1e-6) assert_near_equal(derivs['f_xy', 'y'], [[8.0]], 1e-6) prob.setup(check=False, mode='rev') prob.run_model() of = ['f_xy'] wrt = ['x', 'y'] derivs = prob.compute_totals(of=of, wrt=wrt) assert_near_equal(derivs['f_xy', 'x'], [[-6.0]], 1e-6) assert_near_equal(derivs['f_xy', 'y'], [[8.0]], 1e-6) def test_compute_totals_basic_return_dict(self): # Make sure 'dict' return_format works. prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) prob.setup(check=False, mode='fwd') prob.set_solver_print(level=0) prob.run_model() of = ['f_xy'] wrt = ['x', 'y'] derivs = prob.compute_totals(of=of, wrt=wrt, return_format='dict') assert_near_equal(derivs['f_xy']['x'], [[-6.0]], 1e-6) assert_near_equal(derivs['f_xy']['y'], [[8.0]], 1e-6) prob.setup(check=False, mode='rev') prob.run_model() of = ['f_xy'] wrt = ['x', 'y'] derivs = prob.compute_totals(of=of, wrt=wrt, return_format='dict') assert_near_equal(derivs['f_xy']['x'], [[-6.0]], 1e-6) assert_near_equal(derivs['f_xy']['y'], [[8.0]], 1e-6) def test_compute_totals_no_args_no_desvar(self): p = om.Problem() dv = p.model.add_subsystem('des_vars', om.IndepVarComp()) dv.add_output('x', val=2.) p.model.add_subsystem('calc', om.ExecComp('y=2*x')) p.model.connect('des_vars.x', 'calc.x') p.model.add_objective('calc.y') p.setup() p.run_model() with self.assertRaises(RuntimeError) as cm: p.compute_totals() self.assertEqual(str(cm.exception), "Driver is not providing any design variables for compute_totals.") def test_compute_totals_no_args_no_response(self): p = om.Problem() dv = p.model.add_subsystem('des_vars', om.IndepVarComp()) dv.add_output('x', val=2.) p.model.add_subsystem('calc', om.ExecComp('y=2*x')) p.model.connect('des_vars.x', 'calc.x') p.model.add_design_var('des_vars.x') p.setup() p.run_model() with self.assertRaises(RuntimeError) as cm: p.compute_totals() self.assertEqual(str(cm.exception), "Driver is not providing any response variables for compute_totals.") def test_compute_totals_no_args(self): p = om.Problem() dv = p.model.add_subsystem('des_vars', om.IndepVarComp()) dv.add_output('x', val=2.) p.model.add_subsystem('calc', om.ExecComp('y=2*x')) p.model.connect('des_vars.x', 'calc.x') p.model.add_design_var('des_vars.x') p.model.add_objective('calc.y') p.setup() p.run_model() derivs = p.compute_totals() assert_near_equal(derivs['calc.y', 'des_vars.x'], [[2.0]], 1e-6) def test_compute_totals_no_args_promoted(self): p = om.Problem() dv = p.model.add_subsystem('des_vars', om.IndepVarComp(), promotes=['*']) dv.add_output('x', val=2.) p.model.add_subsystem('calc', om.ExecComp('y=2*x'), promotes=['*']) p.model.add_design_var('x') p.model.add_objective('y') p.setup() p.run_model() derivs = p.compute_totals() assert_near_equal(derivs['calc.y', 'des_vars.x'], [[2.0]], 1e-6) @parameterized.expand(itertools.product(['fwd', 'rev'])) def test_compute_jacvec_product(self, mode): prob = om.Problem() prob.model = SellarDerivatives() prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.setup(mode=mode) prob.run_model() of = ['obj', 'con1'] wrt = ['_auto_ivc.v1', '_auto_ivc.v0'] if mode == 'fwd': seed_names = wrt result_names = of rvec = prob.model._vectors['output']['linear'] lvec = prob.model._vectors['residual']['linear'] else: seed_names = of result_names = wrt rvec = prob.model._vectors['residual']['linear'] lvec = prob.model._vectors['output']['linear'] J = prob.compute_totals(of, wrt, return_format='array') seed = [] for name in seed_names: seed.append(np.random.random(rvec[name].size)) resdict = prob.compute_jacvec_product(of, wrt, mode, seed) result = [] for name in result_names: result.append(resdict[name].flat) result = np.hstack(result) testvec = np.hstack(seed) if mode == 'fwd': checkvec = J.dot(testvec) else: checkvec = J.T.dot(testvec) np.testing.assert_allclose(checkvec, result) def test_feature_set_indeps(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) prob.setup() prob['x'] = 2. prob['y'] = 10. prob.run_model() assert_near_equal(prob['f_xy'], 214.0, 1e-6) def test_feature_set_indeps_auto(self): prob = om.Problem() prob.model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) prob.setup() prob.set_val('x', 2.) prob.set_val('y', 10.) prob.run_model() assert_near_equal(prob.get_val('f_xy'), 214.0, 1e-6) def test_feature_basic_setup(self): prob = om.Problem() model = prob.model model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) prob.setup() prob.set_val('x', 2.) prob.set_val('y', 10.) prob.run_model() assert_near_equal(prob.get_val('f_xy'), 214.0, 1e-6) prob.set_val('x', 0.) prob.set_val('y', 0.) prob.run_model() assert_near_equal(prob.get_val('f_xy'), 22.0, 1e-6) prob.setup() prob.set_val('x', 4.) prob.set_val('y', 8.) prob.run_model() assert_near_equal(prob.get_val('f_xy'), 174.0, 1e-6) def test_feature_petsc_setup(self): prob = om.Problem() model = prob.model model.add_subsystem('p1', om.IndepVarComp('x', 0.0), promotes=['x']) model.add_subsystem('p2', om.IndepVarComp('y', 0.0), promotes=['y']) model.add_subsystem('comp', Paraboloid(), promotes=['x', 'y', 'f_xy']) # PETScVectors will be used automatically where needed. No need to set manually. prob.setup() prob['x'] = 2. prob['y'] = 10. prob.run_model() assert_near_equal(prob['f_xy'], 214.0, 1e-6) def test_feature_check_totals_manual(self): prob = om.Problem() prob.model = SellarDerivatives() prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.setup() prob.run_model() # manually specify which derivatives to check prob.check_totals(of=['obj', 'con1'], wrt=['x', 'z']) def test_feature_check_totals_from_driver_compact(self): prob = om.Problem() prob.model = SellarDerivatives() prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.model.add_design_var('x', lower=-100, upper=100) prob.model.add_design_var('z', lower=-100, upper=100) prob.model.add_objective('obj') prob.model.add_constraint('con1', upper=0.0) prob.model.add_constraint('con2', upper=0.0) prob.setup() # We don't call run_driver() here because we don't # actually want the optimizer to run prob.run_model() # check derivatives of all obj+constraints w.r.t all design variables prob.check_totals(compact_print=True) def test_feature_check_totals_from_driver(self): prob = om.Problem() prob.model = SellarDerivatives() prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.model.add_design_var('x', lower=-100, upper=100) prob.model.add_design_var('z', lower=-100, upper=100) prob.model.add_objective('obj') prob.model.add_constraint('con1', upper=0.0) prob.model.add_constraint('con2', upper=0.0) prob.setup() # We don't call run_driver() here because we don't # actually want the optimizer to run prob.run_model() # check derivatives of all obj+constraints w.r.t all design variables prob.check_totals() def test_feature_check_totals_from_driver_scaled(self): prob = om.Problem() prob.model = SellarDerivatives() prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.model.add_design_var('x', lower=-100, upper=100, ref=100.0, ref0=-100.0) prob.model.add_design_var('z', lower=-100, upper=100) prob.model.add_objective('obj') prob.model.add_constraint('con1', upper=0.0, ref=3.0) prob.model.add_constraint('con2', upper=0.0, ref=20.0) prob.setup() # We don't call run_driver() here because we don't # actually want the optimizer to run prob.run_model() # check derivatives of all driver vars using the declared scaling prob.check_totals(driver_scaling=True) def test_feature_check_totals_suppress(self): prob = om.Problem() prob.model = SellarDerivatives() prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.model.add_design_var('x', lower=-100, upper=100) prob.model.add_design_var('z', lower=-100, upper=100) prob.model.add_objective('obj') prob.model.add_constraint('con1', upper=0.0) prob.model.add_constraint('con2', upper=0.0) prob.setup() # We don't call run_driver() here because we don't # actually want the optimizer to run prob.run_model() # check derivatives of all obj+constraints w.r.t all design variables totals = prob.check_totals(out_stream=None) print(totals) def test_feature_check_totals_cs(self): prob = om.Problem() prob.model = SellarDerivatives() prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.model.add_design_var('x', lower=-100, upper=100) prob.model.add_design_var('z', lower=-100, upper=100) prob.model.add_objective('obj') prob.model.add_constraint('con1', upper=0.0) prob.model.add_constraint('con2', upper=0.0) prob.setup(force_alloc_complex=True) # We don't call run_driver() here because we don't # actually want the optimizer to run prob.run_model() prob.model.nonlinear_solver.options['atol'] = 1e-15 prob.model.nonlinear_solver.options['rtol'] = 1e-15 # check derivatives with complex step prob.check_totals(method='cs') def test_check_totals_user_detect(self): class SimpleComp(om.ExplicitComponent): def setup(self): self.add_input('x', val=1.0) self.add_output('y', val=1.0) self.declare_partials(of='y', wrt='x') if not self._force_alloc_complex: raise RuntimeError('force_alloc_complex not set in component.') def compute(self, inputs, outputs): outputs['y'] = 3.0*inputs['x'] if inputs.iscomplex() and not self.under_complex_step: raise RuntimeError('under_complex_step not set in component.') def compute_partials(self, inputs, partials): partials['y', 'x'] = 3. prob = om.Problem() prob.model.add_subsystem('px', om.IndepVarComp('x', 2.0)) prob.model.add_subsystem('comp', SimpleComp()) prob.model.connect('px.x', 'comp.x') prob.model.add_design_var('px.x', lower=-100, upper=100) prob.model.add_objective('comp.y') prob.setup(force_alloc_complex=True) prob.run_model() # check derivatives with complex step and a larger step size. prob.check_totals(method='cs', out_stream=None) self.assertFalse(prob.model.under_complex_step, msg="The under_complex_step flag should be reset.") def test_feature_check_totals_user_detect_forced(self): class SimpleComp(om.ExplicitComponent): def setup(self): self.add_input('x', val=1.0) self.add_output('y', val=1.0) self.declare_partials(of='y', wrt='x') if self._force_alloc_complex: print("Vectors allocated for complex step.") def compute(self, inputs, outputs): outputs['y'] = 3.0*inputs['x'] def compute_partials(self, inputs, partials): partials['y', 'x'] = 3. prob = om.Problem() prob.model.add_subsystem('comp', SimpleComp()) prob.model.add_design_var('comp.x', lower=-100, upper=100) prob.model.add_objective('comp.y') prob.setup(force_alloc_complex=True) prob.run_model() prob.check_totals(method='cs') def test_set_cs_error_messages(self): prob = om.Problem() prob.model.add_subsystem('comp', Paraboloid()) prob.setup() prob.run_model() with self.assertRaises(RuntimeError) as cm: prob.set_complex_step_mode(True) msg = "Problem: To enable complex step, specify 'force_alloc_complex=True' when calling " + \ "setup on the problem, e.g. 'problem.setup(force_alloc_complex=True)'" self.assertEqual(cm.exception.args[0], msg) prob = om.Problem() prob.model.add_subsystem('comp', Paraboloid()) with self.assertRaises(RuntimeError) as cm: prob.set_complex_step_mode(True) msg = "Problem: set_complex_step_mode cannot be called before `Problem.run_model()`, " + \ "`Problem.run_driver()`, or `Problem.final_setup()`." self.assertEqual(cm.exception.args[0], msg) def test_feature_run_driver(self): prob = om.Problem(model=SellarDerivatives()) model = prob.model model.nonlinear_solver = om.NonlinearBlockGS() prob.driver = om.ScipyOptimizeDriver() prob.driver.options['optimizer'] = 'SLSQP' prob.driver.options['tol'] = 1e-9 model.add_design_var('z', lower=np.array([-10.0, 0.0]), upper=np.array([10.0, 10.0])) model.add_design_var('x', lower=0.0, upper=10.0) model.add_objective('obj') model.add_constraint('con1', upper=0.0) model.add_constraint('con2', upper=0.0) prob.setup() prob.run_driver() assert_near_equal(prob.get_val('x'), 0.0, 1e-5) assert_near_equal(prob.get_val('y1'), 3.160000, 1e-2) assert_near_equal(prob.get_val('y2'), 3.755278, 1e-2) assert_near_equal(prob.get_val('z'), [1.977639, 0.000000], 1e-2) assert_near_equal(prob.get_val('obj'), 3.18339395, 1e-2) def test_feature_promoted_sellar_set_get_outputs(self): prob = om.Problem(model=SellarDerivatives()) prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.setup() prob.set_val('x', 2.75) prob.run_model() assert_near_equal(prob.get_val('y1'), 27.3049178437, 1e-6) def test_feature_not_promoted_sellar_set_get_outputs(self): prob = om.Problem(model= SellarDerivativesConnected()) prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.setup() prob.set_val('x', 2.75) prob.run_model() assert_near_equal(prob.get_val('x'), 2.75, 1e-6) assert_near_equal(prob.get_val('d1.y1'), 27.3049178437, 1e-6) def test_feature_promoted_sellar_set_get_inputs(self): prob = om.Problem(model=SellarDerivatives()) prob.model.nonlinear_solver = om.NonlinearBlockGS() prob.setup() prob['x'] = 2.75 prob.run_model() assert_near_equal(prob['x'], 2.75, 1e-6) # the output variable, referenced by the promoted name assert_near_equal(prob['y1'], 27.3049178437, 1e-6) # the connected input variable, referenced by the absolute path assert_near_equal(prob['d2.y1'], 27.3049178437, 1e-6) def test_get_set_with_units_exhaustive(self): prob = om.Problem() prob.model.add_subsystem('comp', om.ExecComp('y=x-25.', x={'val': 77.0, 'units': 'degF'}, y={'val': 0.0, 'units': 'degC'})) prob.model.add_subsystem('prom', om.ExecComp('yy=xx-25.', xx={'val': 77.0, 'units': 'degF'}, yy={'val': 0.0, 'units': 'degC'}), promotes=['xx', 'yy']) prob.model.add_subsystem('acomp', om.ExecComp('y=x-25.', x={'val': np.array([77.0, 95.0]), 'units': 'degF'}, y={'val': 0.0, 'units': 'degC'})) prob.model.add_subsystem('aprom', om.ExecComp('ayy=axx-25.', axx={'val': np.array([77.0, 95.0]), 'units': 'degF'}, ayy={'val': 0.0, 'units': 'degC'}), promotes=['axx', 'ayy']) prob.setup() # Make sure everything works before final setup with caching system. # Gets assert_near_equal(prob.get_val('comp.x'), 77.0, 1e-6) assert_near_equal(prob.get_val('comp.x', 'degC'), 25.0, 1e-6) assert_near_equal(prob.get_val('comp.y'), 0.0, 1e-6) assert_near_equal(prob.get_val('comp.y', 'degF'), 32.0, 1e-6) assert_near_equal(prob.get_val('xx'), 77.0, 1e-6) assert_near_equal(prob.get_val('xx', 'degC'), 25.0, 1e-6) assert_near_equal(prob.get_val('yy'), 0.0, 1e-6) assert_near_equal(prob.get_val('yy', 'degF'), 32.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', indices=0), 77.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', indices=[1]), 95.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', 'degC', indices=[0]), 25.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', 'degC', indices=1), 35.0, 1e-6) assert_near_equal(prob.get_val('acomp.y', indices=0), 0.0, 1e-6) assert_near_equal(prob.get_val('acomp.y', 'degF', indices=0), 32.0, 1e-6) assert_near_equal(prob.get_val('axx', indices=0), 77.0, 1e-6) assert_near_equal(prob.get_val('axx', indices=1), 95.0, 1e-6) assert_near_equal(prob.get_val('axx', 'degC', indices=0), 25.0, 1e-6) assert_near_equal(prob.get_val('axx', 'degC', indices=np.array([1])), 35.0, 1e-6) assert_near_equal(prob.get_val('ayy', indices=0), 0.0, 1e-6) assert_near_equal(prob.get_val('ayy', 'degF', indices=0), 32.0, 1e-6) # Sets prob.set_val('comp.x', 30.0, 'degC') assert_near_equal(prob['comp.x'], 86.0, 1e-6) assert_near_equal(prob.get_val('comp.x', 'degC'), 30.0, 1e-6) prob.set_val('xx', 30.0, 'degC') assert_near_equal(prob['xx'], 86.0, 1e-6) assert_near_equal(prob.get_val('xx', 'degC'), 30.0, 1e-6) prob.set_val('acomp.x', 30.0, 'degC', indices=[0]) assert_near_equal(prob['acomp.x'][0], 86.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', 'degC', indices=0), 30.0, 1e-6) prob.set_val('axx', 30.0, 'degC', indices=0) assert_near_equal(prob['axx'][0], 86.0, 1e-6) assert_near_equal(prob.get_val('axx', 'degC', indices=np.array([0])), 30.0, 1e-6) prob.final_setup() # Now we do it all over again for coverage. # Gets assert_near_equal(prob.get_val('comp.x'), 86.0, 1e-6) assert_near_equal(prob.get_val('comp.x', 'degC'), 30.0, 1e-6) assert_near_equal(prob.get_val('comp.y'), 0.0, 1e-6) assert_near_equal(prob.get_val('comp.y', 'degF'), 32.0, 1e-6) assert_near_equal(prob.get_val('xx'), 86.0, 1e-6) assert_near_equal(prob.get_val('xx', 'degC'), 30.0, 1e-6) assert_near_equal(prob.get_val('yy'), 0.0, 1e-6) assert_near_equal(prob.get_val('yy', 'degF'), 32.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', indices=0), 86.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', indices=[1]), 95.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', 'degC', indices=[0]), 30.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', 'degC', indices=1), 35.0, 1e-6) assert_near_equal(prob.get_val('acomp.y', indices=0), 0.0, 1e-6) assert_near_equal(prob.get_val('acomp.y', 'degF', indices=0), 32.0, 1e-6) assert_near_equal(prob.get_val('axx', indices=0), 86.0, 1e-6) assert_near_equal(prob.get_val('axx', indices=1), 95.0, 1e-6) assert_near_equal(prob.get_val('axx', 'degC', indices=0), 30.0, 1e-6) assert_near_equal(prob.get_val('axx', 'degC', indices=np.array([1])), 35.0, 1e-6) assert_near_equal(prob.get_val('ayy', indices=0), 0.0, 1e-6) assert_near_equal(prob.get_val('ayy', 'degF', indices=0), 32.0, 1e-6) # Sets prob.set_val('comp.x', 35.0, 'degC') assert_near_equal(prob['comp.x'], 95.0, 1e-6) assert_near_equal(prob.get_val('comp.x', 'degC'), 35.0, 1e-6) prob.set_val('xx', 35.0, 'degC') assert_near_equal(prob['xx'], 95.0, 1e-6) assert_near_equal(prob.get_val('xx', 'degC'), 35.0, 1e-6) prob.set_val('acomp.x', 35.0, 'degC', indices=[0]) assert_near_equal(prob['acomp.x'][0], 95.0, 1e-6) assert_near_equal(prob.get_val('acomp.x', 'degC', indices=0), 35.0, 1e-6) prob.set_val('axx', 35.0, 'degC', indices=0) assert_near_equal(prob['axx'][0], 95.0, 1e-6) assert_near_equal(prob.get_val('axx', 'degC', indices=np.array([0])), 35.0, 1e-6) def test_feature_get_set_with_units_diff_err(self): prob = om.Problem() prob.model.add_subsystem('C1', om.ExecComp('y=x*2.', x={'val': 1.0, 'units': 'ft'}, y={'val': 0.0, 'units': 'ft'}), promotes=['x']) prob.model.add_subsystem('C2', om.ExecComp('y=x*3.', x={'val': 1.0, 'units': 'inch'}, y={'val': 0.0, 'units': 'inch'}), promotes=['x']) try: prob.setup() except RuntimeError as err: self.assertEqual(str(err), "<model> <class Group>: The following inputs, ['C1.x', 'C2.x'], promoted to 'x', are connected but their metadata entries ['units', 'val'] differ. Call <group>.set_input_defaults('x', units=?, val=?), where <group> is the model to remove the ambiguity.") else: self.fail("Exception expected.") def test_feature_get_set_with_units_diff(self): prob = om.Problem() G1 = prob.model.add_subsystem('G1', om.Group()) G1.add_subsystem('C1', om.ExecComp('y=x*2.', x={'val': 1.0, 'units': 'cm'}, y={'val': 0.0, 'units': 'cm'}), promotes=['x']) G1.add_subsystem('C2', om.ExecComp('y=x*3.', x={'val': 1.0, 'units': 'mm'}, y={'val': 0.0, 'units': 'mm'}), promotes=['x']) # units and value to use for the _auto_ivc output are ambiguous. This fixes that. G1.set_input_defaults('x', units='m', val=1.0) prob.setup() # set G1.x to 2.0 m, based on the units we gave in the set_input_defaults call prob.set_val('G1.x', 2.) prob.run_model() # we gave 'G1.x' units of 'm' in the set_input_defaults call assert_near_equal(prob.get_val('G1.x'), 2.0, 1e-6) # using absolute value will give us the value of the input C1.x, in its units of 'cm' assert_near_equal(prob.get_val('G1.C1.x'), 200.0, 1e-6) # using absolute value will give us the value of the input C2.x, in its units of 'mm' assert_near_equal(prob.get_val('G1.C2.x'), 2000.0, 1e-6) def test_feature_get_set_with_src_indices_diff(self): prob = om.Problem() G1 = prob.model.add_subsystem('G1', om.Group()) G1.add_subsystem('C1', om.ExecComp('y=x*2.', x={'val': 1.0, 'units': 'cm', 'src_indices': [0]}, y={'val': 0.0, 'units': 'cm'}), promotes=['x']) G1.add_subsystem('C2', om.ExecComp('y=x*3.', x={'val': 1.0, 'units': 'mm', 'src_indices': [1,2]}, y={'val': np.zeros(2), 'units': 'mm'}), promotes=['x']) G1.add_subsystem('C3', om.ExecComp('y=x*4.', x={'val': np.ones(3), 'units': 'mm'}, y={'val': np.zeros(3), 'units': 'mm'}), promotes=['x']) # units and value to use for the _auto_ivc output are ambiguous. This fixes that. G1.set_input_defaults('x', units='m', val=np.ones(3)) prob.setup() # set G1.x to 2.0 m, based on the units we gave in the set_input_defaults call prob['G1.x'] = np.ones(3) * 2.0 prob.run_model() # we gave 'G1.x' units of 'm' in the set_input_defaults call assert_near_equal(prob['G1.x'], np.ones(3) * 2.0, 1e-6) # using absolute value will give us the value of the input C1.x, in its units of 'cm' assert_near_equal(prob['G1.C1.x'], 200.0, 1e-6) assert_near_equal(prob['G1.C1.y'], 400.0, 1e-6) # using absolute value will give us the value of the input C2.x, in its units of 'mm' assert_near_equal(prob['G1.C2.x'], np.ones(2) * 2000.0, 1e-6) assert_near_equal(prob['G1.C2.y'], np.ones(2) * 6000.0, 1e-6) def test_feature_get_set_with_units_prom_plus_explicit(self): prob = om.Problem() prob.model.add_subsystem('indeps', om.IndepVarComp('x', val=1.0, units='m')) G1 = prob.model.add_subsystem('G1', om.Group()) G1.add_subsystem('C1', om.ExecComp('y=x*2.', x={'val': 1.0, 'units': 'cm'}, y={'val': 0.0, 'units': 'cm'}), promotes=['x']) G1.add_subsystem('C2', om.ExecComp('y=x*3.', x={'val': 1.0, 'units': 'mm'}, y={'val': 0.0, 'units': 'mm'}), promotes=['x']) # connect IVC to promoted inputs prob.model.connect('indeps.x', 'G1.x') # units and value to use for the _auto_ivc output are ambiguous. This fixes that. G1.set_input_defaults('x', units='dm', val=1.0) prob.setup() prob['indeps.x'] = 2.0 prob.run_model() assert_near_equal(prob['indeps.x'], 2.0, 1e-6) # using the promoted name of the inputs will give the value # in the units set in set_input_defaults, which is 'dm' assert_near_equal(prob['G1.x'], 20.0, 1e-6) # get value from lower level group assert_near_equal(G1.get_val('x'), 20.0, 1e-6) # using absolute value will give us the value of the input C1.x, in its units of 'inch' assert_near_equal(prob['G1.C1.x'], 200.0, 1e-6) # using absolute value will give us the value of the input C2.x, in its units of 'ft' assert_near_equal(prob['G1.C2.x'], 2000.0, 1e-6) def test_feature_get_set_with_units_prom_plus_explicit_err(self): prob = om.Problem() prob.model.add_subsystem('indeps', om.IndepVarComp('x', val=1.0, units='m')) G1 = prob.model.add_subsystem('G1', om.Group()) G1.add_subsystem('C1', om.ExecComp('y=x*2.', x={'val': 1.0, 'units': 'cm'}, y={'val': 0.0, 'units': 'cm'}), promotes=['x']) G1.add_subsystem('C2', om.ExecComp('y=x*3.', x={'val': 1.0, 'units': 'mm'}, y={'val': 0.0, 'units': 'mm'}), promotes=['x']) # connect IVC to promoted inputs prob.model.connect('indeps.x', 'G1.x') prob.setup() prob['indeps.x'] = 2.0 prob.run_model() assert_near_equal(prob['indeps.x'], 2.0, 1e-6) # using absolute value will give us the value of the input C1.x, in its units of 'inch' assert_near_equal(prob['G1.C1.x'], 200.0, 1e-6) # using absolute value will give us the value of the input C2.x, in its units of 'ft' assert_near_equal(prob['G1.C2.x'], 2000.0, 1e-6) # using the promoted name of the inputs will raise an exception because the two promoted # inputs have different units and set_input_defaults was not called to disambiguate. with self.assertRaises(RuntimeError) as cm: x = prob['G1.x'] msg = "<model> <class Group>: The following inputs, ['G1.C1.x', 'G1.C2.x'], promoted to 'G1.x', are connected but their metadata entries ['units'] differ. Call <group>.set_input_defaults('x', units=?), where <group> is the Group named 'G1' to remove the ambiguity." self.assertEqual(cm.exception.args[0], msg) def test_get_set_with_units_error_messages(self): prob = om.Problem() prob.model.add_subsystem('comp', om.ExecComp('y=x+1.', x={'val': 100.0, 'units': 'cm'}, y={'units': 'm'})) prob.model.add_subsystem('no_unit', om.ExecComp('y=x+1.', x={'val': 100.0})) prob.setup() prob.run_model() msg = "Can't express variable 'comp.x' with units of 'cm' in units of 'degK'." with self.assertRaisesRegex(TypeError, msg): prob.get_val('comp.x', 'degK') with self.assertRaisesRegex(TypeError, msg): prob.set_val('comp.x', 55.0, 'degK') msg = "Can't express variable 'no_unit.x' with units of 'None' in units of 'degK'." with self.assertRaisesRegex(TypeError, msg): prob.get_val('no_unit.x', 'degK') with self.assertRaisesRegex(TypeError, msg): prob.set_val('no_unit.x', 55.0, 'degK') def test_feature_get_set_with_units(self): prob = om.Problem() prob.model.add_subsystem('comp', om.ExecComp('y=x+1.', x={'val': 100.0, 'units': 'cm'}, y={'units': 'm'})) prob.setup() prob.run_model() assert_near_equal(prob.get_val('comp.x'), 100, 1e-6) assert_near_equal(prob.get_val('comp.x', 'm'), 1.0, 1e-6) prob.set_val('comp.x', 10.0, 'mm') assert_near_equal(prob.get_val('comp.x'), 1.0, 1e-6) assert_near_equal(prob.get_val('comp.x', 'm'), 1.0e-2, 1e-6) def test_feature_get_set_array_with_units(self): prob = om.Problem() prob.model.add_subsystem('comp', om.ExecComp('y=x+1.', x={'val': np.array([100.0, 33.3]), 'units': 'cm'}, y={'shape': (2, ), 'units': 'm'})) prob.setup() prob.run_model() assert_near_equal(prob.get_val('comp.x'), np.array([100, 33.3]), 1e-6) assert_near_equal(prob.get_val('comp.x', 'm'), np.array([1.0, 0.333]), 1e-6) assert_near_equal(prob.get_val('comp.x', 'km', indices=[0]), 0.001, 1e-6) prob.set_val('comp.x', 10.0, 'mm') assert_near_equal(prob.get_val('comp.x'),
np.array([1.0, 1.0])
numpy.array
import unittest import numpy as np import scipy.misc import scipy.stats import tensorflow as tf import autogp from autogp import kernels from autogp import likelihoods SIG_FIGS = 5 class TestGaussianProcess(unittest.TestCase): @classmethod def setUpClass(cls): # We expect the child class to instantiate `cls.model` for us. cls.session = tf.Session() @classmethod def tearDownClass(cls): cls.session.close() @classmethod def entropy(cls, weights, means, covars): entropy = cls.model._build_entropy(weights=np.array(weights, dtype=np.float32), means=np.array(means, dtype=np.float32), covars=np.array(covars, dtype=np.float32)) return cls.session.run(entropy) @classmethod def cross_ent(cls, weights, means, covars, kernel_chol): cross_ent = cls.model._build_cross_ent(weights=np.array(weights, dtype=np.float32), means=np.array(means, dtype=np.float32), covars=np.array(covars, dtype=np.float32), kernel_chol=np.array(kernel_chol, dtype=np.float32)) return cls.session.run(cross_ent) @classmethod def interim_vals(cls, kernel_chol, inducing_inputs, train_inputs): kern_prods, kern_sums = cls.model._build_interim_vals( kernel_chol=np.array(kernel_chol, dtype=np.float32), inducing_inputs=np.array(inducing_inputs, dtype=np.float32), train_inputs=np.array(train_inputs, dtype=np.float32)) return cls.session.run([kern_prods, kern_sums]) @classmethod def sample_info(cls, kern_prods, kern_sums, means, covars): mean, var = cls.model._build_sample_info(kern_prods=np.array(kern_prods, dtype=np.float32), kern_sums=np.array(kern_sums, dtype=np.float32), means=np.array(means, dtype=np.float32), covars=np.array(covars, dtype=np.float32)) return cls.session.run([mean, var]) class TestSimpleFull(TestGaussianProcess): @classmethod def setUpClass(cls): super(TestSimpleFull, cls).setUpClass() likelihood = likelihoods.Gaussian(1.0) kernel = [kernels.RadialBasis(input_dim=1, lengthscale=1.0, std_dev=1.0, white=0.0)] # In most of our unit test, we will replace this value with something else. inducing_inputs = np.array([[1.0]]) cls.model = autogp.GaussianProcess(likelihood_func=likelihood, kernel_funcs=kernel, inducing_inputs=inducing_inputs, num_components=1, diag_post=False, num_samples=10) cls.session.run(tf.initialize_all_variables()) def test_simple_entropy(self): entropy = TestSimpleFull.entropy(weights=[1.0], means=[[[1.0]]], covars=[[[[1.0]]]]) self.assertAlmostEqual(entropy, 0.5 * (np.log(2 * np.pi) + np.log(2.0)), SIG_FIGS) def test_small_covar_entropy(self): entropy = TestSimpleFull.entropy(weights=[1.0], means=[[[1.0]]], covars=[[[[1e-10]]]]) self.assertAlmostEqual(entropy, 0.5 * (np.log(2 * np.pi) +
np.log(2 * 1e-20)
numpy.log